WorldWideScience

Sample records for teaching computational science

  1. Teaching Computer Science Courses in Distance Learning

    Science.gov (United States)

    Huan, Xiaoli; Shehane, Ronald; Ali, Adel

    2011-01-01

    As the success of distance learning (DL) has driven universities to increase the courses offered online, certain challenges arise when teaching computer science (CS) courses to students who are not physically co-located and have individual learning schedules. Teaching CS courses involves high level demonstrations and interactivity between the…

  2. Teaching computer science at school: some ideas

    OpenAIRE

    Bodei, Chiara; Grossi, Roberto; Lagan?, Maria Rita; Righi, Marco

    2010-01-01

    As a young discipline, Computer Science does not rely on longly tested didactic procedures. This allows the experimentation of innovative teaching methods at schools, especially in early childhood education. Our approach is based on the idea that abstracts notions should be gained as the final result of a learning path made of concrete and touchable steps. To illustrate our methodology, we present some of the teaching projects we proposed.

  3. On teaching computer ethics within a computer science department.

    Science.gov (United States)

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  4. 2012 International Conference on Teaching and Computational Science (ICTCS 2012)

    CERN Document Server

    Advanced Technology in Teaching

    2013-01-01

    2012 International Conference on Teaching and Computational Science (ICTCS 2012) is held on April 1-2, 2012, Macao.   This volume contains 120 selected papers presented at 2012 International Conference on Teaching and Computational Science (ICTCS 2012), which is to bring together researchers working in many different areas of teaching and computational Science to foster international collaborations and exchange of new ideas.   This volume book can be divided into two sections on the basis of the classification of manuscripts considered. The first section deals with teaching. The second section of this volume consists of computational Science.   We hope that all the papers here published can benefit you in the related researching fields.

  5. Toward using games to teach fundamental computer science concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  6. CDM: Teaching Discrete Mathematics to Computer Science Majors

    Science.gov (United States)

    Sutner, Klaus

    2005-01-01

    CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…

  7. Towards a Competency Model for Teaching Computer Science

    Science.gov (United States)

    Bender, Elena; Hubwieser, Peter; Schaper, Niclas; Margaritis, Melanie; Berges, Marc; Ohrndorf, Laura; Magenheim, Johannes; Schubert, Sigrid

    2015-01-01

    To address the special challenges of teaching computer science, adequate development of teachers' competencies during their education is extremely important. In particular, pedagogical content knowledge and teachers' beliefs and motivational orientations play an important role in effective teaching. This research field has been sparsely…

  8. Computational mechanics in science, applications and teaching

    Directory of Open Access Journals (Sweden)

    Kojić M.

    2013-01-01

    Full Text Available We express our opinion about the role of Computational Mechanics (CM in science, applications and education. The presented thoughts rely on our experience gained by working over decades (first author in particular in the field of CM. First, as a challenge of an opinion that computational mechanics is rather a tool, not the science, we give our view that computational mechanics is a complex interdisciplinary scientific field where new methods and solutions are sought, new hypotheses are tested, and events in material world are elucidated or predicted. It is quite an art to achieve the goal that general analytical formulations or experimental findings become useful and practical numbers, graphs, and even simulations of living systems response. Second, we would like to emphasize the enormous impact of CM in applications; ranging from the support of experimental investigations, to everyday engineering in design and industry, to bioengineering and medicine. Giant steps have been undertaken by invention of the finite element method in the 6th decade of last century. From that time on, a huge number of researchers have opened new frontiers, introducing new computational methods, improving the algorithms and incorporating achievements in computer technology. Third, we want to address the issue of the CM participation within university programs. We believe that the CM methods, software development and application should be a significant part of the overall education in engineering departments, but also (to appropriate extent in other departments of natural and biomedical sciences, technology and medicine. All courses should be accompanied by the corresponding software. We here cite our experience where around 40 PhD and MS theses have been completed at University of Kragujevac, with the CM topics, development of engineering software (our system of programs PAK and applications in engineering and bioengineering. This approach in education will result in

  9. Teaching computer science through problems, not solutions

    Science.gov (United States)

    Fee, Samuel B.; Holland-Minkley, Amanda M.

    2010-06-01

    Regardless of the course topic, every instructor in a computing field endeavors to engage their students in deep problem-solving and critical thinking. One of the specific learning outcomes throughout our computer science curriculum is the development of independent, capable problem solving - And we believe good pedagogy can bring such about. Our experiences indicate to us that students improve their ability to analyze and solve complex computational problems when we pursue pedagogies that support them in developing these skills incrementally. Specifically, we pursue a problem-based learning approach that we apply individually in each course as well as across the entire curriculum of our department, instead of solely considering our pedagogy on a course-by-course basis.

  10. Prolog as description and implementation language in computer science teaching

    DEFF Research Database (Denmark)

    Christiansen, Henning

    Prolog is a powerful pedagogical instrument for theoretical elements of computer science when used as combined description language and experimentation tool. A teaching methodology based on this principle has been developed and successfully applied in a context with a heterogeneous student...

  11. Theoretical Branches in Teaching Computer Science

    Science.gov (United States)

    Habiballa, Hashim; Kmet, Tibor

    2004-01-01

    The present paper describes an educational experiment dealing with teaching the theory of formal languages and automata as well as their application concepts. It presents a practical application of an educational experiment and initial results based on comparative instruction of two samples of students (n = 56). The application concept should…

  12. Teaching and Assessing Teamwork Skills in Engineering and Computer Science

    Directory of Open Access Journals (Sweden)

    Robert W. Lingard

    2010-02-01

    Full Text Available To be successful in today's workplace, engineering and computer science students must possess high levels of teamwork skills. Unfortunately, most engineering programs provide little or no specific instruction in this area. This paper outlines an assessment-driven approach toward teaching teamwork skills. Working with the Industrial Advisory Board for the College, a set of performance criteria for teamwork was developed. This set of criteria was used to build an assessment instrument to measure the extent to which students are able to achieve the necessary skills. This set of criteria provides a clear basis for the development of an approach toward teaching teamwork skills. Furthermore, the results from the assessment can be used to adjust the teaching techniques to address the particular skills where students show some weaknesses. Although this effort is in the early stages, the approach seems promising and will be improved over time.

  13. Computers and Traditional Teaching Practices: Factors Influencing Middle Level Students' Science Achievement and Attitudes about Science

    Science.gov (United States)

    Odom, Arthur Louis; Marszalek, Jacob M.; Stoddard, Elizabeth R.; Wrobel, Jerzy M.

    2011-01-01

    The purpose of this study was to examine the association of middle school student science achievement and attitudes toward science with student-reported frequency of using computers to learn science and other classroom practices. Baseline comparison data were collected on the frequency of student-centred teaching practices (e.g. the use of group…

  14. Toward Using Games to Teach Fundamental Computer Science Concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    2010-01-01

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. …

  15. Pedagogical Approaches to Teaching with Computer Simulations in Science Education

    NARCIS (Netherlands)

    Rutten, N.P.G.; van der Veen, Johan (CTIT); van Joolingen, Wouter; McBride, Ron; Searson, Michael

    2013-01-01

    For this study we interviewed 24 physics teachers about their opinions on teaching with computer simulations. The purpose of this study is to investigate whether it is possible to distinguish different types of teaching approaches. Our results indicate the existence of two types. The first type is

  16. Teaching and Learning Methodologies Supported by ICT Applied in Computer Science

    Science.gov (United States)

    Capacho, Jose

    2016-01-01

    The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…

  17. Real-World Experimentation Comparing Time-Sharing and Batch Processing in Teaching Computer Science,

    Science.gov (United States)

    effectiveness of time-sharing and batch processing in teaching computer science . The experimental design was centered on direct, ’real world’ comparison...ALGOL). The experimental sample involved all introductory computer science courses with a total population of 415 cadets. The results generally

  18. FEATURES OF TEACHING COMPUTER SCIENCE FOR FOREIGN STUDENTS OF HUMANITARIAN SPHERE OF TRAINING

    Directory of Open Access Journals (Sweden)

    Н А Савченко

    2015-12-01

    Full Text Available In the current socio-economic conditions of modern society it is impossible without the introducing information technologies into all spheres of life. The importance of teaching natural Sciences for Humanities is of no doubt. This article addresses the main problems of teaching computer science for foreign students studying in the field of training 41.03.01 “Foreign area studies”.

  19. Learning to Teach Computer Science: Qualitative Insights into Secondary Teachers' Pedagogical Content Knowledge

    Science.gov (United States)

    Hubbard, Aleata Kimberly

    2017-01-01

    In this dissertation, I explored the pedagogical content knowledge of in-service high school educators recently assigned to teach computer science for the first time. Teachers were participating in a professional development program where they co-taught introductory computing classes with tech industry professionals. The study was motivated by…

  20. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  1. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    Science.gov (United States)

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  2. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  3. Teaching Web Application Development: A Case Study in a Computer Science Course

    Science.gov (United States)

    Del Fabro, Marcos Didonet; de Alimeda, Eduardo Cunha; Sluzarski, Fabiano

    2012-01-01

    Teaching web development in Computer Science undergraduate courses is a difficult task. Often, there is a gap between the students' experiences and the reality in the industry. As a consequence, the students are not always well-prepared once they get the degree. This gap is due to several reasons, such as the complexity of the assignments, the…

  4. A Dynamic Intranet-Based Online-Portal Support for Computer Science Teaching

    Science.gov (United States)

    Iyer, Viswanathan K.

    2017-01-01

    This paper addresses the issue of effective content-delivery of Computer Science subjects taking advantage of a university intranet. The proposal described herein for teaching a subject like Combinatorics and Graph Theory (CGT) is to supplement lectures with a moderated online forum against an associated intranet portal, which is referred to as a…

  5. Using Mental Imagery Processes for Teaching and Research in Mathematics and Computer Science

    Science.gov (United States)

    Arnoux, Pierre; Finkel, Alain

    2010-01-01

    The role of mental representations in mathematics and computer science (for teaching or research) is often downplayed or even completely ignored. Using an ongoing work on the subject, we argue for a more systematic study and use of mental representations, to get an intuition of mathematical concepts, and also to understand and build proofs. We…

  6. Choosing Learning Methods Suitable for Teaching and Learning in Computer Science

    Science.gov (United States)

    Taylor, Estelle; Breed, Marnus; Hauman, Ilette; Homann, Armando

    2013-01-01

    Our aim is to determine which teaching methods students in Computer Science and Information Systems prefer. There are in total 5 different paradigms (behaviorism, cognitivism, constructivism, design-based and humanism) with 32 models between them. Each model is unique and states different learning methods. Recommendations are made on methods that…

  7. A review of Computer Science resources for learning and teaching with K-12 computing curricula: an Australian case study

    Science.gov (United States)

    Falkner, Katrina; Vivian, Rebecca

    2015-10-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.

  8. Computer animation in teaching science: Effectiveness in teaching retrograde motion to 9th graders

    Science.gov (United States)

    Klenk, Kristin Elmstrom

    pathway are removed from the data set the analysis changes, the posttest1 and posttest2 means are not significantly different. Students in the A pathway did retain their understanding of the concept and were able to demonstrate it on the assessment. A detailed item analysis of the multiple choice question suggest that students in the B pathway were much more likely to guess on the multiple choice questions than students in the A pathway who show no evidence of guessing. The outcome of this study suggests that an instructional approach with includes viewing computer animations is an effective strategy for teaching and learning an abstract concept in a ninth grade Earth Science classroom.

  9. TEACHING AND LEARNING METHODOLOGIES SUPPORTED BY ICT APPLIED IN COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Jose CAPACHO

    2016-04-01

    Full Text Available The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory. Genetic-Cognitive Psychology Theory and Dialectics Psychology. Based on the theoretical framework the following methodologies were developed: Game Theory, Constructivist Approach, Personalized Teaching, Problem Solving, Cooperative Collaborative learning, Learning projects using ICT. These methodologies were applied to the teaching learning process during the Algorithms and Complexity – A&C course, which belongs to the area of ​​Computer Science. The course develops the concepts of Computers, Complexity and Intractability, Recurrence Equations, Divide and Conquer, Greedy Algorithms, Dynamic Programming, Shortest Path Problem and Graph Theory. The main value of the research is the theoretical support of the methodologies and their application supported by ICT using learning objects. The course aforementioned was built on the Blackboard platform evaluating the operation of methodologies. The results of the evaluation are presented for each of them, showing the learning outcomes achieved by students, which verifies that methodologies are functional.

  10. Effects of a Teacher Professional Development Program on Science Teachers' Views about Using Computers in Teaching and Learning

    Science.gov (United States)

    Çetin, Nagihan Imer

    2016-01-01

    The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…

  11. Advanced Technology in Teaching : Proceedings of the 2009 3rd International Conference on Teaching and Computational Science, v.2

    CERN Document Server

    Education, Psychology and Computer Science

    2012-01-01

    The volume includes a set of selected papers extended and revised from the International Conference on Teaching and Computational Science (WTCS 2009) held on December 19- 20, 2009, Shenzhen, China.   WTCS 2009 best papers Volume 2 is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of Education, Psychology and Computer Science to disseminate their latest research results and exchange views on the future research directions of these fields. 128 high-quality papers are included in the volume. Each paper has been peer-reviewed by at least 2 program committee members and selected by the volume editor Prof. Wu.   On behalf of the WTCS 2009, we would like to express our sincere appreciation to all of authors and referees for their efforts reviewing the papers. Hoping you can find lots of profound research ideas and results on the related fields of Education, Psychology and Computer Science

  12. Teaching Pascal's Triangle from a Computer Science Perspective

    Science.gov (United States)

    Skurnick, Ronald

    2004-01-01

    Pascal's Triangle is named for the seventeenth-century French philosopher and mathematician Blaise Pascal (the same person for whom the computer programming language is named). Students are generally introduced to Pascal's Triangle in an algebra or precalculus class in which the Binomial Theorem is presented. This article, presents a new method…

  13. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-08-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.

  14. Using embedded computer-assisted instruction to teach science to students with Autism Spectrum Disorders

    Science.gov (United States)

    Smith, Bethany

    The need for promoting scientific literacy for all students has been the focus of recent education reform resulting in the rise of the Science Technology, Engineering, and Mathematics movement. For students with Autism Spectrum Disorders and intellectual disability, this need for scientific literacy is further complicated by the need for individualized instruction that is often required to teach new skills, especially when those skills are academic in nature. In order to address this need for specialized instruction, as well as scientific literacy, this study investigated the effects of embedded computer-assisted instruction to teach science terms and application of those terms to three middle school students with autism and intellectual disability. This study was implemented within an inclusive science classroom setting. A multiple probe across participants research design was used to examine the effectiveness of the intervention. Results of this study showed a functional relationship between the number of correct responses made during probe sessions and introduction of the intervention. Additionally, all three participants maintained the acquired science terms and applications over time and generalized these skills across materials and settings. The findings of this study suggest several implications for practice within inclusive settings and provide suggestions for future research investigating the effectiveness of computer-assisted instruction to teach academic skills to students with Autism Spectrum Disorders and intellectual disability.

  15. Advanced Technology in Teaching : Proceedings of the 2009 3rd International Conference on Teaching and Computational Science, v.1

    CERN Document Server

    Intelligent Ubiquitous Computing and Education

    2012-01-01

    The volume includes a set of selected papers extended and revised from the International Conference on Teaching and Computational Science (WTCS 2009) held on December 19- 20, 2009, Shenzhen, China.   WTCS 2009 best papers Volume 1 is to provide a forum for researchers, educators, engineers, and government officials involved in the general areas of Intelligent Ubiquitous Computing and Education to disseminate their latest research results and exchange views on the future research directions of these fields. 128 high-quality papers are included in the volume. Each paper has been peer-reviewed by at least 2 program committee members and selected by the volume editor Prof.Wu.   On behalf of the WTCS 2009, we would like to express our sincere appreciation to all of authors and referees for their efforts reviewing the papers. Hoping you can find lots of profound research ideas and results on the related fields of Intelligent Ubiquitous Computing and Education.

  16. Computer-based teaching and evaluation of introductory statistics for health science students: some lessons learned

    Directory of Open Access Journals (Sweden)

    Nuala Colgan

    1994-12-01

    Full Text Available In recent years, it has become possible to introduce health science students to statistical packages at an increasingly early stage in their undergraduate studies. This has enabled teaching to take place in a computer laboratory, using real data, and encouraging an exploratory and research-oriented approach. This paper briefly describes a hypertext Computer Based Tutorial (CBT concerned with descriptive statistics and introductory data analysis. The CBT has three primary objectives: the introduction of concepts, the facilitation of revision, and the acquisition of skills for project work. Objective testing is incorporated and used for both self-assessment and formal examination. Evaluation was carried out with a large group of Health Science students, heterogeneous with regard to their IT skills and basic numeracy. The results of the evaluation contain valuable lessons.

  17. Raspberry Pi: An Effective Vehicle in Teaching the Internet of Things in Computer Science and Engineering

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhong

    2016-09-01

    Full Text Available The Raspberry Pi is being increasingly adopted as a suitable platform in both research and applications of the Internet of Things (IoT. This study presents a novel project-based teaching and learning approach devised in an Internet of Things course for undergraduate students in the computer science major, where the Raspberry Pi platform is used as an effective vehicle to greatly enhance students’ learning performance and experience. The devised course begins with learning simple hardware and moves to building a whole prototype system. This paper illustrates the outcome of the proposed approach by demonstrating the prototype IoT systems designed and developed by students at the end of one such IoT course. Furthermore, this study provides insights and lessons regarding how to facilitate the use of the Raspberry Pi platform to successfully achieve the goals of project-based teaching and learning in IoT.

  18. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  19. Perceptions of teaching and learning automata theory in a college-level computer science course

    Science.gov (United States)

    Weidmann, Phoebe Kay

    This dissertation identifies and describes student and instructor perceptions that contribute to effective teaching and learning of Automata Theory in a competitive college-level Computer Science program. Effective teaching is the ability to create an appropriate learning environment in order to provide effective learning. We define effective learning as the ability of a student to meet instructor set learning objectives, demonstrating this by passing the course, while reporting a good learning experience. We conducted our investigation through a detailed qualitative case study of two sections (118 students) of Automata Theory (CS 341) at The University of Texas at Austin taught by Dr. Lily Quilt. Because Automata Theory has a fixed curriculum in the sense that many curricula and textbooks agree on what Automata Theory contains, differences being depth and amount of material to cover in a single course, a case study would allow for generalizable findings. Automata Theory is especially problematic in a Computer Science curriculum since students are not experienced in abstract thinking before taking this course, fail to understand the relevance of the theory, and prefer classes with more concrete activities such as programming. This creates a special challenge for any instructor of Automata Theory as motivation becomes critical for student learning. Through the use of student surveys, instructor interviews, classroom observation, material and course grade analysis we sought to understand what students perceived, what instructors expected of students, and how those perceptions played out in the classroom in terms of structure and instruction. Our goal was to create suggestions that would lead to a better designed course and thus a higher student success rate in Automata Theory. We created a unique theoretical basis, pedagogical positivism, on which to study college-level courses. Pedagogical positivism states that through examining instructor and student perceptions

  20. The Role of Gender in Students' Ratings of Teaching Quality in Computer Science and Environmental Engineering

    Science.gov (United States)

    Price, Linda; Svensson, Ingrid; Borell, Jonas; Richardson, John T. E.

    2017-01-01

    Students' ratings of teaching quality on course units in a computer science program and an environmental engineering program at a large Swedish university were obtained using the Course Experience Questionnaire; 8888 sets of ratings were obtained from men and 4280 sets were obtained from women over ten academic years. These student ratings from…

  1. Towards a Framework to Improve the Quality of Teaching and Learning: Consciousness and Validation in Computer Engineering Science, UCT

    Science.gov (United States)

    Lévano, Marcos; Albornoz, Andrea

    2016-01-01

    This paper aims to propose a framework to improve the quality in teaching and learning in order to develop good practices to train professionals in the career of computer engineering science. To demonstrate the progress and achievements, our work is based on two principles for the formation of professionals, one based on the model of learning…

  2. Science in Computational Sciences

    Directory of Open Access Journals (Sweden)

    Jameson Cerrosen

    2012-12-01

    Full Text Available The existing theory in relation to science presents the physics as an ideal, although many sciences not approach the same, so that the current philosophy of science-Theory of Science- is not much help when it comes to analyze the computer science, an emerging field of knowledge that aims investigation of computers, which are included in the materialization of the ideas that try to structure the knowledge and information about the world. Computer Science is based on logic and mathematics, but both theoretical research methods and experimental follow patterns of classical scientific fields. Modeling and computer simulation, as a method, are specific to the discipline and will be further developed in the near future, not only applied to computers but also to other scientific fields. In this article it is analyze the aspects of science in computer science, is presenting an approach to the definition of science and the scientific method in general and describes the relationships between science, research, development and technology.

  3. Portable learning environments for hands-on computational instruction: Using container- and cloud-based technology to teach data science

    OpenAIRE

    Holdgraf, Chris; Culich, Aaron; Rokem, Ariel; Deniz, Fatma; Alegro, Maryana; Ushizima, Dani

    2017-01-01

    There is an increasing interest in learning outside of the traditional classroom setting. This is especially true for topics covering computational tools and data science, as both are challenging to incorporate in the standard curriculum. These atypical learning environments offer new opportunities for teaching, particularly when it comes to combining conceptual knowledge with hands-on experience/expertise with methods and skills. Advances in cloud computing and containerized environments pro...

  4. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  5. A Review of Computer Science Resources for Learning and Teaching with K-12 Computing Curricula: An Australian Case Study

    Science.gov (United States)

    Falkner, Katrina; Vivian, Rebecca

    2015-01-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…

  6. Computer Literacy: Teaching Computer Ethics.

    Science.gov (United States)

    Troutner, Joanne

    1986-01-01

    Suggests learning activities for teaching computer ethics in three areas: (1) equal access; (2) computer crime; and (3) privacy. Topics include computer time, advertising, class enrollments, copyright law, sabotage ("worms"), the Privacy Act of 1974 and the Freedom of Information Act of 1966. (JM)

  7. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-01-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and…

  8. Designing of expected results of teaching on the «Mathematics and computer science» educational area on the basis of competency building approach

    OpenAIRE

    Турагалды Абилакимовна Алдибаева

    2010-01-01

    The stages of forming of expected results of teaching on the «Mathematics and computer science» educational area as one of the realization conditions of the competency building approach are examined in the article.

  9. Using Arduino to Teach Programming to First-Year Computer Science Students

    Science.gov (United States)

    Tan, Wee Lum; Venema, Sven; Gonzalez, Ruben

    2017-01-01

    Transitioning to university is recognised as a challenging endeavour for commencing students. For commencing Computer Science students specifically, evidence suggests a link between poor performance in introductory technical courses, such as programming, and high attrition rates. Building resilience in students, particularly at the start of their…

  10. The Difficult Bridge between University and Industry: A Case Study in Computer Science Teaching

    Science.gov (United States)

    Schilling, Jan; Klamma, Ralf

    2010-01-01

    Recently, there has been increasing criticism concerning academic computer science education. This paper presents a new approach based on the principles of constructivist learning design as well as the ideas of knowledge transfer in communities of practice. The course "High-tech Entrepreneurship and New Media" was introduced as an…

  11. Features of the adaptive control and measuring the effectiveness of distant teaching to computer science

    Directory of Open Access Journals (Sweden)

    Евгений Игоревич Горюшкин

    2009-06-01

    Full Text Available In title approaches to construction of effective monitoring systems of productivity of training to computer science in high schools are described. It is offered to put adaptive testing at which in development of tests artificial neural networks are applied in a basis of such systems.

  12. Teaching Science through Research.

    Science.gov (United States)

    Hugerat, Muhamad; Zidani, Saleem; Kurtam, Naji

    2003-01-01

    Discusses the objectives of the science curriculum and the teacher's responsibility of passing through not only the required material, but also skills. Suggests that in order to improve teaching and learning skills, new strategies, such as teaching and learning through research must be utilized. Presents four examples of teaching and learning…

  13. Computers in Science education, a new way to teach physics and mathematics?

    Science.gov (United States)

    Hjorth-Jensen, Morten; Petter Langtangen, Hans; Mørken, Knut; Malthe-Sørenssen, Anders; Vistnes, Arnt Inge

    2008-04-01

    We present the Computers in Science Education project at the University of Oslo, where computational topics are baked into our undergraduate curriculum of most of our bachelor programs from the very first semester. The first semester consists of courses in traditional Calculus, mathematical modelling and computer science. Topic such as solving differential equations numerically are introduced the first semester and the students learn to program such equation using modern computing languages, in adddition to the standard analytical procedures. The first semester provides the basis for further introduction of computational topics. These are graduallly baked into many other undergraduate courses in mathematics and the sciences. We focus on training our students to use general programming tools in solving physics problems, in addition to the classical analytic problems. Our students handle now at an early stage in their education more realistic physics problems than before. We believe that, in addition to educating modern scientists, this promotes a better physics understanding for a majority of the students.

  14. Believe it or not: A case study of the role beliefs play in three middle school teachers' use of computers in teaching science

    Science.gov (United States)

    Feldman, Carmia Suzannah

    In the past twenty years, teacher beliefs have been found to have a strong influence on the way teachers teach in many disciplines, but only recently is research being done in relation to teaching with computers. As computers become more ubiquitous in schools, it is more important than ever to determine how computers are being used in classrooms, how they could better support student learning, and the reasons why they may not be used in ways advocated by research. In this study, I used a conceptual model of the beliefs that have been shown to influence teaching behavior, an in-depth interview technique (Munby Repertory Grid Technique---RGT) to uncover beliefs, and an exemplary case study methodology to highlight the relationship between the beliefs and teaching with computer behaviors of three middle school teachers. The cases were exemplary in that many of the barriers research has shown to hinder teachers' ability to integrate computers in their teaching were minimized. The teachers all taught at the same technology magnet school and had strong administrative and technological support, professional development in the use of computers, and permanent access to student laptop computers equipped with wireless Internet. To get a complete picture of the teachers' belief systems, I used the Munby RGT with each teacher to explore their teaching with computer beliefs, their science teaching beliefs, and their general teaching beliefs. I then collected data on their teaching with computer behavior through classroom observations, lesson plan report forms, teaching behavior logs, and written reflections, among others. I found that the teachers' beliefs did influence their teaching with computer behavior. For example, although all teachers expressed beliefs that could support student-centered and inquiry-based teaching with computers, some of their beliefs, such as teacher-centered behavioral management beliefs, were more dominant and may have kept the teachers from reaching

  15. Trends of Students of the College of Basic Science towards Teaching the Course of Athletics and Health by Using Computer Technology in the World Islamic Sciences and Education University (WISE)

    Science.gov (United States)

    Salameh, Ibrahim Abdul Ghani; Khawaldeh, Mohammad Falah Ali

    2014-01-01

    The Study aimed at identifying the trends of the students of basic sciences College in the World Islamic Sciences and Education University towards teaching health and sport course by using computer technology as a teaching method, and to identify also the impact of the variables of academic level and the gender on the students' trends. The study…

  16. Nuclear science teaching

    International Nuclear Information System (INIS)

    1968-01-01

    A Panel of Experts on Nuclear Science Teaching met in Bangkok from 15 to 23 July 1968 to review the present status of an need for teaching of topics related to nuclear science at the secondary and early university level including teacher training, and to suggest appropriate ways of introducing these topics into the science curricula. This report contains the contributions of the members of the Panel, together with the general conclusions and recommendations for the development of school and early university curricula and training programs, for the improvement of teaching materials and for the safest possible handing of radioactive materials in school and university laboratories. It is hoped that the report will be of use to all nuclear scientists and science educators concerned with modernizing their science courses by introducing suitable topics and experiments in nuclear science

  17. Computers in Science: Thinking Outside the Discipline.

    Science.gov (United States)

    Hamilton, Todd M.

    2003-01-01

    Describes the Computers in Science course which integrates computer-related techniques into the science disciplines of chemistry, physics, biology, and Earth science. Uses a team teaching approach and teaches students how to solve chemistry problems with spreadsheets, identify minerals with X-rays, and chemical and force analysis. (Contains 14…

  18. Improving the Teaching of Teamwork Skills in Engineering and Computer Science

    Directory of Open Access Journals (Sweden)

    Robert W. Lingard

    2010-12-01

    Full Text Available It is important that engineering and computer science students learn teamwork skills as an integral part of their educational development. These skills are often not explicitly taught, but rather it is expected that students learn them on their own through participation in various team projects. Furthermore, the actual skills that students are expected to learn are usually not well articulated, or even understood. The approach outlined here attempts to address these problems by first establishing a process for defining what is meant by teamwork, by using this definition to assess the extent to which students are learning teamwork skills, and by using the assessment results to formulate approaches to improve student learning with respect to these skills. Specific attempts at the definition, assessment, and instruction improvement process are discussed.

  19. Teaching Computation Across the Curriculum

    Science.gov (United States)

    Caballero, Marcos

    2016-05-01

    Computation has revolutionized how modern science is done. Modern physicists use computational techniques to reduce mountains of data, to simulate impossible experiments, and to develop intuition about the behavior of complex systems. Much of the research completed by modern physicists would be impossible without the use of computation. And yet, while computation is a crucial tool of practicing physicists, modern physics curricula do not reflect its importance and utility. In this talk, I will discuss the urgent need to construct such curricula and present recently completed work that demonstrates that curricula can be developed into existing course structures at a variety of levels. I will also discuss how physics education research can be leveraged to investigate student proficiency with computation and to document how students draw from physics, mathematics, and computing knowledge to construct working computational models. This research will help develop effective teaching practices, research-based course activities, and valid assessment tools. This work is fundamentally new within the field of physics education research and these initial studies will frame future projects to incorporate computation in physics courses. Funding for the work presented was provided by the National Science Foundation (DUE 1431776, 1524128, 1504786), the Science Education Initiative, and Michigan State University.

  20. Computational Social Sciences

    OpenAIRE

    Amaral, Inês

    2017-01-01

    Computational social sciences is a research discipline at the interface between computer science and the traditional social sciences. This interdisciplinary and emerging scientific field uses computationally methods to analyze and model social phenomena, social structures, and collective behavior. The main computational approaches to the social sciences are social network analysis, automated information extraction systems, social geographic information systems, comp...

  1. Teaching Science Fiction by Women.

    Science.gov (United States)

    Donawerth, Jane

    1990-01-01

    Reviews the 200-year-old tradition of women science fiction authors. Discusses the benefits of teaching science fiction written by women. Describes 5 science fiction short stories and 5 science fiction novels suitable for high school students. (RS)

  2. Democratizing Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Ryoo, Jean J.

    2015-01-01

    Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…

  3. Active Teaching of Diffusion through History of Science, Computer Animation and Role Playing

    Science.gov (United States)

    Krajsek, Simona Strgulc; Vilhar, Barbara

    2010-01-01

    We developed and tested a lesson plan for active teaching of diffusion in secondary schools (grades 10-13), which stimulates understanding of the thermal (Brownian) motion of particles as the principle underlying diffusion. During the lesson, students actively explore the Brownian motion through microscope observations of irregularly moving small…

  4. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  5. Interdisciplinary Approaches at Institutions of Higher Education: Teaching Information Systems Concepts to Students of Non-Computer Science Programs

    Directory of Open Access Journals (Sweden)

    Roland Schwald

    2011-07-01

    Full Text Available The aim of this paper is to present a curriculum development concept for teaching information systems content to students enrolled in non-computer science programs by presenting examples from the Business Administration programs at Albstadt-Sigmaringen University, a state university located in Southern Germany. The main focus of this paper therefore is to describe this curriculum development concept. Since this concept involves two disciplines, i.e. business administration and computer science, the author argues that it is necessary to define the roles of one discipline for the other and gives an example on how this could be done. The paper acknowledges that the starting point for the development of a curriculum such as one for a business administration program will be the requirements of the potential employers of the graduates. The paper continues to recommend the assignment of categorized skills and qualifications, such as knowledge, social, methodological, and decision making skills to the different parts of the curricula in question for the development of such a curriculum concept. After the mapping of skills and courses the paper describes how specific information systems can be used in courses, especially those with a specific focus on methodological skills. Two examples from Albstadt-Sigma-ringen University are being given. At the end of the paper the author explains the implications and limitations of such a concept, especially for programs that build on each other, as is the case for some Bachelor and Master programs. The paper concludes that though some elements of this concept are transferable, it is still necessary that every institution of higher education has to take into consideration its own situation to develop curricula concepts. It provides recommendations what issues every institution should solve for itself.

  6. Visualization Tools for Teaching Computer Security

    Science.gov (United States)

    Yuan, Xiaohong; Vega, Percy; Qadah, Yaseen; Archer, Ricky; Yu, Huiming; Xu, Jinsheng

    2010-01-01

    Using animated visualization tools has been an important teaching approach in computer science education. We have developed three visualization and animation tools that demonstrate various information security concepts and actively engage learners. The information security concepts illustrated include: packet sniffer and related computer network…

  7. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  8. An Empirical Evaluation of Puzzle-Based Learning as an Interest Approach for Teaching Introductory Computer Science

    Science.gov (United States)

    Merrick, K. E.

    2010-01-01

    This correspondence describes an adaptation of puzzle-based learning to teaching an introductory computer programming course. Students from two offerings of the course--with and without the puzzle-based learning--were surveyed over a two-year period. Empirical results show that the synthesis of puzzle-based learning concepts with existing course…

  9. Teaching Science with Technology

    Science.gov (United States)

    Gornostaeva, Svetlana

    2015-04-01

    This is a short introduction about me, description of different teaching methods, which is used in my teaching practice of Geography, biology and GIS systems education. The main part is tell about practical lesson with lab Vernier. My name is Svetlana Gornostaeva. I am a geography, biology and GIS systems teacher in Tallinn Mustjõe Gymnasium (www.mjg.ee) and private school Garant (http://www.erakoolgarant.ee/). In my teaching practice I do all to show that science courses are very important, interesting, and do not difficult. I use differentiated instruction methods also consider individual needs. At lessons is used different active teaching methods such as individual work of various levels of difficulty, team works, creative tasks, interactive exercises, excursions, role-playing games, meeting with experts. On my lessons I use visual aids (maps, a collection of rocks and minerals, herbarium, posters, Vernier data logger). My favorite teaching methods are excursions, meeting with experts and practical lesson with lab Vernier. A small part of my job demonstrate my poster. In the next abstract I want to bring a one practical work with Vernier which I do with my students, when we teach a theme "Atmosphere and climate". OUTDOOR LEARNING. SUBJECT "ATMOSPHERE AND CLIMATE". WEATHER OBSERVATIONS WITH VERNIER DATA LOGGER. The aim: students teach to use Vernier data logger and measure climatic parameters such as: temperature, humidity, atmospheric pressure, solar radiation, ultraviolet light radiation, wind speed. In working process pupils also teach work together, observe natural processes, analyze. Children are working by small groups, 4-5 in each group. Every one should personally measure all parameters and put numbers into the table. After it group observe cloudiness, analyze table and give conclusion "Is at this moment dominates cyclone or anticyclone ?". Children really like this kind of job. Vernier data logger it is really fantastic tool. It is mobile lab. This

  10. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  11. Theory and computational science

    International Nuclear Information System (INIS)

    Durham, P.

    1985-01-01

    The theoretical and computational science carried out at the Daresbury Laboratory in 1984/5 is detailed in the Appendix to the Daresbury Annual Report. The Theory, Computational Science and Applications Groups, provide support work for the experimental projects conducted at Daresbury. Use of the FPS-164 processor is also described. (U.K.)

  12. The Effect of In-Service Training of Computer Science Teachers on Scratch Programming Language Skills Using an Electronic Learning Platform on Programming Skills and the Attitudes towards Teaching Programming

    Science.gov (United States)

    Alkaria, Ahmed; Alhassan, Riyadh

    2017-01-01

    This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…

  13. Philosophy of Computer Science

    Directory of Open Access Journals (Sweden)

    Aatami Järvinen

    2014-06-01

    Full Text Available The diversity and interdisciplinary of Computer Sciences, and the multiplicity of its uses in other sciences make it difficult to define them and prescribe how to perform them. Furthermore, also cause friction between computer scientists from different branches. Because of how they are structured, these sciences programs are criticized for not offer an adequate methodological training, or a deep understanding of different research traditions. To collaborate on a solution, some have decided to include in their curricula courses that enable students to gain awareness about epistemology and methodological issues in Computer Science, as well as give meaning to the practice of computer scientists. In this article the needs and objectives of the courses on the philosophy of Computer Science are analyzed, and its structure and management are explained.

  14. Computers in Science Fiction.

    Science.gov (United States)

    Kurland, Michael

    1984-01-01

    Science fiction writers' perceptions of the "thinking machine" are examined through a review of Baum's Oz books, Heinlein's "Beyond This Horizon," science fiction magazine articles, and works about robots including Asimov's "I, Robot." The future of computers in science fiction is discussed and suggested readings are listed. (MBR)

  15. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  16. Teaching Pervasive Computing to CS Freshmen: A Multidisciplinary Approach

    NARCIS (Netherlands)

    Silvis-Cividjian, Natalia

    2015-01-01

    Pervasive Computing is a growing area in research and commercial reality. Despite this extensive growth, there is no clear consensus on how and when to teach it to students. We report on an innovative attempt to teach this subject to first year Computer Science students. Our course combines computer

  17. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  18. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  19. Computer science handbook

    CERN Document Server

    Tucker, Allen B

    2004-01-01

    Due to the great response to the famous Computer Science Handbook edited by Allen B. Tucker, … in 2004 Chapman & Hall/CRC published a second edition of this comprehensive reference book. Within more than 70 chapters, every one new or significantly revised, one can find any kind of information and references about computer science one can imagine. … All in all, there is absolute nothing about computer science that can not be found in the encyclopedia with its 110 survey articles …-Christoph Meinel, Zentralblatt MATH

  20. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  1. Hot Topics in Science Teaching

    Science.gov (United States)

    Ediger, Marlow

    2018-01-01

    There are vital topics in science teaching and learning which are mentioned frequently in the literature. Specialists advocate their importance in the curriculum as well as science teachers stress their saliency. Inservice education might well assist new and veteran teachers in knowledge and skills. The very best science lessons and units of…

  2. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    Science.gov (United States)

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  3. Teaching Computer Organization and Architecture Using Simulation and FPGA Applications

    OpenAIRE

    D. K.M. Al-Aubidy

    2007-01-01

    This paper presents the design concepts and realization of incorporating micro-operation simulation and FPGA implementation into a teaching tool for computer organization and architecture. This teaching tool helps computer engineering and computer science students to be familiarized practically with computer organization and architecture through the development of their own instruction set, computer programming and interfacing experiments. A two-pass assembler has been designed and implemente...

  4. Computer science I essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science I includes fundamental computer concepts, number representations, Boolean algebra, switching circuits, and computer architecture.

  5. Research in computer science

    Science.gov (United States)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  6. Teaching Psychology to Computing Students

    Science.gov (United States)

    Taylor, Jacqui

    2008-01-01

    The aim of this paper is two-fold. The first aim is to discuss some observations gained from teaching psychology to computing students, highlighting both the wide range of areas where psychology is relevant to computing education and the topics that are relevant at different stages of students' education. The second aim is to consider findings…

  7. Computer and information science

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2016) which was held on June 26– 29 in Okayama, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication captures 12 of the conference’s most promising...

  8. Teaching Science in the Home

    Science.gov (United States)

    Ream, J. B.

    2011-12-01

    How to effectively teach science in a classroom setting has long been a topic of discussion. Teachers are given specific guidelines on what to teach in the school curriculum and outreach programs are commonly used to help teach science in classrooms through demonstrations and other activities. However, a growing number of people are taking their children out of traditional schools and choosing instead to teach them in their own homes. Statistics show that between 1999 and 2007, the number of homeschoolers rose from 850,000 to 1.5 million [National Center for Education Statistics July 2004, Dec 2008]. For many of these families, math and science are difficult subjects to teach because the parents do not know how to convey the ideas to their children in an engaging way. This is made more difficult because the parents themselves are not engaged. Classroom demonstrations and hands-on activities are a very effective ways to teach science concepts while showing that science itself can be fun and exciting but demonstrations do not typically include homeschooling families and in many cases doing the experiments on their own is not an option due to availability and cost of the materials. In this presentation we will discuss some ways to make demonstrations and hands-on activities more accessible to homeschooling families as well as looking at various ways of overcoming difficulties when teaching science in the home. References Princiotta, D., Bielick, S., and Chapman, C. (2004). 1.1 Million Homeschooled Students in the United States in 2003 (NCES 2004-115). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, D.C. Bielick S. (2008) 1.5 Million Homeschooled Students in the United States in 2007 (NCES 2009-030). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, D.C.

  9. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos To Teach Challenging Climate Change and Nature of Science Concepts

    Science.gov (United States)

    Cohen, E.

    2013-12-01

    Design based research was utilized to investigate how students use a greenhouse effect simulation in order to derive best learning practices. During this process, students recognized the authentic scientific process involving computer simulations. The simulation used is embedded within an inquiry-based technology-mediated science curriculum known as Web-based Inquiry Science Environment (WISE). For this research, students from a suburban, diverse, middle school setting use the simulations as part of a two week-long class unit on climate change. A pilot study was conducted during phase one of the research that informed phase two, which encompasses the dissertation. During the pilot study, as students worked through the simulation, evidence of shifts in student motivation, understanding of science content, and ideas about the nature of science became present using a combination of student interviews, focus groups, and students' conversations. Outcomes of the pilot study included improvements to the pedagogical approach. Allowing students to do 'Extreme Testing' (e.g., making the world as hot or cold as possible) and increasing the time for free exploration of the simulation are improvements made as a result of the findings of the pilot study. In the dissertation (phase two of the research design) these findings were implemented in a new curriculum scaled for 85 new students from the same school during the next school year. The modifications included new components implementing simulations as an assessment tool for all students and embedded modeling tools. All students were asked to build pre and post models, however due to technological constraints these were not an effective tool. A non-video group of 44 students was established and another group of 41 video students had a WISE curriculum which included twelve minutes of scientists' conversational videos referencing explicit aspects on the nature of science, specifically the use of models and simulations in science

  10. Emotions in teaching environmental science

    Science.gov (United States)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  11. Partnership in Computational Science

    Energy Technology Data Exchange (ETDEWEB)

    Huray, Paul G.

    1999-02-24

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  12. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  13. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...... complexity of learning logic programs and avoiding coding tricks by hyperrobust learning....

  14. Computer/Information Science

    Science.gov (United States)

    Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton

    2013-01-01

    Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…

  15. In Sync with Science Teaching

    Science.gov (United States)

    Scribner-MacLean, Michelle; Nikonchuk, Andrew; Kaplo, Patrick; Wall, Michael

    2006-01-01

    Science educators are often among the first to use emerging technologies in the classroom and laboratory. For the technologically savvy science teacher, the handheld computer is a terrific tool. A handheld computer is a portable electronic device that helps organize (via calendars, contact lists, to-do lists) and integrate electronic data…

  16. Learning computer science by watching video games

    OpenAIRE

    Nagataki, Hiroyuki

    2014-01-01

    This paper proposes a teaching method that utilizes video games in computer science education. The primary characteristic of this approach is that it utilizes video games as observational materials. The underlying idea is that by observing the computational behavior of a wide variety of video games, learners will easily grasp the fundamental architecture, theory, and technology of computers. The results of a case study conducted indicate that the method enhances the motivation of students for...

  17. Computer science II essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science II includes organization of a computer, memory and input/output, coding, data structures, and program development. Also included is an overview of the most commonly

  18. Portable Planetariums Teach Science

    Science.gov (United States)

    2015-01-01

    With the Internet proving to be the wave of the future, in the 1990s Johnson Space Center awarded grants to Rice University in Houston for developing the world's first Internet-accessible museum kiosk. Further grants were awarded to the school for creating educational software for use in homes and schools, leading to the creation of Museums Teaching Planet Earth Inc. The company has gone on to develop and sell portable planetariums and accompanying educational shows.

  19. Teaching Data Science

    OpenAIRE

    Brunner, Robert J.; Kim, Edward J.

    2016-01-01

    We describe an introductory data science course, entitled Introduction to Data Science, offered at the University of Illinois at Urbana-Champaign. The course introduced general programming concepts by using the Python programming language with an emphasis on data preparation, processing, and presentation. The course had no prerequisites, and students were not expected to have any programming experience. This introductory course was designed to cover a wide range of topics, from the nature of ...

  20. Concepts in K-9 Computer Science Education

    NARCIS (Netherlands)

    Barendsen, Erik; Mannila, Linda; Demo, Barbara; Grgurina, Nataša; Izu, Cruz; Mirolo, Claudio; Sentance, Sue; Settle, Amber; Stupuriené, Gabrielé

    2015-01-01

    This exploratory study focuses on concepts and their assessment in K-9 computer science (CS) education. We analyzed concepts in local curriculum documents and guidelines, as well as interviewed K-9 teachers in two countries about their teaching and assessment practices. Moreover, we investigated the

  1. Learning Computer Science Concepts with Scratch

    Science.gov (United States)

    Meerbaum-Salant, Orni; Armoni, Michal; Ben-Ari, Mordechai

    2013-01-01

    Scratch is a visual programming environment that is widely used by young people. We investigated if Scratch can be used to teach concepts of computer science (CS). We developed learning materials for middle-school students that were designed according to the constructionist philosophy of Scratch and evaluated them in a few schools during two…

  2. Computer Science Research in India.

    Science.gov (United States)

    1995-10-07

    This paper begins with a discussion of the nature of Computer Science Research in India. The type of institutions in which Computer Science research...Finally we study the influence on Indian Computer Science research of the phenomenal growth in exports by the Indian software industry and the arrival

  3. The Need for Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Bernier, David

    2011-01-01

    Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…

  4. Teaching Health Professionals to Compute: Options for the Transition Years

    OpenAIRE

    Gross, Cynthia R.; Ellis, Lynda B.M.

    1987-01-01

    Students in pharmacy, nursing, dentistry, medicine, and public health frequently are required to take a computer course. Unfortunately, crowded professional degree curricula can limit their exposure to computers to this single course. In the 1980's, health science students tend to have minimal prior experience with computing. Therefore, the instructor must balance the coursework to teach both about computers and about computer applications in health. A key question is, “What fundamentals do s...

  5. CASE METHOD AS A TOOL FOR FORMATION OF ADEQUATE ATTITUDES TO INFORMATION OF TECHNICAL COLLEGE STUDENTS IN TEACHING COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    М А Егорова

    2016-12-01

    Full Text Available The paper presents the possibility of using case teaching methods in teaching students of a technical college information. It was revealed that the use of technology case methods determines the capabilities of technological adaptation of game methods and materials. It was determined that as a result of acceptance for students leading a comprehensive definition of information culture as part of the general culture. It proposed the development of distant methods of structuring learning using case-tech methods.

  6. Get set for computer science

    CERN Document Server

    Edwards, Alistair

    2006-01-01

    This book is aimed at students who are thinking of studying Computer Science or a related topic at university. Part One is a brief introduction to the topics that make up Computer Science, some of which you would expect to find as course modules in a Computer Science programme. These descriptions should help you to tell the difference between Computer Science as taught in different departments and so help you to choose a course that best suits you. Part Two builds on what you have learned about the nature of Computer Science by giving you guidance in choosing universities and making your appli

  7. Computer science a concise introduction

    CERN Document Server

    Sinclair, Ian

    2014-01-01

    Computer Science: A Concise Introduction covers the fundamentals of computer science. The book describes micro-, mini-, and mainframe computers and their uses; the ranges and types of computers and peripherals currently available; applications to numerical computation; and commercial data processing and industrial control processes. The functions of data preparation, data control, computer operations, applications programming, systems analysis and design, database administration, and network control are also encompassed. The book then discusses batch, on-line, and real-time systems; the basic

  8. Computing handbook computer science and software engineering

    CERN Document Server

    Gonzalez, Teofilo; Tucker, Allen

    2014-01-01

    Overview of Computer Science Structure and Organization of Computing Peter J. DenningComputational Thinking Valerie BarrAlgorithms and Complexity Data Structures Mark WeissBasic Techniques for Design and Analysis of Algorithms Edward ReingoldGraph and Network Algorithms Samir Khuller and Balaji RaghavachariComputational Geometry Marc van KreveldComplexity Theory Eric Allender, Michael Loui, and Kenneth ReganFormal Models and Computability Tao Jiang, Ming Li, and Bala

  9. Perspectives on learning, learning to teach and teaching elementary science

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2003-01-01

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and

  10. In Brief: Science teaching certificate

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    More than 200 educators will receive fellowships over the next 5 years to participate in NASA's Endeavor Science Teaching Certificate Project, the agency announced on 14 November. Through workshops, online and on-site graduate courses, and NASA educational materials, the project will expose educators to NASA science and engineering and support them in translating the information for use in classrooms. ``Through the program, educators will learn to deliver cutting-edge science into the classroom, promoting science, technology, engineering, and mathematics education,'' according to Joyce Winterton, assistant administrator for education at NASA Headquarters, in Washington, D. C. Project fellows will earn a certificate from Teachers College Innovations at Teachers College, Columbia University, New York, and graduate credit from other institutional partners. For more information, visit http://education.nasa.gov/home/index.html.

  11. Volunteer Computing for Science Gateways

    OpenAIRE

    Anderson, David

    2017-01-01

    This poster offers information about volunteer computing for science gateways that offer high-throughput computing services. Volunteer computing can be used to get computing power. This increases the visibility of the gateway to the general public as well as increasing computing capacity at little cost.

  12. Experiences with Efficient Methodologies for Teaching Computer Programming to Geoscientists

    Science.gov (United States)

    Jacobs, Christian T.; Gorman, Gerard J.; Rees, Huw E.; Craig, Lorraine E.

    2016-01-01

    Computer programming was once thought of as a skill required only by professional software developers. But today, given the ubiquitous nature of computation and data science it is quickly becoming necessary for all scientists and engineers to have at least a basic knowledge of how to program. Teaching how to program, particularly to those students…

  13. La linguistica, la glottodidattica e l'elaboratore elettronico: Note sull'introduzione dell'informatica nell'insegnamento delle lingue (Linguistics, Language Pedagogy, and Computers: Notes on the Introduction of Computer Science in the Teaching of Languages).

    Science.gov (United States)

    Colmayer, Ciro

    1991-01-01

    Attempts to show that the use of computers in the classroom should not be limited to the teaching of math but that the language classroom is an even more appropriate place for the introduction and use of computers. (CFM)

  14. Factors influencing exemplary science teachers' levels of computer use

    Science.gov (United States)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to

  15. THE USAGE OF COMPUTER VISUALIZATION IN TEACHING TECHNICAL SUBJECTS

    Directory of Open Access Journals (Sweden)

    Krzysztof Dziedzic

    2014-11-01

    Full Text Available Computer 3D modelling allows designing or mapping objects and then their photorealistic visualization. In the programs for creating 3D graphics a user often loses judgement as to which technique to use during the process. It is also a major problem in teaching graphics, because the final result can be obtained by various methods using tools available in the programs. This paper presents and discusses the examples of the usage of computer visualization in teaching technical subjects on science faculties. For this purpose CAD programs, such as Inventor and AutoCAD were used. The advantages of 3D over 2D design were described and the analysis and evaluation of the available tools for 3D modelling and computer visualization were conducted. In the final part of the work selected examples of computer visualization are presented, in the context of supporting teaching the students of science fields of studies.

  16. The Effectiveness of Computer-Assisted Instruction to Teach Physical Examination to Students and Trainees in the Health Sciences Professions: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Tomesko, Jennifer; Touger-Decker, Riva; Dreker, Margaret; Zelig, Rena; Parrott, James Scott

    2017-01-01

    To explore knowledge and skill acquisition outcomes related to learning physical examination (PE) through computer-assisted instruction (CAI) compared with a face-to-face (F2F) approach. A systematic literature review and meta-analysis published between January 2001 and December 2016 was conducted. Databases searched included Medline, Cochrane, CINAHL, ERIC, Ebsco, Scopus, and Web of Science. Studies were synthesized by study design, intervention, and outcomes. Statistical analyses included DerSimonian-Laird random-effects model. In total, 7 studies were included in the review, and 5 in the meta-analysis. There were no statistically significant differences for knowledge (mean difference [MD] = 5.39, 95% confidence interval [CI]: -2.05 to 12.84) or skill acquisition (MD = 0.35, 95% CI: -5.30 to 6.01). The evidence does not suggest a strong consistent preference for either CAI or F2F instruction to teach students/trainees PE. Further research is needed to identify conditions which examine knowledge and skill acquisition outcomes that favor one mode of instruction over the other.

  17. Soft computing in computer and information science

    CERN Document Server

    Fray, Imed; Pejaś, Jerzy

    2015-01-01

    This book presents a carefully selected and reviewed collection of papers presented during the 19th Advanced Computer Systems conference ACS-2014. The Advanced Computer Systems conference concentrated from its beginning on methods and algorithms of artificial intelligence. Further future brought new areas of interest concerning technical informatics related to soft computing and some more technological aspects of computer science such as multimedia and computer graphics, software engineering, web systems, information security and safety or project management. These topics are represented in the present book under the categories Artificial Intelligence, Design of Information and Multimedia Systems, Information Technology Security and Software Technologies.

  18. Teachers' perceptions on primary science teaching

    Science.gov (United States)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  19. "Computer Science Can Feed a Lot of Dreams"

    Science.gov (United States)

    Educational Horizons, 2014

    2014-01-01

    Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…

  20. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  1. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  2. Computational Science Facility (CSF)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL Institutional Computing (PIC) is focused on meeting DOE's mission needs and is part of PNNL's overarching research computing strategy. PIC supports large-scale...

  3. Physical computation and cognitive science

    CERN Document Server

    Fresco, Nir

    2014-01-01

    This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time.   “This book provides a thorough and timely analysis of differing accounts of computation while adv...

  4. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  5. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  6. Pre-service secondary school science teachers science teaching ...

    African Journals Online (AJOL)

    The main purpose of the study was to explore pre-service secondary science teachers' self-efficacy beliefs regarding science teaching. The study also compared pre-service secondary science teachers' self-efficacy beliefs with regard to gender and educational level. Data were collected by administering the science ...

  7. Theoretical computer science and the natural sciences

    Science.gov (United States)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  8. Molecular Science Computing: 2010 Greenbook

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

    2010-04-02

    This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

  9. Teaching cloud computing: a software engineering perspective

    OpenAIRE

    Sommerville, Ian

    2012-01-01

    This short papers discusses the issues of teaching cloud computing from a software engineering rather than a business perspective. It discusses what topics might be covered in a senior course on cloud software engineering.

  10. Cloud computing and services science

    NARCIS (Netherlands)

    Ivanov, Ivan; van Sinderen, Marten J.; Shishkov, Boris

    2012-01-01

    This book is essentially a collection of the best papers of the International Conference on Cloud Computing and Services Science (CLOSER), which was held in Noordwijkerhout, The Netherlands on May 7–9, 2011. The conference addressed technology trends in the domain of cloud computing in relation to a

  11. Computer Science Professionals and Greek Library Science

    Science.gov (United States)

    Dendrinos, Markos N.

    2008-01-01

    This paper attempts to present the current state of computer science penetration into librarianship in terms of both workplace and education issues. The shift from material libraries into digital libraries is mirrored in the corresponding shift from librarians into information scientists. New library data and metadata, as well as new automated…

  12. Computational colour science using MATLAB

    CERN Document Server

    Westland, Stephen; Cheung, Vien

    2012-01-01

    Computational Colour Science Using MATLAB 2nd Edition offers a practical, problem-based approach to colour physics. The book focuses on the key issues encountered in modern colour engineering, including efficient representation of colour information, Fourier analysis of reflectance spectra and advanced colorimetric computation. Emphasis is placed on the practical applications rather than the techniques themselves, with material structured around key topics. These topics include colour calibration of visual displays, computer recipe prediction and models for colour-appearance prediction. Each t

  13. Teaching Earth Science. Digital Data Series. [CD-ROM].

    Science.gov (United States)

    Alpha, Tau Rho, Ed.; Diggles, Michael F., Ed.

    This CD-ROM contains 17 computer-generated teaching tools, 16 interactive HyperCard "stacks", and a printable model. The 17 tools are separated into the following categories: (1) Geologic Processes; (2) Fossilization; (3) Earthquakes and Faulting; and (4) Map Projections and Globes. A navigation stack, "Earth Science," is provided as a launching…

  14. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  15. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  16. Computer Science Research at Langley

    Science.gov (United States)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  17. Linking computers for science

    CERN Multimedia

    2005-01-01

    After the success of SETI@home, many other scientists have found computer power donated by the public to be a valuable resource - and sometimes the only possibility to achieve their goals. In July, representatives of several “public resource computing” projects came to CERN to discuss technical issues and R&D activities on the common computing platform they are using, BOINC. This photograph shows the LHC@home screen-saver which uses the BOINC platform: the dots represent protons and the position of the status bar indicates the progress of the calculations. This summer, CERN hosted the first “pangalactic workshop” on BOINC (Berkeley Open Interface for Network Computing). BOINC is modelled on SETI@home, which millions of people have downloaded to help search for signs of extraterrestrial intelligence in radio-astronomical data. BOINC provides a general-purpose framework for scientists to adapt their software to, so that the public can install and run it. An important part of BOINC is managing the...

  18. History, philosophy and science teaching new perspectives

    CERN Document Server

    2018-01-01

    This anthology opens new perspectives in the domain of history, philosophy, and science teaching research. Its four sections are: first, science, culture and education; second, the teaching and learning of science; third, curriculum development and justification; and fourth, indoctrination. The first group of essays deal with the neglected topic of science education and the Enlightenment tradition. These essays show that many core commitments of modern science education have their roots in this tradition, and consequently all can benefit from a more informed awareness of its strengths and weaknesses. Other essays address research on leaning and teaching from the perspectives of social epistemology and educational psychology. Included here is the first ever English translation of Ernst Mach’s most influential 1890 paper on ‘The Psychological and Logical Moment in Natural Science Teaching’. This paper launched the influential Machian tradition in education. Other essays address concrete cases of the ...

  19. Can Tablet Computers Enhance Faculty Teaching?

    Science.gov (United States)

    Narayan, Aditee P; Whicker, Shari A; Benjamin, Robert W; Hawley, Jeffrey; McGann, Kathleen A

    2015-06-01

    Learner benefits of tablet computer use have been demonstrated, yet there is little evidence regarding faculty tablet use for teaching. Our study sought to determine if supplying faculty with tablet computers and peer mentoring provided benefits to learners and faculty beyond that of non-tablet-based teaching modalities. We provided faculty with tablet computers and three 2-hour peer-mentoring workshops on tablet-based teaching. Faculty used tablets to teach, in addition to their current, non-tablet-based methods. Presurveys, postsurveys, and monthly faculty surveys assessed feasibility, utilization, and comparisons to current modalities. Learner surveys assessed perceived effectiveness and comparisons to current modalities. All feedback received from open-ended questions was reviewed by the authors and organized into categories. Of 15 eligible faculty, 14 participated. Each participant attended at least 2 of the 3 workshops, with 10 to 12 participants at each workshop. All participants found the workshops useful, and reported that the new tablet-based teaching modality added value beyond that of current teaching methods. Respondents developed the following tablet-based outputs: presentations, photo galleries, evaluation tools, and online modules. Of the outputs, 60% were used in the ambulatory clinics, 33% in intensive care unit bedside teaching rounds, and 7% in inpatient medical unit bedside teaching rounds. Learners reported that common benefits of tablet computers were: improved access/convenience (41%), improved interactive learning (38%), and improved bedside teaching and patient care (13%). A common barrier faculty identified was inconsistent wireless access (14%), while no barriers were identified by the majority of learners. Providing faculty with tablet computers and having peer-mentoring workshops to discuss their use was feasible and added value.

  20. Computers in Science and Mathematics Education in the ASEAN Region.

    Science.gov (United States)

    Talisayon, Vivien M.

    1989-01-01

    Compares policies and programs on computers in science and mathematics education in the six ASEAN countries: Brunei, Indonesia; Malaysia, Philippines, Singapore, and Thailand. Limits discussion to the computer as a teaching aid and object of study, attendant problems, and regional cooperation. (MVL)

  1. Writing for computer science

    CERN Document Server

    Zobel, Justin

    2015-01-01

    All researchers need to write or speak about their work, and to have research  that is worth presenting. Based on the author's decades of experience as a researcher and advisor, this third edition provides detailed guidance on writing and presentations and a comprehensive introduction to research methods, the how-to of being a successful scientist.  Topics include: ·         Development of ideas into research questions; ·         How to find, read, evaluate and referee other research; ·         Design and evaluation of experiments and appropriate use of statistics; ·         Ethics, the principles of science and examples of science gone wrong. Much of the book is a step-by-step guide to effective communication, with advice on:  ·         Writing style and editing; ·         Figures, graphs and tables; ·         Mathematics and algorithms; ·         Literature reviews and referees' reports; ·         Structuring of arguments an...

  2. Science Teaching and Learning Activities and Students' Engagement in Science

    Science.gov (United States)

    Hampden-Thompson, Gillian; Bennett, Judith

    2013-01-01

    The purpose of this analysis is to describe the variation in students' reports of engagement in science across science teaching and learning activities. In addition, this study examines student and school characteristics that may be associated with students' levels of engagement in science. Data are drawn from the Programme for International…

  3. A pragmatic conception of science: Implications for science teaching

    Science.gov (United States)

    Sessoms, Deidre Bates

    In this dissertation, I examine various philosophical conceptions of the nature of science---its goals, methods and products---and link those views to how science is taught. While the review begins in the 1600s, the focus is primarily on logical positivism. The logical positivist view of science prevailed for much of the twentieth century and has greatly influenced how science is taught. The review section culminates with current conceptions of science from the fields of philosophy, sociology, feminist studies and radical studies of science. These various conceptions of the nature of science are linked to how science is currently taught, at the K--12 level and at the university. In particular, the logical positivist conception has influenced the teaching of science by emphasizing the products of science (factual knowledge and theories) over the processes of science (the social methods of knowledge production). As a result of viewing science as the logical positivists did, teachers primarily focus on science as unchanging factual knowledge, at the expense of examining the social and cultural aspects of scientific practices. I develop a pragmatic conception of the method of science as reflective thinking that we effectively use in our everyday lives. Linking that conception with the aims that John Dewey outlined for schools in a democratic society points the way towards certain goals and methods for teaching science. Therefore, I explore the type of science teaching that might result when viewing science as a pragmatic activity conducted in a democracy. Teaching of this sort would involve students in working together on shared problems that arise in the context of daily life. For science students at the university, this would include participating in and critiquing scientific research in active research laboratories. Implementing this view of science teaching might result in modifications in the practices and goals of science. Lastly, the experiences of a group of

  4. Transactions on Computational Science IX

    DEFF Research Database (Denmark)

    The 9th issue of the Transactions on Computational Science journal, edited by François Anton, is devoted to the subject of Voronoi diagrams in science and engineering. The 9 papers included in the issue constitute extended versions of selected papers from the International Symposium on Voronoi...... Diagrams, held in Copenhagen, Denmark, June 23-36, 2009. Topics covered include: divide and conquer construction of Voronoi diagrams; new generalized Voronoi diagrams or properties of existing generalized Voronoi diagrams; and applications of Voronoi diagrams and their duals in graph theory, computer...

  5. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  6. Learning computer science concepts with Scratch

    Science.gov (United States)

    Meerbaum-Salant, Orni; Armoni, Michal; (Moti) Ben-Ari, Mordechai

    2013-09-01

    Scratch is a visual programming environment that is widely used by young people. We investigated if Scratch can be used to teach concepts of computer science (CS). We developed learning materials for middle-school students that were designed according to the constructionist philosophy of Scratch and evaluated them in a few schools during two years. Tests were constructed based upon a novel combination of the revised Bloom taxonomy and the Structure of the Observed Learning Outcome taxonomy. These instruments were augmented with qualitative tools, such as observations and interviews. The results showed that students could successfully learn important concepts of CS, although there were problems with some concepts such as repeated execution, variables, and concurrency. We believe that these problems can be overcome by modifications to the teaching process that we suggest.

  7. Correlation Educational Model in Primary Education Curriculum of Mathematics and Computer Science

    Science.gov (United States)

    Macinko Kovac, Maja; Eret, Lidija

    2012-01-01

    This article gives insight into methodical correlation model of teaching mathematics and computer science. The model shows the way in which the related areas of computer science and mathematics can be supplemented, if it transforms the way of teaching and creates a "joint" lessons. Various didactic materials are designed, in which all…

  8. Systematic Testing should not be a Topic in the Computer Science Curriculum!

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2003-01-01

    In this paper we argue that treating "testing" as an isolated topic is a wrong approach in computer science and software engineering teaching. Instead testing should pervade practical topics and exercises in the computer science curriculum to teach students the importance of producing software...

  9. Computer Multimedia Assisted English Vocabulary Teaching Courseware

    Directory of Open Access Journals (Sweden)

    Nan Yue

    2017-12-01

    Full Text Available English vocabulary is often regarded as the most boring link in English learning. However, English vocabulary is the basis of all aspects of English learning. Therefore, enriching the process of English vocabulary learning and stimulating the interest of English vocabulary learning are the keys to the reform of English vocabulary teaching. The computer multimedia is developing and popularizing rapidly with the rapid development of informationization and networking, which plays its role in more and more fields. The application of multimedia technology in the field of teaching is no longer strange. This paper mainly studied the design of computer multimedia assisted English vocabulary teaching courseware. First of all, this paper gave an overview of computer multimedia technology from the aspects of concept, characteristics, development and application situation, which cited and analyzed the cognitive learning theory and memory law. Under the guidance of scientific laws and in combination with the requirement analysis and pattern construction of English vocabulary teaching, this paper realized the module design, style design and database design of English vocabulary courseware. Finally, the content of English vocabulary teaching courseware was demonstrated, and its application effect was verified through the combination of subjective evaluation and objective evaluation. This article has an important guiding significance for stimulating students’ interest in English vocabulary learning and enhancing the quality of vocabulary teaching.

  10. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  11. The Education Professorate: Teaching an "Artificial" Science.

    Science.gov (United States)

    Wagener, James W.

    This paper argues that conceiving the education professor's role in higher education as that of teaching an "artificial" science is a helpful metaphor for re-contextualizing this mission. How the use of the metaphor of an artificial science bears on the role of the education professorate is examined by applying the purposive-inner…

  12. An Experiential Course for Teaching Social Science.

    Science.gov (United States)

    Baldridge, J. Victor; And Others

    In an effort to put new vigor into the learning situation, an experiential approach to the teaching of social sciences in higher education is offered in this paper. The paper describes how the experiential approach is being used in an academic sociology course at Stanford which is adaptable to a wide variety of social sciences courses. Differing…

  13. Teaching Science from Cultural Points of Intersection

    Science.gov (United States)

    Grimberg, Bruna Irene; Gummer, Edith

    2013-01-01

    This study focuses on a professional development program for science teachers near or on American Indian reservations in Montana. This program was framed by culturally relevant pedagogy premises and was characterized by instructional strategies and content foci resulting from the intersection between three cultures: tribal, science teaching, and…

  14. Possibilities of computer application in modern geography teaching process

    Directory of Open Access Journals (Sweden)

    Ivkov-Džigurski Anđelija

    2009-01-01

    Full Text Available Geography is a science that follows modern trends in the development of contemporary science. One of the crucial things that gives teaching process a high quality in the application of modern techniques and methods. Modern organization of the teaching process in primary and secondary schools is unimaginable without innovations. This would mean changes and new elements in all segments of the teaching process. Good organization, innovation and new tendencies in the development of the science can raise the quality of the teaching process, thus enabling the student to study fully and rationally. Innovations should help students develop a dialectic way of thinking when explaining objects, phenomena and processes in nature and society, as well as enable them to notice cause and effect relationships. The application of new methods should provide maximum activity of the students in terms of their research and independent work. Computers are used in many different ways therefore they can be used very rationally in different segments of the teaching process.

  15. Teaching Science Fact with Science Fiction

    Science.gov (United States)

    Raham, R. Gary

    2004-01-01

    The literature of science fiction packs up the facts and discoveries of science and runs off to futures filled with both wonders and warnings. Kids love to take the journeys it offers for the thrill of the ride, but they can learn as they travel, too. This book will provide the reader with: (1) an overview of the past 500 years of scientific…

  16. Computability, complexity, and languages fundamentals of theoretical computer science

    CERN Document Server

    Davis, Martin D; Rheinboldt, Werner

    1983-01-01

    Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science provides an introduction to the various aspects of theoretical computer science. Theoretical computer science is the mathematical study of models of computation. This text is composed of five parts encompassing 17 chapters, and begins with an introduction to the use of proofs in mathematics and the development of computability theory in the context of an extremely simple abstract programming language. The succeeding parts demonstrate the performance of abstract programming language using a macro expa

  17. Social Constructivism and Teaching of Social Science

    OpenAIRE

    Mishra, Rishabh

    2014-01-01

    The paper presents an overview of prevailing pedagogic practices of social science at school level in India. It has been sketched with the help of social science teachers’ interviews. The analysis of teachers’ interview revealed that the teaching of social science is a reflection of teacher’s own biases and beliefs; dominated by deficit model of thinking and learning. Against this backdrop the paper tries to address the question do we have any alternative of ‘deficit model’ of tea...

  18. Teaching natural language to computers

    OpenAIRE

    Corneli, Joseph; Corneli, Miriam

    2016-01-01

    "Natural Language," whether spoken and attended to by humans, or processed and generated by computers, requires networked structures that reflect creative processes in semantic, syntactic, phonetic, linguistic, social, emotional, and cultural modules. Being able to produce novel and useful behavior following repeated practice gets to the root of both artificial intelligence and human language. This paper investigates the modalities involved in language-like applications that computers -- and ...

  19. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  20. A Case Study of the Introduction of Computer Science in NZ Schools

    Science.gov (United States)

    Bell, Tim; Andreae, Peter; Robins, Anthony

    2014-01-01

    For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…

  1. Pre-service secondary school science teachers science teaching ...

    African Journals Online (AJOL)

    PROF.MIREKU

    to the classroom behaviour of the teacher, involving openness to new ideas and the development of positive .... In a study to identify changes in pre-service elementary teachers' sense of efficacy in teaching science ... any other perceptions of science teachers about their self-efficacy changes according to gender and years ...

  2. Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science

    CERN Document Server

    Nguyen, Quang

    2012-01-01

    The latest inventions in computer technology influence most of human daily activities. In the near future, there is tendency that all of aspect of human life will be dependent on computer applications. In manufacturing, robotics and automation have become vital for high quality products. In education, the model of teaching and learning is focusing more on electronic media than traditional ones. Issues related to energy savings and environment is becoming critical.   Computational Science should enhance the quality of human life,  not only solve their problems. Computational Science should help humans to make wise decisions by presenting choices and their possible consequences. Computational Science should help us make sense of observations, understand natural language, plan and reason with extensive background knowledge. Intelligence with wisdom is perhaps an ultimate goal for human-oriented science.   This book is a compilation of some recent research findings in computer application and computational sci...

  3. Teaching Computer Ethics: Why, What, Who, When, and How.

    Science.gov (United States)

    Bear, George G.

    1986-01-01

    Addresses several important questions regarding the teaching of computer ethics that are being raised by educators, but have been neglected at conferences and in computer education literature: why teach computer ethics; what ethical issues should be taught; who should teach computer ethics; and when and how it should be taught. (MBR)

  4. Learning to teach effectively: Science, technology, engineering, and mathematics graduate teaching assistants' teaching self-efficacy

    Science.gov (United States)

    Dechenne, Sue Ellen

    Graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) are important in the teaching of undergraduate students (Golde & Dore, 2001). However, they are often poorly prepared for teaching (Luft, Kurdziel, Roehrig, & Turner, 2004). This dissertation addresses teaching effectiveness in three related manuscripts: (1) A position paper that summarizes the current research on and develops a model of GTA teaching effectiveness. (2) An adaptation and validation of two instruments; GTA perception of teaching training and STEM GTA teaching self-efficacy. (3) A model test of factors that predict STEM GTA teaching self-efficacy. Together these three papers address key questions in the understanding of teaching effectiveness in STEM GTAs including: (a) What is our current knowledge of factors that affect the teaching effectiveness of GTAs? (b) Given that teaching self-efficacy is strongly linked to teaching performance, how can we measure STEM GTAs teaching self-efficacy? (c) Is there a better way to measure GTA teaching training than currently exists? (d) What factors predict STEM GTA teaching self-efficacy? An original model for GTA teaching effectiveness was developed from a thorough search of the GTA teaching literature. The two instruments---perception of training and teaching self-efficacy---were tested through self-report surveys using STEM GTAs from six different universities including Oregon State University (OSU). The data was analyzed using exploratory and confirmatory factor analysis. Using GTAs from the OSU colleges of science and engineering, the model of sources of STEM GTA teaching self-efficacy was tested by administering self-report surveys and analyzed by using OLS regression analysis. Language and cultural proficiency, departmental teaching climate, teaching self-efficacy, GTA training, and teaching experience affect GTA teaching effectiveness. GTA teaching self-efficacy is a second-order factor combined from self

  5. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  6. University rankings in computer science

    DEFF Research Database (Denmark)

    Ehret, Philip; Zuccala, Alesia Ann; Gipp, Bela

    2017-01-01

    This is a research-in-progress paper concerning two types of institutional rankings, the Leiden and QS World ranking, and their relationship to a list of universities’ ‘geo-based’ impact scores, and Computing Research and Education Conference (CORE) participation scores in the field of computer...... science. A ‘geo-based’ impact measure examines the geographical distribution of incoming citations to a particular university’s journal articles for a specific period of time. It takes into account both the number of citations and the geographical variability in these citations. The CORE participation...

  7. Mathematical foundation for computer science

    CERN Document Server

    Vashanti, M

    2013-01-01

    "Mathematical Foundation For Computer Science", a textbook covers mathematical logic, Normal Forms, Graphs, Trees and Relations. The emphasis in the book is on the presentation of fundamentals and theoretical concepts in an intelligible and easy to understand manner. Every topic is illustrated with a number of problems of increasing complexities which will help the beginner understand the fundamentals involved and enable them to solve various problems.

  8. Chemistry Teaching: Science or Alchemy?

    Science.gov (United States)

    Johnstone, A. H.

    1997-01-01

    Suggests that the development of good chemistry teaching and the pursuit of research have essentially the same structure. Similarities include the need for a clear focus, efficiency in time and effort, and a direction that is more often right than wrong. (DDR)

  9. Teaching science through video games

    Science.gov (United States)

    Smaldone, Ronald A.; Thompson, Christina M.; Evans, Monica; Voit, Walter

    2017-02-01

    Imagine a class without lessons, tests and homework, but with missions, quests and teamwork. Video games offer an attractive educational platform because they are designed to be fun and engaging, as opposed to traditional approaches to teaching through lectures and assignments.

  10. The SQL Server Database for Non Computer Professional Teaching Reform

    Science.gov (United States)

    Liu, Xiangwei

    2012-01-01

    A summary of the teaching methods of the non-computer professional SQL Server database, analyzes the current situation of the teaching course. According to non computer professional curriculum teaching characteristic, put forward some teaching reform methods, and put it into practice, improve the students' analysis ability, practice ability and…

  11. Nuclear War and Science Teaching.

    Science.gov (United States)

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  12. Advanced in Computer Science and its Applications

    CERN Document Server

    Yen, Neil; Park, James; CSA 2013

    2014-01-01

    The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.

  13. Computer science teacher training at the University of Groningen

    NARCIS (Netherlands)

    Grgurina, Natasa; Mittermeir, RT; Syslo, MM

    2008-01-01

    The University Center for Academic Learning and Teaching (UOCG) provides the University of Groningen with an educational program to train fully qualified secondary school teachers in many secondary school subjects including computer science. This two-year Master's in Education Program consists of

  14. Girls Save the World through Computer Science

    Science.gov (United States)

    Murakami, Christine

    2011-01-01

    It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…

  15. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  16. Computer Science and the Liberal Arts

    Science.gov (United States)

    Shannon, Christine

    2010-01-01

    Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…

  17. Computer-aided design and computer science technology

    Science.gov (United States)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  18. African Journals Online: Technology, Computer Science ...

    African Journals Online (AJOL)

    Items 1 - 29 of 29 ... The Journal of Applied Science, Engineering and Technology covers research activities and development in the field of Applied Sciences and Technology as it relates to Agricultural Engineering, Biotechnology, Computer Science and Engineering Computations, Civil Engineering, Food Science and ...

  19. Teaching Twentieth-Century Science

    Science.gov (United States)

    Lemke, J. L.

    1974-01-01

    Considers the question: Can fundamental modern concepts of special relativity and quantum mechanics be taught to students with minimal preparation in science and mathematics in anything other than oversimplified terms? (PEB)

  20. Teaching Health and Safety through Science

    Science.gov (United States)

    School Science Review, 2013

    2013-01-01

    Experimental and investigative work has been an integral element in the teaching of science in schools for many years. Although students have always been taught to work safely, there is now a more general requirement that they will be taught about health and safety and how it should be implemented. That is, they must understand something of the…

  1. Teaching science students to identify entrepreneurial opportunities

    NARCIS (Netherlands)

    Nab, J.|info:eu-repo/dai/nl/304827614

    2015-01-01

    This dissertation describes a research project on teaching science students to identify entrepreneurial opportunities, which is a core competence for entrepreneurs that should be emphasized in education. This research consists of four studies. The first case study aims at finding design strategies

  2. Teaching Political Science through Memory Work

    Science.gov (United States)

    Jansson, Maria; Wendt, Maria; Ase, Cecilia

    2009-01-01

    In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…

  3. Teaching Science, with Faith in Mind

    Science.gov (United States)

    Eisen, Arri; Westmoreland, David

    2009-01-01

    Last summer, Governor Bobby Jindal signed the Louisiana Science Education Act into law. Although the name of the bill sounds innocuous, it is backed by the intelligent-design movement and will no doubt lead to yet another court case on teaching evolution and creationism in school and college classrooms. After all, courts and classrooms have served…

  4. Social Constructivism and Teaching of Social Science

    Directory of Open Access Journals (Sweden)

    Rishabh Kumar Mishra

    2014-10-01

    Full Text Available The paper presents an overview of prevailing pedagogic practices of social science at school level in India. It has been sketched with the help of social science teachers’ interviews. The analysis of teachers’ interview revealed that the teaching of social science is a reflection of teacher’s own biases and beliefs; dominated by deficit model of thinking and learning. Against this backdrop the paper tries to address the question do we have any alternative of ‘deficit model’ of teaching learning? If yes, what is it? How it can be designed and executed? In the present descriptive study the researcher adopts the theoretical underpinnings of Socio-cultural approach to learning and tries to design and execute constructivist pedagogic setting for teaching social science. It emerges from the analysis of these constructivists pedagogic settings that it helps to develop and sustain a culture of inquiry in the classroom where the strong interface between students’ everyday knowledge and school knowledge take place. The paper establishes the argument that for moving deficit model of teaching-learning, knowledge should be viewed as co-constructed, negotiated and situated entity, knower should have agency and the voice in process of knowing and the process learning should be dialogic.

  5. Teaching Science in English through Cognitive Strategies

    Science.gov (United States)

    Bueno Hernández, Yuly Andrea

    2012-01-01

    This study shows the impact and results of implementing three cognitive strategies in science teaching in English. The three-month study was carried out with 144 second grade students at a public school of Bogota's Bilingualism program, but only 40 students contributed in the data collection process. Data collected from observations and…

  6. Restructuring Post-School Science Teaching Programmes

    Indian Academy of Sciences (India)

    2008-09-30

    Sep 30, 2008 ... Shri Aurobindo highlighted three basic principles of the teaching- learning process: 1. Nothing can be taught – the teacher is not an instructor or task- ..... created. Funding for all these grants needs to be enhanced several- fold in the XI Plan. Although the suggestions in our proposal are for science and ...

  7. Science student teacher's perceptions of good teaching ...

    African Journals Online (AJOL)

    kofi.mereku

    This study provides a rich narrative on a university of technology's science students' ... Good teaching is that which promotes student learning, it is not ... Learning happens when students read, talk, write, explain, make connections between ideas, try things out and observe the results, analyse, evaluate and organise their ...

  8. How do science centers perceive their role in science teaching?

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis; Stougaard, Birgitte; Andersen, Beth Wehner

    This poster presents the data of a survey of 11 science centres in the Region of Southern Denmark. The survey is the initial step in a project which aims, on the one hand, to identify the factors which conditions successful learning outcomes of visits to science centres, and, on the other hand...... and teachers. In the present survey we have approached the topic from the perspective of science centres. Needless to say, the science centres’ own perception of their role in science teaching plays a vital role with respect to the successfulness of such visits. The data of our survey suggest that, also from......, to apply this identification so as to guide the interaction of science teachers and science centres. Recent literature on this topic (Rennie et. al. 2003; Falk & Dierking 2000) suggest that stable learning outcomes of such visits require that such visits are (1) prepared in the sense that the teacher has...

  9. MANIFESTO OF COMPUTATIONAL SOCIAL SCIENCE

    Directory of Open Access Journals (Sweden)

    Rosaria Conte

    2013-11-01

    Full Text Available The increasing integration of technology into our lives has created unprecedented volumes of data on society’s everyday behaviour. Such data opens up exciting new opportunities to work towards a quantitative understanding of our complex social systems, within the realms of a new discipline known as Computational Social Science. Against a background of financial crises, riots and international epidemics, the urgent need for a greater comprehension of the complexity of our interconnected global society and an ability to apply such insights in policy decisions is clear. This manifesto outlines the objectives of this new scientific direction, considering the challenges involved in it, and the extensive impact on science, technology and society that the success of this endeavour is likely to bring about.

  10. Biomaterial science meets computational biology.

    Science.gov (United States)

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  11. Teachers' and Students' Conceptions of Good Science Teaching

    Science.gov (United States)

    Yung, Benny Hin Wai; Zhu, Yan; Wong, Siu Ling; Cheng, Man Wai; Lo, Fei Yin

    2013-01-01

    Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of "Density" was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified…

  12. The Effect of Simulation-Assisted Laboratory Applications on Pre-Service Teachers' Attitudes towards Science Teaching

    Science.gov (United States)

    Ulukök, Seyma; Sari, Ugur

    2016-01-01

    In this study, the effects of computer-assisted laboratory applications on pre-service science teachers' attitudes towards science teaching were investigated and the opinions of the pre-service teachers about the application were also determined. The study sample consisted of 46 students studying science teaching Faculty of Education. The study…

  13. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The notion of excellence in science is universally attributed to the “pathfinders” – those whose distinction lies in their research work: New results, new interpretations, new research techniques are the driving force of scientific progress. This holds in a general sense as well as for the individual scientist. Still, while scientific ...

  14. Teaching Science through the Science Technology and Society ...

    African Journals Online (AJOL)

    ... the teaching methods course of all teacher training Programmes and that the science syllabus be reviewed regularly so that it responds to current needs. Relevant authorities need inject more resources towards in-service programmes and come up with legislation on in-service programmes e.g. promotion or salary hikes ...

  15. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  16. Integrating popular science books into college science teaching

    Science.gov (United States)

    Lam, Lui

    2000-03-01

    We note that (1) many students in our introductory physics classes are not physics majors; (2) many of the undergraduate physics majors will not go on to get a Ph.D. in physics; (3) it is highly desirable to train our students to be knowledgeable in many disciplines, in order to be a marketable and productive worker in this rapidly changing world; (4) we want our college graduates to be informed in science matters and friendly to the science enterprise after they graduate, especially if they become millionaires or billionaires or influencial politicians who control our science budgets; (5) there is no textbook out there that teaches really, truly multiple disciplines for freshmen. We also note that (1) popular science books are available in almost every bookstore in almost every town; (2) many of them are written by pioneers themselves, or by Nobel laureates or very gifted science writers; (3) they are affordable to almost everybody (about 15 dollars for paperback); (4) these are the places to learn how research and discovery were actually done in very recent times; (5) these books are easy (no equations) and very entertaining to read. In the last two years, I integrated these popular science books into my teaching, with very positive results. I think every other college science teacher can do the same. This will improve science education (for the average citizens) in a very fundamental way, without any new funding.

  17. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  18. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-02-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching as a career. Analysis of interns' subsequent career plans revealed the internships were not effective in recruiting the interns into the secondary science teacher education program, although many interns thought they might consider becoming teachers later in their lives. Reasons for not pursuing teaching included continued indecisiveness, inflexibility of required plans of study, and concerns about teachers' pay and classroom management.

  19. How Often Do Early Childhood Teachers Teach Science Concepts? Determinants of the Frequency of Science Teaching in Kindergarten

    Science.gov (United States)

    Saçkes, Mesut

    2014-01-01

    The purpose of the present study was to explore how often teachers of young children teach science concepts in kindergarten and examine the factors that influence the frequency of science teaching in early years. A theoretical model of the determinants of the frequency of science teaching in kindergarten was developed and tested using a…

  20. Education:=Coding+Aesthetics; Aesthetic Understanding, Computer Science Education, and Computational Thinking

    Science.gov (United States)

    Good, Jonathon; Keenan, Sarah; Mishra, Punya

    2016-01-01

    The popular press is rife with examples of how students in the United States and around the globe are learning to program, make, and tinker. The Hour of Code, maker-education, and similar efforts are advocating that more students be exposed to principles found within computer science. We propose an expansion beyond simply teaching computational…

  1. Teaching with Moodle in Soil Science

    Science.gov (United States)

    Roca, Núria

    2014-05-01

    Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil is integral to many ecological and social systems and it holds potential solutions for many of the world's economic and scientific problems as climate change or scarcity of food and water. The teaching of Soil Science, as a natural science in its own right, requires principles that reflect the unique features and behaviour of soil and the practices of soil scientists. It could be argued that a unique set of teaching practices applies to Soil Science; however specific teaching practices are scarce in literature. The present work was triggered by the need to develop new techniques of teaching to speed up the learning process and to experiment with new methods of teaching. For such, it is necessary to adopt virtual learning environment to new learning requirements regarding Soil Science. This paper proposes a set of e-teaching techniques (as questionnaires, chats as well as forums) introduced in Moodle virtual learning Environment in order to increase student motivation and interest in Soil Science. Such technologies can be used to: a)Increase the amount of time a teacher allots for student reflection after asking a question and before a student responds (wait-time). This practice increases the quantity and quality of students' answers. The students give longer responses, students give more evidence for their ideas and conclusions, students speculate and hypothesize more and more students participated in responding. Furthermore, students ask more questions and talk more to other students. b)Improve active learning, an essential paradigm in education. In contrast to learning-before-doing, we propose to focus on learning-in-doing, a model where learners are increasingly involved in the authentic practices of communities through learning conversations and activities involving expert

  2. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.

  3. Using Calendars to Teach Science

    Directory of Open Access Journals (Sweden)

    Eric A. Kincanon

    2017-07-01

    Full Text Available This paper considers the use of calendar construction as an activity for 5th through 8th graders to reinforce science and mathematics concepts. The fundamental cyclic nature of many processes makes it possible to posit alternatives to the modern calendar. Students, in constructing their own calendars, will better appreciate the scientific basis of the modern calendar as well as the cyclic nature of the processes considered in the construction of alternatives. This enhances STEM skills by requiring the students to apply creative mathematical and scientific solutions to a real world problem: tracking cyclic time.

  4. Teaching children the structure of science

    Science.gov (United States)

    Börner, Katy; Palmer, Fileve; Davis, Julie M.; Hardy, Elisha; Uzzo, Stephen M.; Hook, Bryan J.

    2009-01-01

    Maps of the world are common in classroom settings. They are used to teach the juxtaposition of natural and political functions, mineral resources, political, cultural and geographical boundaries; occurrences of processes such as tectonic drift; spreading of epidemics; and weather forecasts, among others. Recent work in scientometrics aims to create a map of science encompassing our collective scholarly knowledge. Maps of science can be used to see disciplinary boundaries; the origin of ideas, expertise, techniques, or tools; the birth, evolution, merging, splitting, and death of scientific disciplines; the spreading of ideas and technology; emerging research frontiers and bursts of activity; etc. Just like the first maps of our planet, the first maps of science are neither perfect nor correct. Today's science maps are predominantly generated based on English scholarly data: Techniques and procedures to achieve local and global accuracy of these maps are still being refined, and a visual language to communicate something as abstract and complex as science is still being developed. Yet, the maps are successfully used by institutions or individuals who can afford them to guide science policy decision making, economic decision making, or as visual interfaces to digital libraries. This paper presents the process and results of creating hands-on science maps for kids that teaches children ages 4-14 about the structure of scientific disciplines. The maps were tested in both formal and informal science education environments. The results show that children can easily transfer their (world) map and concept map reading skills to utilize maps of science in interesting ways.

  5. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  6. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  7. Computer science handbook. Vol. 13.3. Environmental computer science. Computer science methods for environmental protection and environmental research

    International Nuclear Information System (INIS)

    Page, B.; Hilty, L.M.

    1994-01-01

    Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de

  8. Optical design teaching by computing graphic methods

    Science.gov (United States)

    Vazquez-Molini, D.; Muñoz-Luna, J.; Fernandez-Balbuena, A. A.; Garcia-Botella, A.; Belloni, P.; Alda, J.

    2012-10-01

    One of the key challenges in the teaching of Optics is that students need to know not only the math of the optical design, but also, and more important, to grasp and understand the optics in a three-dimensional space. Having a clear image of the problem to solve is the first step in order to begin to solve that problem. Therefore to achieve that the students not only must know the equation of refraction law but they have also to understand how the main parameters of this law are interacting among them. This should be a major goal in the teaching course. Optical graphic methods are a valuable tool in this way since they have the advantage of visual information and the accuracy of a computer calculation.

  9. Tips and Tools for Teaching Planetary Science

    Science.gov (United States)

    Schneider, N. M.

    2011-10-01

    The poster will describe handson exercises with demonstrations, clicker questions and discussion to demonstrate how to help students understand planets on a deeper conceptual level. We'll also discuss ways to take the latest discoveries beyond "wow" and turn them into teachable moments. The goal is to give modern strategies for teaching planetary science, emphasizing physical concepts and comparative principles. All will be given digital copies of video clips, demonstration descriptions, clicker questions, web links and powerpoint slidesets on recent planetary science discoveries.

  10. Taking a Scientific Approach to Science Teaching

    Science.gov (United States)

    Pollock, S.

    2011-09-01

    It is now well-documented that traditionally taught, large-scale introductory science courses often fail to teach our students the basics. In fact, these same courses have been found to teach students things we don't intend. Building on a tradition of research, the physics and astronomy education research communities have been investigating the effects of educational reforms at the undergraduate level for decades. Both within these scientific communities and in the fields of education, cognitive science, psychology, and other social sciences, we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students. This presentation will discuss a variety of effective classroom practices, (with an emphasis on peer instruction, "clickers," and small group activities), the surrounding educational structures, and examine assessments which indicate when and why these do (and sometimes do not) work. After a broad survey of education research, we will look at some of the exciting theoretical and experimental developments within this field that are being conducted at the University of Colorado. Throughout, we will consider research and practices that can be of value in both physics and astronomy classes, as well as applications to teaching in a variety of environments.

  11. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  12. Children's Science Journals: Tools for Teaching, Learning, and Assessing.

    Science.gov (United States)

    Shepardson, Daniel P.; Britsch, Susan J.

    1997-01-01

    Discusses effective ways of using children's journals in science teaching and methods for assessing children's journals for science learning. Emphasizes the importance of children's own cognitive and verbal efforts to make sense of science phenomena. (JRH)

  13. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    Directory of Open Access Journals (Sweden)

    Nadi SUPRAPTO

    2017-10-01

    Full Text Available This study focuses on attitudes toward (teaching science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs from the Open University in Surabaya regional office. Attitudes toward (teaching science’ (ATS instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descriptive analysis and confirmatory factor analysis. The model fit of the attitudes toward (teaching science can be described from seven dimensions: self-efficacy for teaching science, the relevance of teaching science, gender-stereotypical beliefs, anxiety in teaching science, the difficulty of teaching science, perceived dependency on contextual factors, and enjoyment in teaching science. The results of the research also described science learning at the Open University of Indonesia looks like. Implications for primary teacher education are discussed.

  14. Innovations in Computing Sciences and Software Engineering

    CERN Document Server

    Sobh, Tarek

    2010-01-01

    "Innovations in Computing Sciences and Software Engineering" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Software Engineering, Computer Engineering, and Systems Engineering and Sciences. The topics covered include: Image and Pattern Recognition: Compression, Image processing, Signal Processing Architectures, Signal Processing for Communication, Signal Processing Implementation, Speech Compression, and Video Coding Architectures; Languages and Systems: Algorithms, Databases,

  15. Experiences Using an Open Source Software Library to Teach Computer Vision Subjects

    Science.gov (United States)

    Cazorla, Miguel; Viejo, Diego

    2015-01-01

    Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with emphasis on readability and…

  16. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  17. The science of computing - Parallel computation

    Science.gov (United States)

    Denning, P. J.

    1985-01-01

    Although parallel computation architectures have been known for computers since the 1920s, it was only in the 1970s that microelectronic components technologies advanced to the point where it became feasible to incorporate multiple processors in one machine. Concommitantly, the development of algorithms for parallel processing also lagged due to hardware limitations. The speed of computing with solid-state chips is limited by gate switching delays. The physical limit implies that a 1 Gflop operational speed is the maximum for sequential processors. A computer recently introduced features a 'hypercube' architecture with 128 processors connected in networks at 5, 6 or 7 points per grid, depending on the design choice. Its computing speed rivals that of supercomputers, but at a fraction of the cost. The added speed with less hardware is due to parallel processing, which utilizes algorithms representing different parts of an equation that can be broken into simpler statements and processed simultaneously. Present, highly developed computer languages like FORTRAN, PASCAL, COBOL, etc., rely on sequential instructions. Thus, increased emphasis will now be directed at parallel processing algorithms to exploit the new architectures.

  18. THE USE OF COMPUTERS FOR TEACHING

    Directory of Open Access Journals (Sweden)

    Stanika DIKIC

    1997-09-01

    Full Text Available Experts of the developed countries try to make the handicapped persons familiar with the computer. Nowadays exist the series hardwares and softwares that are adjusted to the handicapped persons and by which their problem are solved. That way, the modern technology, helps the alleviation of their handicaps.In this paper are presented the results of the design “Development of the Computers and Electronic Devices for the Blind and the Visually Impaired”, Chair of Tiflology, the University of Defectology, that is financed by the Department of Science and Technology of the Republic of Serbia.

  19. The Use of Computers in the Teaching of Geography.

    Science.gov (United States)

    Kent, W. Ashley, Ed.

    Eleven essays describe state of the art developments in the use of computers and computer-assisted learning to teach geography. Descriptions of the use of computers in the teaching of geography in their respective countries are contributed by educators from the United Kingdom, Italy, Belgium, The Netherlands, Australia, New Zealand, Scotland,…

  20. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  1. Teach the Teacher! Building ROV's to Teach Polar Science

    Science.gov (United States)

    Bartholow, S.; Warburton, J.

    2014-12-01

    In 2013, the Arctic Research Consortium of the United States (ARCUS) a non-profit corporation consisting of institutions organized and operated for educational, professional, or scientific purposes, received funding from Lockheed Martin to design and host a workshop for teachers. Middle School teachers participated in a three-day Polar Workshop designed to enlighten teachers regarding marine polar science and exploration through the use of remotely operated vehicles, or ROVs. The Polar Workshop was offered as part of a teacher professional development activity that took at the Monterey Bay Aquarium Research Institute. The workshop provided training for teachers alongside polar scientists and teacher mentors. The overall purpose of the workshop was to teach teachers about marine polar science and technology that could be used with students in classrooms. Teachers were teamed with a polar scientist and with a teacher mentor for the three-day project. Results from the evaluation of the Polar Workshop indicate this workshop was an excellent opportunity for the teachers who participated as well as for the scientists. In this presentation, we will share the evaluation data, best practices of the workshop model, and how teacher mentors, scientists, and graduate students can help teach teachers successfully.

  2. Non-parallel processing: Gendered attrition in academic computer science

    Science.gov (United States)

    Cohoon, Joanne Louise Mcgrath

    2000-10-01

    This dissertation addresses the issue of disproportionate female attrition from computer science as an instance of gender segregation in higher education. By adopting a theoretical framework from organizational sociology, it demonstrates that the characteristics and processes of computer science departments strongly influence female retention. The empirical data identifies conditions under which women are retained in the computer science major at comparable rates to men. The research for this dissertation began with interviews of students, faculty, and chairpersons from five computer science departments. These exploratory interviews led to a survey of faculty and chairpersons at computer science and biology departments in Virginia. The data from these surveys are used in comparisons of the computer science and biology disciplines, and for statistical analyses that identify which departmental characteristics promote equal attrition for male and female undergraduates in computer science. This three-pronged methodological approach of interviews, discipline comparisons, and statistical analyses shows that departmental variation in gendered attrition rates can be explained largely by access to opportunity, relative numbers, and other characteristics of the learning environment. Using these concepts, this research identifies nine factors that affect the differential attrition of women from CS departments. These factors are: (1) The gender composition of enrolled students and faculty; (2) Faculty turnover; (3) Institutional support for the department; (4) Preferential attitudes toward female students; (5) Mentoring and supervising by faculty; (6) The local job market, starting salaries, and competitiveness of graduates; (7) Emphasis on teaching; and (8) Joint efforts for student success. This work contributes to our understanding of the gender segregation process in higher education. In addition, it contributes information that can lead to effective solutions for an

  3. Using Educational Computer Games in the Classroom: Science Teachers' Experiences, Attitudes, Perceptions, Concerns, and Support Needs

    Science.gov (United States)

    An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances

    2016-01-01

    Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…

  4. ASCR Workshop on Quantum Computing for Science

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

  5. Americans aim to overhaul science teaching by 2061

    CERN Multimedia

    1990-01-01

    Project 2061 is a long-term initiative by the AAAS to reform classroom science. Deputy director Walter Gillespie claims that the aim is for schools to teach less content but teach it better (1/2 page).

  6. Pre-university training in computer science and office programming

    Directory of Open Access Journals (Sweden)

    Александр Иванович Громов

    2010-03-01

    Full Text Available Some features of the teaching of ICT in terms of building plans and learning objectives, to be the forefront in preparing students for the preparatory phase (in secondary and higher schools which brings mass teaching of computer science at an early stage to a qualitatively new level in accordance with modern requirements both in terms of national and international aspects are discussed in the article. The materials of the article are the basis for further development of modern EMC in accordance with the trends and the spirit of the time.

  7. Quality Teaching in Science: an Emergent Conceptual Framework

    Science.gov (United States)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  8. Sustainable computational science: the ReScience initiative

    DEFF Research Database (Denmark)

    Rougier, Nicolas; Hinsen, Konrad; Alexandre, Frédéric

    2017-01-01

    Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results, however computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research...

  9. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  10. Science in Cinema. Teaching Science Fact through Science Fiction Films.

    Science.gov (United States)

    Dubeck, Leroy W.; And Others

    Many feel that secondary school graduates are not prepared to compete in a world of rapidly expanding technology. High school and college students in the United States often prefer fantasy to science. This book offers a strategy for overcoming student apathy toward the physical sciences by harnessing the power of the cinema. In it, ten popular…

  11. COMPUTER SCIENCE DEVELOPMENTS RELEVANT TO PSYCHOLOGY.

    Science.gov (United States)

    on-line control of experiments by man-machine interaction. The developments in computer science which make these applications possible are discussed...in some detail. In addition, there are conceptual developments in computer science , particularly in the study of artificial intelligence, which may provide leads in the development of psychological theory. (Author)

  12. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  13. Labour market expectation of Nigerian computer science ...

    African Journals Online (AJOL)

    The objective of the study is to assess the effect of Nigerian Universities' curricula on the performance of Computer Science graduates. This paper looks into the strength and weaknesses of Computer Science graduates in Nigeria with a view to assess if they meet the labour market expectation. It also x-rays the women ...

  14. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  15. The science of computing shaping a discipline

    CERN Document Server

    Tedre, Matti

    2014-01-01

    The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field's champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing's central debates and portrays a broad perspecti

  16. Bringing computational science to the public.

    Science.gov (United States)

    McDonagh, James L; Barker, Daniel; Alderson, Rosanna G

    2016-01-01

    The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.

  17. The Effect of Computer Use in Science and Technology Lesson on Success and Attitude Towards

    OpenAIRE

    Cem O. Guzeller; Mustafa Dogru

    2011-01-01

    Problem statement: Computer being indispensable in our daily lives came into use in all fields of education. Use of computer for education activities became mandatory. This research is an experimental research performed by use of computer in science and technology and is important in terms of serving science education. General purpose of this research is to reveal the effect of computer-assisted teaching practice for subject of heat and temperature in primary school grade ...

  18. A survey of computational physics introductory computational science

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2008-01-01

    Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics

  19. Pedagogy of Science Teaching Tests: Formative assessments of science teaching orientations

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Zeynep Muğaloğlu, Ebru; Bentz, Amy; Sparks, Kelly

    2014-09-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies. This research and development work centers on constructing a formative assessment resource to help expose pre-service teachers to a greater number of science topics within teaching episodes using various modes of instruction. To this end, 100 problem-based, science pedagogy assessment items were developed via expert group discussions and pilot testing. Each item contains a classroom vignette followed by response choices carefully crafted to include four basic pedagogies (didactic direct, active direct, guided inquiry, and open inquiry). The brief but numerous items allow a substantial increase in the number of science topics that pre-service students may consider. The intention is that students and teachers will be able to share and discuss particular responses to individual items, or else record their responses to collections of items and thereby create a snapshot profile of their teaching orientations. Subsets of items were piloted with students in pre-service science methods courses, and the quantitative results of student responses were spread sufficiently to suggest that the items can be effective for their intended purpose.

  20. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  1. Semiotics, Information Science, Documents and Computers.

    Science.gov (United States)

    Warner, Julian

    1990-01-01

    Discusses the relationship and value of semiotics to the established domains of information science. Highlights include documentation; computer operations; the language of computing; automata theory; linguistics; speech and writing; and the written language as a unifying principle for the document and the computer. (93 references) (LRW)

  2. A Study of the Programming Languages Used in Information Systems and in Computer Science Curricula

    Science.gov (United States)

    Russell, Jack; Russell, Barbara; Pollacia, Lissa F.; Tastle, William J.

    2010-01-01

    This paper researches the computer languages taught in the first, second and third programming courses in Computer Information Systems (CIS), Management Information Systems (MIS or IS) curricula as well as in Computer Science (CS) and Information Technology (IT) curricula. Instructors teaching the first course in programming within a four year…

  3. Studies on attitude toward teaching science and anxiety about teaching science in preservice elementary teachers

    Science.gov (United States)

    Westerback, Mary E.

    These studies examined attitude toward teaching science (ATTS) using an adaptation of the Bratt Attitude Test (M-BAT); anxiety about teaching science (ANX-TS), as measured by the State-Trait Anxiety Inventory (STAI A-State); and selected demographic variables in preservice elementary teachers for the 1977-1978 and 1978-1979 academic years and a follow-up of those students who completed their student teaching in May 1979. The M-BAT and STAI were administered in September at the beginning of Science 6 (earth science and biology course), in December on the next to last day of Science 6, in May on the next to the last day of Science 5 (physical science), and in May 1979 after student teaching. In the two academic years, both ATTS and ANX-TS became more positive during the sequence Science 6-5. Both changes in ATTS and ANX-TS continued to change in a positive direction after completion of Science 6-5, after student teaching. There were differences in the times that the greatest changes in ATTS and ANX-TS occurred. In both studies, the greatest change in ATTS took place between September and December, during Science 6. The greatest change in ANX-TS, however, took place during Science 5 between December and May in the 1977-1978 study. In the 1978-1979 study, the greatest changes in ANX-TS occurred in Science 6, between September and December. The delayed reduction of ANX-TS in the 1977-1978 study may be explained by differences in teaching patterns. In 1977-1978, two teachers taught only their academic specialty, biology or earth science, to students who switched teachers midsemester. In 1978-1979, the same two instructors taught both biology and earth science to the same students. Correlation coefficients for successive and corresponding administrations of both the M-BAT and STAI suggest these variables are related. Students with more positive ATTS tended to have reduced ANX-TS. Neither the number of high school or college science and math courses completed nor the level

  4. Influencing Intended Teaching Practice: Exploring pre-service teachers' perceptions of science teaching resources

    Science.gov (United States)

    Cooper, Grant; Kenny, John; Fraser, Sharon

    2012-08-01

    Many researchers have identified and expressed concern over the state of science education internationally, but primary teachers face particular obstacles when teaching science due to their poor science background and low confidence with science. Research has suggested that exemplary resources, or units that work, may be an effective way to support primary teachers. This study explores the effect of one such resource on the intentions of pre-service primary teachers to teach science. The resource in question is Primary Connections, a series of learning resources produced by the Australian Academy of Science specifically designed for primary science. Evaluative studies of Primary Connections have indicated its efficacy with practising primary teachers but there is little evidence of its impact upon pre-service teachers. The purpose of this study was to investigate how effective these quality teaching resources were in influencing the intentions of primary pre-service teachers to teach science after they graduated. The theory of planned behaviour highlighted the linkage between the intentions of the pre-service teachers to teach science, and their awareness of and experiences with using Primary Connections during their education studies. This enabled key factors to be identified which influenced the intentions of the pre-service teachers to use Primary Connections to teach science after they graduate. The study also provided evidence of how quality science teaching resources can be effectively embedded in a teacher education programme as a means of encouraging and supporting pre-service teachers to teach science.

  5. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  6. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  7. Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.

    Science.gov (United States)

    Jolly, Laura D.; Sisler, Grovalynn

    1988-01-01

    The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…

  8. Multimedia Computing: Teaching and Research with TV and PCs (Commentary).

    Science.gov (United States)

    Smith, William Edward

    1991-01-01

    Argues that multimedia computing can allow journalism educators to change dramatically their teaching methods. Identifies "repurposing," the use of existing media resources for new teaching purposes. Observes that many journalism educators are learning programing languages needed to create computer software. Cites multimedia technology…

  9. Cloud computing with e-science applications

    CERN Document Server

    Terzo, Olivier

    2015-01-01

    The amount of data in everyday life has been exploding. This data increase has been especially significant in scientific fields, where substantial amounts of data must be captured, communicated, aggregated, stored, and analyzed. Cloud Computing with e-Science Applications explains how cloud computing can improve data management in data-heavy fields such as bioinformatics, earth science, and computer science. The book begins with an overview of cloud models supplied by the National Institute of Standards and Technology (NIST), and then:Discusses the challenges imposed by big data on scientific

  10. Study of Turkish Preschool Teachers' Attitudes toward Science Teaching

    Science.gov (United States)

    Erden, Feyza T.; Sönmez, Sema

    2011-05-01

    This study aims to explore preschool teachers' attitudes toward science teaching and its impact on classroom practices through the frequency of science activities provided in the classroom. In addition, the study investigates if their attitudes are related to factors such as educational level, years of teaching experience, and the school type they work in. The present research was conducted with 292 preschool teachers who work in public and private schools in different districts of Ankara, Turkey. The data were collected by administering the Early Childhood Teachers' Attitudes toward Science Teaching Scale. Our analyses indicate that there is a significant but weak link between preschool teachers' attitudes toward science teaching and the frequency of science activities that they provide in the classroom. Further, while teachers' characteristics such as educational level and experience are found to play an insignificant role on the overall measures of the scale, type of school appears to be a major factor in explaining the attitudes toward science teaching.

  11. Research on the Teaching System of the University Computer Foundation

    Directory of Open Access Journals (Sweden)

    Ji Xiaoyun

    2016-01-01

    Full Text Available Inonal students, the teaching contents, classification, hierarchical teaching methods with the combination of professional level training, as well as for top-notch students after class to promote comprehensive training methods for different students, establish online Q & A, test platform, to strengthen the integration professional education and computer education and training system of college computer basic course of study and exploration, and the popularization and application of the basic programming course, promote the cultivation of university students in the computer foundation, thinking methods and innovative practice ability, achieve the goal of individualized educ the College of computer basic course teaching, the specific circumstances of the need for students, professiation.

  12. Systematic Testing should not be a Topic in the Computer Science Curriculum!

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2003-01-01

    In this paper we argue that treating "testing" as an isolated topic is a wrong approach in computer science and software engineering teaching. Instead testing should pervade practical topics and exercises in the computer science curriculum to teach students the importance of producing software...... of high quality. We point out that we, as teachers, are partly to blame that many software products are of low quality. We describe a set of teaching guidelines that conveys our main pedagogical point to the students: that systematic testing is important, rewarding, and fun, and that testing should...

  13. Philosophy, computing and information science

    CERN Document Server

    Hagengruber, Ruth

    2014-01-01

    Over the last four decades computers and the internet have become an intrinsic part of all our lives, but this speed of development has left related philosophical enquiry behind. Featuring the work of computer scientists and philosophers, these essays provide an overview of an exciting new area of philosophy that is still taking shape.

  14. Code 672 observational science branch computer networks

    Science.gov (United States)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  15. Computer science: Data analysis meets quantum physics

    Science.gov (United States)

    Schramm, Steven

    2017-10-01

    A technique that combines machine learning and quantum computing has been used to identify the particles known as Higgs bosons. The method could find applications in many areas of science. See Letter p.375

  16. Computational Science: Ensuring America`s Competitiveness

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — ...rationalization and restructuring of computational science within universities and Federal agencies, and the development and maintenance of a multi-decade roadmap...

  17. Soft Computing Techniques in Vision Science

    CERN Document Server

    Yang, Yeon-Mo

    2012-01-01

    This Special Edited Volume is a unique approach towards Computational solution for the upcoming field of study called Vision Science. From a scientific firmament Optics, Ophthalmology, and Optical Science has surpassed an Odyssey of optimizing configurations of Optical systems, Surveillance Cameras and other Nano optical devices with the metaphor of Nano Science and Technology. Still these systems are falling short of its computational aspect to achieve the pinnacle of human vision system. In this edited volume much attention has been given to address the coupling issues Computational Science and Vision Studies.  It is a comprehensive collection of research works addressing various related areas of Vision Science like Visual Perception and Visual system, Cognitive Psychology, Neuroscience, Psychophysics and Ophthalmology, linguistic relativity, color vision etc. This issue carries some latest developments in the form of research articles and presentations. The volume is rich of contents with technical tools ...

  18. Iconic Gestures as Undervalued Representations during Science Teaching

    Science.gov (United States)

    Chue, Shien; Lee, Yew-Jin; Tan, Kim Chwee Daniel

    2015-01-01

    Iconic gestures that are ubiquitous in speech are integral to human meaning-making. However, few studies have attempted to map out the role of these gestures in science teaching. This paper provides a review of existing literature in everyday communication and education to articulate potential contributions of iconic gestures for science teaching.…

  19. On Teaching the Nature of Science: Perspectives and Resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-01-01

    In this paper, I present a critical review of the recent book, "On Teaching the Nature of Science: Perspectives and Resources," written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing…

  20. Teaching Political Science to first-year university students ...

    African Journals Online (AJOL)

    Perspectives in Education ... This paper explores the situated nature of the epistemological values of a social science discipline as it finds expression in a particular department. ... Keywords: Academic literacies; epistemology; disciplinary tribes and territories; teaching and learning regimes; teaching the social sciences ...

  1. The Role of Research on Science Teaching and Learning

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  2. Teaching Tomorrow: A Handbook of Science Fiction for Teachers.

    Science.gov (United States)

    Calkins, Elizabeth; McGhan, Barry

    Science Fiction appeals to young people and is suited for use in a wide range of classrooms. This handbook of Science Fiction for Teachers suggests ways of using Science Fiction to teach literature and English skills. Study guides based on two Science Fiction stories are presented, with activities such as individual papers and small group…

  3. Rangaswamy Narasimhan: Doyen of Computer Science and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Rangaswamy Narasimhan: Doyen of Computer Science and Technology. Srinivasan Ramani. Article-in-a-Box Volume 13 Issue 5 May 2008 pp 407-409. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Computer Science Concept Inventories: Past and Future

    Science.gov (United States)

    Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.

    2014-01-01

    Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…

  5. Is Computer Science Compatible with Technological Literacy?

    Science.gov (United States)

    Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.

    2018-01-01

    Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…

  6. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    Directory of Open Access Journals (Sweden)

    Mohd Ali Samsudin

    2015-02-01

    Full Text Available This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5 primary schools in Penang, Malaysia. The findings showed a relationship between kinesthetic, logical-mathematical, visual-spatial and naturalistic intelligences with the preferred science teaching. In addition there was a correlation between kinesthetic and visual-spatial intelligences with science process skills, implying that multiple intelligences are related to science learning.

  7. Computer assisted analysis of research-based teaching method in English newspaper reading teaching

    Science.gov (United States)

    Jie, Zheng

    2017-06-01

    In recent years, the teaching of English newspaper reading has been developing rapidly. However, the teaching effect of the existing course is not ideal. The paper tries to apply the research-based teaching model to English newspaper reading teaching, investigates the current situation in higher vocational colleges, and analyzes the problems. It designs a teaching model of English newspaper reading and carries out the empirical research conducted by computers. The results show that the teaching mode can use knowledge and ability to stimulate learners interest and comprehensively improve their ability to read newspapers.

  8. Summary of researches being performed in the Institute of Mathematics and Computer Science on computer science and information technologies

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2008-07-01

    Full Text Available Evolution of the informatization notion (which assumes automation of majority of human activities applying computers, computer networks, information technologies towards the notion of {\\it Global Information Society} (GIS challenges the determination of new paradigms of society: automation and intellectualization of production, new level of education and teaching, formation of new styles of work, active participation in decision making, etc. To assure transition to GIS for any society, including that from Republic of Moldova, requires both special training and broad application of progressive technologies and information systems. Methodological aspects concerning impact of GIS creation over the citizen, economic unit, national economy in the aggregate demands a profound study. Without systematic approach to these aspects the GIS creation would have confront great difficulties. Collective of researchers from the Institute of Mathematics and Computer Science (IMCS of Academy of Sciences of Moldova, which work in the field of computer science, constitutes the center of advanced researches and activates in those directions of researches of computer science which facilitate technologies and applications without of which the development of GIS cannot be assured.

  9. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  10. Computational materials science: The emergence of predictive ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Abstract. The availability of high performance computers and development of efficient algorithms has led to the emergence of computational materials science as the third branch of materials research complementing the traditional theoretical and experimental approaches. It has created new virtual realities in materials ...

  11. Computer Science in a Liberal Arts Context

    Science.gov (United States)

    Tenenberg, Josh; McCartney, Robert

    2007-01-01

    This issue is devoted to the curriculum guidelines from the Liberal Arts Computer Science Consortium. These guidelines provide a coherent and important model for computing education within a liberal arts context, giving primacy to critical reason, rigorous methods, and student engagement in the research process. In this regard, they are at the…

  12. Computational materials science: The emergence of predictive ...

    Indian Academy of Sciences (India)

    The availability of high performance computers and development of efficient algorithms has led to the emergence of computational materials science as the third branch of materials research complementing the traditional theoretical and experimental approaches. It has created new virtual realities in materials design that ...

  13. Computer science research and technology volume 3

    CERN Document Server

    Bauer, Janice P

    2011-01-01

    This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.

  14. Investigating an Intervention to Support Computer Simulation Use in Whole-Class Teaching

    NARCIS (Netherlands)

    Rutten, N.P.G.; van Joolingen, Wouter; van der Veen, Johan (CTIT)

    2016-01-01

    Going beyond simply measuring the effectiveness of a teaching approach with computer simulations during whole-class science instruction, we investigated the interaction between teachers and their students as well as searched for mechanisms in the pedagogical context related to teachers’

  15. Investigating an intervention to support computer simulation use in whole-class teaching

    NARCIS (Netherlands)

    Rutten, N.P.G.|info:eu-repo/dai/nl/382657241; van Joolingen, W.R.|info:eu-repo/dai/nl/073458872; van der Veen, J.T.

    2016-01-01

    Going beyond simply measuring the effectiveness of a teaching approach with computer simulations during whole-class science instruction, we investigated the interaction between teachers and their students as well as searched for mechanisms in the pedagogical context related to teachers’

  16. International Conference on Computer, Communication and Computational Sciences

    CERN Document Server

    Mishra, Krishn; Tiwari, Shailesh; Singh, Vivek

    2017-01-01

    Exchange of information and innovative ideas are necessary to accelerate the development of technology. With advent of technology, intelligent and soft computing techniques came into existence with a wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Computer, Communication and Computational Sciences (ICCCCS 2016), held during 12-13 August, 2016 in Ajmer, India. These papers are arranged in the form of chapters. The content of the book is divided into two volumes that cover variety of topics such as intelligent hardware and software design, advanced communications, power and energy optimization, intelligent techniques used in internet of things, intelligent image processing, advanced software engineering, evolutionary and ...

  17. Mastering cognitive development theory in computer science education

    Science.gov (United States)

    Gluga, Richard; Kay, Judy; Lister, Raymond; Simon; Kleitman, Sabina

    2013-03-01

    To design an effective computer science curriculum, educators require a systematic method of classifying the difficulty level of learning activities and assessment tasks. This is important for curriculum design and implementation and for communication between educators. Different educators must be able to use the method consistently, so that classified activities and assessments are comparable across the subjects of a degree, and, ideally, comparable across institutions. One widespread approach to supporting this is to write learning objects in terms of Bloom's Taxonomy. This, or other such classifications, is likely to be more effective if educators can use them consistently, in the way experts would use them. To this end, we present the design and evaluation of our online interactive web-based tutorial system, which can be configured and used to offer training in different classification schemes. We report on results from three evaluations. First, 17 computer science educators complete a tutorial on using Bloom's Taxonomy to classify programming examination questions. Second, 20 computer science educators complete a Neo-Piagetian tutorial. Third evaluation was a comparison of inter-rater reliability scores of computer science educators classifying programming questions using Bloom's Taxonomy, before and after taking our tutorial. Based on the results from these evaluations, we discuss the effectiveness of our tutorial system design for teaching computer science educators how to systematically and consistently classify programming examination questions. We also discuss the suitability of Bloom's Taxonomy and Neo-Piagetian theory for achieving this goal. The Bloom's and Neo-Piagetian tutorials are made available as a community resource. The contributions of this paper are the following: the tutorial system for learning classification schemes for the purpose of coding the difficulty of computing learning materials; its evaluation; new insights into the consistency

  18. Nuclear computational science a century in review

    CERN Document Server

    Azmy, Yousry

    2010-01-01

    Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational

  19. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    Science.gov (United States)

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  20. Sustainable computational science: the ReScience initiative

    DEFF Research Database (Denmark)

    Rougier, Nicolas; Hinsen, Konrad; Alexandre, Frédéric

    2017-01-01

    Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results, however computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research...... workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested, hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages...... is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new...

  1. The ontology of science teaching in the neoliberal era

    Science.gov (United States)

    Sharma, Ajay

    2017-12-01

    Because of ever stricter standards of accountability, science teachers are under an increasing and unrelenting pressure to demonstrate the effects of their teaching on student learning. Econometric perspectives of teacher quality have become normative in assessment of teachers' work for accountability purposes. These perspectives seek to normalize some key ontological assumptions about teachers and teaching, and thus play an important role in shaping our understanding of the work science teachers do as teachers in their classrooms. In this conceptual paper I examine the ontology of science teaching as embedded in econometric perspectives of teacher quality. Based on Foucault's articulation of neoliberalism as a discourse of governmentality in his `The Birth of Biopolitics' lectures, I suggest that this ontology corresponds well with the strong and substantivist ontology of work under neoliberalism, and thus could potentially be seen as reflection of the influence of neoliberal ideas in education. Implications of the mainstreaming of an ontology of teaching that is compatible with neoliberalism can be seen in increasing marketization of teaching, `teaching evangelism', and impoverished notions of learning and teaching. A shift of focus from teacher quality to quality of teaching and building conceptual models of teaching based on relational ontologies deserve to be explored as important steps in preserving critical and socially just conceptions of science teaching in neoliberal times.

  2. Deep Knowledge: Learning to Teach Science for Understanding and Equity. Teaching for Social Justice

    Science.gov (United States)

    Larkin, Douglas B.

    2013-01-01

    "Deep Knowledge" is a book about how people's ideas change as they learn to teach. Using the experiences of six middle and high school student teachers as they learn to teach science in diverse classrooms, Larkin explores how their work changes the way they think about students, society, schools, and science itself. Through engaging case stories,…

  3. International Developments in Computer Science.

    Science.gov (United States)

    1982-06-01

    world in terms of revenue. Hitachi Hitachi is a large conglomerate company that makes railroad locomotives , industrial cranes, and home appliances as...of six sections: bionics , pattern processing, speech processing, mathematical engineering, computer 20 vision, and machine inference. Kazuhiro Fuchi

  4. Fundamentals: IVC and Computer Science

    NARCIS (Netherlands)

    Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F.; Hartenstein, H.; Tonguz, O.K.

    The working group on “Fundamentals: IVC and Computer Science‿ discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly

  5. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  6. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  7. Developing Preservice Teachers' Knowledge of Science Teaching Through Video Clubs

    Science.gov (United States)

    Johnson, Heather J.; Cotterman, Michelle E.

    2015-06-01

    Though an adequate understanding of content is a natural prerequisite of teaching (Carlsen in Journal of Research in Science Teaching 30:471-481, 1993), teachers also need to be able to interpret content in ways that facilitate student learning. How to best support novice teachers in developing and refining their content knowledge for teaching is a crucial and ongoing question for preservice teacher educators. Recently, video clubs are being explored as potential contexts for teacher learning (Barnhart & van Es in Teaching and Teacher Education 45:83-93, 2015; Sherin & Han in Teaching and Teacher Education 20:163-183, 2004). We hypothesized that pairing video clubs with student teaching experiences would provide a forum for preservice teachers to discuss issues relevant to their professional trajectory through exposure to models of peer teaching and opportunities to reflect on practice. In this study, we explored how secondary science preservice teachers used video club to restructure their overall science knowledge into science knowledge for teaching. Our findings suggest that video clubs allowed preservice teachers to access and leverage student thinking and instructional resources to deepen their understanding of science content and trajectories for science learning.

  8. A Methodology for Integrating Computer-Based Learning Tools in Science Curricula

    Science.gov (United States)

    Papadouris, Nicos; Constantinou, Constantinos P.

    2009-01-01

    This paper demonstrates a methodology for effectively integrating computer-based learning tools in science teaching and learning. This methodology provides a means of systematic analysis to identify the capabilities of particular software tools and to formulate a series of competencies relevant to physical science that could be developed by means…

  9. Computer Use by School Teachers in Teaching-Learning Process

    Science.gov (United States)

    Bhalla, Jyoti

    2013-01-01

    Developing countries have a responsibility not merely to provide computers for schools, but also to foster a habit of infusing a variety of ways in which computers can be integrated in teaching-learning amongst the end users of these tools. Earlier researches lacked a systematic study of the manner and the extent of computer-use by teachers. The…

  10. Development of a computer based learning system for teaching and ...

    African Journals Online (AJOL)

    Computer based learning (CBL) refers to the use of computers as a key component of the educational environment This computer based-learning for teaching and accessing mathematics is a software package developed using Java Programming Language and Java Server Page (JSP). It acts as a web application using ...

  11. Newly qualified teachers' visions of science learning and teaching

    Science.gov (United States)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  12. Computer Programs in Marine Science

    Science.gov (United States)

    1976-04-01

    equation end the Wilson sound velocity formula are used in the computations. Running time is two seconds per sta.ion. -p / ! Miguel Angel Alatorre Copy on...1968. U.S. Nava ! Postgraduatq School Available from TIES. Order No. AD 686 654, Monterey, CA 93940 $4.75 paper copy, $2.25 microfiche. 4 Percentage...APCWN 113 ALASKA PLANE COORDINATE SYSTEM 99 APE-DIGI 6 ALATORRE MIGUEL ANGEL 113 APOLY 59 ALBACCRE 23 ACUEOUS SPECIES 26 ALBEMARLE SOUND 28 ARAGGRN

  13. Computational Exposure Science: An Emerging Discipline to ...

    Science.gov (United States)

    Background: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving.Objectives: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in consumer products.Discussion: The fundamental elements of computational exposure science include the development of reliable, computationally efficient predictive exposure models; the identification, acquisition, and application of data to support and evaluate these models; and generation of improved methods for extrapolating across chemicals. We describe our efforts in each of these areas and provide examples that demonstrate both progress and potential.Conclusions: Computational exposure science, linked with comparable efforts in toxicology, is ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical safety and sustainability and to protect public health. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source

  14. Teaching secondary science constructing meaning and developing understanding

    CERN Document Server

    Ross, Keith; McKechnie, Janet

    2010-01-01

    Now fully updated in its third edition Teaching Secondary Science is a comprehensive guide to all aspects of science teaching, providing a wealth of information and ideas about different approaches. With guidance on how children understand scientific ideas and the implications this has on teaching, teachers are encouraged to construct their own meanings and become reflective in their practice. Relating science to government agendas, such as the National Strategies, Assessment for Learning and Every Child Matters, this new edition reflects and maps to changes in national standards. Ke

  15. Integration in Science Teaching - Learning: Problems and Prospects ...

    African Journals Online (AJOL)

    Integration in Science Teaching - Learning: Problems and Prospects. ... AFRREV STECH: An International Journal of Science and Technology ... the current emerging problems are: Institutions of learning in Nigeria especially schools and faculties of education must accommodate Basic Science and Technology as a course.

  16. Plagiarism in computer science courses

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.K. [Francis Marion Univ., Florence, SC (United States)

    1994-12-31

    Plagiarism of computer programs has long been a problem in higher education. Ease of electronic copying, vague understanding by students as to what constitutes plagiarism, increasing acceptance of plagiarism by students, lack of enforcement by instructors and school administrators, and a whole host of other factors contribute to plagiarism. The first step in curbing plagiarism is prevention, the second (and much less preferable) is detection. History files and software metrics can be used as a tool to aid in detecting possible plagiarism. This paper gives advice concerning how to deal with plagiarism and with using software monitors to detect plagiarism.

  17. Probability, statistics, and computational science.

    Science.gov (United States)

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  18. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    Science.gov (United States)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  19. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  20. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  1. Teaching science to science teachers: Lessons taught and lessons learned

    Science.gov (United States)

    Douglas, E. M.; Hashimoto-Martell, E. A.; Balicki, S.; Oglavie, D. R.

    2009-12-01

    The Boston Science Partnership has created a comprehensive set of graduate courses that immerse teachers in the science topics most relevant to their teaching practices. In these courses, teachers become students of science, developing their conceptual understandings through scientific inquiry. All courses are co-taught by a university faculty and teacher leaders from the Boston Public Schools. Each course provides contextual linkages between the science content and the standards-based curriculum of the Boston Public School district. One of the most relevant science topics to teachers and students of all disciplines is climate change. This served as the overarching theme for our course delivered during summer 2008 and 2009. This course focused on weather and the pivotal role that water and solar radiation play in the exchange of energy at the Earth's surface. Basic concepts such as the behavior of gases, energy flow, density changes, phase changes, heat capacities, and thermal convection were applied to examine short-term weather and water dynamics and longer-term impacts on global warming and climate change. The course was designed to embrace the 7E learning cycle and instructional model, as proposed by Eisenkraft in his landmark 2003 Science Teacher article. This inquiry-based instructional model builds upon prior conceptions and engages the learner in activities in which they begin to construct meaning of a concept prior to being given an explanation. Each day focused on an essential topic related to weather and climate change, and experiential learning was our main objective. There were many successes and challenges with our course. Twenty-five participants were enrolled, and all had different background knowledge and skill sets. Additionally, their level of teaching varied greatly, from K-12, so the level of depth with which to learn the content in order to bring it back to their classrooms varied a great deal as well. Therefore differentiating instruction for

  2. Teaching Computer Organization at Jamestown Community College.

    Science.gov (United States)

    Petiprin, Frank C.

    1985-01-01

    Courses for a computer technology program are listed. Hardware purchases necessary to use a mainframe computer in a single-user environment in a computer organization course is described, and sample runs from three programs are included. (MNS)

  3. Computer Science Papers in Web of Science: A Bibliometric Analysis

    OpenAIRE

    Dalibor Fiala; Gabriel Tutoky

    2017-01-01

    In this article we present a bibliometric study of 1.9 million computer science papers published from 1945 to 2014 and indexed in Web of Science. We analyze both the quantity and the impact of these publications according to document types, languages, disciplines, countries, institutions, and publication sources. The most frequent author keywords, cited references, and cited papers as well as the distribution of the number of references and citations per paper and of the age of cited referenc...

  4. Applied modelling and computing in social science

    CERN Document Server

    Povh, Janez

    2015-01-01

    In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.

  5. Science of Information, Computation and Fusion

    Science.gov (United States)

    2012-03-05

    how to mechanize patterns of reasoning in terms of computation. LIST SUB-AREAS IN PORTFOLIO: •Sub-Areas Objectives Data Discovery Information...distribution is unlimited. Future Direction Sub-Areas Objectives Data Discovery Information Science • Discover structures in data and shape...DISTRIBUTION A: Approved for public release; distribution is unlimited. •Sub-Areas Objectives Data Discovery Information Science • Discover

  6. Democratizing Children's Computation: Learning Computational Science as Aesthetic Experience

    Science.gov (United States)

    Farris, Amy Voss; Sengupta, Pratim

    2016-01-01

    In this essay, Amy Voss Farris and Pratim Sengupta argue that a democratic approach to children's computing education in a science class must focus on the "aesthetics" of children's experience. In "Democracy and Education," Dewey links "democracy" with a distinctive understanding of "experience." For Dewey,…

  7. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  8. Sustainable computational science: the ReScience initiative

    Directory of Open Access Journals (Sweden)

    Nicolas P. Rougier

    2017-12-01

    Full Text Available Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested and are hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience resides on GitHub where each new implementation of a computational study is made available together with comments, explanations, and software tests.

  9. Curricular Influences on Female Afterschool Facilitators' Computer Science Interests and Career Choices

    Science.gov (United States)

    Koch, Melissa; Gorges, Torie

    2016-10-01

    Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.

  10. Demystifying computer science for molecular ecologists.

    Science.gov (United States)

    Belcaid, Mahdi; Toonen, Robert J

    2015-06-01

    In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated. © 2015 John Wiley & Sons Ltd.

  11. Teaching professionalism in science courses: anatomy to zoology.

    Science.gov (United States)

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  12. Teaching professionalism in science courses: Anatomy to zoology

    Directory of Open Access Journals (Sweden)

    Cheryl C. Macpherson

    2012-02-01

    Full Text Available Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies’ trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences.

  13. Digital Da Vinci computers in the arts and sciences

    CERN Document Server

    Lee, Newton

    2014-01-01

    Explores polymathic education through unconventional and creative applications of computer science in the arts and sciences Examines the use of visual computation, 3d printing, social robotics and computer modeling for computational art creation and design Includes contributions from leading researchers and practitioners in computer science, architecture and digital media

  14. Teaching Graduate Students The Art of Science

    Science.gov (United States)

    Snieder, Roel; Larner, Ken; Boyd, Tom

    2012-08-01

    Graduate students traditionally learn the trade of research by working under the supervision of an advisor, much as in the medieval practice of apprenticeship. In practice, however, this model generally falls short in teaching students the broad professional skills needed to be a well-rounded researcher. While a large majority of graduate students considers professional training to be of great relevance, most graduate programs focus exclusively on disciplinary training as opposed to skills such as written and oral communication, conflict resolution, leadership, performing literature searches, teamwork, ethics, and client-interaction. Over the past decade, we have developed and taught the graduate course "The Art of Science", which addresses such topics; we summarize the topics covered in the course here. In order to coordinate development of professional training, the Center for Professional Education has been founded at the Colorado School of Mines. After giving an overview of the Center's program, we sketch the challenges and opportunities in offering professional education to graduate students. Offering professional education helps create better-prepared graduates. We owe it to our students to provide them with such preparation.

  15. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    OpenAIRE

    Mohd Ali Samsudin; Noor Hasyimah Haniza; Corrienna Abdul-Talib; Hayani Marlia Mhd Ibrahim

    2015-01-01

    This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5) primary schools in Penang, Malaysia. The findings showed a relationship betwee...

  16. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    Science.gov (United States)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  17. Computer science approach to quantum control

    International Nuclear Information System (INIS)

    Janzing, D.

    2006-01-01

    Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable

  18. Teaching the TEMI way how using mysteries supports science learning

    CERN Document Server

    Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  19. Teaching Writing and Critical Thinking in Large Political Science Classes

    Science.gov (United States)

    Franklin, Daniel; Weinberg, Joseph; Reifler, Jason

    2014-01-01

    In the interest of developing a combination of teaching techniques designed to maximize efficiency "and" quality of instruction, we have experimentally tested three separate and relatively common teaching techniques in three large introductory political science classes at a large urban public university. Our results indicate that the…

  20. Artful Teaching and Science Investigations: A Perfect Match

    Science.gov (United States)

    McGee, Christy

    2018-01-01

    Tomlinson's explanation of Artful Teaching and her 2017 expansion of this concept The Five Key Elements of Differentiation provide the theoretical framework of this examination of the need for science investigations in elementary schools. The Artful Teaching framework uses an equilateral triangle with vertices labeled The Teacher, The Student, and…

  1. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    Science.gov (United States)

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  2. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants.

    Science.gov (United States)

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor's belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K-12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. © 2015 S. E. DeChenne et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Grade 10 Students' perceptions of and attitudes toward science teaching and school science

    Science.gov (United States)

    Ebenezer, Jazlin V.; Zoller, Uri

    Grade 10 students' perceptions of classroom practices and activities, as well as their attitudes toward science teaching and school science, were assessed in the Westend School District (pseudonym) in British Columbia, using both quantitative (statistics of Likert-type scales) and qualitative (critical interpretive analysis of interview data) methods. The major findings of the study were that students do not appreciate the most prevailing contemporary practices in science classes, perceived by them as mainly the copying of the teacher's notes, and that they prefer science teaching and learning in which they take an active and responsible part. Additionally, teaching style appears to be the major determinant of high school students' attitudes toward science and science teaching. No change in students' perceptions of and attitudes toward science teaching and school science (in 1989 compared with 1986) could be detected in spite of the impact made by the recently advocated constructivist and science-technology-society (STS) approaches on science curriculum and science education. It is argued, therefore, that more emphasis must be placed on the science teachers' role and their teaching style if an educational change in the constructivist/STS direction is to be achieved.

  4. All Roads Lead to Computing: Making, Participatory Simulations, and Social Computing as Pathways to Computer Science

    Science.gov (United States)

    Brady, Corey; Orton, Kai; Weintrop, David; Anton, Gabriella; Rodriguez, Sebastian; Wilensky, Uri

    2017-01-01

    Computer science (CS) is becoming an increasingly diverse domain. This paper reports on an initiative designed to introduce underrepresented populations to computing using an eclectic, multifaceted approach. As part of a yearlong computing course, students engage in Maker activities, participatory simulations, and computing projects that…

  5. CONCEPT MAPPING IN TEACHING SCIENCE AMONG IX STD STUDENTS

    OpenAIRE

    R. Sangeetha; Mrs. T. Sangeetha

    2017-01-01

    Concept Map is a graphic device in which the concepts are linked by propositions leading to the precision and enhancement of meaning of the concept.” It is a schematic device for representing a set of concept meanings embedded in a hierarchy from most general concept to specific concepts of a learning unit. The study aimed to examine the concept mapping in teaching science among IX std students. The investigator adopted experimental method to study the concept mapping in teaching science amon...

  6. International Conference on Computational Engineering Science

    CERN Document Server

    Yagawa, G

    1988-01-01

    The aim of this Conference was to become a forum for discussion of both academic and industrial research in those areas of computational engineering science and mechanics which involve and enrich the rational application of computers, numerical methods, and mechanics, in modern technology. The papers presented at this Conference cover the following topics: Solid and Structural Mechanics, Constitutive Modelling, Inelastic and Finite Deformation Response, Transient Analysis, Structural Control and Optimization, Fracture Mechanics and Structural Integrity, Computational Fluid Dynamics, Compressible and Incompressible Flow, Aerodynamics, Transport Phenomena, Heat Transfer and Solidification, Electromagnetic Field, Related Soil Mechanics and MHD, Modern Variational Methods, Biomechanics, and Off-Shore-Structural Mechanics.

  7. Application of cluster computing in materials science

    International Nuclear Information System (INIS)

    Kuzmin, A.

    2006-01-01

    Solution of many problems in materials science requires that high performance computing (HPC) be used. Therefore, a cluster computer, Latvian Super-cluster (LASC), was constructed at the Institute of Solid State Physics of the University of Latvia in 2002. The LASC is used for advanced research in the fields of quantum chemistry, solid state physics and nano materials. In this work we overview currently available computational technologies and exemplify their application by interpretation of x-ray absorption spectra for nano-sized ZnO. (author)

  8. Science Prospects And Benefits with Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Kothe, Douglas B [ORNL

    2007-12-01

    Scientific computation has come into its own as a mature technology in all fields of science. Never before have we been able to accurately anticipate, analyze, and plan for complex events that have not yet occurred from the operation of a reactor running at 100 million degrees centigrade to the changing climate a century down the road. Combined with the more traditional approaches of theory and experiment, scientific computation provides a profound tool for insight and solution as we look at complex systems containing billions of components. Nevertheless, it cannot yet do all we would like. Much of scientific computation s potential remains untapped in areas such as materials science, Earth science, energy assurance, fundamental science, biology and medicine, engineering design, and national security because the scientific challenges are far too enormous and complex for the computational resources at hand. Many of these challenges are of immediate global importance. These challenges can be overcome by a revolution in computing that promises real advancement at a greatly accelerated pace. Planned petascale systems (capable of a petaflop, or 1015 floating point operations per second) in the next 3 years and exascale systems (capable of an exaflop, or 1018 floating point operations per second) in the next decade will provide an unprecedented opportunity to attack these global challenges through modeling and simulation. Exascale computers, with a processing capability similar to that of the human brain, will enable the unraveling of longstanding scientific mysteries and present new opportunities. Table ES.1 summarizes these scientific opportunities, their key application areas, and the goals and associated benefits that would result from solutions afforded by exascale computing.

  9. Science Teachers' Utilisation of Innovative Strategies for Teaching Senior School Science in Ilorin, Nigeria

    Science.gov (United States)

    Oyelekan, Oloyede Solomon; Igbokwe, Emoyoke Faith; Olorundare, Adekunle Solomon

    2017-01-01

    Efforts have been made to improve science teaching in secondary schools in Nigeria, yet, students continue to perform poorly in science subjects. Many innovative teaching strategies have been developed by educators and found to impact significantly on students' academic performance when utilised. Hence, this study was aimed at examining science…

  10. Handbook of mathematics and computational science

    CERN Document Server

    Harris, John W

    1998-01-01

    Handbook of Mathematics and Computational Science Offers mathematics information for everyday use in problem solving, examinations, and homework. This book includes hundreds of tables of frequently used functions, formulae, transformations, and series. It is suitable for working scientists, engineers, and students.

  11. Mathematics, Physics and Computer Sciences Dual slope ...

    African Journals Online (AJOL)

    Mathematics, Physics and Computer Sciences Dual slope integration technique to design a digital thermometer. S. F. AKANDE, E. D. DADOEM. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjpas.v7i2.16256 · AJOL African Journals Online.

  12. Vector and parallel processors in computational science

    International Nuclear Information System (INIS)

    Duff, I.S.; Reid, J.K.

    1985-01-01

    These proceedings contain the articles presented at the named conference. These concern hardware and software for vector and parallel processors, numerical methods and algorithms for the computation on such processors, as well as applications of such methods to different fields of physics and related sciences. See hints under the relevant topics. (HSI)

  13. The Student/Library Computer Science Collaborative

    Science.gov (United States)

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  14. Primary and Secondary School Science.

    Science.gov (United States)

    Educational Documentation and Information, 1984

    1984-01-01

    This 344-item annotated bibliography presents overview of science teaching in following categories: science education; primary school science; integrated science teaching; teaching of biology, chemistry, physics, earth/space science; laboratory work; computer technology; out-of-school science; science and society; science education at…

  15. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  16. Cloud Computing for Teaching Practice: A New Design?

    Science.gov (United States)

    Saadatdoost, Robab; Sim, Alex Tze Hiang; Jafarkarimi, Hosein; Hee, Jee Mei; Saadatdoost, Leila

    2014-01-01

    Recently researchers have shown an increased interest in cloud computing technology. It is becoming increasingly difficult to ignore cloud computing technology in education context. However rapid changes in information technology are having a serious effect on teaching framework designs. So far, however, there has been little discussion about…

  17. Teaching Reading through Computer-Assisted Language Learning

    Science.gov (United States)

    Bhatti, Tariq Muhammad

    2013-01-01

    To study the role of reading in secondary schools and how it may be improved through computers, a year-long study was conducted to examine which of two methods of teaching reading skills, an instructor-led class vs. computer-assisted language learning (CALL), aided secondary students in improving the literal, inferential, and evaluative levels of…

  18. Teaching Business Statistics in a Computer Lab: Benefit or Distraction?

    Science.gov (United States)

    Martin, Linda R.

    2011-01-01

    Teaching in a classroom configured with computers has been heralded as an aid to learning. Students receive the benefits of working with large data sets and real-world problems. However, with the advent of network and wireless connections, students can now use the computer for alternating tasks, such as emailing, web browsing, and social…

  19. Using Real-Life Experiences to Teach Computer Concepts

    Science.gov (United States)

    Read, Alexis

    2012-01-01

    Teaching computer concepts to individuals with visual impairments (that is, those who are blind or visually impaired) presents some unique challenges. Students often have difficulty remembering to perform certain steps or have difficulty remembering specific keystrokes when using computers. Many cannot visualize the way in which complex computing…

  20. Methods for teaching geometric modelling and computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Rotkov, S.I.; Faitel`son, Yu. Ts.

    1992-05-01

    This paper considers methods for teaching the methods and algorithms of geometric modelling and computer graphics to programmers, designers and users of CAD and computer-aided research systems. There is a bibliography that can be used to prepare lectures and practical classes. 37 refs., 1 tab.

  1. Restructuring Post-School Science Teaching Programmes

    Indian Academy of Sciences (India)

    OFFICE USER

    The three National Science Academies of the country — Indian National. Science Academy (INSA), New Delhi, Indian Academy of Sciences. (IASc), Bangalore and The National Academy of Sciences, India (NASI),. Allahabad — have been working together over the past few years in improving science education in the ...

  2. Computer Presentation Programs and Teaching Research Methodologies

    OpenAIRE

    Motamedi, Vahid

    2015-01-01

    Supplementing traditional chalk and board instruction with computer delivery has been viewed positively by students who have reported increased understanding and more interaction with the instructor when computer presentations are used in the classroom. Some problems contributing to student errors while taking class notes might be transcription of numbers to the board, and handwriting of the instructor can be resolved in careful construction of computer presentations. The use of computer pres...

  3. Computational ecology as an emerging science.

    Science.gov (United States)

    Petrovskii, Sergei; Petrovskaya, Natalia

    2012-04-06

    It has long been recognized that numerical modelling and computer simulations can be used as a powerful research tool to understand, and sometimes to predict, the tendencies and peculiarities in the dynamics of populations and ecosystems. It has been, however, much less appreciated that the context of modelling and simulations in ecology is essentially different from those that normally exist in other natural sciences. In our paper, we review the computational challenges arising in modern ecology in the spirit of computational mathematics, i.e. with our main focus on the choice and use of adequate numerical methods. Somewhat paradoxically, the complexity of ecological problems does not always require the use of complex computational methods. This paradox, however, can be easily resolved if we recall that application of sophisticated computational methods usually requires clear and unambiguous mathematical problem statement as well as clearly defined benchmark information for model validation. At the same time, many ecological problems still do not have mathematically accurate and unambiguous description, and available field data are often very noisy, and hence it can be hard to understand how the results of computations should be interpreted from the ecological viewpoint. In this scientific context, computational ecology has to deal with a new paradigm: conventional issues of numerical modelling such as convergence and stability become less important than the qualitative analysis that can be provided with the help of computational techniques. We discuss this paradigm by considering computational challenges arising in several specific ecological applications.

  4. The transformation of science and mathematics content knowledge into teaching content by university faculty

    Science.gov (United States)

    Flynn, Natalie P.

    knowledge from an expert centered perspective to a student centric view. Follow-up interviews of twenty faculty yielded a wide variety of insights into the complicated method of deconstructing expert science and mathematics content. The interviews revealed a major disconnect between education research and researchers and the science and mathematics content experts who teach. There is a pervasive disregard for science and mathematics education and training. Faculty members find little to no support for teaching. Though 81% obtained their Ph.D. with the intent to enter an academic setting, pedagogical training was non-existent or limited, both prior to and after obtaining faculty positions. Experience alone did not account for confidence or ability to successfully teach. Faculty that were able to 'think like a student' and view their material from a student's perspective' seemed to be the most confident and flexible in their teaching methods. Grading and having an open and interactive teaching style, being on the 'side of the students' also seemed to allow faculty to connect more deeply with the students and learn about common misconceptions and difficulties. Though most faculty claimed to not teach as they were taught and not recall having specific content difficulties, this essential interaction with many students facilitated a shift in thinking about their content. This shift allowed for a reversal from teacher centered classrooms to student centered. Multiple issues arise when teaching at a traditional larger lecture style found in the majority of universities science and mathematics courses that constrain and provide unique teaching challenges. Many faculty have developed unique tools to incorporate successful teaching strategies, such as daily pre-quizzes and smart-phone questioning as well as small group work, computer posted guides, strategic class breaks, and limiting lecture style in favor of a more active engaged classroom. (Abstract shortened by UMI.).

  5. The concept of nature in Islamic science teaching

    Science.gov (United States)

    Zarman, Wendi

    2016-02-01

    Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other

  6. Linking Teaching in Mathematics and the Subjects of Natural Science

    DEFF Research Database (Denmark)

    Michelsen, Claus

    2017-01-01

    and science education we design a didactical framework for interdisciplinary teaching centered on modeling activities across mathematics and the disciplines of natural science. To exemplify the potential of the framework we present a case study of an intensive in-service teacher-training program...... for mathematics and biology teachers. The teachers were presented to the didactical framework and in pairs of two, one mathematics teacher and one biology teacher; they designed and implemented interdisciplinary mathematicsbiology teaching sequences. The teachers’ reports on their development and implementation...... teaching programs. This is partly due to the lack of a framework for integrating productive ideas across the disciplines. This paper focus on how to grasp the challenges of an interdisciplinary approach to teaching in mathematics and the subjects of natural science. Based on contemporary mathematics...

  7. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  8. Scientific Visualization and Computational Science: Natural Partners

    Science.gov (United States)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization

  9. What is the resource footprint of a computer science department? Place, People and Pedagogy

    OpenAIRE

    Mian, I.S; Twisleton, D.; Timm, D.

    2017-01-01

    Our goal is formulating policies and developing guidelines that create a more resilient and healthier Department of Computer Science at University College London: a living laboratory for teaching and learning about resource constrained computing, computation and communication. Here, we outline a roadmap and propose high-level principles to aid this effort. We focus on how, when and where resources – energy, (raw) materials including water, space and time – are consumed by the building (place)...

  10. Pre-Service Science Teachers' Epistemological Beliefs and Teaching Reforms in Tanzania

    Science.gov (United States)

    Tarmo, Albert

    2016-01-01

    In an effort to understand why recent initiatives to promote learner-centred pedagogy in science teaching made a little change in the actual teaching practices of science teachers, this study explored pre-service science teachers' beliefs about science knowledge and their teaching practices. Six pre-service science teachers were interviewed to…

  11. A Financial Technology Entrepreneurship Program for Computer Science Students

    Science.gov (United States)

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  12. Science student teacher's perceptions of good teaching ...

    African Journals Online (AJOL)

    kofi.mereku

    Data were collected by means of a semi structured questionnaire. Descriptive statistics and themes were used to establish student's perceptions. Results revealed that, amongst others, the nature of the subject and teaching strategies employed are perceived to influence what students perceived as good teaching. Results ...

  13. Didactic Strategies in Early Science Teaching

    Science.gov (United States)

    Hus, Vlasta; Grmek, Milena Ivanus

    2011-01-01

    The purpose of the article is to show the results of empirical research on the prevailing teaching strategies for teaching contents of the subject environmental studies (specifically when dealing with natural content) in the first triennium of the nine-year primary school in the Republic of Slovenia. The information was obtained through a survey…

  14. Critical Debates in Teaching Research Methods in the Social Sciences

    Science.gov (United States)

    Gunn, Andrew

    2017-01-01

    This paper explores some of the critical debates in social science research methods education and is set out in three parts. The first section introduces the importance and relevance of research methods to the social sciences. It then outlines the problems and challenges experienced in the teaching and learning of research methods, which are…

  15. Research and teaching nuclear sciences at universities in developing countries

    International Nuclear Information System (INIS)

    1981-11-01

    A formulation is given for a set of ground rules to be applied when introducing or improving nuclear science training at the university level in developing countries. Comments are made on the general requirements needed for the teaching of nuclear science at the university and particular suggestions made for the areas of nuclear physics radiochemistry and radiation chemistry and electronics

  16. Teaching Media Studies as High School Social Science.

    Science.gov (United States)

    Tuggle, C. A.; Sneed, Don; Wulfemeyer, K. Tim

    2000-01-01

    Finds that a large majority of high school social science teachers in two of the nation's largest school districts believe that: students should be taught how to be informed media consumers; the social science curriculum is the appropriate place for that instruction; and while they feel qualified to teach about the media, they have received little…

  17. Nuclear Science Teaching Aids and Activities.

    Science.gov (United States)

    Woodburn, John H.

    This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…

  18. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants

    Science.gov (United States)

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor’s belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K–12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. PMID:26250562

  19. (The Ethics of Teaching Science and Ethics: A Collaborative Proposal

    Directory of Open Access Journals (Sweden)

    William P. Kabasenche

    2014-10-01

    Full Text Available I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains—the relevant science(s and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  20. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  1. Computer Ethics Topics and Teaching Strategies.

    Science.gov (United States)

    DeLay, Jeanine A.

    An overview of six major issues in computer ethics is provided in this paper: (1) unauthorized and illegal database entry, surveillance and monitoring, and privacy issues; (2) piracy and intellectual property theft; (3) equity and equal access; (4) philosophical implications of artificial intelligence and computer rights; (5) social consequences…

  2. "Teaching students how to wear their Computer"

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hanne Louise

    2005-01-01

    of practically every interaction in our lives, from light switches and cash machines to entertainment, education, healthcare and governmentally protection systems. So far most computers are parted from their user who has to interact on a distance with a screen-based interface. Mobile computers have increased...

  3. Teaching science as argument: Prospective elementary teachers' knowledge

    Science.gov (United States)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  4. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  5. The integration of creative drama into science teaching

    Science.gov (United States)

    Arieli, Bracha (Bari)

    This study explored the inclusion of creative drama into science teaching as an instructional strategy for enhancing elementary school students' understanding of scientific concepts. A treatment group of sixth grade students was taught a Full Option Science System (FOSS) science unit on Mixtures and Solutions with the addition of creative drama while a control group was taught using only the FOSS teaching protocol. Quantitative and qualitative data analyses demonstrated that students who studied science through creative drama exhibited a greater understanding of scientific content of the lessons and preferred learning science through creative drama. Treatment group students stated that they enjoyed participating in the activities with their friends and that the creative drama helped them to better understand abstract scientific concepts. Teachers involved with the creative drama activities were positively impressed and believed creative drama is a good tool for teaching science. Observations revealed that creative drama created a positive classroom environment, improved social interactions and self-esteem, that all students enjoyed creative drama, and that teachers' teaching style affected students' use of creative drama. The researcher concluded that the inclusion of creative drama with the FOSS unit enhanced students' scientific knowledge and understanding beyond that of the FOSS unit alone, that both teachers and students reacted positively to creative drama in science and that creative drama requires more time.

  6. Computer Ethics: New Study Area for Engineering Science Students

    Science.gov (United States)

    Johnson, Deborah G.

    1978-01-01

    Computer professionals are beginning to look toward codes of ethics and legislation to control the use of software. A project has been established at Rensselaer Polytechnic Institute to develop teaching materials on computer ethics. (BB)

  7. Information Diffusion in Computer Science Citation Networks

    OpenAIRE

    Shi, Xiaolin; Tseng, Belle; Adamic, Lada A.

    2009-01-01

    The paper citation network is a traditional social medium for the exchange of ideas and knowledge. In this paper we view citation networks from the perspective of information diffusion. We study the structural features of the information paths through the citation networks of publications in computer science, and analyze the impact of various citation choices on the subsequent impact of the article. We find that citing recent papers and papers within the same scholarly community garners a sli...

  8. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  9. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  10. Learning to teach science for social justice in urban schools

    Science.gov (United States)

    Vora, Purvi

    This study looks at how beginner teachers learn to teach science for social justice in urban schools. The research questions are: (1) what views do beginner teachers hold about teaching science for social justice in urban schools? (2) How do beginner teachers' views about teaching science for social justice develop as part of their learning? In looking at teacher learning, I take a situative perspective that defines learning as increased participation in a community of practice. I use the case study methodology with five teacher participants as the individual units of analysis. In measuring participation, I draw from mathematics education literature that offers three domains of professional practice: Content, pedagogy and professional identity. In addition, I focus on agency as an important component of increased participation from a social justice perspective. My findings reveal two main tensions that arose as teachers considered what it meant to teach science from a social justice perspective: (1) Culturally responsive teaching vs. "real" science and (2) Teaching science as a political act. In negotiating these tensions, teachers drew on a variety of pedagogical and conceptual tools offered in USE that focused on issues of equity, access, place-based pedagogy, student agency, ownership and culture as a toolkit. Further, in looking at how the five participants negotiated these tensions in practice, I describe four variables that either afforded or constrained teacher agency and consequently the development of their own identity and role as socially just educators. These four variables are: (1) Accessing and activating social, human and cultural capital, (2) reconceptualizing culturally responsive pedagogical tools, (3) views of urban youth and (4) context of participation. This study has implications for understanding the dialectical relationship between agency and social justice identity for beginner teachers who are learning how to teach for social justice. Also

  11. Computer Presentation Programs and Teaching Research Methodologies

    Directory of Open Access Journals (Sweden)

    Vahid Motamedi

    2015-05-01

    Full Text Available Supplementing traditional chalk and board instruction with computer delivery has been viewed positively by students who have reported increased understanding and more interaction with the instructor when computer presentations are used in the classroom. Some problems contributing to student errors while taking class notes might be transcription of numbers to the board, and handwriting of the instructor can be resolved in careful construction of computer presentations. The use of computer presentation programs promises to increase the effectiveness of learning by making content more readily available, by reducing the cost and effort of producing quality content, and by allowing content to be more easily shared. This paper describes how problems can be overcome by using presentation packages for instruction.

  12. Designing Computer-Supported Complex Systems Curricula for the Next Generation Science Standards in High School Science Classrooms

    Directory of Open Access Journals (Sweden)

    Susan A. Yoon

    2016-12-01

    Full Text Available We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students’ complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.

  13. Teaching special relativity through a computer conference

    Science.gov (United States)

    Smith, Richard C.

    1988-02-01

    A recent seminar in special relativity is described, which was taught exclusively through a computer conference, hosted on a distant mainframe computer, and asynchronously accessed by students and instructor with microcomputer and modem. Nine participants offered more than 400 separate discussion contributions over the 13-week span of the course. Criteria for choosing courses to be offered in this mode are suggested, and problem areas that need attention in the conduct of subsequent courses are pointed out.

  14. Teaching sciences: The multicultural question revisited

    Science.gov (United States)

    Stanley, William B.; Brickhouse, Nancy W.

    2001-01-01

    We contend that science education should be multicultural. We do not believe a universalist view of science is either compatible with a multicultural approach or fully coherent as a foundation for the science curriculum. We begin by summarizing the case for a universalist approach to science education. We then show weaknesses of universalism in accounting for the following: 1. the limits of human cognitive capabilities in constraining what we can understand about nature; 2. a description of reality as a flux; 3. the disunity of science and the role of culturally different forms and social organization of research in shaping the cognitive content of the sciences. We argue that it would be valuable for students to understand the nature of the debates regarding multicultural and universalist perspectives on science. For example, what questions is contemporary molecular biology good at answering? What kinds of problems do other sciences solve? What historical conditions may explain why western sciences arose primarily out of Western European culture rather than elsewhere in the world? How do other belief systems (e.g., religion) interact with indigenous sciences, Chinese science, and Western science?

  15. Institute for Computer Applications in Science and Engineering (ICASE)

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  16. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  17. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  18. Journal of Computer Science and Its Application: About this journal

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: About this journal. Journal Home > Journal of Computer Science and Its Application: About this journal. Log in or Register to get access to full text downloads.

  19. Journal of Computer Science and Its Application: Site Map

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: Site Map. Journal Home > About the Journal > Journal of Computer Science and Its Application: Site Map. Log in or Register to get access to full text downloads.

  20. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  1. Journal of Computer Science and Its Application: Journal Sponsorship

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: Journal Sponsorship. Journal Home > About the Journal > Journal of Computer Science and Its Application: Journal Sponsorship. Log in or Register to get access to full text downloads.

  2. Archives: Journal of Computer Science and Its Application

    African Journals Online (AJOL)

    Items 1 - 9 of 9 ... Archives: Journal of Computer Science and Its Application. Journal Home > Archives: Journal of Computer Science and Its Application. Log in or Register to get access to full text downloads.

  3. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  4. A Geometric Model to Teach Nature of Science, Science Practices, and Metacognition

    Science.gov (United States)

    Nyman, Matthew; St. Clair, Tyler

    2016-01-01

    Using the science practice model in science classes for preservice teachers addresses three important aspects of science teacher preparation: teaching the nonlinear nature of scientific process, using scientific practices rather than the ambiguous term "inquiry-based," and emphasizing the process of metacognition as an important tool in…

  5. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  6. Computational science: Emerging opportunities and challenges

    International Nuclear Information System (INIS)

    Hendrickson, Bruce

    2009-01-01

    In the past two decades, computational methods have emerged as an essential component of the scientific and engineering enterprise. A diverse assortment of scientific applications has been simulated and explored via advanced computational techniques. Computer vendors have built enormous parallel machines to support these activities, and the research community has developed new algorithms and codes, and agreed on standards to facilitate ever more ambitious computations. However, this track record of success will be increasingly hard to sustain in coming years. Power limitations constrain processor clock speeds, so further performance improvements will need to come from ever more parallelism. This higher degree of parallelism will require new thinking about algorithms, programming models, and architectural resilience. Simultaneously, cutting edge science increasingly requires more complex simulations with unstructured and adaptive grids, and multi-scale and multi-physics phenomena. These new codes will push existing parallelization strategies to their limits and beyond. Emerging data-rich scientific applications are also in need of high performance computing, but their complex spatial and temporal data access patterns do not perform well on existing machines. These interacting forces will reshape high performance computing in the coming years.

  7. Architecture, systems research and computational sciences

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 1) issue of the Nexus Network Journal is dedicated to the theme “Architecture, Systems Research and Computational Sciences”. This is an outgrowth of the session by the same name which took place during the eighth international, interdisciplinary conference “Nexus 2010: Relationships between Architecture and Mathematics, held in Porto, Portugal, in June 2010. Today computer science is an integral part of even strictly historical investigations, such as those concerning the construction of vaults, where the computer is used to survey the existing building, analyse the data and draw the ideal solution. What the papers in this issue make especially evident is that information technology has had an impact at a much deeper level as well: architecture itself can now be considered as a manifestation of information and as a complex system. The issue is completed with other research papers, conference reports and book reviews.

  8. Using Algebraic Computing To Teach General Relativity And Cosmology

    Science.gov (United States)

    Vulcanov, Dumitru N.; Boată, Remus-Ştefan Ş.

    2012-12-01

    The article presents some new aspects and experience on the use of computer in teaching general relativity and cosmology for undergraduate students (and not only) with some experience in computer manipulation. Some years ago certain results were reported [1] using old fashioned computer algebra platforms but the growing popularity of graphical platforms as Maple and Mathematica forced us to adapt and reconsider our methods and programs. We will describe some simple algebraic programming procedures (in Maple with GrTensorII package) for obtaining and the study of some exact solutions of the Einstein equations in order to convince a dedicated student in general relativity about the utility of a computer algebra system.

  9. Resources and Approaches for Teaching Quantitative and Computational Skills in the Geosciences and Allied Fields

    Science.gov (United States)

    Orr, C. H.; Mcfadden, R. R.; Manduca, C. A.; Kempler, L. A.

    2016-12-01

    Teaching with data, simulations, and models in the geosciences can increase many facets of student success in the classroom, and in the workforce. Teaching undergraduates about programming and improving students' quantitative and computational skills expands their perception of Geoscience beyond field-based studies. Processing data and developing quantitative models are critically important for Geoscience students. Students need to be able to perform calculations, analyze data, create numerical models and visualizations, and more deeply understand complex systems—all essential aspects of modern science. These skills require students to have comfort and skill with languages and tools such as MATLAB. To achieve comfort and skill, computational and quantitative thinking must build over a 4-year degree program across courses and disciplines. However, in courses focused on Geoscience content it can be challenging to get students comfortable with using computational methods to answers Geoscience questions. To help bridge this gap, we have partnered with MathWorks to develop two workshops focused on collecting and developing strategies and resources to help faculty teach students to incorporate data, simulations, and models into the curriculum at the course and program levels. We brought together faculty members from the sciences, including Geoscience and allied fields, who teach computation and quantitative thinking skills using MATLAB to build a resource collection for teaching. These materials, and the outcomes of the workshops are freely available on our website. The workshop outcomes include a collection of teaching activities, essays, and course descriptions that can help faculty incorporate computational skills at the course or program level. The teaching activities include in-class assignments, problem sets, labs, projects, and toolboxes. These activities range from programming assignments to creating and using models. The outcomes also include workshop

  10. Academic Perceptions of the Ideal Computer Science Student

    Directory of Open Access Journals (Sweden)

    Hannah Thinyane

    2013-07-01

    Full Text Available This paper presents the results of a case study aimed at identifying the skills that lecturers in a computer science department value in an undergraduate student, and to determine if there is a departmental construction of an ‘ideal’ student. To answer this question, a case study was undertaken in the Computer Science Department at a small university in South Africa. Participants were asked to complete a questionnaire and to take part in an interview to solicit feedback on their notion of an ‘ideal’ student. This study found that participants valued the following skills within undergraduate student: creativity; computer playfulness; planning, analytical or abstract thinking, and problem solving; introverted personality; engagement in class; working independently; self efficacy; and responsibility. It also found a strong correlation between participant’s own performance as a student and their understanding of an ‘ideal’ student. These results are then discussed within the context of South African Higher Education, where student populations are becoming more diverse. The paper calls for academics to reflect on their own teaching, and the relevance of their practices to the present conditions of transformation in Higher Education in South Africa.

  11. Saudi Science Teachers' Views and Teaching Strategies of Socioscientific Issues

    Science.gov (United States)

    Alamri, Aziz S.

    Scientific developments such as cloning and nuclear energy have generated many controversial issues pertain to many political, social, environmental, ethical and cultural values in different societies around the globe. These controversies delimited and encircled the potential of including and teaching some important aspects of science in schools and therefore caused less consideration to the influence of these issues on enhancing the scientific literacy of people in general. The purpose of this study was to investigate how Saudi science teachers in the city of Tabuk in Saudi Arabia view and teach SSI in Saudi Arabia. This study employed semi-structured interviews with Saudi science teachers. Methodologically, this study used a constructivist grounded theory as a method for analysis to generate in-depth descriptive data about Saudi science teachers' views and teaching strategies of socio-scientific issues. Some direct and indirect benefits pertain to teaching science, understanding the relationship between science, religion, and society and some other topics are discussed in this study.

  12. Embedding Nature of Science in Teaching About Astronomy and Space

    Science.gov (United States)

    Buaraphan, Khajornsak

    2012-06-01

    Science teachers need an adequate understanding of nature of science (NOS) and the ability to embed NOS in their teaching. This collective case study aims to explore in-service science teachers' conceptions of NOS and the embeddedness of NOS in their teaching about astronomy and space. Three science teachers participated in this study. All participants attended the NOS workshop based on an explicit-reflective approach. They were asked to respond to the Myths of Science Questionnaire on three different occasions, i.e., at the beginning and the end of the NOS workshop and a semester after the workshop. Classroom observation, interviews after teaching, and a collection of related documents were also employed to collect data. The data were analyzed using a constant comparative method. The results revealed two important assertions. First, science teachers' conceptions of NOS are stable and resistant to change. However, an explicit-reflective approach employed in the NOS workshop, to some extent, promoted science teachers' understanding and reasoning about NOS. Second, science teachers' conceptions of NOS are not directly related to their classroom practices. With different degrees of NOS understanding, all participants taught NOS implicitly and missed most of the opportunities to address aspects of NOS embedded in the topics they taught. The implications of these findings are also discussed.

  13. A Delphi Study on Technology Enhanced Learning (TEL) Applied on Computer Science (CS) Skills

    Science.gov (United States)

    Porta, Marcela; Mas-Machuca, Marta; Martinez-Costa, Carme; Maillet, Katherine

    2012-01-01

    Technology Enhanced Learning (TEL) is a new pedagogical domain aiming to study the usage of information and communication technologies to support teaching and learning. The following study investigated how this domain is used to increase technical skills in Computer Science (CS). A Delphi method was applied, using three-rounds of online survey…

  14. Effect of Robotics on Elementary Preservice Teachers' Self-Efficacy, Science Learning, and Computational Thinking

    Science.gov (United States)

    Jaipal-Jamani, Kamini; Angeli, Charoula

    2017-01-01

    The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' (n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science…

  15. Factors Influencing Pre-Service Science Teachers' Perception of Computer Self-Efficacy

    Science.gov (United States)

    Hakverdi, Meral; Gucum, Berna; Korkmaz, Hunkar

    2007-01-01

    This study examined the factors influencing pre-service teachers' perceptions of computers' self- efficacy. Participants in the study were 305 pre-service science teachers at a four-year public university in Turkey. Two instruments were used for this study: the Turkish version of the Microcomputer Utilization in Teaching Efficacy Beliefs…

  16. Who Needs What: Recommendations for Designing Effective Online Professional Development for Computer Science Teachers

    Science.gov (United States)

    Qian, Yizhou; Hambrusch, Susanne; Yadav, Aman; Gretter, Sarah

    2018-01-01

    The new Advanced Placement (AP) Computer Science (CS) Principles course increases the need for quality CS teachers and thus the need for professional development (PD). This article presents the results of a 2-year study investigating how teachers teaching the AP CS Principles course for the first time used online PD material. Our results showed…

  17. Evaluation des Programmes d'Informatique (Evaluation of Computer Science Programs).

    Science.gov (United States)

    Moisan, Claude

    In March 1994, Quebec's Commission on the Evaluation of Collegiate Teaching initiated an evaluation of computer science programs in province colleges. This report describes the evaluation process and presents results. The first section describes the following four stages of the evaluation: the formation of a consulting committee and evaluation…

  18. Expanding Computer Science Education in Schools: Understanding Teacher Experiences and Challenges

    Science.gov (United States)

    Yadav, Aman; Gretter, Sarah; Hambrusch, Susanne; Sands, Phil

    2017-01-01

    The increased push for teaching computer science (CS) in schools in the United States requires training a large number of new K-12 teachers. The current efforts to increase the number of CS teachers have predominantly focused on training teachers from other content areas. In order to support these beginning CS teachers, we need to better…

  19. Understanding and Improving Blind Students' Access to Visual Information in Computer Science Education

    Science.gov (United States)

    Baker, Catherine M.

    2017-01-01

    Teaching people with disabilities tech skills empowers them to create solutions to problems they encounter and prepares them for careers. However, computer science is typically taught in a highly visual manner which can present barriers for people who are blind. The goal of this dissertation is to understand and decrease those barriers. The first…

  20. minimUML: A Minimalist Approach to UML Diagramming for Early Computer Science Education

    Science.gov (United States)

    Turner, Scott A.; Perez-Quinones, Manuel A.; Edwards, Stephen H.

    2005-01-01

    In introductory computer science courses, the Unified Modeling Language (UML) is commonly used to teach basic object-oriented design. However, there appears to be a lack of suitable software to support this task. Many of the available programs that support UML focus on developing code and not on enhancing learning. Programs designed for…

  1. Emotions and elementary school science teaching: Postmodernism in practice

    Science.gov (United States)

    Zembylas, Michalinos

    This is an ethnographic study about an elementary school teacher's emotions in her science teaching and pedagogy. This study is an interdisciplinary account of emotions in teaching and draws both methodologically and theoretically from a variety of disciplines: philosophy, sociology, psychology, anthropology, cultural studies and feminist studies. The account developed here is based on my understanding of the role of one teacher's (Catherine) emotions in her classroom life for three years. I describe my approach in terms of what I call emotional genealogies of teaching; referring to an account of the events, objects, persons and their relationships that are present or absent in the realization of emotions, and the ways that these emotions are experienced in relation to the self (individual reality), the others (social interactions) and the world in general (sociopolitical context). Applied to my study, an emotional genealogy of Catherine's science teaching seeks not to trace the gradual evolution of her emotions but to record the singularity of various events that make some emotions present and others absent. My study shows how certain emotions are constructed in the science classroom and how they are transformed over the years (as mediated by values, philosophies, beliefs and so on). Catherine's emotions in science teaching is a "history of the present," a history of her emotions' "presences and absences" in her daffy interactions with her students, parents and administrators in the context of the science classroom. This work raises important questions that go beyond the meaning and interpretation of teachers' emotions: How can teachers' emotions become a legitimate topic in (science) education as well as in efforts for science curricular reform? Further, how can educational institutions (universities and schools) and elementary school science teachers themselves support their personal and professional emotional growth?

  2. Is ""predictability"" in computational sciences a myth?

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M [Los Alamos National Laboratory

    2011-01-31

    Within the last two decades, Modeling and Simulation (M&S) has become the tool of choice to investigate the behavior of complex phenomena. Successes encountered in 'hard' sciences are prompting interest to apply a similar approach to Computational Social Sciences in support, for example, of national security applications faced by the Intelligence Community (IC). This manuscript attempts to contribute to the debate on the relevance of M&S to IC problems by offering an overview of what it takes to reach 'predictability' in computational sciences. Even though models developed in 'soft' and 'hard' sciences are different, useful analogies can be drawn. The starting point is to view numerical simulations as 'filters' capable to represent information only within specific length, time or energy bandwidths. This simplified view leads to the discussion of resolving versus modeling which motivates the need for sub-scale modeling. The role that modeling assumptions play in 'hiding' our lack-of-knowledge about sub-scale phenomena is explained which leads to discussing uncertainty in simulations. It is argued that the uncertainty caused by resolution and modeling assumptions should be dealt with differently than uncertainty due to randomness or variability. The corollary is that a predictive capability cannot be defined solely as accuracy, or ability of predictions to match the available physical observations. We propose that 'predictability' is the demonstration that predictions from a class of 'equivalent' models are as consistent as possible. Equivalency stems from defining models that share a minimum requirement of accuracy, while being equally robust to the sources of lack-of-knowledge in the problem. Examples in computational physics and engineering are given to illustrate the discussion.

  3. Linking Teaching in Mathematics and the Subjects of Natural Science

    DEFF Research Database (Denmark)

    Michelsen, Claus

    2017-01-01

    teaching programs. This is partly due to the lack of a framework for integrating productive ideas across the disciplines. This paper focus on how to grasp the challenges of an interdisciplinary approach to teaching in mathematics and the subjects of natural science. Based on contemporary mathematics......Educational researchers and policy-makers have for some time touted the need for interdisciplinary teaching. However, despite this desire for a change towards interdisciplinary teaching, teachers are often uncertain about how to go about planning, implementing, and sustaining interdisciplinary...... for mathematics and biology teachers. The teachers were presented to the didactical framework and in pairs of two, one mathematics teacher and one biology teacher; they designed and implemented interdisciplinary mathematicsbiology teaching sequences. The teachers’ reports on their development and implementation...

  4. Advances and challenges in computational plasma science

    International Nuclear Information System (INIS)

    Tang, W M; Chan, V S

    2005-01-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  5. Factors Influencing Exemplary Science Teachers' Levels of Computer Use

    Science.gov (United States)

    Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen

    2011-01-01

    The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…

  6. Empirical Determination of Competence Areas to Computer Science Education

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia

    2014-01-01

    The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…

  7. Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study

    Science.gov (United States)

    Herling, Lourdes

    2011-01-01

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…

  8. Marrying Content and Process in Computer Science Education

    Science.gov (United States)

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  9. The use of personal computers for self-teaching

    International Nuclear Information System (INIS)

    Levrat, B.

    1983-01-01

    The number of personal computers is growing at a phenomenal rate. Their capabilities in man-machine interaction makes them useful in teaching a variety of subjects. They can offer a stimulating presentation of the material to be learned, varied drill and practice exercices and simulations. Testing, evaluation and progress monitoring are also possible. Key issues about quality and content should not be left to businessmen alone. At CERN, Computer Aided Learning could be useful in connexion with large experiments. (orig.)

  10. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  11. Using an interdisciplinary MOOC to teach climate science and science communication to a global classroom

    Science.gov (United States)

    Cook, J.

    2016-12-01

    MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.

  12. Teaching With and About Nature of Science, and Science Teacher Knowledge Domains

    Science.gov (United States)

    Abd-El-Khalick, Fouad

    2013-09-01

    The ubiquitous goals of helping precollege students develop informed conceptions of nature of science (NOS) and experience inquiry learning environments that progressively approximate authentic scientific practice have been long-standing and central aims of science education reforms around the globe. However, the realization of these goals continues to elude the science education community partly because of a persistent, albeit not empirically supported, coupling of the two goals in the form of `teaching about NOS with inquiry'. In this context, the present paper aims, first, to introduce the notions of, and articulate the distinction between, teaching with and about NOS, which will allow for the meaningful coupling of the two desired goals. Second, the paper aims to explicate science teachers' knowledge domains requisite for effective teaching with and about NOS. The paper argues that research and development efforts dedicated to helping science teachers develop deep, robust, and integrated NOS understandings would have the dual benefits of not only enabling teachers to convey to students images of science and scientific practice that are commensurate with historical, philosophical, sociological, and psychological scholarship (teaching about NOS), but also to structure robust inquiry learning environments that approximate authentic scientific practice, and implement effective pedagogical approaches that share a lot of the characteristics of best science teaching practices (teaching with NOS).

  13. Computer-Game Construction: A Gender-Neutral Attractor to Computing Science

    Science.gov (United States)

    Carbonaro, Mike; Szafron, Duane; Cutumisu, Maria; Schaeffer, Jonathan

    2010-01-01

    Enrollment in Computing Science university programs is at a dangerously low level. A major reason for this is the general lack of interest in Computing Science by females. In this paper, we discuss our experience with using a computer game construction environment as a vehicle to encourage female participation in Computing Science. Experiments…

  14. Controversy as a Blind Spot in Teaching Nature of Science: Why the Range of Different Positions Concerning Nature of Science Should Be an Issue in the Science Classroom

    Science.gov (United States)

    Kötter, Mario; Hammann, Marcus

    2017-01-01

    In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science (NOS) teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines…

  15. Foreign Language Teaching and the Computer.

    Science.gov (United States)

    Garrett, Nina, Ed.; Hart, Robert S., Ed.

    1986-01-01

    "Juegos comunicativos," a software program designed for use with the Apple IIe, IIc, or II+, emphasizes "communicative" computer-assisted Spanish language learning through five educational games. The program uses Spanish vocabulary and structures to solve "problems" rather than the standard drill-and-practice format.…

  16. Teacher Beliefs toward Using Alternative Teaching Approaches in Science and Mathematics Classes Related to Experience in Teaching

    Science.gov (United States)

    Isiksal-Bostan, Mine; Sahin, Elvan; Ertepinar, Hamide

    2015-01-01

    The purpose of this study was to examine the relationships among Turkish classroom, science and mathematics teachers' beliefs toward using inquiry-based approaches, traditional teaching approaches, and technology in their mathematics and science classrooms; their efficacy beliefs in teaching those subjects; and years of experience in teaching in…

  17. Preparing teachers for ambitious and culturally responsive science teaching

    Science.gov (United States)

    Seiler, Gale

    2013-03-01

    Communities, schools and classrooms across North America are becoming more ethnically, racially, and linguistically diverse, particularly in urban areas. Against this backdrop, underrepresentation of certain groups in science continues. Much attention has been devoted to multicultural education and the preparation of teachers for student diversity. In science education, much research has focused on classrooms as cultural spaces and the need for teachers to value and build upon students' everyday science knowledge and ways of sense-making. However it remains unclear how best to prepare science teachers for this kind of culturally responsive teaching. In attempting to envision how to prepare science teachers with cross-cultural competency, we can draw from a parallel line of research on preparing teachers for ambitious science instruction. In ambitious science instruction, students solve authentic problems and generate evidence and models to develop explanations of scientific phenomenon, an approach that necessitates great attention to students' thinking and sense-making, thus making it applicable to cultural relevance aims. In addition, this line of research on teacher preparation has developed specific tools and engages teachers in cycles of reflection and rehearsal as they develop instructional skills. While not addressing cross-cultural teaching specifically, this research provides insights into specific ways through which to prepare teachers for culturally responsive practices. In my presentation, I will report on efforts to join these two areas of research, that is, to combine ideas about multicultural science teacher preparation with what has been learned about how to develop ambitious science instruction. This research suggests a new model for urban science teacher preparation--one that focuses on developing specific teaching practices that elicit and build on student thinking, and doing so through cycles of individual and collective planning, rehearsal

  18. Computer Simulation and Laboratory Work in the Teaching of Mechanics.

    Science.gov (United States)

    Borghi, L.; And Others

    1987-01-01

    Describes a teaching strategy designed to help high school students learn mechanics by involving them in simple experimental work, observing didactic films, running computer simulations, and executing more complex laboratory experiments. Provides an example of the strategy as it is applied to the topic of projectile motion. (TW)

  19. Writing Teaching and the Word Processor. A Computer Discussion Paper.

    Science.gov (United States)

    Walshe, R. D., Ed.

    Designed for use by elementary school teachers, this discussion paper discusses the use of the word processor in the teaching of writing. The paper examines both the positive and negative aspects of computer use. After comparing the writing process with the problem solving process, the newsletter provides articles relating teachers' experiences…

  20. Methodological Potential of Computer Experiment in Teaching Mathematics at University

    Science.gov (United States)

    Lin, Kequan; Sokolova, Anna Nikolaevna; Vlasova, Vera K.

    2017-01-01

    The study is relevant due to the opportunity of increasing efficiency of teaching mathematics at university through integration of students of computer experiment conducted with the use of IT in this process. The problem of there search is defined by a contradiction between great potential opportunities of mathematics experiment for motivating and…

  1. The Teaching of Mass Communication Through the use of Computer ...

    African Journals Online (AJOL)

    Mass communication as a programme in education is an important subject in the training of students. Here, we determined the effects of improving the teaching of the subject in a tertiary institution like Cross River University of Technology through the use of computer assisted picture presentation. The study was ...

  2. The Teaching of Computing in an Undergraduate Physics Course.

    Science.gov (United States)

    Humberston, J. W.; McKenzie, J.

    1984-01-01

    Describes an approach to teaching interactive computing for physics students beginning with the use of BASIC and video terminals during the first year of study (includes writing solution programs for practical problems). Second year students learn FORTRAN and apply it to interpolation, numerical integration, and differential equations. (JM)

  3. Science Specialists or Classroom Teachers: Who Should Teach Elementary Science?

    Science.gov (United States)

    Levy, Abigail Jurist; Jia, Yueming; Marco-Bujosa, Lisa; Gess-Newsome, Julie; Pasquale, Marian

    2016-01-01

    This study examined science programs, instruction, and student outcomes at 30 elementary schools in a large, urban district in the northeast United States in an effort to understand whether there were meaningful differences in the quality, quantity and cost of science education when provided by a science specialist or a classroom teacher. Student…

  4. Terascale Computing in Accelerator Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwok

    2002-08-21

    We have entered the age of ''terascale'' scientific computing. Processors and system architecture both continue to evolve; hundred-teraFLOP computers are expected in the next few years, and petaFLOP computers toward the end of this decade are conceivable. This ever-increasing power to solve previously intractable numerical problems benefits almost every field of science and engineering and is revolutionizing some of them, notably including accelerator physics and technology. At existing accelerators, it will help us optimize performance, expand operational parameter envelopes, and increase reliability. Design decisions for next-generation machines will be informed by unprecedented comprehensive and accurate modeling, as well as computer-aided engineering; all this will increase the likelihood that even their most advanced subsystems can be commissioned on time, within budget, and up to specifications. Advanced computing is also vital to developing new means of acceleration and exploring the behavior of beams under extreme conditions. With continued progress it will someday become reasonable to speak of a complete numerical model of all phenomena important to a particular accelerator.

  5. Teaching strategies applied to teaching computer networks in Engineering in Telecommunications and Electronics

    Directory of Open Access Journals (Sweden)

    Elio Manuel Castañeda-González

    2016-07-01

    Full Text Available Because of the large impact that today computer networks, their study in related fields such as Telecommunications Engineering and Electronics is presented to the student with great appeal. However, by digging in content, lacking a strong practical component, you can make this interest decreases considerably. This paper proposes the use of teaching strategies and analogies, media and interactive applications that enhance the teaching of discipline networks and encourage their study. It is part of an analysis of how the teaching of the discipline process is performed and then a description of each of these strategies is done with their respective contribution to student learning.

  6. Exploration of Factors Related to the Development of Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants' Teaching Orientations

    Science.gov (United States)

    Gilmore, Joanna; Maher, Michelle A.; Feldon, David F.; Timmerman, Briana

    2014-01-01

    Research indicates that modifying teachers' beliefs about learning and teaching (i.e. teaching orientation) may be a prerequisite to changing their teaching practices. This mixed methods study quantitized data from interviews with 65 graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) fields to assess…

  7. Zimbabwe's Better Environmental Science Teaching Programme

    African Journals Online (AJOL)

    developments in environmental education in southern Africa within the broader scope and goals of ESD and draws .... As an implementation strategy BEST conducted in-service courses at different levels for the key players in ..... As shown in Table 4 above, the two most preferred teaching methods were simulation games.

  8. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  9. Computing as Empirical Science – Evolution of a Concept

    Directory of Open Access Journals (Sweden)

    Polak Paweł

    2016-12-01

    Full Text Available This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry (1975 started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led to a view of the science of computing (or science of information processing - the science of general scope. Some interesting contemporary ways towards a generalized perspective on computations were also shown (e.g. natural computing.

  10. Non-Determinism: An Abstract Concept in Computer Science Studies

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2007-01-01

    Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…

  11. Science Understanding through Playground Physics: Organized Recess Teaching (SUPPORT)

    Science.gov (United States)

    Kincaid, Russell

    2010-03-01

    From 1995-2007, U.S. science students in grade four scored higher than the scaled TIMSS average, but their scores did not improve over this time. Moreover, in the area of physical science, the U.S. scored significantly lower than several Asian countries, as well as Russia, England, and Latvia (TIMSS). Methods to enhance student achievement in science are still being sought. An approach to utilizing playground equipment as a teaching tool for a variety of physics concepts was developed as a physical science teaching method. This program established an appropriate set of experiments, coordinated the effort with local school districts, and implemented a brief pilot study to test the teaching methodology. The program assigned undergraduate middle school science education majors to teach small groups of fourth grade students. The experimental group used the newly developed ``Playground Physics'' methodology while the control group used traditional approaches. Follow up activities will include an expansion of the duration and the scope of the program.

  12. Great Activities for Great Science Teaching.

    Science.gov (United States)

    Weiner, Esther B.

    1993-01-01

    Presents hands-on spring science activities to help elementary students think and act like scientists. Students use the scientific process to make connections between life, physical, and earth science. Activities look at insects, flowers, trees, the sun, and the earth's rotation around the sun. (SM)

  13. Teaching Science Down on the Farm

    Science.gov (United States)

    Hicks, Debbie

    2016-01-01

    Throughout the United Kingdom's (UK's) primary science curriculum, there are numerous opportunities for teachers to use the farming industry as a rich and engaging real-world context for science learning. Teachers can focus on the animals and plants on the farm as subjects for children to learn about life processes. They can turn attention…

  14. A Longitudinal Investigation of the Preservice Science Teachers' Beliefs about Science Teaching during a Science Teacher Training Programme

    Science.gov (United States)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants…

  15. The Evolution of Computer Based Learning Software Design: Computer Assisted Teaching Unit Experience.

    Science.gov (United States)

    Blandford, A. E.; Smith, P. R.

    1986-01-01

    Describes the style of design of computer simulations developed by Computer Assisted Teaching Unit at Queen Mary College with reference to user interface, input and initialization, input data vetting, effective display screen use, graphical results presentation, and need for hard copy. Procedures and problems relating to academic involvement are…

  16. Didactic proposal to perfect the investigative formation in Bachelor of Computer Science

    Directory of Open Access Journals (Sweden)

    Ekaterine Fergusson-Ramirez

    2016-05-01

    Full Text Available This article proposes a system of teaching methods to improve research skills in students of Computer Science carrier. The same was structured in three procedures: computational hermeneutical of user system, computational hermeneutical of intermediary system and computational hermeneutical of information system, which supports the development of a computational systemic research thinking. The feasibility and relevance of the system of procedures was corroborated by two workshops and the partial implementation of it in the carrier. The results obtained allow to conclude that the system provides sufficient evidence of its potential to improve the dynamics of research skills in the Computer Science carrier and contribute to the development of a computational systemic research thinking in the students.

  17. Teachers' beliefs about science teaching and context factors: Implications for teaching and learning science at the middle school level

    Science.gov (United States)

    Pea, Celeste H.

    Current research shows that teachers' beliefs have been virtually ignored in science education reform efforts spearheaded by the development of national, state, and local standards. Since the aim of science education reform is to improve scientific literacy for all students, increasingly, researchers are questioning the lack of attention to teachers' beliefs and are calling for more research to examine teachers' beliefs and the influence of school environmental factors on their classroom practices. The purpose of this study was to explore, investigate, and analyze data that might reveal middle school science teachers' beliefs about science teaching and how school environmental factors influence their classroom behavior. The mixed methods study was conducted in a large urban/suburban county in an eastern state in the United States. Data were collected through a Likert-style survey and interview and observation sessions. Ninety-one middle school science teachers completed the survey. Three teachers from the survey sample also participated in the interview and observation sessions. The findings from the quantitative and qualitative data indicated that most of the middle school science teachers in this study believed that science teaching should be student-centered, and science instruction should be based on an inquiry-based approach to teaching and learning. They also believed that the state and county standards were the most important factors in helping teachers to use inquiry-based instructional strategies to teach science. In addition to the science standards, the middle school science teachers believed that peer and principal support were critical to their success as teachers, and that instructional materials and supplies were readily available to help them teach science. The findings from the study indicated that few school environmental factors affected the middle school teachers' classroom practices. However, time (to participate in more professional activities

  18. Theoretical Computer Science for the Working Category Theorist

    OpenAIRE

    Yanofsky, Noson S.

    2017-01-01

    Theoretical computer science discusses foundational issues about computations. It asks and answers questions such as "What is a computation?", "What is computable?", "What is efficiently computable?","What is information?", "What is random?", "What is an algorithm?", etc. We will present many of the major themes and theorems with the basic language of category theory. Surprisingly, many interesting theorems and concepts of theoretical computer science are easy consequences of functoriality an...

  19. COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM

    Directory of Open Access Journals (Sweden)

    José Manuel Cabrera Delgado

    2017-06-01

    Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?

  20. Application of visualization technique in computational science

    International Nuclear Information System (INIS)

    Watanabe, Tadashi

    1996-01-01

    At the center for promotion of computational science and engineering in JAERI, complex phenomena in nuclear application fields such as heat conduction and fluid dynamics are studied through computer simulations based on first-principle models and equations. This research project is divided into three parts according to objectives and methodologies: continuum-system simulation, particle-system simulation, and large scale numerical simulation technique. Application of visualization technique is studied for the large scale numerical simulation technique. In the course of establishing a distributed processing environment, an animation processing system has been developed, in which simulation results are consecutively visualized on a server workstation for image processing and automatically recorded on a video tape. In this report, the animation processing system is described using examples in the particle-system simulation. (author)

  1. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    Science.gov (United States)

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  2. Computer and Information Sciences II : 26th International Symposium on Computer and Information Sciences

    CERN Document Server

    Lent, Ricardo; Sakellari, Georgia

    2012-01-01

    Information technology is the enabling foundation for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 26th International Symposium on Computer and Information Systems, held at the Royal Society in London on 26th to 28th September 2011. Computer and Information Sciences II contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams in both Europe and Asia.

  3. Teaching Creativity and Inventive Problem Solving in Science

    OpenAIRE

    DeHaan, Robert L.

    2009-01-01

    Engaging learners in the excitement of science, helping them discover the value of evidence-based reasoning and higher-order cognitive skills, and teaching them to become creative problem solvers have long been goals of science education reformers. But the means to achieve these goals, especially methods to promote creative thinking in scientific problem solving, have not become widely known or used. In this essay, I review the evidence that creativity is not a single hard-to-measure property...

  4. Academic proposal to practical teaching of robotics in Computer Science Grade Propuesta docente para las prácticas de róbotica en el Grado de Ingeniería Informática

    Directory of Open Access Journals (Sweden)

    Francisco Javier Blanco Rodríguez

    2012-07-01

    Full Text Available Normal.dotm 0 0 1 114 655 Universidad de Salamanca 5 1 804 12.0 0 false 18 pt 18 pt 0 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} In this paper we present a proposal for the practical teaching robotics in a Degree in Computer Science. In order to make the course more attractive and stimulate the interest by students complex mathematical descriptions had been avoided. Instead, it focuses in other aspects more related to those degree students such as mobile robotics. To allow students to have access to real robot to practice Roomba robot has been chosen. Teaching methodology is based on project development by students after viewing of a set of videos of the robot performing actions. Then students must obtain a program where the robot behaves in the same way. So, they first have to analyze how the robot gets the behavior to implementing it later. It also presents the set of projects to be undertaken by students. Normal.dotm 0 0 1 126 720 Universidad de Salamanca 6 1 884 12.0 0 false 18 pt 18 pt 0 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso

  5. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    Science.gov (United States)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  6. Pre-Service Teachers Methods of Teaching Science

    Directory of Open Access Journals (Sweden)

    Dr. Raquel C. Pambid

    2015-02-01

    Full Text Available The study described the teaching methods used by pre-service teachers in Science. It focused on the strategies, techniques, materials, innovative methods and pattern of teaching science used by the pre-service teachers as described in their lesson plans. The qualitative and quantitative design was used in the study. The books, teacher hand-outs from classroom lectures were the sources of methods, strategies and techniques. The chalkboard and self-made drawings and charts were the materials often used. Conventional methods like lecture, open class discussion and demonstration were commonly employed. The strategies included group discussion, use of motivating questions and stories to arouse the interest of students. The direct eye contact, body expressions, jokes and news/trivia were frequent techniques. Integration of values in the lesson became less as the year level increases. The pattern of teaching drawn followed the formal style: I Objectives, II Subject matter, III Learning Tasks, IV Synthesis of the lesson, V Assessment and VI Enrichment. The conventional method and pattern of teaching by the pre-service teachers of PSU suggest that students in the College of Teacher Education should be trained to be more innovative and open in trying out more advanced teaching methods. Furthermore, PSU science pre-service teachers should use methods which can develop higher order thinking skills among high school students.

  7. Building a Democratic Model of Science Teaching

    Directory of Open Access Journals (Sweden)

    Suhadi Ibnu

    2016-02-01

    Full Text Available Earlier in the last century, learning in science, as was learning in other disciplines, was developed according to the philosophy of behaviorism. This did not serve the purposes of learning in science properly, as the students were forced to absorb information transferred from the main and the only source of learning, the teacher. Towards the end of the century a significant shift from behaviorism to constructivism philosophy took place. The shift promoted the development of more democratic models of learning in science which provided greater opportunities to the students to act as real scientist, chattering for the building of knowledge and scientific skills. Considering the characteristics of science and the characteristics of the students as active learners, the shift towards democratic models of learning is unavoidable and is merely a matter of time

  8. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  9. THE DEVELOPMENT OF AIR-THEME INTEGRATED SCIENCE TEACHING MATERIAL USING FOUR STEPS TEACHING MATERIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. Arifin

    2016-01-01

    Full Text Available The purposes of this study are to develop, to test the feasibility, to describe the characteristic, and to test the students understanding about integrated science teaching material about air using Four Steps Teaching Material Development (4S TMD. The Research and Development method was use to develop integrated science teaching materials which is involving  all science perspectives that are not presented in junior high school science book. The air theme was chosen in this study since it can be explained using biology, chemistry, physics, and earth and space science  perspectives. Development the teaching materials was consists of selection, structuring, characterization, and reduction didactic steps. Based on the of feasibility test results, the teaching material is qualified in content, presentation, language, and graphic feasibility aspects. The characteristic of this teaching material expose the closeness theme with student daily lifes and its compatibility with National Books Standard. Based on the understanding test results, the teaching material is qualified in understanding aspect with high category. It can be concluded that the teaching material qualified to be used as supplement teaching material of science learning.Penelitian ini bertujuan untuk mengembangkan, menguji kelayakan, memaparkan karakteristik, dan menguji keterpahaman bahan ajar IPA terpadu pada tema udara untuk siswa SMP kelas VII melalui Four Steps Teaching Material Development (4S TMD. Penelitian dengan metode Research and Development (R&D ini dilatar belakangi oleh tidak tersedianya bahan ajar IPA SMP yang disajikan secara terpadu melalui tema udara. Pengembangan bahan ajar IPA terpadu tema udara terdiri dari tahap seleksi, strukturisasi, karakterisasi dan reduksi didaktik. Berdasarkan uji kelayakan, bahan ajar telah memenuhi aspek kelayakan isi, kelayakan penyajian, kelayakan bahasa dan kelayakan kegrafikan. Karakteristik bahan ajar meliputi kedekatan tema bahan ajar

  10. Strengthening Research and Teaching Capacity in Earth Sciences ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This is the case with the University of Limpopo's School of Physical and Mineral Sciences. Located in South Africa's poorest province, the university has financial, teaching, and infrastructure constraints. Collaboration to build South Africa's mining future With this funding, the Goodman School of Mines at Canada's ...

  11. Teaching for competence in science education in Denmark

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    2016-01-01

    teaching situations. Nonetheless, the idea of competence is viewed as an important and valuable way for engaging with the more general goals for science education in Denmark (and elsewhere). In service of that interest, we introduce the ideas of germcell and theoretical thinking from the developmental...

  12. "Bacon Brains": Video Games for Teaching the Science of Addiction

    Science.gov (United States)

    Epstein, Joel; Noel, Jeffrey; Finnegan, Megan; Watkins, Kate

    2016-01-01

    Researchers have developed many different computerized interventions designed to teach students about the dangers of substance use. Following in this tradition, we produced a series of video games called "Bacon Brains." However, unlike many other programs, ours focused on the "Science of Addiction," providing lessons on how…

  13. Science student teacher's perceptions of good teaching | Setlalentoa ...

    African Journals Online (AJOL)

    The purpose of this study was to explore the science student teachers' perceptions of good teaching at a university of technology. A descriptive survey research design was employed to derive responses from a convenience sample size of 50 senior students enrolled in the Bachelor of Education (Further Education and ...

  14. Mobile Phone Images and Video in Science Teaching and Learning

    Science.gov (United States)

    Ekanayake, Sakunthala Yatigammana; Wishart, Jocelyn

    2014-01-01

    This article reports a study into how mobile phones could be used to enhance teaching and learning in secondary school science. It describes four lessons devised by groups of Sri Lankan teachers all of which centred on the use of the mobile phone cameras rather than their communication functions. A qualitative methodological approach was used to…

  15. Science Teaching as Educational Interrogation of Scientific Research

    Science.gov (United States)

    Ginev, Dimitri

    2013-01-01

    The main argument of this article is that science teaching based on a pedagogy of questions is to be modeled on a hermeneutic conception of scientific research as a process of the constitution of texts. This process is spelled out in terms of hermeneutic phenomenology. A text constituted by scientific practices is at once united by a hermeneutic…

  16. Teaching Life Sciences to English second language learners: What ...

    African Journals Online (AJOL)

    South Africa has eleven official languages and legally learners receive tuition in their mother tongue until the end of Grade 3. From then on teachers are required to teach through the medium of English or Afrikaans. The implication is that the majority of learners in the senior secondary school phase study Life Sciences in ...

  17. The Teaching of Political Science in Developing Countries

    Science.gov (United States)

    Navarro, Raul Bejar; And Others

    1978-01-01

    College level political science teaching in developing nations will be more relevant to students if it is developed within an interdisciplinary framework and is related to theories of organization, conflict, and social ecology. Journal available from UNIPUB, Box 433, Murray Hill Station, New York, New York 10016. (Author/DB)

  18. Heuristic Diagrams as a Tool to Teach History of Science

    Science.gov (United States)

    Chamizo, Jose A.

    2012-01-01

    The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The…

  19. The Ontology of Science Teaching in the Neoliberal Era

    Science.gov (United States)

    Sharma, Ajay

    2017-01-01

    Because of ever stricter standards of accountability, science teachers are under an increasing and unrelenting pressure to demonstrate the effects of their teaching on student learning. Econometric perspectives of "teacher quality" have become normative in assessment of teachers' work for accountability purposes. These perspectives seek…

  20. Use of ICT facilities for teaching library and information science ...

    African Journals Online (AJOL)

    This article investigated availability and functionality of ICT facilities and its utilization in the teaching of Library and Information Science (LIS) students in the University of Uyo. The study adopted a survey design and was guided by four objectives, four research questions, and two hypotheses. The population of the study ...

  1. The Future of Teaching Research in the Social Sciences

    Science.gov (United States)

    Wagner, C.

    2009-01-01

    Current literature on teaching research methodology in the social sciences highlights the changing nature of our world in terms of its complexity and diversity, and points to how this affects the way in which we search for answers to related problems (Brew 2003, 3; Tashakkori and Teddlie 2003, 74). New ways of approaching research problems that…

  2. Collaborative curriculum design to increase science teaching self-efficacy

    NARCIS (Netherlands)

    Velthuis, C.H.

    2014-01-01

    The focus in this study is on developing a teacher training program for improving teachers’ science teaching self-efficacy. Teachers with a high sense of self-efficacy will set higher goals for themselves, are less afraid of failure and will find new strategies when old ones fail. If their sense of

  3. On Using GIS to Teach in the Social Sciences

    Science.gov (United States)

    Harris, Jill S.

    2012-01-01

    In this article, the author discusses how a professor can harness the power of Geographic Information Systems (GIS) and use GIS to teach in the social sciences. She shows examples of how GIS can illustrate concepts during lecture or discussion, and provides two specific GIS assignments: one for undergraduate students and the other for graduate…

  4. A Videotape Study of Science Teaching in Shenzhen, China.

    Science.gov (United States)

    Wang, Jianjun; Zhu, Chunying

    This report presents the results of a videotape study of science teaching in Shenzhen, China. Shenzhen is one of China's first special economic zones adjacent to Hong Kong. Developed from a small fishing village in the late 1970s, Shenzhen experienced fast economic growth in the last two decades, which has steadily increased the diversity of the…

  5. Using Copy Change with Trade Books to Teach Earth Science

    Science.gov (United States)

    Bintz, William P.; Wright, Pam; Sheffer, Julie

    2010-01-01

    Developing and implementing relevant, challenging, integrative, and exploratory curriculum is critical at all levels of schooling. This article describes one attempt to develop and implement an instance of interdisciplinary curriculum by using copy change with trade books to teach earth science. Specifically, it introduces trade books as a way to…

  6. Science teachers understanding of inquiry-based science teaching ...

    African Journals Online (AJOL)

    owner

    provide different definitions of scientific inquiry but teachers who are looking for a detailed operational definition that can serve as a guide for ... at the same time may constitute a platform towards teachers' understanding of what IBST is. Modern science ..... Ordinary Level Science Curriculum (Biology, Chemistry, Physics).

  7. Girls on Ice: Using Immersion to Teach Fluency in Science

    Science.gov (United States)

    Pettit, E. C.; Mortenson, C.; Stiles, K.; Coryell-Martin, M.; Long, L.

    2010-12-01

    Young women choose not to pursue science careers for several reasons; two important ones are that they more often lack the confidence in their own ability to succeed or they perceive many science jobs as isolated (working alone in a lab) or lacking in altruistic values of helping other people or communities. We developed an immersion-science program, Girls on Ice, to provide young women with strong, female role models; with an opportunity to see what a career in the Earth sciences is like; with one-on-one interactions with scientists; with facilitated discussions on the value of Earth science in societal issues such as climate change; and with challenges that will build their self-confidence in multiple ways. Girls on Ice is field-based program for teenage young women with the theme of Glaciers, Climate, and the Alpine Landscape. The concepts we cover range from glacier dynamics to alpine plant ecology to mountain weather. The educational goals are 1. to increase young women's self-efficacy and interest in pursuing science as a career, 2. to create life-long advocates for the scientific process and its role in public policy 3. to teach critical thinking skills which will be important for all of their future pursuits 4. to enhance their leadership self-confidence so that they have a higher likelihood of becoming community leaders in the future. The educational philosophy of Girls on Ice consists of three core values: that teaching the whole process of science gives students ownership of the science; that teaching to the whole student puts the science in context; and that diversity inspires new ideas, new approaches, and better science in the end. We use a field-based immersion format -- the science equivalent of language-immersion course - in order to achieve the goals listed above in a setting that emphasizes this educational philosophy. The immersion-style course creates a deep connection between science and daily life for these young women. Combined with climate

  8. Scientific Analogies and Their Use in Teaching Science

    Science.gov (United States)

    Kipnis, Nahum

    Analogy in science knew its successes and failures, as illustrated by examples from the eighteenth-century physics. At times, some scientists abstained from using a certain analogy on the ground that it had not yet been demonstrated. Several false discoveries in the 18th and early 19th centuries appeared to support their caution. It is now clear that such a position reflected a methodological confusion that resulted from a failure to distinguish between particular and general analogies. Considering analogy as a hierarchical structure provides a new insight into "testing an analogy". While warning science teachers of dangers associated with use of analogy, historical cases and their analysis provided here may encourage them to use analogy more extensively while avoiding misconceptions. An argument is made that the history of science may be a better guide than philosophy of science and cognitive psychology when it concerns the role of analogy in science and in teaching science for understanding.

  9. Investigation in the classroom: A contextualized proposal for the teaching of Science / Biochemistry through criminal investigation

    OpenAIRE

    Mytse Andrea Sales de Melo Andrade

    2017-01-01

    The teaching of Science/Biochemistry not always enables a significant learning to the students. In this scenario, contextualization of Science teaching is a fundamental strategy .Based on this, this study aimed at proposing an alternative and contextualized approach for teaching Science/Biochemistry by using a “generative theme”, the criminal investigation, in order to clarify the applicability of Sciences, besides evaluating whether this teaching strategy is realistic and productive. The met...

  10. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    Science.gov (United States)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  11. Middle school science teachers' teaching self-efficacy and students' science self-efficacy

    Science.gov (United States)

    Pisa, Danielle

    Project 2061, initiated by the American Association for the Advancement of Science (AAAS), developed recommendations for what is essential in education to produce scientifically literate citizens. Furthermore, they suggest that teachers teach effectively. There is an abundance of literature that focuses on the effects of a teacher's science teaching self-efficacy and a student's science self-efficacy. However, there is no literature on the relationship between the two self-efficacies. This study investigated if there is a differential change in students' science self-efficacy over an academic term after instruction from a teacher with high science teaching self-efficacy. Quantitative analysis of STEBI scores for teachers showed that mean STEBI scores did not change over one academic term. A t test indicated that there was no statistically significant difference in mean SMTSL scores for students' science self-efficacy over the course of one academic term for a) the entire sample, b) each science class, and c) each grade level. In addition, ANOVA indicated that there was no statistically significant difference in mean gain factor of students rated as low, medium, and high on science self-efficacy as measured by the SMTSL, when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. Finally, there was no statistically significant association between the pre- and post-instructional rankings of SMTSL by grade level when students received instruction from a teacher with a high science teaching self-efficacy value as measured by the STEBI. This is the first study of its kind. Studies indicated that teaching strategies typically practiced by teachers with high science teaching were beneficial to physics self-efficacy (Fencl & Scheel, 2005). Although it was unsuccessful at determining whether or not a teacher with high science teaching self-efficacy has a differential affect on students' science self

  12. Dehumanization of Teaching and Learning Activities on Social Science Subject

    Directory of Open Access Journals (Sweden)

    Dewi Amaliah Nafiati

    2015-12-01

    Full Text Available This research aims to describe factors that influence dehumanization of teaching and learning processes. The population of this research was 158 students. The research used a proportional cluster random sampling and 40 students were analyzed as samples. Data were collected by using documentation, observation and questionnaire. The data then quantitatively and qualitatively classified due to the influence of teaching and learning factors on Social Science subject in order to draw the conclusion easily. Findings show that the influence of dehumanization factors on teaching and learning processes are teaching method by 77.9%, curriculum factor by 85%, teacher-student relationship by 63.7%, school discipline by 75.4%, homework by 65.4%, school time by 63.7%, learning equipment by 70.8%, over-standard lesson by 81% and building condition by 80%. The most dominant factor influencing the dehumanization of teaching and learning processes is curriculum by 85%. Thus, teachers are required to improve their competences and capabilities to create a more humanistic teaching learning processes which are more appropriate to the goals of education. In order to achieve the goals, it is recommended to the school administrators to improve the facilities and infrastructure for more conducive teaching and learning processes with more representative spaces and facilities.

  13. INFLUENCE OF DEVELOPMENT OF COMPUTER TECHNOLOGIES ON TEACHING

    Directory of Open Access Journals (Sweden)

    Sead Rešić

    2012-09-01

    Full Text Available Our times are characterized by strong changes in technology that have become reality in many areas of society. When compared to production, transport, services, etc education, as a rule, slowly opens to new technologies. However, children at their homes and outside the schools live in a technologically rich environment, and they expect the change in education in accordance with the imperatives of the education for the twenty-first century. In this sense, systems for automated data processing, multimedia systems, then distance learning, virtual schools and other technologies are being introduced into education. They lead to an increase in students' activities, quality evaluation of their knowledge and finally to their progress, all in accordance with individual abilities and knowledge. Mathematics and computers often appear together in the teaching process. Taking into account the teaching of mathematics, computers and software packages have a significant role. The program requirements are not dominant. The emphasis is on mathematical content and the method of presentation. Computers are especially used in solving various mathematical tasks and self-learning of mathematics. Still, many problems that require solutions appear in the process: how to organise lectures, practice, textbooks, collected mathematical problems, written exams, how to assign and check homework. The answers to these questions are not simple and they will probably be sought continuously, with an increasing use of computers in the teaching process. In this paper I have tried to solve some of the questions above.

  14. Teaching nuclear science: A cosmological approach

    International Nuclear Information System (INIS)

    Viola, V.E.

    1994-01-01

    An approach to the teaching of nuclear phenomena based upon the evolution of the chemical elements is discussed. Starting with a discussion of the basic forces and particles, one can then demonstrate how these conspire to form nature's elements via nuclear reactions in the Big Bang, stellar evolution and cosmic-ray interactions with the interstellar medium. Radioactive decay can be addressed in the context of the subsequent fate of the products of nucleosynthesis, which naturally introduces such subjects as radioactive dating and the tagging of atoms with radionuclides for use in medicine and biochemistry. Nuclear particle accelerators and nuclear power can be introduced into this scenario conveniently

  15. Teaching and learning theories, and teaching methods used in postgraduate education in the health sciences: a systematic review protocol.

    Science.gov (United States)

    McInerney, Patricia A; Green-Thompson, Lionel P

    2017-04-01

    The objective of this scoping review is to determine the theories of teaching and learning, and/or models and/or methods used in teaching in postgraduate education in the health sciences. The longer term objective is to use the information gathered to design a workshop for teachers of postgraduate students.The question that this review seeks to answer is: what theories of teaching and learning, and/or models and/or methods of teaching are used in postgraduate teaching?

  16. Democratizing Computer Science Knowledge: Transforming the Face of Computer Science through Public High School Education

    Science.gov (United States)

    Ryoo, Jean J.; Margolis, Jane; Lee, Clifford H.; Sandoval, Cueponcaxochitl D. M.; Goode, Joanna

    2013-01-01

    Despite the fact that computer science (CS) is the driver of technological innovations across all disciplines and aspects of our lives, including participatory media, high school CS too commonly fails to incorporate the perspectives and concerns of low-income students of color. This article describes a partnership program -- Exploring Computer…

  17. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  18. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  19. Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities

    Science.gov (United States)

    Lohwasser, Karin

    2013-01-01

    Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the…

  20. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    Science.gov (United States)

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  1. Educational Technologies in Health Science Libraries: Teaching Technology Skills

    Science.gov (United States)

    Hurst, Emily J.

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting? PMID:24528269

  2. Educational technologies in health sciences libraries: teaching technology skills.

    Science.gov (United States)

    Hurst, Emily J

    2014-01-01

    As technology rapidly changes, libraries remain go-to points for education and technology skill development. In academic health sciences libraries, trends suggest librarians provide more training on technology topics than ever before. While education and training have always been roles for librarians, providing technology training on new mobile devices and emerging systems requires class creation and training capabilities that are new to many librarians. To appeal to their users, many health sciences librarians are interested in developing technology-based classes. This column explores the question: what skills are necessary for developing and teaching technology in an academic health sciences library setting?

  3. Teaching nuclear science: A cosmological approach

    International Nuclear Information System (INIS)

    Viola, V.E.

    1994-01-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, as well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level

  4. Changes in perceived self-efficacy and attitude toward science and teaching science in elementary school

    Science.gov (United States)

    Sullivan, Betsy Ann

    This study was developed in an effort to ascertain if a proposed biological laboratory curriculum as developed and modeled by the instructor would affect the attitudes and perceived self-efficacy towards science, science teaching and ability to learn science of pre-service elementary teachers. Self-regulated learning (SRL) strategies were incorporated as the variation. Attitudinal topics investigated were the perceived ability to learn science and to teach science. Students in one biology for non-science majors. biology laboratory class at the University of Southern Mississippi participated in this case study. The group participated in the modified laboratory section which utilized SRL activities, including reflections on in-class activities. In addition to these activities, the group worked within the state.s elementary science framework to design and implement science lessons. Password protected on-line surveys were used at the beginning and the end of the course to assess the attitudes, perceived self-efficacy and self-regulated learning level of all students. Interviews with participants were conducted as follow up to ascertain long-term impact of the curriculum. Student artifacts, researcher observations and follow up interviews were analyzed to identify any changes in student attitude towards and perceived self-efficacy in science and teaching science. Analysis identified a positive change in students. attitudes and perceived self-efficacy after participation in the modified laboratory section, indicating moderate success of the proposed curriculum based on SRL.

  5. Computer - based modeling in extract sciences research -III ...

    African Journals Online (AJOL)

    Molecular modeling techniques have been of great applicability in the study of the biological sciences and other exact science fields like agriculture, mathematics, computer science and the like. In this write up, a list of computer programs for predicting, for instance, the structure of proteins has been provided. Discussions on ...

  6. Using Forensic Science Problems as Teaching Tools

    Science.gov (United States)

    Duncan, Kanesa; Daly-Engel, Toby

    2006-01-01

    The desire to observe and understand the natural world is strong in young children, but high school students often consider science irrelevant to their daily lives. Therefore, as teachers of older age groups, the authors constantly struggle to engage students in scientific exploration so they can master concepts and appreciate the nature of…

  7. Culture Bound: Science, Teaching and Research

    Science.gov (United States)

    Noblit, George W.

    2013-01-01

    In this commentary, the author first examines how culture is being used in the articles in this special issue, points to the venerable histories being deployed in these usages, and explores a sense of what could be in the sociocultural and cultural analysis of science education for each article. His review of these articles led to a trope, a…

  8. The Eyes Have It. Teaching Science.

    Science.gov (United States)

    Leyden, Michael B.

    1995-01-01

    Features science concepts with accompanying activities teachers can use in the classroom. Presents a lesson in optics that utilizes optical illusions to illustrate scientific points and allows students to use the following processes: observing, communicating, controlling variables, hypothesizing, and gathering and interpreting data. (ET)

  9. Restructuring Post-School Science Teaching Programmes

    Indian Academy of Sciences (India)

    2008-09-30

    Sep 30, 2008 ... and taking a position of leadership in the ever-advancing fields of science and technology. It is obvious that the .... and the unwillingness of the management of private schools to reinvest in the system on the other, have been ...... Subsequently, each theory course will have 3 lectures and each lab will be 3 ...

  10. Looking in a science classroom: exploring possibilities of creative cultural divergence in science teaching and learning

    Science.gov (United States)

    Baron, Alex; Chen, Hsiao-Lan Sharon

    2012-03-01

    Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.

  11. Defining Computational Thinking for Mathematics and Science Classrooms

    Science.gov (United States)

    Weintrop, David; Beheshti, Elham; Horn, Michael; Orton, Kai; Jona, Kemi; Trouille, Laura; Wilensky, Uri

    2016-01-01

    Science and mathematics are becoming computational endeavors. This fact is reflected in the recently released Next Generation Science Standards and the decision to include "computational thinking" as a core scientific practice. With this addition, and the increased presence of computation in mathematics and scientific contexts, a new…

  12. 6th International Conference on Computer Science and its Applications

    CERN Document Server

    Stojmenovic, Ivan; Jeong, Hwa; Yi, Gangman

    2015-01-01

    The 6th FTRA International Conference on Computer Science and its Applications (CSA-14) will be held in Guam, USA, Dec. 17 - 19, 2014. CSA-14 presents a comprehensive conference focused on the various aspects of advances in engineering systems in computer science, and applications, including ubiquitous computing, U-Health care system, Big Data, UI/UX for human-centric computing, Computing Service, Bioinformatics and Bio-Inspired Computing and will show recent advances on various aspects of computing technology, Ubiquitous Computing Services and its application.

  13. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  14. Simulation in computer forensics teaching: the student experience

    OpenAIRE

    Crellin, Jonathan; Adda, Mo; Duke-Williams, Emma; Chandler, Jane

    2011-01-01

    The use of simulation in teaching computing is well established, with digital forensic investigation being a subject area where the range of simulation required is both wide and varied demanding a corresponding breadth of fidelity. Each type of simulation can be complex and expensive to set up resulting in students having only limited opportunities to participate and learn from the simulation. For example students' participation in mock trials in the University mock courtroom or in simulation...

  15. Computational templates for introductory nuclear science using mathcad

    Science.gov (United States)

    Sarantites, D. G.; Sobotka, L. G.

    2013-01-01

    Computational templates used to teach an introductory course in nuclear chemistry and physics at Washington University in St. Louis are presented in brief. The templates cover both basic and applied topics.

  16. Integrating computers in physics teaching: An Indian perspective

    Science.gov (United States)

    Jolly, Pratibha

    1997-03-01

    The University of Delhi has around twenty affiliated undergraduate colleges that offer a three-year physics major program to nearly five hundred students. All follow a common curriculum and submit to a centralized examination. This structure of tertiary education makes it relatively difficult to implement radical or rapid changes in the formal curriculum. The technology onslaught has, at last, irrevocably altered this; computers are carving new windows in old citadels and defining the agenda in teaching-learning environments the world over. In 1992, we formally introduced Computational Physics as a core paper in the second year of the Bachelor's program. As yet, the emphasis is on imparting familiarity with computers, a programming language and rudiments of numerical algorithms. In a parallel development, we also introduced a strong component of instrumentation with modern day electronic devices, including microprocessors. Many of us, however, would like to see not just computer presence in our curriculum but a totally new curriculum and teaching strategy that exploits, befittingly, the new technology. The current challenge is to realize in practice the full potential of the computer as the proverbial versatile tool: interfacing laboratory experiments for real-time acquisition and control of data; enabling rigorous analysis and data modeling; simulating micro-worlds and real life phenomena; establishing new cognitive linkages between theory and empirical observation; and between abstract constructs and visual representations.

  17. The Challenges and Benefits of Using Computer Technology for Communication and Teaching in the Geosciences

    Science.gov (United States)

    Fairley, J. P.; Hinds, J. J.

    2003-12-01

    The advent of the World Wide Web in the early 1990s not only revolutionized the exchange of ideas and information within the scientific community, but also provided educators with a new array of teaching, informational, and promotional tools. Use of computer graphics and animation to explain concepts and processes can stimulate classroom participation and student interest in the geosciences, which has historically attracted students with strong spatial and visualization skills. In today's job market, graduates are expected to have knowledge of computers and the ability to use them for acquiring, processing, and visually analyzing data. Furthermore, in addition to promoting visibility and communication within the scientific community, computer graphics and the Internet can be informative and educational for the general public. Although computer skills are crucial for earth science students and educators, many pitfalls exist in implementing computer technology and web-based resources into research and classroom activities. Learning to use these new tools effectively requires a significant time commitment and careful attention to the source and reliability of the data presented. Furthermore, educators have a responsibility to ensure that students and the public understand the assumptions and limitations of the materials presented, rather than allowing them to be overwhelmed by "gee-whiz" aspects of the technology. We present three examples of computer technology in the earth sciences classroom: 1) a computer animation of water table response to well pumping, 2) a 3-D fly-through animation of a fault controlled valley, and 3) a virtual field trip for an introductory geology class. These examples demonstrate some of the challenges and benefits of these new tools, and encourage educators to expand the responsible use of computer technology for teaching and communicating scientific results to the general public.

  18. "Look at what I am saying": Multimodal science teaching

    Science.gov (United States)

    Pozzer-Ardenghi, Lilian

    Language constitutes the dominant representational mode in science teaching, and lectures are still the most prevalent of the teaching methods in school science. In this dissertation, I investigate lectures from a multimodal and communicative perspective to better understand how teaching as a cultural-historical and social activity unfolds; that is, I am concerned with teaching as a communicative event, where a variety of signs (or semiotic resources), expressed in diverse modalities (or modes of communication) are produced and reproduced while the teacher articulates very specific conceptual meanings for the students. Within a trans-disciplinary approach that merges theoretical and methodical frameworks of social and cultural studies of human activity and interaction, communicative and gestures studies, linguistics, semiotics, pragmatics, and studies on teaching and learning science, I investigate teaching as a communicative, dynamic, multimodal, and social activity. My research questions include: What are the resources produced and reproduced in the classroom when the teacher is lecturing? How do these resources interact with each other? What meanings do they carry and how are these associated to achieve the coherence necessary to accomplish the communication of complex and abstract scientific concepts, not only within one lecture, but also within an entire unit of the curricula encompassing various lectures? My results show that, when lecturing, the communication of scientific concepts occur along trajectories driven by the dialectical relation among the various semiotic resources a lecturer makes available that together constitute a unit---the idea. Speech, gestures, and other nonverbal resources are but one-sided expressions of a higher order communicative meaning unit. The iterable nature of the signs produced and reproduced during science lectures permits, supports, and encourages the repetition, variation, and translation of ideas, themes, and languages and

  19. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  20. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.