Variational Monte Carlo Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Variational Monte Carlo Technique: Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. General Article Volume 19 Issue 8 August 2014 pp 713-739 ...
Variational Monte Carlo Technique
Indian Academy of Sciences (India)
ias
on the development of nuclear weapons in Los Alamos ..... cantly improved the paper. ... Carlo simulations of solids, Reviews of Modern Physics, Vol.73, pp.33– ... The computer algorithms are usually based on a random seed that starts the ...
Monte Carlo techniques in radiation therapy
Verhaegen, Frank
2013-01-01
Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...
Elements of Monte Carlo techniques
International Nuclear Information System (INIS)
Nagarajan, P.S.
2000-01-01
The Monte Carlo method is essentially mimicking the real world physical processes at the microscopic level. With the incredible increase in computing speeds and ever decreasing computing costs, there is widespread use of the method for practical problems. The method is used in calculating algorithm-generated sequences known as pseudo random sequence (prs)., probability density function (pdf), test for randomness, extension to multidimensional integration etc
Variance Reduction Techniques in Monte Carlo Methods
Kleijnen, Jack P.C.; Ridder, A.A.N.; Rubinstein, R.Y.
2010-01-01
Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the
Monte Carlo techniques for analyzing deep-penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1986-01-01
Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications
Monte Carlo techniques for analyzing deep penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1985-01-01
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications
Monte Carlo techniques for analyzing deep penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1985-01-01
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
International Nuclear Information System (INIS)
Brown, Forrest B.; Univ. of New Mexico, Albuquerque, NM
2016-01-01
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications Group; Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Engineering Dept.
2016-11-29
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations
Monte Carlo techniques in diagnostic and therapeutic nuclear medicine
International Nuclear Information System (INIS)
Zaidi, H.
2002-01-01
Monte Carlo techniques have become one of the most popular tools in different areas of medical radiation physics following the development and subsequent implementation of powerful computing systems for clinical use. In particular, they have been extensively applied to simulate processes involving random behaviour and to quantify physical parameters that are difficult or even impossible to calculate analytically or to determine by experimental measurements. The use of the Monte Carlo method to simulate radiation transport turned out to be the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides. There is broad consensus in accepting that the earliest Monte Carlo calculations in medical radiation physics were made in the area of nuclear medicine, where the technique was used for dosimetry modelling and computations. Formalism and data based on Monte Carlo calculations, developed by the Medical Internal Radiation Dose (MIRD) committee of the Society of Nuclear Medicine, were published in a series of supplements to the Journal of Nuclear Medicine, the first one being released in 1968. Some of these pamphlets made extensive use of Monte Carlo calculations to derive specific absorbed fractions for electron and photon sources uniformly distributed in organs of mathematical phantoms. Interest in Monte Carlo-based dose calculations with β-emitters has been revived with the application of radiolabelled monoclonal antibodies to radioimmunotherapy. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the medical physics
A Monte Carlo Sampling Technique for Multi-phonon Processes
Energy Technology Data Exchange (ETDEWEB)
Hoegberg, Thure
1961-12-15
A sampling technique for selecting scattering angle and energy gain in Monte Carlo calculations of neutron thermalization is described. It is supposed that the scattering is separated into processes involving different numbers of phonons. The number of phonons involved is first determined. Scattering angle and energy gain are then chosen by using special properties of the multi-phonon term.
Monte Carlo technique for local perturbations in multiplying systems
International Nuclear Information System (INIS)
Bernnat, W.
1974-01-01
The use of the Monte Carlo method for the calculation of reactivity perturbations in multiplying systems due to changes in geometry or composition requires a correlated sampling technique to make such calculations economical or in the case of very small perturbations even feasible. The technique discussed here is suitable for local perturbations. Very small perturbation regions will be treated by an adjoint mode. The perturbation of the source distribution due to the changed system and its reaction on the reactivity worth or other values of interest is taken into account by a fission matrix method. The formulation of the method and its application are discussed. 10 references. (U.S.)
Monte Carlo technique for very large ising models
Kalle, C.; Winkelmann, V.
1982-08-01
Rebbi's multispin coding technique is improved and applied to the kinetic Ising model with size 600*600*600. We give the central part of our computer program (for a CDC Cyber 76), which will be helpful also in a simulation of smaller systems, and describe the other tricks necessary to go to large lattices. The magnetization M at T=1.4* T c is found to decay asymptotically as exp(-t/2.90) if t is measured in Monte Carlo steps per spin, and M( t = 0) = 1 initially.
Skin fluorescence model based on the Monte Carlo technique
Churmakov, Dmitry Y.; Meglinski, Igor V.; Piletsky, Sergey A.; Greenhalgh, Douglas A.
2003-10-01
The novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account spatial distribution of fluorophores following the collagen fibers packing, whereas in epidermis and stratum corneum the distribution of fluorophores assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the NIR spectral region, while fluorescence of sensor layer embedded in epidermis is localized at the adjusted depth. The model is also able to simulate the skin fluorescence spectra.
Stratified source-sampling techniques for Monte Carlo eigenvalue analysis
International Nuclear Information System (INIS)
Mohamed, A.
1998-01-01
In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo ''Eigenvalue of the World'' problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. In this paper, stratified source-sampling techniques are generalized and applied to three different Eigenvalue of the World configurations which take into account real-world statistical noise sources not included in the model problem, but which differ in the amount of neutronic coupling among the constituents of each configuration. It is concluded that, in Monte Carlo eigenvalue analysis of loosely-coupled arrays, the use of stratified source-sampling reduces the probability of encountering an anomalous result over that if conventional source-sampling methods are used. However, this gain in reliability is substantially less than that observed in the model-problem results
Collimator performance evaluation by Monte-Carlo techniques
International Nuclear Information System (INIS)
Milanesi, L.; Bettinardi, V.; Bellotti, E.; Gilardi, M.C.; Todd-Pokropek, A.; Fazio, F.
1985-01-01
A computer program using Monte-Carlo techniques has been developed to simulate gamma camera collimator performance. Input data include hole length, septum thickness, hole size and shape, collimator material, source characteristics, source to collimator distance and medium, radiation energy, total events number. Agreement between Monte-Carlo simulations and experimental measurements was found for commercial hexagonal parallel hole collimators in terms of septal penetration, transfer function and sensitivity. The method was then used to rationalize collimator design for tomographic brain studies. A radius of ration of 15 cm was assumed. By keeping constant resolution at 15 cm (FWHM = 1.3.cm), SPECT response to a point source was obtained in scattering medium for three theoretical collimators. Sensitivity was maximized in the first collimator, uniformity of resolution response in the third, while the second represented a trade-off between the two. The high sensitivity design may be superior in the hot spot and/or low activity situation, while for distributed sources of high activity an uniform resolution response should be preferred. The method can be used to personalize collimator design to different clinical needs in SPECT
Murthy, K. P. N.
2001-01-01
An introduction to the basics of Monte Carlo is given. The topics covered include, sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, central limit theorem (stable distribution, Levy distribution), random numbers (generation and testing), random sampling techniques (inversion, rejection, sampling from a Gaussian, Metropolis sampling), analogue Monte Carlo and Importance sampling (exponential b...
Error reduction techniques for Monte Carlo neutron transport calculations
International Nuclear Information System (INIS)
Ju, J.H.W.
1981-01-01
Monte Carlo methods have been widely applied to problems in nuclear physics, mathematical reliability, communication theory, and other areas. The work in this thesis is developed mainly with neutron transport applications in mind. For nuclear reactor and many other applications, random walk processes have been used to estimate multi-dimensional integrals and obtain information about the solution of integral equations. When the analysis is statistically based such calculations are often costly, and the development of efficient estimation techniques plays a critical role in these applications. All of the error reduction techniques developed in this work are applied to model problems. It is found that the nearly optimal parameters selected by the analytic method for use with GWAN estimator are nearly identical to parameters selected by the multistage method. Modified path length estimation (based on the path length importance measure) leads to excellent error reduction in all model problems examined. Finally, it should be pointed out that techniques used for neutron transport problems may be transferred easily to other application areas which are based on random walk processes. The transport problems studied in this dissertation provide exceptionally severe tests of the error reduction potential of any sampling procedure. It is therefore expected that the methods of this dissertation will prove useful in many other application areas
A Monte Carlo simulation technique to determine the optimal portfolio
Directory of Open Access Journals (Sweden)
Hassan Ghodrati
2014-03-01
Full Text Available During the past few years, there have been several studies for portfolio management. One of the primary concerns on any stock market is to detect the risk associated with various assets. One of the recognized methods in order to measure, to forecast, and to manage the existing risk is associated with Value at Risk (VaR, which draws much attention by financial institutions in recent years. VaR is a method for recognizing and evaluating of risk, which uses the standard statistical techniques and the method has been used in other fields, increasingly. The present study has measured the value at risk of 26 companies from chemical industry in Tehran Stock Exchange over the period 2009-2011 using the simulation technique of Monte Carlo with 95% confidence level. The used variability in the present study has been the daily return resulted from the stock daily price change. Moreover, the weight of optimal investment has been determined using a hybrid model called Markowitz and Winker model in each determined stocks. The results showed that the maximum loss would not exceed from 1259432 Rials at 95% confidence level in future day.
Characterization of decommissioned reactor internals: Monte Carlo analysis technique
International Nuclear Information System (INIS)
Reid, B.D.; Love, E.F.; Luksic, A.T.
1993-03-01
This study discusses computer analysis techniques for determining activation levels of irradiated reactor component hardware to yield data for the Department of Energy's Greater-Than-Class C Low-Level Radioactive Waste Program. The study recommends the Monte Carlo Neutron/Photon (MCNP) computer code as the best analysis tool for this application and compares the technique to direct sampling methodology. To implement the MCNP analysis, a computer model would be developed to reflect the geometry, material composition, and power history of an existing shutdown reactor. MCNP analysis would then be performed using the computer model, and the results would be validated by comparison to laboratory analysis results from samples taken from the shutdown reactor. The report estimates uncertainties for each step of the computational and laboratory analyses; the overall uncertainty of the MCNP results is projected to be ±35%. The primary source of uncertainty is identified as the material composition of the components, and research is suggested to address that uncertainty
Monte Carlo simulation of tomography techniques using the platform Gate
International Nuclear Information System (INIS)
Barbouchi, Asma
2007-01-01
Simulations play a key role in functional imaging, with applications ranging from scanner design, scatter correction, protocol optimisation. GATE (Geant4 for Application Tomography Emission) is a platform for Monte Carlo Simulation. It is based on Geant4 to generate and track particles, to model geometry and physics process. Explicit modelling of time includes detector motion, time of flight, tracer kinetics. Interfaces to voxellised models and image reconstruction packages improve the integration of GATE in the global modelling cycle. In this work Monte Carlo simulations are used to understand and optimise the gamma camera's performances. We study the effect of the distance between source and collimator, the diameter of the holes and the thick of the collimator on the spatial resolution, energy resolution and efficiency of the gamma camera. We also study the reduction of simulation's time and implement a model of left ventricle in GATE. (Author). 7 refs
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described
Monte Carlo and Quasi-Monte Carlo Sampling
Lemieux, Christiane
2009-01-01
Presents essential tools for using quasi-Monte Carlo sampling in practice. This book focuses on issues related to Monte Carlo methods - uniform and non-uniform random number generation, variance reduction techniques. It covers several aspects of quasi-Monte Carlo methods.
Monte Carlo principles and applications
Energy Technology Data Exchange (ETDEWEB)
Raeside, D E [Oklahoma Univ., Oklahoma City (USA). Health Sciences Center
1976-03-01
The principles underlying the use of Monte Carlo methods are explained, for readers who may not be familiar with the approach. The generation of random numbers is discussed, and the connection between Monte Carlo methods and random numbers is indicated. Outlines of two well established Monte Carlo sampling techniques are given, together with examples illustrating their use. The general techniques for improving the efficiency of Monte Carlo calculations are considered. The literature relevant to the applications of Monte Carlo calculations in medical physics is reviewed.
Two improved Monte Carlo photon cross section techniques
International Nuclear Information System (INIS)
Scudiere, M.B.
1978-01-01
Truncated series of Legendre coefficients and polynomials are often used in multigroup transport computer codes to describe group-to-group angular density transfer functions. Imposition of group structure on the energy continuum may create discontinuities in the first derivative of these functions. Because of the nature of these discontinuities efficient and accurate full-range polynomial expansions are not practically obtainable. Two separate and distinct methods for Monte Carlo photon transport are presented which eliminate essentially all major disadvantages of truncated expansions. In the first method, partial-range expansions are applied between the discontinuities. Here accurate low-order representations are obtained, which yield modest savings in computer charges. The second method employs unique properties of functions to replace them with a few smooth well-behaved representations. This method brings about a considerable savings in computer memory requirements. In addition, accuracy of the first method is maintained, while execution times are reduced even further
Monte Carlo simulation techniques for predicting annual power production
International Nuclear Information System (INIS)
Cross, J.P.; Bulandr, P.J.
1991-01-01
As the owner and operator of a number of small to mid-sized hydroelectric sites, STS HydroPower has been faced with the need to accurately predict anticipated hydroelectric revenues over a period of years. The typical approach to this problem has been to look at each site from a mathematical deterministic perspective and evaluate the annual production from historic streamflows. Average annual production is simply taken to be the area under the flow duration curve defined by the operating and design characteristics of the selected turbines. Minimum annual production is taken to be a historic dry year scenario and maximum production is viewed as power generated under the most ideal of conditions. Such an approach creates two problems. First, in viewing the characteristics of a single site, it does not take into account the probability of such an event occurring. Second, in viewing all sites in a single organization's portfolio together, it does not reflect the varying flow conditions at the different sites. This paper attempts to address the first of these two concerns, that being the creation of a simulation model utilizing the Monte Carlo method at a single site. The result of the analysis is a picture of the production at the site that is both a better representation of anticipated conditions and defined probabilistically
International Nuclear Information System (INIS)
Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.
2014-01-01
Highlights: •Develop the novel Multi-Step CADIS (MS-CADIS) hybrid Monte Carlo/deterministic method for multi-step shielding analyses. •Accurately calculate shutdown dose rates using full-scale Monte Carlo models of fusion energy systems. •Demonstrate the dramatic efficiency improvement of the MS-CADIS method for the rigorous two step calculations of the shutdown dose rate in fusion reactors. -- Abstract: The rigorous 2-step (R2S) computational system uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the R2S neutron transport calculation. However, the prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their ability to accurately predict the SDDR in fusion energy systems using full-scale modeling of an entire fusion plant. This paper describes a novel hybrid Monte Carlo/deterministic methodology that uses the Consistent Adjoint Driven Importance Sampling (CADIS) method but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) methodology speeds up the R2S neutron Monte Carlo calculation using an importance function that represents the neutron importance to the final SDDR. Using a simplified example, preliminary results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the efficiency enhancement compared to analog Monte Carlo is higher than a factor of 10,000
International Nuclear Information System (INIS)
Both, J.P.; Nimal, J.C.; Vergnaud, T.
1990-01-01
We discuss an automated biasing procedure for generating the parameters necessary to achieve efficient Monte Carlo biasing shielding calculations. The biasing techniques considered here are exponential transform and collision biasing deriving from the concept of the biased game based on the importance function. We use a simple model of the importance function with exponential attenuation as the distance to the detector increases. This importance function is generated on a three-dimensional mesh including geometry and with graph theory algorithms. This scheme is currently being implemented in the third version of the neutron and gamma ray transport code TRIPOLI-3. (author)
International Nuclear Information System (INIS)
Macdonald, J.L.
1975-08-01
Statistical and deterministic pattern recognition systems are designed to classify the state space of a Monte Carlo transport problem into importance regions. The surfaces separating the regions can be used for particle splitting and Russian roulette in state space in order to reduce the variance of the Monte Carlo tally. Computer experiments are performed to evaluate the performance of the technique using one and two dimensional Monte Carlo problems. Additional experiments are performed to determine the sensitivity of the technique to various pattern recognition and Monte Carlo problem dependent parameters. A system for applying the technique to a general purpose Monte Carlo code is described. An estimate of the computer time required by the technique is made in order to determine its effectiveness as a variance reduction device. It is recommended that the technique be further investigated in a general purpose Monte Carlo code. (auth)
Gbedo, Yémalin Gabin; Mangin-Brinet, Mariane
2017-07-01
We present a new procedure to determine parton distribution functions (PDFs), based on Markov chain Monte Carlo (MCMC) methods. The aim of this paper is to show that we can replace the standard χ2 minimization by procedures grounded on statistical methods, and on Bayesian inference in particular, thus offering additional insight into the rich field of PDFs determination. After a basic introduction to these techniques, we introduce the algorithm we have chosen to implement—namely Hybrid (or Hamiltonian) Monte Carlo. This algorithm, initially developed for Lattice QCD, turns out to be very interesting when applied to PDFs determination by global analyses; we show that it allows us to circumvent the difficulties due to the high dimensionality of the problem, in particular concerning the acceptance. A first feasibility study is performed and presented, which indicates that Markov chain Monte Carlo can successfully be applied to the extraction of PDFs and of their uncertainties.
International Nuclear Information System (INIS)
Maconald, J.L.; Cashwell, E.D.
1978-09-01
The techniques of learning theory and pattern recognition are used to learn splitting surface locations for the Monte Carlo neutron transport code MCN. A study is performed to determine default values for several pattern recognition and learning parameters. The modified MCN code is used to reduce computer cost for several nontrivial example problems
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
Directory of Open Access Journals (Sweden)
Bardenet Rémi
2013-07-01
Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.
Energy Technology Data Exchange (ETDEWEB)
Brockway, D.; Soran, P.; Whalen, P.
1985-01-01
A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.
Monte Carlo Methods in Physics
International Nuclear Information System (INIS)
Santoso, B.
1997-01-01
Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained
Propagation of nuclear data uncertainties in fuel cycle calculations using Monte-Carlo technique
International Nuclear Information System (INIS)
Diez, C.J.; Cabellos, O.; Martinez, J.S.
2011-01-01
Nowadays, the knowledge of uncertainty propagation in depletion calculations is a critical issue because of the safety and economical performance of fuel cycles. Response magnitudes such as decay heat, radiotoxicity and isotopic inventory and their uncertainties should be known to handle spent fuel in present fuel cycles (e.g. high burnup fuel programme) and furthermore in new fuel cycles designs (e.g. fast breeder reactors and ADS). To deal with this task, there are different error propagation techniques, deterministic (adjoint/forward sensitivity analysis) and stochastic (Monte-Carlo technique) to evaluate the error in response magnitudes due to nuclear data uncertainties. In our previous works, cross-section uncertainties were propagated using a Monte-Carlo technique to calculate the uncertainty of response magnitudes such as decay heat and neutron emission. Also, the propagation of decay data, fission yield and cross-section uncertainties was performed, but only isotopic composition was the response magnitude calculated. Following the previous technique, the nuclear data uncertainties are taken into account and propagated to response magnitudes, decay heat and radiotoxicity. These uncertainties are assessed during cooling time. To evaluate this Monte-Carlo technique, two different applications are performed. First, a fission pulse decay heat calculation is carried out to check the Monte-Carlo technique, using decay data and fission yields uncertainties. Then, the results, experimental data and reference calculation (JEFF Report20), are compared. Second, we assess the impact of basic nuclear data (activation cross-section, decay data and fission yields) uncertainties on relevant fuel cycle parameters (decay heat and radiotoxicity) for a conceptual design of a modular European Facility for Industrial Transmutation (EFIT) fuel cycle. After identifying which time steps have higher uncertainties, an assessment of which uncertainties have more relevance is performed
A Monte Carlo technique for signal level detection in implanted intracranial pressure monitoring.
Avent, R K; Charlton, J D; Nagle, H T; Johnson, R N
1987-01-01
Statistical monitoring techniques like CUSUM, Trigg's tracking signal and EMP filtering have a major advantage over more recent techniques, such as Kalman filtering, because of their inherent simplicity. In many biomedical applications, such as electronic implantable devices, these simpler techniques have greater utility because of the reduced requirements on power, logic complexity and sampling speed. The determination of signal means using some of the earlier techniques are reviewed in this paper, and a new Monte Carlo based method with greater capability to sparsely sample a waveform and obtain an accurate mean value is presented. This technique may find widespread use as a trend detection method when reduced power consumption is a requirement.
Validation of variance reduction techniques in Mediso (SPIRIT DH-V) SPECT system by Monte Carlo
International Nuclear Information System (INIS)
Rodriguez Marrero, J. P.; Diaz Garcia, A.; Gomez Facenda, A.
2015-01-01
Monte Carlo simulation of nuclear medical imaging systems is a widely used method for reproducing their operation in a real clinical environment, There are several Single Photon Emission Tomography (SPECT) systems in Cuba. For this reason it is clearly necessary to introduce a reliable and fast simulation platform in order to obtain consistent image data. This data will reproduce the original measurements conditions. In order to fulfill these requirements Monte Carlo platform GAMOS (Geant4 Medicine Oriented Architecture for Applications) have been used. Due to the very size and complex configuration of parallel hole collimators in real clinical SPECT systems, Monte Carlo simulation usually consumes excessively high time and computing resources. main goal of the present work is to optimize the efficiency of calculation by means of new GAMOS functionality. There were developed and validated two GAMOS variance reduction techniques to speed up calculations. These procedures focus and limit transport of gamma quanta inside the collimator. The obtained results were asses experimentally in Mediso (SPIRIT DH-V) SPECT system. Main quality control parameters, such as sensitivity and spatial resolution were determined. Differences of 4.6% sensitivity and 8.7% spatial resolution were reported against manufacturer values. Simulation time was decreased up to 650 times. Using these techniques it was possible to perform several studies in almost 8 hours each. (Author)
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay; Law, Kody; Suciu, Carina
2017-01-01
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay
2017-04-24
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Monte Carlo simulation for IRRMA
International Nuclear Information System (INIS)
Gardner, R.P.; Liu Lianyan
2000-01-01
Monte Carlo simulation is fast becoming a standard approach for many radiation applications that were previously treated almost entirely by experimental techniques. This is certainly true for Industrial Radiation and Radioisotope Measurement Applications - IRRMA. The reasons for this include: (1) the increased cost and inadequacy of experimentation for design and interpretation purposes; (2) the availability of low cost, large memory, and fast personal computers; and (3) the general availability of general purpose Monte Carlo codes that are increasingly user-friendly, efficient, and accurate. This paper discusses the history and present status of Monte Carlo simulation for IRRMA including the general purpose (GP) and specific purpose (SP) Monte Carlo codes and future needs - primarily from the experience of the authors
International Nuclear Information System (INIS)
Sugawara, Hirotake; Mori, Naoki; Sakai, Yosuke; Suda, Yoshiyuki
2007-01-01
Techniques to reduce the computational load for determination of electron-molecule collisions in Monte Carlo simulations of electrical discharges have been presented. By enhancing the detection efficiency of the no-collision case in the decision scheme of the collisional events, we can decrease the frequency of access to time-consuming subroutines to calculate the electron collision cross sections of the gas molecules for obtaining the collision probability. A benchmark test and an estimation to evaluate the present techniques have shown a practical timesaving efficiency
Farr, W. M.; Mandel, I.; Stevens, D.
2015-01-01
Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580
Monte Carlo theory and practice
International Nuclear Information System (INIS)
James, F.
1987-01-01
Historically, the first large-scale calculations to make use of the Monte Carlo method were studies of neutron scattering and absorption, random processes for which it is quite natural to employ random numbers. Such calculations, a subset of Monte Carlo calculations, are known as direct simulation, since the 'hypothetical population' of the narrower definition above corresponds directly to the real population being studied. The Monte Carlo method may be applied wherever it is possible to establish equivalence between the desired result and the expected behaviour of a stochastic system. The problem to be solved may already be of a probabilistic or statistical nature, in which case its Monte Carlo formulation will usually be a straightforward simulation, or it may be of a deterministic or analytic nature, in which case an appropriate Monte Carlo formulation may require some imagination and may appear contrived or artificial. In any case, the suitability of the method chosen will depend on its mathematical properties and not on its superficial resemblance to the problem to be solved. The authors show how Monte Carlo techniques may be compared with other methods of solution of the same physical problem
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1981-01-01
An adjoint Monte Carlo technique is described for the solution of neutron transport problems. The optimum biasing function for a zero-variance collision estimator is derived. The optimum treatment of an analog of a non-velocity thermal group has also been derived. The method is extended to multiplying systems, especially for eigenfunction problems to enable the estimate of averages over the unknown fundamental neutron flux distribution. A versatile computer code, FOCUS, has been written, based on the described theory. Numerical examples are given for a shielding problem and a critical assembly, illustrating the performance of the FOCUS code. 19 refs
Efficient data management techniques implemented in the Karlsruhe Monte Carlo code KAMCCO
International Nuclear Information System (INIS)
Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.
1974-01-01
The Karlsruhe Monte Carlo Code KAMCCO is a forward neutron transport code with an eigenfunction and a fixed source option, including time-dependence. A continuous energy model is combined with a detailed representation of neutron cross sections, based on linear interpolation, Breit-Wigner resonances and probability tables. All input is processed into densely packed, dynamically addressed parameter fields and networks of pointers (addresses). Estimation routines are decoupled from random walk and analyze a storage region with sample records. This technique leads to fast execution with moderate storage requirements and without any I/O-operations except in the input and output stages. 7 references. (U.S.)
International Nuclear Information System (INIS)
Goshtasbi, K.; Ahmadi, M; Naeimi, Y.
2008-01-01
Locating the critical slip surface and the associated minimum factor of safety are two complementary parts in a slope stability analysis. A large number of computer programs exist to solve slope stability problems. Most of these programs, however, have used inefficient and unreliable search procedures to locate the global minimum factor of safety. This paper presents an efficient and reliable method to determine the global minimum factor of safety coupled with a modified version of the Monte Carlo technique. Examples arc presented to illustrate the reliability of the proposed method
Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox
DEFF Research Database (Denmark)
Nonejad, Nima
This paper details Particle Markov chain Monte Carlo techniques for analysis of unobserved component time series models using several economic data sets. PMCMC combines the particle filter with the Metropolis-Hastings algorithm. Overall PMCMC provides a very compelling, computationally fast...... and efficient framework for estimation. These advantages are used to for instance estimate stochastic volatility models with leverage effect or with Student-t distributed errors. We also model changing time series characteristics of the US inflation rate by considering a heteroskedastic ARFIMA model where...
Monte Carlo codes and Monte Carlo simulator program
International Nuclear Information System (INIS)
Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.
1990-03-01
Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)
Microwave transport in EBT distribution manifolds using Monte Carlo ray-tracing techniques
International Nuclear Information System (INIS)
Lillie, R.A.; White, T.L.; Gabriel, T.A.; Alsmiller, R.G. Jr.
1983-01-01
Ray tracing Monte Carlo calculations have been carried out using an existing Monte Carlo radiation transport code to obtain estimates of the microsave power exiting the torus coupling links in EPT microwave manifolds. The microwave power loss and polarization at surface reflections were accounted for by treating the microwaves as plane waves reflecting off plane surfaces. Agreement on the order of 10% was obtained between the measured and calculated output power distribution for an existing EBT-S toroidal manifold. A cost effective iterative procedure utilizing the Monte Carlo history data was implemented to predict design changes which could produce increased manifold efficiency and improved output power uniformity
International Nuclear Information System (INIS)
Brown, F.B.
1981-01-01
Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes
The electron transport problem sampling by Monte Carlo individual collision technique
International Nuclear Information System (INIS)
Androsenko, P.A.; Belousov, V.I.
2005-01-01
The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)
The electron transport problem sampling by Monte Carlo individual collision technique
Energy Technology Data Exchange (ETDEWEB)
Androsenko, P.A.; Belousov, V.I. [Obninsk State Technical Univ. of Nuclear Power Engineering, Kaluga region (Russian Federation)
2005-07-01
The problem of electron transport is of most interest in all fields of the modern science. To solve this problem the Monte Carlo sampling has to be used. The electron transport is characterized by a large number of individual interactions. To simulate electron transport the 'condensed history' technique may be used where a large number of collisions are grouped into a single step to be sampled randomly. Another kind of Monte Carlo sampling is the individual collision technique. In comparison with condensed history technique researcher has the incontestable advantages. For example one does not need to give parameters altered by condensed history technique like upper limit for electron energy, resolution, number of sub-steps etc. Also the condensed history technique may lose some very important tracks of electrons because of its limited nature by step parameters of particle movement and due to weakness of algorithms for example energy indexing algorithm. There are no these disadvantages in the individual collision technique. This report presents some sampling algorithms of new version BRAND code where above mentioned technique is used. All information on electrons was taken from Endf-6 files. They are the important part of BRAND. These files have not been processed but directly taken from electron information source. Four kinds of interaction like the elastic interaction, the Bremsstrahlung, the atomic excitation and the atomic electro-ionization were considered. In this report some results of sampling are presented after comparison with analogs. For example the endovascular radiotherapy problem (P2) of QUADOS2002 was presented in comparison with another techniques that are usually used. (authors)
Determination of true coincidence correction factors using Monte-Carlo simulation techniques
Directory of Open Access Journals (Sweden)
Chionis Dionysios A.
2014-01-01
Full Text Available Aim of this work is the numerical calculation of the true coincidence correction factors by means of Monte-Carlo simulation techniques. For this purpose, the Monte Carlo computer code PENELOPE was used and the main program PENMAIN was properly modified in order to include the effect of the true coincidence phenomenon. The modified main program that takes into consideration the true coincidence phenomenon was used for the full energy peak efficiency determination of an XtRa Ge detector with relative efficiency 104% and the results obtained for the 1173 keV and 1332 keV photons of 60Co were found consistent with respective experimental ones. The true coincidence correction factors were calculated as the ratio of the full energy peak efficiencies was determined from the original main program PENMAIN and the modified main program PENMAIN. The developed technique was applied for 57Co, 88Y, and 134Cs and for two source-to-detector geometries. The results obtained were compared with true coincidence correction factors calculated from the "TrueCoinc" program and the relative bias was found to be less than 2%, 4%, and 8% for 57Co, 88Y, and 134Cs, respectively.
International Nuclear Information System (INIS)
Zazula, J.M.
1988-01-01
The self-learning Monte Carlo technique has been implemented to the commonly used general purpose neutron transport code MORSE, in order to enhance sampling of the particle histories that contribute to a detector response. The parameters of all the biasing techniques available in MORSE, i.e. of splitting, Russian roulette, source and collision outgoing energy importance sampling, path length transformation and additional biasing of the source angular distribution are optimized. The learning process is iteratively performed after each batch of particles, by retrieving the data concerning the subset of histories that passed the detector region and energy range in the previous batches. This procedure has been tested on two sample problems in nuclear geophysics, where an unoptimized Monte Carlo calculation is particularly inefficient. The results are encouraging, although the presented method does not directly minimize the variance and the convergence of our algorithm is restricted by the statistics of successful histories from previous random walk. Further applications for modeling of the nuclear logging measurements seem to be promising. 11 refs., 2 figs., 3 tabs. (author)
Alpha particle density and energy distributions in tandem mirrors using Monte-Carlo techniques
International Nuclear Information System (INIS)
Kerns, J.A.
1986-05-01
We have simulated the alpha thermalization process using a Monte-Carlo technique, in which the alpha guiding center is followed between simulated collisions and Spitzer's collision model is used for the alpha-plasma interaction. Monte-Carlo techniques are used to determine the alpha radial birth position, the alpha particle position at a collision, and the angle scatter and dispersion at a collision. The plasma is modeled as a hot reacting core, surrounded by a cold halo plasma (T approx.50 eV). Alpha orbits that intersect the halo lose 90% of their energy to the halo electrons because of the halo drag, which is ten times greater than the drag in the core. The uneven drag across the alpha orbit also produces an outward, radial, guiding center drift. This drag drift is dependent on the plasma density and temperature radial profiles. We have modeled these profiles and have specifically studied a single-scale-length model, in which the density scale length (r/sub pD/) equals the temperature scale length (r/sub pT/), and a two-scale-length model, in which r/sub pD//r/sub pT/ = 1.1
A review of Monte Carlo techniques used in various fields of radiation protection
International Nuclear Information System (INIS)
Koblinger, L.
1987-06-01
Monte Carlo methods and their utilization in radiation protection are overviewed. Basic principles and the most frequently used sampling methods are described. Examples range from the simulation of the random walk of photons and neutrons to neutron spectrum unfolding. (author)
PELE: Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique.
Borrelli, Kenneth W; Vitalis, Andreas; Alcantara, Raul; Guallar, Victor
2005-11-01
Combining protein structure prediction algorithms and Metropolis Monte Carlo techniques, we provide a novel method to explore all-atom energy landscapes. The core of the technique is based on a steered localized perturbation followed by side-chain sampling as well as minimization cycles. The algorithm and its application to ligand diffusion are presented here. Ligand exit pathways are successfully modeled for different systems containing ligands of various sizes: carbon monoxide in myoglobin, camphor in cytochrome P450cam, and palmitic acid in the intestinal fatty-acid-binding protein. These initial applications reveal the potential of this new technique in mapping millisecond-time-scale processes. The computational cost associated with the exploration is significantly less than that of conventional MD simulations.
Energy Technology Data Exchange (ETDEWEB)
Grimes, Joshua, E-mail: grimes.joshua@mayo.edu [Department of Physics and Astronomy, University of British Columbia, Vancouver V5Z 1L8 (Canada); Celler, Anna [Department of Radiology, University of British Columbia, Vancouver V5Z 1L8 (Canada)
2014-09-15
Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90
Gonthier, Peter L.; Koh, Yew-Meng; Kust Harding, Alice
2016-04-01
We present preliminary results of a new population synthesis of millisecond pulsars (MSP) from the Galactic disk using Markov Chain Monte Carlo techniques to better understand the model parameter space. We include empirical radio and gamma-ray luminosity models that are dependent on the pulsar period and period derivative with freely varying exponents. The magnitudes of the model luminosities are adjusted to reproduce the number of MSPs detected by a group of thirteen radio surveys as well as the MSP birth rate in the Galaxy and the number of MSPs detected by Fermi. We explore various high-energy emission geometries like the slot gap, outer gap, two pole caustic and pair starved polar cap models. The parameters associated with the birth distributions for the mass accretion rate, magnetic field, and period distributions are well constrained. With the set of four free parameters, we employ Markov Chain Monte Carlo simulations to explore the model parameter space. We present preliminary comparisons of the simulated and detected distributions of radio and gamma-ray pulsar characteristics. We estimate the contribution of MSPs to the diffuse gamma-ray background with a special focus on the Galactic Center.We express our gratitude for the generous support of the National Science Foundation (RUI: AST-1009731), Fermi Guest Investigator Program and the NASA Astrophysics Theory and Fundamental Program (NNX09AQ71G).
Directory of Open Access Journals (Sweden)
Mansoor Ahmed Siddiqui
2017-06-01
Full Text Available This research work is aimed at optimizing the availability of a framework comprising of two units linked together in series configuration utilizing Markov Model and Monte Carlo (MC Simulation techniques. In this article, effort has been made to develop a maintenance model that incorporates three distinct states for each unit, while taking into account their different levels of deterioration. Calculations are carried out using the proposed model for two distinct cases of corrective repair, namely perfect and imperfect repairs, with as well as without opportunistic maintenance. Initially, results are accomplished using an analytical technique i.e., Markov Model. Validation of the results achieved is later carried out with the help of MC Simulation. In addition, MC Simulation based codes also work well for the frameworks that follow non-exponential failure and repair rates, and thus overcome the limitations offered by the Markov Model.
International Nuclear Information System (INIS)
Rawat, K.K.; Subbaiah, K.V.
1996-01-01
General purpose Monte Carlo code MCNP is being widely employed for solving deep penetration problems by applying variance reduction techniques. These techniques depend on the nature and type of the problem being solved. Application of geometry splitting and implicit capture method are examined to study the deep penetration problems of neutron, gamma and coupled neutron-gamma in thick shielding materials. The typical problems chosen are: i) point isotropic monoenergetic gamma ray source of 1 MeV energy in nearly infinite water medium, ii) 252 Cf spontaneous source at the centre of 140 cm thick water and concrete and iii) 14 MeV fast neutrons incident on the axis of 100 cm thick concrete disk. (author). 7 refs., 5 figs
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.
Monte Carlo simulations of neutron scattering instruments
International Nuclear Information System (INIS)
Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.
2001-01-01
A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)
Gating Techniques for Rao-Blackwellized Monte Carlo Data Association Filter
Directory of Open Access Journals (Sweden)
Yazhao Wang
2014-01-01
Full Text Available This paper studies the Rao-Blackwellized Monte Carlo data association (RBMCDA filter for multiple target tracking. The elliptical gating strategies are redesigned and incorporated into the framework of the RBMCDA filter. The obvious benefit is the reduction of the time cost because the data association procedure can be carried out with less validated measurements. In addition, the overlapped parts of the neighboring validation regions are divided into several separated subregions according to the possible origins of the validated measurements. In these subregions, the measurement uncertainties can be taken into account more reasonably than those of the simple elliptical gate. This would help to achieve higher tracking ability of the RBMCDA algorithm by a better association prior approximation. Simulation results are provided to show the effectiveness of the proposed gating techniques.
International Nuclear Information System (INIS)
Paul P.H. Wilson
2005-01-01
The development of Monte Carlo techniques for isotopic inventory analysis has been explored in order to facilitate the modeling of systems with flowing streams of material through varying neutron irradiation environments. This represents a novel application of Monte Carlo methods to a field that has traditionally relied on deterministic solutions to systems of first-order differential equations. The Monte Carlo techniques were based largely on the known modeling techniques of Monte Carlo radiation transport, but with important differences, particularly in the area of variance reduction and efficiency measurement. The software that was developed to implement and test these methods now provides a basis for validating approximate modeling techniques that are available to deterministic methodologies. The Monte Carlo methods have been shown to be effective in reproducing the solutions of simple problems that are possible using both stochastic and deterministic methods. The Monte Carlo methods are also effective for tracking flows of materials through complex systems including the ability to model removal of individual elements or isotopes in the system. Computational performance is best for flows that have characteristic times that are large fractions of the system lifetime. As the characteristic times become short, leading to thousands or millions of passes through the system, the computational performance drops significantly. Further research is underway to determine modeling techniques to improve performance within this range of problems. This report describes the technical development of Monte Carlo techniques for isotopic inventory analysis. The primary motivation for this solution methodology is the ability to model systems of flowing material being exposed to varying and stochastically varying radiation environments. The methodology was developed in three stages: analog methods which model each atom with true reaction probabilities (Section 2), non-analog methods
Monte Carlo analysis of a control technique for a tunable white lighting system
DEFF Research Database (Denmark)
Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen
2017-01-01
A simulated colour control mechanism for a multi-coloured LED lighting system is presented. The system achieves adjustable and stable white light output and allows for system-to-system reproducibility after application of the control mechanism. The control unit works using a pre-calibrated lookup...... table for an experimentally realized system, with a calibrated tristimulus colour sensor. A Monte Carlo simulation is used to examine the system performance concerning the variation of luminous flux and chromaticity of the light output. The inputs to the Monte Carlo simulation, are variations of the LED...... peak wavelength, the LED rated luminous flux bin, the influence of the operating conditions, ambient temperature, driving current, and the spectral response of the colour sensor. The system performance is investigated by evaluating the outputs from the Monte Carlo simulation. The outputs show...
International Nuclear Information System (INIS)
Rajabalinejad, M.
2010-01-01
To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.
Verhaegen, Frank; Seuntjens, Jan
2008-03-01
Monte Carlo particle transport techniques offer exciting tools for radiotherapy research, where they play an increasingly important role. Topics of research related to clinical applications range from treatment planning, motion and registration studies, brachytherapy, verification imaging and dosimetry. The International Workshop on Monte Carlo Techniques in Radiotherapy Delivery and Verification took place in a hotel in Montreal in French Canada, from 29 May-1 June 2007, and was the third workshop to be held on a related topic, which now seems to have become a tri-annual event. About one hundred workers from many different countries participated in the four-day meeting. Seventeen experts in the field were invited to review topics and present their latest work. About half of the audience was made up by young graduate students. In a very full program, 57 papers were presented and 10 posters were on display during most of the meeting. On the evening of the third day a boat trip around the island of Montreal allowed participants to enjoy the city views, and to sample the local cuisine. The topics covered at the workshop included the latest developments in the most popular Monte Carlo transport algorithms, fast Monte Carlo, statistical issues, source modeling, MC treatment planning, modeling of imaging devices for treatment verification, registration and deformation of images and a sizeable number of contributions on brachytherapy. In this volume you will find 27 short papers resulting from the workshop on a variety of topics, some of them on very new stuff such as graphics processing units for fast computing, PET modeling, dual-energy CT, calculations in dynamic phantoms, tomotherapy devices, . . . . We acknowledge the financial support of the National Cancer Institute of Canada, the Institute of Cancer Research of the Canadian Institutes of Health Research, the Association Québécoise des Physicien(ne)s Médicaux Clinique, the Institute of Physics, and Medical
International Nuclear Information System (INIS)
Dubi, A.; Gerstl, S.A.W.
1979-05-01
The contributon Monte Carlo method is based on a new recipe to calculate target responses by means of volume integral of the contributon current in a region between the source and the detector. A comprehensive description of the method, its implementation in the general-purpose MCNP code, and results of the method for realistic nonhomogeneous, energy-dependent problems are presented. 23 figures, 10 tables
International Nuclear Information System (INIS)
Wollaber, Allan Benton
2016-01-01
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating @@), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
International Nuclear Information System (INIS)
Creutz, M.
1986-01-01
The author discusses a recently developed algorithm for simulating statistical systems. The procedure interpolates between molecular dynamics methods and canonical Monte Carlo. The primary advantages are extremely fast simulations of discrete systems such as the Ising model and a relative insensitivity to random number quality. A variation of the algorithm gives rise to a deterministic dynamics for Ising spins. This model may be useful for high speed simulation of non-equilibrium phenomena
Energy Technology Data Exchange (ETDEWEB)
Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
Monte Carlo particle simulation and finite-element techniques for tandem mirror transport
International Nuclear Information System (INIS)
Rognlien, T.D.; Cohen, B.I.; Matsuda, Y.; Stewart, J.J. Jr.
1987-01-01
A description is given of numerical methods used in the study of axial transport in tandem mirrors owing to Coulomb collisions and rf diffusion. The methods are Monte Carlo particle simulations and direct solution to the Fokker-Planck equations by finite-element expansion. (author)
Using Monte Carlo Techniques to Demonstrate the Meaning and Implications of Multicollinearity
Vaughan, Timothy S.; Berry, Kelly E.
2005-01-01
This article presents an in-class Monte Carlo demonstration, designed to demonstrate to students the implications of multicollinearity in a multiple regression study. In the demonstration, students already familiar with multiple regression concepts are presented with a scenario in which the "true" relationship between the response and…
Maucec, M
2005-01-01
Monte Carlo simulations for nuclear logging applications are considered to be highly demanding transport problems. In this paper, the implementation of weight-window variance reduction schemes in a 'manual' fashion to improve the efficiency of calculations for a neutron logging tool is presented.
Monte Carlo particle simulation and finite-element techniques for tandem mirror transport
International Nuclear Information System (INIS)
Rognlien, T.D.; Cohen, B.I.; Matsuda, Y.; Stewart, J.J. Jr.
1985-12-01
A description is given of numerical methods used in the study of axial transport in tandem mirrors owing to Coulomb collisions and rf diffusion. The methods are Monte Carlo particle simulations and direct solution to the Fokker-Planck equations by finite-element expansion. 11 refs
Planar and SPECT Monte Carlo acceleration using a variance reduction technique in I131imaging
International Nuclear Information System (INIS)
Khosravi, H. R.; Sarkar, S.; Takavar, A.; Saghari, M.; Shahriari, M.
2007-01-01
Various variance reduction techniques such as forced detection (FD) have been implemented in Monte Carlo (MC) simulation of nuclear medicine in an effort to decrease the simulation time while keeping accuracy. However most of these techniques still result in very long MC simulation times for being implemented into routine use. Materials and Methods: Convolution-based forced detection (CFD) method as a variance reduction technique was implemented into the well known SlMlND MC photon simulation software. A variety of simulations including point and extended sources in uniform and non-uniform attenuation media, were performed to compare differences between FD and CFD versions of SlMlND modeling for I 131 radionuclide and camera configurations. Experimental measurement of system response function was compared to FD and CFD simulation data. Results: Different simulations using the CFD method agree very well with experimental measurements as well as FD version. CFD simulations of system response function and larger sources in uniform and non-uniform attenuated phantoms also agree well with FD version of SIMIND. Conclusion: CFD has been modeled into the SlMlND MC program and validated. With the current implementation of CFD, simulation times were approximately 10-15 times shorter with similar accuracy and image quality compared with FD MC
Verification of the Monte Carlo differential operator technique for MCNP trademark
International Nuclear Information System (INIS)
McKinney, G.W.; Iverson, J.L.
1996-02-01
The differential operator perturbation technique has been incorporated into the Monte Carlo N-Particle transport code MCNP and will become a standard feature of future releases. This feature includes first and second order terms of the Taylor series expansion for response perturbations related to cross-section data (i.e., density, composition, etc.). Perturbation and sensitivity analyses can benefit from this technique in that predicted changes in one or more tally responses may be obtained for multiple perturbations in a single run. The user interface is intuitive, yet flexible enough to allow for changes in a specific microscopic cross section over a specified energy range. With this technique, a precise estimate of a small change in response is easily obtained, even when the standard deviation of the unperturbed tally is greater than the change. Furthermore, results presented in this report demonstrate that first and second order terms can offer acceptable accuracy, to within a few percent, for up to 20-30% changes in a response
International Nuclear Information System (INIS)
Arsenault, Benoit; Le Tellier, Romain; Hebert, Alain
2008-01-01
The paper presents the results of a first implementation of a Monte Carlo module in DRAGON Version 4 based on the delta-tracking technique. The Monte Carlo module uses the geometry and the self-shielded multigroup cross-sections calculated with a deterministic model. The module has been tested with three different configurations of an ACR TM -type lattice. The paper also discusses the impact of this approach on the efficiency of the Monte Carlo module. (authors)
International Nuclear Information System (INIS)
Warren, Kevin; Reed, Robert; Weller, Robert; Mendenhall, Marcus; Sierawski, Brian; Schrimpf, Ronald
2011-01-01
MRED (Monte Carlo Radiative Energy Deposition) is Vanderbilt University's Geant4 application for simulating radiation events in semiconductors. Geant4 is comprised of the best available computational physics models for the transport of radiation through matter. In addition to basic radiation transport physics contained in the Geant4 core, MRED has the capability to track energy loss in tetrahedral geometric objects, includes a cross section biasing and track weighting technique for variance reduction, and additional features relevant to semiconductor device applications. The crucial element of predicting Single Event Upset (SEU) parameters using radiation transport software is the creation of a dosimetry model that accurately approximates the net collected charge at transistor contacts as a function of deposited energy. The dosimetry technique described here is the multiple sensitive volume (MSV) model. It is shown to be a reasonable approximation of the charge collection process and its parameters can be calibrated to experimental measurements of SEU cross sections. The MSV model, within the framework of MRED, is examined for heavy ion and high-energy proton SEU measurements of a static random access memory.
Parallel Monte Carlo reactor neutronics
International Nuclear Information System (INIS)
Blomquist, R.N.; Brown, F.B.
1994-01-01
The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved
Pore-scale uncertainty quantification with multilevel Monte Carlo
Icardi, Matteo; Hoel, Haakon; Long, Quan; Tempone, Raul
2014-01-01
. Since there are no generic ways to parametrize the randomness in the porescale structures, Monte Carlo techniques are the most accessible to compute statistics. We propose a multilevel Monte Carlo (MLMC) technique to reduce the computational cost
International Nuclear Information System (INIS)
Srinivasan, P.; Raman, Anand; Sharma, D.N.
2009-01-01
Aerial gamma spectrometry is a very effective method for quickly surveying a large area, which might get contaminated following a nuclear accident, or due to nuclear weapon fallout. The technique not only helps in identifying the contaminating radionuclide but also in assessing the magnitude and the extent of contamination. These two factors are of importance for the authorities to quickly plan and execute effective counter measures and controls if required. The development of Airborne gamma ray spectrometry systems have been reported by different institutions. The application of these systems have been reported by different authors. Radiation Safety Systems Division of the Bhabha Atomic Research Centre has developed an Aerial Gamma Spectrometry System (AGSS) and the surveying methodology. For an online assessment of the contamination levels, it is essential to calibrate the system (AGSS) either flying it over a known contaminated area or over a simulated contaminated surface by deploying sealed sources on the ground. AGSS has been calibrated for different detectors in aerial exercises using such simulated contamination on the ground. The calibration methodology essentially needs net photo-peak counts in selected energy windows to finally arrive at the Air to Ground Correlation Factors at selected flight parameters such as altitude, speed of flight and the time interval at which each spectrum is acquired. This paper describes the methodology to predict all the necessary parameters like photon fluence at various altitudes, the photo-peak counts in different energy windows, Air to Ground Correlation Factors(AGCF), the dose rate at any height due to air scattered gamma ray photons etc. These parameters are predicted for a given source deployment matrix, detector and altitude of flying using the Monte-Carlo code MCNP (Monte Carlo Neutron and Photon Transport Code.CCC-200, RSIC, ORNL, Tennessee, USA). A methodology to generate the completely folded gamma ray count
SRNA-2K5, Proton Transport Using 3-D by Monte Carlo Techniques
International Nuclear Information System (INIS)
Ilic, Radovan D.
2005-01-01
1 - Description of program or function: SRNA-2K5 performs Monte Carlo transport simulation of proton in 3D source and 3D geometry of arbitrary materials. The proton transport based on condensed history model, and on model of compound nuclei decays that creates in nonelastic nuclear interaction by proton absorption. 2 - Methods: The SRNA-2K5 package is developed for time independent simulation of proton transport by Monte Carlo techniques for numerical experiments in complex geometry, using PENGEOM from PENELOPE with different material compositions, and arbitrary spectrum of proton generated from the 3D source. This package developed for 3D proton dose distribution in proton therapy and dosimetry, and it was based on the theory of multiple scattering. The compound nuclei decay was simulated by our and Russian MSDM models using ICRU 49 and ICRU 63 data. If protons trajectory is divided on great number of steps, protons passage can be simulated according to Berger's Condensed Random Walk model. Conditions of angular distribution and fluctuation of energy loss determinate step length. Physical picture of these processes is described by stopping power, Moliere's angular distribution, Vavilov's distribution with Sulek's correction per all electron orbits, and Chadwick's cross sections for nonelastic nuclear interactions, obtained by his GNASH code. According to physical picture of protons passage and with probabilities of protons transition from previous to next stage, which is prepared by SRNADAT program, simulation of protons transport in all SRNA codes runs according to usual Monte Carlo scheme: (i) proton from the spectrum prepared for random choice of energy, position and space angle is emitted from the source; (ii) proton is loosing average energy on the step; (iii) on that step, proton experience a great number of collisions, and it changes direction of movement randomly chosen from angular distribution; (iv) random fluctuation is added to average energy loss; (v
On Micro VAX farms and shower libraries: Monte Carlo techniques developed for the D0 detector
International Nuclear Information System (INIS)
Raja, R.
1988-01-01
In order to predict correctly the effects of cracks and dead material in a nearly hermetic calorimeter, hadronic and electromagnetic showers need to be simulated accurately on a particle by particle basis. Tracking all the particles of all showers in the calorimeter leads to very large CPU times (typically 5 hours on a VAX780) for events at √(s) = 2TeV. Parametrizing the energy deposition of electromagnetic particles in showers with energy below 200 MeV results in event times of the order of 1 hour on a VAX780. This is still unacceptably large. The D0 collaboration then employed a farm of 16 MicroVax II's to get acceptable throughputs. The calorimeter hit patterns of each individual track was output, to be summed up by a later job. These individual hit patterns were entered into a random access shower library file, which was then used for subsequent Monte Carlo simulations. This shower library technique results in further speed-ups of a factor of 60 without degrading the quality of simulation significantly
Reliability study of a prestressed concrete beam by Monte Carlo techniques
International Nuclear Information System (INIS)
Floris, C.; Migliacci, A.
1987-01-01
The safety of a prestressed beam is studied at the third probabilistic level and so calculating the probability of failure (P f ) under known loads. Since the beam is simply supported and subject only to loads perpendicular to its axis, only bending and shear loads are present. Since the ratio between the span and the clear height is over 20 with thus a very considerable shear span, it can be assumed that failure occurs entirely due to the bending moment, with shear having no effect. In order to calculate P f the probability density function (p.d.f.) have to be known both for the stress moment and the resisting moment. Attention here is focused on the construction of the latter. It is shown that it is practically impossible to find the required function analytically. On the other hand, numerical simulation with the help of a computer is particularly convenient. The so-called Monte Carlo techniques were chosen: they are based on the extraction of random numbers and are thus very suitable for simulating random events and quantities. (orig./HP)
International Nuclear Information System (INIS)
Gualdrini, G.F.; Casalini, L.; Morelli, B.
1994-12-01
The present report summarizes the activities concerned with numerical dosimetry as carried out at the Radiation Protection Institute of ENEA (Italian Agency for New Technologies, Energy and the Environment) on photon dosimetric quantities. The first part is concerned with MCNP Monte Carlo calculation of field parameters and operational quantities for the ICRU sphere with reference photon beams for the design of personal dosemeters. The second part is related with studies on the ADAM anthropomorphic phantom using the SABRINA and MCNP codes. The results of other Monte Carlo studies carried out on electron conversion factors for various tissue equivalent slab phantoms are about to be published in other ENEA reports. The report has been produced in the framework of the EURADOS WG4 (numerical dosimetry) activities within a collaboration between the ENEA Environmental Department and ENEA Energy Department
Novel imaging and quality assurance techniques for ion beam therapy a Monte Carlo study
Rinaldi, I; Jäkel, O; Mairani, A; Parodi, K
2010-01-01
Ion beams exhibit a finite and well defined range in matter together with an “inverted” depth-dose profile, the so-called Bragg peak. These favourable physical properties may enable superior tumour-dose conformality for high precision radiation therapy. On the other hand, they introduce the issue of sensitivity to range uncertainties in ion beam therapy. Although these uncertainties are typically taken into account when planning the treatment, correct delivery of the intended ion beam range has to be assured to prevent undesired underdosage of the tumour or overdosage of critical structures outside the target volume. Therefore, it is necessary to define dedicated Quality Assurance procedures to enable in-vivo range verification before or during therapeutic irradiation. For these purposes, Monte Carlo transport codes are very useful tools to support the development of novel imaging modalities for ion beam therapy. In the present work, we present calculations performed with the FLUKA Monte Carlo code and pr...
Computer simulation of stochastic processes through model-sampling (Monte Carlo) techniques.
Sheppard, C W.
1969-03-01
A simple Monte Carlo simulation program is outlined which can be used for the investigation of random-walk problems, for example in diffusion, or the movement of tracers in the blood circulation. The results given by the simulation are compared with those predicted by well-established theory, and it is shown how the model can be expanded to deal with drift, and with reflexion from or adsorption at a boundary.
Fast sequential Monte Carlo methods for counting and optimization
Rubinstein, Reuven Y; Vaisman, Radislav
2013-01-01
A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the
Monte Carlo simulation of experiments
International Nuclear Information System (INIS)
Opat, G.I.
1977-07-01
An outline of the technique of computer simulation of particle physics experiments by the Monte Carlo method is presented. Useful special purpose subprograms are listed and described. At each stage the discussion is made concrete by direct reference to the programs SIMUL8 and its variant MONTE-PION, written to assist in the analysis of the radiative decay experiments μ + → e + ν sub(e) antiνγ and π + → e + ν sub(e)γ, respectively. These experiments were based on the use of two large sodium iodide crystals, TINA and MINA, as e and γ detectors. Instructions for the use of SIMUL8 and MONTE-PION are given. (author)
Sharma, Diksha; Sempau, Josep; Badano, Aldo
2018-02-01
Monte Carlo simulations require large number of histories to obtain reliable estimates of the quantity of interest and its associated statistical uncertainty. Numerous variance reduction techniques (VRTs) have been employed to increase computational efficiency by reducing the statistical uncertainty. We investigate the effect of two VRTs for optical transport methods on accuracy and computing time for the estimation of variance (noise) in x-ray imaging detectors. We describe two VRTs. In the first, we preferentially alter the direction of the optical photons to increase detection probability. In the second, we follow only a fraction of the total optical photons generated. In both techniques, the statistical weight of photons is altered to maintain the signal mean. We use fastdetect2, an open-source, freely available optical transport routine from the hybridmantis package. We simulate VRTs for a variety of detector models and energy sources. The imaging data from the VRT simulations are then compared to the analog case (no VRT) using pulse height spectra, Swank factor, and the variance of the Swank estimate. We analyze the effect of VRTs on the statistical uncertainty associated with Swank factors. VRTs increased the relative efficiency by as much as a factor of 9. We demonstrate that we can achieve the same variance of the Swank factor with less computing time. With this approach, the simulations can be stopped when the variance of the variance estimates reaches the desired level of uncertainty. We implemented analytic estimates of the variance of Swank factor and demonstrated the effect of VRTs on image quality calculations. Our findings indicate that the Swank factor is dominated by the x-ray interaction profile as compared to the additional uncertainty introduced in the optical transport by the use of VRTs. For simulation experiments that aim at reducing the uncertainty in the Swank factor estimate, any of the proposed VRT can be used for increasing the relative
International Nuclear Information System (INIS)
Kennedy, D.C. II.
1987-01-01
This is an update on the progress of the BREMMUS Monte Carlo simulator, particularly in its current incarnation, BREM5. The present report is intended only as a follow-up to the Mark II/Granlibakken proceedings, and those proceedings should be consulted for a complete description of the capabilities and goals of the BREMMUS program. The new BREM5 program improves on the previous version of BREMMUS, BREM2, in a number of important ways. In BREM2, the internal loop (oblique) corrections were not treated in consistent fashion, a deficiency that led to renormalization scheme-dependence; i.e., physical results, such as cross sections, were dependent on the method used to eliminate infinities from the theory. Of course, this problem cannot be tolerated in a Monte Carlo designed for experimental use. BREM5 incorporates a new way of treating the oblique corrections, as explained in the Granlibakken proceedings, that guarantees renormalization scheme-independence and dramatically simplifies the organization and calculation of radiative corrections. This technique is to be presented in full detail in a forthcoming paper. BREM5 is, at this point, the only Monte Carlo to contain the entire set of one-loop corrections to electroweak four-fermion processes and renormalization scheme-independence. 3 figures
Prospect on general software of Monte Carlo method
International Nuclear Information System (INIS)
Pei Lucheng
1992-01-01
This is a short paper on the prospect of Monte Carlo general software. The content consists of cluster sampling method, zero variance technique, self-improved method, and vectorized Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Schwarz, G; Hoffman, F O
1980-01-01
An evaluation of the imprecision in dose predictions for radionuclides has been performed using correct dose assessment models and knowledge of model parameter value uncertainties. The propagation of parameter uncertainties is demonstrated using a Monte Carlo technique for elemental iodine 131 transported via the pasture-cow-milk-child pathway. Results indicated that when site-specific information is unavailable, the imprecision inherent in the predictions for this pathway is potentially large. (3 graphs, 25 references, 5 tables)
Monte Carlo Modeling of Dual and Triple Photon Energy Absorptiometry Technique
Directory of Open Access Journals (Sweden)
Alireza Kamali-Asl
2007-12-01
Full Text Available Introduction: Osteoporosis is a bone disease in which there is a reduction in the amount of bone mineral content leading to an increase in the risk of bone fractures. The affected individuals not only have to go through lots of pain and suffering but this disease also results in high economic costs to the society due to a large number of fractures. A timely and accurate diagnosis of this disease makes it possible to start a treatment and thus preventing bone fractures as a result of osteoporosis. Radiographic methods are particularly well suited for in vivo determination of bone mineral density (BMD due to the relatively high x-ray absorption properties of bone mineral compared to other tissues. Materials and Methods: Monte Carlo simulation has been conducted to explore the possibilities of triple photon energy absorptiometry (TPA in the measurement of bone mineral content. The purpose of this technique is to correctly measure the bone mineral density in the presence of fatty and soft tissues. The same simulations have been done for a dual photon energy absorptiometry (DPA system and an extended DPA system. Results: Using DPA with three components improves the accuracy of the obtained result while the simulation results show that TPA system is not accurate enough to be considered as an adequate method for the measurement of bone mineral density. Discussion: The reason for the improvement in the accuracy is the consideration of fatty tissue in TPA method while having attenuation coefficient as a function of energy makes TPA an inadequate method. Conclusion: Using TPA method is not a perfect solution to overcome the problem of non uniformity in the distribution of fatty tissue.
International Nuclear Information System (INIS)
Picton, D.J.; Harris, R.G.; Randle, K.; Weaver, D.R.
1995-01-01
This paper describes a simple, accurate and efficient technique for the calculation of materials perturbation effects in Monte Carlo photon transport calculations. It is particularly suited to the application for which it was developed, namely the modelling of a dual detector density tool as used in borehole logging. However, the method would be appropriate to any photon transport calculation in the energy range 0.1 to 2 MeV, in which the predominant processes are Compton scattering and photoelectric absorption. The method enables a single set of particle histories to provide results for an array of configurations in which material densities or compositions vary. It can calculate the effects of small perturbations very accurately, but is by no means restricted to such cases. For the borehole logging application described here the method has been found to be efficient for a moderate range of variation in the bulk density (of the order of ±30% from a reference value) or even larger changes to a limited portion of the system (e.g. a low density mudcake of the order of a few tens of mm in thickness). The effective speed enhancement over an equivalent set of individual calculations is in the region of an order of magnitude or more. Examples of calculations on a dual detector density tool are given. It is demonstrated that the method predicts, to a high degree of accuracy, the variation of detector count rates with formation density, and that good results are also obtained for the effects of mudcake layers. An interesting feature of the results is that relative count rates (the ratios of count rates obtained with different configurations) can usually be determined more accurately than the absolute values of the count rates. (orig.)
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
International Nuclear Information System (INIS)
Ljungberg, M.
1990-05-01
Quantitative scintigrafic images, obtained by NaI(Tl) scintillation cameras, are limited by photon attenuation and contribution from scattered photons. A Monte Carlo program was developed in order to evaluate these effects. Simple source-phantom geometries and more complex nonhomogeneous cases can be simulated. Comparisons with experimental data for both homogeneous and nonhomogeneous regions and with published results have shown good agreement. The usefulness for simulation of parameters in scintillation camera systems, stationary as well as in SPECT systems, has also been demonstrated. An attenuation correction method based on density maps and build-up functions has been developed. The maps were obtained from a transmission measurement using an external 57 Co flood source and the build-up was simulated by the Monte Carlo code. Two scatter correction methods, the dual-window method and the convolution-subtraction method, have been compared using the Monte Carlo method. The aim was to compare the estimated scatter with the true scatter in the photo-peak window. It was concluded that accurate depth-dependent scatter functions are essential for a proper scatter correction. A new scatter and attenuation correction method has been developed based on scatter line-spread functions (SLSF) obtained for different depths and lateral positions in the phantom. An emission image is used to determine the source location in order to estimate the scatter in the photo-peak window. Simulation studies of a clinically realistic source in different positions in cylindrical water phantoms were made for three photon energies. The SLSF-correction method was also evaluated by simulation studies for 1. a myocardial source, 2. uniform source in the lungs and 3. a tumour located in the lungs in a realistic, nonhomogeneous computer phantom. The results showed that quantitative images could be obtained in nonhomogeneous regions. (67 refs.)
Applications of Monte Carlo method in Medical Physics
International Nuclear Information System (INIS)
Diez Rios, A.; Labajos, M.
1989-01-01
The basic ideas of Monte Carlo techniques are presented. Random numbers and their generation by congruential methods, which underlie Monte Carlo calculations are shown. Monte Carlo techniques to solve integrals are discussed. The evaluation of a simple monodimensional integral with a known answer, by means of two different Monte Carlo approaches are discussed. The basic principles to simualate on a computer photon histories reduce variance and the current applications in Medical Physics are commented. (Author)
The Bjorken sum rule with Monte Carlo and Neural Network techniques
International Nuclear Information System (INIS)
Debbio, L. Del; Guffanti, A.; Piccione, A.
2009-01-01
Determinations of structure functions and parton distribution functions have been recently obtained using Monte Carlo methods and neural networks as universal, unbiased interpolants for the unknown functional dependence. In this work the same methods are applied to obtain a parametrization of polarized Deep Inelastic Scattering (DIS) structure functions. The Monte Carlo approach provides a bias-free determination of the probability measure in the space of structure functions, while retaining all the information on experimental errors and correlations. In particular the error on the data is propagated into an error on the structure functions that has a clear statistical meaning. We present the application of this method to the parametrization from polarized DIS data of the photon asymmetries A 1 p and A 1 d from which we determine the structure functions g 1 p (x,Q 2 ) and g 1 d (x,Q 2 ), and discuss the possibility to extract physical parameters from these parametrizations. This work can be used as a starting point for the determination of polarized parton distributions.
Lectures on Monte Carlo methods
Madras, Neal
2001-01-01
Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati
Energy Technology Data Exchange (ETDEWEB)
Bock, M.; Wagner, M. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Garching (Germany). Forschungszentrum
2012-11-01
In recent years, the availability of computing resources has increased enormously. There are two ways to take advantage of this increase in analyses in the field of the nuclear fuel cycle, such as burn-up calculations or criticality safety calculations. The first possible way is to improve the accuracy of the models that are analyzed. For burn-up calculations this means, that the goal to model and to calculate the burn-up of a full reactor core is getting more and more into reach. The second way to utilize the resources is to run state-of-the-art programs with simplified models several times, but with varied input parameters. This second way opens the applicability of the assessment of uncertainties and sensitivities based on the Monte Carlo method for fields of research that rely heavily on either high CPU usage or high memory consumption. In the context of the nuclear fuel cycle, applications that belong to these types of demanding analyses are again burn-up and criticality safety calculations. The assessment of uncertainties in burn-up analyses can complement traditional analysis techniques such as best estimate or bounding case analyses and can support the safety analysis in future design decisions, e.g. by analyzing the uncertainty of the decay heat power of the nuclear inventory stored in the spent fuel pool of a nuclear power plant. This contribution concentrates on the uncertainty analysis in burn-up calculations of PWR fuel assemblies. The uncertainties in the results arise from the variation of the input parameters. In this case, the focus is on the one hand on the variation of manufacturing tolerances that are present in the different production stages of the fuel assemblies. On the other hand, uncertainties that describe the conditions during the reactor operation are taken into account. They also affect the results of burn-up calculations. In order to perform uncertainty analyses in burn-up calculations, GRS has improved the capabilities of its general
Monte Carlo simulations for plasma physics
International Nuclear Information System (INIS)
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
Simulation and the Monte Carlo method
Rubinstein, Reuven Y
2016-01-01
Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...
Validation and simulation of a regulated survey system through Monte Carlo techniques
Directory of Open Access Journals (Sweden)
Asier Lacasta Soto
2015-07-01
Full Text Available Channel flow covers long distances and obeys to variable temporal behaviour. It is usually regulated by hydraulic elements as lateralgates to provide a correct of water supply. The dynamics of this kind of flow is governed by a partial differential equations systemnamed shallow water model. They have to be complemented with a simplified formulation for the gates. All the set of equations forma non-linear system that can only be solved numerically. Here, an explicit upwind numerical scheme in finite volumes able to solveall type of flow regimes is used. Hydraulic structures (lateral gates formulation introduces parameters with some uncertainty. Hence,these parameters will be calibrated with a Monte Carlo algorithm obtaining associated coefficients to each gate. Then, they will bechecked, using real cases provided by the monitorizing equipment of the Pina de Ebro channel located in Zaragoza.
Modelling phase separation in Fe-Cr system using different atomistic kinetic Monte Carlo techniques
International Nuclear Information System (INIS)
Castin, N.; Bonny, G.; Terentyev, D.; Lavrentiev, M.Yu.; Nguyen-Manh, D.
2011-01-01
Atomistic kinetic Monte Carlo (AKMC) simulations were performed to study α-α' phase separation in Fe-Cr alloys. Two different energy models and two approaches to estimate the local vacancy migration barriers were used. The energy models considered are a two-band model Fe-Cr potential and a cluster expansion, both fitted to ab initio data. The classical Kang-Weinberg decomposition, based on the total energy change of the system, and an Artificial Neural Network (ANN), employed as a regression tool were used to predict the local vacancy migration barriers 'on the fly'. The results are compared with experimental thermal annealing data and differences between the applied AKMC approaches are discussed. The ability of the ANN regression method to accurately predict migration barriers not present in the training list is also addressed by performing cross-check calculations using the nudged elastic band method.
Adjoint electron Monte Carlo calculations
International Nuclear Information System (INIS)
Jordan, T.M.
1986-01-01
Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment
Energy Technology Data Exchange (ETDEWEB)
Sampson, Andrew; Le Yi; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)
2012-02-15
Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled in a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and
Specialized Monte Carlo codes versus general-purpose Monte Carlo codes
International Nuclear Information System (INIS)
Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi
2002-01-01
The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)
International Nuclear Information System (INIS)
Li Zhe; Liu Min; Shi Rui; Wu Xuemei; Tuo Xianguo
2012-01-01
Background: Non-standard analysis (NSA) technique is one of the most important development directions of energy dispersive X-ray fluorescence (EDXRF). Purpose: This NSA technique is mainly based on Monte Carlo (MC) simulation and full energy peak broadening, which were studied preliminarily in this paper. Methods: A kind of MC model was established for Si-PIN based EDXRF setup, and the flux spectra were obtained for iron ore sample. Finally, the flux spectra were broadened by Gaussian broaden parameters calculated by a new method proposed in this paper, and the broadened spectra were compared with measured energy spectra. Results: MC method can be used to simulate EDXRF measurement, and can correct the matrix effects among elements automatically. Peak intensities can be obtained accurately by using the proposed Gaussian broaden technique. Conclusions: This study provided a key technique for EDXRF to achieve advanced NSA technology. (authors)
A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications
International Nuclear Information System (INIS)
Bush, K; Popescu, I A; Zavgorodni, S
2008-01-01
As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described. (note)
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan
2016-01-01
In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . âˆž>h0>h1â‹¯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. Â© 2016 Elsevier B.V.
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros
2016-08-29
In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . âˆž>h0>h1â‹¯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. Â© 2016 Elsevier B.V.
International Nuclear Information System (INIS)
Moore, J.G.
1974-01-01
The Monte Carlo code MONK is a general program written to provide a high degree of flexibility to the user. MONK is distinguished by its detailed representation of nuclear data in point form i.e., the cross-section is tabulated at specific energies instead of the more usual group representation. The nuclear data are unadjusted in the point form but recently the code has been modified to accept adjusted group data as used in fast and thermal reactor applications. The various geometrical handling capabilities and importance sampling techniques are described. In addition to the nuclear data aspects, the following features are also described; geometrical handling routines, tracking cycles, neutron source and output facilities. 12 references. (U.S.)
Monte Carlo learning/biasing experiment with intelligent random numbers
International Nuclear Information System (INIS)
Booth, T.E.
1985-01-01
A Monte Carlo learning and biasing technique is described that does its learning and biasing in the random number space rather than the physical phase-space. The technique is probably applicable to all linear Monte Carlo problems, but no proof is provided here. Instead, the technique is illustrated with a simple Monte Carlo transport problem. Problems encountered, problems solved, and speculations about future progress are discussed. 12 refs
Energy Technology Data Exchange (ETDEWEB)
Carrasco Herrera, M. A.; Jimenez Dominguez, M.; Perucha Ortega, M.; Herrador Cordoba, M.
2011-07-01
The dose fractionation than the standard head and neck cancer in some situations involve a significant increase of local control and overall survival. There is clinical evidence of these results in case of hyperfractionated treatments, although the choice of optimal fractionation generally is not obtained from the results of any model, in this study has provided the tumor control probability (TCP) for various subdivisions modified (hypo fractionated and hyperfractionated) using Monte Carlo simulation techniques.
Off-diagonal expansion quantum Monte Carlo.
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
Monte Carlo simulation of Markov unreliability models
International Nuclear Information System (INIS)
Lewis, E.E.; Boehm, F.
1984-01-01
A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)
Shell model the Monte Carlo way
International Nuclear Information System (INIS)
Ormand, W.E.
1995-01-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined
Shell model the Monte Carlo way
Energy Technology Data Exchange (ETDEWEB)
Ormand, W.E.
1995-03-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.
Strategije drevesnega preiskovanja Monte Carlo
VODOPIVEC, TOM
2018-01-01
Po preboju pri igri go so metode drevesnega preiskovanja Monte Carlo (ang. Monte Carlo tree search – MCTS) sprožile bliskovit napredek agentov za igranje iger: raziskovalna skupnost je od takrat razvila veliko variant in izboljšav algoritma MCTS ter s tem zagotovila napredek umetne inteligence ne samo pri igrah, ampak tudi v številnih drugih domenah. Čeprav metode MCTS združujejo splošnost naključnega vzorčenja z natančnostjo drevesnega preiskovanja, imajo lahko v praksi težave s počasno konv...
Monte Carlo methods and models in finance and insurance
Korn, Ralf; Kroisandt, Gerald
2010-01-01
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of...
Wu, J; Liu, Y L; Chang, S J; Chao, M M; Tsai, S Y; Huang, D E
2012-11-01
Monte Carlo (MC) simulation has been commonly used in the dose evaluation of radiation accidents and for medical purposes. The accuracy of simulated results is affected by the particle-tracking algorithm, cross-sectional database, random number generator and statistical error. The differences among MC simulation software packages must be validated. This study simulated the dose point kernel (DPK) and the cellular S-values of monoenergetic electrons ranging from 0.01 to 2 MeV and the radionuclides of (90)Y, (177)Lu and (103 m)Rh, using Fluktuierende Kaskade (FLUKA) and MC N-Particle Transport Code Version 5 (MCNP5). A 6-μm-radius cell model consisting of the cell surface, cytoplasm and cell nucleus was constructed for cellular S-value calculation. The mean absolute percentage errors (MAPEs) of the scaled DPKs, simulated using FLUKA and MCNP5, were 7.92, 9.64, 4.62, 3.71 and 3.84 % for 0.01, 0.1, 0.5, 1 and 2 MeV, respectively. For the three radionuclides, the MAPEs of the scaled DPKs were within 5 %. The maximum deviations of S(N←N), S(N←Cy) and S(N←CS) for the electron energy larger than 10 keV were 6.63, 6.77 and 5.24 %, respectively. The deviations for the self-absorbed S-values and cross-dose S-values of the three radionuclides were within 4 %. On the basis of the results of this study, it was concluded that the simulation results are consistent between FLUKA and MCNP5. However, there is a minor inconsistency for low energy range. The DPK and the cellular S-value should be used as the quality assurance tools before the MC simulation results are adopted as the gold standard.
Depth-of-interaction estimates in pixelated scintillator sensors using Monte Carlo techniques
International Nuclear Information System (INIS)
Sharma, Diksha; Sze, Christina; Bhandari, Harish; Nagarkar, Vivek; Badano, Aldo
2017-01-01
Image quality in thick scintillator detectors can be improved by minimizing parallax errors through depth-of-interaction (DOI) estimation. A novel sensor for low-energy single photon imaging having a thick, transparent, crystalline pixelated micro-columnar CsI:Tl scintillator structure has been described, with possible future application in small-animal single photon emission computed tomography (SPECT) imaging when using thicker structures under development. In order to understand the fundamental limits of this new structure, we introduce cartesianDETECT2, an open-source optical transport package that uses Monte Carlo methods to obtain estimates of DOI for improving spatial resolution of nuclear imaging applications. Optical photon paths are calculated as a function of varying simulation parameters such as columnar surface roughness, bulk, and top-surface absorption. We use scanning electron microscope images to estimate appropriate surface roughness coefficients. Simulation results are analyzed to model and establish patterns between DOI and photon scattering. The effect of varying starting locations of optical photons on the spatial response is studied. Bulk and top-surface absorption fractions were varied to investigate their effect on spatial response as a function of DOI. We investigated the accuracy of our DOI estimation model for a particular screen with various training and testing sets, and for all cases the percent error between the estimated and actual DOI over the majority of the detector thickness was ±5% with a maximum error of up to ±10% at deeper DOIs. In addition, we found that cartesianDETECT2 is computationally five times more efficient than MANTIS. Findings indicate that DOI estimates can be extracted from a double-Gaussian model of the detector response. We observed that our model predicts DOI in pixelated scintillator detectors reasonably well.
International Nuclear Information System (INIS)
Teles, Pedro; Barros, Silvia; Vaz, Pedro; Goncalves, Isabel; Facure, Alessandro; Rosa, Luiz da; Santos, Maira; Pereira Junior, Pedro Paulo; Zankl, Maria
2013-01-01
Prostate Brachytherapy is a radiotherapy technique, which consists in inserting a number of radioactive seeds (containing, usually, the following radionuclides 125 l, 241 Am or 103 Pd ) surrounding or in the vicinity of, prostate tumor tissue . The main objective of this technique is to maximize the radiation dose to the tumor and minimize it in other tissues and organs healthy, in order to reduce its morbidity. The absorbed dose distribution in the prostate, using this technique is usually non-homogeneous and time dependent. Various parameters such as the type of seed, the attenuation interactions between them, their geometrical arrangement within the prostate, the actual geometry of the seeds,and further swelling of the prostate gland after implantation greatly influence the course of absorbed dose in the prostate and surrounding areas. Quantification of these parameters is therefore extremely important for dose optimization and improvement of their plans conventional treatment, which in many cases not fully take into account. The Monte Carlo techniques allow to study these parameters quickly and effectively. In this work, we use the program MCNPX and generic voxel phantom (GOLEM) where simulated different geometric arrangements of seeds containing 125 I, Amersham Health model of type 6711 in prostates of different sizes, in order to try to quantify some of the parameters. The computational model was validated using a phantom prostate cubic RW3 type , consisting of tissue equivalent, and thermoluminescent dosimeters. Finally, to have a term of comparison with a treatment real plan it was simulate a treatment plan used in a hospital of Rio de Janeiro, with exactly the same parameters, and our computational model. The results obtained in our study seem to indicate that the parameters described above may be a source of uncertainty in the correct evaluation of the dose required for actual treatment plans. The use of Monte Carlo techniques can serve as a complementary
International Nuclear Information System (INIS)
Sinha, Amar; Kashyap, Yogesh; Roy, Tushar; Agrawal, Ashish; Sarkar, P.S.; Shukla, Mayank
2009-01-01
The problem of illicit trafficking of explosives, narcotics or fissile materials represents a real challenge to civil security. Neutron based detection systems are being actively explored worldwide as a confirmatory tool for applications in the detection of explosives either hidden inside a vehicle or a cargo container or buried inside soil. The development of a system and its experimental testing is a tedious process and to develop such a system each experimental condition needs to be theoretically simulated. Monte Carlo based methods are used to find an optimized design for such detection system. In order to design such systems, it is necessary to optimize source and detector system for each specific application. The present paper deals with such optimization studies using Monte Carlo technique for tagged neutron based system for explosives and narcotics detection hidden in a cargo and landmine detection using backscatter neutrons. We will also discuss some simulation studies on detection of fissile material and photo-neutron source design for applications on cargo scanning. (author)
International Nuclear Information System (INIS)
Conlin, Jeremy Lloyd; Tobin, Stephen J.
2011-01-01
There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed. (author)
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2011-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique. (author)
Is Monte Carlo embarrassingly parallel?
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)
2012-07-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Is Monte Carlo embarrassingly parallel?
International Nuclear Information System (INIS)
Hoogenboom, J. E.
2012-01-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Exact Monte Carlo for molecules
International Nuclear Information System (INIS)
Lester, W.A. Jr.; Reynolds, P.J.
1985-03-01
A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H 2 , and the singlet-triplet splitting in methylene are presented and discussed. 17 refs
Monte Carlo strategies in scientific computing
Liu, Jun S
2008-01-01
This paperback edition is a reprint of the 2001 Springer edition This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians It can also be used as the textbook for a graduate-level course on Monte Carlo methods Many problems discussed in the alter chapters can be potential thesis topics for masters’ or PhD students in statistics or computer science departments Jun Liu is Professor of Statistics at Harvard University, with a courtesy Professor appointment at Harvard Biostatistics Department Professor Liu was the recipient of the 2002 COPSS Presidents' Award, the most prestigious one for sta...
Monte Carlo - Advances and Challenges
International Nuclear Information System (INIS)
Brown, Forrest B.; Mosteller, Russell D.; Martin, William R.
2008-01-01
Abstract only, full text follows: With ever-faster computers and mature Monte Carlo production codes, there has been tremendous growth in the application of Monte Carlo methods to the analysis of reactor physics and reactor systems. In the past, Monte Carlo methods were used primarily for calculating k eff of a critical system. More recently, Monte Carlo methods have been increasingly used for determining reactor power distributions and many design parameters, such as β eff , l eff , τ, reactivity coefficients, Doppler defect, dominance ratio, etc. These advanced applications of Monte Carlo methods are now becoming common, not just feasible, but bring new challenges to both developers and users: Convergence of 3D power distributions must be assured; confidence interval bias must be eliminated; iterated fission probabilities are required, rather than single-generation probabilities; temperature effects including Doppler and feedback must be represented; isotopic depletion and fission product buildup must be modeled. This workshop focuses on recent advances in Monte Carlo methods and their application to reactor physics problems, and on the resulting challenges faced by code developers and users. The workshop is partly tutorial, partly a review of the current state-of-the-art, and partly a discussion of future work that is needed. It should benefit both novice and expert Monte Carlo developers and users. In each of the topic areas, we provide an overview of needs, perspective on past and current methods, a review of recent work, and discussion of further research and capabilities that are required. Electronic copies of all workshop presentations and material will be available. The workshop is structured as 2 morning and 2 afternoon segments: - Criticality Calculations I - convergence diagnostics, acceleration methods, confidence intervals, and the iterated fission probability, - Criticality Calculations II - reactor kinetics parameters, dominance ratio, temperature
Current and future applications of Monte Carlo
International Nuclear Information System (INIS)
Zaidi, H.
2003-01-01
Full text: The use of radionuclides in medicine has a long history and encompasses a large area of applications including diagnosis and radiation treatment of cancer patients using either external or radionuclide radiotherapy. The 'Monte Carlo method'describes a very broad area of science, in which many processes, physical systems, and phenomena are simulated by statistical methods employing random numbers. The general idea of Monte Carlo analysis is to create a model, which is as similar as possible to the real physical system of interest, and to create interactions within that system based on known probabilities of occurrence, with random sampling of the probability density functions (pdfs). As the number of individual events (called 'histories') is increased, the quality of the reported average behavior of the system improves, meaning that the statistical uncertainty decreases. The use of the Monte Carlo method to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides as well as the assessment of image quality and quantitative accuracy of radionuclide imaging. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the nuclear medicine community at large. Many of these questions will be answered when Monte Carlo techniques are implemented and used for more routine calculations and for in-depth investigations. In this paper, the conceptual role of the Monte Carlo method is briefly introduced and followed by a survey of its different applications in diagnostic and therapeutic
Monte Carlo method in neutron activation analysis
International Nuclear Information System (INIS)
Majerle, M.; Krasa, A.; Svoboda, O.; Wagner, V.; Adam, J.; Peetermans, S.; Slama, O.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.
2009-01-01
Neutron activation detectors are a useful technique for the neutron flux measurements in spallation experiments. The study of the usefulness and the accuracy of this method at similar experiments was performed with the help of Monte Carlo codes MCNPX and FLUKA
Monte Carlo simulation of the microcanonical ensemble
International Nuclear Information System (INIS)
Creutz, M.
1984-01-01
We consider simulating statistical systems with a random walk on a constant energy surface. This combines features of deterministic molecular dynamics techniques and conventional Monte Carlo simulations. For discrete systems the method can be programmed to run an order of magnitude faster than other approaches. It does not require high quality random numbers and may also be useful for nonequilibrium studies. 10 references
Energy Technology Data Exchange (ETDEWEB)
Schwarz, G; Hoffman, F O
1980-01-01
An evaluation of the imprecision in dose predictions has been performed using current dose assessment models and present knowledge of the variability or uncertainty in model parameter values. The propagation of parameter uncertainties is demonstrated using a Monte Carlo technique for elemental /sup 131/I transported via the pasture-cow-milk-child pathway. The results indicate that when site-specific information is not available the imprecision inherent in the predictions for this pathway is potentially large. Generally, the 99th percentile in thyroid dose for children was predicted to be approximately an order of magnitude greater than the median value. The potential consequences of the imprecision in dose for radiation protection purposes are discussed.
Energy Technology Data Exchange (ETDEWEB)
Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany); Zaragoza, Francisco J.; Sempau, Josep [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Barcelona (Spain); Wittig, Andrea [Department of Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg (Germany); Sauerwein, Wolfgang [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany)
2012-07-15
Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.
International Nuclear Information System (INIS)
Dumonteil, E.
2009-01-01
Various variance-reduction techniques are used in Monte Carlo particle transport. Most of them rely either on a hypothesis made by the user (parameters of the exponential biasing, mesh and weight bounds for weight windows, etc.) or on a previous calculation of the system with, for example, a deterministic solver. This paper deals with a new acceleration technique, namely, auto-adaptative neural network biasing. Indeed, instead of using any a priori knowledge of the system, it is possible, at a given point in a simulation, to use the Monte Carlo histories previously simulated to train a neural network, which, in return, should be able to provide an estimation of the adjoint flux, used then for biasing the simulation. We will describe this method, detail its implementation in the Monte Carlo code Tripoli4, and discuss its results on two test cases. (author)
(U) Introduction to Monte Carlo Methods
Energy Technology Data Exchange (ETDEWEB)
Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-20
Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.
Monte Carlo applications to radiation shielding problems
International Nuclear Information System (INIS)
Subbaiah, K.V.
2009-01-01
transport in complex geometries is straightforward, while even the simplest finite geometries (e.g., thin foils) are very difficult to be dealt with by the transport equation. The main drawback of the Monte Carlo method lies in its random nature: all the results are affected by statistical uncertainties, which can be reduced at the expense of increasing the sampled population, and, hence, the computation time. Under special circumstances, the statistical uncertainties may be lowered by using variance-reduction techniques. Monte Carlo methods tend to be used when it is infeasible or impossible to compute an exact result with a deterministic algorithm. The term Monte Carlo was coined in the 1940s by physicists working on nuclear weapon projects in the Los Alamos National Laboratory
International Nuclear Information System (INIS)
Ibrahim, Ahmad M.; Wilson, Paul P.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E.
2014-01-01
Highlights: •Calculate the prompt dose rate everywhere throughout the entire fusion energy facility. •Utilize FW-CADIS to accurately perform difficult neutronics calculations for fusion energy systems. •Develop three mesh adaptivity algorithms to enhance FW-CADIS efficiency in fusion-neutronics calculations. -- Abstract: Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer
Present status of transport code development based on Monte Carlo method
International Nuclear Information System (INIS)
Nakagawa, Masayuki
1985-01-01
The present status of development in Monte Carlo code is briefly reviewed. The main items are the followings; Application fields, Methods used in Monte Carlo code (geometry spectification, nuclear data, estimator and variance reduction technique) and unfinished works, Typical Monte Carlo codes and Merits of continuous energy Monte Carlo code. (author)
Isotopic depletion with Monte Carlo
International Nuclear Information System (INIS)
Martin, W.R.; Rathkopf, J.A.
1996-06-01
This work considers a method to deplete isotopes during a time- dependent Monte Carlo simulation of an evolving system. The method is based on explicitly combining a conventional estimator for the scalar flux with the analytical solutions to the isotopic depletion equations. There are no auxiliary calculations; the method is an integral part of the Monte Carlo calculation. The method eliminates negative densities and reduces the variance in the estimates for the isotope densities, compared to existing methods. Moreover, existing methods are shown to be special cases of the general method described in this work, as they can be derived by combining a high variance estimator for the scalar flux with a low-order approximation to the analytical solution to the depletion equation
Zimmerman, George B.
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
International Nuclear Information System (INIS)
Zimmerman, G.B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Zimmerman, George B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.; Dean, D.J.; Langanke, K.
1997-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)
A contribution Monte Carlo method
International Nuclear Information System (INIS)
Aboughantous, C.H.
1994-01-01
A Contribution Monte Carlo method is developed and successfully applied to a sample deep-penetration shielding problem. The random walk is simulated in most of its parts as in conventional Monte Carlo methods. The probability density functions (pdf's) are expressed in terms of spherical harmonics and are continuous functions in direction cosine and azimuthal angle variables as well as in position coordinates; the energy is discretized in the multigroup approximation. The transport pdf is an unusual exponential kernel strongly dependent on the incident and emergent directions and energies and on the position of the collision site. The method produces the same results obtained with the deterministic method with a very small standard deviation, with as little as 1,000 Contribution particles in both analog and nonabsorption biasing modes and with only a few minutes CPU time
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.
1996-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs
Golosio, Bruno; Schoonjans, Tom; Brunetti, Antonio; Oliva, Piernicola; Masala, Giovanni Luca
2014-03-01
The simulation of X-ray imaging experiments is often performed using deterministic codes, which can be relatively fast and easy to use. However, such codes are generally not suitable for the simulation of even slightly more complex experimental conditions, involving, for instance, first-order or higher-order scattering, X-ray fluorescence emissions, or more complex geometries, particularly for experiments that combine spatial resolution with spectral information. In such cases, simulations are often performed using codes based on the Monte Carlo method. In a simple Monte Carlo approach, the interaction position of an X-ray photon and the state of the photon after an interaction are obtained simply according to the theoretical probability distributions. This approach may be quite inefficient because the final channels of interest may include only a limited region of space or photons produced by a rare interaction, e.g., fluorescent emission from elements with very low concentrations. In the field of X-ray fluorescence spectroscopy, this problem has been solved by combining the Monte Carlo method with variance reduction techniques, which can reduce the computation time by several orders of magnitude. In this work, we present a C++ code for the general simulation of X-ray imaging and spectroscopy experiments, based on the application of the Monte Carlo method in combination with variance reduction techniques, with a description of sample geometry based on quadric surfaces. We describe the benefits of the object-oriented approach in terms of code maintenance, the flexibility of the program for the simulation of different experimental conditions and the possibility of easily adding new modules. Sample applications in the fields of X-ray imaging and X-ray spectroscopy are discussed. Catalogue identifier: AERO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
Geometrical splitting in Monte Carlo
International Nuclear Information System (INIS)
Dubi, A.; Elperin, T.; Dudziak, D.J.
1982-01-01
A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs
Extending canonical Monte Carlo methods
International Nuclear Information System (INIS)
Velazquez, L; Curilef, S
2010-01-01
In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model
International Nuclear Information System (INIS)
Valente, Mauro; Castellano, Gustavo; Sosa, Carlos
2008-01-01
Full text: Radiotherapy is one of the most effective techniques for tumour treatment and control. During the last years, significant developments were performed regarding both irradiation technology and techniques. However, accurate 3D dosimetric techniques are nowadays not commercially available. Due to their intrinsic characteristics, traditional dosimetric techniques like ionisation chamber, film dosimetry or TLD do not offer proper continuous 3D dose mapping. The possibility of using ferrous sulphate (Fricke) dosimeters suitably fixed to a gel matrix, along with dedicated optical analysis methods, based on light transmission measurements for 3D absorbed dose imaging in tissue-equivalent materials, has become great interest in radiotherapy. Since Gore et al. showed in 1984 that the oxidation of ferrous ions to ferric ions still happen even when fixing the ferrous sulphate solution to a gelatine matrix, important efforts have been dedicated in developing and improving real continuous 3D dosimetric systems based on Fricke solution. The purpose of this work is to investigate the capability and suitability of Fricke gel dosimetry for arc therapy irradiations. The dosimetric system is mainly composed by Fricke gel dosimeters, suitably shaped in form of thin layers and optically analysed by means of visible light transmission measurements, acquiring sample images just before and after irradiation by means of a commercial flatbed-like scanner. Image acquisition, conversion to matrices and further analysis are accomplished by means of dedicated developed software, which includes suitable algorithms for optical density differences calculation and corresponding absorbed dose conversion. Dedicated subroutines allow 3D dose imaging reconstruction from single layer information, by means of computer tomography-like algorithms. Also, dedicated Monte Carlo (PENELOPE) subroutines have been adapted in order to achieve accurate simulation of arc therapy irradiation techniques
International Nuclear Information System (INIS)
Mercier, B.
1985-04-01
We have shown that the transport equation can be solved with particles, like the Monte-Carlo method, but without random numbers. In the Monte-Carlo method, particles are created from the source, and are followed from collision to collision until either they are absorbed or they leave the spatial domain. In our method, particles are created from the original source, with a variable weight taking into account both collision and absorption. These particles are followed until they leave the spatial domain, and we use them to determine a first collision source. Another set of particles is then created from this first collision source, and tracked to determine a second collision source, and so on. This process introduces an approximation which does not exist in the Monte-Carlo method. However, we have analyzed the effect of this approximation, and shown that it can be limited. Our method is deterministic, gives reproducible results. Furthermore, when extra accuracy is needed in some region, it is easier to get more particles to go there. It has the same kind of applications: rather problems where streaming is dominant than collision dominated problems
Statistical implications in Monte Carlo depletions - 051
International Nuclear Information System (INIS)
Zhiwen, Xu; Rhodes, J.; Smith, K.
2010-01-01
As a result of steady advances of computer power, continuous-energy Monte Carlo depletion analysis is attracting considerable attention for reactor burnup calculations. The typical Monte Carlo analysis is set up as a combination of a Monte Carlo neutron transport solver and a fuel burnup solver. Note that the burnup solver is a deterministic module. The statistical errors in Monte Carlo solutions are introduced into nuclide number densities and propagated along fuel burnup. This paper is towards the understanding of the statistical implications in Monte Carlo depletions, including both statistical bias and statistical variations in depleted fuel number densities. The deterministic Studsvik lattice physics code, CASMO-5, is modified to model the Monte Carlo depletion. The statistical bias in depleted number densities is found to be negligible compared to its statistical variations, which, in turn, demonstrates the correctness of the Monte Carlo depletion method. Meanwhile, the statistical variation in number densities generally increases with burnup. Several possible ways of reducing the statistical errors are discussed: 1) to increase the number of individual Monte Carlo histories; 2) to increase the number of time steps; 3) to run additional independent Monte Carlo depletion cases. Finally, a new Monte Carlo depletion methodology, called the batch depletion method, is proposed, which consists of performing a set of independent Monte Carlo depletions and is thus capable of estimating the overall statistical errors including both the local statistical error and the propagated statistical error. (authors)
Directory of Open Access Journals (Sweden)
TEMITOPE RAPHAEL AYODELE
2016-04-01
Full Text Available Monte Carlo simulation using Simple Random Sampling (SRS technique is popularly known for its ability to handle complex uncertainty problems. However, to produce a reasonable result, it requires huge sample size. This makes it to be computationally expensive, time consuming and unfit for online power system applications. In this article, the performance of Latin Hypercube Sampling (LHS technique is explored and compared with SRS in term of accuracy, robustness and speed for small signal stability application in a wind generator-connected power system. The analysis is performed using probabilistic techniques via eigenvalue analysis on two standard networks (Single Machine Infinite Bus and IEEE 16–machine 68 bus test system. The accuracy of the two sampling techniques is determined by comparing their different sample sizes with the IDEAL (conventional. The robustness is determined based on a significant variance reduction when the experiment is repeated 100 times with different sample sizes using the two sampling techniques in turn. Some of the results show that sample sizes generated from LHS for small signal stability application produces the same result as that of the IDEAL values starting from 100 sample size. This shows that about 100 sample size of random variable generated using LHS method is good enough to produce reasonable results for practical purpose in small signal stability application. It is also revealed that LHS has the least variance when the experiment is repeated 100 times compared to SRS techniques. This signifies the robustness of LHS over that of SRS techniques. 100 sample size of LHS produces the same result as that of the conventional method consisting of 50000 sample size. The reduced sample size required by LHS gives it computational speed advantage (about six times over the conventional method.
Closed-shell variational quantum Monte Carlo simulation for the ...
African Journals Online (AJOL)
Closed-shell variational quantum Monte Carlo simulation for the electric dipole moment calculation of hydrazine molecule using casino-code. ... Nigeria Journal of Pure and Applied Physics ... The variational quantum Monte Carlo (VQMC) technique used in this work employed the restricted Hartree-Fock (RHF) scheme.
Exponential convergence on a continuous Monte Carlo transport problem
International Nuclear Information System (INIS)
Booth, T.E.
1997-01-01
For more than a decade, it has been known that exponential convergence on discrete transport problems was possible using adaptive Monte Carlo techniques. An adaptive Monte Carlo method that empirically produces exponential convergence on a simple continuous transport problem is described
Neutron point-flux calculation by Monte Carlo
International Nuclear Information System (INIS)
Eichhorn, M.
1986-04-01
A survey of the usual methods for estimating flux at a point is given. The associated variance-reducing techniques in direct Monte Carlo games are explained. The multigroup Monte Carlo codes MC for critical systems and PUNKT for point source-point detector-systems are represented, and problems in applying the codes to practical tasks are discussed. (author)
Problems in radiation shielding calculations with Monte Carlo methods
International Nuclear Information System (INIS)
Ueki, Kohtaro
1985-01-01
The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)
International Nuclear Information System (INIS)
Feng, Y.; Sardei, F.; Kisslinger, J.
2005-01-01
The paper presents a new simple and accurate numerical field-line mapping technique providing a high-quality representation of field lines as required by a Monte Carlo modeling of plasma edge transport in the complex magnetic boundaries of three-dimensional (3D) toroidal fusion devices. Using a toroidal sequence of precomputed 3D finite flux-tube meshes, the method advances field lines through a simple bilinear, forward/backward symmetric interpolation at the interfaces between two adjacent flux tubes. It is a reversible field-line mapping (RFLM) algorithm ensuring a continuous and unique reconstruction of field lines at any point of the 3D boundary. The reversibility property has a strong impact on the efficiency of modeling the highly anisotropic plasma edge transport in general closed or open configurations of arbitrary ergodicity as it avoids artificial cross-field diffusion of the fast parallel transport. For stellarator-symmetric magnetic configurations, which are the standard case for stellarators, the reversibility additionally provides an average cancellation of the radial interpolation errors of field lines circulating around closed magnetic flux surfaces. The RFLM technique has been implemented in the 3D edge transport code EMC3-EIRENE and is used routinely for plasma transport modeling in the boundaries of several low-shear and high-shear stellarators as well as in the boundary of a tokamak with 3D magnetic edge perturbations
Directory of Open Access Journals (Sweden)
Wonmo Sung
Full Text Available This study investigated the potential of a newly proposed scattering foil free (SFF electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1° vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.
Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.
Monte Carlo methods for shield design calculations
International Nuclear Information System (INIS)
Grimstone, M.J.
1974-01-01
A suite of Monte Carlo codes is being developed for use on a routine basis in commercial reactor shield design. The methods adopted for this purpose include the modular construction of codes, simplified geometries, automatic variance reduction techniques, continuous energy treatment of cross section data, and albedo methods for streaming. Descriptions are given of the implementation of these methods and of their use in practical calculations. 26 references. (U.S.)
Monte Carlo Particle Lists: MCPL
DEFF Research Database (Denmark)
Kittelmann, Thomas; Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik
2017-01-01
A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular...... simulation packages. Program summary: Program Title: MCPL. Program Files doi: http://dx.doi.org/10.17632/cby92vsv5g.1 Licensing provisions: CC0 for core MCPL, see LICENSE file for details. Programming language: C and C++ External routines/libraries: Geant4, MCNP, McStas, McXtrace Nature of problem: Saving...
Statistics of Monte Carlo methods used in radiation transport calculation
International Nuclear Information System (INIS)
Datta, D.
2009-01-01
Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport
Higgs production enhancement in P-P collisions using Monte Carlo techniques at √s = 13 TeV
Directory of Open Access Journals (Sweden)
Soleiman M.H.M.
2017-01-01
Full Text Available A precise estimation of the amount of enhancement in Higgs boson production through pp collisions at ultra-relativistic energies throughout promotion of the gluon distribution function inside the protons before the collision is presented here. The study is based mainly on the available Monte Carlo event generators (PYTHIA 8.2.9, SHERPA 2.1.0 running on PCs and CERNX-Machine, respectively, and using the extended invariant mass technique. Generated samples of 1000 events from PYTHIA 8.2.9 and SHERPA,2.1.0 at √s = 13 TeV are used in the investigation of the effect of replacing the parton distribution function (PDF on the Higgs production enhancement. The CTEQ66 and MSRTW2004nlo parton distribution functions are used alternatively on PYTHIA 8.2.9 and SHERPA 2.1.0 event generators in companion with the effects of allowing initial state and final state radiations (ISR and FSR to obtain evidence on the enhancement of the SM-Higgs production depending on the field theoretical model of SM. It is found that, the replacement of PDFs will lead to a significant change in the SM-Higgs production, and the effect of allowing or denying any of ISR or FSR is sound for the two event generators but may be unrealistic in PHYTIA 8.2.9.
Higgs production enhancement in P-P collisions using Monte Carlo techniques at √s = 13 TeV
Soleiman, M. H. M.; Abdel-Aziz, S. S.; Sobhi, M. S. E.
2017-06-01
A precise estimation of the amount of enhancement in Higgs boson production through pp collisions at ultra-relativistic energies throughout promotion of the gluon distribution function inside the protons before the collision is presented here. The study is based mainly on the available Monte Carlo event generators (PYTHIA 8.2.9, SHERPA 2.1.0) running on PCs and CERNX-Machine, respectively, and using the extended invariant mass technique. Generated samples of 1000 events from PYTHIA 8.2.9 and SHERPA,2.1.0 at √s = 13 TeV are used in the investigation of the effect of replacing the parton distribution function (PDF) on the Higgs production enhancement. The CTEQ66 and MSRTW2004nlo parton distribution functions are used alternatively on PYTHIA 8.2.9 and SHERPA 2.1.0 event generators in companion with the effects of allowing initial state and final state radiations (ISR and FSR) to obtain evidence on the enhancement of the SM-Higgs production depending on the field theoretical model of SM. It is found that, the replacement of PDFs will lead to a significant change in the SM-Higgs production, and the effect of allowing or denying any of ISR or FSR is sound for the two event generators but may be unrealistic in PHYTIA 8.2.9.
Investigation of Cu(In,Ga)Se{sub 2} using Monte Carlo and the cluster expansion technique
Energy Technology Data Exchange (ETDEWEB)
Ludwig, Christian D.R.; Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University, Mainz (Germany); Windeln, Johannes [IBM Germany, Mgr. Technology Center ISC EMEA, Mainz (Germany)
2010-07-01
CIGS based solar cells are among the most promising thin-film techniques for cheap, yet efficient modules. They have been investigated for many years, but the full potential of CIGS cells has not yet been exhausted and many effects are not understood. For instance, the band gap of the absorber material Cu(In,Ga)Se{sub 2} varies with Ga content. The question why solar cells with high Ga content have low efficiencies, despite the fact that the band gap should have the optimum value, is still unanswered. We are using Monte Carlo simulations in combination with a cluster expansion to investigate the homogeneity of the In-Ga distribution as a possible cause of the low efficiency of cells with high Ga content. The cluster expansion is created by a fit to ab initio electronic structure energies. The results we found are crucial for the processing of solar cells, shed light on structural properties and give hints on how to significantly improve solar cell performance. Above the transition temperature from the separated to the mixed phase, we observe different sizes of the In and Ga domains for a given temperature. The In domains in the Ga-rich compound are smaller and less abundant than the Ga domains in the In-rich compound. This translates into the Ga-rich material being less homogeneous.
Evaluating and adjusting 239Pu, 56Fe, 28Si and 95Mo nuclear data with a Monte Carlo technique
International Nuclear Information System (INIS)
Rochman, D.; Koning, A. J.
2012-01-01
In this paper, Monte Carlo optimization and nuclear data evaluation are combined to produce optimal adjusted nuclear data files. The methodology is based on the so-called 'Total Monte Carlo' and the TALYS system. Not only a single nuclear data file is produced for a given isotope, but virtually an infinite number, defining probability distributions for each nuclear quantity. Then each of these random nuclear data libraries is used in a series of benchmark calculations. With a goodness-of-fit estimator, best 239 Pu, 56 Fe, 28 Si and 95 Mo evaluations for that benchmark set can be selected. A few thousands of random files are used and each of them is tested with a large number of fast, thermal and intermediate energy criticality benchmarks. From this, the best performing random file is chosen and proposed as the optimum choice among the studied random set. (authors)
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
Mean field simulation for Monte Carlo integration
Del Moral, Pierre
2013-01-01
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko
Neutron flux calculation by means of Monte Carlo methods
International Nuclear Information System (INIS)
Barz, H.U.; Eichhorn, M.
1988-01-01
In this report a survey of modern neutron flux calculation procedures by means of Monte Carlo methods is given. Due to the progress in the development of variance reduction techniques and the improvements of computational techniques this method is of increasing importance. The basic ideas in application of Monte Carlo methods are briefly outlined. In more detail various possibilities of non-analog games and estimation procedures are presented, problems in the field of optimizing the variance reduction techniques are discussed. In the last part some important international Monte Carlo codes and own codes of the authors are listed and special applications are described. (author)
Monte Carlo surface flux tallies
International Nuclear Information System (INIS)
Favorite, Jeffrey A.
2010-01-01
Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.
Multilevel sequential Monte-Carlo samplers
Jasra, Ajay
2016-01-01
Multilevel Monte-Carlo methods provide a powerful computational technique for reducing the computational cost of estimating expectations for a given computational effort. They are particularly relevant for computational problems when approximate distributions are determined via a resolution parameter h, with h=0 giving the theoretical exact distribution (e.g. SDEs or inverse problems with PDEs). The method provides a benefit by coupling samples from successive resolutions, and estimating differences of successive expectations. We develop a methodology that brings Sequential Monte-Carlo (SMC) algorithms within the framework of the Multilevel idea, as SMC provides a natural set-up for coupling samples over different resolutions. We prove that the new algorithm indeed preserves the benefits of the multilevel principle, even if samples at all resolutions are now correlated.
Hypothesis testing of scientific Monte Carlo calculations
Wallerberger, Markus; Gull, Emanuel
2017-11-01
The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.
Multilevel sequential Monte-Carlo samplers
Jasra, Ajay
2016-01-05
Multilevel Monte-Carlo methods provide a powerful computational technique for reducing the computational cost of estimating expectations for a given computational effort. They are particularly relevant for computational problems when approximate distributions are determined via a resolution parameter h, with h=0 giving the theoretical exact distribution (e.g. SDEs or inverse problems with PDEs). The method provides a benefit by coupling samples from successive resolutions, and estimating differences of successive expectations. We develop a methodology that brings Sequential Monte-Carlo (SMC) algorithms within the framework of the Multilevel idea, as SMC provides a natural set-up for coupling samples over different resolutions. We prove that the new algorithm indeed preserves the benefits of the multilevel principle, even if samples at all resolutions are now correlated.
Status of Monte Carlo at Los Alamos
International Nuclear Information System (INIS)
Thompson, W.L.; Cashwell, E.D.; Godfrey, T.N.K.; Schrandt, R.G.; Deutsch, O.L.; Booth, T.E.
1980-05-01
Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner
Biased Monte Carlo optimization: the basic approach
International Nuclear Information System (INIS)
Campioni, Luca; Scardovelli, Ruben; Vestrucci, Paolo
2005-01-01
It is well-known that the Monte Carlo method is very successful in tackling several kinds of system simulations. It often happens that one has to deal with rare events, and the use of a variance reduction technique is almost mandatory, in order to have Monte Carlo efficient applications. The main issue associated with variance reduction techniques is related to the choice of the value of the biasing parameter. Actually, this task is typically left to the experience of the Monte Carlo user, who has to make many attempts before achieving an advantageous biasing. A valuable result is provided: a methodology and a practical rule addressed to establish an a priori guidance for the choice of the optimal value of the biasing parameter. This result, which has been obtained for a single component system, has the notable property of being valid for any multicomponent system. In particular, in this paper, the exponential and the uniform biases of exponentially distributed phenomena are investigated thoroughly
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-01-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration
Probabilistic techniques using Monte Carlo sampling for multi- component system diagnostics
International Nuclear Information System (INIS)
Aumeier, S.E.; Lee, J.C.; Akcasu, A.Z.
1995-01-01
We outline the structure of a new approach at multi-component system fault diagnostics which utilizes detailed system simulation models, uncertain system observation data, statistical knowledge of system parameters, expert opinion, and component reliability data in an effort to identify incipient component performance degradations of arbitrary number and magnitude. The technique involves the use of multiple adaptive Kalman filters for fault estimation, the results of which are screened using standard hypothesis testing procedures to define a set of component events that could have transpired. Latin Hypercube sample each of these feasible component events in terms of uncertain component reliability data and filter estimates. The capabilities of the procedure are demonstrated through the analysis of a simulated small magnitude binary component fault in a boiling water reactor balance of plant. The results show that the procedure has the potential to be a very effective tool for incipient component fault diagnosis
Linear filtering applied to Monte Carlo criticality calculations
International Nuclear Information System (INIS)
Morrison, G.W.; Pike, D.H.; Petrie, L.M.
1975-01-01
A significant improvement in the acceleration of the convergence of the eigenvalue computed by Monte Carlo techniques has been developed by applying linear filtering theory to Monte Carlo calculations for multiplying systems. A Kalman filter was applied to a KENO Monte Carlo calculation of an experimental critical system consisting of eight interacting units of fissile material. A comparison of the filter estimate and the Monte Carlo realization was made. The Kalman filter converged in five iterations to 0.9977. After 95 iterations, the average k-eff from the Monte Carlo calculation was 0.9981. This demonstrates that the Kalman filter has the potential of reducing the calculational effort of multiplying systems. Other examples and results are discussed
Recommender engine for continuous-time quantum Monte Carlo methods
Huang, Li; Yang, Yi-feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
Lattice gauge theories and Monte Carlo simulations
International Nuclear Information System (INIS)
Rebbi, C.
1981-11-01
After some preliminary considerations, the discussion of quantum gauge theories on a Euclidean lattice takes up the definition of Euclidean quantum theory and treatment of the continuum limit; analogy is made with statistical mechanics. Perturbative methods can produce useful results for strong or weak coupling. In the attempts to investigate the properties of the systems for intermediate coupling, numerical methods known as Monte Carlo simulations have proved valuable. The bulk of this paper illustrates the basic ideas underlying the Monte Carlo numerical techniques and the major results achieved with them according to the following program: Monte Carlo simulations (general theory, practical considerations), phase structure of Abelian and non-Abelian models, the observables (coefficient of the linear term in the potential between two static sources at large separation, mass of the lowest excited state with the quantum numbers of the vacuum (the so-called glueball), the potential between two static sources at very small distance, the critical temperature at which sources become deconfined), gauge fields coupled to basonic matter (Higgs) fields, and systems with fermions
Monte Carlo lattice program KIM
International Nuclear Information System (INIS)
Cupini, E.; De Matteis, A.; Simonini, R.
1980-01-01
The Monte Carlo program KIM solves the steady-state linear neutron transport equation for a fixed-source problem or, by successive fixed-source runs, for the eigenvalue problem, in a two-dimensional thermal reactor lattice. Fluxes and reaction rates are the main quantities computed by the program, from which power distribution and few-group averaged cross sections are derived. The simulation ranges from 10 MeV to zero and includes anisotropic and inelastic scattering in the fast energy region, the epithermal Doppler broadening of the resonances of some nuclides, and the thermalization phenomenon by taking into account the thermal velocity distribution of some molecules. Besides the well known combinatorial geometry, the program allows complex configurations to be represented by a discrete set of points, an approach greatly improving calculation speed
Ramgraber, M.; Schirmer, M.
2017-12-01
As computational power grows and wireless sensor networks find their way into common practice, it becomes increasingly feasible to pursue on-line numerical groundwater modelling. The reconciliation of model predictions with sensor measurements often necessitates the application of Sequential Monte Carlo (SMC) techniques, most prominently represented by the Ensemble Kalman Filter. In the pursuit of on-line predictions it seems advantageous to transcend the scope of pure data assimilation and incorporate on-line parameter calibration as well. Unfortunately, the interplay between shifting model parameters and transient states is non-trivial. Several recent publications (e.g. Chopin et al., 2013, Kantas et al., 2015) in the field of statistics discuss potential algorithms addressing this issue. However, most of these are computationally intractable for on-line application. In this study, we investigate to what extent compromises between mathematical rigour and computational restrictions can be made within the framework of on-line numerical modelling of groundwater. Preliminary studies are conducted in a synthetic setting, with the goal of transferring the conclusions drawn into application in a real-world setting. To this end, a wireless sensor network has been established in the valley aquifer around Fehraltorf, characterized by a highly dynamic groundwater system and located about 20 km to the East of Zürich, Switzerland. By providing continuous probabilistic estimates of the state and parameter distribution, a steady base for branched-off predictive scenario modelling could be established, providing water authorities with advanced tools for assessing the impact of groundwater management practices. Chopin, N., Jacob, P.E. and Papaspiliopoulos, O. (2013): SMC2: an efficient algorithm for sequential analysis of state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75 (3), p. 397-426. Kantas, N., Doucet, A., Singh, S
Monte Carlo Simulation of an American Option
Directory of Open Access Journals (Sweden)
Gikiri Thuo
2007-04-01
Full Text Available We implement gradient estimation techniques for sensitivity analysis of option pricing which can be efficiently employed in Monte Carlo simulation. Using these techniques we can simultaneously obtain an estimate of the option value together with the estimates of sensitivities of the option value to various parameters of the model. After deriving the gradient estimates we incorporate them in an iterative stochastic approximation algorithm for pricing an option with early exercise features. We illustrate the procedure using an example of an American call option with a single dividend that is analytically tractable. In particular we incorporate estimates for the gradient with respect to the early exercise threshold level.
Advanced Computational Methods for Monte Carlo Calculations
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-12
This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.
Nested Sampling with Constrained Hamiltonian Monte Carlo
Betancourt, M. J.
2010-01-01
Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.
Energy Technology Data Exchange (ETDEWEB)
Hunt, J.G. [Institute of Radiation Protection and Dosimetry, Av. Salvador Allende s/n, Recreio, Rio de Janeiro, CEP 22780-160 (Brazil); Watchman, C.J. [Department of Radiation Oncology, University of Arizona, Tucson, AZ, 85721 (United States); Bolch, W.E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL, 32611 (United States); Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)
2007-07-01
Absorbed fraction (AF) calculations to the human skeletal tissues due to alpha particles are of interest to the internal dosimetry of occupationally exposed workers and members of the public. The transport of alpha particles through the skeletal tissue is complicated by the detailed and complex microscopic histology of the skeleton. In this study, both Monte Carlo and chord-based techniques were applied to the transport of alpha particles through 3-D micro-CT images of the skeletal microstructure of trabecular spongiosa. The Monte Carlo program used was 'Visual Monte Carlo-VMC'. VMC simulates the emission of the alpha particles and their subsequent energy deposition track. The second method applied to alpha transport is the chord-based technique, which randomly generates chord lengths across bone trabeculae and the marrow cavities via alternate and uniform sampling of their cumulative density functions. This paper compares the AF of energy to two radiosensitive skeletal tissues, active marrow and shallow active marrow, obtained with these two techniques. (authors)
Monte Carlo Treatment Planning for Advanced Radiotherapy
DEFF Research Database (Denmark)
Cronholm, Rickard
This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...... and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...
The MC21 Monte Carlo Transport Code
International Nuclear Information System (INIS)
Sutton TM; Donovan TJ; Trumbull TH; Dobreff PS; Caro E; Griesheimer DP; Tyburski LJ; Carpenter DC; Joo H
2007-01-01
MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities
Monte Carlo simulation in nuclear medicine
International Nuclear Information System (INIS)
Morel, Ch.
2007-01-01
The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)
International Nuclear Information System (INIS)
Krongkietlearts, K; Tangboonduangjit, P; Paisangittisakul, N
2016-01-01
In order to improve the life's quality for a cancer patient, the radiation techniques are constantly evolving. Especially, the two modern techniques which are intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are quite promising. They comprise of many small beam sizes (beamlets) with various intensities to achieve the intended radiation dose to the tumor and minimal dose to the nearby normal tissue. The study investigates whether the microDiamond detector (PTW manufacturer), a synthetic single crystal diamond detector, is suitable for small field output factor measurement. The results were compared with those measured by the stereotactic field detector (SFD) and the Monte Carlo simulation (EGSnrc/BEAMnrc/DOSXYZ). The calibration of Monte Carlo simulation was done using the percentage depth dose and dose profile measured by the photon field detector (PFD) of the 10×10 cm 2 field size with 100 cm SSD. Comparison of the values obtained from the calculations and measurements are consistent, no more than 1% difference. The output factors obtained from the microDiamond detector have been compared with those of SFD and Monte Carlo simulation, the results demonstrate the percentage difference of less than 2%. (paper)
The Monte Carlo method the method of statistical trials
Shreider, YuA
1966-01-01
The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio
Gukelberger, Jan; Kozik, Evgeny; Hafermann, Hartmut
2017-07-01
The dual fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work, we compute the dual fermion expansion for the two-dimensional Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically exact diagrammatic determinant Monte Carlo simulations to systematically assess convergence of the dual fermion series and the validity of these approximations. We observe that, from high temperatures down to the vicinity of the DMFT Néel transition, the dual fermion series converges very quickly to the exact solution in the whole range of Hubbard interactions considered (4 ≤U /t ≤12 ), implying that contributions from higher-order vertices are small. As the temperature is lowered further, we observe slower series convergence, convergence to incorrect solutions, and ultimately divergence. This happens in a regime where magnetic correlations become significant. We find, however, that the self-consistent particle-hole ladder approximation yields reasonable and often even highly accurate results in this regime.
Monte Carlo study of the multiquark systems
International Nuclear Information System (INIS)
Kerbikov, B.O.; Polikarpov, M.I.; Zamolodchikov, A.B.
1986-01-01
Random walks have been used to calculate the energies of the ground states in systems of N=3, 6, 9, 12 quarks. Multiquark states with N>3 are unstable with respect to the spontaneous dissociation into color singlet hadrons. The modified Green's function Monte Carlo algorithm which proved to be more simple and much accurate than the conventional few body methods have been employed. In contrast to other techniques, the same equations are used for any number of particles, while the computer time increases only linearly V, S the number of particles
Monte Carlo method in radiation transport problems
International Nuclear Information System (INIS)
Dejonghe, G.; Nimal, J.C.; Vergnaud, T.
1986-11-01
In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr
Present status and future prospects of neutronics Monte Carlo
International Nuclear Information System (INIS)
Gelbard, E.M.
1990-01-01
It is fair to say that the Monte Carlo method, over the last decade, has grown steadily more important as a neutronics computational tool. Apparently this has happened for assorted reasons. Thus, for example, as the power of computers has increased, the cost of the method has dropped, steadily becoming less and less of an obstacle to its use. In addition, more and more sophisticated input processors have now made it feasible to model extremely complicated systems routinely with really remarkable fidelity. Finally, as we demand greater and greater precision in reactor calculations, Monte Carlo is often found to be the only method accurate enough for use in benchmarking. Cross section uncertainties are now almost the only inherent limitations in our Monte Carlo capabilities. For this reason Monte Carlo has come to occupy a special position, interposed between experiment and other computational techniques. More and more often deterministic methods are tested by comparison with Monte Carlo, and cross sections are tested by comparing Monte Carlo with experiment. In this way one can distinguish very clearly between errors due to flaws in our numerical methods, and those due to deficiencies in cross section files. The special role of Monte Carlo as a benchmarking tool, often the only available benchmarking tool, makes it crucially important that this method should be polished to perfection. Problems relating to Eigenvalue calculations, variance reduction and the use of advanced computers are reviewed in this paper. (author)
Combinatorial nuclear level density by a Monte Carlo method
International Nuclear Information System (INIS)
Cerf, N.
1994-01-01
We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states,and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations
Monte Carlo simulations on SIMD computer architectures
International Nuclear Information System (INIS)
Burmester, C.P.; Gronsky, R.; Wille, L.T.
1992-01-01
In this paper algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SIMD) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carl updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures
Monte Carlo method for solving a parabolic problem
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.
Importance iteration in MORSE Monte Carlo calculations
International Nuclear Information System (INIS)
Kloosterman, J.L.; Hoogenboom, J.E.
1994-01-01
An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example that shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation
Monte Carlo approaches to light nuclei
International Nuclear Information System (INIS)
Carlson, J.
1990-01-01
Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs
Monte Carlo approaches to light nuclei
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.
1990-01-01
Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.
Importance iteration in MORSE Monte Carlo calculations
International Nuclear Information System (INIS)
Kloosterman, J.L.; Hoogenboom, J.E.
1994-02-01
An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example, which shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation. (orig.)
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Monte Carlo Codes Invited Session
International Nuclear Information System (INIS)
Trama, J.C.; Malvagi, F.; Brown, F.
2013-01-01
This document lists 22 Monte Carlo codes used in radiation transport applications throughout the world. For each code the names of the organization and country and/or place are given. We have the following computer codes. 1) ARCHER, USA, RPI; 2) COG11, USA, LLNL; 3) DIANE, France, CEA/DAM Bruyeres; 4) FLUKA, Italy and CERN, INFN and CERN; 5) GEANT4, International GEANT4 collaboration; 6) KENO and MONACO (SCALE), USA, ORNL; 7) MC21, USA, KAPL and Bettis; 8) MCATK, USA, LANL; 9) MCCARD, South Korea, Seoul National University; 10) MCNP6, USA, LANL; 11) MCU, Russia, Kurchatov Institute; 12) MONK and MCBEND, United Kingdom, AMEC; 13) MORET5, France, IRSN Fontenay-aux-Roses; 14) MVP2, Japan, JAEA; 15) OPENMC, USA, MIT; 16) PENELOPE, Spain, Barcelona University; 17) PHITS, Japan, JAEA; 18) PRIZMA, Russia, VNIITF; 19) RMC, China, Tsinghua University; 20) SERPENT, Finland, VTT; 21) SUPERMONTECARLO, China, CAS INEST FDS Team Hefei; and 22) TRIPOLI-4, France, CEA Saclay
Advanced computers and Monte Carlo
International Nuclear Information System (INIS)
Jordan, T.L.
1979-01-01
High-performance parallelism that is currently available is synchronous in nature. It is manifested in such architectures as Burroughs ILLIAC-IV, CDC STAR-100, TI ASC, CRI CRAY-1, ICL DAP, and many special-purpose array processors designed for signal processing. This form of parallelism has apparently not been of significant value to many important Monte Carlo calculations. Nevertheless, there is much asynchronous parallelism in many of these calculations. A model of a production code that requires up to 20 hours per problem on a CDC 7600 is studied for suitability on some asynchronous architectures that are on the drawing board. The code is described and some of its properties and resource requirements ae identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resources of some asynchronous multiprocessor architectures. Arguments are made for programer aids and special syntax to identify and support important asynchronous parallelism. 2 figures, 5 tables
Adaptive Markov Chain Monte Carlo
Jadoon, Khan
2016-08-08
A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness are not well estimated as compared to layers electrical conductivity because layer thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip irrigation system demonstrate that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for the assessment of the model outputs.
International Nuclear Information System (INIS)
Yang Jinan; Mihara, Takatsugu
1998-12-01
This report presents a variance reduction technique to estimate the reliability and availability of highly complex systems during phased mission time using the Monte Carlo simulation. In this study, we introduced the variance reduction technique with a concept of distance between the present system state and the cut set configurations. Using this technique, it becomes possible to bias the transition from the operating states to the failed states of components towards the closest cut set. Therefore a component failure can drive the system towards a cut set configuration more effectively. JNC developed the PHAMMON (Phased Mission Analysis Program with Monte Carlo Method) code which involved the two kinds of variance reduction techniques: (1) forced transition, and (2) failure biasing. However, these techniques did not guarantee an effective reduction in variance. For further improvement, a variance reduction technique incorporating the distance concept was introduced to the PHAMMON code and the numerical calculation was carried out for the different design cases of decay heat removal system in a large fast breeder reactor. Our results indicate that the technique addition of this incorporating distance concept is an effective means of further reducing the variance. (author)
Energy Technology Data Exchange (ETDEWEB)
An, So Hyun; Lee, Young Ouk; Lee, Cheol Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Young Seok [National Fusion Research Institute, Daejeon (Korea, Republic of)
2007-10-15
It is essential that neutron cross sections are measured precisely for many areas of research and technique. In Korea, these experiments have been performed in the Pohang Neutron Facility (PNF) with the pulsed neutron facility based on the 100 MeV electron linear accelerator. In PNF, the neutron energy spectra have been measured for different water levels inside the moderator and compared with the results of the MCNPX calculation. The optimum size of the water moderator has been determined on the base of these results. In this study, Monte Carlo simulations for the TOF technique were performed and neutron spectra of neutrons were calculated to predict the measurements.
11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
Nuyens, Dirk
2016-01-01
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Monte Carlo variance reduction approaches for non-Boltzmann tallies
International Nuclear Information System (INIS)
Booth, T.E.
1992-12-01
Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed
Frontiers of quantum Monte Carlo workshop: preface
International Nuclear Information System (INIS)
Gubernatis, J.E.
1985-01-01
The introductory remarks, table of contents, and list of attendees are presented from the proceedings of the conference, Frontiers of Quantum Monte Carlo, which appeared in the Journal of Statistical Physics
Monte Carlo code development in Los Alamos
International Nuclear Information System (INIS)
Carter, L.L.; Cashwell, E.D.; Everett, C.J.; Forest, C.A.; Schrandt, R.G.; Taylor, W.M.; Thompson, W.L.; Turner, G.D.
1974-01-01
The present status of Monte Carlo code development at Los Alamos Scientific Laboratory is discussed. A brief summary is given of several of the most important neutron, photon, and electron transport codes. 17 references. (U.S.)
Experience with the Monte Carlo Method
Energy Technology Data Exchange (ETDEWEB)
Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)
2007-06-15
Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.
Experience with the Monte Carlo Method
International Nuclear Information System (INIS)
Hussein, E.M.A.
2007-01-01
Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed
Monte Carlo Transport for Electron Thermal Transport
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2015-11-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
A continuation multilevel Monte Carlo algorithm
Collier, Nathan; Haji Ali, Abdul Lateef; Nobile, Fabio; von Schwerin, Erik; Tempone, Raul
2014-01-01
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error
Hybrid Monte Carlo methods in computational finance
Leitao Rodriguez, A.
2017-01-01
Monte Carlo methods are highly appreciated and intensively employed in computational finance in the context of financial derivatives valuation or risk management. The method offers valuable advantages like flexibility, easy interpretation and straightforward implementation. Furthermore, the
Bartalini, P.; Kryukov, A.; Selyuzhenkov, Ilya V.; Sherstnev, A.; Vologdin, A.
2004-01-01
We present the Monte-Carlo events Data Base (MCDB) project and its development plans. MCDB facilitates communication between authors of Monte-Carlo generators and experimental users. It also provides a convenient book-keeping and an easy access to generator level samples. The first release of MCDB is now operational for the CMS collaboration. In this paper we review the main ideas behind MCDB and discuss future plans to develop this Data Base further within the CERN LCG framework.
Multilevel Monte Carlo in Approximate Bayesian Computation
Jasra, Ajay
2017-02-13
In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Carlo version of the approach is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.
Monte Carlo method applied to medical physics
International Nuclear Information System (INIS)
Oliveira, C.; Goncalves, I.F.; Chaves, A.; Lopes, M.C.; Teixeira, N.; Matos, B.; Goncalves, I.C.; Ramalho, A.; Salgado, J.
2000-01-01
The main application of the Monte Carlo method to medical physics is dose calculation. This paper shows some results of two dose calculation studies and two other different applications: optimisation of neutron field for Boron Neutron Capture Therapy and optimization of a filter for a beam tube for several purposes. The time necessary for Monte Carlo calculations - the highest boundary for its intensive utilisation - is being over-passed with faster and cheaper computers. (author)
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki; Long, Quan; Scavino, Marco; Tempone, Raul
2015-01-01
Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki
2015-01-07
Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef
2016-01-06
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL-2).
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef; Nobile, Fabio; Tempone, Raul
2016-01-01
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL-2).
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef; Nobile, Fabio; Tempone, Raul
2015-01-01
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence.
Quantum Monte Carlo for atoms and molecules
International Nuclear Information System (INIS)
Barnett, R.N.
1989-11-01
The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H 2 , LiH, Li 2 , and H 2 O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li 2 , and H 2 O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef
2015-01-07
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence.
Reactor perturbation calculations by Monte Carlo methods
International Nuclear Information System (INIS)
Gubbins, M.E.
1965-09-01
Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)
Radiation Modeling with Direct Simulation Monte Carlo
Carlson, Ann B.; Hassan, H. A.
1991-01-01
Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.
Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments
International Nuclear Information System (INIS)
Pevey, Ronald E.
2005-01-01
Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL
International Nuclear Information System (INIS)
Ueki, Kohtaro; Kawakami, Kazuo; Shimizu, Daisuke
2003-01-01
The Monte Carlo coupling technique with the coordinate transformation is used to evaluate the shielding ability of a modular shielding house that accommodates four spent-fuel transportable storage casks for two units. The effective dose rate distributions can be obtained as far as 300 m from the center of the shielding house. The coupling technique is created with the Surface Source Write (SSW) card and the Surface Source Read/Coordinate Transformation (SSR/CRT) card in the MCNP 4C continuous energy Monte Carlo code as the 'SSW-SSR/CRT calculation system'. In the present Monte Carlo coupling calculation, the total effective dose rates 100, 200, and 300 m from the center of the shielding house are estimated to be 1.69, 0.285, and 0.0826 (μSv/yr per four casks), respectively. Accordingly, if the distance between the center of the shielding house and the site boundary of the storage facility is kept at >300 m, approximately 2400 casks are able to be accommodated in the modular shielding houses, under the Japanese severe criterion of 50 μSv/yr at the site boundary. The shielding house alone satisfies not only the technical conditions but also the economic requirements.It became evident that secondary gamma rays account for >60% of the effective total dose rate at all the calculated points around the shielding house, most of which are produced from the water in the steel-water-steel shielding system of the shielding house. The remainder of the dose rate comes mostly from neutrons; the fission product and 60 Co activation gamma rays account for small percentages. Accordingly, reducing the secondary gamma rays is critical to improving not only the shielding ability but also the radiation safety of the shielding house
Schauberger, Günther; Piringer, Martin; Baumann-Stanzer, Kathrin; Knauder, Werner; Petz, Erwin
2013-12-15
The impact of ambient concentrations in the vicinity of a plant can only be assessed if the emission rate is known. In this study, based on measurements of ambient H2S concentrations and meteorological parameters, the a priori unknown emission rates of a tannery wastewater treatment plant are calculated by an inverse dispersion technique. The calculations are determined using the Gaussian Austrian regulatory dispersion model. Following this method, emission data can be obtained, though only for a measurement station that is positioned such that the wind direction at the measurement station is leeward of the plant. Using the inverse transform sampling, which is a Monte Carlo technique, the dataset can also be completed for those wind directions for which no ambient concentration measurements are available. For the model validation, the measured ambient concentrations are compared with the calculated ambient concentrations obtained from the synthetic emission data of the Monte Carlo model. The cumulative frequency distribution of this new dataset agrees well with the empirical data. This inverse transform sampling method is thus a useful supplement for calculating emission rates using the inverse dispersion technique. Copyright © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Wegmann, K.; Brix, G.
2000-01-01
Purpose: Single photon transmission (SPT) measurements offer a new approach for the determination of attenuation correction factors (ACF) in PET. It was the aim of the present work, to evaluate a scatter correction alogrithm proposed by C. Watson by means of Monte Carlo simulations. Methods: SPT measurements with a Cs-137 point source were simulated for a whole-body PET scanner (ECAT EXACT HR + ) in both the 2D and 3D mode. To examine the scatter fraction (SF) in the transmission data, the detected photons were classified as unscattered or scattered. The simulated data were used to determine (i) the spatial distribution of the SFs, (ii) an ACF sinogram from all detected events (ACF tot ) and (iii) from the unscattered events only (ACF unscattered ), and (iv) an ACF cor =(ACF tot ) 1+Κ sinogram corrected according to the Watson algorithm. In addition, density images were reconstructed in order to quantitatively evaluate linear attenuation coefficients. Results: A high correlation was found between the SF and the ACF tot sinograms. For the cylinder and the EEC phantom, similar correction factors Κ were estimated. The determined values resulted in an accurate scatter correction in both the 2D and 3D mode. (orig.) [de
Olsson, Anna; Arlig, Asa; Carlsson, Gudrun Alm; Gustafsson, Agnetha
2007-09-01
The image quality of single photon emission computed tomography (SPECT) depends on the reconstruction algorithm used. The purpose of the present study was to evaluate parameters in ordered subset expectation maximization (OSEM) and to compare systematically with filtered back-projection (FBP) for reconstruction of regional cerebral blood flow (rCBF) SPECT, incorporating attenuation and scatter correction. The evaluation was based on the trade-off between contrast recovery and statistical noise using different sizes of subsets, number of iterations and filter parameters. Monte Carlo simulated SPECT studies of a digital human brain phantom were used. The contrast recovery was calculated as measured contrast divided by true contrast. Statistical noise in the reconstructed images was calculated as the coefficient of variation in pixel values. A constant contrast level was reached above 195 equivalent maximum likelihood expectation maximization iterations. The choice of subset size was not crucial as long as there were > or = 2 projections per subset. The OSEM reconstruction was found to give 5-14% higher contrast recovery than FBP for all clinically relevant noise levels in rCBF SPECT. The Butterworth filter, power 6, achieved the highest stable contrast recovery level at all clinically relevant noise levels. The cut-off frequency should be chosen according to the noise level accepted in the image. Trade-off plots are shown to be a practical way of deciding the number of iterations and subset size for the OSEM reconstruction and can be used for other examination types in nuclear medicine.
Energy Technology Data Exchange (ETDEWEB)
Becchetti, M; Tian, X; Segars, P; Samei, E [Clinical Imaging Physics Group, Department of Radiology, Duke University Me, Durham, NC (United States)
2015-06-15
Purpose: To develop an accurate and fast Monte Carlo (MC) method of simulating CT that is capable of correlating dose with image quality using voxelized phantoms. Methods: A realistic voxelized phantom based on patient CT data, XCAT, was used with a GPU accelerated MC code for helical MDCT. Simulations were done with both uniform density organs and with textured organs. The organ doses were validated using previous experimentally validated simulations of the same phantom under the same conditions. Images acquired by tracking photons through the phantom with MC require lengthy computation times due to the large number of photon histories necessary for accurate representation of noise. A substantial speed up of the process was attained by using a low number of photon histories with kernel denoising of the projections from the scattered photons. These FBP reconstructed images were validated against those that were acquired in simulations using many photon histories by ensuring a minimal normalized root mean square error. Results: Organ doses simulated in the XCAT phantom are within 10% of the reference values. Corresponding images attained using projection kernel smoothing were attained with 3 orders of magnitude less computation time compared to a reference simulation using many photon histories. Conclusion: Combining GPU acceleration with kernel denoising of scattered photon projections in MC simulations allows organ dose and corresponding image quality to be attained with reasonable accuracy and substantially reduced computation time than is possible with standard simulation approaches.
International Nuclear Information System (INIS)
Becchetti, M; Tian, X; Segars, P; Samei, E
2015-01-01
Purpose: To develop an accurate and fast Monte Carlo (MC) method of simulating CT that is capable of correlating dose with image quality using voxelized phantoms. Methods: A realistic voxelized phantom based on patient CT data, XCAT, was used with a GPU accelerated MC code for helical MDCT. Simulations were done with both uniform density organs and with textured organs. The organ doses were validated using previous experimentally validated simulations of the same phantom under the same conditions. Images acquired by tracking photons through the phantom with MC require lengthy computation times due to the large number of photon histories necessary for accurate representation of noise. A substantial speed up of the process was attained by using a low number of photon histories with kernel denoising of the projections from the scattered photons. These FBP reconstructed images were validated against those that were acquired in simulations using many photon histories by ensuring a minimal normalized root mean square error. Results: Organ doses simulated in the XCAT phantom are within 10% of the reference values. Corresponding images attained using projection kernel smoothing were attained with 3 orders of magnitude less computation time compared to a reference simulation using many photon histories. Conclusion: Combining GPU acceleration with kernel denoising of scattered photon projections in MC simulations allows organ dose and corresponding image quality to be attained with reasonable accuracy and substantially reduced computation time than is possible with standard simulation approaches
Higginson, Drew P.
2017-11-01
We describe and justify a full-angle scattering (FAS) method to faithfully reproduce the accumulated differential angular Rutherford scattering probability distribution function (pdf) of particles in a plasma. The FAS method splits the scattering events into two regions. At small angles it is described by cumulative scattering events resulting, via the central limit theorem, in a Gaussian-like pdf; at larger angles it is described by single-event scatters and retains a pdf that follows the form of the Rutherford differential cross-section. The FAS method is verified using discrete Monte-Carlo scattering simulations run at small timesteps to include each individual scattering event. We identify the FAS regime of interest as where the ratio of temporal/spatial scale-of-interest to slowing-down time/length is from 10-3 to 0.3-0.7; the upper limit corresponds to Coulomb logarithm of 20-2, respectively. Two test problems, high-velocity interpenetrating plasma flows and keV-temperature ion equilibration, are used to highlight systems where including FAS is important to capture relevant physics.
Directory of Open Access Journals (Sweden)
Amin Asadi
2017-10-01
Full Text Available Purpose: To study the benefits of Directional Bremsstrahlung Splitting (DBS dose variance reduction technique in BEAMnrc Monte Carlo (MC code for Oncor® linac at 6MV and 18MV energies. Materials and Method: A MC model of Oncor® linac was built using BEAMnrc MC Code and verified by the measured data for 6MV and 18MV energies of various field sizes. Then Oncor® machine was modeled running DBS technique, and the efficiency of total fluence and spatial fluence for electron and photon, the efficiency of dose variance reduction of MC calculations for PDD on the central beam axis and lateral dose profile across the nominal field was measured and compared. Result: With applying DBS technique, the total fluence of electron and photon increased in turn 626.8 (6MV and 983.4 (6MV, and 285.6 (18MV and 737.8 (18MV, the spatial fluence of electron and photon improved in turn 308.6±1.35% (6MV and 480.38±0.43% (6MV, and 153±0.9% (18MV and 462.6±0.27% (18MV. Moreover, by running DBS technique, the efficiency of dose variance reduction for PDD MC dose calculations before maximum dose point and after dose maximum point enhanced 187.8±0.68% (6MV and 184.6±0.65% (6MV, 156±0.43% (18MV and 153±0.37% (18MV, respectively, and the efficiency of MC calculations for lateral dose profile remarkably on the central beam axis and across the treatment field raised in turn 197±0.66% (6MV and 214.6±0.73% (6MV, 175±0.36% (18MV and 181.4±0.45% (18MV. Conclusion: Applying dose variance reduction technique of DBS for modeling Oncor® linac with using BEAMnrc MC Code surprisingly improved the fluence of electron and photon, and it therefore enhanced the efficiency of dose variance reduction for MC calculations. As a result, running DBS in different kinds of MC simulation Codes might be beneficent in reducing the uncertainty of MC calculations.
International Nuclear Information System (INIS)
Raisali, G.R.
1992-01-01
A series of computer codes based on point kernel technique and also Monte Carlo method have been developed. These codes perform radiation transport calculations for irradiator systems having cartesian, cylindrical and mixed geometries. The monte Carlo calculations, the computer code 'EGS4' has been applied to a radiation processing type problem. This code has been acompanied by a specific user code. The set of codes developed include: GCELLS, DOSMAPM, DOSMAPC2 which simulate the radiation transport in gamma irradiator systems having cylinderical, cartesian, and mixed geometries, respectively. The program 'DOSMAP3' based on point kernel technique, has been also developed for dose rate mapping calculations in carrier type gamma irradiators. Another computer program 'CYLDETM' as a user code for EGS4 has been also developed to simulate dose variations near the interface of heterogeneous media in gamma irradiator systems. In addition a system of computer codes 'PRODMIX' has been developed which calculates the absorbed dose in the products with different densities. validation studies of the calculated results versus experimental dosimetry has been performed and good agreement has been obtained
A general transform for variance reduction in Monte Carlo simulations
International Nuclear Information System (INIS)
Becker, T.L.; Larsen, E.W.
2011-01-01
This paper describes a general transform to reduce the variance of the Monte Carlo estimate of some desired solution, such as flux or biological dose. This transform implicitly includes many standard variance reduction techniques, including source biasing, collision biasing, the exponential transform for path-length stretching, and weight windows. Rather than optimizing each of these techniques separately or choosing semi-empirical biasing parameters based on the experience of a seasoned Monte Carlo practitioner, this General Transform unites all these variance techniques to achieve one objective: a distribution of Monte Carlo particles that attempts to optimize the desired solution. Specifically, this transform allows Monte Carlo particles to be distributed according to the user's specification by using information obtained from a computationally inexpensive deterministic simulation of the problem. For this reason, we consider the General Transform to be a hybrid Monte Carlo/Deterministic method. The numerical results con rm that the General Transform distributes particles according to the user-specified distribution and generally provide reasonable results for shielding applications. (author)
Successful vectorization - reactor physics Monte Carlo code
International Nuclear Information System (INIS)
Martin, W.R.
1989-01-01
Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)
DEFF Research Database (Denmark)
Xie, Haiyan; Liu, Haichun; Svenmarker, Pontus
2010-01-01
Fluorescence imaging is used for quantitative in vivo assessment of drug concentration. Light attenuation in tissue is compensated for through Monte-Carlo simulations. The intrinsic fluorescence intensity, directly proportional to the drug concentration, could be obtained....
Angular biasing in implicit Monte-Carlo
International Nuclear Information System (INIS)
Zimmerman, G.B.
1994-01-01
Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise
Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations
DEFF Research Database (Denmark)
Kamran, Faisal; Andersen, Peter E.
2015-01-01
profiles. This article presents a sensitivity analysis of the technique in turbid media. Monte Carlo simulations are used to investigate the technique and its potential to distinguish the small changes between different levels of scattering. We present various regions of the dynamic range of optical...
Fourier path-integral Monte Carlo methods: Partial averaging
International Nuclear Information System (INIS)
Doll, J.D.; Coalson, R.D.; Freeman, D.L.
1985-01-01
Monte Carlo Fourier path-integral techniques are explored. It is shown that fluctuation renormalization techniques provide an effective means for treating the effects of high-order Fourier contributions. The resulting formalism is rapidly convergent, is computationally convenient, and has potentially useful variational aspects
Monte Carlo simulation and experimental verification of radiotherapy electron beams
International Nuclear Information System (INIS)
Griffin, J.; Deloar, H. M.
2007-01-01
Full text: Based on fundamental physics and statistics, the Monte Carlo technique is generally accepted as the accurate method for modelling radiation therapy treatments. A Monte Carlo simulation system has been installed, and models of linear accelerators in the more commonly used electron beam modes have been built and commissioned. A novel technique for radiation dosimetry is also being investigated. Combining the advantages of both water tank and solid phantom dosimetry, a hollow, thin walled shell or mask is filled with water and then raised above the natural water surface to produce a volume of water with the desired irregular shape.
International Nuclear Information System (INIS)
White, Travis; Hack, Joe; Nathan, Steve; Barnett, Marvin
2001-01-01
solutions for scattering of neutrons through multi-legged penetrations are readily available in the literature; similar analytical solutions for photon scattering through penetrations, however, are not. Therefore, computer modeling must be relied upon to perform our analyses. The computer code typically used by Westinghouse SMS in the evaluation of photon transport through complex geometries is the MCNP Monte Carlo computer code. Yet, geometries of this nature can cause problems even with the Monte Carlo codes. Striking a balance between how the code handles bulk transport through the wall with transport through the penetration void, particularly with the use of typical variance reduction methods, is difficult when trying to ensure that all the important regions of the model are sampled appropriately. The problem was broken down into several roughly independent cases. First, scatter through the penetration was considered. Second, bulk transport through the hot leg of the duct and then through the remaining thickness of wall was calculated to determine the amount of supplemental shielding required in the wall. Similar analyses were performed for the middle and cold legs of the penetration. Finally, additional external shielding from radiation streaming through the duct was determined for cases where the minimum offset distance was not feasible. Each case was broken down further into two phases. In the first phase of each case, photons were transported from the source material to an area at the face of the wall, or the opening of the duct, where photon energy and angular distributions were tallied, representing the source incident on the wall or opening. Then, a simplified model for each case was developed and analyzed using the data from the first phase and the new source term. (authors)
Random Numbers and Monte Carlo Methods
Scherer, Philipp O. J.
Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.
Reflections on early Monte Carlo calculations
International Nuclear Information System (INIS)
Spanier, J.
1992-01-01
Monte Carlo methods for solving various particle transport problems developed in parallel with the evolution of increasingly sophisticated computer programs implementing diffusion theory and low-order moments calculations. In these early years, Monte Carlo calculations and high-order approximations to the transport equation were seen as too expensive to use routinely for nuclear design but served as invaluable aids and supplements to design with less expensive tools. The earliest Monte Carlo programs were quite literal; i.e., neutron and other particle random walk histories were simulated by sampling from the probability laws inherent in the physical system without distoration. Use of such analogue sampling schemes resulted in a good deal of time being spent in examining the possibility of lowering the statistical uncertainties in the sample estimates by replacing simple, and intuitively obvious, random variables by those with identical means but lower variances
SPQR: a Monte Carlo reactor kinetics code
International Nuclear Information System (INIS)
Cramer, S.N.; Dodds, H.L.
1980-02-01
The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations
Analysis of error in Monte Carlo transport calculations
International Nuclear Information System (INIS)
Booth, T.E.
1979-01-01
The Monte Carlo method for neutron transport calculations suffers, in part, because of the inherent statistical errors associated with the method. Without an estimate of these errors in advance of the calculation, it is difficult to decide what estimator and biasing scheme to use. Recently, integral equations have been derived that, when solved, predicted errors in Monte Carlo calculations in nonmultiplying media. The present work allows error prediction in nonanalog Monte Carlo calculations of multiplying systems, even when supercritical. Nonanalog techniques such as biased kernels, particle splitting, and Russian Roulette are incorporated. Equations derived here allow prediction of how much a specific variance reduction technique reduces the number of histories required, to be weighed against the change in time required for calculation of each history. 1 figure, 1 table
Calibration and Monte Carlo modelling of neutron long counters
Tagziria, H
2000-01-01
The Monte Carlo technique has become a very powerful tool in radiation transport as full advantage is taken of enhanced cross-section data, more powerful computers and statistical techniques, together with better characterisation of neutron and photon source spectra. At the National Physical Laboratory, calculations using the Monte Carlo radiation transport code MCNP-4B have been combined with accurate measurements to characterise two long counters routinely used to standardise monoenergetic neutron fields. New and more accurate response function curves have been produced for both long counters. A novel approach using Monte Carlo methods has been developed, validated and used to model the response function of the counters and determine more accurately their effective centres, which have always been difficult to establish experimentally. Calculations and measurements agree well, especially for the De Pangher long counter for which details of the design and constructional material are well known. The sensitivit...
Monte Carlo simulation of continuous-space crystal growth
International Nuclear Information System (INIS)
Dodson, B.W.; Taylor, P.A.
1986-01-01
We describe a method, based on Monte Carlo techniques, of simulating the atomic growth of crystals without the discrete lattice space assumed by conventional Monte Carlo growth simulations. Since no lattice space is assumed, problems involving epitaxial growth, heteroepitaxy, phonon-driven mechanisms, surface reconstruction, and many other phenomena incompatible with the lattice-space approximation can be studied. Also, use of the Monte Carlo method circumvents to some extent the extreme limitations on simulated timescale inherent in crystal-growth techniques which might be proposed using molecular dynamics. The implementation of the new method is illustrated by studying the growth of strained-layer superlattice (SLS) interfaces in two-dimensional Lennard-Jones atomic systems. Despite the extreme simplicity of such systems, the qualitative features of SLS growth seen here are similar to those observed experimentally in real semiconductor systems
Monte Carlo method for array criticality calculations
International Nuclear Information System (INIS)
Dickinson, D.; Whitesides, G.E.
1976-01-01
The Monte Carlo method for solving neutron transport problems consists of mathematically tracing paths of individual neutrons collision by collision until they are lost by absorption or leakage. The fate of the neutron after each collision is determined by the probability distribution functions that are formed from the neutron cross-section data. These distributions are sampled statistically to establish the successive steps in the neutron's path. The resulting data, accumulated from following a large number of batches, are analyzed to give estimates of k/sub eff/ and other collision-related quantities. The use of electronic computers to produce the simulated neutron histories, initiated at Los Alamos Scientific Laboratory, made the use of the Monte Carlo method practical for many applications. In analog Monte Carlo simulation, the calculation follows the physical events of neutron scattering, absorption, and leakage. To increase calculational efficiency, modifications such as the use of statistical weights are introduced. The Monte Carlo method permits the use of a three-dimensional geometry description and a detailed cross-section representation. Some of the problems in using the method are the selection of the spatial distribution for the initial batch, the preparation of the geometry description for complex units, and the calculation of error estimates for region-dependent quantities such as fluxes. The Monte Carlo method is especially appropriate for criticality safety calculations since it permits an accurate representation of interacting units of fissile material. Dissimilar units, units of complex shape, moderators between units, and reflected arrays may be calculated. Monte Carlo results must be correlated with relevant experimental data, and caution must be used to ensure that a representative set of neutron histories is produced
Monte Carlo simulation applied to alpha spectrometry
International Nuclear Information System (INIS)
Baccouche, S.; Gharbi, F.; Trabelsi, A.
2007-01-01
Alpha particle spectrometry is a widely-used analytical method, in particular when we deal with pure alpha emitting radionuclides. Monte Carlo simulation is an adequate tool to investigate the influence of various phenomena on this analytical method. We performed an investigation of those phenomena using the simulation code GEANT of CERN. The results concerning the geometrical detection efficiency in different measurement geometries agree with analytical calculations. This work confirms that Monte Carlo simulation of solid angle of detection is a very useful tool to determine with very good accuracy the detection efficiency.
Simplified monte carlo simulation for Beijing spectrometer
International Nuclear Information System (INIS)
Wang Taijie; Wang Shuqin; Yan Wuguang; Huang Yinzhi; Huang Deqiang; Lang Pengfei
1986-01-01
The Monte Carlo method based on the functionization of the performance of detectors and the transformation of values of kinematical variables into ''measured'' ones by means of smearing has been used to program the Monte Carlo simulation of the performance of the Beijing Spectrometer (BES) in FORTRAN language named BESMC. It can be used to investigate the multiplicity, the particle type, and the distribution of four-momentum of the final states of electron-positron collision, and also the response of the BES to these final states. Thus, it provides a measure to examine whether the overall design of the BES is reasonable and to decide the physical topics of the BES
Self-learning Monte Carlo (dynamical biasing)
International Nuclear Information System (INIS)
Matthes, W.
1981-01-01
In many applications the histories of a normal Monte Carlo game rarely reach the target region. An approximate knowledge of the importance (with respect to the target) may be used to guide the particles more frequently into the target region. A Monte Carlo method is presented in which each history contributes to update the importance field such that eventually most target histories are sampled. It is a self-learning method in the sense that the procedure itself: (a) learns which histories are important (reach the target) and increases their probability; (b) reduces the probabilities of unimportant histories; (c) concentrates gradually on the more important target histories. (U.K.)
Burnup calculations using Monte Carlo method
International Nuclear Information System (INIS)
Ghosh, Biplab; Degweker, S.B.
2009-01-01
In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code
Improvements for Monte Carlo burnup calculation
Energy Technology Data Exchange (ETDEWEB)
Shenglong, Q.; Dong, Y.; Danrong, S.; Wei, L., E-mail: qiangshenglong@tsinghua.org.cn, E-mail: d.yao@npic.ac.cn, E-mail: songdr@npic.ac.cn, E-mail: luwei@npic.ac.cn [Nuclear Power Inst. of China, Cheng Du, Si Chuan (China)
2015-07-01
Monte Carlo burnup calculation is development trend of reactor physics, there would be a lot of work to be done for engineering applications. Based on Monte Carlo burnup code MOI, non-fuel burnup calculation methods and critical search suggestions will be mentioned in this paper. For non-fuel burnup, mixed burnup mode will improve the accuracy of burnup calculation and efficiency. For critical search of control rod position, a new method called ABN based on ABA which used by MC21 will be proposed for the first time in this paper. (author)
A keff calculation method by Monte Carlo
International Nuclear Information System (INIS)
Shen, H; Wang, K.
2008-01-01
The effective multiplication factor (k eff ) is defined as the ratio between the number of neutrons in successive generations, which definition is adopted by most Monte Carlo codes (e.g. MCNP). Also, it can be thought of as the ratio of the generation rate of neutrons by the sum of the leakage rate and the absorption rate, which should exclude the effect of the neutron reaction such as (n, 2n) and (n, 3n). This article discusses the Monte Carlo method for k eff calculation based on the second definition. A new code has been developed and the results are presented. (author)
Monte Carlo electron/photon transport
International Nuclear Information System (INIS)
Mack, J.M.; Morel, J.E.; Hughes, H.G.
1985-01-01
A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs
Monte Carlo simulation of neutron scattering instruments
International Nuclear Information System (INIS)
Seeger, P.A.
1995-01-01
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width
Simulation of transport equations with Monte Carlo
International Nuclear Information System (INIS)
Matthes, W.
1975-09-01
The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game
Monte Carlo dose distributions for radiosurgery
International Nuclear Information System (INIS)
Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.
2001-01-01
The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)
International Nuclear Information System (INIS)
Joly, Jean-François; Béland, Laurent Karim; Brommer, Peter; Mousseau, Normand; El-Mellouhi, Fedwa
2012-01-01
We present two major optimizations for the kinetic Activation-Relaxation Technique (k-ART), an off-lattice self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search THAT has been successfully applied to study a number of semiconducting and metallic systems. K-ART is parallelized in a non-trivial way: A master process uses several worker processes to perform independent event searches for possible events, while all bookkeeping and the actual simulation is performed by the master process. Depending on the complexity of the system studied, the parallelization scales well for tens to more than one hundred processes. For dealing with large systems, we present a near order 1 implementation. Techniques such as Verlet lists, cell decomposition and partial force calculations are implemented, and the CPU time per time step scales sublinearly with the number of particles, providing an efficient use of computational resources.
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-03-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Ibrahim, Ahmad M.; Polunovskiy, Eduard; Loughlin, Michael J.; Grove, Robert E.; Sawan, Mohamed E.
2016-01-01
Highlights: • Assess the detailed distribution of the nuclear heating among the components of the ITER toroidal field coils. • Utilize the FW-CADIS method to dramatically accelerate the calculation of detailed nuclear analysis. • Compare the efficiency and reliability of the FW-CADIS method and the MCNP weight window generator. - Abstract: Because the superconductivity of the ITER toroidal field coils (TFC) must be protected against local overheating, detailed spatial distribution of the TFC nuclear heating is needed to assess the acceptability of the designs of the blanket, vacuum vessel (VV), and VV thermal shield. Accurate Monte Carlo calculations of the distributions of the TFC nuclear heating are challenged by the small volumes of the tally segmentations and by the thick layers of shielding provided by the blanket and VV. To speed up the MCNP calculation of the nuclear heating distribution in different segments of the coil casing, ground insulation, and winding packs of the ITER TFC, the ITER Organization (IO) used the MCNP weight window generator (WWG). The maximum relative uncertainty of the tallies in this calculation was 82.7%. In this work, this MCNP calculation was repeated using variance reduction parameters generated by the Oak Ridge National Laboratory AutomateD VAriaNce reducTion Generator (ADVANTG) code and both MCNP calculations were compared in terms of computational efficiency and reliability. Even though the ADVANTG MCNP calculation used less than one-sixth of the computational resources of the IO calculation, the relative uncertainties of all the tallies in the ADVANTG MCNP calculation were less than 6.1%. The nuclear heating results of the two calculations were significantly different by factors between 1.5 and 2.3 in some of the segments of the furthest winding pack turn from the plasma neutron source. Even though the nuclear heating in this turn may not affect the ITER design because it is much smaller than the nuclear heating in the
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, Ahmad M., E-mail: ibrahimam@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Polunovskiy, Eduard; Loughlin, Michael J. [ITER Organization, Route de Vinon Sur Verdon, 13067 St. Paul Lez Durance (France); Grove, Robert E. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Sawan, Mohamed E. [University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)
2016-11-01
Highlights: • Assess the detailed distribution of the nuclear heating among the components of the ITER toroidal field coils. • Utilize the FW-CADIS method to dramatically accelerate the calculation of detailed nuclear analysis. • Compare the efficiency and reliability of the FW-CADIS method and the MCNP weight window generator. - Abstract: Because the superconductivity of the ITER toroidal field coils (TFC) must be protected against local overheating, detailed spatial distribution of the TFC nuclear heating is needed to assess the acceptability of the designs of the blanket, vacuum vessel (VV), and VV thermal shield. Accurate Monte Carlo calculations of the distributions of the TFC nuclear heating are challenged by the small volumes of the tally segmentations and by the thick layers of shielding provided by the blanket and VV. To speed up the MCNP calculation of the nuclear heating distribution in different segments of the coil casing, ground insulation, and winding packs of the ITER TFC, the ITER Organization (IO) used the MCNP weight window generator (WWG). The maximum relative uncertainty of the tallies in this calculation was 82.7%. In this work, this MCNP calculation was repeated using variance reduction parameters generated by the Oak Ridge National Laboratory AutomateD VAriaNce reducTion Generator (ADVANTG) code and both MCNP calculations were compared in terms of computational efficiency and reliability. Even though the ADVANTG MCNP calculation used less than one-sixth of the computational resources of the IO calculation, the relative uncertainties of all the tallies in the ADVANTG MCNP calculation were less than 6.1%. The nuclear heating results of the two calculations were significantly different by factors between 1.5 and 2.3 in some of the segments of the furthest winding pack turn from the plasma neutron source. Even though the nuclear heating in this turn may not affect the ITER design because it is much smaller than the nuclear heating in the
Control Variates for Monte Carlo Valuation of American Options
DEFF Research Database (Denmark)
Rasmussen, Nicki S.
2005-01-01
This paper considers two applications of control variates to the Monte Carlo valuation of American options. The main contribution of the paper lies in the particular choice of a control variate for American or Bermudan options. It is shown that for any martingale process used as a control variate...... technique is used for improving the least-squares Monte Carlo (LSM) approach for determining exercise strategies. The suggestions made allow for more efficient estimation of the continuation value, used in determining the strategy. An additional suggestion is made in order to improve the stability...
Results of the Monte Carlo 'simple case' benchmark exercise
International Nuclear Information System (INIS)
2003-11-01
A new 'simple case' benchmark intercomparison exercise was launched, intended to study the importance of the fundamental nuclear data constants, physics treatments and geometry model approximations, employed by Monte Carlo codes in common use. The exercise was also directed at determining the level of agreement which can be expected between measured and calculated quantities, using current state or the art modelling codes and techniques. To this end, measurements and Monte Carlo calculations of the total (or gross) neutron count rates have been performed using a simple moderated 3 He cylindrical proportional counter array or 'slab monitor' counting geometry, deciding to select a very simple geometry for this exercise
Proton therapy analysis using the Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Noshad, Houshyar [Center for Theoretical Physics and Mathematics, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)]. E-mail: hnoshad@aeoi.org.ir; Givechi, Nasim [Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)
2005-10-01
The range and straggling data obtained from the transport of ions in matter (TRIM) computer program were used to determine the trajectories of monoenergetic 60 MeV protons in muscle tissue by using the Monte Carlo technique. The appropriate profile for the shape of a proton pencil beam in proton therapy as well as the dose deposited in the tissue were computed. The good agreements between our results as compared with the corresponding experimental values are presented here to show the reliability of our Monte Carlo method.
A computer code package for electron transport Monte Carlo simulation
International Nuclear Information System (INIS)
Popescu, Lucretiu M.
1999-01-01
A computer code package was developed for solving various electron transport problems by Monte Carlo simulation. It is based on condensed history Monte Carlo algorithm. In order to get reliable results over wide ranges of electron energies and target atomic numbers, specific techniques of electron transport were implemented such as: Moliere multiscatter angular distributions, Blunck-Leisegang multiscatter energy distribution, sampling of electron-electron and Bremsstrahlung individual interactions. Path-length and lateral displacement corrections algorithms and the module for computing collision, radiative and total restricted stopping powers and ranges of electrons are also included. Comparisons of simulation results with experimental measurements are finally presented. (author)
Parallel processing Monte Carlo radiation transport codes
International Nuclear Information System (INIS)
McKinney, G.W.
1994-01-01
Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine
Monte Carlo determination of heteroepitaxial misfit structures
DEFF Research Database (Denmark)
Baker, J.; Lindgård, Per-Anker
1996-01-01
We use Monte Carlo simulations to determine the structure of KBr overlayers on a NaCl(001) substrate, a system with large (17%) heteroepitaxial misfit. The equilibrium relaxation structure is determined for films of 2-6 ML, for which extensive helium-atom scattering data exist for comparison...
The Monte Carlo applied for calculation dose
International Nuclear Information System (INIS)
Peixoto, J.E.
1988-01-01
The Monte Carlo method is showed for the calculation of absorbed dose. The trajectory of the photon is traced simulating sucessive interaction between the photon and the substance that consist the human body simulator. The energy deposition in each interaction of the simulator organ or tissue per photon is also calculated. (C.G.C.) [pt
Monte Carlo code for neutron radiography
International Nuclear Information System (INIS)
Milczarek, Jacek J.; Trzcinski, Andrzej; El-Ghany El Abd, Abd; Czachor, Andrzej
2005-01-01
The concise Monte Carlo code, MSX, for simulation of neutron radiography images of non-uniform objects is presented. The possibility of modeling the images of objects with continuous spatial distribution of specific isotopes is included. The code can be used for assessment of the scattered neutron component in neutron radiograms
Monte Carlo code for neutron radiography
Energy Technology Data Exchange (ETDEWEB)
Milczarek, Jacek J. [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland)]. E-mail: jjmilcz@cyf.gov.pl; Trzcinski, Andrzej [Institute for Nuclear Studies, Swierk, 05-400 Otwock (Poland); El-Ghany El Abd, Abd [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland); Nuclear Research Center, PC 13759, Cairo (Egypt); Czachor, Andrzej [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland)
2005-04-21
The concise Monte Carlo code, MSX, for simulation of neutron radiography images of non-uniform objects is presented. The possibility of modeling the images of objects with continuous spatial distribution of specific isotopes is included. The code can be used for assessment of the scattered neutron component in neutron radiograms.
Atomistic Monte Carlo simulation of lipid membranes
DEFF Research Database (Denmark)
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....
Computer system for Monte Carlo experimentation
International Nuclear Information System (INIS)
Grier, D.A.
1986-01-01
A new computer system for Monte Carlo Experimentation is presented. The new system speeds and simplifies the process of coding and preparing a Monte Carlo Experiment; it also encourages the proper design of Monte Carlo Experiments, and the careful analysis of the experimental results. A new functional language is the core of this system. Monte Carlo Experiments, and their experimental designs, are programmed in this new language; those programs are compiled into Fortran output. The Fortran output is then compiled and executed. The experimental results are analyzed with a standard statistics package such as Si, Isp, or Minitab or with a user-supplied program. Both the experimental results and the experimental design may be directly loaded into the workspace of those packages. The new functional language frees programmers from many of the details of programming an experiment. Experimental designs such as factorial, fractional factorial, or latin square are easily described by the control structures and expressions of the language. Specific mathematical modes are generated by the routines of the language
Scalable Domain Decomposed Monte Carlo Particle Transport
Energy Technology Data Exchange (ETDEWEB)
O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
Monte Carlo methods beyond detailed balance
Schram, Raoul D.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080
2015-01-01
Monte Carlo algorithms are nearly always based on the concept of detailed balance and ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We introduce a general method for designing non-detailed balance algorithms, starting from a conventional algorithm satisfying
Monte Carlo studies of ZEPLIN III
Dawson, J; Davidge, D C R; Gillespie, J R; Howard, A S; Jones, W G; Joshi, M; Lebedenko, V N; Sumner, T J; Quenby, J J
2002-01-01
A Monte Carlo simulation of a two-phase xenon dark matter detector, ZEPLIN III, has been achieved. Results from the analysis of a simulated data set are presented, showing primary and secondary signal distributions from low energy gamma ray events.
Biases in Monte Carlo eigenvalue calculations
Energy Technology Data Exchange (ETDEWEB)
Gelbard, E.M.
1992-12-01
The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the ``fixed-source`` case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated (``replicated``) over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.
Biases in Monte Carlo eigenvalue calculations
Energy Technology Data Exchange (ETDEWEB)
Gelbard, E.M.
1992-01-01
The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the fixed-source'' case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated ( replicated'') over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.
Dynamic bounds coupled with Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Rajabalinejad, M., E-mail: M.Rajabalinejad@tudelft.n [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands); Meester, L.E. [Delft Institute of Applied Mathematics, Delft University of Technology, Delft (Netherlands); Gelder, P.H.A.J.M. van; Vrijling, J.K. [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands)
2011-02-15
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper describes a method to reduce the simulation cost even further, while retaining the accuracy of Monte Carlo, by taking into account widely present monotonicity. For models exhibiting monotonic (decreasing or increasing) behavior, dynamic bounds (DB) are defined, which in a coupled Monte Carlo simulation are updated dynamically, resulting in a failure probability estimate, as well as a strict (non-probabilistic) upper and lower bounds. Accurate results are obtained at a much lower cost than an equivalent ordinary Monte Carlo simulation. In a two-dimensional and a four-dimensional numerical example, the cost reduction factors are 130 and 9, respectively, where the relative error is smaller than 5%. At higher accuracy levels, this factor increases, though this effect is expected to be smaller with increasing dimension. To show the application of DB method to real world problems, it is applied to a complex finite element model of a flood wall in New Orleans.
Dynamic bounds coupled with Monte Carlo simulations
Rajabali Nejad, Mohammadreza; Meester, L.E.; van Gelder, P.H.A.J.M.; Vrijling, J.K.
2011-01-01
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper
Design and analysis of Monte Carlo experiments
Kleijnen, Jack P.C.; Gentle, J.E.; Haerdle, W.; Mori, Y.
2012-01-01
By definition, computer simulation or Monte Carlo models are not solved by mathematical analysis (such as differential calculus), but are used for numerical experimentation. The goal of these experiments is to answer questions about the real world; i.e., the experimenters may use their models to
Some problems on Monte Carlo method development
International Nuclear Information System (INIS)
Pei Lucheng
1992-01-01
This is a short paper on some problems of Monte Carlo method development. The content consists of deep-penetration problems, unbounded estimate problems, limitation of Mdtropolis' method, dependency problem in Metropolis' method, random error interference problems and random equations, intellectualisation and vectorization problems of general software
Monte Carlo simulations in theoretical physic
International Nuclear Information System (INIS)
Billoire, A.
1991-01-01
After a presentation of the MONTE CARLO method principle, the method is applied, first to the critical exponents calculations in the three dimensions ISING model, and secondly to the discrete quantum chromodynamic with calculation times in function of computer power. 28 refs., 4 tabs
Monte Carlo method for random surfaces
International Nuclear Information System (INIS)
Berg, B.
1985-01-01
Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)
Coded aperture optimization using Monte Carlo simulations
International Nuclear Information System (INIS)
Martineau, A.; Rocchisani, J.M.; Moretti, J.L.
2010-01-01
Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.
Biases in Monte Carlo eigenvalue calculations
International Nuclear Information System (INIS)
Gelbard, E.M.
1992-01-01
The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the ''fixed-source'' case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated (''replicated'') over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here
Monte Carlo studies of uranium calorimetry
International Nuclear Information System (INIS)
Brau, J.; Hargis, H.J.; Gabriel, T.A.; Bishop, B.L.
1985-01-01
Detailed Monte Carlo calculations of uranium calorimetry are presented which reveal a significant difference in the responses of liquid argon and plastic scintillator in uranium calorimeters. Due to saturation effects, neutrons from the uranium are found to contribute only weakly to the liquid argon signal. Electromagnetic sampling inefficiencies are significant and contribute substantially to compensation in both systems. 17 references
Monte Carlo simulation of neutron counters for safeguards applications
International Nuclear Information System (INIS)
Looman, Marc; Peerani, Paolo; Tagziria, Hamid
2009-01-01
MCNP-PTA is a new Monte Carlo code for the simulation of neutron counters for nuclear safeguards applications developed at the Joint Research Centre (JRC) in Ispra (Italy). After some preliminary considerations outlining the general aspects involved in the computational modelling of neutron counters, this paper describes the specific details and approximations which make up the basis of the model implemented in the code. One of the major improvements allowed by the use of Monte Carlo simulation is a considerable reduction in both the experimental work and in the reference materials required for the calibration of the instruments. This new approach to the calibration of counters using Monte Carlo simulation techniques is also discussed.
Vectorizing and macrotasking Monte Carlo neutral particle algorithms
International Nuclear Information System (INIS)
Heifetz, D.B.
1987-04-01
Monte Carlo algorithms for computing neutral particle transport in plasmas have been vectorized and macrotasked. The techniques used are directly applicable to Monte Carlo calculations of neutron and photon transport, and Monte Carlo integration schemes in general. A highly vectorized code was achieved by calculating test flight trajectories in loops over arrays of flight data, isolating the conditional branches to as few a number of loops as possible. A number of solutions are discussed to the problem of gaps appearing in the arrays due to completed flights, which impede vectorization. A simple and effective implementation of macrotasking is achieved by dividing the calculation of the test flight profile among several processors. A tree of random numbers is used to ensure reproducible results. The additional memory required for each task may preclude using a larger number of tasks. In future machines, the limit of macrotasking may be possible, with each test flight, and split test flight, being a separate task
Monte Carlo burnup codes acceleration using the correlated sampling method
International Nuclear Information System (INIS)
Dieudonne, C.
2013-01-01
For several years, Monte Carlo burnup/depletion codes have appeared, which couple Monte Carlo codes to simulate the neutron transport to deterministic methods, which handle the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3-dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the Monte Carlo solver called at each time step. In this document we present an original methodology to avoid the repetitive and time-expensive Monte Carlo simulations, and to replace them by perturbation calculations: indeed the different burnup steps may be seen as perturbations of the isotopic concentration of an initial Monte Carlo simulation. In a first time we will present this method, and provide details on the perturbative technique used, namely the correlated sampling. In a second time we develop a theoretical model to study the features of the correlated sampling method to understand its effects on depletion calculations. In a third time the implementation of this method in the TRIPOLI-4 code will be discussed, as well as the precise calculation scheme used to bring important speed-up of the depletion calculation. We will begin to validate and optimize the perturbed depletion scheme with the calculation of a REP-like fuel cell depletion. Then this technique will be used to calculate the depletion of a REP-like assembly, studied at beginning of its cycle. After having validated the method with a reference calculation we will show that it can speed-up by nearly an order of magnitude standard Monte-Carlo depletion codes. (author) [fr
Back propagation and Monte Carlo algorithms for neural network computations
International Nuclear Information System (INIS)
Junczys, R.; Wit, R.
1996-01-01
Results of teaching procedures for neural network for two different algorithms are presented. The first one is based on the well known back-propagation technique, the second is an adopted version of the Monte Carlo global minimum seeking method. Combination of these two, different in nature, approaches provides promising results. (author) nature, approaches provides promising results. (author)
Exploring Mass Perception with Markov Chain Monte Carlo
Cohen, Andrew L.; Ross, Michael G.
2009-01-01
Several previous studies have examined the ability to judge the relative mass of objects in idealized collisions. With a newly developed technique of psychological Markov chain Monte Carlo sampling (A. N. Sanborn & T. L. Griffiths, 2008), this work explores participants; perceptions of different collision mass ratios. The results reveal…
Monte Carlo analysis of highly compressed fissile assemblies. Pt. 1
International Nuclear Information System (INIS)
Raspet, R.; Baird, G.E.
1978-01-01
Laserinduced fission of highly compressed bare fissionable spheres is analyzed using Monte Carlo techniques. The critical mass and critical radius as a function of density are calculated and the fission energy yield is calculated and compared with the input laser energy necessary to achieve compression to criticality. (orig.) [de
Quantum Monte Carlo diagonalization method as a variational calculation
International Nuclear Information System (INIS)
Mizusaki, Takahiro; Otsuka, Takaharu; Honma, Michio.
1997-01-01
A stochastic method for performing large-scale shell model calculations is presented, which utilizes the auxiliary field Monte Carlo technique and diagonalization method. This method overcomes the limitation of the conventional shell model diagonalization and can extremely widen the feasibility of shell model calculations with realistic interactions for spectroscopic study of nuclear structure. (author)
Uncertainty analysis in Monte Carlo criticality computations
International Nuclear Information System (INIS)
Qi Ao
2011-01-01
Highlights: ► Two types of uncertainty methods for k eff Monte Carlo computations are examined. ► Sampling method has the least restrictions on perturbation but computing resources. ► Analytical method is limited to small perturbation on material properties. ► Practicality relies on efficiency, multiparameter applicability and data availability. - Abstract: Uncertainty analysis is imperative for nuclear criticality risk assessments when using Monte Carlo neutron transport methods to predict the effective neutron multiplication factor (k eff ) for fissionable material systems. For the validation of Monte Carlo codes for criticality computations against benchmark experiments, code accuracy and precision are measured by both the computational bias and uncertainty in the bias. The uncertainty in the bias accounts for known or quantified experimental, computational and model uncertainties. For the application of Monte Carlo codes for criticality analysis of fissionable material systems, an administrative margin of subcriticality must be imposed to provide additional assurance of subcriticality for any unknown or unquantified uncertainties. Because of a substantial impact of the administrative margin of subcriticality on economics and safety of nuclear fuel cycle operations, recently increasing interests in reducing the administrative margin of subcriticality make the uncertainty analysis in criticality safety computations more risk-significant. This paper provides an overview of two most popular k eff uncertainty analysis methods for Monte Carlo criticality computations: (1) sampling-based methods, and (2) analytical methods. Examples are given to demonstrate their usage in the k eff uncertainty analysis due to uncertainties in both neutronic and non-neutronic parameters of fissionable material systems.
International Nuclear Information System (INIS)
Murase, Kenya; Kataoka, Masaaki; Kawamura, Masashi; Tamada, Shuji; Hamamoto, Ken
1989-01-01
A computer program based on the Monte Carlo technique was developed for the analysis of the behavior of X-rays and gamma rays in an inhomogeneous medium. The statistical weight of a photon was introduced and the survival biasing method was used for reducing the statistical error. This computer program has the mass energy absorption and attenuation coefficients for 69 tissues and organs as a database file, and can be applied to various cases of inhomogeneity. The simulation and experimental results of the central axis percent-depth dose in an inhomogeneous phantom were in good agreement. This computer program will be useful for analysis on the behavior of X-rays and gamma rays in an inhomogeneous medium consisting of various tissues and organs, not only in radiotherapy treatment planning but also in diagnostic radiology and in the field treating radiation protection. (author)
Bayesian phylogeny analysis via stochastic approximation Monte Carlo
Cheon, Sooyoung; Liang, Faming
2009-01-01
in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method
Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine
International Nuclear Information System (INIS)
Coulot, J
2003-01-01
Monte Carlo techniques are involved in many applications in medical physics, and the field of nuclear medicine has seen a great development in the past ten years due to their wider use. Thus, it is of great interest to look at the state of the art in this domain, when improving computer performances allow one to obtain improved results in a dramatically reduced time. The goal of this book is to make, in 15 chapters, an exhaustive review of the use of Monte Carlo techniques in nuclear medicine, also giving key features which are not necessary directly related to the Monte Carlo method, but mandatory for its practical application. As the book deals with therapeutic' nuclear medicine, it focuses on internal dosimetry. After a general introduction on Monte Carlo techniques and their applications in nuclear medicine (dosimetry, imaging and radiation protection), the authors give an overview of internal dosimetry methods (formalism, mathematical phantoms, quantities of interest). Then, some of the more widely used Monte Carlo codes are described, as well as some treatment planning softwares. Some original techniques are also mentioned, such as dosimetry for boron neutron capture synovectomy. It is generally well written, clearly presented, and very well documented. Each chapter gives an overview of each subject, and it is up to the reader to investigate it further using the extensive bibliography provided. Each topic is discussed from a practical point of view, which is of great help for non-experienced readers. For instance, the chapter about mathematical aspects of Monte Carlo particle transport is very clear and helps one to apprehend the philosophy of the method, which is often a difficulty with a more theoretical approach. Each chapter is put in the general (clinical) context, and this allows the reader to keep in mind the intrinsic limitation of each technique involved in dosimetry (for instance activity quantitation). Nevertheless, there are some minor remarks to
Monte Carlo computation in the applied research of nuclear technology
International Nuclear Information System (INIS)
Xu Shuyan; Liu Baojie; Li Qin
2007-01-01
This article briefly introduces Monte Carlo Methods and their properties. It narrates the Monte Carlo methods with emphasis in their applications to several domains of nuclear technology. Monte Carlo simulation methods and several commonly used computer software to implement them are also introduced. The proposed methods are demonstrated by a real example. (authors)
International Nuclear Information System (INIS)
Chan, A.A.; Beddoe, A.H.
1985-01-01
A Monte Carlo code (MORSE-SGC) from the Radiation Shielding Information Centre at Oak Ridge National Laboratory, USA, has been adapted and used to model radiation transport in the Auckland prompt gamma in vivo neutron activation analysis facility. Preliminary results are presented for the slow neutron flux in an anthropomorphic phantom which are in broad agreement with those obtained by measurement via activation foils. Since experimental optimization is not logistically feasible and since theoretical optimization of neutron activation facilities has not previously been attempted, it is hoped that the Monte Carlo calculations can be used to provide a basis for improved system design
Weighted-delta-tracking for Monte Carlo particle transport
International Nuclear Information System (INIS)
Morgan, L.W.G.; Kotlyar, D.
2015-01-01
Highlights: • This paper presents an alteration to the Monte Carlo Woodcock tracking technique. • The alteration improves computational efficiency within regions of high absorbers. • The rejection technique is replaced by a statistical weighting mechanism. • The modified Woodcock method is shown to be faster than standard Woodcock tracking. • The modified Woodcock method achieves a lower variance, given a specified accuracy. - Abstract: Monte Carlo particle transport (MCPT) codes are incredibly powerful and versatile tools to simulate particle behavior in a multitude of scenarios, such as core/criticality studies, radiation protection, shielding, medicine and fusion research to name just a small subset applications. However, MCPT codes can be very computationally expensive to run when the model geometry contains large attenuation depths and/or contains many components. This paper proposes a simple modification to the Woodcock tracking method used by some Monte Carlo particle transport codes. The Woodcock method utilizes the rejection method for sampling virtual collisions as a method to remove collision distance sampling at material boundaries. However, it suffers from poor computational efficiency when the sample acceptance rate is low. The proposed method removes rejection sampling from the Woodcock method in favor of a statistical weighting scheme, which improves the computational efficiency of a Monte Carlo particle tracking code. It is shown that the modified Woodcock method is less computationally expensive than standard ray-tracing and rejection-based Woodcock tracking methods and achieves a lower variance, given a specified accuracy
Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm
Gubernatis, James
2014-03-01
A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J.E. [Delft University of Technology, Interfaculty Reactor Institute, Delft (Netherlands)
2000-07-01
The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)
International Nuclear Information System (INIS)
Hoogenboom, J.E.
2000-01-01
The Monte Carlo method is a statistical method to solve mathematical and physical problems using random numbers. The principle of the methods will be demonstrated for a simple mathematical problem and for neutron transport. Various types of estimators will be discussed, as well as generally applied variance reduction methods like splitting, Russian roulette and importance biasing. The theoretical formulation for solving eigenvalue problems for multiplying systems will be shown. Some reflections will be given about the applicability of the Monte Carlo method, its limitations and its future prospects for reactor physics calculations. Adjoint Monte Carlo is a Monte Carlo game to solve the adjoint neutron (or photon) transport equation. The adjoint transport equation can be interpreted in terms of simulating histories of artificial particles, which show properties of neutrons that move backwards in history. These particles will start their history at the detector from which the response must be estimated and give a contribution to the estimated quantity when they hit or pass through the neutron source. Application to multigroup transport formulation will be demonstrated Possible implementation for the continuous energy case will be outlined. The inherent advantages and disadvantages of the method will be discussed. The Midway Monte Carlo method will be presented for calculating a detector response due to a (neutron or photon) source. A derivation will be given of the basic formula for the Midway Monte Carlo method The black absorber technique, allowing for a cutoff of particle histories when reaching the midway surface in one of the calculations will be derived. An extension of the theory to coupled neutron-photon problems is given. The method will be demonstrated for an oil well logging problem, comprising a neutron source in a borehole and photon detectors to register the photons generated by inelastic neutron scattering. (author)
International Nuclear Information System (INIS)
Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi
2014-01-01
The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm 3 ] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm 3 and was sandwiched in between 0.05×0.05×0.3 cm 3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm 3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×10 8 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
Monte Carlo simulations for heavy ion dosimetry
Energy Technology Data Exchange (ETDEWEB)
Geithner, O.
2006-07-26
Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)
Monte Carlo-based tail exponent estimator
Barunik, Jozef; Vacha, Lukas
2010-11-01
In this paper we propose a new approach to estimation of the tail exponent in financial stock markets. We begin the study with the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations, we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our proposed method is not sensitive to the choice of tail size and works well also on small data samples. The new estimator also gives unbiased results with symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on the international world stock market indices. On the two separate periods of 2002-2005 and 2006-2009, we estimate the tail exponent.
No-compromise reptation quantum Monte Carlo
International Nuclear Information System (INIS)
Yuen, W K; Farrar, Thomas J; Rothstein, Stuart M
2007-01-01
Since its publication, the reptation quantum Monte Carlo algorithm of Baroni and Moroni (1999 Phys. Rev. Lett. 82 4745) has been applied to several important problems in physics, but its mathematical foundations are not well understood. We show that their algorithm is not of typical Metropolis-Hastings type, and we specify conditions required for the generated Markov chain to be stationary and to converge to the intended distribution. The time-step bias may add up, and in many applications it is only the middle of a reptile that is the most important. Therefore, we propose an alternative, 'no-compromise reptation quantum Monte Carlo' to stabilize the middle of the reptile. (fast track communication)
Multilevel Monte Carlo Approaches for Numerical Homogenization
Efendiev, Yalchin R.
2015-10-01
In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.
Status of Monte Carlo at Los Alamos
International Nuclear Information System (INIS)
Thompson, W.L.; Cashwell, E.D.
1980-01-01
At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time
Monte Carlo simulations in skin radiotherapy
International Nuclear Information System (INIS)
Sarvari, A.; Jeraj, R.; Kron, T.
2000-01-01
The primary goal of this work was to develop a procedure for calculation the appropriate filter shape for a brachytherapy applicator used for skin radiotherapy. In the applicator a radioactive source is positioned close to the skin. Without a filter, the resultant dose distribution would be highly nonuniform.High uniformity is usually required however. This can be achieved using an appropriately shaped filter, which flattens the dose profile. Because of the complexity of the transport and geometry, Monte Carlo simulations had to be used. An 192 Ir high dose rate photon source was used. All necessary transport parameters were simulated with the MCNP4B Monte Carlo code. A highly efficient iterative procedure was developed, which enabled calculation of the optimal filter shape in only few iterations. The initially non-uniform dose distributions became uniform within a percent when applying the filter calculated by this procedure. (author)
Coevolution Based Adaptive Monte Carlo Localization (CEAMCL
Directory of Open Access Journals (Sweden)
Luo Ronghua
2008-11-01
Full Text Available An adaptive Monte Carlo localization algorithm based on coevolution mechanism of ecological species is proposed. Samples are clustered into species, each of which represents a hypothesis of the robot's pose. Since the coevolution between the species ensures that the multiple distinct hypotheses can be tracked stably, the problem of premature convergence when using MCL in highly symmetric environments can be solved. And the sample size can be adjusted adaptively over time according to the uncertainty of the robot's pose by using the population growth model. In addition, by using the crossover and mutation operators in evolutionary computation, intra-species evolution can drive the samples move towards the regions where the desired posterior density is large. So a small size of samples can represent the desired density well enough to make precise localization. The new algorithm is termed coevolution based adaptive Monte Carlo localization (CEAMCL. Experiments have been carried out to prove the efficiency of the new localization algorithm.
Monte Carlo simulation of gas Cerenkov detectors
International Nuclear Information System (INIS)
Mack, J.M.; Jain, M.; Jordan, T.M.
1984-01-01
Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier
Monte Carlo Simulation for Particle Detectors
Pia, Maria Grazia
2012-01-01
Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...
Topological zero modes in Monte Carlo simulations
International Nuclear Information System (INIS)
Dilger, H.
1994-08-01
We present an improvement of global Metropolis updating steps, the instanton hits, used in a hybrid Monte Carlo simulation of the two-flavor Schwinger model with staggered fermions. These hits are designed to change the topological sector of the gauge field. In order to match these hits to an unquenched simulation with pseudofermions, the approximate zero mode structure of the lattice Dirac operator has to be considered explicitly. (orig.)
Handbook of Markov chain Monte Carlo
Brooks, Steve
2011-01-01
""Handbook of Markov Chain Monte Carlo"" brings together the major advances that have occurred in recent years while incorporating enough introductory material for new users of MCMC. Along with thorough coverage of the theoretical foundations and algorithmic and computational methodology, this comprehensive handbook includes substantial realistic case studies from a variety of disciplines. These case studies demonstrate the application of MCMC methods and serve as a series of templates for the construction, implementation, and choice of MCMC methodology.
The lund Monte Carlo for jet fragmentation
International Nuclear Information System (INIS)
Sjoestrand, T.
1982-03-01
We present a Monte Carlo program based on the Lund model for jet fragmentation. Quark, gluon, diquark and hadron jets are considered. Special emphasis is put on the fragmentation of colour singlet jet systems, for which energy, momentum and flavour are conserved explicitly. The model for decays of unstable particles, in particular the weak decay of heavy hadrons, is described. The central part of the paper is a detailed description on how to use the FORTRAN 77 program. (Author)
Monte Carlo methods for preference learning
DEFF Research Database (Denmark)
Viappiani, P.
2012-01-01
Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query the users about their preferences and give recommendations based on the system’s belief about the utility function. Critical to these applications is th...... is the acquisition of prior distribution about the utility parameters and the possibility of real time Bayesian inference. In this paper we consider Monte Carlo methods for these problems....
General purpose code for Monte Carlo simulations
International Nuclear Information System (INIS)
Wilcke, W.W.
1983-01-01
A general-purpose computer called MONTHY has been written to perform Monte Carlo simulations of physical systems. To achieve a high degree of flexibility the code is organized like a general purpose computer, operating on a vector describing the time dependent state of the system under simulation. The instruction set of the computer is defined by the user and is therefore adaptable to the particular problem studied. The organization of MONTHY allows iterative and conditional execution of operations
Autocorrelations in hybrid Monte Carlo simulations
International Nuclear Information System (INIS)
Schaefer, Stefan; Virotta, Francesco
2010-11-01
Simulations of QCD suffer from severe critical slowing down towards the continuum limit. This problem is known to be prominent in the topological charge, however, all observables are affected to various degree by these slow modes in the Monte Carlo evolution. We investigate the slowing down in high statistics simulations and propose a new error analysis method, which gives a realistic estimate of the contribution of the slow modes to the errors. (orig.)
Introduction to the Monte Carlo methods
International Nuclear Information System (INIS)
Uzhinskij, V.V.
1993-01-01
Codes illustrating the use of Monte Carlo methods in high energy physics such as the inverse transformation method, the ejection method, the particle propagation through the nucleus, the particle interaction with the nucleus, etc. are presented. A set of useful algorithms of random number generators is given (the binomial distribution, the Poisson distribution, β-distribution, γ-distribution and normal distribution). 5 figs., 1 tab
Sequential Monte Carlo with Highly Informative Observations
Del Moral, Pierre; Murray, Lawrence M.
2014-01-01
We propose sequential Monte Carlo (SMC) methods for sampling the posterior distribution of state-space models under highly informative observation regimes, a situation in which standard SMC methods can perform poorly. A special case is simulating bridges between given initial and final values. The basic idea is to introduce a schedule of intermediate weighting and resampling times between observation times, which guide particles towards the final state. This can always be done for continuous-...
Monte Carlo codes use in neutron therapy
International Nuclear Information System (INIS)
Paquis, P.; Mokhtari, F.; Karamanoukian, D.; Pignol, J.P.; Cuendet, P.; Iborra, N.
1998-01-01
Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)
Quantum Monte Carlo calculations of light nuclei
International Nuclear Information System (INIS)
Pandharipande, V. R.
1999-01-01
Quantum Monte Carlo methods provide an essentially exact way to calculate various properties of nuclear bound, and low energy continuum states, from realistic models of nuclear interactions and currents. After a brief description of the methods and modern models of nuclear forces, we review the results obtained for all the bound, and some continuum states of up to eight nucleons. Various other applications of the methods are reviewed along with future prospects
Monte-Carlo simulation of electromagnetic showers
International Nuclear Information System (INIS)
Amatuni, Ts.A.
1984-01-01
The universal ELSS-1 program for Monte Carlo simulation of high energy electromagnetic showers in homogeneous absorbers of arbitrary geometry is written. The major processes and effects of electron and photon interaction with matter, particularly the Landau-Pomeranchuk-Migdal effect, are taken into account in the simulation procedures. The simulation results are compared with experimental data. Some characteristics of shower detectors and electromagnetic showers for energies up 1 TeV are calculated
Cost of splitting in Monte Carlo transport
International Nuclear Information System (INIS)
Everett, C.J.; Cashwell, E.D.
1978-03-01
In a simple transport problem designed to estimate transmission through a plane slab of x free paths by Monte Carlo methods, it is shown that m-splitting (m > or = 2) does not pay unless exp(x) > m(m + 3)/(m - 1). In such a case, the minimum total cost in terms of machine time is obtained as a function of m, and the optimal value of m is determined
Monte Carlo simulation of Touschek effect
Directory of Open Access Journals (Sweden)
Aimin Xiao
2010-07-01
Full Text Available We present a Monte Carlo method implementation in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-loss rate and beam halo information recorded.
Monte Carlo method for neutron transport problems
International Nuclear Information System (INIS)
Asaoka, Takumi
1977-01-01
Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)
Quantum Monte Carlo for vibrating molecules
International Nuclear Information System (INIS)
Brown, W.R.; Lawrence Berkeley National Lab., CA
1996-08-01
Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies
Vectorization of phase space Monte Carlo code in FACOM vector processor VP-200
International Nuclear Information System (INIS)
Miura, Kenichi
1986-01-01
This paper describes the vectorization techniques for Monte Carlo codes in Fujitsu's Vector Processor System. The phase space Monte Carlo code FOWL is selected as a benchmark, and scalar and vector performances are compared. The vectorized kernel Monte Carlo routine which contains heavily nested IF tests runs up to 7.9 times faster in vector mode than in scalar mode. The overall performance improvement of the vectorized FOWL code over the original scalar code reaches 3.3. The results of this study strongly indicate that supercomputer can be a powerful tool for Monte Carlo simulations in high energy physics. (Auth.)
Generalized hybrid Monte Carlo - CMFD methods for fission source convergence
International Nuclear Information System (INIS)
Wolters, Emily R.; Larsen, Edward W.; Martin, William R.
2011-01-01
In this paper, we generalize the recently published 'CMFD-Accelerated Monte Carlo' method and present two new methods that reduce the statistical error in CMFD-Accelerated Monte Carlo. The CMFD-Accelerated Monte Carlo method uses Monte Carlo to estimate nonlinear functionals used in low-order CMFD equations for the eigenfunction and eigenvalue. The Monte Carlo fission source is then modified to match the resulting CMFD fission source in a 'feedback' procedure. The two proposed methods differ from CMFD-Accelerated Monte Carlo in the definition of the required nonlinear functionals, but they have identical CMFD equations. The proposed methods are compared with CMFD-Accelerated Monte Carlo on a high dominance ratio test problem. All hybrid methods converge the Monte Carlo fission source almost immediately, leading to a large reduction in the number of inactive cycles required. The proposed methods stabilize the fission source more efficiently than CMFD-Accelerated Monte Carlo, leading to a reduction in the number of active cycles required. Finally, as in CMFD-Accelerated Monte Carlo, the apparent variance of the eigenfunction is approximately equal to the real variance, so the real error is well-estimated from a single calculation. This is an advantage over standard Monte Carlo, in which the real error can be underestimated due to inter-cycle correlation. (author)
Development of ray tracing visualization program by Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Higuchi, Kenji; Otani, Takayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Hasegawa, Yukihiro
1997-09-01
Ray tracing algorithm is a powerful method to synthesize three dimensional computer graphics. In conventional ray tracing algorithms, a view point is used as a starting point of ray tracing, from which the rays are tracked up to the light sources through center points of pixels on the view screen to calculate the intensities of the pixels. This manner, however, makes it difficult to define the configuration of light source as well as to strictly simulate the reflections of the rays. To resolve these problems, we have developed a new ray tracing means which traces rays from a light source, not from a view point, with use of Monte Carlo method which is widely applied in nuclear fields. Moreover, we adopt the variance reduction techniques to the program with use of the specialized machine (Monte-4) for particle transport Monte Carlo so that the computational time could be successfully reduced. (author)
Modified Monte Carlo procedure for particle transport problems
International Nuclear Information System (INIS)
Matthes, W.
1978-01-01
The simulation of photon transport in the atmosphere with the Monte Carlo method forms part of the EURASEP-programme. The specifications for the problems posed for a solution were such, that the direct application of the analogue Monte Carlo method was not feasible. For this reason the standard Monte Carlo procedure was modified in the sense that additional properly weighted branchings at each collision and transport process in a photon history were introduced. This modified Monte Carlo procedure leads to a clear and logical separation of the essential parts of a problem and offers a large flexibility for variance reducing techniques. More complex problems, as foreseen in the EURASEP-programme (e.g. clouds in the atmosphere, rough ocean-surface and chlorophyl-distribution in the ocean) can be handled by recoding some subroutines. This collision- and transport-splitting procedure can of course be performed differently in different space- and energy regions. It is applied here only for a homogeneous problem
Continuous energy Monte Carlo method based lattice homogeinzation
International Nuclear Information System (INIS)
Li Mancang; Yao Dong; Wang Kan
2014-01-01
Based on the Monte Carlo code MCNP, the continuous energy Monte Carlo multi-group constants generation code MCMC has been developed. The track length scheme has been used as the foundation of cross section generation. The scattering matrix and Legendre components require special techniques, and the scattering event method has been proposed to solve this problem. Three methods have been developed to calculate the diffusion coefficients for diffusion reactor core codes and the Legendre method has been applied in MCMC. To the satisfaction of the equivalence theory, the general equivalence theory (GET) and the superhomogenization method (SPH) have been applied to the Monte Carlo method based group constants. The super equivalence method (SPE) has been proposed to improve the equivalence. GET, SPH and SPE have been implemented into MCMC. The numerical results showed that generating the homogenization multi-group constants via Monte Carlo method overcomes the difficulties in geometry and treats energy in continuum, thus provides more accuracy parameters. Besides, the same code and data library can be used for a wide range of applications due to the versatility. The MCMC scheme can be seen as a potential alternative to the widely used deterministic lattice codes. (authors)
Monte Carlo: in the beginning and some great expectations
International Nuclear Information System (INIS)
Metropolis, N.
1985-01-01
The central theme will be on the historical setting and origins of the Monte Carlo Method. The scene was post-war Los Alamos Scientific Laboratory. There was an inevitability about the Monte Carlo Event: the ENIAC had recently enjoyed its meteoric rise (on a classified Los Alamos problem); Stan Ulam had returned to Los Alamos; John von Neumann was a frequent visitor. Techniques, algorithms, and applications developed rapidly at Los Alamos. Soon, the fascination of the Method reached wider horizons. The first paper was submitted for publication in the spring of 1949. In the summer of 1949, the first open conference was held at the University of California at Los Angeles. Of some interst perhaps is an account of Fermi's earlier, independent application in neutron moderation studies while at the University of Rome. The quantum leap expected with the advent of massively parallel processors will provide stimuli for very ambitious applications of the Monte Carlo Method in disciplines ranging from field theories to cosmology, including more realistic models in the neurosciences. A structure of multi-instruction sets for parallel processing is ideally suited for the Monte Carlo approach. One may even hope for a modest hardening of the soft sciences
International Nuclear Information System (INIS)
Siegel, A.; Smith, K.; Fischer, P.; Mahadevan, V.
2012-01-01
A domain decomposed Monte Carlo communication kernel is used to carry out performance tests to establish the feasibility of using Monte Carlo techniques for practical Light Water Reactor (LWR) core analyses. The results of the prototype code are interpreted in the context of simplified performance models which elucidate key scaling regimes of the parallel algorithm.
On an efficient multiple time step Monte Carlo simulation of the SABR model
Leitao Rodriguez, A.; Grzelak, L.A.; Oosterlee, C.W.
2017-01-01
In this paper, we will present a multiple time step Monte Carlo simulation technique for pricing options under the Stochastic Alpha Beta Rho model. The proposed method is an extension of the one time step Monte Carlo method that we proposed in an accompanying paper Leitao et al. [Appl. Math.
A Monte Carlo simulation of the possible use of Positron Emission Tomography in proton radiotherapy
International Nuclear Information System (INIS)
Del Guerra, Alberto; Di Domenico, Giovanni; Gambaccini, Mauro; Marziani, Michele
1994-01-01
We have used the Monte Carlo technique to evaluate the applicability of Positron Emission Tomography to in vivo dosimetry for proton radiotherapy. A fair agreement has been found between Monte Carlo results and experimental data. The simulation shows that PET can be useful especially for in vivo Bragg's peak localization. ((orig.))
Global Monte Carlo Simulation with High Order Polynomial Expansions
International Nuclear Information System (INIS)
William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin
2007-01-01
The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as 'local' piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi's method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source convergence
Direct aperture optimization for IMRT using Monte Carlo generated beamlets
International Nuclear Information System (INIS)
Bergman, Alanah M.; Bush, Karl; Milette, Marie-Pierre; Popescu, I. Antoniu; Otto, Karl; Duzenli, Cheryl
2006-01-01
This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5x5.0 mm 2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is ∼33% compared to fluence-based optimization methods
Statistical estimation Monte Carlo for unreliability evaluation of highly reliable system
International Nuclear Information System (INIS)
Xiao Gang; Su Guanghui; Jia Dounan; Li Tianduo
2000-01-01
Based on analog Monte Carlo simulation, statistical Monte Carlo methods for unreliable evaluation of highly reliable system are constructed, including direct statistical estimation Monte Carlo method and weighted statistical estimation Monte Carlo method. The basal element is given, and the statistical estimation Monte Carlo estimators are derived. Direct Monte Carlo simulation method, bounding-sampling method, forced transitions Monte Carlo method, direct statistical estimation Monte Carlo and weighted statistical estimation Monte Carlo are used to evaluate unreliability of a same system. By comparing, weighted statistical estimation Monte Carlo estimator has smallest variance, and has highest calculating efficiency
Radiotherapy Monte Carlo simulation using cloud computing technology.
Poole, C M; Cornelius, I; Trapp, J V; Langton, C M
2012-12-01
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.
Radiotherapy Monte Carlo simulation using cloud computing technology
International Nuclear Information System (INIS)
Poole, C.M.; Cornelius, I.; Trapp, J.V.; Langton, C.M.
2012-01-01
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.
Mesh-based weight window approach for Monte Carlo simulation
International Nuclear Information System (INIS)
Liu, L.; Gardner, R.P.
1997-01-01
The Monte Carlo method has been increasingly used to solve particle transport problems. Statistical fluctuation from random sampling is the major limiting factor of its application. To obtain the desired precision, variance reduction techniques are indispensable for most practical problems. Among various variance reduction techniques, the weight window method proves to be one of the most general, powerful, and robust. The method is implemented in the current MCNP code. An importance map is estimated during a regular Monte Carlo run, and then the map is used in the subsequent run for splitting and Russian roulette games. The major drawback of this weight window method is lack of user-friendliness. It normally requires that users divide the large geometric cells into smaller ones by introducing additional surfaces to ensure an acceptable spatial resolution of the importance map. In this paper, we present a new weight window approach to overcome this drawback
Improvement of correlated sampling Monte Carlo methods for reactivity calculations
International Nuclear Information System (INIS)
Nakagawa, Masayuki; Asaoka, Takumi
1978-01-01
Two correlated Monte Carlo methods, the similar flight path and the identical flight path methods, have been improved to evaluate up to the second order change of the reactivity perturbation. Secondary fission neutrons produced by neutrons having passed through perturbed regions in both unperturbed and perturbed systems are followed in a way to have a strong correlation between secondary neutrons in both the systems. These techniques are incorporated into the general purpose Monte Carlo code MORSE, so as to be able to estimate also the statistical error of the calculated reactivity change. The control rod worths measured in the FCA V-3 assembly are analyzed with the present techniques, which are shown to predict the measured values within the standard deviations. The identical flight path method has revealed itself more useful than the similar flight path method for the analysis of the control rod worth. (auth.)
Study of TXRF experimental system by Monte Carlo simulation
International Nuclear Information System (INIS)
Costa, Ana Cristina M.; Leitao, Roberta G.; Lopes, Ricardo T.; Anjos, Marcelino J.; Conti, Claudio C.
2011-01-01
The Total-Reflection X-ray Fluorescence (TXRF) technique offers unique possibilities to study the concentrations of a wide range of trace elements in various types of samples. Besides that, the TXRF technique is widely used to study the trace elements in biological, medical and environmental samples due to its multielemental character as well as simplicity of sample preparation and quantification methods used. In general the TXRF experimental setup is not simple and might require substantial experimental efforts. On the other hand, in recent years, experimental TXRF portable systems have been developed. It has motivated us to develop our own TXRF portable system. In this work we presented a first step in order to optimize a TXRF experimental setup using Monte Carlo simulation by MCNP code. The results found show that the Monte Carlo simulation method can be used to investigate the development of a TXRF experimental system before its assembly. (author)
A Monte Carlo program for generating hadronic final states
International Nuclear Information System (INIS)
Angelini, L.; Pellicoro, M.; Nitti, L.; Preparata, G.; Valenti, G.
1991-01-01
FIRST is a computer program to generate final states from high energy hadronic interactions using the Monte Carlo technique. It is based on a theoretical model in which the high degree of universality in such interactions is related with the existence of highly excited quark-antiquark bound states, called fire-strings. The program handles the decay of both fire-strings and unstable particles produced in the intermediate states. (orig.)
Molecular dynamics and Monte Carlo calculations in statistical mechanics
International Nuclear Information System (INIS)
Wood, W.W.; Erpenbeck, J.J.
1976-01-01
Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references
POWER ANALYSIS FOR COMPLEX MEDIATIONAL DESIGNS USING MONTE CARLO METHODS
Thoemmes, Felix; MacKinnon, David P.; Reiser, Mark R.
2010-01-01
Applied researchers often include mediation effects in applications of advanced methods such as latent variable models and linear growth curve models. Guidance on how to estimate statistical power to detect mediation for these models has not yet been addressed in the literature. We describe a general framework for power analyses for complex mediational models. The approach is based on the well known technique of generating a large number of samples in a Monte Carlo study, and estimating power...
Kinetic Monte Carlo simulation of intermixing during semiconductor heteroepitaxy
Rouhani, M. Djafari; Kassem, H.; Dalla Torre, J.; Landa, G.; Estève, D.
2002-03-01
We have used the kinetic Monte Carlo technique to investigate the intermixing mechanisms during the heteroepitaxial growth of semiconductors. We have shown that the temperature increases the intermixing between the substrate and deposited film, while an increasing growth rate inhibits this intermixing. We have also observed that intermixing is reduced when the energetics becomes unfavorable, i.e. with high lattice mismatches or hard-deposited materials.
Investigating the impossible: Monte Carlo simulations
International Nuclear Information System (INIS)
Kramer, Gary H.; Crowley, Paul; Burns, Linda C.
2000-01-01
Designing and testing new equipment can be an expensive and time consuming process or the desired performance characteristics may preclude its construction due to technological shortcomings. Cost may also prevent equipment being purchased for other scenarios to be tested. An alternative is to use Monte Carlo simulations to make the investigations. This presentation exemplifies how Monte Carlo code calculations can be used to fill the gap. An example is given for the investigation of two sizes of germanium detector (70 mm and 80 mm diameter) at four different crystal thicknesses (15, 20, 25, and 30 mm) and makes predictions on how the size affects the counting efficiency and the Minimum Detectable Activity (MDA). The Monte Carlo simulations have shown that detector efficiencies can be adequately modelled using photon transport if the data is used to investigate trends. The investigation of the effect of detector thickness on the counting efficiency has shown that thickness for a fixed diameter detector of either 70 mm or 80 mm is unimportant up to 60 keV. At higher photon energies, the counting efficiency begins to decrease as the thickness decreases as expected. The simulations predict that the MDA of either the 70 mm or 80 mm diameter detectors does not differ by more than a factor of 1.15 at 17 keV or 1.2 at 60 keV when comparing detectors of equivalent thicknesses. The MDA is slightly increased at 17 keV, and rises by about 52% at 660 keV, when the thickness is decreased from 30 mm to 15 mm. One could conclude from this information that the extra cost associated with the larger area Ge detectors may not be justified for the slight improvement predicted in the MDA. (author)
Energy Technology Data Exchange (ETDEWEB)
Miller, Karen A., E-mail: kamiller@lanl.gov [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States); Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johnna B. [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States)
2013-03-01
Uranium cylinder assay plays an important role in the nuclear material accounting at gas centrifuge enrichment plants. The Passive Neutron Enrichment Meter (PNEM) was designed to determine uranium mass and enrichment in 30B and 48Y cylinders using total neutron and coincidence counting in the passive mode. 30B and 48Y cylinders are used to hold bulk UF{sub 6} feed, product, and tails at enrichment plants. In this paper, we report the results of a Monte-Carlo-based feasibility study for an active uranium cylinder assay system based on the PNEM design. There are many advantages of the active technique such as a shortened count time and a more direct measure of {sup 235}U content. The active system is based on a modified PNEM design and uses a {sup 252}Cf source as the correlated, active interrogation source. We show through comparison with a random AmLi source of equal strength how the use of a correlated driver significantly boosts the active signal and reduces the statistical uncertainty. We also discuss ways in which an active uranium cylinder assay system can be optimized to minimize background from {sup 238}U fast-neutron induced fission and direct counts from the interrogation source.
International Nuclear Information System (INIS)
Deepa, A.K.; Jakhete, A.P.; Mehta, D.; Kaushik, C.P.
2011-01-01
High Level Liquid waste (HLW) generated during reprocessing of spent fuel contains most of the radioactivity present in the spent fuel resulting in the need for isolation and surveillance for extended period of time. Major components in HLW are the corrosion products, fission products such as 137 Cs, 90 Sr, 106 Ru, 144 Ce, 125 Sb etc, actinides and various chemicals used during reprocessing of spent fuel. Fresh HLW having an activity concentration of around 100Ci/l is to be vitrified into borosilicate glass and packed in canisters which are placed in S.S overpacks for better confinement. These overpacks contain around 0.7 Million Curies of activity. Characterisation of activity in HLW and activity profile of radionuclides for various cooling periods sets the base for the study. For transporting the vitrified waste product (VWP), two most important parameters is the shield thickness of the transportation cask and the heat generation in the waste product. This paper describes the methodology used in the estimation of lead thickness for the transportation cask using the Monte Carlo Technique. Heat generation due to decay of fission products results in the increase in temperature of the vitrified waste product during interim storage and disposal. Glass being the material, not having very high thermal conductivity, temperature difference between the canister and surrounding bears significance in view of the possibility of temperature based devitrification of VWP. The heat generation in the canister and the overpack containing vitrified glass is also estimated using MCNP. (author)
International Nuclear Information System (INIS)
Rodney, David; Schuh, Christopher A.
2009-01-01
A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-dimensional metallic glass in the limit of low temperatures and long (infinite) time scales. The elementary thermally activated events are determined using the activation-relaxation technique (ART). By tracking the minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally activated events in the glass microstructure both below and above the yield stress. We show that aging below the yield stress increases the stability of the glass, both thermodynamically (the internal potential energy decreases) and dynamically (the aged glass is surrounded by higher-energy barriers than the initial quenched configuration). In contrast, deformation above the yield stress brings the glass into a high internal potential energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple shear deformation.
Monte Carlo eigenfunction strategies and uncertainties
International Nuclear Information System (INIS)
Gast, R.C.; Candelore, N.R.
1974-01-01
Comparisons of convergence rates for several possible eigenfunction source strategies led to the selection of the ''straight'' analog of the analytic power method as the source strategy for Monte Carlo eigenfunction calculations. To insure a fair game strategy, the number of histories per iteration increases with increasing iteration number. The estimate of eigenfunction uncertainty is obtained from a modification of a proposal by D. B. MacMillan and involves only estimates of the usual purely statistical component of uncertainty and a serial correlation coefficient of lag one. 14 references. (U.S.)
ATLAS Monte Carlo tunes for MC09
The ATLAS collaboration
2010-01-01
This note describes the ATLAS tunes of underlying event and minimum bias description for the main Monte Carlo generators used in the MC09 production. For the main shower generators, pythia and herwig (with jimmy), the MRST LO* parton distribution functions (PDFs) were used for the first time in ATLAS. Special studies on the performance of these, conceptually new, PDFs for high pt physics processes at LHC energies are presented. In addition, a tune of jimmy for CTEQ6.6 is presented, for use with MC@NLO.
Markov chains analytic and Monte Carlo computations
Graham, Carl
2014-01-01
Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies.A detailed and rigorous presentation of Markov chains with discrete time and state space.An appendix presenting probabilistic notions that are nec
Atomistic Monte Carlo simulation of lipid membranes
DEFF Research Database (Denmark)
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...
Mosaic crystal algorithm for Monte Carlo simulations
Seeger, P A
2002-01-01
An algorithm is presented for calculating reflectivity, absorption, and scattering of mosaic crystals in Monte Carlo simulations of neutron instruments. The algorithm uses multi-step transport through the crystal with an exact solution of the Darwin equations at each step. It relies on the kinematical model for Bragg reflection (with parameters adjusted to reproduce experimental data). For computation of thermal effects (the Debye-Waller factor and coherent inelastic scattering), an expansion of the Debye integral as a rapidly converging series of exponential terms is also presented. Any crystal geometry and plane orientation may be treated. The algorithm has been incorporated into the neutron instrument simulation package NISP. (orig.)
A note on simultaneous Monte Carlo tests
DEFF Research Database (Denmark)
Hahn, Ute
In this short note, Monte Carlo tests of goodness of fit for data of the form X(t), t ∈ I are considered, that reject the null hypothesis if X(t) leaves an acceptance region bounded by an upper and lower curve for some t in I. A construction of the acceptance region is proposed that complies to a...... to a given target level of rejection, and yields exact p-values. The construction is based on pointwise quantiles, estimated from simulated realizations of X(t) under the null hypothesis....
Monte Carlo methods to calculate impact probabilities
Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.
2014-09-01
Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward
MBR Monte Carlo Simulation in PYTHIA8
Ciesielski, R.
We present the MBR (Minimum Bias Rockefeller) Monte Carlo simulation of (anti)proton-proton interactions and its implementation in the PYTHIA8 event generator. We discuss the total, elastic, and total-inelastic cross sections, and three contributions from diffraction dissociation processes that contribute to the latter: single diffraction, double diffraction, and central diffraction or double-Pomeron exchange. The event generation follows a renormalized-Regge-theory model, successfully tested using CDF data. Based on the MBR-enhanced PYTHIA8 simulation, we present cross-section predictions for the LHC and beyond, up to collision energies of 50 TeV.
Spectral functions from Quantum Monte Carlo
International Nuclear Information System (INIS)
Silver, R.N.
1989-01-01
In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig
An analysis of Monte Carlo tree search
CSIR Research Space (South Africa)
James, S
2017-02-01
Full Text Available Tree Search Steven James∗, George Konidaris† & Benjamin Rosman∗‡ ∗University of the Witwatersrand, Johannesburg, South Africa †Brown University, Providence RI 02912, USA ‡Council for Scientific and Industrial Research, Pretoria, South Africa steven....james@students.wits.ac.za, gdk@cs.brown.edu, brosman@csir.co.za Abstract Monte Carlo Tree Search (MCTS) is a family of directed search algorithms that has gained widespread attention in re- cent years. Despite the vast amount of research into MCTS, the effect of modifications...
Monte Carlo simulation for the transport beamline
Energy Technology Data Exchange (ETDEWEB)
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)
2013-07-26
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.
Monte Carlo simulation for the transport beamline
International Nuclear Information System (INIS)
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.; Tramontana, A.
2013-01-01
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery
Diffusion quantum Monte Carlo for molecules
International Nuclear Information System (INIS)
Lester, W.A. Jr.
1986-07-01
A quantum mechanical Monte Carlo method has been used for the treatment of molecular problems. The imaginary-time Schroedinger equation written with a shift in zero energy [E/sub T/ - V(R)] can be interpreted as a generalized diffusion equation with a position-dependent rate or branching term. Since diffusion is the continuum limit of a random walk, one may simulate the Schroedinger equation with a function psi (note, not psi 2 ) as a density of ''walks.'' The walks undergo an exponential birth and death as given by the rate term. 16 refs., 2 tabs
Monte Carlo modelling for neutron guide losses
International Nuclear Information System (INIS)
Cser, L.; Rosta, L.; Toeroek, Gy.
1989-09-01
In modern research reactors, neutron guides are commonly used for beam conducting. The neutron guide is a well polished or equivalently smooth glass tube covered inside by sputtered or evaporated film of natural Ni or 58 Ni isotope where the neutrons are totally reflected. A Monte Carlo calculation was carried out to establish the real efficiency and the spectral as well as spatial distribution of the neutron beam at the end of a glass mirror guide. The losses caused by mechanical inaccuracy and mirror quality were considered and the effects due to the geometrical arrangement were analyzed. (author) 2 refs.; 2 figs
International Nuclear Information System (INIS)
Kemp, A.G.; Stephen, L.
1999-01-01
This paper summarises the results of a study using the Monte Carlo simulation to examine activity levels in the regions of the UK continental shelf under different oil and gas prices. Details of the methodology, data, and assumptions used are given, and the production of oil and gas, new field investment, aggregate operating expenditures, and gross revenues under different price scenarios are addressed. The total potential oil and gas production under the different price scenarios for 2000-2013 are plotted. (UK)
Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan
2018-02-01
Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain)], E-mail: garciapareja@gmail.com; Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain); Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)
2007-09-21
The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool.
International Nuclear Information System (INIS)
Garcia-Pareja, S.; Vilches, M.; Lallena, A.M.
2007-01-01
The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool
Monte Carlo criticality analysis for dissolvers with neutron poison
International Nuclear Information System (INIS)
Yu, Deshun; Dong, Xiufang; Pu, Fuxiang.
1987-01-01
Criticality analysis for dissolvers with neutron poison is given on the basis of Monte Carlo method. In Monte Carlo calculations of thermal neutron group parameters for fuel pieces, neutron transport length is determined in terms of maximum cross section approach. A set of related effective multiplication factors (K eff ) are calculated by Monte Carlo method for the three cases. Related numerical results are quite useful for the design and operation of this kind of dissolver in the criticality safety analysis. (author)
Temperature variance study in Monte-Carlo photon transport theory
International Nuclear Information System (INIS)
Giorla, J.
1985-10-01
We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case [fr
International Nuclear Information System (INIS)
Ohta, Shigemi
1996-01-01
The Self-Test Monte Carlo (STMC) method resolves the main problems in using algebraic pseudo-random numbers for Monte Carlo (MC) calculations: that they can interfere with MC algorithms and lead to erroneous results, and that such an error often cannot be detected without known exact solution. STMC is based on good randomness of about 10 10 bits available from physical noise or transcendental numbers like π = 3.14---. Various bit modifiers are available to get more bits for applications that demands more than 10 10 random bits such as lattice quantum chromodynamics (QCD). These modifiers are designed so that a) each of them gives a bit sequence comparable in randomness as the original if used separately from each other, and b) their mutual interference when used jointly in a single MC calculation is adjustable. Intermediate data of the MC calculation itself are used to quantitatively test and adjust the mutual interference of the modifiers in respect of the MC algorithm. STMC is free of systematic error and gives reliable statistical error. Also it can be easily implemented on vector and parallel supercomputers. (author)
Algorithms for Monte Carlo calculations with fermions
International Nuclear Information System (INIS)
Weingarten, D.
1985-01-01
We describe a fermion Monte Carlo algorithm due to Petcher and the present author and another due to Fucito, Marinari, Parisi and Rebbi. For the first algorithm we estimate the number of arithmetic operations required to evaluate a vacuum expectation value grows as N 11 /msub(q) on an N 4 lattice with fixed periodicity in physical units and renormalized quark mass msub(q). For the second algorithm the rate of growth is estimated to be N 8 /msub(q) 2 . Numerical experiments are presented comparing the two algorithms on a lattice of size 2 4 . With a hopping constant K of 0.15 and β of 4.0 we find the number of operations for the second algorithm is about 2.7 times larger than for the first and about 13 000 times larger than for corresponding Monte Carlo calculations with a pure gauge theory. An estimate is given for the number of operations required for more realistic calculations by each algorithm on a larger lattice. (orig.)
Monte Carlo simulation of grain growth
Directory of Open Access Journals (Sweden)
Paulo Blikstein
1999-07-01
Full Text Available Understanding and predicting grain growth in Metallurgy is meaningful. Monte Carlo methods have been used in computer simulations in many different fields of knowledge. Grain growth simulation using this method is especially attractive as the statistical behavior of the atoms is properly reproduced; microstructural evolution depends only on the real topology of the grains and not on any kind of geometric simplification. Computer simulation has the advantage of allowing the user to visualize graphically the procedures, even dynamically and in three dimensions. Single-phase alloy grain growth simulation was carried out by calculating the free energy of each atom in the lattice (with its present crystallographic orientation and comparing this value to another one calculated with a different random orientation. When the resulting free energy is lower or equal to the initial value, the new orientation replaces the former. The measure of time is the Monte Carlo Step (MCS, which involves a series of trials throughout the lattice. A very close relationship between experimental and theoretical values for the grain growth exponent (n was observed.
Parallel Monte Carlo Search for Hough Transform
Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.
2017-10-01
We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.
Monte Carlo simulation for radiographic applications
International Nuclear Information System (INIS)
Tillack, G.R.; Bellon, C.
2003-01-01
Standard radiography simulators are based on the attenuation law complemented by built-up-factors (BUF) to describe the interaction of radiation with material. The assumption of BUF implies that scattered radiation reduces only the contrast in radiographic images. This simplification holds for a wide range of applications like weld inspection as known from practical experience. But only a detailed description of the different underlying interaction mechanisms is capable to explain effects like mottling or others that every radiographer has experienced in practice. The application of Monte Carlo models is capable to handle primary and secondary interaction mechanisms contributing to the image formation process like photon interactions (absorption, incoherent and coherent scattering including electron-binding effects, pair production) and electron interactions (electron tracing including X-Ray fluorescence and Bremsstrahlung production). It opens up possibilities like the separation of influencing factors and the understanding of the functioning of intensifying screen used in film radiography. The paper discusses the opportunities in applying the Monte Carlo method to investigate special features in radiography in terms of selected examples. (orig.) [de
Odd-flavor Simulations by the Hybrid Monte Carlo
Takaishi, Tetsuya; Takaishi, Tetsuya; De Forcrand, Philippe
2001-01-01
The standard hybrid Monte Carlo algorithm is known to simulate even flavors QCD only. Simulations of odd flavors QCD, however, can be also performed in the framework of the hybrid Monte Carlo algorithm where the inverse of the fermion matrix is approximated by a polynomial. In this exploratory study we perform three flavors QCD simulations. We make a comparison of the hybrid Monte Carlo algorithm and the R-algorithm which also simulates odd flavors systems but has step-size errors. We find that results from our hybrid Monte Carlo algorithm are in agreement with those from the R-algorithm obtained at very small step-size.
Wielandt acceleration for MCNP5 Monte Carlo eigenvalue calculations
International Nuclear Information System (INIS)
Brown, F.
2007-01-01
Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue (k eff ) and eigenfunction (fission source distribution) of the fundamental mode. A recently proposed method for accelerating convergence of the Monte Carlo power iteration using Wielandt's method has been implemented in a test version of MCNP5. The method is shown to provide dramatic improvements in convergence rates and to greatly reduce the possibility of false convergence assessment. The method is effective and efficient, improving the Monte Carlo figure-of-merit for many problems. In addition, the method should eliminate most of the underprediction bias in confidence intervals for Monte Carlo criticality calculations. (authors)
Monte Carlo shielding analyses using an automated biasing procedure
International Nuclear Information System (INIS)
Tang, J.S.; Hoffman, T.J.
1988-01-01
A systematic and automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete ordinates calculation are used to generate biasing parameters for a Monte Carlo calculation. The entire procedure of adjoint calculation, biasing parameters generation, and Monte Carlo calculation has been automated. The automated biasing procedure has been applied to several realistic deep-penetration shipping cask problems. The results obtained for neutron and gamma-ray transport indicate that with the automated biasing procedure Monte Carlo shielding calculations of spent-fuel casks can be easily performed with minimum effort and that accurate results can be obtained at reasonable computing cost
Igo - A Monte Carlo Code For Radiotherapy Planning
International Nuclear Information System (INIS)
Goldstein, M.; Regev, D.
1999-01-01
The goal of radiation therapy is to deliver a lethal dose to the tumor, while minimizing the dose to normal tissues and vital organs. To carry out this task, it is critical to calculate correctly the 3-D dose delivered. Monte Carlo transport methods (especially the Adjoint Monte Carlo have the potential to provide more accurate predictions of the 3-D dose the currently used methods. IG0 is a Monte Carlo code derived from the general Monte Carlo Program - MCNP, tailored specifically for calculating the effects of radiation therapy. This paper describes the IG0 transport code, the PIG0 interface and some preliminary results
Quantum statistical Monte Carlo methods and applications to spin systems
International Nuclear Information System (INIS)
Suzuki, M.
1986-01-01
A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures
Variational Variance Reduction for Monte Carlo Criticality Calculations
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2001-01-01
A new variational variance reduction (VVR) method for Monte Carlo criticality calculations was developed. This method employs (a) a variational functional that is more accurate than the standard direct functional, (b) a representation of the deterministically obtained adjoint flux that is especially accurate for optically thick problems with high scattering ratios, and (c) estimates of the forward flux obtained by Monte Carlo. The VVR method requires no nonanalog Monte Carlo biasing, but it may be used in conjunction with Monte Carlo biasing schemes. Some results are presented from a class of criticality calculations involving alternating arrays of fuel and moderator regions
Applications of the Monte Carlo method in radiation protection
International Nuclear Information System (INIS)
Kulkarni, R.N.; Prasad, M.A.
1999-01-01
This paper gives a brief introduction to the application of the Monte Carlo method in radiation protection. It may be noted that an exhaustive review has not been attempted. The special advantage of the Monte Carlo method has been first brought out. The fundamentals of the Monte Carlo method have next been explained in brief, with special reference to two applications in radiation protection. Some sample current applications have been reported in the end in brief as examples. They are, medical radiation physics, microdosimetry, calculations of thermoluminescence intensity and probabilistic safety analysis. The limitations of the Monte Carlo method have also been mentioned in passing. (author)
Exploring Various Monte Carlo Simulations for Geoscience Applications
Blais, R.
2010-12-01
Computer simulations are increasingly important in geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN), or chaotic random number (CRN) generators. Equidistributed quasi-random numbers (QRNs) can also be used in Monte Carlo simulations. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as Importance Sampling and Stratified Sampling can be implemented to significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on examples of geodetic applications of gravimetric terrain corrections and gravity inversion, conclusions and recommendations concerning their performance and general applicability are included.
Exploring pseudo- and chaotic random Monte Carlo simulations
Blais, J. A. Rod; Zhang, Zhan
2011-07-01
Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer-generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as importance sampling and stratified sampling can be applied in most Monte Carlo simulations and significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on some practical examples of geodetic direct and inverse problems, conclusions and recommendations concerning their performance and general applicability are included.
Monte Carlo simulations on a 9-node PC cluster
International Nuclear Information System (INIS)
Gouriou, J.
2001-01-01
Monte Carlo simulation methods are frequently used in the fields of medical physics, dosimetry and metrology of ionising radiation. Nevertheless, the main drawback of this technique is to be computationally slow, because the statistical uncertainty of the result improves only as the square root of the computational time. We present a method, which allows to reduce by a factor 10 to 20 the used effective running time. In practice, the aim was to reduce the calculation time in the LNHB metrological applications from several weeks to a few days. This approach includes the use of a PC-cluster, under Linux operating system and PVM parallel library (version 3.4). The Monte Carlo codes EGS4, MCNP and PENELOPE have been implemented on this platform and for the two last ones adapted for running under the PVM environment. The maximum observed speedup is ranging from a factor 13 to 18 according to the codes and the problems to be simulated. (orig.)
Geometric allocation approaches in Markov chain Monte Carlo
International Nuclear Information System (INIS)
Todo, S; Suwa, H
2013-01-01
The Markov chain Monte Carlo method is a versatile tool in statistical physics to evaluate multi-dimensional integrals numerically. For the method to work effectively, we must consider the following key issues: the choice of ensemble, the selection of candidate states, the optimization of transition kernel, algorithm for choosing a configuration according to the transition probabilities. We show that the unconventional approaches based on the geometric allocation of probabilities or weights can improve the dynamics and scaling of the Monte Carlo simulation in several aspects. Particularly, the approach using the irreversible kernel can reduce or sometimes completely eliminate the rejection of trial move in the Markov chain. We also discuss how the space-time interchange technique together with Walker's method of aliases can reduce the computational time especially for the case where the number of candidates is large, such as models with long-range interactions
Extending the alias Monte Carlo sampling method to general distributions
International Nuclear Information System (INIS)
Edwards, A.L.; Rathkopf, J.A.; Smidt, R.K.
1991-01-01
The alias method is a Monte Carlo sampling technique that offers significant advantages over more traditional methods. It equals the accuracy of table lookup and the speed of equal probable bins. The original formulation of this method sampled from discrete distributions and was easily extended to histogram distributions. We have extended the method further to applications more germane to Monte Carlo particle transport codes: continuous distributions. This paper presents the alias method as originally derived and our extensions to simple continuous distributions represented by piecewise linear functions. We also present a method to interpolate accurately between distributions tabulated at points other than the point of interest. We present timing studies that demonstrate the method's increased efficiency over table lookup and show further speedup achieved through vectorization. 6 refs., 12 figs., 2 tabs
Engineering local optimality in quantum Monte Carlo algorithms
Pollet, Lode; Van Houcke, Kris; Rombouts, Stefan M. A.
2007-08-01
Quantum Monte Carlo algorithms based on a world-line representation such as the worm algorithm and the directed loop algorithm are among the most powerful numerical techniques for the simulation of non-frustrated spin models and of bosonic models. Both algorithms work in the grand-canonical ensemble and can have a winding number larger than zero. However, they retain a lot of intrinsic degrees of freedom which can be used to optimize the algorithm. We let us guide by the rigorous statements on the globally optimal form of Markov chain Monte Carlo simulations in order to devise a locally optimal formulation of the worm algorithm while incorporating ideas from the directed loop algorithm. We provide numerical examples for the soft-core Bose-Hubbard model and various spin- S models.
Monte Carlo simulations of plutonium gamma-ray spectra
International Nuclear Information System (INIS)
Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.
1993-01-01
Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum
Inverse Monte Carlo: a unified reconstruction algorithm for SPECT
International Nuclear Information System (INIS)
Floyd, C.E.; Coleman, R.E.; Jaszczak, R.J.
1985-01-01
Inverse Monte Carlo (IMOC) is presented as a unified reconstruction algorithm for Emission Computed Tomography (ECT) providing simultaneous compensation for scatter, attenuation, and the variation of collimator resolution with depth. The technique of inverse Monte Carlo is used to find an inverse solution to the photon transport equation (an integral equation for photon flux from a specified source) for a parameterized source and specific boundary conditions. The system of linear equations so formed is solved to yield the source activity distribution for a set of acquired projections. For the studies presented here, the equations are solved using the EM (Maximum Likelihood) algorithm although other solution algorithms, such as Least Squares, could be employed. While the present results specifically consider the reconstruction of camera-based Single Photon Emission Computed Tomographic (SPECT) images, the technique is equally valid for Positron Emission Tomography (PET) if a Monte Carlo model of such a system is used. As a preliminary evaluation, experimentally acquired SPECT phantom studies for imaging Tc-99m (140 keV) are presented which demonstrate the quantitative compensation for scatter and attenuation for a two dimensional (single slice) reconstruction. The algorithm may be expanded in a straight forward manner to full three dimensional reconstruction including compensation for out of plane scatter
Monte Carlo method to characterize radioactive waste drums
International Nuclear Information System (INIS)
Lima, Josenilson B.; Dellamano, Jose C.; Potiens Junior, Ademar J.
2013-01-01
Non-destructive methods for radioactive waste drums characterization have being developed in the Waste Management Department (GRR) at Nuclear and Energy Research Institute IPEN. This study was conducted as part of the radioactive wastes characterization program in order to meet specifications and acceptance criteria for final disposal imposed by regulatory control by gamma spectrometry. One of the main difficulties in the detectors calibration process is to obtain the counting efficiencies that can be solved by the use of mathematical techniques. The aim of this work was to develop a methodology to characterize drums using gamma spectrometry and Monte Carlo method. Monte Carlo is a widely used mathematical technique, which simulates the radiation transport in the medium, thus obtaining the efficiencies calibration of the detector. The equipment used in this work is a heavily shielded Hyperpure Germanium (HPGe) detector coupled with an electronic setup composed of high voltage source, amplifier and multiport multichannel analyzer and MCNP software for Monte Carlo simulation. The developing of this methodology will allow the characterization of solid radioactive wastes packed in drums and stored at GRR. (author)
International Nuclear Information System (INIS)
Yamamoto, Toshihiro
2014-01-01
Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed
Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems
International Nuclear Information System (INIS)
Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.
2001-01-01
Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed
The Monte Carlo Simulation Method for System Reliability and Risk Analysis
Zio, Enrico
2013-01-01
Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling. Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques. This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...
Selection of important Monte Carlo histories
International Nuclear Information System (INIS)
Egbert, Stephen D.
1987-01-01
The 1986 Dosimetry System (DS86) for Japanese A-bomb survivors uses information describing the behavior of individual radiation particles, simulated by Monte Carlo methods, to calculate the transmission of radiation into structures and, thence, into humans. However, there are practical constraints on the number of such particle 'histories' that may be used. First, the number must be sufficiently high to provide adequate statistical precision fir any calculated quantity of interest. For integral quantities, such as dose or kerma, statistical precision of approximately 5% (standard deviation) is required to ensure that statistical uncertainties are not a major contributor to the overall uncertainty of the transmitted value. For differential quantities, such as scalar fluence spectra, 10 to 15% standard deviation on individual energy groups is adequate. Second, the number of histories cannot be so large as to require an unacceptably large amount of computer time to process the entire survivor data base. Given that there are approx. 30,000 survivors, each having 13 or 14 organs of interest, the number of histories per organ must be constrained to less than several ten's of thousands at the very most. Selection and use of the most important Monte Carlo leakage histories from among all those calculated allows the creation of an efficient house and organ radiation transmission system for use at RERF. While attempts have been made during the adjoint Monte Carlo calculation to bias the histories toward an efficient dose estimate, this effort has been far from satisfactory. Many of the adjoint histories on a typical leakage tape are either starting in an energy group in which there is very little kerma or dose or leaking into an energy group with very little free-field couple with. By knowing the typical free-field fluence and the fluence-to-dose factors with which the leaking histories will be used, one can select histories rom a leakage tape that will contribute to dose
Energy Technology Data Exchange (ETDEWEB)
Damilakis, J; Stratakis, J; Solomou, G [University of Crete, Heraklion (Greece)
2014-06-01
Purpose: It is well known that pacemaker implantation is sometimes needed in pregnant patients with symptomatic bradycardia. To our knowledge, there is no reported experience regarding radiation doses to the unborn child resulting from fluoroscopy during pacemaker implantation. The purpose of the current study was to develop a method for estimating embryo/fetus dose from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all trimesters of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study. Three mathematical anthropomorphic phantoms representing the average pregnant patient at the first, second and third trimesters of gestation were generated using Bodybuilder software (White Rock science, White Rock, NM). The normalized embryo/fetus dose from the posteroanterior (PA), the 30° left-anterior oblique (LAO) and the 30° right-anterior oblique (RAO) projections were calculated for a wide range of kVp (50–120 kVp) and total filtration values (2.5–9.0 mm Al). Results: The results consist of radiation doses normalized to a) entrance skin dose (ESD) and b) dose area product (DAP) so that the dose to the unborn child from any fluoroscopic technique and x-ray device used can be calculated. ESD normalized doses ranged from 0.008 (PA, first trimester) to 2.519 μGy/mGy (RAO, third trimester). DAP normalized doses ranged from 0.051 (PA, first trimester) to 12.852 μGy/Gycm2 (RAO, third trimester). Conclusion: Embryo/fetus doses from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all stages of gestation can be estimated using the method developed in this study. This study was supported by the Greek Ministry of Education and Religious Affairs, General Secretariat for Research and Technology, Operational Program ‘Education and Lifelong Learning’, ARISTIA (Research project: CONCERT)
International Nuclear Information System (INIS)
Damilakis, J; Stratakis, J; Solomou, G
2014-01-01
Purpose: It is well known that pacemaker implantation is sometimes needed in pregnant patients with symptomatic bradycardia. To our knowledge, there is no reported experience regarding radiation doses to the unborn child resulting from fluoroscopy during pacemaker implantation. The purpose of the current study was to develop a method for estimating embryo/fetus dose from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all trimesters of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study. Three mathematical anthropomorphic phantoms representing the average pregnant patient at the first, second and third trimesters of gestation were generated using Bodybuilder software (White Rock science, White Rock, NM). The normalized embryo/fetus dose from the posteroanterior (PA), the 30° left-anterior oblique (LAO) and the 30° right-anterior oblique (RAO) projections were calculated for a wide range of kVp (50–120 kVp) and total filtration values (2.5–9.0 mm Al). Results: The results consist of radiation doses normalized to a) entrance skin dose (ESD) and b) dose area product (DAP) so that the dose to the unborn child from any fluoroscopic technique and x-ray device used can be calculated. ESD normalized doses ranged from 0.008 (PA, first trimester) to 2.519 μGy/mGy (RAO, third trimester). DAP normalized doses ranged from 0.051 (PA, first trimester) to 12.852 μGy/Gycm2 (RAO, third trimester). Conclusion: Embryo/fetus doses from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all stages of gestation can be estimated using the method developed in this study. This study was supported by the Greek Ministry of Education and Religious Affairs, General Secretariat for Research and Technology, Operational Program ‘Education and Lifelong Learning’, ARISTIA (Research project: CONCERT)
EGS4, Electron Photon Shower Simulation by Monte-Carlo
International Nuclear Information System (INIS)
1998-01-01
1 - Description of program or function: The EGS code system is one of a chain of three codes designed to solve the electromagnetic shower problem by Monte Carlo simulation. This chain makes possible simulation of almost any electron-photon transport problem conceivable. The structure of the system, with its global features, modular form, and structured programming, is readily adaptable to virtually any interfacing scheme that is desired on the part of the user. EGS4 is a package of subroutines plus block data with a flexible user interface. This allows for greater flexibility without requiring the user to be overly familiar with the internal details of the code. Combining this with the macro facility capabilities of the Mortran3 language, this reduces the likelihood that user edits will introduce bugs into the code. EGS4 uses material cross section and branching ratio data created and fit by the companion code, PEGS4. EGS4 allows for the implementation of importance sampling and other variance reduction techniques such as leading particle biasing, splitting, path length biasing, Russian roulette, etc. 2 - Method of solution: EGS employs the Monte Carlo method of solution. It allows all of the fundamental processes to be included and arbitrary geometries can be treated, also. Other minor processes, such as photoneutron production, can be added as a further generalization. Since showers develop randomly according to the quantum laws of probability, each shower is different. We again are led to the Monte Carlo method. 3 - Restrictions on the complexity of the problem: None noted
Monte Carlo simulation experiments on box-type radon dosimeter
International Nuclear Information System (INIS)
Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid
2014-01-01
Epidemiological studies show that inhalation of radon gas ( 222 Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222 Rn concentrations (Bq/m 3 ) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η int ) and alpha hit efficiency (η hit ). The η int depends upon only on the dimensions of the dosimeter and η hit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon
Observation of Jet Photoproduction and Comparison to Monte Carlo Simulation
Energy Technology Data Exchange (ETDEWEB)
Lincoln, Donald W. [Rice Univ., Houston, TX (United States)
1994-01-01
The photon is the carrier of the electromagnetic force. However in addition to its well known nature, the theories of QCD and quantum mechanics would indicate that the photon can also for brief periods of time split into a $q\\bar{q}$ pair (an extended photon.) How these constituents share energy and momentum is an interesting question and such a measurement was investigated by scattering photons off protons. The post collision kinematics should reveal pre-collision information. Unfortunately, when these constituents exit the collision point, they undergo subsequent interactions (gluon radiation, fragmentation, etc.) which scramble their kinematics. An algorithm was explored which was shown via Monte Carlo techniques to partially disentangle these post collision interactions and reveal the collision kinematics. The presence or absence of large transverse momenta internal ($k_\\perp$) to the photon has a significant impact on the ability to reconstruct the kinematics of the leading order calculation hard scatter system. Reconstruction of the next to leading order high $E_\\perp$ partons is more straightforward. Since the photon exhibits this unusual behavior only part of the time, many of the collisions recorded will be with a non-extended (or direct) photon. Unless a method for culling only the extended photons out can be invented, this contamination of direct photons must be accounted for. No such culling method is currently known, and so any measurement will necessarily contain both photon types. Theoretical predictions using Monte Carlo methods are compared with the data and are found to reproduce many experimentally measured distributions quite well. Overall the LUND Monte Carlo reproduces the data better than the HERWIG Monte Carlo. As expected at low jet $E_\\perp$, the data set seems to be dominated by extended photons, with the mix becoming nearly equal at jet $E_\\perp > 4$ GeV. The existence of a large photon $k_\\perp$ appears to be favored.
Quantum Monte Carlo studies in Hamiltonian lattice gauge theory
International Nuclear Information System (INIS)
Hamer, C.J.; Samaras, M.; Bursill, R.J.
2000-01-01
Full text: The application of Monte Carlo methods to the 'Hamiltonian' formulation of lattice gauge theory has been somewhat neglected, and lags at least ten years behind the classical Monte Carlo simulations of Euclidean lattice gauge theory. We have applied a Green's Function Monte Carlo algorithm to lattice Yang-Mills theories in the Hamiltonian formulation, combined with a 'forward-walking' technique to estimate expectation values and correlation functions. In this approach, one represents the wave function in configuration space by a discrete ensemble of random walkers, and application of the time development operator is simulated by a diffusion and branching process. The approach has been used to estimate the ground-state energy and Wilson loop values in the U(1) theory in (2+1)D, and the SU(3) Yang-Mills theory in (3+1)D. The finite-size scaling behaviour has been explored, and agrees with the predictions of effective Lagrangian theory, and weak-coupling expansions. Crude estimates of the string tension are derived, which agree with previous results at intermediate couplings; but more accurate results for larger loops will be required to establish scaling behaviour at weak couplings. A drawback to this method is that it is necessary to introduce a 'trial' or 'guiding wave function' to guide the walkers towards the most probable regions of configuration space, in order to achieve convergence and accuracy. The 'forward-walking' estimates should be independent of this guidance, but in fact for the SU(3) case they turn out to be sensitive to the choice of trial wave function. It would be preferable to use some sort of Metropolis algorithm instead to produce a correct distribution of walkers: this may point in the direction of a Path Integral Monte Carlo approach
SOLFAST, a Ray-Tracing Monte-Carlo software for solar concentrating facilities
International Nuclear Information System (INIS)
Roccia, J P; Piaud, B; Coustet, C; Caliot, C; Guillot, E; Flamant, G; Delatorre, J
2012-01-01
In this communication, the software SOLFAST is presented. It is a simulation tool based on the Monte-Carlo method and accelerated Ray-Tracing techniques to evaluate efficiently the energy flux in concentrated solar installations.
Monte Carlo and detector simulation in OOP [Object-Oriented Programming
International Nuclear Information System (INIS)
Atwood, W.B.; Blankenbecler, R.; Kunz, P.; Burnett, T.; Storr, K.M.
1990-10-01
Object-Oriented Programming techniques are explored with an eye toward applications in High Energy Physics codes. Two prototype examples are given: McOOP (a particle Monte Carlo generator) and GISMO (a detector simulation/analysis package)
Monte Carlo-molecular dynamics simulations for two-dimensional magnets
International Nuclear Information System (INIS)
Kawabata, C.; takeuchi, M.; Bishop, A.R.
1985-01-01
A combined Monte Carlo-molecular dynamics simulation technique is used to study the dynamic structure factor on a square lattice for isotropic Heisenberg and planar classical ferromagnetic spin Hamiltonians
Response decomposition with Monte Carlo correlated coupling
International Nuclear Information System (INIS)
Ueki, T.; Hoogenboom, J.E.; Kloosterman, J.L.
2001-01-01
Particle histories that contribute to a detector response are categorized according to whether they are fully confined inside a source-detector enclosure or cross and recross the same enclosure. The contribution from the confined histories is expressed using a forward problem with the external boundary condition on the source-detector enclosure. The contribution from the crossing and recrossing histories is expressed as the surface integral at the same enclosure of the product of the directional cosine and the fluxes in the foregoing forward problem and the adjoint problem for the whole spatial domain. The former contribution can be calculated by a standard forward Monte Carlo. The latter contribution can be calculated by correlated coupling of forward and adjoint histories independently of the former contribution. We briefly describe the computational method and discuss its application to perturbation analysis for localized material changes. (orig.)
Response decomposition with Monte Carlo correlated coupling
Energy Technology Data Exchange (ETDEWEB)
Ueki, T.; Hoogenboom, J.E.; Kloosterman, J.L. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.
2001-07-01
Particle histories that contribute to a detector response are categorized according to whether they are fully confined inside a source-detector enclosure or cross and recross the same enclosure. The contribution from the confined histories is expressed using a forward problem with the external boundary condition on the source-detector enclosure. The contribution from the crossing and recrossing histories is expressed as the surface integral at the same enclosure of the product of the directional cosine and the fluxes in the foregoing forward problem and the adjoint problem for the whole spatial domain. The former contribution can be calculated by a standard forward Monte Carlo. The latter contribution can be calculated by correlated coupling of forward and adjoint histories independently of the former contribution. We briefly describe the computational method and discuss its application to perturbation analysis for localized material changes. (orig.)
Monte Carlo simulations of low background detectors
International Nuclear Information System (INIS)
Miley, H.S.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H.
1995-01-01
An implementation of the Electron Gamma Shower 4 code (EGS4) has been developed to allow convenient simulation of typical gamma ray measurement systems. Coincidence gamma rays, beta spectra, and angular correlations have been added to adequately simulate a complete nuclear decay and provide corrections to experimentally determined detector efficiencies. This code has been used to strip certain low-background spectra for the purpose of extremely low-level assay. Monte Carlo calculations of this sort can be extremely successful since low background detectors are usually free of significant contributions from poorly localized radiation sources, such as cosmic muons, secondary cosmic neutrons, and radioactive construction or shielding materials. Previously, validation of this code has been obtained from a series of comparisons between measurements and blind calculations. An example of the application of this code to an exceedingly low background spectrum stripping will be presented. (author) 5 refs.; 3 figs.; 1 tab
Homogenized group cross sections by Monte Carlo
International Nuclear Information System (INIS)
Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.
2006-01-01
Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)
Nuclear reactions in Monte Carlo codes
Ferrari, Alfredo
2002-01-01
The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references. (43 refs) .
An accurate nonlinear Monte Carlo collision operator
International Nuclear Information System (INIS)
Wang, W.X.; Okamoto, M.; Nakajima, N.; Murakami, S.
1995-03-01
A three dimensional nonlinear Monte Carlo collision model is developed based on Coulomb binary collisions with the emphasis both on the accuracy and implementation efficiency. The operator of simple form fulfills particle number, momentum and energy conservation laws, and is equivalent to exact Fokker-Planck operator by correctly reproducing the friction coefficient and diffusion tensor, in addition, can effectively assure small-angle collisions with a binary scattering angle distributed in a limited range near zero. Two highly vectorizable algorithms are designed for its fast implementation. Various test simulations regarding relaxation processes, electrical conductivity, etc. are carried out in velocity space. The test results, which is in good agreement with theory, and timing results on vector computers show that it is practically applicable. The operator may be used for accurately simulating collisional transport problems in magnetized and unmagnetized plasmas. (author)
Computation cluster for Monte Carlo calculations
International Nuclear Information System (INIS)
Petriska, M.; Vitazek, K.; Farkas, G.; Stacho, M.; Michalek, S.
2010-01-01
Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)
Monte Carlo stratified source-sampling
International Nuclear Information System (INIS)
Blomquist, R.N.; Gelbard, E.M.
1997-01-01
In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo open-quotes eigenvalue of the worldclose quotes problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. The original test-problem was treated by a special code designed specifically for that purpose. Recently ANL started work on a method for dealing with more realistic eigenvalue of the world configurations, and has been incorporating this method into VIM. The original method has been modified to take into account real-world statistical noise sources not included in the model problem. This paper constitutes a status report on work still in progress
Monte Carlo simulation of a CZT detector
International Nuclear Information System (INIS)
Chun, Sung Dae; Park, Se Hwan; Ha, Jang Ho; Kim, Han Soo; Cho, Yoon Ho; Kang, Sang Mook; Kim, Yong Kyun; Hong, Duk Geun
2008-01-01
CZT detector is one of the most promising radiation detectors for hard X-ray and γ-ray measurement. The energy spectrum of CZT detector has to be simulated to optimize the detector design. A CZT detector was fabricated with dimensions of 5x5x2 mm 3 . A Peltier cooler with a size of 40x40 mm 2 was installed below the fabricated CZT detector to reduce the operation temperature of the detector. Energy spectra of were measured with 59.5 keV γ-ray from 241 Am. A Monte Carlo code was developed to simulate the CZT energy spectrum, which was measured with a planar-type CZT detector, and the result was compared with the measured one. The simulation was extended to the CZT detector with strip electrodes. (author)
Vectorization of Monte Carlo particle transport
International Nuclear Information System (INIS)
Burns, P.J.; Christon, M.; Schweitzer, R.; Lubeck, O.M.; Wasserman, H.J.; Simmons, M.L.; Pryor, D.V.
1989-01-01
This paper reports that fully vectorized versions of the Los Alamos National Laboratory benchmark code Gamteb, a Monte Carlo photon transport algorithm, were developed for the Cyber 205/ETA-10 and Cray X-MP/Y-MP architectures. Single-processor performance measurements of the vector and scalar implementations were modeled in a modified Amdahl's Law that accounts for additional data motion in the vector code. The performance and implementation strategy of the vector codes are related to architectural features of each machine. Speedups between fifteen and eighteen for Cyber 205/ETA-10 architectures, and about nine for CRAY X-MP/Y-MP architectures are observed. The best single processor execution time for the problem was 0.33 seconds on the ETA-10G, and 0.42 seconds on the CRAY Y-MP
Computation cluster for Monte Carlo calculations
Energy Technology Data Exchange (ETDEWEB)
Petriska, M.; Vitazek, K.; Farkas, G.; Stacho, M.; Michalek, S. [Dep. Of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information, Technology, Slovak Technical University, Ilkovicova 3, 81219 Bratislava (Slovakia)
2010-07-01
Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)
Monte Carlo calculations of channeling radiation
International Nuclear Information System (INIS)
Bloom, S.D.; Berman, B.L.; Hamilton, D.C.; Alguard, M.J.; Barrett, J.H.; Datz, S.; Pantell, R.H.; Swent, R.H.
1981-01-01
Results of classical Monte Carlo calculations are presented for the radiation produced by ultra-relativistic positrons incident in a direction parallel to the (110) plane of Si in the energy range 30 to 100 MeV. The results all show the characteristic CR(channeling radiation) peak in the energy range 20 keV to 100 keV. Plots of the centroid energies, widths, and total yields of the CR peaks as a function of energy show the power law dependences of γ 1 5 , γ 1 7 , and γ 2 5 respectively. Except for the centroid energies and power-law dependence is only approximate. Agreement with experimental data is good for the centroid energies and only rough for the widths. Adequate experimental data for verifying the yield dependence on γ does not yet exist
Monte Carlo simulation of neutron scattering instruments
International Nuclear Information System (INIS)
Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.
1998-01-01
A code package consisting of the Monte Carlo Library MCLIB, the executing code MC RUN, the web application MC Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown
Monte Carlo simulation of the ARGO
International Nuclear Information System (INIS)
Depaola, G.O.
1997-01-01
We use GEANT Monte Carlo code to design an outline of the geometry and simulate the performance of the Argentine gamma-ray observer (ARGO), a telescope based on silicon strip detector technlogy. The γ-ray direction is determined by geometrical means and the angular resolution is calculated for small variations of the basic design. The results show that the angular resolutions vary from a few degrees at low energies (∝50 MeV) to 0.2 , approximately, at high energies (>500 MeV). We also made simulations using as incoming γ-ray the energy spectrum of PKS0208-512 and PKS0528+134 quasars. Moreover, a method based on multiple scattering theory is also used to determine the incoming energy. We show that this method is applicable to energy spectrum. (orig.)
Variational Monte Carlo study of pentaquark states
Energy Technology Data Exchange (ETDEWEB)
Mark W. Paris
2005-07-01
Accurate numerical solution of the five-body Schrodinger equation is effected via variational Monte Carlo. The spectrum is assumed to exhibit a narrow resonance with strangeness S=+1. A fully antisymmetrized and pair-correlated five-quark wave function is obtained for the assumed non-relativistic Hamiltonian which has spin, isospin, and color dependent pair interactions and many-body confining terms which are fixed by the non-exotic spectra. Gauge field dynamics are modeled via flux tube exchange factors. The energy determined for the ground states with J=1/2 and negative (positive) parity is 2.22 GeV (2.50 GeV). A lower energy negative parity state is consistent with recent lattice results. The short-range structure of the state is analyzed via its diquark content.
Geometric Monte Carlo and black Janus geometries
Energy Technology Data Exchange (ETDEWEB)
Bak, Dongsu, E-mail: dsbak@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); B.W. Lee Center for Fields, Gravity & Strings, Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Kim, Chanju, E-mail: cjkim@ewha.ac.kr [Department of Physics, Ewha Womans University, Seoul 03760 (Korea, Republic of); Kim, Kyung Kiu, E-mail: kimkyungkiu@gmail.com [Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Department of Physics, College of Science, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Hyunsoo, E-mail: hsmin@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); Song, Jeong-Pil, E-mail: jeong_pil_song@brown.edu [Department of Chemistry, Brown University, Providence, RI 02912 (United States)
2017-04-10
We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.
Monte Carlo work at Argonne National Laboratory
International Nuclear Information System (INIS)
Gelbard, E.M.; Prael, R.E.
1974-01-01
A simple model of the Monte Carlo process is described and a (nonlinear) recursion relation between fission sources in successive generations is developed. From the linearized form of these recursion relations, it is possible to derive expressions for the mean square coefficients of error modes in the iterates and for correlation coefficients between fluctuations in successive generations. First-order nonlinear terms in the recursion relation are analyzed. From these nonlinear terms an expression for the bias in the eigenvalue estimator is derived, and prescriptions for measuring the bias are formulated. Plans for the development of the VIM code are reviewed, and the proposed treatment of small sample perturbations in VIM is described. 6 references. (U.S.)
Methods for Monte Carlo simulations of biomacromolecules.
Vitalis, Andreas; Pappu, Rohit V
2009-01-01
The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies.
Markov Chain Monte Carlo from Lagrangian Dynamics.
Lan, Shiwei; Stathopoulos, Vasileios; Shahbaba, Babak; Girolami, Mark
2015-04-01
Hamiltonian Monte Carlo (HMC) improves the computational e ciency of the Metropolis-Hastings algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the performance of HMC by exploiting the geometric properties of the parameter space. However, the geometric integrator used for RHMC involves implicit equations that require fixed-point iterations. In some cases, the computational overhead for solving implicit equations undermines RHMC's benefits. In an attempt to circumvent this problem, we propose an explicit integrator that replaces the momentum variable in RHMC by velocity. We show that the resulting transformation is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. Experimental results suggests that our method improves RHMC's overall computational e ciency in the cases considered. All computer programs and data sets are available online (http://www.ics.uci.edu/~babaks/Site/Codes.html) in order to allow replication of the results reported in this paper.
Numerical integration of the Langevin equation: Monte Carlo simulation
International Nuclear Information System (INIS)
Ermak, D.L.; Buckholz, H.
1980-01-01
Monte Carlo simulation techniques are derived for solving the ordinary Langevin equation of motion for a Brownian particle in the presence of an external force. These methods allow considerable freedom in selecting the size of the time step, which is restricted only by the rate of change in the external force. This approach is extended to the generalized Langevin equation which uses a memory function in the friction force term. General simulation techniques are derived which are independent of the form of the memory function. A special method requiring less storage space is presented for the case of the exponential memory function
Monte Carlo modelling of TRIGA research reactor
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-10-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
PEPSI: a Monte Carlo generator for polarized leptoproduction
International Nuclear Information System (INIS)
Mankiewicz, L.
1992-01-01
We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for the polarized deep inelastic leptoproduction mediated by electromagnetic interaction. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering and requires the standard polarization-independent JETSET routines to perform fragmentation into final hadrons. (orig.)
Efficiency and accuracy of Monte Carlo (importance) sampling
Waarts, P.H.
2003-01-01
Monte Carlo Analysis is often regarded as the most simple and accurate reliability method. Be-sides it is the most transparent method. The only problem is the accuracy in correlation with the efficiency. Monte Carlo gets less efficient or less accurate when very low probabilities are to be computed
Multiple histogram method and static Monte Carlo sampling
Inda, M.A.; Frenkel, D.
2004-01-01
We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From
A Monte Carlo approach to combating delayed completion of ...
African Journals Online (AJOL)
The objective of this paper is to unveil the relevance of Monte Carlo critical path analysis in resolving problem of delays in scheduled completion of development projects. Commencing with deterministic network scheduling, Monte Carlo critical path analysis was advanced by assigning probability distributions to task times.
Forest canopy BRDF simulation using Monte Carlo method
Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.
2006-01-01
Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.
New Approaches and Applications for Monte Carlo Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano
2017-02-01
This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.
A Monte Carlo algorithm for the Vavilov distribution
International Nuclear Information System (INIS)
Yi, Chul-Young; Han, Hyon-Soo
1999-01-01
Using the convolution property of the inverse Laplace transform, an improved Monte Carlo algorithm for the Vavilov energy-loss straggling distribution of the charged particle is developed, which is relatively simple and gives enough accuracy to be used for most Monte Carlo applications
Crop canopy BRDF simulation and analysis using Monte Carlo method
Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.
2006-01-01
This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and
Monte Carlo codes use in neutron therapy; Application de codes Monte Carlo en neutrontherapie
Energy Technology Data Exchange (ETDEWEB)
Paquis, P.; Mokhtari, F.; Karamanoukian, D. [Hopital Pasteur, 06 - Nice (France); Pignol, J.P. [Hopital du Hasenrain, 68 - Mulhouse (France); Cuendet, P. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires; Fares, G.; Hachem, A. [Faculte des Sciences, 06 - Nice (France); Iborra, N. [Centre Antoine-Lacassagne, 06 - Nice (France)
1998-04-01
Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Research on perturbation based Monte Carlo reactor criticality search
International Nuclear Information System (INIS)
Li Zeguang; Wang Kan; Li Yangliu; Deng Jingkang
2013-01-01
Criticality search is a very important aspect in reactor physics analysis. Due to the advantages of Monte Carlo method and the development of computer technologies, Monte Carlo criticality search is becoming more and more necessary and feasible. Traditional Monte Carlo criticality search method is suffered from large amount of individual criticality runs and uncertainty and fluctuation of Monte Carlo results. A new Monte Carlo criticality search method based on perturbation calculation is put forward in this paper to overcome the disadvantages of traditional method. By using only one criticality run to get initial k_e_f_f and differential coefficients of concerned parameter, the polynomial estimator of k_e_f_f changing function is solved to get the critical value of concerned parameter. The feasibility of this method was tested. The results show that the accuracy and efficiency of perturbation based criticality search method are quite inspiring and the method overcomes the disadvantages of traditional one. (authors)
Reconstruction of Monte Carlo replicas from Hessian parton distributions
Energy Technology Data Exchange (ETDEWEB)
Hou, Tie-Jiun [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Gao, Jun [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240 (China); High Energy Physics Division, Argonne National Laboratory,Argonne, Illinois, 60439 (United States); Huston, Joey [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Nadolsky, Pavel [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Schmidt, Carl; Stump, Daniel [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Wang, Bo-Ting; Xie, Ke Ping [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Dulat, Sayipjamal [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); School of Physics Science and Technology, Xinjiang University,Urumqi, Xinjiang 830046 (China); Center for Theoretical Physics, Xinjiang University,Urumqi, Xinjiang 830046 (China); Pumplin, Jon; Yuan, C.P. [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States)
2017-03-20
We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.
Monte Carlo Solutions for Blind Phase Noise Estimation
Directory of Open Access Journals (Sweden)
Çırpan Hakan
2009-01-01
Full Text Available This paper investigates the use of Monte Carlo sampling methods for phase noise estimation on additive white Gaussian noise (AWGN channels. The main contributions of the paper are (i the development of a Monte Carlo framework for phase noise estimation, with special attention to sequential importance sampling and Rao-Blackwellization, (ii the interpretation of existing Monte Carlo solutions within this generic framework, and (iii the derivation of a novel phase noise estimator. Contrary to the ad hoc phase noise estimators that have been proposed in the past, the estimators considered in this paper are derived from solid probabilistic and performance-determining arguments. Computer simulations demonstrate that, on one hand, the Monte Carlo phase noise estimators outperform the existing estimators and, on the other hand, our newly proposed solution exhibits a lower complexity than the existing Monte Carlo solutions.
Sampling from a polytope and hard-disk Monte Carlo
International Nuclear Information System (INIS)
Kapfer, Sebastian C; Krauth, Werner
2013-01-01
The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed for this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation
Cluster monte carlo method for nuclear criticality safety calculation
International Nuclear Information System (INIS)
Pei Lucheng
1984-01-01
One of the most important applications of the Monte Carlo method is the calculation of the nuclear criticality safety. The fair source game problem was presented at almost the same time as the Monte Carlo method was applied to calculating the nuclear criticality safety. The source iteration cost may be reduced as much as possible or no need for any source iteration. This kind of problems all belongs to the fair source game prolems, among which, the optimal source game is without any source iteration. Although the single neutron Monte Carlo method solved the problem without the source iteration, there is still quite an apparent shortcoming in it, that is, it solves the problem without the source iteration only in the asymptotic sense. In this work, a new Monte Carlo method called the cluster Monte Carlo method is given to solve the problem further
Energy Technology Data Exchange (ETDEWEB)
Baker, Randal Scott [Univ. of Arizona, Tucson, AZ (United States)
1990-01-01
The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S_{N}) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S_{N} regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S_{N} is well suited for by themselves. The fully coupled Monte Carlo/S_{N} technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S_{N} calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary S_{N} region. The Monte Carlo and S_{N} regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the S_{N} code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the S_{N} code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating S_{N} calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.
Energy Technology Data Exchange (ETDEWEB)
Heidary, Saeed, E-mail: saeedheidary@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir
2015-01-11
This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous {sup 99m}Tc/{sup 201}Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of {sup 201}Tl (77±10% keV) and {sup 99m}Tc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.
Hybrid SN/Monte Carlo research and results
International Nuclear Information System (INIS)
Baker, R.S.
1993-01-01
The neutral particle transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S N ) and stochastic (Monte Carlo) methods are applied. The Monte Carlo and S N regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid Monte Carlo/S N method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S N is well suited for by themselves. The hybrid method has been successfully applied to realistic shielding problems. The vectorized Monte Carlo algorithm in the hybrid method has been ported to the massively parallel architecture of the Connection Machine. Comparisons of performance on a vector machine (Cray Y-MP) and the Connection Machine (CM-2) show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when realistic problems requiring variance reduction are considered. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well
Hybrid Monte Carlo algorithm with fat link fermion actions
International Nuclear Information System (INIS)
Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.
2004-01-01
The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as flat link irrelevant clover (FLIC) fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarization is often performed using an iterative maximization of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing techniques or fat link actions
International Nuclear Information System (INIS)
Valentine, T.E.; Mihalczo, J.T.
1996-01-01
One primary concern for design of safety systems for reactors is the time response of external detectors to changes in the core. This paper describes a way to estimate the time delay between the core power production and the external detector response using Monte Carlo calculations and suggests a technique to measure the time delay. The Monte Carlo code KENO-NR was used to determine the time delay between the core power production and the external detector response for a conceptual design of the Advanced Neutron Source (ANS) reactor. The Monte Carlo estimated time delay was determined to be about 10 ms for this conceptual design of the ANS reactor
Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations
International Nuclear Information System (INIS)
Yegin, G.
2008-01-01
In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems
Entropic sampling in the path integral Monte Carlo method
International Nuclear Information System (INIS)
Vorontsov-Velyaminov, P N; Lyubartsev, A P
2003-01-01
We have extended the entropic sampling Monte Carlo method to the case of path integral representation of a quantum system. A two-dimensional density of states is introduced into path integral form of the quantum canonical partition function. Entropic sampling technique within the algorithm suggested recently by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050) is then applied to calculate the corresponding entropy distribution. A three-dimensional quantum oscillator is considered as an example. Canonical distributions for a wide range of temperatures are obtained in a single simulation run, and exact data for the energy are reproduced
MCNP trademark Monte Carlo: A precis of MCNP
International Nuclear Information System (INIS)
Adams, K.J.
1996-01-01
MCNP trademark is a general purpose three-dimensional time-dependent neutron, photon, and electron transport code. It is highly portable and user-oriented, and backed by stringent software quality assurance practices and extensive experimental benchmarks. The cross section database is based upon the best evaluations available. MCNP incorporates state-of-the-art analog and adaptive Monte Carlo techniques. The code is documented in a 600 page manual which is augmented by numerous Los Alamos technical reports which detail various aspects of the code. MCNP represents over a megahour of development and refinement over the past 50 years and an ongoing commitment to excellence
Knupp, L S; Veloso, C M; Marcondes, M I; Silveira, T S; Silva, A L; Souza, N O; Knupp, S N R; Cannas, A
2016-03-01
The aim of this study was to analyze the economic viability of producing dairy goat kids fed liquid diets in alternative of goat milk and slaughtered at two different ages. Forty-eight male newborn Saanen and Alpine kids were selected and allocated to four groups using a completely randomized factorial design: goat milk (GM), cow milk (CM), commercial milk replacer (CMR) and fermented cow colostrum (FC). Each group was then divided into two groups: slaughter at 60 and 90 days of age. The animals received Tifton hay and concentrate ad libitum. The values of total costs of liquid and solid feed plus labor, income and average gross margin were calculated. The data were then analyzed using the Monte Carlo techniques with the @Risk 5.5 software, with 1000 iterations of the variables being studied through the model. The kids fed GM and CMR generated negative profitability values when slaughtered at 60 days (US$ -16.4 and US$ -2.17, respectively) and also at 90 days (US$ -30.8 and US$ -0.18, respectively). The risk analysis showed that there is a 98% probability that profitability would be negative when GM is used. In this regard, CM and FC presented low risk when the kids were slaughtered at 60 days (8.5% and 21.2%, respectively) and an even lower risk when animals were slaughtered at 90 days (5.2% and 3.8%, respectively). The kids fed CM and slaughtered at 90 days presented the highest average gross income (US$ 67.88) and also average gross margin (US$ 18.43/animal). For the 60-day rearing regime to be economically viable, the CMR cost should not exceed 11.47% of the animal-selling price. This implies that the replacer cannot cost more than US$ 0.39 and 0.43/kg for the 60- and 90-day feeding regimes, respectively. The sensitivity analysis showed that the variables with the greatest impact on the final model's results were animal selling price, liquid diet cost, final weight at slaughter and labor. In conclusion, the production of male dairy goat kids can be economically
Comparison of Monte Carlo method and deterministic method for neutron transport calculation
International Nuclear Information System (INIS)
Mori, Takamasa; Nakagawa, Masayuki
1987-01-01
The report outlines major features of the Monte Carlo method by citing various applications of the method and techniques used for Monte Carlo codes. Major areas of its application include analysis of measurements on fast critical assemblies, nuclear fusion reactor neutronics analysis, criticality safety analysis, evaluation by VIM code, and calculation for shielding. Major techniques used for Monte Carlo codes include the random walk method, geometric expression method (combinatorial geometry, 1, 2, 4-th degree surface and lattice geometry), nuclear data expression, evaluation method (track length, collision, analog (absorption), surface crossing, point), and dispersion reduction (Russian roulette, splitting, exponential transform, importance sampling, corrected sampling). Major features of the Monte Carlo method are as follows: 1) neutron source distribution and systems of complex geometry can be simulated accurately, 2) physical quantities such as neutron flux in a place, on a surface or at a point can be evaluated, and 3) calculation requires less time. (Nogami, K.)
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
International Nuclear Information System (INIS)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Monte Carlo based diffusion coefficients for LMFBR analysis
International Nuclear Information System (INIS)
Van Rooijen, Willem F.G.; Takeda, Toshikazu; Hazama, Taira
2010-01-01
A method based on Monte Carlo calculations is developed to estimate the diffusion coefficient of unit cells. The method uses a geometrical model similar to that used in lattice theory, but does not use the assumption of a separable fundamental mode used in lattice theory. The method uses standard Monte Carlo flux and current tallies, and the continuous energy Monte Carlo code MVP was used without modifications. Four models are presented to derive the diffusion coefficient from tally results of flux and partial currents. In this paper the method is applied to the calculation of a plate cell of the fast-spectrum critical facility ZEBRA. Conventional calculations of the diffusion coefficient diverge in the presence of planar voids in the lattice, but our Monte Carlo method can treat this situation without any problem. The Monte Carlo method was used to investigate the influence of geometrical modeling as well as the directional dependence of the diffusion coefficient. The method can be used to estimate the diffusion coefficient of complicated unit cells, the limitation being the capabilities of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained with deterministic codes. (author)
'Odontologic dosimetric card' experiments and simulations using Monte Carlo methods
International Nuclear Information System (INIS)
Menezes, C.J.M.; Lima, R. de A.; Peixoto, J.E.; Vieira, J.W.
2008-01-01
The techniques for data processing, combined with the development of fast and more powerful computers, makes the Monte Carlo methods one of the most widely used tools in the radiation transport simulation. For applications in diagnostic radiology, this method generally uses anthropomorphic phantoms to evaluate the absorbed dose to patients during exposure. In this paper, some Monte Carlo techniques were used to simulation of a testing device designed for intra-oral X-ray equipment performance evaluation called Odontologic Dosimetric Card (CDO of 'Cartao Dosimetrico Odontologico' in Portuguese) for different thermoluminescent detectors. This paper used two computational models of exposition RXD/EGS4 and CDO/EGS4. In the first model, the simulation results are compared with experimental data obtained in the similar conditions. The second model, it presents the same characteristics of the testing device studied (CDO). For the irradiations, the X-ray spectra were generated by the IPEM report number 78, spectrum processor. The attenuated spectrum was obtained for IEC 61267 qualities and various additional filters for a Pantak 320 X-ray industrial equipment. The results obtained for the study of the copper filters used in the determination of the kVp were compared with experimental data, validating the model proposed for the characterization of the CDO. The results shower of the CDO will be utilized in quality assurance programs in order to guarantee that the equipment fulfill the requirements of the Norm SVS No. 453/98 MS (Brazil) 'Directives of Radiation Protection in Medical and Dental Radiodiagnostic'. We conclude that the EGS4 is a suitable code Monte Carlo to simulate thermoluminescent dosimeters and experimental procedures employed in the routine of the quality control laboratory in diagnostic radiology. (author)
Application of Monte Carlo codes to neutron dosimetry
International Nuclear Information System (INIS)
Prevo, C.T.
1982-01-01
In neutron dosimetry, calculations enable one to predict the response of a proposed dosimeter before effort is expended to design and fabricate the neutron instrument or dosimeter. The nature of these calculations requires the use of computer programs that implement mathematical models representing the transport of radiation through attenuating media. Numerical, and in some cases analytical, solutions of these models can be obtained by one of several calculational techniques. All of these techniques are either approximate solutions to the well-known Boltzmann equation or are based on kernels obtained from solutions to the equation. The Boltzmann equation is a precise mathematical description of neutron behavior in terms of position, energy, direction, and time. The solution of the transport equation represents the average value of the particle flux density. Integral forms of the transport equation are generally regarded as the formal basis for the Monte Carlo method, the results of which can in principle be made to approach the exact solution. This paper focuses on the Monte Carlo technique
A radiating shock evaluated using Implicit Monte Carlo Diffusion
International Nuclear Information System (INIS)
Cleveland, M.; Gentile, N.
2013-01-01
Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)
Discrete Diffusion Monte Carlo for Electron Thermal Transport
Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory
2014-10-01
The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.
Uncertainty Propagation in Monte Carlo Depletion Analysis
International Nuclear Information System (INIS)
Shim, Hyung Jin; Kim, Yeong-il; Park, Ho Jin; Joo, Han Gyu; Kim, Chang Hyo
2008-01-01
A new formulation aimed at quantifying uncertainties of Monte Carlo (MC) tallies such as k eff and the microscopic reaction rates of nuclides and nuclide number densities in MC depletion analysis and examining their propagation behaviour as a function of depletion time step (DTS) is presented. It is shown that the variance of a given MC tally used as a measure of its uncertainty in this formulation arises from four sources; the statistical uncertainty of the MC tally, uncertainties of microscopic cross sections and nuclide number densities, and the cross correlations between them and the contribution of the latter three sources can be determined by computing the correlation coefficients between the uncertain variables. It is also shown that the variance of any given nuclide number density at the end of each DTS stems from uncertainties of the nuclide number densities (NND) and microscopic reaction rates (MRR) of nuclides at the beginning of each DTS and they are determined by computing correlation coefficients between these two uncertain variables. To test the viability of the formulation, we conducted MC depletion analysis for two sample depletion problems involving a simplified 7x7 fuel assembly (FA) and a 17x17 PWR FA, determined number densities of uranium and plutonium isotopes and their variances as well as k ∞ and its variance as a function of DTS, and demonstrated the applicability of the new formulation for uncertainty propagation analysis that need be followed in MC depletion computations. (authors)
Pseudopotentials for quantum-Monte-Carlo-calculations
International Nuclear Information System (INIS)
Burkatzki, Mark Thomas
2008-01-01
The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transitionmetal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented. (orig.)
SERPENT Monte Carlo reactor physics code
International Nuclear Information System (INIS)
Leppaenen, J.
2010-01-01
SERPENT is a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, developed at VTT Technical Research Centre of Finland since 2004. The code is specialized in lattice physics applications, but the universe-based geometry description allows transport simulation to be carried out in complicated three-dimensional geometries as well. The suggested applications of SERPENT include generation of homogenized multi-group constants for deterministic reactor simulator calculations, fuel cycle studies involving detailed assembly-level burnup calculations, validation of deterministic lattice transport codes, research reactor applications, educational purposes and demonstration of reactor physics phenomena. The Serpent code has been publicly distributed by the OECD/NEA Data Bank since May 2009 and RSICC in the U. S. since March 2010. The code is being used in some 35 organizations in 20 countries around the world. This paper presents an overview of the methods and capabilities of the Serpent code, with examples in the modelling of WWER-440 reactor physics. (Author)
A continuation multilevel Monte Carlo algorithm
Collier, Nathan
2014-09-05
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error tolerance is satisfied. CMLMC assumes discretization hierarchies that are defined a priori for each level and are geometrically refined across levels. The actual choice of computational work across levels is based on parametric models for the average cost per sample and the corresponding variance and weak error. These parameters are calibrated using Bayesian estimation, taking particular notice of the deepest levels of the discretization hierarchy, where only few realizations are available to produce the estimates. The resulting CMLMC estimator exhibits a non-trivial splitting between bias and statistical contributions. We also show the asymptotic normality of the statistical error in the MLMC estimator and justify in this way our error estimate that allows prescribing both required accuracy and confidence in the final result. Numerical results substantiate the above results and illustrate the corresponding computational savings in examples that are described in terms of differential equations either driven by random measures or with random coefficients. © 2014, Springer Science+Business Media Dordrecht.
Radon counting statistics - a Monte Carlo investigation
International Nuclear Information System (INIS)
Scott, A.G.
1996-01-01
Radioactive decay is a Poisson process, and so the Coefficient of Variation (COV) of open-quotes nclose quotes counts of a single nuclide is usually estimated as 1/√n. This is only true if the count duration is much shorter than the half-life of the nuclide. At longer count durations, the COV is smaller than the Poisson estimate. Most radon measurement methods count the alpha decays of 222 Rn, plus the progeny 218 Po and 214 Po, and estimate the 222 Rn activity from the sum of the counts. At long count durations, the chain decay of these nuclides means that every 222 Rn decay must be followed by two other alpha decays. The total number of decays is open-quotes 3Nclose quotes, where N is the number of radon decays, and the true COV of the radon concentration estimate is 1/√(N), √3 larger than the Poisson total count estimate of 1/√3N. Most count periods are comparable to the half lives of the progeny, so the relationship between COV and count time is complex. A Monte-Carlo estimate of the ratio of true COV to Poisson estimate was carried out for a range of count periods from 1 min to 16 h and three common radon measurement methods: liquid scintillation, scintillation cell, and electrostatic precipitation of progeny. The Poisson approximation underestimates COV by less than 20% for count durations of less than 60 min
The Monte Carlo calculation of gamma family
International Nuclear Information System (INIS)
Shibata, Makio
1980-01-01
The method of the Monte Carlo calculation for gamma family was investigated. The effects of the variation of values or terms of parameters on observed quantities were studied. The terms taken for the standard calculation are the scaling law for the model, simple proton spectrum for primary cosmic ray, a constant cross section of interaction, zero probability of neutral pion production, and the bending of the curve of primary energy spectrum. This is called S model. Calculations were made by changing one of above mentioned parameters. The chamber size, the mixing of gamma and hadrons, and the family size were fitted to the practical ECC data. When the model was changed from the scaling law to the CKP model, the energy spectrum of the family was able to be expressed by the CKP model better than the scaling law. The scaling law was better in the symmetry around the family center. It was denied that primary cosmic ray mostly consists of heavy particles. The increase of the interaction cross section was necessary in view of the frequency of the families. (Kato, T.)
Monte Carlo Production Management at CMS
Boudoul, G.; Pol, A; Srimanobhas, P; Vlimant, J R; Franzoni, Giovanni
2015-01-01
The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events.During the runI of LHC (2010-2012), CMS has produced over 12 Billion simulated events,organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up).In order toaggregate the information needed for the configuration and prioritization of the events production,assure the book-keeping and of all the processing requests placed by the physics analysis groups,and to interface with the CMS production infrastructure,the web-based service Monte Carlo Management (McM) has been developed and put in production in 2012.McM is based on recent server infrastructure technology (CherryPy + java) and relies on a CouchDB database back-end.This contribution will coverthe one and half year of operational experience managing samples of simulated events for CMS,the evolution of its functionalitiesand the extension of its capabi...
Atomistic Monte Carlo Simulation of Lipid Membranes
Directory of Open Access Journals (Sweden)
Daniel Wüstner
2014-01-01
Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.
Monte Carlo benchmarking: Validation and progress
International Nuclear Information System (INIS)
Sala, P.
2010-01-01
Document available in abstract form only. Full text of publication follows: Calculational tools for radiation shielding at accelerators are faced with new challenges from the present and next generations of particle accelerators. All the details of particle production and transport play a role when dealing with huge power facilities, therapeutic ion beams, radioactive beams and so on. Besides the traditional calculations required for shielding, activation predictions have become an increasingly critical component. Comparison and benchmarking with experimental data is obviously mandatory in order to build up confidence in the computing tools, and to assess their reliability and limitations. Thin target particle production data are often the best tools for understanding the predictive power of individual interaction models and improving their performances. Complex benchmarks (e.g. thick target data, deep penetration, etc.) are invaluable in assessing the overall performances of calculational tools when all ingredients are put at work together. A review of the validation procedures of Monte Carlo tools will be presented with practical and real life examples. The interconnections among benchmarks, model development and impact on shielding calculations will be highlighted. (authors)
Rare event simulation using Monte Carlo methods
Rubino, Gerardo
2009-01-01
In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...
The GENIE neutrino Monte Carlo generator
International Nuclear Information System (INIS)
Andreopoulos, C.; Bell, A.; Bhattacharya, D.; Cavanna, F.; Dobson, J.; Dytman, S.; Gallagher, H.; Guzowski, P.; Hatcher, R.; Kehayias, P.; Meregaglia, A.; Naples, D.; Pearce, G.; Rubbia, A.; Whalley, M.; Yang, T.
2010-01-01
GENIE is a new neutrino event generator for the experimental neutrino physics community. The goal of the project is to develop a 'canonical' neutrino interaction physics Monte Carlo whose validity extends to all nuclear targets and neutrino flavors from MeV to PeV energy scales. Currently, emphasis is on the few-GeV energy range, the challenging boundary between the non-perturbative and perturbative regimes, which is relevant for the current and near future long-baseline precision neutrino experiments using accelerator-made beams. The design of the package addresses many challenges unique to neutrino simulations and supports the full life-cycle of simulation and generator-related analysis tasks. GENIE is a large-scale software system, consisting of ∼120000 lines of C++ code, featuring a modern object-oriented design and extensively validated physics content. The first official physics release of GENIE was made available in August 2007, and at the time of the writing of this article, the latest available version was v2.4.4.
Feasibility Study of Core Design with a Monte Carlo Code for APR1400 Initial core
Energy Technology Data Exchange (ETDEWEB)
Kim, Jinsun; Chang, Do Ik; Seong, Kibong [KEPCO NF, Daejeon (Korea, Republic of)
2014-10-15
The Monte Carlo calculation becomes more popular and useful nowadays due to the rapid progress in computing power and parallel calculation techniques. There have been many attempts to analyze a commercial core by Monte Carlo transport code using the enhanced computer capability, recently. In this paper, Monte Carlo calculation of APR1400 initial core has been performed and the results are compared with the calculation results of conventional deterministic code to find out the feasibility of core design using Monte Carlo code. SERPENT, a 3D continuous-energy Monte Carlo reactor physics burnup calculation code is used for this purpose and the KARMA-ASTRA code system, which is used for a deterministic code of comparison. The preliminary investigation for the feasibility of commercial core design with Monte Carlo code was performed in this study. Simplified core geometry modeling was performed for the reactor core surroundings and reactor coolant model is based on two region model. The reactivity difference at HZP ARO condition between Monte Carlo code and the deterministic code is consistent with each other and the reactivity difference during the depletion could be reduced by adopting the realistic moderator temperature. The reactivity difference calculated at HFP, BOC, ARO equilibrium condition was 180 ±9 pcm, with axial moderator temperature of a deterministic code. The computing time will be a significant burden at this time for the application of Monte Carlo code to the commercial core design even with the application of parallel computing because numerous core simulations are required for actual loading pattern search. One of the remedy will be a combination of Monte Carlo code and the deterministic code to generate the physics data. The comparison of physics parameters with sophisticated moderator temperature modeling and depletion will be performed for a further study.
Rico-Contreras, José Octavio; Aguilar-Lasserre, Alberto Alfonso; Méndez-Contreras, Juan Manuel; López-Andrés, Jhony Josué; Cid-Chama, Gabriela
2017-11-01
The objective of this study is to determine the economic return of poultry litter combustion in boilers to produce bioenergy (thermal and electrical), as this biomass has a high-energy potential due to its component elements, using fuzzy logic to predict moisture and identify the high-impact variables. This is carried out using a proposed 7-stage methodology, which includes a statistical analysis of agricultural systems and practices to identify activities contributing to moisture in poultry litter (for example, broiler chicken management, number of air extractors, and avian population density), and thereby reduce moisture to increase the yield of the combustion process. Estimates of poultry litter production and heating value are made based on 4 different moisture content percentages (scenarios of 25%, 30%, 35%, and 40%), and then a risk analysis is proposed using the Monte Carlo simulation to select the best investment alternative and to estimate the environmental impact for greenhouse gas mitigation. The results show that dry poultry litter (25%) is slightly better for combustion, generating 3.20% more energy. Reducing moisture from 40% to 25% involves considerable economic investment due to the purchase of equipment to reduce moisture; thus, when calculating financial indicators, the 40% scenario is the most attractive, as it is the current scenario. Thus, this methodology proposes a technology approach based on the use of advanced tools to predict moisture and representation of the system (Monte Carlo simulation), where the variability and uncertainty of the system are accurately represented. Therefore, this methodology is considered generic for any bioenergy generation system and not just for the poultry sector, whether it uses combustion or another type of technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis
White, J.; Brakefield, L. K.
2015-12-01
The null-space monte carlo technique is a non-linear uncertainty analyses technique that is well-suited to high-dimensional inverse problems. While the technique is powerful, the existing workflow for completing null-space monte carlo is cumbersome, requiring the use of multiple commandline utilities, several sets of intermediate files and even a text editor. pyNSMC is an open-source python module that automates the workflow of null-space monte carlo uncertainty analyses. The module is fully compatible with the PEST and PEST++ software suites and leverages existing functionality of pyEMU, a python framework for linear-based uncertainty analyses. pyNSMC greatly simplifies the existing workflow for null-space monte carlo by taking advantage of object oriented design facilities in python. The core of pyNSMC is the ensemble class, which draws and stores realized random vectors and also provides functionality for exporting and visualizing results. By relieving users of the tedium associated with file handling and command line utility execution, pyNSMC instead focuses the user on the important steps and assumptions of null-space monte carlo analysis. Furthermore, pyNSMC facilitates learning through flow charts and results visualization, which are available at many points in the algorithm. The ease-of-use of the pyNSMC workflow is compared to the existing workflow for null-space monte carlo for a synthetic groundwater model with hundreds of estimable parameters.
EGS-Ray, a program for the visualization of Monte-Carlo calculations in the radiation physics
International Nuclear Information System (INIS)
Kleinschmidt, C.
2001-01-01
A Windows program is introduced which allows a relatively easy and interactive access to Monte Carlo techniques in clinical radiation physics. Furthermore, this serves as a visualization tool of the methodology and the results of Monte Carlo simulations. The program requires only little effort to formulate and calculate a Monte Carlo problem. The Monte Carlo module of the program is based on the well-known EGS4/PRESTA code. The didactic features of the program are presented using several examples common to the routine of the clinical radiation physicist. (orig.) [de
Quantum Monte Carlo: Faster, More Reliable, And More Accurate
Anderson, Amos Gerald
2010-06-01
combination of Generalized Valence Bond wavefunctions, improved correlation functions, and stabilized weighting techniques for calculations run on graphics cards, represents a new way for using Quantum Monte Carlo to study arbitrarily sized molecules.
Pore-scale uncertainty quantification with multilevel Monte Carlo
Icardi, Matteo
2014-01-06
Computational fluid dynamics (CFD) simulations of pore-scale transport processes in porous media have recently gained large popularity. However the geometrical details of the pore structures can be known only in a very low number of samples and the detailed flow computations can be carried out only on a limited number of cases. The explicit introduction of randomness in the geometry and in other setup parameters can be crucial for the optimization of pore-scale investigations for random homogenization. Since there are no generic ways to parametrize the randomness in the porescale structures, Monte Carlo techniques are the most accessible to compute statistics. We propose a multilevel Monte Carlo (MLMC) technique to reduce the computational cost of estimating quantities of interest within a prescribed accuracy constraint. Random samples of pore geometries with a hierarchy of geometrical complexities and grid refinements, are synthetically generated and used to propagate the uncertainties in the flow simulations and compute statistics of macro-scale effective parameters.
Conditional Monte Carlo randomization tests for regression models.
Parhat, Parwen; Rosenberger, William F; Diao, Guoqing
2014-08-15
We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
Energy Technology Data Exchange (ETDEWEB)
Badal, A [U.S. Food and Drug Administration (CDRH/OSEL), Silver Spring, MD (United States); Zbijewski, W [Johns Hopkins University, Baltimore, MD (United States); Bolch, W [University of Florida, Gainesville, FL (United States); Sechopoulos, I [Emory University, Atlanta, GA (United States)
2014-06-15
Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10{sup 7} xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the
TH-E-18A-01: Developments in Monte Carlo Methods for Medical Imaging
International Nuclear Information System (INIS)
Badal, A; Zbijewski, W; Bolch, W; Sechopoulos, I
2014-01-01
Monte Carlo simulation methods are widely used in medical physics research and are starting to be implemented in clinical applications such as radiation therapy planning systems. Monte Carlo simulations offer the capability to accurately estimate quantities of interest that are challenging to measure experimentally while taking into account the realistic anatomy of an individual patient. Traditionally, practical application of Monte Carlo simulation codes in diagnostic imaging was limited by the need for large computational resources or long execution times. However, recent advancements in high-performance computing hardware, combined with a new generation of Monte Carlo simulation algorithms and novel postprocessing methods, are allowing for the computation of relevant imaging parameters of interest such as patient organ doses and scatter-to-primaryratios in radiographic projections in just a few seconds using affordable computational resources. Programmable Graphics Processing Units (GPUs), for example, provide a convenient, affordable platform for parallelized Monte Carlo executions that yield simulation times on the order of 10 7 xray/ s. Even with GPU acceleration, however, Monte Carlo simulation times can be prohibitive for routine clinical practice. To reduce simulation times further, variance reduction techniques can be used to alter the probabilistic models underlying the x-ray tracking process, resulting in lower variance in the results without biasing the estimates. Other complementary strategies for further reductions in computation time are denoising of the Monte Carlo estimates and estimating (scoring) the quantity of interest at a sparse set of sampling locations (e.g. at a small number of detector pixels in a scatter simulation) followed by interpolation. Beyond reduction of the computational resources required for performing Monte Carlo simulations in medical imaging, the use of accurate representations of patient anatomy is crucial to the virtual
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2012-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.
Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo
Martinez, Josue G.; Liang, Faming; Zhou, Lan; Carroll, Raymond J.
2010-01-01
model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order
Time step length versus efficiency of Monte Carlo burnup calculations
International Nuclear Information System (INIS)
Dufek, Jan; Valtavirta, Ville
2014-01-01
Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy