WorldWideScience

Sample records for te dopant concentration

  1. Effect of phosphorus dopant concentration on the carrier mobility in ...

    African Journals Online (AJOL)

    This study investigated the effect of phosphorus dopant concentration on mobility of crystalline silicon (c-Si). It considers different temperature ranges, from 100 K to 500 K, and dopant concentration from 1012 cm-3 to 1020 cm-3 in relation to its effect on the mobility of the crystalline silicon. This study indicates that the ...

  2. The effect of different dopant concentration of tailor-made silica fibers in radiotherapy dosimetry

    Science.gov (United States)

    Begum, Mahfuza; Mizanur Rahman, A. K. M.; Zubair, H. T.; Abdul-Rashid, H. A.; Yusoff, Z.; Begum, Mahbuba; Alkhorayef, M.; Alzimami, K.; Bradley, D. A.

    2017-12-01

    In thermoluminescence (TL) material dopant concentration has an important effect on their characteristics as a ;radiation-sensor;. The study investigates dosimetric properties of four different concentration (4 mol%, 5 mol%, 7 mol% and 25 mol%) tailor-made Ge-doped silica fibers. The intention is to seek development of alternative TL materials that offer exceptional advantages over existing passive systems of dosimetry, including improved spatial resolution, a water impervious nature and low cost. Photon beams (6 MV and 10 MV) from a clinical linear accelerator were used for irradiation of the fiber samples over radiation therapy doses, ranging from 0.5 Gy to 8 Gy. SEM-EDX analysis was also performed to investigate the homogeneity of distribution of Ge dopant concentration from the fiber samples. The results of measurement were also compared with two of the more commonly used standard TLDs, TLD-100 (LiF: Mg,Ti-7.5% 6LiF) and TLD-700 ((7LiF: Mg,Ti-99.9%7LiF) chips respectively. The TL intensity of the fiber samples was found to strongly depend on Ge dopant concentration, with samples showing enhanced TL yields with decreasing Ge dopant concentration. 4 mol% Ge-doped silica fiber provided the greatest response whereas the 25 mol% samples showed the least, indicative of the well-known concentration quenching effects All fiber TLDs provided linear dose response over the delivered radiotherapy dose-range, the fibers also showing a weak dependence on photon beam energies in comparing the TL yields at 6 and 10 MV. The fading behavior of the different concentration Ge doped TLD-materials were also measured over a period of thirty (30) days subsequent to irradiation. The relative sensitivity of the samples with respect to standard TLD-100 were found to be 0.37, 0.26, 0.13 and 0.02 in respect of the 4, 5, 7 and 25 mol% fibers. The primary dosimetry peak, which was by far the most prominent of any other feature covered by the glow curve, was found to be around 244 °C using

  3. Influence of dopant concentration on spectroscopic properties of Sr2CeO4:Yb nanocrystals

    Science.gov (United States)

    Stefanski, M.; Kędziorski, A.; Hreniak, D.; Strek, W.

    2017-12-01

    Optical properties of Sr2CeO4:Yb nanocrystals synthesized via Pechini's method are reported. The samples were characterized by X-ray diffraction data measurements. The unit cell parameters were determined using Rietveld refinement. It was found that they decreased with increasing amount of Yb ions. The absorption, excitation, emission spectra and luminescence decay profiles of the Sr2CeO4:Yb nanocrystals were investigated. It was observed that optical properties were strongly dependent on Yb concentration. It was found that Yb3+-O2- charge transfer transitions have great influence on the absorption spectra. It can be seen in the emission spectra that in addition to standard bands/lines corresponding to Ce-O metal-to-ligand charge transfer of Sr2CeO4 and f-f transitions of Yb3+, there is emission band centered at 744 nm. Its intensity depends on the concentration of the dopant. Recorded decay times become shorter with increasing dopant concentration due to the Yb3+ concentration quenching. Excitation spectra indicate the energy transfer from Ce-O charge transfer states to Yb3+2F5/2 state. The issue of appearance of down-conversion process in Sr2CeO4:Yb nanocrystals is considered.

  4. Redistribution of dopant and impurity concentrations during the formation of uniform WSi2 films by RTP

    International Nuclear Information System (INIS)

    Siegal, M.P.; Santiago, J.J.

    1988-01-01

    Secondary ion mass spectroscopy has been used to study the effects of rapid thermal processing on the formation of tetragonal tungsten disilicide thin films on Si(100), p-type 5 Ω . cm wafers. The substrates were chemically etched, followed by an RF sputter deposition of 710A W metal. The samples were then fast radiatively processed in an RTP system for time intervals ranging from 15 to 45 seconds at high temperature (--1100 0 C) under high vacuum. The redistribution of the boron dopant concentration profile is described in this paper

  5. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    International Nuclear Information System (INIS)

    Nasir, M. F.; Zainol, M. N.; Hannas, M.; Mamat, M. H.; Rusop, Mohamad; Rahman, S. A.

    2016-01-01

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 10"3 Ωcm"−"1. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.

  6. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. F., E-mail: babaibaik2002@yahoo.com; Zainol, M. N., E-mail: nizarzainol@yahoo.com; Hannas, M., E-mail: mhannas@gmail.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Mamat, M. H., E-mail: mhmamat@salam.uitm.edu.my; Rusop, Mohamad, E-mail: rusop@salam.uitm.edu.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Rahman, S. A., E-mail: saadah@um.edu.my [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Low Dimensional Materials Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-07-06

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 10{sup 3} Ωcm{sup −1}. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.

  7. Improved optical properties and detectivity of an uncooled silicon carbide mid-wave infrared optical detector with increased dopant concentration

    International Nuclear Information System (INIS)

    Lim, Geunsik; Kar, Aravinda; Manzur, Tariq

    2012-01-01

    An n-type 4H-SiC substrate is doped with gallium using a laser doping technique and its optical response is investigated at the mid-wave infrared (MWIR) wavelength 4.21 μm as a function of the dopant concentration. The dopant creates a p-type energy level of 0.3 eV, which is the energy of a photon corresponding to the MWIR wavelength 4.21 μm. Therefore, Ga-doped SiC can be used as an uncooled MWIR detector because an optical signal was obtained at this wavelength when the sample was at room temperature. The energy level of the Ga dopant in the substrate was confirmed by optical absorption spectroscopy. Secondary ion mass spectroscopy (SIMS) of the doped samples revealed an enhancement in the solid solubility of Ga in the substrate when doping is carried out by increasing the number of laser scans. A higher dopant concentration increases the number of holes in the dopant energy level, enabling photoexcitation of more electrons from the valence band by the incident MWIR photons. The detector performance improves as the dopant concentration increases from 1.15 × 10 19 to 6.25 × 10 20 cm −3 . The detectivity of the optical photodetector is found to be 1.07 × 10 10 cm Hz 1/2 W −1 for the case of doping with four laser passes. (paper)

  8. Scintillation characteristic of In, Ga-doped ZnO thin films with different dopant concentrations

    International Nuclear Information System (INIS)

    Fujimoto, Yutaka; Yanagida, Takayuki; Yokota, Yuui; Chani, Valery; Yoshikawa, Akira; Sekiwa, Hideyuki

    2011-01-01

    The present study describes the first detailed evaluation of the rise and the decay time of scintillation phenomenon in In 3+ - and Ga 3+ -doped ZnO thin films with different dopant concentrations. In 3+ -(25, 55, and 141 ppm) and Ga 3+ -(33, 67, 333, and 1374 ppm) doped ZnO films were grown by the Liquid Phase Epitaxy (LPE) method. The characterization was performed using the pulse X-ray equipped streak camera system. Both the rise and the decay times were shortened considerably with increasing content of In 3+ and Ga 3+ in the films. However, the scintillation light yield under 241 Am α-ray excitation reduced when concentration of In 3+ and Ga 3+ in the ZnO films was high. (author)

  9. In silico optimization of phase-change materials for digital memories: a survey of first-row transition-metal dopants for Ge2Sb2Te5

    International Nuclear Information System (INIS)

    Skelton, J M; Elliott, S R

    2013-01-01

    Phase-change materials are the alloys at the heart of an emerging class of next-generation, non-volatile digital memory technologies. However, the widely studied Ge–Sb–Te system possesses several undesirable properties, and enhancing its properties, e.g. by doping, is an area of active research. Various first-row transition-metal dopants have been shown to impart useful property enhancements, but a systematic study of the entire period has yet to be undertaken, and little has been done to investigate their interaction with the host material at the atomic level. We have carried out first-principles computer simulations of the complete phase-change cycle in Ge 2 Sb 2 Te 5 doped with each of the ten first-row transition metals. In this article, we present a comprehensive survey of the electronic, magnetic and optical properties of these doped materials. We discuss in detail their atomic-level structure, and relate the microscopic behaviours of the dopant atoms to their influence on the Ge 2 Sb 2 Te 5 host. By considering an entire family of similar materials, we identify trends and patterns which might be used to predict suitable dopants for optimizing materials for specific phase-change applications. The computational method employed here is general, and this materials-discovery approach could be applied in the future to study other families of potential dopants for such materials. (paper)

  10. About influence of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in heterobipolar transistors

    Directory of Open Access Journals (Sweden)

    E Pankratov

    2016-10-01

    Full Text Available In this paper we introduce an approach to manufacture a heterobipolar transistors. Framework this approach we consider doping by diffusion or by ion implantation of required parts of a heterostructure with special configuration and optimization of annealing of dopant and/or radiation defects. In this case one have possibility to manufacture bipolar transistors, which include into itself p-n-junctions with higher sharpness and smaller dimensions. We also consider influence of presents of buffer porous layers between epitaxial layers of heterostructure on distributions of concentrations of dopants in the considered transistors. An approach to decrease value of mismatch-induced stress has been considered.

  11. Dopant concentration dependent magnetism of Cu-doped TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, B.; Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com [University of Kerala, Centre for Nanoscience and Nanotechnology (India)

    2016-06-15

    Undoped and Cu-doped nanocrystals of TiO{sub 2} having the size range of 8–11 nm were synthesized by peroxide gel method. XRD analysis using Rietveld refinement confirmed anatase phase with a small percentage of rutile content for undoped TiO{sub 2} nanocrystals while a pure anatase phase with preferential growth along [004] direction was observed for nanocrystals of Cu-doped TiO{sub 2}. Variation in the intensity ratios of the XRD peaks of the doped samples compared to that of the undoped sample offered an evidence for the substitutional incorporation of Cu ions in the TiO{sub 2} lattice. The preferential growth of the nanocrystals along the [004] direction was verified using HRTEM analysis. Cu doping extended the optical absorption edge of TiO{sub 2} nanocrystals to the visible spectral region and caused a blue shift and broadening of the E{sub g} (1) Raman active mode of anatase TiO{sub 2}. Undoped TiO{sub 2} sample showed a weak ferromagnetism superimposed on a diamagnetic background while Cu-doped TiO{sub 2} samples exhibited a weak ferromagnetism in the low-field region with a paramagnetic component in the high-field region. The magnetic moment exhibited by the doped samples is interpreted as the resultant of a weak ferromagnetic moment in the low-field region arising from the presence of defects near the surface of TiO{sub 2} nanoparticles or from the interaction of the substituted Cu ions with the oxygen vacancies, and the paramagnetic contribution from the increased Cu dopant concentration near the surface of the particles arising from self-purification mechanism.

  12. Selectivity improvement of positive photoionization ion mobility spectrometry for rapid detection of organophosphorus pesticides by switching dopant concentration.

    Science.gov (United States)

    Zhou, Qinghua; Li, Jia; Wang, Bin; Wang, Shuang; Li, Haiyang; Chen, Jinyuan

    2018-01-01

    Ion mobility spectrometry (IMS) opened a potential avenue for the rapid detection of organophosphorus pesticides (OPPs), though an improved selectivity of stand-alone IMS was still in high demand. In this study, a stand-alone positive photoionization ion mobility spectrometry (PP-IMS) apparatus was constructed for the rapid detection of OPPs with acetone as dopant. The photoionization of acetone molecules was induced by the ultraviolet irradiation to produce the reactant ions (Ac) 2 H + , which were employed to ionize the OPPs including fenthion, imidan, phosphamidon, dursban, dimethoate and isocarbophos via the proton transfer reaction. Due to the difference in proton affinity, the tested OPPs exhibited the different dopant-dependent manners. Based on this observation, the switching of dopant concentration was implemented to improve the selectivity of PP-IMS for OPPs detection. For instance, a mixture of fenthion, dursban and dimethoate was tested. By switching the concentration of doped acetone from 0.07 to 2.33 to 19.94mgL -1 , the ion peaks of fenthion and dursban were inhibited in succession, achieving the selective detection of dimethoate at last. In addition, another mixture of imidan and phosphamidon was initially detected by PP-IMS with a dose of 0.07mgL -1 acetone, indicating that their ion peaks were severely overlapped; when the concentration of doped acetone was switched to 19.94mgL -1 , the inhibition of imidan signals promised the accurate identification of phosphamidon in mixture. Finally, the PP-IMS in combination of switching dopant concentration was applied to detect the mixed fenthion, dursban and dimethoate in Chinese cabbage, demonstrating the applicability of proposed method to real samples. Copyright © 2017. Published by Elsevier B.V.

  13. Thermal equilibrium concentration of intrinsic point defects in heavily doped silicon crystals - Theoretical study of formation energy and formation entropy in area of influence of dopant atoms-

    Science.gov (United States)

    Kobayashi, K.; Yamaoka, S.; Sueoka, K.; Vanhellemont, J.

    2017-09-01

    It is well known that p-type, neutral and n-type dopants affect the intrinsic point defect (vacancy V and self-interstitial I) behavior in single crystal Si. By the interaction with V and/or I, (1) growing Si crystals become more V- or I-rich, (2) oxygen precipitation is enhanced or retarded, and (3) dopant diffusion is enhanced or retarded, depending on the type and concentration of dopant atoms. Since these interactions affect a wide range of Si properties ranging from as-grown crystal quality to LSI performance, numerical simulations are used to predict and to control the behavior of both dopant atoms and intrinsic point defects. In most cases, the thermal equilibrium concentrations of dopant-point defect pairs are evaluated using the mass action law by taking only the binding energy of closest pair to each other into account. The impacts of dopant atoms on the formation of V and I more distant than 1st neighbor and on the change of formation entropy are usually neglected. In this study, we have evaluated the thermal equilibrium concentrations of intrinsic point defects in heavily doped Si crystals. Density functional theory (DFT) calculations were performed to obtain the formation energy (Ef) of the uncharged V and I at all sites in a 64-atom supercell around a substitutional p-type (B, Ga, In, and Tl), neutral (C, Ge, and Sn) and n-type (P, As, and Sb) dopant atom. The formation (vibration) entropies (Sf) of free I, V and I, V at 1st neighboring site from B, C, Sn, P and As atoms were also calculated with the linear response method. The dependences of the thermal equilibrium concentrations of trapped and total intrinsic point defects (sum of free I or V and I or V trapped with dopant atoms) on the concentrations of B, C, Sn, P and As in Si were obtained. Furthermore, the present evaluations well explain the experimental results of the so-called ;Voronkov criterion; in B and C doped Si, and also the observed dopant dependent void sizes in P and As doped Si

  14. PIXE channeling for concentration and location measurements of Zn- and Cd-dopants in InP single crystals

    International Nuclear Information System (INIS)

    Vogt, J.; Krause, H.; Flagmeyer, R.; Otto, G.; Lux, M.

    1993-01-01

    We present results of the determination of Cd- and Zn-dopants in InP single crystals using the PIXE and RBS spectrometry at our 2 MeV Van de Graaff accelerator. The (100) oriented crystals were doped by thermodiffusion of Cd and Zn atoms. For concentration and localization measurements we used the ion-channeling technique and energy dispersive spectrometry of proton induced X-ray emission (PIXE). Angular scans of the K-lines of In, Cd and Zn were obtained. The strong In X-rays were attenuated by a rhodium foil in front of the low energy Ge detector. The PIXE-channeling results were compared with SIMS and Hall-effect measurements. (orig.)

  15. To study the effect of dopant NiO concentration and duration of calcinations on structural and optical properties of MgO-NiO nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com [Deptt. of Physics, M.D. University, Rohtak-124001, Haryana (India); Deptt. of Physics,Vaish College of Engineering, Rohtak-124001, Haryana (India); Praveen,; Sharma, Ashwani; Parmar, R.; Dahiya, S. [Deptt. of Physics, M.D. University, Rohtak-124001, Haryana (India); Kishor, N. [Deptt. of Physics, Central University of Haryana (India)

    2016-05-06

    In present work Magnesium oxide (MgO) samples were doped with different concentration of Transition metal Nickel Oxide(NiO) by using Chemical co-precipitation method. The doping levels were varied from NiO (5%, 10%, 15%) and all the samples were calcined at 600°C for 4hrs and 8hrs respectively. Structural analysis of these calcined materials is carried out by X-ray diffraction (XRD) techniques which reveals that average crystalline sizes are in nano region i.e. 21.77nm-31.13 nm and tabulated in table 1. The powder of calcined samples were also characterized by using various other techniques i.e. Scanning Electron Microscopy (SEM), Fourier Transformation Infrared Spectroscopy (FTIR), UV-Visible spectroscopy, Transmission Electron Microscopy (TEM) etc. The effects of dopant concentration, calcined temperature, calcinations duration on samples were studied and also investigate the effect of varying dopant concentration on morphology and optical properties of calcined nanomaterials. From results it was observed that the crystallite size of nanocomposites increases with increases dopant concentration or increases calcinations duration. The optical band gap decreases with increases sintering time and increase with increases dopant concentrations. TEM results coincide with XRD results and show that particles are polycrystalline in nature. FTIR spectra show that for all samples particles are pure in composition and transmission rate increases with calcinations duration.

  16. Influence of dopant concentration on the electrical properties of the CdSe-PMMA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Ramneek; Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)

    2016-05-06

    This paper reports the synthesis and electrical characterization of CdSe-PMMA nanocomposite. CdSe-PMMA nanocomposite has been prepared by ex-situ technique through chemical route. The influence of three different Ag doping concentrations on the electrical properties has been studied in the temperature range ∼ 303-353 K. Transmission electron micrograph reveals the spherical morphology of the CdSe nanoparticles and their proper dispersion in the PMMA matrix. The electrical conduction of the polymer nanocomposites is through thermally activated process with single activation energy. With Ag doping, initially the activation energy increases upto 0.2 % Ag doping concentration but with further increase in Ag concentration, it decreases. This behavior has been discussed on the basis of randomly oriented grain boundaries and defect states. Thus, the results indicate that the transport properties of the polymer nanocomposites can be tailored by controlled doping concentration.

  17. Influence of dopant concentration on the electrical properties of the CdSe-PMMA nanocomposite

    International Nuclear Information System (INIS)

    Kaur, Ramneek; Tripathi, S. K.

    2016-01-01

    This paper reports the synthesis and electrical characterization of CdSe-PMMA nanocomposite. CdSe-PMMA nanocomposite has been prepared by ex-situ technique through chemical route. The influence of three different Ag doping concentrations on the electrical properties has been studied in the temperature range ∼ 303-353 K. Transmission electron micrograph reveals the spherical morphology of the CdSe nanoparticles and their proper dispersion in the PMMA matrix. The electrical conduction of the polymer nanocomposites is through thermally activated process with single activation energy. With Ag doping, initially the activation energy increases upto 0.2 % Ag doping concentration but with further increase in Ag concentration, it decreases. This behavior has been discussed on the basis of randomly oriented grain boundaries and defect states. Thus, the results indicate that the transport properties of the polymer nanocomposites can be tailored by controlled doping concentration.

  18. Effects of Y dopant on lattice distortion and electrical properties of In{sub 3}SbTe{sub 2} phase-change material

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Minho; Kwon, Sehyun; Ahn, Jinho [Division of Materials Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Choi, Heechae [Center of Materials Simulation Research, Virtual Lab Inc., Seoul (Korea, Republic of); Center for Computational Science, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, Seungchul; Lee, Kwang-Ryeol [Center for Computational Science, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, Yong Tae [Semiconductor Materials and Device Laboratory, Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2017-11-15

    Using a computational high-throughput screening method, 29 doping elements have been investigated for improving the thermal and electrical characteristics of In{sub 3}SbTe{sub 2} (IST) phase-change material. Among the 29 dopants, it is found that Y offers largest distortion in the lattice structure of IST with negative doping formation energy while Y substitutes the In site. The atomic lattice images clearly show that the In site is substituted by Y and the distortion angles of the Y-doped IST (Y-IST) are well matched with the calculated results of density functional theory (DFT). Set/reset speed of the Y-IST phase-change memory is faster than IST and Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) devices, which is strongly related with the fast and stable phase transition due to the larger lattice distortion. The power consumption of the Y-IST device is also less than a fourth of that of the GST device. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Role of dopant concentration, crystal phase and particle size on microbial inactivation of Cu-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Manoranjan; Wu Bing; Zhu Liying; Jacobson, Craig; Wang Weining; Jones, Kristen; Goyal, Yogesh; Tang, Yinjie J; Biswas, Pratim, E-mail: pbiswas@wustl.edu [Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2011-10-14

    The properties of Cu-doped TiO{sub 2} nanoparticles (NPs) were independently controlled in a flame aerosol reactor by varying the molar feed ratios of the precursors, and by optimizing temperature and time history in the flame. The effect of the physico-chemical properties (dopant concentration, crystal phase and particle size) of Cu-doped TiO{sub 2} nanoparticles on inactivation of Mycobacterium smegmatis (a model pathogenic bacterium) was investigated under three light conditions (complete dark, fluorescent light and UV light). The survival rate of M. smegmatis (in a minimal salt medium for 2 h) exposed to the NPs varied depending on the light irradiation conditions as well as the dopant concentrations. In dark conditions, pristine TiO{sub 2} showed insignificant microbial inactivation, but inactivation increased with increasing dopant concentration. Under fluorescent light illumination, no significant effect was observed for TiO{sub 2}. However, when TiO{sub 2} was doped with copper, inactivation increased with dopant concentration, reaching more than 90% (>3 wt% dopant). Enhanced microbial inactivation by TiO{sub 2} NPs was observed only under UV light. When TiO{sub 2} NPs were doped with copper, their inactivation potential was promoted and the UV-resistant cells were reduced by over 99%. In addition, the microbial inactivation potential of NPs was also crystal-phase-and size-dependent under all three light conditions. A lower ratio of anatase phase and smaller sizes of Cu-doped TiO{sub 2} NPs resulted in decreased bacterial survival. The increased inactivation potential of doped TiO{sub 2} NPs is possibly due to both enhanced photocatalytic reactions and leached copper ions.

  20. Effect of aluminium concentration and boron dopant on environmental embrittlement in FeAl aluminides

    International Nuclear Information System (INIS)

    Liu, C.T.; George, E.P.

    1991-01-01

    This paper reports on the room-temperature tensile properties of FeAl aluminides determined as functions of aluminum concentration (35 to 43 at. % Al), test environment, and surface (oil) coating. The two lower aluminum alloys containing 35 and 36.5% Al are prone to severe environmental embrittlement, while the two higher aluminum alloys with 40 and 43% Al are much less sensitive to change in test environment and surface coating. The reason for the different behavior is that the grain boundaries are intrinsically weak in the higher aluminum alloys, and these weak boundaries dominate the low ductility and brittle fracture behavior of the 40 and 43% Al alloys. When boron is added to the 40% Al alloy as a grain-boundary strengthener, the environmental effect becomes prominent. In this case, the tensile ductility of the boron-doped alloy, just like that of the lower aluminum alloys, can be dramatically improved by control of test environment (e.g. dry oxygen vs air). Strong segregation of boron to the grain boundaries, with a segregation factor of 43, was revealed by Auger analyses

  1. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3.

    Science.gov (United States)

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J L; Zhong, Ruidan; Schneeloch, John A; Liu, Tiansheng; Valla, Tonica; Tranquada, John M; Gu, Genda; Davis, J C Séamus

    2015-02-03

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  2. Dopant concentration and thermoluminescence (TL) properties of tailor-made Ge-doped SiO2 fibres

    International Nuclear Information System (INIS)

    Zahaimi, Nurul Arina; Ooi Abdullah, Mohd Haris Ridzuan; Zin, Hafiz; Abdul Rahman, Ahmad Lutfi; Hashim, Suhairul; Saripan, Mohd Iqbal; Paul, Mukul Chandra; Bradley, D.A.; Abdul Rahman, Ahmad Taufek

    2014-01-01

    Study focuses on characterisation of diverse concentrations of Ge-doped SiO 2 fibre as a potential thermoluminescence (TL) system for radiotherapy dosimetry. Irradiations were made using a linear accelerator providing 6 MV and 10 MV photon beams. Investigation has been done on various doped core diameter Ge-doped SiO 2 glass fibres such as commercial telecommunication fibres of 8 µm and 9 µm (CorActive High Tech, Canada), tailor-made fibres of 23 and 50 µm produced by the Central Glass and Ceramic Research Institute Kolkata, and tailor-made fibres of 11 µm produced by the University of Malaya Photonics Research Centre. The fibres have been characterised for TL sensitivity, reproducibility, dose- and energy-dependence. The area under the TL glow curve increases with increasing core diameter. For repeat irradiations at a fixed dose the dosimeter produces a flat response better than 4% (1SD) of the mean of the TL distribution. Minimal TL signal fading was found, less than 0.5% per day post irradiation. Linearity of TL has been observed with a correlation coefficient (r 2 ) of better than 0.980 (at 95% confidence level). For particular dopant concentrations, the least square fits show the change in TL yield, in counts per second per unit mass, obtained from 50 µm core diameter fibres irradiated at 6 MV of photon to be 8 times greater than that of 8 µm core diameter fibre. With respect to energy response, the TL yield at 10 MV decreases by∼5% compared to that at 6 MV, primarily due to the lower mass energy absorption coefficient at higher photon energy. These early results indicate that selectively screened fibres can be developed into a promising TL system, offering high spatial resolution capability and, with this, verification of complex radiotherapy dose distributions. - Highlights: • We examined the TL glow curve intensity for various diameter sizes of germanium doped silica glass fibre. • TL sensitivity increased with the increase of fibre core

  3. Effects of dopants on the amorphous-to-fcc transition in Ge{sub 2}Sb{sub 2}Te{sub 5} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Privitera, S. [R and D Department, Micro, Power, Analog (MPA) Group, STMicroelectronics, MP8, Stradale Primosole 50, 95121 Catania (Italy)]. E-mail: stefania.privitera@st.com; Rimini, E. [Istituto di Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Stradale Primosole 50, 95121 Catania (Italy); Bongiorno, C. [Istituto di Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), Stradale Primosole 50, 95121 Catania (Italy); Pirovano, A. [FTM, Advanced R and D, NVMTD, STMicroelectronics, Via Olivetti 2, 20041, Agrate Brianza (Italy); Bez, R. [FTM, Advanced R and D, NVMTD, STMicroelectronics, Via Olivetti 2, 20041, Agrate Brianza (Italy)

    2007-04-15

    The amorphous-to-crystal transition has been studied through in situ resistance measurements in Ge{sub 2}Sb{sub 2}Te{sub 5} thin films doped by ion implantation with nitrogen, oxygen or fluorine at different concentrations. Enhancement of the thermal stability has been observed in O and N amorphous doped Ge{sub 2}Sb{sub 2}Te{sub 5}. Larger effects have been found in the case of nitrogen doping. On the contrary, doping with Fluorine produced a decrease in the crystallization temperature. The electrical properties have been related to the structural phase change through in situ transmission electron microscopy analysis. The comparison between undoped and doped Ge{sub 2}Sb{sub 2}Te{sub 5} shows that the introduction of oxygen or nitrogen modifies in a different way the kinetics of the amorphous-to-fcc transition and gives new insight on the effects of doping with light elements in GeSbTe alloys.

  4. Thermoluminescence glow curve for UV induced ZrO2:Ti phosphor with variable concentration of dopant and various heating rate

    Directory of Open Access Journals (Sweden)

    Neha Tiwari

    2014-10-01

    Full Text Available The present paper reports the synthesis and characterization of Ti doped ZrO2 nanophosphors. The effects of variable concentration of titanium on thermoluminescence (TL behaviour are studied. The samples were prepared by combustion a synthesis technique which is suitable for less time taking techniques also for large scale production for nano phosphors. The starting material used for sample preparation are Zr(NO33 and Ti(NO33 and urea used as a fuel. The prepared sample was characterized by X-ray diffraction technique (XRD with variable concentration of Ti (0.05–0.5 mol% there is no any phase change found with increase the concentration of Ti. Sample shows cubic structure and the particle size calculated by Scherer's formula. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM technique for optimized concentration of dopant. The good connectivity with grains and the semi-sphere like structure was found by FEGSEM. The functional group analysis was determined by Fourier transform infrared (FTIR spectroscopic techniques. The prepared phosphor examined by thermoluminescence technique. For recording TL glow curve every time 2 mg phosphor was irradiated by UV 254 nm source and fixed the heating rate at 5 °C s−1. Sample shows well resolved peak at 167 °C with a shoulder peak at 376 °C. The higher temperature peak shows the well stability and less fading in prepared phosphor. Also the effect of Ti concentration at fixed UV exposure time was studied. The effect of UV exposure time and dose versus intensity plot was studied. Sample shows linear response with dose and broaden peak with high temperature shows the more stability and less fading in TL glow curve. The linear dose response, high stability and less fading phenomenon shows the sample may be useful for thermoluminescence dosimetry application. Trapping parameters are calculated for every recorded glow curve. The

  5. Dependence of the up-conversion emission of Li+ co-doped Y2O3:Er3+ films with dopant concentration

    International Nuclear Information System (INIS)

    Meza-Rocha, A.N.; Huerta, E.F.; Caldiño, U.; Carmona-Téllez, S.; Bettinelli, M.; Speghini, A.; Pelli, S.; Righini, G.C.

    2015-01-01

    The effect of dopant concentration on the up-conversion emission, and in particular on the Er 3+ related green and red emissions of spray pyrolysis deposited films of Y 2 O 3 :Er 3+ co-doped with Li + , is reported. Er 3+ concentrations in the films in the range of 1.1–5.6 at% (1.5–14 at% Er 3+ in the spraying solution) were studied, as well as the effect of co-doping them with Li + . Large concentrations of Er 3+ favor the red emission, especially for contents higher than 10 at% in the spraying solution. Li + co-doping improves the green and red emissions up to 365 and 171 times, respectively, depending on the Er 3+ and Li + concentrations. - Highlights: Up-converting Y 2 O 3 :Er 3+ and Y 2 O 3 :Er 3+ , Li + films were deposited by spray pyrolysis. The effect of Li + co-doping on the green and red UC Er 3+ emission is reported. Li + co-doping improves the green and red emission up to 365 and 171 times

  6. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    Science.gov (United States)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of annealing temperature and dopant concentration on the thermoluminescence sensitivity in LiF:Mg,Cu,Ag material.

    Science.gov (United States)

    Yahyaabadi, Akram; Torkzadeh, Falamarz; Rezaei Ochbelagh, Dariush; Hosseini Pooya, Seyed Mahdi

    2018-04-24

    LiF:Mg,Cu,Ag is a new dosimetry material that is similar to LiF:Mg,Cu,P in terms of dosimetric properties. The effect of the annealing temperature in the range of 200 to 350°C on the thermoluminescence (TL) sensitivity and the glow curve structure of this material at different concentrations of silver (Ag) was investigated. It has been demonstrated that the optimum values of the annealing temperature and the Ag concentration are 240°C and 0.1 mol% for better sensitivity, respectively. The TL intensity decreases at annealing temperatures lower than 240°C or higher than 240°C, reaching a minimum at 300°C and then again increases for various Ag concentrations. It was observed that the glow curve structure altered and the area under the low temperature peak as well as the area under the main dosimetric peak decreased with increasing annealing temperature. The position of the main dosimetric peak moved in the direction of higher temperatures, but at 320 and 350°C annealing temperatures, it shifted to lower temperatures. It was also observed that the TL sensitivity could partially be recovered by a combined annealing procedure. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Dopant concentration dependence of radiation-induced positive hysteresis of Ce:GSO and Ce:GSOZ

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Watanabe, Kenichi

    2014-01-01

    Positive hysteresis and radiation tolerance to high-dose radiation exposure were investigated for Ce 0.5, 1, and 1.5%-doped Gd 2 SiO 5 (GSO) and for Zr co-doped GSO with the same Ce concentrations (GSOZ). When they were irradiated by 200–800 Gy 60 Co in 200 Gy steps, all Ce-doped GSO samples exhibited light yield enhancement (positive hysteresis). On the other hand, the light yield of GSOZ decreased greatly. Ce 0.5%-doped GSO showed the highest positive hysteresis, with ∼20% light yield enhancement. When the Ce concentration was increased, the positive hysteresis became weaker. - Highlights: • Positive hysteresis Ce 0.5, 1, and 1.5% doped GSO and GSOZ are studied. • Ce 0.5, 1, and 1.5% doped GSO show the positive hysteresis by 2–8 M rad 60 Co irradiation. • Ce 0.5, 1, and 1.5% doped GSOZ do not show the positive hysteresis. • By Zn co-doping, radiation tolerance of GSO becomes weaker. • By dense Ce doping, radiation tolerance of GSO and GSOZ are improved

  9. Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2+ doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Choudhury, B.; Choudhury, A.; Maidul Islam, A.K.M.; Alagarsamy, P.; Mukherjee, M.

    2011-01-01

    Co doped TiO 2 nanoparticles have been synthesized by a simple sol-gel route taking 7.5, 9.5 and 10.5 mol% of cobalt concentration. Formation of nanoparticles is confirmed by XRD and TEM. Increase in d-spacing occurs for (0 0 4) and (2 0 0) peak with increase in impurity content. Valence states of Co and its presence in the doped material is confirmed by XPS and EDX. The entire vacuum annealed samples show weak ferromagnetism. Increased magnetization is found for 9.5 mol% but this value again decreases for 10.5 mol% due to antiferromagnetic interactions. A blocking temperature of 37.9 K is obtained, which shows shifting to high temperature as the dopant concentration is increased. The air annealed sample shows only paramagnetic behavior. Temperature dependent magnetic measurements for the air annealed sample shows antiferromagnetic behavior with a Curie-Weiss temperature of -16 K. Here we report that oxygen vacancy and cobalt aggregates are a key factor for inducing ferromagnetism-superparamagnetism in the vacuum annealed sample. Appearance of negative Curie-Weiss temperature reveals the presence of antiferromagnetic Co 3 O 4 , which is the oxidation result of metallic Co or cobalt clusters present on the host TiO 2 . - Research highlights: → Oxygen vacancy induces ferromagnetism in cobalt doped anatase TiO2 nanoparticles. → On air annealing the sample loses ferromagnetism giving rise to paramagnetism. → Saturation magnetization decreases at higher doping concentration. → Blocking of magnetic moment occurs due to the presence of cobalt clusters.

  10. Variation of the mean square amplitude with concentration in Hg1-xCdxTe

    International Nuclear Information System (INIS)

    Sadaiyandi, K.; Ramachandran, K.

    1989-01-01

    The mean square displacements (MSD) of Hg and Te in the mixed system Hg 1-x Cd x Te have been calculated for various concentrations of Cd atoms (x = 0.20, 0.40, 0.60, 0.80, 1.00) at 4, 77, and 300 K by means of the virtual crystal approximation. An unusual trend in MSD is found for x below 0.2: the higher mass has higher value of MS amplitude

  11. Molecular beam epitaxy of iodine-doped CdTe and (CdMg)Te

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.; Waag, A.; Litz, Th.; Scholl, S.; Schmitt, M.; Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstofforschung, Stuttgart (Germany))

    1994-08-01

    The n-type doping of CdTe and (CdMg)Te by the use of the solid dopant source material ZnI[sub 2] is reported. Doping levels as high as 7x10[sup 18] cm[sup -3] have been obtained in CdTe with carrier mobilities around 500 cm[sup 2]/V[center dot]s at room temperature. For a dopant incorporation higher than 1x10[sup 19] cm[sup -3] the free carrier concentration decreases, indicating the onset of a compensation mechanism, which is observed in the case of chlorine and bromine doping, too. Preliminary experiments show that with increasing Mg concentration the free carrier concentration decreases. Nevertheless, CdMgTe with a magnesium concentration x=0.37 (band gap 2.2 eV at room temperature) can be doped up to 2x10[sup 17] cm[sup -3]. The existence of deep donor levels in this CdTe based ternary is not supposed to be the only reason for the reduction of the free carrier concentration. For high Mg support during molecular beam epitaxial (MBE) growth of wide gap (CdMg)Te layers, the ZnI[sub 2] incorporation is reduced, leading to low doping levels, too

  12. Evidence for the concentration induced extinction of gas sensitivity in amorphous and nanostructured Te thin films

    International Nuclear Information System (INIS)

    Tsiulyanu, D.; Mocreac, O.; Enachi, M.; Volodina, G.

    2013-01-01

    The extinction of sensitivity to nitrogen dioxide induced by high gas concentration have been observed in ultrathin tellurium films. The phenomenon becomes apparent in both continuous and nanostructured films shown by AFM, SEM and XRD analyses to be in amorphous state. Sensitivity of 30 nm thickness Te film decreases near linearly with concentration increase between 150 and 500 ppb of nitrogen dioxide. The results are explained in terms of formation of a nitrogen dioxide catalytic gate in which a molecule adsorbs (and desorbs) without reacting. (authors)

  13. Carrier concentration dependence of structural disorder in thermoelectric Sn1−xTe

    Directory of Open Access Journals (Sweden)

    Mattia Sist

    2016-09-01

    Full Text Available SnTe is a promising thermoelectric and topological insulator material. Here, the presumably simple rock salt crystal structure of SnTe is studied comprehensively by means of high-resolution synchrotron single-crystal and powder X-ray diffraction from 20 to 800 K. Two samples with different carrier concentrations (sample A = high, sample B = low have remarkably different atomic displacement parameters, especially at low temperatures. Both samples contain significant numbers of cation vacancies (1–2% and ordering of Sn vacancies possibly occurs on warming, as corroborated by the appearance of multiple phases and strain above 400 K. The possible presence of disorder and anharmonicity is investigated in view of the low thermal conductivity of SnTe. Refinement of anharmonic Gram–Charlier parameters reveals marginal anharmonicity for sample A, whereas sample B exhibits anharmonic effects even at low temperature. For both samples, no indications are found of a low-temperature rhombohedral phase. Maximum entropy method (MEM calculations are carried out, including nuclear-weighted X-ray MEM calculations (NXMEM. The atomic electron densities are spherical for sample A, whereas for sample B the Te electron density is elongated along the 〈100〉 direction, with the maximum being displaced from the lattice position at higher temperatures. Overall, the crystal structure of SnTe is found to be defective and sample-dependent, and therefore theoretical calculations of perfect rock salt structures are not expected to predict the properties of real materials.

  14. Changes of electronic structure of SnTe due to high concentration of Sn vacancies

    International Nuclear Information System (INIS)

    Masek, J.; Nuzhnyj, D.N.

    1997-01-01

    Non-stoichiometric Sn 1-y Te is a strongly degenerated n-type semiconductor. This is important for understanding unusual features of magnetic behaviour of Sn 1-x Gd x Te where the relative positions of the Fermi energy and the atomic d-level of Gd govern the exchange coupling.The influence of the Sn vacancies on the band structure cannot be neglect if their concentration reaches a few atomic percent. We address this problem by using a tight-binding coherent potential approach and show that although the character of the bands remains unchanged, they are modified so that ε d can come out above the heavy-hole band. (author)

  15. CRYSTAL-QUASICHEMICAL ANALYSIS OF DEFECT SUBSYSTEM OF DOPED PbTe: Sb CRYSTALS AND Pb-Sb-Te SOLID SOLUTIONS

    Directory of Open Access Journals (Sweden)

    D.M. Freik

    2014-05-01

    Full Text Available Within crystalquasichemical formalism models of point defects of crystals in the Pb-Sb-Te system were specified. Based on proposed crystalquasichemical formulae of antimony doped crystals PbTe:Sb amphoteric dopant effect was explained. Mechanisms of solid solution formation for РbТе-Sb2Те3: replacement of antimony ions lead sites  with the formation of cation vacancies  (I or neutral interstitial tellurium atoms  (II were examined. Dominant point defects in doped crystals PbTe:Sb and РbТе-Sb2Те3 solid solutions based on p-PbTe were defined. Dependences of concentration of dominant point defects, current carriers and Hall concentration on content of dopant compound and the initial deviation from stoichiometry in the basic matrix were calculated.

  16. New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon

    NARCIS (Netherlands)

    Ryzhikov, [No Value; Starzhinskiy, N; Gal'chinetskii, L; Gashin, P; Kozin, D; Danshin, E

    Data are presented on properties of a new type of scintillator based on isovalently doped crystals of zinc selenide. Depending upon concentration of activating dopants Te and O, the wavelength of the luminescence maximum is 590-640 nm, response time is 1-50 mus, and afterglow level after 5 ms is not

  17. Influence of temperature and dopant concentration on structural, morphological and optical properties of nanometric Ce1-xErxO2-δ (x = 0.05–0.20) as a pigment

    KAUST Repository

    Stojmenović, Marija

    2015-07-31

    Ceramic pigments based on cerium oxide were synthesized by self–propagating room temperature method and their color properties were assessed from the viewpoint of potential environmentally nontoxic pink pigments. Thermal stabilities of the pigments were examined at 600, 900 and 1200 ºC. According to X–ray powder diffraction and Raman spectroscopy results, all obtained pigments were single–phase solid solutions of cerium oxide, independent of the concentration of dopants. The X–ray analysis showed that the crystallites were of nanometric dimensions, as recorded and by transmission electron microscopy analysis. Color characteristics of solid solutions, which depended on concentracion erbium ions and calcination temperature, and their position in the chromaticity diagram were studied by ultraviolet–visible spectrophotometry, which confirmed potential application of environmentally friendly pigments of desired color. The color efficiency of pigments was also evaluated by colorimetric analysis.

  18. Influence of temperature and dopant concentration on structural, morphological and optical properties of nanometric Ce1-xErxO2-δ (x = 0.05–0.20) as a pigment

    KAUST Repository

    Stojmenović, Marija; Milenković, Maja C.; Banković, Predrag T.; Zunic, Milan; Gulicovski, Jelena J.; Pantić, Jelena R.; Bošković, Snežana B.

    2015-01-01

    Ceramic pigments based on cerium oxide were synthesized by self–propagating room temperature method and their color properties were assessed from the viewpoint of potential environmentally nontoxic pink pigments. Thermal stabilities of the pigments were examined at 600, 900 and 1200 ºC. According to X–ray powder diffraction and Raman spectroscopy results, all obtained pigments were single–phase solid solutions of cerium oxide, independent of the concentration of dopants. The X–ray analysis showed that the crystallites were of nanometric dimensions, as recorded and by transmission electron microscopy analysis. Color characteristics of solid solutions, which depended on concentracion erbium ions and calcination temperature, and their position in the chromaticity diagram were studied by ultraviolet–visible spectrophotometry, which confirmed potential application of environmentally friendly pigments of desired color. The color efficiency of pigments was also evaluated by colorimetric analysis.

  19. Compositions of Mg and Se, surface morphology, roughness and Raman property of Zn1-xMgxSeyTe1-y layers grown at various substrate temperatures or dopant transport rates by MOVPE

    Science.gov (United States)

    Nishio, Mitsuhiro; Saito, Katsuhiko; Urata, Kensuke; Okamoto, Yasuhiro; Tanaka, Daichi; Araki, Yasuhiro; Abiru, Masakatsu; Mori, Eiichiro; Tanaka, Tooru; Guo, Qixin

    2015-03-01

    The growth of undoped and phosphorus (P)-doped Zn1-xMgxSeyTe1-y layers on (100) ZnTe substrates by metalorganic vapor phase epitaxy was carried out. The compositions of Mg and Se, surface morphology, roughness and Raman property were characterized as a function of substrate temperature. Not only the compositions of Mg and Se but also the crystal quality of undoped Zn1-xMgxSeyTe1-y layer strongly depended upon the substrate temperature. Furthermore, the growth of Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe substrate was achieved independent of the transport rate of trisdimethylaminophosphorus. Undoped Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe led to improvement of surface roughness. On the other hand, P doping brought about deterioration of crystalline quality.

  20. Experimental and density functional study of Mn doped Bi2Te3 topological insulator

    Directory of Open Access Journals (Sweden)

    A. Ghasemi

    2016-12-01

    Full Text Available We present a nanoscale structural and density functional study of the Mn doped 3D topological insulator Bi2Te3. X-ray absorption near edge structure shows that Mn has valency of nominally 2+. Extended x-ray absorption fine structure spectroscopy in combination with electron energy loss spectroscopy (EELS shows that Mn is a substitutional dopant of Bi and Te and also resides in the van der Waals gap between the quintuple layers of Bi2Te3. Combination of aberration-corrected scanning transmission electron microscopy and EELS shows that Mn substitution of Te occurs in film regions with increased Mn concentration. First-principles calculations show that the Mn dopants favor octahedral sites and are ferromagnetically coupled.

  1. Bromine doping of CdTe and CdMnTe epitaxial layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Waag, A. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Scholl, S. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Schierstedt, K. von (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Hommel, D. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstoff-Forschung, Stuttgart (Germany))

    1993-03-01

    We report on the n-type doping of CdTe and CdMnTe with bormine as a novel dopant material. /the thin films were grown by molecular beam epitaxy. ZnBr[sub 2] was used as a source material for the n-type doping. Free carrier concentrations at room temperature of up to 2.8x10[sup 18] cm[sup -3] could be readily obtained for both CdTe as well as CdMnTe thin films with Mn concentrations below 10%. This is to our knowledge the highest value ever obtained for the dilute magnetic semiconductor CdMnTe. For ZnBr[sub 2] source temperatures up to 60 C - corresponding to a free carrier concentration of (2-3)x10[sup 18] cm[sup -3] - the free carrier concentration of the epitaxial film increases with ZnBr[sub 2] source temperature. For higher ZnBr[sub 2] source temperatures compensation becomes dominant, which is indicated by a steep decrease of the free carrier concentration with increasing ZnBr[sub 2] source temperature. In addition the carrier mobility decreases drastically for such high dopant fluxes. A model of bromine incorporation is proposed. (orig.)

  2. Extended OLED operational lifetime through phosphorescent dopant profile management

    Science.gov (United States)

    Forrest, Stephen R.; Zhang, Yifan

    2017-05-30

    This disclosure relates, at least in part, an organic light emitting device, which in some embodiments comprises an anode; a cathode; a first emissive layer disposed between the anode and the cathode, the first emissive layer comprising an electron transporting compound and a phosphorescent emissive dopant compound; and wherein the phosphorescent emissive dopant compound has a concentration gradient, in the emissive layer, which varies from the cathode side of the first emissive layer to the anode side of the emissive layer.

  3. Optimization of intrinsic layer thickness, dopant layer thickness and concentration for a-SiC/a-SiGe multilayer solar cell efficiency performance using Silvaco software

    Directory of Open Access Journals (Sweden)

    Wei Yuan Wong

    2017-01-01

    Full Text Available Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.

  4. Optimization of intrinsic layer thickness, dopant layer thickness and concentration for a-SiC/a-SiGe multilayer solar cell efficiency performance using Silvaco software

    Science.gov (United States)

    Yuan, Wong Wei; Natashah Norizan, Mohd; Salwani Mohamad, Ili; Jamalullail, Nurnaeimah; Hidayah Saad, Nor

    2017-11-01

    Solar cell is expanding as green renewable alternative to conventional fossil fuel electricity generation, but compared to other land-used electrical generators, it is a comparative beginner. Many applications covered by solar cells starting from low power mobile devices, terrestrial, satellites and many more. To date, the highest efficiency solar cell is given by GaAs based multilayer solar cell. However, this material is very expensive in fabrication and material costs compared to silicon which is cheaper due to the abundance of supply. Thus, this research is devoted to develop multilayer solar cell by combining two different layers of P-I-N structures with silicon carbide and silicon germanium. This research focused on optimising the intrinsic layer thickness, p-doped layer thickness and concentration, n-doped layer thickness and concentration in achieving the highest efficiency. As a result, both single layer a-SiC and a-SiGe showed positive efficiency improvement with the record of 27.19% and 9.07% respectively via parametric optimization. The optimized parameters is then applied on both SiC and SiGe P-I-N layers and resulted the convincing efficiency of 33.80%.

  5. Influence of the dopant concentration on structural, optical and photovoltaic properties of Cu-doped ZnS nanocrystals based bulk heterojunction hybrid solar cells

    Science.gov (United States)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Pathak, Dinesh; Wagner, Tomas; Nunzi, Jean-Michel

    2017-06-01

    Zinc sulphide (ZnS) and Cu-doped ZnS nanoparticles were synthesized by the wet chemical method. The nanoparticles were characterized by UV-visible, fluorescence, fourier transform infra-red (FTIR) spectrometry, X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Scanning electron microscopy supplemented with EDAX was employed to observe the morphology and chemical composition of the un-doped and doped samples. A significant blue shift of the absorption band with respect to the un-doped zinc sulphide was sighted by increasing the Cu concentration in the doped sample with decreasing the size of nanoparticles. Consequently, the band gap was tuned from 3.13 to 3.49 eV due to quantum confinement. The green emission arises from the recombination between the shallow donor level (sulfur vacancy) and the t2 level of Cu2+. However, the fluorescence emission spectrum of the undoped ZnS nanoparticles was deconvoluted into two bands, which are centered at 419 and 468 nm. XRD analysis showed that the nanomaterials were in cubic crystalline state. XRD peaks show that there were no massive crystalline distortions in the crystal lattice when the Cu concentration (0.05-0.1 M) was increased in the ZnS lattice. However, in the case of Cu-doped samples (0.15-0.2 M), the XRD pattern showed an additional peak at 37° due to incomplete substitution occurring during the experimental reaction step. A comparative study of surfaces of undoped and Cu-doped ZnS nanoparticles were investigated using X-ray photoelectron spectroscopy (XPS). The synthesized nanomaterial in combination with poly(3-hexylthiophene) (P3HT) was used in the fabrication of solar cells. The devices with ZnS nanoparticles showed an efficiency of 0.31%. The overall power conversion efficiency of the solar cells at 0.1 M Cu content in doped ZnS nanoparticles was found to be 1.6 times higher than the

  6. High thermoelectric potential of Bi{sub 2}Te{sub 3} alloyed GeTe-rich phases

    Energy Technology Data Exchange (ETDEWEB)

    Madar, Naor; Givon, Tom; Mogilyansky, Dmitry; Gelbstein, Yaniv [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2016-07-21

    In an attempt to reduce our reliance on fossil fuels, associated with severe environmental effects, the current research is focused on the identification of the thermoelectric potential of p-type (GeTe){sub 1−x}(Bi{sub 2}Te{sub 3}){sub x} alloys, with x values of up to 20%. Higher solubility limit of Bi{sub 2}Te{sub 3} in GeTe, than previously reported, was identified around ∼9%, extending the doping potential of GeTe by the Bi{sub 2}Te{sub 3} donor dopant, for an effective compensation of the high inherent hole concentration of GeTe toward thermoelectrically optimal values. Around the solubility limit of 9%, an electronic optimization resulted in an impressive maximal thermoelectric figure of merit, ZT, of ∼1.55 at ∼410 °C, which is one of the highest ever reported for any p-type GeTe-rich alloys. Beyond the solubility limit, a Fermi Level Pinning effect of stabilizing the Seebeck coefficient was observed in the x = 12%–17% range, leading to stabilization of the maximal ZTs over an extended temperature range; an effect that was associated with the potential of the governed highly symmetric Ge{sub 8}Bi{sub 2}Te{sub 11} and Ge{sub 4}Bi{sub 2}Te{sub 7} phases to create high valence band degeneracy with several bands and multiple hole pockets on the Fermi surface. At this compositional range, co-doping with additional dopants, creating shallow impurity levels (in contrast to the deep lying level created by Bi{sub 2}Te{sub 3}), was suggested for further electronic optimization of the thermoelectric properties.

  7. Influence of Dopants in ZnO Films on Defects

    Science.gov (United States)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  8. Growth and characterization of CdTe absorbers on GaAs by MBE for high concentration PV solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ari, Ozan; Polat, Mustafa; Selamet, Yusuf [Department of Physics, Izmir Institute of Technology, Izmir 35430 (Turkey); Karakaya, Merve [Department of Material Science and Engineering, Izmir Institute of Technology, Izmir 35430 (Turkey)

    2015-11-15

    CdTe based II-VI absorbers are promising candidates for high concentration PV solar cells with an ideal band gap for AM1.5 solar radiation. In this study, we propose single crystal CdTe absorbers grown on GaAs substrates with a molecular beam epitaxy (MBE) which is a clean deposition technology. We show that high quality CdTe absorber layers can be grown with full width half maximum of X-ray diffraction rocking curves (XRD RC) as low as 227 arc-seconds with 0.5% thickness uniformity that a 2 μm layer is capable of absorbing 99% of AM1.5 solar radiation. Bandgap of the CdTe absorber is found as 1.483 eV from spetroscopic ellipsometry (SE) measurements. Also, high absorption coefficient is calculated from the results, which is ∝5 x 10{sup 5}cm{sup -1} in solar radiation spectrum. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Thermoelectric performance of co-doped SnTe with resonant levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min; Han, Yemao; Li, Laifeng, E-mail: laifengli@mail.ipc.ac.cn, E-mail: wangheng83@gmail.com [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gibbs, Zachary M. [Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. Pasadena, California 91125 (United States); Wang, Heng, E-mail: laifengli@mail.ipc.ac.cn, E-mail: wangheng83@gmail.com [Materials Science, California Institute of Technology, 1200 California Blvd., Pasadena, California 91125 (United States); Snyder, G. Jeffrey [Materials Science, California Institute of Technology, 1200 California Blvd., Pasadena, California 91125 (United States); TMO University, Saint Petersburg 197101 (Russian Federation)

    2016-07-25

    Some group III elements such as Indium are known to produce the resonant impurity states in IV-VI compounds. The discovery of these impurity states has opened up new ways for engineering the thermoelectric properties of IV-VI compounds. In this work, resonant states in SnTe were studied by co-doping with both resonant (In) and extrinsic (Ag, I) dopants. A characteristic nonlinear relationship was observed between the Hall carrier concentration (n{sub H}) and extrinsic dopant concentration (N{sub I}, N{sub Ag}) in the stabilization region, where a linear increase of dopant concentration does not lead to linear response in the measured n{sub H}. Upon substituting extrinsic dopants beyond a certain amount, the n{sub H} changed proportionally with additional dopants (Ag, I) (the doping region). The Seebeck coefficients are enhanced as the resonant impurity is introduced, whereas the use of extrinsic doping only induces minor changes. Modest zT enhancements are observed at lower temperatures, which lead to an increase in the average zT values over a broad range of temperatures (300–773 K). The improved average zT obtained through co-doping indicates the promise of fine carrier density control in maximizing the favorable effect of resonant levels for thermoelectric materials.

  10. Tuning Nanocrystal Surface Depletion by Controlling Dopant Distribution as a Route Toward Enhanced Film Conductivity

    Science.gov (United States)

    Staller, Corey M.; Robinson, Zachary L.; Agrawal, Ankit; Gibbs, Stephen L.; Greenberg, Benjamin L.; Lounis, Sebastien D.; Kortshagen, Uwe R.; Milliron, Delia J.

    2018-05-01

    Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data shows electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and, in agreement with variable temperature conductivity fits, find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.

  11. Microstructural, optical and electrical properties of Cl-doped CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Choi Hyojeong

    2016-09-01

    Full Text Available Microstructural, optical and electrical properties of Cl-doped CdTe crystals grown by the low pressure Bridgman (LPB method were investigated for four different doping concentrations (unintentionally doped, 4.97 × 1019 cm−3, 9.94 × 1019 cm−3 and 1.99 × 1020 cm−3 and three different locations within the ingots (namely, samples from top, middle and bottom positions in the order of the distance from the tip of the ingot. It was shown that Cl dopant suppressed the unwanted secondary (5 1 1 crystalline orientation. Also, the average size and surface coverage of Te inclusions decreased with an increase in Cl doping concentration. Spectroscopic ellipsometry measurements showed that the optical quality of the Cl-doped CdTe single crystals was enhanced. The resistivity of the CdTe sample doped with Cl at the 1.99 × 1020 cm−3 was above 1010 Ω.cm.

  12. Contribution of the graded region of a HgCdTe diode to its saturation current

    Science.gov (United States)

    Schacham, S. E.; Finkman, E.

    1990-01-01

    Experimental results show that the contribution of the graded region to the current of Hg(1-x)Cd(x)Te diodes is not negligible, as compared to that of the p type bulk. The theoretical analysis reveals the influence of the electric field present outside the depletion region on the current generated by the graded region. The analysis shows the importance of the lifetime profile in the graded region, which is a function of the specific recombination mechanism and its dependence on the local dopant concentration. The effect of parameters such as substrate concentration, surface concentration, and junction depth on this current is discussed.

  13. Influence of the Compositional Grading on Concentration of Majority Charge Carriers in Near-Surface Layers of n(p)-HgCdTe Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2018-02-01

    The capacitive characteristics of metal-insulator-semiconductor (MIS) structures based on the compositionally graded Hg1-xCdxTe created by molecular beam epitaxy have been experimentally investigated in a wide temperature range (8-77 K). A program has been developed for numerical simulation of ideal capacitance-voltage (C-V) characteristics in the low-frequency and high-frequency approximations. The concentrations of the majority carriers in the near-surface semiconductor layer are determined from the values of the capacitances in the minima of low-frequency C-V curves. For MIS structures based on p-Hg1-xCdxTe, the effect of the presence of the compositionally graded layer on the hole concentration in the near-surface semiconductor layer, determined from capacitive measurements, has not been established. Perhaps this is due to the fact that the concentration of holes in the near-surface layer largely depends on the type of dielectric coating and the regimes of its application. For MIS structures based on n-Hg1-x Cd x Te (x = 0.22-0.23) without a graded-gap layer, the electron concentration determined by the proposed method is close to the average concentration determined by the Hall measurements. The electron concentration in the near-surface semiconductor layer of the compositionally graded n-Hg1-x Cd x Te (x = 0.22-0.23) found from the minimum capacitance value is much higher than the average electron concentration determined by the Hall measurements. The results are qualitatively explained by the creation of additional intrinsic donor-type defects in the near-surface compositionally graded layer of n-Hg1-x Cd x Te.

  14. Boron, arsenic and phosphorus dopant incorporation during low temperature low pressure silicon epitaxial growth

    International Nuclear Information System (INIS)

    Borland, J.O.; Thompson, T.; Tagle, V.; Benzing, W.

    1987-01-01

    Submicron silicon epitaxial structures with very abrupt epi/substrate transition widths have been realized through the use of low temperature silicon epitaxial growth techniques. At these low temperature and low pressure epitaxial growth conditions there is minimal, if any, dopant diffusion from the substrate into the epilayer during deposition. The reincorporation of autodoped dopant as well as the incorporation of intentional dopant can be a trade-off at low temperatures and low pressures. For advanced CMOS and Bi-CMOS technologies, five to six orders of magnitude change in concentration levels are desirable. In this investigation, all of the epitaxial depositions were carried out in an AMC-7810 epi-reactor with standard jets for a turbulent mixing system, and using a modified center inject configuration to achieve a single pass laminar flow system. To simulate the reincorporation of various autodoped dopant, the authors ran a controlled dopant flow of 100 sccm for each of the three dopants (boron, phosphorus and arsenic) to achieve the controlled background dopant level in the reactor gas stream

  15. Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Il; Yoon, Ju An; Kim, Nam Ho; Kim, Jin Wook; Kang, Jin Sung; Moon, Chang-Bum [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-04-15

    Blue phosphorescent organic light-emitting diodes (PHOLEDs) were fabricated using double dopants FIrpic and FIr6 in emissive layer (EML) with structure of ITO/NPB (700 Å)/mCP:FIrpic-8%:FIr6-x% (300 Å)/TPBi (300 Å)/Liq (20 Å)/Al (1200 Å). We optimized concentration of the second dopant FIr6 in the presence of a fixed FIrpic to observe its effect on electrical performance of PHOLED device. 24.8 cd/A of luminous efficiency was achieved by the device with dopant ratio of 8%FIrpic:4%FIr6 in EML. Efficiency roll-off was also improved 20% compared to the PHOLED device singly dopped with FIrpic or FIr6 only. Second doping proved its effect in stabilizing charge balance in EML and enhancing energy transfer of triplet excitons between two dopants. - Highlights: • We fabricated blue PHOLED with double blue phosphorescent dopants in single EML. • Efficiency roll-off was improved by using double dopant in single EML. • The host–dopant transfer is discussed by analyzing the photo-absorption and photoluminescence. • The spectroscopic analysis using multi-peak fits with a Gaussian function.

  16. Prospects for photosensitive dopants in liquid argon

    International Nuclear Information System (INIS)

    Anderson, D.F.

    1990-12-01

    Evidence is presented that the addition of a few ppM of a photosensitive dopant to a U/liquid argon or Pb/liquid argon calorimeter will make a substantial reduction in the e/π ratio. Previous results indicating high voltage problems and no change in the e/π ratio in tests of photosensitive dopants with the Fermilab D0 experiment's U/liquid argon tests calorimeter are also explained. 13 refs., 3 figs

  17. Two-dimensional dopant profiling for shallow junctions by TEM and AFM

    International Nuclear Information System (INIS)

    Yoo, K.

    2000-01-01

    The present work concerns the development of the Etch/TEM and Etch/AFM methods to obtain quantitative 2-D dopant profiles for the ultra shallow p-n junctions of the next generation of metal-oxide-semiconductor field effect transistors (MOSFETs). For these methods, thin foil (TEM) or bulk (AFM) cross-sectional specimens were etched using a dopant selective chemical so that local areas of the dopant implanted source/drain (S/D) regions were etched to different depths. The surface topography of the S/D regions was determined from the thickness fringes for the TEM method and by the direct measurement for the AFM method. The local etched depths were converted to etch rates, and these were then converted to corresponding 1-D and 2-D dopant profiles by the experimentally independent etch rate calibration curves. Shallow junction MOSFET samples were designed and fabricated with junction depths 60nm (n + /p), 80nm (n + /p) and 120nm (p + /n) using 0.25μm process technology. A new method using SOG (Spin-on-Glass) contributed to the high quality XTEM thin foil specimens. Controlled stirring of the etchant increased the dopant concentration selectivity and etching consistency. Computer modelling simulated the isotropic etching behaviours, which can introduce the significant error in dopant profiling for shallow and abrupt junction samples. Comprehensive quantitative results enabled the optimum etching time to be determined for the first time. Etch/TEM method gave 1-D dopant profiles that showed good agreement with 1-D Spreading Resistance Probe (SRP) dopant profiles for determining junction depths. 2-D dopant profiles gave L eff , i.e. the shortest lateral distance between the S/D junctions, of major importance for MOSFET performance. Values for L eff of 161, 159 and 123nm were determined from 60, 80 and 120nm junction depth samples respectively, compared with the 215nm MOSFET gate length. The resolution and accuracy of the Etch/TEM method are estimated as 2 and 10nm

  18. Mn concentration and quantum size effects on spin-polarized transport through CdMnTe based magnetic resonant tunneling diode.

    Science.gov (United States)

    Mnasri, S; Abdi-Ben Nasrallahl, S; Sfina, N; Lazzari, J L; Saïd, M

    2012-11-01

    Theoretical studies on spin-dependent transport in magnetic tunneling diodes with giant Zeeman splitting of the valence band are carried out. The studied structure consists of two nonmagnetic layers CdMgTe separated by a diluted magnetic semiconductor barrier CdMnTe, the hole is surrounded by two p-doped CdTe layers. Based on the parabolic valence band effective mass approximation and the transfer matrix method, the magnetization and the current densities for holes with spin-up and spin-down are studied in terms of the Mn concentration, the well and barrier thicknesses as well as the voltage. It is found that, the current densities depend strongly on these parameters and by choosing suitable values; this structure can be a good spin filter. Such behaviors are originated from the enhancement and suppression in the spin-dependent resonant states.

  19. Effect of antimony concentration on structural and transport properties of (Bi{sub 1-x}Sb{sub x}){sub 2}Te{sub 3} mixed crystal

    Energy Technology Data Exchange (ETDEWEB)

    Malik, K.; Das, Diptasikha; Bandyopadhyay, S.; Banerjee, S.; Banerjee, Aritra, E-mail: aritrabanerjee.cu@gmail.com [Department of Physics, University of Calcutta, 92 A P C Road, Kolkata-700009 (India)

    2015-06-24

    Polycrystalline (Bi{sub 1-x}Sb{sub x}){sub 2}Te{sub 3} (0.60≤x≤0.68) alloys have been synthesized by solid state reaction method. Structural characterizations have been done using X-Ray Diffraction (XRD). Lattice parameter decreases with antimony (Sb) concentration. Sb doping leads to the modification in band structure and Fermi surface geometry. Band gap calculated from thermal variation of resistivity (ρ-T) data, decreases with Sb concentration. Sb concentration dependent power factor near room temperature have been calculated from obtained resistivity and thermopower data. Highest power factor obtained for (Bi{sub 0.40}Sb{sub 0.60}){sub 2}Te{sub 3} alloy.

  20. The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses

    Science.gov (United States)

    Moreira, L. M.; Anjos, V.; Bell, M. J. V.; Ramos, C. A. R.; Kassab, L. R. P.; Doualan, D. J. L.; Camy, P.; Moncorgé, R.

    2016-08-01

    The present work reports the modification introduced by different Nd2O3 concentration on optical properties and the laser operation of Nd3+ doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the Judd Ofelt formalism framework and the results are compared to the fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered 4F3/2 → 4I11/2 infrared laser transition around 1062.5 nm. Continuous-wave laser action is achieved with this bulk tellurite glass by pumping the sample inside a standard plan-concave mirror laser cavity with different output couplers. It is possible to observe coherent emission only for the lower concentration (0.5%(wt.) of Nd2 O3). Also laser action could only be observed for this sample with threshold pump power of 73 mW associated with a laser slope efficiency of 8% for an output coupler transmission of 4% indicating that TeO2-ZnO are potential materials for laser action. The results presented in this work together with those previously reported with higher concentration (1.0% (wt) of Nd2O3) determine the adequate Nd2O3 concentration for laser action and guide the correct experimental procedure for TeO2-ZnO glasses preparation.

  1. Diagnosing the Stagnation Conditions of MagLIF Implosions Using Co and Kr dopants

    Science.gov (United States)

    Harding, E. C.; Hansen, S. B.; Harvey-Thompson, A. J.; Weis, M. R.; Hahn, K. D.; Gomez, M. R.; Knapp, P. F.; Slutz, S. A.; Geissel, M.; Ampleford, D. J.; Jennings, C. A.; Peterson, K.; Rochau, G. A.; Doron, R.; Stambulchik, E.; Nedostup, O.; Maron, Y.; Golovkin, I.

    2017-10-01

    Recent experiments on the Z-machine tested several new diagnostic techniques for investigating the stagnation conditions and the origins of the mix present in a Magnetized Liner Inertial Fusion (MagLIF) target. For the first time we have collected K-shell spectra from a low-concentration, Kr dopant placed in the gaseous D2 fuel. In addition, thin Co coatings were strategically applied to three different internal surfaces of the target in order to assess which surfaces actively contribute to the contamination of the fuel. Both imaging spectroscopy and narrow-band crystal imaging were used to identify the location of He-like Co ions. The Te and ne of the Co is inferred by fitting the He-alpha lines and the near-by Li-like satellites. The experimental measurements and the challenges associated with the analysis will be discussed. Sandia Natl Lab is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE NNSA under contract DE-NA-0003525.

  2. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    Science.gov (United States)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  3. Dopant atoms as quantum components in silicon nanoscale devices

    Science.gov (United States)

    Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua

    2018-06-01

    Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).

  4. Electronic tuning of the transport properties of off-stoichiometric PbxSn1−xTe thermoelectric alloys by Bi2Te3 doping

    International Nuclear Information System (INIS)

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-01-01

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb x Sn 1−x Te alloys by tuning of Bi 2 Te 3 doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shown that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb 0.5 Sn 0.5 Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected

  5. Effects on Implosion Characteristics of High-Z Dopant Profiles in ICF Ignition Capsule Ablators

    Science.gov (United States)

    Li, Yongsheng; Wang, Min; Gu, Jianfa; Zou, Shiyang; Kang, Dongguo; Ye, Wenhua; Zhang, Weiyan

    2012-10-01

    For ignition target design (ITD) of indirect drive ICF [J. Lindl, PoP 2, 3933(1995)], high-Z dopants in capsule ablators were used to prevent preheat of DTadjacentablators by Au M-band flux in laser-driven gold Hohlraums, therefore to restrain the growth of high-mode hydro-instabilities and to improve the targetrobustness.Based on NIC's Rev. 5 ITD[S. W. Haan et al., PoP 18, 051001(2011)], we investigated the effect of thickness and dopant concentration of doped layers on implosion characteristics, including the Atwood number (AWN) of fuel-ablator interface, the density gradient scale length (DGSL) of ablation front and the implosion velocity (VIM); all three variables decrease with increment of dopant dosage, and increase with dopant concentration while keeping dosage constant. Since a smaller AWN, a larger DGSL, and a faster VIM always characterize a more robust ITD, one should make tradeoff among them by adjusting the dopant profiles in ablators.A Gaussian spectrum (GS) was used to imitate the Au M-band flux [Y. S. Li et al., PoP 18, 022701(2011)], and the impact of GScenter on implosion characteristics of Rev. 5 ITD was studied while moving the GScenter towards higher energy, the ablatorpreheat got severe, AWN got larger, DGSL got larger, and VIM got faster.

  6. Deprotonation effect of tetrahydrofuran-2-carbonitrile buffer gas dopant in ion mobility spectrometry.

    Science.gov (United States)

    Fernandez-Maestre, Roberto; Meza-Morelos, Dairo; Wu, Ching

    2016-06-15

    When dopants are introduced into the buffer gas of an ion mobility spectrometer, spectra are simplified due to charge competition. We used electrospray ionization to inject tetrahydrofuran-2-carbonitrile (F, 2-furonitrile or 2-furancarbonitrile) as a buffer gas dopant into an ion mobility spectrometer coupled to a quadrupole mass spectrometer. Density functional theory was used for theoretical calculations of dopant-ion interaction energies and proton affinities, using the hybrid functional X3LYP/6-311++(d,p) with the Gaussian 09 program that accounts for the basis set superposition error; analytes structures and theoretical calculations with Gaussian were used to explain the behavior of the analytes upon interaction with F. When F was used as a dopant at concentrations below 1.5 mmol m(-3) in the buffer gas, ions were not observed for α-amino acids due to charge competition with the dopant; this deprotonation capability arises from the production of a dimer with a high formation energy that stabilized the positive charge and created steric hindrance that deterred the equilibrium with analyte ions. F could not completely strip other compounds of their charge because they either showed steric hindrance at the charge site that deterred the approach of the dopant (2,4-lutidine, and DTBP), formed intramolecular bonds that stabilized the positive charge (atenolol), had high proton affinity (2,4-lutidine, DTBP, valinol and atenolol), or were inherently ionic (tetraalkylammonium ions). This selective deprotonation suggests the use of F to simplify spectra of complex mixtures in ion mobility and mass spectrometry in metabolomics, proteomics and other studies that generate complex spectra with thousands of peaks. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Synthesis of Novel YbxSb2 − xTe3 Hexagonal Nanoplates: Investigation of Their Physical, Structural, and Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Younes Hanifehpour

    2014-01-01

    Full Text Available Yb-doped Sb2Te3 nanomaterials were synthesized by a coreduction method in hydrothermal condition. Powder X-ray diffraction patterns indicate that the YbxSb2−xTe3 crystals (x=0.00–0.05 are isostructural with Sb2Te3. The cell parameter a decreases for YbxSb2−xTe3 compounds upon increasing the dopant content (x, while c increases. Scanning electron microscopy and transmission electron microscopy images show that doping of Yb3+ ions in the lattice of Sb2Te3 produces different morphology. The electrical conductivity of Yb-doped Sb2Te3 is higher than the pure Sb2Te3 and increases with temperature. By increasing concentration of the Yb3+ ions, the absorption spectrum of Sb2Te3 shows red shifts and some intensity changes. In addition to the characteristic red emission peaks of Sb2Te3, emission spectra of doped materials show other emission bands originating from f-f transitions of the Yb3+ ions. The photocatalytic performance of as-synthesized nanoparticles was investigated towards the decolorization of Malachite Green solution under visible light irradiation.

  8. Photovoltaic properties of sintered CdS/CdTe solar cells doped with Cu

    International Nuclear Information System (INIS)

    Park, J.W.; Ahn, B.T.; Im, H.B.; Kim, C.S.

    1992-01-01

    In this paper, all polycrystalline CdS/CdTe solar cells doped with Cu are prepared by a screen printing and sintering method. Cell parameters of the sintered CdS/CdTe solar cells have been investigated in an attempt to find out the optimum doping conditions and concentrations of Cu by adding various amounts of CuCl 2 either into CdTe layer or into back contact carbon layer. Cell parameters of the sintered CdS/CdTe solar cells which contained various amounts of CuCl 2 in the CdTe layers before sintering stay at about the same values as the amount of CuCl 2 increases up to 25 ppm, and then decreases sharply as the amount of CuCl 2 further increases. The Cu added in the CdTe layer diffuses into the CdS layer during the sintering of the CdS-CdTe composite at 625 degrees C to densify the CdTe layer and causes the decrease in the optical transmission of CdS resulting in the degradation of the cell performance. In case the Cu dopant was dispersed in the back carbon paint and was followed by annealing, all cell parameters are improved significantly compared with those fabricated by adding CuCl 2 in the CdTe layer before sintering. A sintered CdS/CdTe solar cell which contained 25 ppm CuCl 2 in the carbon paste and was annealed at 350 degrees C for 10 min shows the highest efficiency. The efficiency of this cell is 12.4% under solar irradiation with an intensity of 80.4 mW/cm 2

  9. Model of dopant action in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2005-01-01

    The paper describes an electrochemical model, which largely explains the formation of Ba in the oxide cathode at activation and normal operation. In a non-doped oxide cathode electrolysis of BaO is, besides the exchange reaction from the activators in the cathode nickel, an important source of Ba. By doping with rare earth oxides the conductivity of the oxide layer increases, which implies that the potential difference during current drawing over the oxide layer becomes lower and electrolysis of BaO is suppressed. This implies that the part of the electronic conductivity of the (Ba,Sr)O layer induced by the dopants also controls the sensitivity for poisoning: the higher the dopant level, the larger the sensitivity for poisoning. Furthermore, the suppression of electrolysis during normal operation largely explains why doped oxide cathodes have a better life performance than non-doped cathodes. Finally a hypothesis on the enhancement of sintering upon doping is presented

  10. Carrier illumination measurement of dopant lateral diffusion

    International Nuclear Information System (INIS)

    Budiarto, E.; Segovia, M.; Borden, P.; Felch, S.

    2005-01-01

    This paper describes the application of the carrier illumination technique to non-destructively measure the lateral diffusion of implanted dopants after annealing. Experiments to validate the feasibility of this method employed test structures with a constant line width of 300 nm and varying undoped spaces of 100-5000 nm. The test patterns were implanted with a p-type dopant and annealed in a 3 x 3 matrix. For each implant condition, the measured lateral diffusion was found to increase with annealing temperature, as expected. More interestingly, the lateral diffusion was not observed to relate to the vertical diffusion by a fixed proportionality factor, as is usually assumed. The ratio of lateral to vertical diffusion varies with annealing temperature, with a trend that depends on the implant condition

  11. Profiling N-Type Dopants in Silicon

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Miloš; Mika, Filip; Mikulík, P.; Frank, Luděk

    2010-01-01

    Roč. 51, č. 2 (2010), s. 237-242 ISSN 1345-9678 R&D Projects: GA ČR GP102/09/P543; GA AV ČR IAA100650803 Institutional research plan: CEZ:AV0Z20650511 Keywords : silicon * dopant contrast * photoemission electron microscopy * scanning electron microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.779, year: 2010 http://www.jim.or.jp/journal/e/51/02/237.html

  12. Dopant distributions in n-MOSFET structure observed by atom probe tomography

    International Nuclear Information System (INIS)

    Inoue, K.; Yano, F.; Nishida, A.; Takamizawa, H.; Tsunomura, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  13. Dopant distributions in n-MOSFET structure observed by atom probe tomography.

    Science.gov (United States)

    Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M

    2009-11-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  14. Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current

    DEFF Research Database (Denmark)

    Shayesteh, Maryam; O' Connell, Dan; Gity, Farzan

    2014-01-01

    In this paper, state-of-the-art laser thermal annealing is used to fabricate Ge diodes. We compared the effect of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical properties of phosphorus and Arsenic-doped n +/p junctions. Using LTA, high carrier...... implant conditions. On the other hand, RTA revealed very high I on/I off ratio ∼ 107 and n ∼ 1, at the cost of high dopant diffusion and lower carrier concentrations which would degrade scalability and access resistance....

  15. Variation of thermophysical parameters of PCM CaCl2.6H2O with dopant from T-history data analysis

    Science.gov (United States)

    Sutjahja, I. M.; Silalahi, Alfriska O.; Sukmawati, Nissa; Kurnia, D.; Wonorahardjo, S.

    2018-03-01

    T-history is a powerful method for deriving the thermophysical parameters of a phase change material (PCM), which consists of solid and liquid specific heats as well as latent heat enthalpy. The performance of a PCM for thermal energy storage could be altered by chemical dopants added directly to the PCM in order to form a stable suspension. We described in this paper the role of chemical dopants in the variation of thermophysical parameters for CaCl2 · 6H2O inorganic PCM with 1 wt% and 2 wt% dopant concentration and BaSO4 (1 wt%) as a nucleator using the T-history method. The dopant consists graphite and CuO nanoparticles. The data analysis follows the original method proposed by (Zhang et al 1999 Meas. Sci. Technol. 10 201–205) and its modification by (Hong et al 2004 Int. J. Refrig. 27 360–366). In addition, the enthalpy-temperature curve is obtained by adopting a method proposed by (Marín et al 2003 Meas. Sci. Technol. 14 184–189). We found that the solid specific heat tends to increase non-linearly with increased dopant concentration for all dopants. The increased liquid specific heat, however, indicates the optimum value for 1 wt% graphite dopant. In contrast, the CuO dopant shows a smaller increase in dopant concentration. The specific heat data are analyzed based on the interacting mesolayer model for a nanofluid. The heat of fusion show strong variation with dopant type, in agreement with other experimental data for various PCMs and dopant particles.

  16. Effect of Cu-Dopant on the Structural, Magnetic and Electrical Properties of ZnO

    Science.gov (United States)

    Aryanto, D.; Kurniawan, C.; Subhan, A.; Sudiro, T.; Sebayang, P.; Ginting, M.; Siregar, S. M. K.; Nasruddin, M. N.

    2017-05-01

    Zn1- x Cu x O (x = 0, 2, 3, and 4 at.%) was synthesized by using solid-state reaction technique. The ZnO and CuO powders were mixed and then milled by using high-speed shaker mill. The influence of Cu dopants on the structure, magnetic, and electrical properties was investigated by using XRD, VSM, and I-V and C-V measurements. The XRD analysis showed that the Zn1- x Cu x O had hexagonal wurtzite polycrystalline. The diffraction intensity decreased and the peak position shifted directly to a higher 2θ angle with increasing the dopant concentration. Furthermore, the lattice parameters decreased when the ZnO was doped with x = 0.04, which indicated that the crystal structure changed. The increase of Cu dopants was believed to affect the magnetic and electrical properties of ZnO.

  17. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel

    , and dopant concentration. Parameters relevant to the thermoelectric properties have been determined along the pulling direction. All of these properties exhibit the wanted gradient. It has thereby been shown that engineering of the electrical contributions to the thermoelectric properties of a material...

  18. Laser thermal annealing of Ge, optimized for highly activated dopants and diode ION/IOFF ratios

    DEFF Research Database (Denmark)

    Shayesteh, M.; O'Connell, D.; Gity, F.

    2014-01-01

    The authors compared the influence of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical performance of phosphorus and arsenic doped n+/p junction. High carrier concentration above 1020 cm-3 as well as an ION/IOFF ratio of approximately 105 and ide...

  19. Understanding and controlling transient enhanced dopant diffusion in silicon

    International Nuclear Information System (INIS)

    Stolk, P.A.; Gossmann, H.J.; Eaglesham, D.J.; Jacobson, D.C.; Poate, J.M.; Luftman, H.S.

    1995-01-01

    Implanted B and P dopants in Si exhibit transient enhanced diffusion (TED) during initial annealing which arises from the excess interstitials generated by the implant. In order to study the mechanisms of TED, the authors have used B doping marker layers in Si to probe the injection of interstitials from near-surface, non-amorphizing Si implants during annealing. The in-diffusion of interstitials is limited by trapping at impurities and has an activation energy of ∼3.5 eV. Substitutional C is the dominant trapping center with a binding energy of 2--2.5 eV. The high interstitial supersaturation adjacent to the implant damage drives substitutional B into metastable clusters at concentrations below the B solid solubility limit. Transmission electron microscopy shows that the interstitials driving TED are emitted from {311} defect clusters in the damage region at a rate which also exhibits an activation energy of 3.6 eV. The population of excess interstitials is strongly reduced by incorporating substitutional C in Si to levels of ∼10 19 /cm 3 prior to ion implantation. This provides a promising method for suppressing TED, thus enabling shallow junction formation in future Si devices through dopant implantation

  20. Influence of dopants on the glow curve structure and energy dependence of LiF:Mg,Cu,Si detectors

    International Nuclear Information System (INIS)

    Knezevic, Z.; Ranogajec-Komor, M.; Miljanic, S.; Lee, J.I.; Kim, J.L.; Music, S.

    2011-01-01

    LiF thermoluminescent material doped with Mg, Cu and Si recently developed by the Korea Atomic Energy Research Institute (KAERI) has shown very good dosimetric properties. Since the thermoluminescence in LiF was found to be dependent on the proper combination of dopants, the investigation of the concentration and type of dopants is very important in developing and characterisation of new TL materials. The aim of this work was to determine the influence of type and concentration of activators on the glow curve structure, sensitivity, reproducibility and on the photon energy response of LiF:Mg,Cu,Si detectors. The energy response was studied in air and on the ISO water phantom in the range of mean photon energies between 33 keV and 164 keV. The morphology and local chemical composition of LiF:Mg,Cu,Si detectors were examined using high resolution scanning electron microscopy (FE-SEM). The results show that type and concentration of activators influence the glow curve and sensitivity. Different dopant concentrations did not show influence on the photon energy response. The sensitivity of LiF:Mg,Cu,Si detector with dopant concentration of Mg = 0.35 mol%, Cu = 0.025 mol% and Si = 0.9 mol% was very high (up to 65 times higher than that of TLD-100). The photon energy response of LiF:Mg,Cu,Si detectors containing all three dopants in various concentrations is in accordance with the IAEA recommendations for individual monitoring.

  1. Influence of dopants on the glow curve structure and energy dependence of LiF:Mg,Cu,Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Z., E-mail: zknez@irb.h [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Ranogajec-Komor, M.; Miljanic, S. [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Lee, J.I.; Kim, J.L. [Korea Atomic Energy Research Institute, P.O. Box 105 Yuseong, Daejon 305-600 (Korea, Republic of); Music, S. [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)

    2011-03-15

    LiF thermoluminescent material doped with Mg, Cu and Si recently developed by the Korea Atomic Energy Research Institute (KAERI) has shown very good dosimetric properties. Since the thermoluminescence in LiF was found to be dependent on the proper combination of dopants, the investigation of the concentration and type of dopants is very important in developing and characterisation of new TL materials. The aim of this work was to determine the influence of type and concentration of activators on the glow curve structure, sensitivity, reproducibility and on the photon energy response of LiF:Mg,Cu,Si detectors. The energy response was studied in air and on the ISO water phantom in the range of mean photon energies between 33 keV and 164 keV. The morphology and local chemical composition of LiF:Mg,Cu,Si detectors were examined using high resolution scanning electron microscopy (FE-SEM). The results show that type and concentration of activators influence the glow curve and sensitivity. Different dopant concentrations did not show influence on the photon energy response. The sensitivity of LiF:Mg,Cu,Si detector with dopant concentration of Mg = 0.35 mol%, Cu = 0.025 mol% and Si = 0.9 mol% was very high (up to 65 times higher than that of TLD-100). The photon energy response of LiF:Mg,Cu,Si detectors containing all three dopants in various concentrations is in accordance with the IAEA recommendations for individual monitoring.

  2. The effect of dopants on laser imprint mitigation

    Science.gov (United States)

    Phillips, Lee; Gardner, John H.; Bodner, Stephen E.; Colombant, Denis; Dahlburg, Jill

    1999-11-01

    An intact implosion of a pellet for direct-drive ICF requires that the perturbations imprinted by the laser be kept below some threshold. We report on simulations of targets that incorporate very small concentrations of a high-Z dopant in the ablator, to increase the electron density in the ablating plasma, causing the laser to be absorbed far enough from the solid ablator to achieve a substantial degree of thermal smoothing. These calculations were performed using NRL's FAST radiation hydrodynamics code(J.H. Gardner, A.J. Schmitt, et al., Phys. Plasmas) 5, 1935 (1998), incorporating the flux-corrected transport algorithm and opacities generated by an STA code, with non-LTE radiation transport based on the Busquet method.

  3. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Kardynał, B.E. [Peter Grünberg Institute 9, Forschungszentrum Jülich, D-52425 Jülich (Germany); Barnes, C.H.W. [Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dunin-Borkowski, R.E., E-mail: rafaldb@gmail.com [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute 5, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2013-11-15

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness.

  4. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography

    International Nuclear Information System (INIS)

    Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A.; Kardynał, B.E.; Barnes, C.H.W.; Dunin-Borkowski, R.E.

    2013-01-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness

  5. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    Directory of Open Access Journals (Sweden)

    Gérard Valérie A

    2010-03-01

    Full Text Available Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA capped have been investigated with pheochromocytoma 12 (PC12 cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA stabilised CdTe QDs (gel and non - gel were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly

  6. Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2010-03-25

    Abstract Background The unique and tuneable photonic properties of Quantum Dots (QDs) have made them potentially useful tools for imaging biological entities. However, QDs though attractive diagnostic and therapeutic tools, have a major disadvantage due to their inherent cytotoxic nature. The cellular interaction, uptake and resultant toxic influence of CdTe QDs (gelatinised and non-gelatinised Thioglycolic acid (TGA) capped) have been investigated with pheochromocytoma 12 (PC12) cells. In conjunction to their analysis by confocal microscopy, the QD - cell interplay was explored as the QD concentrations were varied over extended (up to 72 hours) co-incubation times. Coupled to this investigation, cell viability, DNA quantification and cell proliferation assays were also performed to compare and contrast the various factors leading to cell stress and ultimately death. Results Thioglycolic acid (TGA) stabilised CdTe QDs (gel and non - gel) were co-incubated with PC12 cells and investigated as to how their presence influenced cell behaviour and function. Cell morphology was analysed as the QD concentrations were varied over co-incubations up to 72 hours. The QDs were found to be excellent fluorophores, illuminating the cytoplasm of the cells and no deleterious effects were witnessed at concentrations of ~10-9 M. Three assays were utilised to probe how individual cell functions (viability, DNA quantification and proliferation) were affected by the presence of the QDs at various concentrations and incubation times. Cell response was found to not only be concentration dependant but also influenced by the surface environment of the QDs. Gelatine capping on the surface acts as a barrier towards the leaking of toxic atoms, thus reducing the negative impact of the QDs. Conclusion This study has shown that under the correct conditions, QDs can be routinely used for the imaging of PC12 cells with minimal adverse effects. We have found that PC12 cells are highly susceptible to

  7. Electronic tuning of the transport properties of off-stoichiometric Pb{sub x}Sn{sub 1−x}Te thermoelectric alloys by Bi{sub 2}Te{sub 3} doping

    Energy Technology Data Exchange (ETDEWEB)

    Guttmann, Gilad M. [The Unit of Energy Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Dadon, David [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Gelbstein, Yaniv [The Unit of Energy Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2015-08-14

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb{sub x}Sn{sub 1−x}Te alloys by tuning of Bi{sub 2}Te{sub 3} doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shown that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb{sub 0.5}Sn{sub 0.5}Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected.

  8. Intrinsic carrier concentrations in long wavelength HgCdTe based on the new, nonlinear temperature dependence of Eg(x,T)

    International Nuclear Information System (INIS)

    Seiler, D.G.; Lowney, J.R.; Littler, C.L.; Yoon, I.T.

    1991-01-01

    This paper reports on intrinsic carrier concentrations of narrow-gap Hg 1-x Cd x Te alloys (0.17 ≤ x ≤ 0.30) calculated as a function of temperature between 0 and 300 K by using the new nonlinear temperature dependence of the energy gap obtained previously by two-photon magneto-absorption measurements for samples with 0.24 ≤ x ≤ 0.26. We report here experimental values for E g (x,T) for samples with x = 0.20 and 0.23 obtained by one-photon magneto-absorption measurements. These data confirm the validity of the new E g (x,T) relationship for these x values. In this range of composition and temperature, the energy gap of mercury cadmium telluride is small, and very accurate values are needed for the gap to obtain reliable values of the intrinsic carrier density

  9. Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3

    Directory of Open Access Journals (Sweden)

    Hyeona Mun

    2015-03-01

    Full Text Available The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi2Te3-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p-type Bi0.48Sb1.52Te3. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier concentration. Additionally, lattice thermal conductivity was reduced by the intensified point-defect phonon scattering originating from the mass difference between the host atoms (Bi/Sb and dopants (Fe. An enhanced ZT of 1.09 at 300 K was obtained in 1.0 at% Fe-doped Bi0.48Sb1.52Te3 by these synergetic effects.

  10. Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes

    Science.gov (United States)

    Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson

    2015-03-01

    Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.

  11. Transport in Silicon Nanowires: Role of Radial Dopant Profile

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, Riccardo; Jauho, Antti-Pekka

    2008-01-01

    distributions of P dopant impurities. We find that the radial distribution of the dopants influences the conductance properties significantly: surface doped wires have longer mean-free paths and smaller sample-to-sample fluctuations in the cross-over from ballistic to diffusive transport. These findings can...

  12. Effect of different carbon fillers and dopant acids on electrical ...

    Indian Academy of Sciences (India)

    The nature of both the carbon filler and the dopant acid can significantly influence the conductivity of these nanocomposites. This paper describes the effects of carbon fillers like carbon black (CB), graphite (GR) and muti-walled carbon nanotubes (MWCNT) and of dopant acids like methane sulfonic acid (MSA), camphor ...

  13. In silico optimization of phase-change materials for digital memories: a survey of first-row transition-metal dopants for Ge₂Sb₂Te₅.

    Science.gov (United States)

    Skelton, J M; Elliott, S R

    2013-05-22

    Phase-change materials are the alloys at the heart of an emerging class of next-generation, non-volatile digital memory technologies. However, the widely studied Ge-Sb-Te system possesses several undesirable properties, and enhancing its properties, e.g. by doping, is an area of active research. Various first-row transition-metal dopants have been shown to impart useful property enhancements, but a systematic study of the entire period has yet to be undertaken, and little has been done to investigate their interaction with the host material at the atomic level. We have carried out first-principles computer simulations of the complete phase-change cycle in Ge2Sb2Te5 doped with each of the ten first-row transition metals. In this article, we present a comprehensive survey of the electronic, magnetic and optical properties of these doped materials. We discuss in detail their atomic-level structure, and relate the microscopic behaviours of the dopant atoms to their influence on the Ge2Sb2Te5 host. By considering an entire family of similar materials, we identify trends and patterns which might be used to predict suitable dopants for optimizing materials for specific phase-change applications. The computational method employed here is general, and this materials-discovery approach could be applied in the future to study other families of potential dopants for such materials.

  14. Magnetic properties of vanadium doped CdTe: Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goumrhar, F. [Laboratory of Physics of High Energy, Modeling & Simulations (LPHE-MS), Faculty of Sciences, Mohammed V University of Rabat, Av. Ibn Batouta, B.P. 1014 Rabat (Morocco); Bahmad, L., E-mail: bahmad@fsr.ac.ma [Laboratory of Magnetism and High Energy Physics (LMPHE-URAC12), Faculty of Sciences, Mohammed V University of Rabat, Av. Ibn Batouta, B.P. 1014 Rabat (Morocco); Mounkachi, O. [Material and Nanomaterial Center, MAScIR Fondation, Rabat (Morocco); Benyoussef, A. [Laboratory of Magnetism and High Energy Physics (LMPHE-URAC12), Faculty of Sciences, Mohammed V University of Rabat, Av. Ibn Batouta, B.P. 1014 Rabat (Morocco); Material and Nanomaterial Center, MAScIR Fondation, Rabat (Morocco); Hassan II Academy of Sciences and Technology, Rabat (Morocco)

    2017-04-15

    In this paper, we are applying the ab initio calculations to study the magnetic properties of vanadium doped CdTe. This study is based on the Korringa–Kohn–Rostoker method (KKR) combined with the coherent potential approximation (CPA), within the local density approximation (LDA). This method is called KKR-CPA-LDA. We have calculated and plotted the density of states (DOS) in the energy diagram for different concentrations of dopants. We have also investigated the magnetic and half-metallic properties of this compound and shown the mechanism of exchange interaction. Moreover, we have estimated the Curie temperature T{sub c} for different concentrations. Finally, we have shown how the crystal field and the exchange splittings vary as a function of the concentrations.

  15. Phase diagrams of ZnTe-HgTe-Te and ZnTe-CdTe-HgTe-Te systems

    International Nuclear Information System (INIS)

    Andrukhiv, A.M.; Litvak, A.M.; Mironov, K.E.

    1992-01-01

    ZnTe-HgTe-Te system liquidus surface is investigated and solid solution layers are produced in this system by the method of liquid-phase epitaxy (LPE). The theoretical analysis of experimental and theoretical data allows to calculate the diagram of ZnTe-CdTe-HgTe-Te system fusibility. A significant effect of elastic stresses of the epitaxial layer, grown on CdTe substrate, on the process of LPE of solid solutions is established

  16. Dopant ink composition and method of fabricating a solar cell there from

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2017-10-25

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  17. Dopant ink composition and method of fabricating a solar cell there from

    Science.gov (United States)

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2015-03-31

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  18. Perspective analysis of tri gate germanium tunneling field-effect transistor with dopant segregation region at source/drain

    Science.gov (United States)

    Liu, Liang-kui; Shi, Cheng; Zhang, Yi-bo; Sun, Lei

    2017-04-01

    A tri gate Ge-based tunneling field-effect transistor (TFET) has been numerically studied with technology computer aided design (TCAD) tools. Dopant segregated Schottky source/drain is applied to the device structure design (DS-TFET). The characteristics of the DS-TFET are compared and analyzed comprehensively. It is found that the performance of n-channel tri gate DS-TFET with a positive bias is insensitive to the dopant concentration and barrier height at n-type drain, and that the dopant concentration and barrier height at a p-type source considerably affect the device performance. The domination of electron current in the entire BTBT current of this device accounts for this phenomenon and the tri-gate DS-TFET is proved to have a higher performance than its dual-gate counterpart.

  19. The interplay between dopants and oxygen vacancies in the magnetism of V-doped TiO2

    KAUST Repository

    Grau-Crespo, Ricardo

    2011-08-03

    Density functional theory calculations indicate that the incorporation of V into Ti lattice positions of rutile TiO2 leads to magnetic V 4 + species, but the extension and sign of the coupling between dopant moments confirm that ferromagnetic order cannot be reached via low-concentration doping in the non-defective oxide. Oxygen vacancies can introduce additional magnetic centres, and we show here that one of the effects of vanadium doping is to reduce the formation energies of these defects. In the presence of both V dopants and O vacancies all the spins tend to align with the same orientation. We conclude that V doping favours the ferromagnetic behaviour of TiO2 not only by introducing spins associated with the dopant centres but also by increasing the concentration of oxygen vacancies with respect to the pure oxide. © 2001 IOP Publishing Ltd.

  20. The interplay between dopants and oxygen vacancies in the magnetism of V-doped TiO2

    KAUST Repository

    Grau-Crespo, Ricardo; Schwingenschlö gl, Udo

    2011-01-01

    Density functional theory calculations indicate that the incorporation of V into Ti lattice positions of rutile TiO2 leads to magnetic V 4 + species, but the extension and sign of the coupling between dopant moments confirm that ferromagnetic order cannot be reached via low-concentration doping in the non-defective oxide. Oxygen vacancies can introduce additional magnetic centres, and we show here that one of the effects of vanadium doping is to reduce the formation energies of these defects. In the presence of both V dopants and O vacancies all the spins tend to align with the same orientation. We conclude that V doping favours the ferromagnetic behaviour of TiO2 not only by introducing spins associated with the dopant centres but also by increasing the concentration of oxygen vacancies with respect to the pure oxide. © 2001 IOP Publishing Ltd.

  1. Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin) and Abidjan (Côte d'Ivoire)

    Science.gov (United States)

    Djossou, Julien; Léon, Jean-François; Barthélemy Akpo, Aristide; Liousse, Cathy; Yoboué, Véronique; Bedou, Mouhamadou; Bodjrenou, Marleine; Chiron, Christelle; Galy-Lacaux, Corinne; Gardrat, Eric; Abbey, Marcellin; Keita, Sékou; Bahino, Julien; Touré N'Datchoh, Evelyne; Ossohou, Money; Awanou, Cossi Norbert

    2018-05-01

    Air quality degradation is a major issue in the large conurbations on the shore of the Gulf of Guinea. We present for the first time PM2.5 time series collected in Cotonou, Benin, and Abidjan, Côte d'Ivoire, from February 2015 to March 2017. Measurements were performed in the vicinity of major combustion aerosol sources: Cotonou/traffic (CT), Abidjan/traffic (AT), Abidjan/landfill (AL) and Abidjan/domestic fires (ADF). We report the weekly PM2.5 mass and carbonaceous content as elemental (EC) and organic (OC) carbon concentrations. We also measure the aerosol optical depth (AOD) and the Ångström exponent in both cities. The average PM2.5 mass concentrations were 32 ± 32, 32 ± 24 and 28 ± 19 µg m-3 at traffic sites CT and AT and landfill site AL, respectively. The domestic fire site shows a concentration of 145 ± 69 µg m-3 due to the contribution of smoking and roasting activities. The highest OC and EC concentrations were also measured at ADF at 71 ± 29 and 15 ± 9 µg m-3, respectively, while the other sites present OC concentration between 8 and 12 µg m-3 and EC concentrations between 2 and 7 µg m-3. The OC / EC ratio is 4.3 at CT and 2.0 at AT. This difference highlights the influence of two-wheel vehicles using gasoline in Cotonou compared to that of four-wheel vehicles using diesel fuel in Abidjan. AOD was rather similar in both cities, with a mean value of 0.58 in Cotonou and of 0.68 in Abidjan. The seasonal cycle is dominated by the large increase in surface mass concentration and AOD during the long dry season (December-February) as expected due to mineral dust advection and biomass burning activities. The lowest concentrations are observed during the short dry season (August-September) due to an increase in surface wind speed leading to a better ventilation. On the other hand, the high PM2.5 / AOD ratio in the short wet season (October-November) indicates the stagnation of local pollution.

  2. Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin and Abidjan (Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    J. Djossou

    2018-05-01

    Full Text Available Air quality degradation is a major issue in the large conurbations on the shore of the Gulf of Guinea. We present for the first time PM2.5 time series collected in Cotonou, Benin, and Abidjan, Côte d'Ivoire, from February 2015 to March 2017. Measurements were performed in the vicinity of major combustion aerosol sources: Cotonou/traffic (CT, Abidjan/traffic (AT, Abidjan/landfill (AL and Abidjan/domestic fires (ADF. We report the weekly PM2.5 mass and carbonaceous content as elemental (EC and organic (OC carbon concentrations. We also measure the aerosol optical depth (AOD and the Ångström exponent in both cities. The average PM2.5 mass concentrations were 32 ± 32, 32 ± 24 and 28 ± 19 µg m−3 at traffic sites CT and AT and landfill site AL, respectively. The domestic fire site shows a concentration of 145 ± 69 µg m−3 due to the contribution of smoking and roasting activities. The highest OC and EC concentrations were also measured at ADF at 71 ± 29 and 15 ± 9 µg m−3, respectively, while the other sites present OC concentration between 8 and 12 µg m−3 and EC concentrations between 2 and 7 µg m−3. The OC ∕ EC ratio is 4.3 at CT and 2.0 at AT. This difference highlights the influence of two-wheel vehicles using gasoline in Cotonou compared to that of four-wheel vehicles using diesel fuel in Abidjan. AOD was rather similar in both cities, with a mean value of 0.58 in Cotonou and of 0.68 in Abidjan. The seasonal cycle is dominated by the large increase in surface mass concentration and AOD during the long dry season (December–February as expected due to mineral dust advection and biomass burning activities. The lowest concentrations are observed during the short dry season (August–September due to an increase in surface wind speed leading to a better ventilation. On the other hand, the high PM2.5 ∕ AOD ratio in the short wet season (October–November indicates the

  3. Structural and photocarrier radiometric characterization of Cux(CdTe)yOz thin films growth by reactive sputtering

    International Nuclear Information System (INIS)

    Velazquez-Hernandez, R.; Rojas-Rodriguez, I.; Carmona-Rodriguez, J.; Jimenez-Sandoval, S.; Rodriguez-Garcia, M.E.

    2011-01-01

    This research presents a structural and photocarrier radiometric (PCR) characterization of Cu x (CdTe) y O z thin films grown using reactive radiofrequency co-sputtering. Electronic distribution induced by variations in dopant concentration as a function of the position was studied using photocarrier radiometric images. Optical and structural characterization of these thin films was carried out by using micro Raman spectroscopy and X-ray diffraction. Due to its nondestructive and noncontact characteristics, the PCR is an excellent technique that permits one to obtain details of lateral electronic distribution across the sample. It was found that Cu target power influences the electronic distribution and produces different phases such as Cu 2 Te and CdO.

  4. Cirrus Dopant Nano-Composite Coatings

    Science.gov (United States)

    2014-11-01

    coatings without alteration to the existing plating process. Glen Slater, Cirrus Materials | Stephen Flint, Auckland UniServices Ltd Report...ADDRESS(ES) University of Auckland ,Cirrus Materials, Auckland , New Zealand, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...JiA/ g THE UNIVERSITY ’-" OF AUCKLAND NEW ZEALAND Te Whare Wanan a o Thmaki Makaurau ~"""’ • ........,." ... Southwest Pacific Basin . p

  5. Chemical and Electrochemical Synthesis of Polypyrrole Using Carrageenan as a Dopant: Polypyrrole/Multi-Walled Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mostafizur Rahaman

    2018-06-01

    Full Text Available In this article, iota-carrageenan (IC and kappa-carrageenan (KC are used as dopants for the chemical and electrochemical synthesis of polypyrrole (PPy. The composites of chemically synthesized PPy with multi-walled carbon nanotubes (MWNTs were prepared using an in situ technique. Both the dialyzed and non-dialyzed IC and KC were used as dopants for electrochemical polymerization of pyrrole. Chemically synthesized PPy and PPy/MWNTs composites were studied by ultraviolet visible (UV-vis absorption spectra to investigate the effect of the concentration and the incorporation of MWNTs. In addition, the electrical, thermal, mechanical, and microscopic characterizations of these films were performed to examine the effect of the dopants and MWNTs on these properties, along with their surface morphology. The films of electrochemically polymerized PPy were characterized using UV-vis absorption spectra, scanning electron microscopy, and cyclic voltammetry (CV. The results were then compared with the chemical polymerized PPy.

  6. Predicting Low Energy Dopant Implant Profiles in Semiconductors using Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Beardmore, K.M.; Gronbech-Jensen, N.

    1999-05-02

    The authors present a highly efficient molecular dynamics scheme for calculating dopant density profiles in group-IV alloy, and III-V zinc blende structure materials. Their scheme incorporates several necessary methods for reducing computational overhead, plus a rare event algorithm to give statistical accuracy over several orders of magnitude change in the dopant concentration. The code uses a molecular dynamics (MD) model to describe ion-target interactions. Atomic interactions are described by a combination of 'many-body' and pair specific screened Coulomb potentials. Accumulative damage is accounted for using a Kinchin-Pease type model, inelastic energy loss is represented by a Firsov expression, and electronic stopping is described by a modified Brandt-Kitagawa model which contains a single adjustable ion-target dependent parameter. Thus, the program is easily extensible beyond a given validation range, and is therefore truly predictive over a wide range of implant energies and angles. The scheme is especially suited for calculating profiles due to low energy and to situations where a predictive capability is required with the minimum of experimental validation. They give examples of using the code to calculate concentration profiles and 2D 'point response' profiles of dopants in crystalline silicon and gallium-arsenide. Here they can predict the experimental profile over five orders of magnitude for <100> and <110> channeling and for non-channeling implants at energies up to hundreds of keV.

  7. New cyclometalated iridium(III) complex as a phosphorescent dopant in organic light emitting devices

    Science.gov (United States)

    Ivanov, P.; Tomova, R.; Petrova, P.; Stanimirov, S.; Petkov, I.

    2014-05-01

    A new cyclometalated iridium (III) bis[2-(4-chlorophenyl)benzothiazolato-N,C2]-acetylacetonate, (Cl-bt)2Ir(acac), was synthesized and identified by 1H NMR and elemental analysis. The application was studied of the new compound as a dopant in the hole transporting layer (HTL) of the following organic light emitting diode (OLED) structure: HTL/EL/ETL, where HTL was 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) or N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), incorporated in a poly(N-vinylcarbazole) (PVK) matrix; EL was an electroluminescent layer of bis(8-hydroxy-2-methylquinoline)-(4-phenylpheno-xy) aluminum (BAlq); and ETL was an electron-transporting layer of bis[2-(2-benzothiazoly) phenolato]zinc(II) (Zn(btz)2). We established that the electroluminescence spectra of the OLEDs at different dopant concentrations were basically the sum of the greenish-blue emission of BAlq and the yellowish-green emission of the Ir complex. It was also found that increasing the dopant concentration resulted in an increase in the relative electroluminescent intensity of the Ir complex emission, while that of BAlq decreased, thus a fine tuning of the OLED color was observed.

  8. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    Science.gov (United States)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  9. Two-dimensional dopant profiling of gallium nitride p–n junctions by scanning capacitance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lamhamdi, M. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Ecole national des sciences appliquées khouribga, Université Hassan 1er, 26000 Settat (Morocco); Cayrel, F. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Frayssinet, E. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Bazin, A.E.; Yvon, A.; Collard, E. [STMicroelectronics, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Cordier, Y. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Alquier, D. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France)

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p–n and unipolar junctions. For both p–n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p–n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  10. Mechanism of dopant-vacancy association in α-quartz GeO2

    KAUST Repository

    Wang, Hao; Chroneos, Alexander; Schwingenschlö gl, Udo

    2013-01-01

    Improving the electron mobility of devices such as Ge metal oxide semiconductor field effect transistors requires good Ge/dielectric interfaces. GeO2 thus is reconsidered as a passivation layer for Ge. However, O-vacancies need to be controlled as they have a deleterious impact on the properties. We employ electronic structure calculations to investigate the introduction of trivalent ions (Al, Y, and La) in α-quartz GeO2. The binding energies of the dopant-vacancy pairs reveal that dopants can be used to control the O-vacancies and reduce the induced dangling bonds. It is proposed that the introduction of Al will limit the concentration of O-vacancies at low Fermi energy.

  11. Mechanism of dopant-vacancy association in α-quartz GeO2

    KAUST Repository

    Wang, Hao

    2013-02-28

    Improving the electron mobility of devices such as Ge metal oxide semiconductor field effect transistors requires good Ge/dielectric interfaces. GeO2 thus is reconsidered as a passivation layer for Ge. However, O-vacancies need to be controlled as they have a deleterious impact on the properties. We employ electronic structure calculations to investigate the introduction of trivalent ions (Al, Y, and La) in α-quartz GeO2. The binding energies of the dopant-vacancy pairs reveal that dopants can be used to control the O-vacancies and reduce the induced dangling bonds. It is proposed that the introduction of Al will limit the concentration of O-vacancies at low Fermi energy.

  12. MOS Capacitance—Voltage Characteristics II. Sensitivity of Electronic Trapping at Dopant Impurity from Parameter Variations

    International Nuclear Information System (INIS)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency Capacitance—Voltage (C—V) curves of Metal—Oxide—Semiconductor Capacitors (MOSC), including electron and hole trapping at the dopant donor and acceptor impurities, are presented to illustrate giant trapping capacitances, from > 0.01C OX to > 10C OX . Five device and materials parameters are varied for fundamental trapping parameter characterization, and electrical and optical signal processing applications. Parameters include spatially constant concentration of the dopant-donor-impurity electron trap, N DD , the ground state electron trapping energy level depth measured from the conduction band edge, E C –E D , the degeneracy of the trapped electron at the ground state, g D , the device temperature, T, and the gate oxide thickness, x OX . (invited papers)

  13. Metal oxalate complexes as novel inorganic dopants: Studies on ...

    Indian Academy of Sciences (India)

    Unknown

    UV-visible and IR spectral features not only confirmed the polyaniline doping by complex anions but also substantiated ... MoS3 dopant. Although inorganic metal complexes bear- ... distilled water and then with methanol and acetone until.

  14. Dopant profile engineering of advanced Si MOSFET's using ion implantation

    International Nuclear Information System (INIS)

    Stolk, P.A.; Ponomarev, Y.V.; Schmitz, J.; Brandenburg, A.C.M.C. van; Roes, R.; Montree, A.H.; Woerlee, P.H.

    1999-01-01

    Ion implantation has been used to realize non-uniform, steep retrograde (SR) dopant profiles in the active channel region of advanced Si MOSFET's. After defining the transistor configuration, SR profiles were formed by dopant implantation through the polycrystalline Si gate and the gate oxide (through-the-gate, TG, implantation). The steep nature of the as-implanted profile was retained by applying rapid thermal annealing for dopant activation and implantation damage removal. For NMOS transistors, TG implantation of B yields improved transistor performance through increased carrier mobility, reduced junction capacitances, and reduced susceptibility to short-channel effects. Electrical measurements show that the gate oxide quality is not deteriorated by the ion-induced damage, demonstrating that transistor reliability is preserved. For PMOS transistors, TG implantation of P or As leads to unacceptable source/drain junction broadening as a result of transient enhanced dopant diffusion during thermal activation

  15. Directed Atom-by-Atom Assembly of Dopants in Silicon.

    Science.gov (United States)

    Hudak, Bethany M; Song, Jiaming; Sims, Hunter; Troparevsky, M Claudia; Humble, Travis S; Pantelides, Sokrates T; Snijders, Paul C; Lupini, Andrew R

    2018-05-17

    The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

  16. Magnetoresistance and charge transport in graphene governed by nitrogen dopants.

    Science.gov (United States)

    Rein, Markus; Richter, Nils; Parvez, Khaled; Feng, Xinliang; Sachdev, Hermann; Kläui, Mathias; Müllen, Klaus

    2015-02-24

    We identify the influence of nitrogen-doping on charge- and magnetotransport of single layer graphene by comparing doped and undoped samples. Both sample types are grown by chemical vapor deposition (CVD) and transferred in an identical process onto Si/SiO2 wafers. We characterize the samples by Raman spectroscopy as well as by variable temperature magnetotransport measurements. Over the entire temperature range, the charge transport properties of all undoped samples are in line with literature values. The nitrogen doping instead leads to a 6-fold increase in the charge carrier concentration up to 4 × 10(13) cm(-2) at room temperature, indicating highly effective doping. Additionally it results in the opening of a charge transport gap as revealed by the temperature dependence of the resistance. The magnetotransport exhibits a conspicuous sign change from positive Lorentz magnetoresistance (MR) in undoped to large negative MR that we can attribute to the doping induced disorder. At low magnetic fields, we use quantum transport signals to quantify the transport properties. Analyses based on weak localization models allow us to determine an orders of magnitude decrease in the phase coherence and scattering times for doped samples, since the dopants act as effective scattering centers.

  17. Dopant Adsorption and Incorporation at Irradiated GaN Surfaces

    Science.gov (United States)

    Sun, Qiang; Selloni, Annabella; Myers, Thomas; Doolittle, W. Alan

    2006-03-01

    Mg and O are two of the common dopants in GaN, but, in spite of extensive investigation, the atomic scale understanding of their adsorption and incorporation is still incomplete. In particular, high-energy electron irradiation, such as occurring during RHEED, has been reported to have an important effect on the incorporation of these impurities, but no study has addressed the detailed mechanisms of this effect yet. Here we use DFT calculations to study the adsorption and incorporation of Mg and O at the Ga- and N-polar GaN surfaces under various Ga, Mg and O coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find that the adsorption and incorporation of the two impurities have opposite surface polarity dependence: substitutional Mg prefers to incorporate at the GaN(0001) surface, while O prefers to adsorb and incorporate at the N-polar surface. In addition, our results indicate that in presence of light irradiation the tendency of Mg to surface-segregate is reduced. The O adsorption energy on the N-polar surface is also significantly reduced, consistent with the experimental observation of a much smaller concentration of oxygen in the irradiated samples.

  18. Magneto-transport in CdTe/CdMnTe dilute magnetic semiconductor single barrier structures

    International Nuclear Information System (INIS)

    Lyons, V.R.

    1999-03-01

    This thesis presents work done on electrical transport through dilute magnetic semiconductor (DMS) single barriers in both zero and non-zero magnetic fields. The fields are applied either perpendicular or parallel to the DMS layers. The main samples under investigation consist of 100 A and 200 A CdTe/Cd 0.8 Mn 0.2 Te/CdTe single barrier heterostructures. In addition electrical characterisation of the non magnetic layers is performed. Current through the barrier is measured as a function of voltage, magnetic field and temperature. A theoretical model is derived in order to calculate the current as a function of barrier height, barrier width, emitting layer carrier concentration, applied bias and temperature. These variables are then treated as fitting parameters and comparisons are made between the calculated and the experimental currents. The barriers are shown to produce non-Ohmic transport. The roles of quantum mechanical tunnelling and thermal activation across the barrier are investigated and shown to be highly mixed. An unexpectedly high degree of tunnelling is found to occur at high temperatures, within the region previously assumed to be dominated by thermal activation. Moreover the barrier height is found to be lower and the width greater than expected. These observations suggest that a high level of Mn diffusion occurs, possibly due to In dopant related effects. This suggestion is validated by the high emitting layer carrier concentration suggested by the fitting. At low temperatures and voltages the thicker barrier sample is shown to contain a parasitic leak path which short-circuits the barrier. This leak may exist in both samples but only becomes dominant where the barriers are sufficiently opaque to the incident carriers. Changes in a magnetic field are expected to be due to sp-d exchange induced giant Zeeman splitting in the barrier and either normal spin splitting or sp-d exchange effects in the emitter regions. The application of a magnetic field is

  19. Direct observation of dopant distribution in GaAs compound semiconductors using phase-shifting electron holography and Lorentz microscopy.

    Science.gov (United States)

    Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa

    2014-06-01

    Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Influence of pentavalent dopant addition to polarization and bioactivity of hydroxyapatite

    International Nuclear Information System (INIS)

    Dhal, Jharana; Bose, Susmita; Bandyopadhyay, Amit

    2013-01-01

    Influence of pentavalent tantalum doping in bulk hydroxyapatite (HAp) ceramics has been investigated for polarizability and bioactivity. Phase analysis from X-ray diffraction measurement indicates that increasing dopant concentration decreased the amount of HAp phase and increased β-TCP and/or α-TCP phases during sintering at 1250 °C in a muffle furnace. Results from thermally stimulated depolarization current (TSDC) measurements showed that doping hindered charge storage ability in HAp ceramics, and doped samples stored fewer charge compared to pure HAp. However, doping enhanced wettability of HAp samples, which was improved further due to polarization. In vitro human osteoblast cell–material interaction study revealed an increase in bioactivity due to dopant addition and polarization compared to pure HAp. This increase in bioactivity was attributed to the increase in wettability due to surface charge and dopant addition. - Highlights: • Tantalum doping makes HAp unstable during sintering at 1250 °C and forms TCP. • Tantalum doping reduces charge storage ability of HAp ceramics. • Even with lower charge storage ability tantalum doping improves wettability. • Tantalum doping enhances bioactivity of calcium phosphate based sintered compacts

  1. Spectroscopic diagnostics of NIF ICF implosions using line ratios of Kr dopant in the ignition capsule

    Science.gov (United States)

    Dasgupta, Arati; Ouart, Nicholas; Giuiani, John; Clark, Robert; Schneider, Marilyn; Scott, Howard; Chen, Hui; Ma, Tammy

    2017-10-01

    X ray spectroscopy is used on the NIF to diagnose the plasma conditions in the ignition target in indirect drive ICF implosions. A platform is being developed at NIF where small traces of krypton are used as a dopant to the fuel gas for spectroscopic diagnostics using krypton line emissions. The fraction of krypton dopant was varied in the experiments and was selected so as not to perturb the implosion. Our goal is to use X-ray spectroscopy of dopant line ratios produced by the hot core that can provide a precise measurement of electron temperature. Simulations of the krypton spectra using a 1 in 104 atomic fraction of krypton in direct-drive exploding pusher with a range of electron temperatures and densities show discrepancies when different atomic models are used. We use our non-LTE atomic model with a detailed fine-structure level atomic structure and collisional-radiative rates to investigate the krypton spectra at the same conditions. Synthetic spectra are generated with a detailed multi-frequency radiation transport scheme from the emission regions of interest to analyze the experimental data with 0.02% Kr concentration and compare and contrast with the existing simulations at LLNL. Work supported by DOE/NNSA; Part of this work was also done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  2. Electroluminescence of organic light-emitting diodes with an ultra-thin layer of dopant

    Energy Technology Data Exchange (ETDEWEB)

    Li Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu Junsheng [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jsyu@uestc.edu.cn; Wang, Tao [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Jiang, Yadong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jiangyd@uestc.edu.cn; Wei, Bangxiong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2008-03-15

    Conventional fluorescent dyes, i.e., 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), 5,12-dihydro-5,12-dimethylquino [2,3-b]acridine-7,14-dione (DMQA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene), were used to investigate the performance of organic light-emitting diodes (OLEDs) based on indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/tris-(8-hydroxyquinolate)-aluminum (Alq{sub 3})/MgAg. The dyes were either inserted into devices as an ultra-thin film at the NPB/Alq{sub 3} interface by sequential evaporation, or doped into the Alq{sub 3} emission layer by co-evaporation with the doping ratio about 2%. Electroluminescence (EL) spectra of devices indicated that concentration quenching effect (CQE) of the dye-dopant was slightly bigger in the former than in the latter, while the degrees of CQE for three dopants are in the order of DMQA > DCJTB > Rubrene suggested by the difference in EL spectra and performances of devices. In addition, EL process of device with an ultra-thin layer of dopant is dominated by direct carrier trapping (DCT) process due to almost no holes recombine with electrons in Alq{sub 3}-host layer.

  3. Reaction of N,N’-dimethylformamide and divalent viologen molecule to generate an organic dopant for molybdenum disulfide

    Directory of Open Access Journals (Sweden)

    A. Fukui

    2018-05-01

    Full Text Available Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2 is a semiconducting material composed of atomically thin (∼0.7 nm thickness layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4 is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N’-dimethylformamide (DMF, by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.

  4. Reaction of N,N'-dimethylformamide and divalent viologen molecule to generate an organic dopant for molybdenum disulfide

    Science.gov (United States)

    Fukui, A.; Miura, K.; Ichimiya, H.; Tsurusaki, A.; Kariya, K.; Yoshimura, T.; Ashida, A.; Fujimura, N.; Kiriya, D.

    2018-05-01

    Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2) is a semiconducting material composed of atomically thin (˜0.7 nm thickness) layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV) which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4) is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N'-dimethylformamide (DMF), by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature) and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET) structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.

  5. Thermoelectric Properties of Cu-Doped n-Type Bi2Te2.85Se0.15 Prepared by Liquid Phase Growth Using a Sliding Boat

    Science.gov (United States)

    Kitagawa, Hiroyuki; Matsuura, Tsukasa; Kato, Toshihito; Kamata, Kin-ya

    2015-06-01

    N-type Bi2Te2.85Se0.15 thermoelectric materials were prepared by liquid phase growth (LPG) using a sliding boat, a simple and short fabrication process for Bi2Te3-related materials. Cu was selected as a donor dopant, and its effect on thermoelectric properties was investigated. Thick sheets and bars of Cu x Bi2 Te2.85Se0.15 ( x=0-0.25) of 1-2mm in thickness were obtained using the process. X-ray diffraction patterns and scanning electron micrographs showed that the in-plane direction tended to correspond to the hexagonal c-plane, which is the preferred direction for thermoelectric conversion. Cu-doping was effective in controlling conduction type and carrier (electron) concentration. The conduction type was p-type for undoped Bi2Te2.85Se0.15 and became n-type after Cu-doping. The Hall carrier concentration was increased by Cu-doping. Small resistivity was achieved in Cu0.02Bi2Te2.85Se0.15 owing to an optimized amount of Cu-doping and high crystal orientation. As a result, the maximum power factor near 310K for Cu0.02Bi2Te2.85Se0.15 was approximately 4×10-3W/K2m and had good reproducibility. Furthermore, the thermal stability of Cu0.02Bi2Te2.85Se0.15 was also confirmed by thermal cycling measurements of electrical resistivity. Thus, n-type Bi2Te2.85Se0.15 with a large power factor was prepared using the present LPG process.

  6. Analysis of the dopant distribution in Co-deposited organic thin films by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Paredes, Yolanda A.; Campos, Andrea P.C.; Achete, Carlos A.; Cremona, Marco

    2015-01-01

    Organic light-emitting diodes using phosphorescent dyes (PHOLEDs) have excellent performance, with internal quantum efficiencies approaching 100%. To maximize their performance, PHOLED devices use a conductive organic host material with a sufficiently dispersed phosphorescent guest to avoid concentration quenching. Fac-tris(2-phenylpyridine) iridium, [Ir(ppy)_3] is one of the most widely used green phosphorescent organic compounds. In this work, we used scanning transmission electron microscopy (STEM) equipped with HAADF (high-angle annular dark-field) and EDS (energy dispersive X-ray spectroscopy) detectors to analyze the distribution of the [Ir(ppy)_3] concentration in the host material. This analysis technique, employed for the first time in co-deposited organic thin films, can simultaneously obtain an image and its respective chemical information, allowing for definitive characterization of the distribution and morphology of [Ir(ppy)_3]. The technique was also used to analyze the effect of the vibration of the substrate during thermal co-deposition of the [Ir(ppy)_3] molecules into an organic matrix. - Highlights: • We present a methodology to analyze the dopant distribution in organic thin films. • The method combines HAADF-STEM imaging and EDS X-ray spectroscopy. • Ir(ppy)_3 dopant was co-deposited into Spiro2-CBP organic matrix. • The dopant was co-deposited with and without substrate vibration. • Images and chemical information of the dopant were simultaneously obtained.

  7. Analysis of the dopant distribution in Co-deposited organic thin films by scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Yolanda A. [Center of Nanotechnology and Nanoscience, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171-5-31B (Ecuador); Campos, Andrea P.C.; Achete, Carlos A. [DIMAT—INMETRO, Xerém, Duque de Caxias, RJ 25250-020 (Brazil); Cremona, Marco [DIMAT—INMETRO, Xerém, Duque de Caxias, RJ 25250-020 (Brazil); Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio, Rio de Janeiro, RJ 22453-970 (Brazil)

    2015-12-01

    Organic light-emitting diodes using phosphorescent dyes (PHOLEDs) have excellent performance, with internal quantum efficiencies approaching 100%. To maximize their performance, PHOLED devices use a conductive organic host material with a sufficiently dispersed phosphorescent guest to avoid concentration quenching. Fac-tris(2-phenylpyridine) iridium, [Ir(ppy){sub 3}] is one of the most widely used green phosphorescent organic compounds. In this work, we used scanning transmission electron microscopy (STEM) equipped with HAADF (high-angle annular dark-field) and EDS (energy dispersive X-ray spectroscopy) detectors to analyze the distribution of the [Ir(ppy){sub 3}] concentration in the host material. This analysis technique, employed for the first time in co-deposited organic thin films, can simultaneously obtain an image and its respective chemical information, allowing for definitive characterization of the distribution and morphology of [Ir(ppy){sub 3}]. The technique was also used to analyze the effect of the vibration of the substrate during thermal co-deposition of the [Ir(ppy){sub 3}] molecules into an organic matrix. - Highlights: • We present a methodology to analyze the dopant distribution in organic thin films. • The method combines HAADF-STEM imaging and EDS X-ray spectroscopy. • Ir(ppy){sub 3} dopant was co-deposited into Spiro2-CBP organic matrix. • The dopant was co-deposited with and without substrate vibration. • Images and chemical information of the dopant were simultaneously obtained.

  8. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  9. Studies of Basic Electronic Properties of CdTe-Based Solar Cells and Their Evolution During Processing and Stress: Final Technical Report, 16 October 2001 - 31 August 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kaydanov, V. I.; Ohno, T. R.

    2007-02-01

    This report describes basic issues behind CdTe/CdS cell performance and stability, such as the nature and electronic properties of impurities and defects that control the majority carrier concentration, mechanisms of dopant compensation, recombination processes, their nature and properties, migration and transformation of defects under various processing, stress, and operating conditions. We believe that a better basic understanding of the specific influence of grain boundaries, especially for fine-grain materials such as those making up CdTe-based cells, is now one of the most important issues we must address. We need to clarify the role of grain boundaries in forming the film electronic properties, as well as those of the p-n junction.

  10. Structural and photocarrier radiometric characterization of Cu{sub x}(CdTe){sub y}O{sub z} thin films growth by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez-Hernandez, R., E-mail: ruvel2@yahoo.com.m [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro, Qro., Mexico, C.P. 76010 (Mexico); Rojas-Rodriguez, I. [Universidad Tecnologica de Queretaro, Av. Pie de la Cuesta S/N, Sn. Pedrito Penuelas, Queretaro, Qro. Mexico (Mexico); Carmona-Rodriguez, J.; Jimenez-Sandoval, S. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Apartado Postal 1-798, Queretaro, Qro., Mexico C.P.76001 (Mexico); Rodriguez-Garcia, M.E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriqulla, Apartado Postal 1-1010, Queretaro, Qro. Mexico (Mexico)

    2011-01-31

    This research presents a structural and photocarrier radiometric (PCR) characterization of Cu{sub x}(CdTe){sub y}O{sub z} thin films grown using reactive radiofrequency co-sputtering. Electronic distribution induced by variations in dopant concentration as a function of the position was studied using photocarrier radiometric images. Optical and structural characterization of these thin films was carried out by using micro Raman spectroscopy and X-ray diffraction. Due to its nondestructive and noncontact characteristics, the PCR is an excellent technique that permits one to obtain details of lateral electronic distribution across the sample. It was found that Cu target power influences the electronic distribution and produces different phases such as Cu{sub 2}Te and CdO.

  11. Photo-dissociation of hydrogen passivated dopants in gallium arsenide

    International Nuclear Information System (INIS)

    Tong, L.; Larsson, J.A.; Nolan, M.; Murtagh, M.; Greer, J.C.; Barbe, M.; Bailly, F.; Chevallier, J.; Silvestre, F.S.; Loridant-Bernard, D.; Constant, E.; Constant, F.M.

    2002-01-01

    A theoretical and experimental study of the photo-dissociation mechanisms of hydrogen passivated n- and p-type dopants in gallium arsenide is presented. The photo-induced dissociation of the Si Ga -H complex has been observed for relatively low photon energies (3.48 eV), whereas the photo-dissociation of C As -H is not observed for photon energies up to 5.58 eV. This fundamental difference in the photo-dissociation behavior between the two dopants is explained in terms of the localized excitation energies about the Si-H and C-H bonds

  12. Dopant density from maximum-minimum capacitance ratio of implanted MOS structures

    International Nuclear Information System (INIS)

    Brews, J.R.

    1982-01-01

    For uniformly doped structures, the ratio of the maximum to the minimum high frequency capacitance determines the dopant ion density per unit volume. Here it is shown that for implanted structures this 'max-min' dopant density estimate depends upon the dose and depth of the implant through the first moment of the depleted portion of the implant. A a result, the 'max-min' estimate of dopant ion density reflects neither the surface dopant density nor the average of the dopant density over the depletion layer. In particular, it is not clear how this dopant ion density estimate is related to the flatband capacitance. (author)

  13. Effect of substrate type, dopant and thermal treatment on ...

    Indian Academy of Sciences (India)

    Effect of substrate type, dopant and thermal treatment on physicochemical properties of TiO2–SnO2 sol–gel films. I STAMBOLOVA. ∗. , V BLASKOV, S VASSILEV†, M SHIPOCHKA and A LOUKANOV‡. Institute of General and Inorganic Chemistry, †Institute of Electrochemistry and Energy Systems, BAS,. Acad. G. Bonchev ...

  14. A helical naphthopyran dopant for photoresponsive cholesteric liquid crystals

    OpenAIRE

    Kim, Yuna; Frigoli, Michel; Vanthuyne, Nicolas; Tamaoki, Nobuyuki

    2017-01-01

    The first photoresponsive cholesteric liquid crystal comprising a photoisomerizable helical naphthopyran derivative dopant and a nematic liquid crystal is reported. An unprecedented helical twisting power switching ratio of over 90% allowed us to demonstrate multi-cycle rotational motion of micro-objects by UV light irradiation.

  15. p-type doping efficiency in CdTe: Influence of second phase formation

    Science.gov (United States)

    McCoy, Jedidiah J.; Swain, Santosh K.; Sieber, John R.; Diercks, David R.; Gorman, Brian P.; Lynn, Kelvin G.

    2018-04-01

    Cadmium telluride (CdTe) high purity, bulk, crystal ingots doped with phosphorus were grown by the vertical Bridgman melt growth technique to understand and improve dopant solubility and activation. Large net carrier densities have been reproducibly obtained from as-grown ingots, indicating successful incorporation of dopants into the lattice. However, net carrier density values are orders of magnitude lower than the solubility of P in CdTe as reported in literature, 1018/cm3 to 1019/cm3 [J. H. Greenberg, J. Cryst. Growth 161, 1-11 (1996) and R. B. Hall and H. H. Woodbury, J. Appl. Phys. 39(12), 5361-5365 (1968)], despite comparable starting charge dopant densities. Growth conditions, such as melt stoichiometry and post growth cooling, are shown to have significant impacts on dopant solubility. This study demonstrates that a significant portion of the dopant becomes incorporated into second phase defects as compounds of cadmium and phosphorous, such as cadmium phosphide, which inhibits dopant incorporation into the lattice and limits maximum attainable net carrier density in bulk crystals. Here, we present an extensive study on the characteristics of these second phase defects in relation to their composition and formation kinetics while providing a pathway to minimize their formation and enhance solubility.

  16. The half-metallic ferromagnetism character in Be1−xVxY (Y=Se and Te) alloys: An ab-initio study

    International Nuclear Information System (INIS)

    Sajjad, M.; Manzoor, Sadia; Zhang, H.X.; Noor, N.A.; Alay-e-Abbas, S.M.; Shaukat, A.; Khenata, R.

    2015-01-01

    Ab-initio calculations for V-doped BeSe and BeTe semiconductors are performed by means of all-electrons full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The structural properties are optimized using the Wu-Cohen generalized gradient approximation functional, whereas modified Becke and Jhonson local density approximation functional has been employed for evaluating the spin-polarized electronic and magnetic properties. Magnetic stability at various doping concentrations in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering is investigated by comparing the minimum total energies and enthalpies of formation (ΔH). Studied band structures, density of states, total energy, exchange interactions and magnetic moments manifest both alloys with half-metallic ferromagnetic behavior. Moreover, their valance bands are found to be paired ferromagnetically with V atoms. Furthermore, it was observed that the magnetic moment of vanadium atom reduces from free space charge value due to p–d hybridization which yields small magnetic moments on the Be, Se and Te sites. - Highlights: • Density functional calculations for V-doped BeSe and BeTe are performed. • V-doped BeSe and BeTe are found to be stable half-metallic ferromagnetism. • Improved electronic properties are achieved using mBJLDA which confirm HMF. • The half-metallic gaps show non-linear variation with increasing dopant concentration

  17. Shallow dopants in nanostructered and in isotopically engineered silicon

    Energy Technology Data Exchange (ETDEWEB)

    Stegner, Andre Rainer

    2011-01-15

    This work addressed two major topics. The first part was dedicated to the investigation of the doping properties of Si nanostructures. There, we have reported our results on Si nanoparticles with particular focus on questions concerning the atomic incorporation efficiency of dopants, their compensation by surface defects, and the change of their localization due to confinement effects. In the second part of this thesis, we have addressed several open questions concerning the spin properties of shallow acceptor states in bulk Si crystals with different isotope compositions. As far as the first part is concerned, ESR and SIMS have been used to quantitatively investigate the P doping efficiency and the interrelationship of Si-db states and P doping in freestanding Si-NCs over a wide range of diameters. Two types of Si-db defect states, the P{sub b} center and the D center, were identified, where the P{sub b} centers are found at concentrations comparable to bulk Si/SiO{sub 2} interfaces. Moreover, the incorporation of P donors and B acceptors in amorphous Si nanoparticles was demonstrated via ESR. Employing EDMR, we investigated the spin-dependent transport through Si-NC networks. The selectivity and the high sensitivity of EDMR enabled the observation of isolated neutral donor states, which exhibit a characteristic hyperfine splitting in samples with very small diameters. This opened up a possibility for the direct study of the properties of the donor wave function in Si-NCs. To this end, we have used the hyperfine splitting as a spectroscopic measure to monitor the localization of donor wave functions when going from the bulk to the nanoscale. As far as the spin properties of shallow acceptors in Si are concerned, we have addressed a number of fundamental questions concerning the line shape, the magnitude of the residual broadening and the substructure of the boron resonances observed in low-temperature EPR experiments. Performing EPR measurements on different

  18. Studies on the deep-level defects in CdZnTe crystals grown by travelling heater method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Boru; Jie, Wanqi; Wang, Tao; Xu, Lingyan; Yang, Fan; Yin, Liying; Fu, Xu [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China); Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi (China); Nan, Ruihua [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China); Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials and Chemical Engineering, Xi' an Technological University, Xi' an (China)

    2017-05-15

    The variation of deep level defects along the axis of CZT:In ingots grown by Travelling Heater Method was investigated by the means of thermally stimulated current (TSC) spectra. Models for the reaction among different defects In, Te{sub i}, and V{sub Cd} were used to analyze the variation of deep level defects along the growth direction. It was found that the density of In dopant-related defects is lower in the tip, but those of Te antisites and Te interstitials are higher in the tip. The density of cadmium vacancy exhibits an initial increase followed by a decrease from the tip to tail of the ingot. In PL spectra, the intensities of (D{sub 0}, X), (DAP) and D{sub complex} peaks obviously increase from the tip to the tail, due to the increase of the density of In dopant-related defects (IN{sup +}{sub CD}), Cd vacancies, and impurities. The low concentration of net free holes was found by Hall measurements, and high resistivity with p-type conduction was demonstrated from I-V analysis. The mobility for electrons was found to increase significantly from 634 ± 26 cm{sup 2} V{sup -1} s{sup -1} in the tip to 860 ± 10 cm{sup 2} V{sup -1} s{sup -1} in the tail, due to the decrease of the deep level defect densities. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Study of Te Inclusions in CdMnTe Crystals for Nuclear Detector Applications

    International Nuclear Information System (INIS)

    Babalola, O.S.; Bolotnikov, A.; Groza, M.; Hossain, A.; Egarievwe, S.; James, R.; Burger, A.

    2009-01-01

    The concentration, size and spatial distribution of Te inclusions in the bulk of CdMnTe crystals mined from two batches of ingots were studied. An isolated planar layer decorated with Te inclusions was identified in CdMnTe crystals from the second ingot. The internal electric field of a CMT crystal was probed by infrared (IR) imaging employing Pockels electro-optic effect. The effect of an isolated plane of Te inclusions on the internal electric-field distribution within the CdMnTe crystal was studied. Space charge accumulation around the plane of Te inclusions was observed, which was found to be higher when the detector was reverse-biased. The effects of the plane of Te inclusions on the electric-field distribution within the CdMnTe crystal, and the quality of CdMnTe crystals for nuclear detector applications are discussed.

  20. Germania and Alumina Dopant Diffusion and Viscous Flow Effects at Preparation of Doped Optical Fibers

    Directory of Open Access Journals (Sweden)

    Jens Kobelke

    2017-01-01

    Full Text Available We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT technique. The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.

  1. Exciton-dopant and exciton-charge interactions in electronically doped OLEDs

    International Nuclear Information System (INIS)

    Williams, Christopher; Lee, Sergey; Ferraris, John; Zakhidov, A. Anvar

    2004-01-01

    The electronic dopants, like tetrafluorocyanoquinodimethane (F 4 -TCNQ) molecules, used for p-doping of hole transport layers in organic light-emitting diodes (OLEDs) are found to quench the electroluminescence (EL) if they diffuse into the emissive layer. We observed EL quenching in OLED with F 4 -TCNQ doped N,N'-diphenyl-N'N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine hole transport layer at large dopant concentrations, >5%. To separate the effects of exciton-dopant quenching, from exciton-polaron quenching we have intentionally doped the emissive layer of (8-tris-hydroxyquinoline) with three acceptors (A) of different electron affinities: F 4 -TCNQ, TCNQ, and C 60 , and found that C 60 is the strongest EL-quencher, while F 4 -TCNQ is the weakest, contrary to intuitive expectations. The new effects of charge transfer and usually considered energy transfer from exciton to neutral (A) and charged acceptors (A - ) are compared as channels for non-radiative Ex-A decay. At high current loads the EL quenching is observed, which is due to decay of Ex on free charge carriers, hole polarons P + . We consider contributions to Ex-P + interaction by short-range charge transfer and describe the structure of microscopic charge transfer (CT)-processes responsible for it. The formation of metastable states of 'charged excitons' (predicted and studied by Agranovich et al. Chem. Phys. 272 (2001) 159) by electron transfer from a P to an Ex is pointed out, and ways to suppress non-radiative Ex-P decay are suggested

  2. Constitutional studies in the palladium-rhodium-tellurium (-oxygen) system. A contribution to elucidate the behaviour of Pd, Rh and Te in the vitrification process of high-level waste concentrates (HLWC)

    International Nuclear Information System (INIS)

    Hartmann, T.

    1996-01-01

    In the vitrification process of high-level waste concentrates (HLWC) from the reprocessing of nuclear spent fuel elements, about 30 different elements have to be immobilized in a solid matrix consisting of an alkali borosilicate glass. Most of the waste oxides are dissolved in the alkali borosilicate melt and become structural elements of the glasses when cooled. This, however, applies only partly to the platinum metals Ru, which forms RuO 2 , and palladium and rhodium, which deposit as sparingly soluble and electrically conducting tellurides. This might considerably impair the technical process of HLWC vitrification. Therefore, constitutional studies on the Pd-Rh-Te system became necessary. The phase diagram of the Pd-Rh-Te ternary system at temperatures of 1150, 1100, 1050, 1000, 950, 900 and 750 C was determined under inertial conditions. Oxygen exerts a major influence on the system. Already under limited availability of oxygen, the rhodium contents of the solid solution phases α 1 and α 2 are clearly diminished. Rhodium of the phases becomes oxidized selectively. The three-phase field α 1 +α 2 +L is shifted to higher palladium and tellurium contents, even oxygen is available to a limited extend only. With the oxygen in the air, the extension of the three-phase space is reduced markedly. The complex process chemistry of Pf, Rh and Te during the vitrification can be described by the state of the Pd-Rh-Te ternary system after annealing in (air) oxygen for limited periods of time. (orig./MM) [de

  3. A Micro-Raman Study of Exfoliated Few-Layered n-Type Bi2Te2.7Se0.3 (Postprint)

    Science.gov (United States)

    2017-11-28

    is feasible because the Bi-Te1 bond strength is the strongest bond in the quintuple20. In addition, the Te2 atom is known to lie at the inversion ...ii) mitigation of the bipolar effect in thermopower, and iii) a simultaneous reduction in the thermal conductivity, that led to the broadening of the...or Se-dopant at the Te sites (Te1 and Te2), where Te2 is the inversion center of the crystal symmetry (see Supplementary Fig. S1)33. As Se is

  4. Synthesis and Optical Characterization of Nd3+ doped TeO2-PbO-Li2O

    Directory of Open Access Journals (Sweden)

    M. Rahim Sahar

    2012-02-01

    Full Text Available Glass based on Nd3+-doped TeO2-PbO-Li2O has successfully been made by melt quenching technique and their thermal parameters have been determined using Differential Thermal Analyzer (DTA. The glass is then nucleated and/or growth by controlled heat treatment at slightly below the crystallization temperature. The X-ray diffraction (XRD technique is used to estimate the nano-crystallite size. Meanwhile, the optical characterization has been determined using the Photoluminescence Spectroscopy. It is found out that the crystallite size is about 20 nm and very much depending on the heat-treatment time. Meanwhile, the intensity of the luminescence spectra is very much depending on the concentration of the dopant.   Keyword: tellurium glasses, melt quenching technique, optical characterization

  5. Local structure investigation of Ga and Yb dopants in Co4Sb12 skutterudites

    Science.gov (United States)

    Hu, Yanyun; Chen, Ning; Clancy, J. P.; Salvador, James R.; Kim, Chang-Yong; Shi, Xiaoya; Li, Qiang; Kim, Young-June

    2017-12-01

    We report comprehensive x-ray absorption spectroscopy studies at both the Ga K edge and Yb L2 edge to elucidate the local structure of Ga and Yb dopants in YbxGayCo4Sb12 . Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24 g site replacing Sb, and the other is the 2 a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2 a on-center site. At low concentrations of Yb, Ga24 g and Ga2 a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Funct. Mater. 23, 3194 (2013), 10.1002/adfm.201202571]. The Ga24 g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24 g site for the highest Yb concentration studied (x =0.4 ). In addition to the local structural evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K -edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga2 a to Ga24 g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co4Sb12 skutterudites is due to the increased Ga24 g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.

  6. Two opposite hysteresis curves in semiconductors with mobile dopants

    OpenAIRE

    Lee, Jae Sung; Lee, Shin Buhm; Kahng, Byungnam; Noh, Tae Won

    2012-01-01

    Recent experimental researches on semiconductors with mobile dopants (SMD) have reported unconventional hysteretic current-voltage (I-V) curves, which form dynamically in either one of the two opposite directions, the counter-figure-eight and figure-eight ways. However the fundamental theory for the formation of the two directions is still absent, and this poses a major barrier for researches oriented to applications. Here, we introduce a theoretical model to explain the origin of the two dir...

  7. Controlling energy transfer between multiple dopants within a single nanoparticle

    Science.gov (United States)

    DiMaio, Jeffrey R.; Sabatier, Clément; Kokuoz, Baris; Ballato, John

    2008-01-01

    Complex core-shell architectures are implemented within LaF3 nanoparticles to allow for a tailored degree of energy transfer (ET) between different rare earth dopants. By constraining specific dopants to individual shells, their relative distance to one another can be carefully controlled. Core-shell LaF3 nanoparticles doped with Tb3+ and Eu3+ and consisting of up to four layers were synthesized with an outer diameter of ≈10 nm. It is found that by varying the thicknesses of an undoped layer between a Tb3+-doped layer and a Eu3+-doped layer, the degree of ET can be engineered to allow for zero, partial, or total ET from a donor ion to an acceptor ion. More specifically, the ratio of the intensities of the 541-nm Tb3+ and 590 nm Eu3+ peaks was tailored from core-shell configuration that restricts ET is used. Beyond simply controlling ET, which can be limiting when designing materials for optical applications, this approach can be used to obtain truly engineered spectral features from nanoparticles and composites made from them. Further, it allows for a single excitation source to yield multiple discrete emissions from numerous lanthanide dopants that heretofore would have been quenched in a more conventional active optical material. PMID:18250307

  8. Microwave modulation characteristics of twisted liquid crystals with chiral dopant

    Directory of Open Access Journals (Sweden)

    Rui Yuan

    2017-01-01

    Full Text Available Adding a chiral dopant in twisted nematic (TN liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN or super TN (STN liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.

  9. Computational Study of Nb-Doped-SnO2/Pt Interfaces: Dopant Segregation, Electronic Transport, and Catalytic Properties

    DEFF Research Database (Denmark)

    Fu, Qiang; Halck, Niels Bendtsen; Hansen, Heine Anton

    2017-01-01

    functional theory and non equilibrium Green's function study, we investigate the Nb segregation at Pt/NTO interfaces under operational electrochemical conditions, and reveal the resulting effects on the electronic transport, as well as the catalytic properties. We find that the Nb dopants tend to aggregate......Carbon black, a state-of-the-art cathode material for proton exchange membrane fuel cells (PEMFCs), suffers from severe corrosion in practical applications. Niobium-doped tin dioxide (NTO) is a promising alternative to support the Pt catalysts at the cathodes. Here, through a combined density....... The electronic conductivities of the Pt/NTO systems are not particularly sensitive to the distance of the Nb dopants relative to the interface, but depend explicitly on the Nb concentration and configuration. Through a dopant induced ligand effect, the NTO substrates can improve the catalytic activity of the Pt...

  10. Electrical properties of MIS devices on CdZnTe/HgCdTe

    Science.gov (United States)

    Lee, Tae-Seok; Jeoung, Y. T.; Kim, Hyun Kyu; Kim, Jae Mook; Song, Jinhan; Ann, S. Y.; Lee, Ji Y.; Kim, Young Hun; Kim, Sun-Ung; Park, Mann-Jang; Lee, S. D.; Suh, Sang-Hee

    1998-10-01

    In this paper, we report the capacitance-voltage (C-V) properties of metal-insulator-semiconductor (MIS) devices on CdTe/HgCdTe by the metalorganic chemical vapor deposition (MOCVD) and CdZnTe/HgCdTe by thermal evaporation. In MOCVD, CdTe layers are directly grown on HgCdTe using the metal organic sources of DMCd and DiPTe. HgCdTe layers are converted to n-type and the carrier concentration, ND is low 1015 cm-3 after Hg-vacancy annealing at 260 degrees Celsius. In thermal evaporation, CdZnTe passivation layers were deposited on HgCdTe surfaces after the surfaces were etched with 0.5 - 2.0% bromine in methanol solution. To investigate the electrical properties of the MIS devices, the C-V measurement is conducted at 80 K and 1 MHz. C-V curve of MIS devices on CdTe/HgCdTe by MOCVD has shown nearly flat band condition and large hysteresis, which is inferred to result from many defects in CdTe layer induced during Hg-vacancy annealing process. A negative flat band voltage (VFB approximately equals -2 V) and a small hysteresis have been observed for MIS devices on CdZnTe/HgCdTe by thermal evaporation. It is inferred that the negative flat band voltage results from residual Te4+ on the surface after etching with bromine in methanol solution.

  11. New cyclometalated Iridium(III) beta-dicetone complex as phosphorescent dopant in Organic light emitting devices

    Science.gov (United States)

    Ivanov, P.; Petrova, P.; Stanimirov, S.; Tomova, R.

    2017-01-01

    A new Bis[4-(benzothiazolato-N,C2‧-2-yl)-N,N-dimethylaniline]Iridium(III) acetylacetonate (Me2N-bt) 2Ir(acac) was synthesized and identified by 1H NMR and elemental analysis. The application of the new compound as a dopant in the hole transporting layer (HTL) of Organic light emitting diode (OLED) structure: HTL/EL/ETL, where HTL was N,N’-bis(3-methylphenyl)-N,N’-diphenylbenzidine (TPD), incorporated in Poly(N-vinylcarbazole) (PVK) matrix, EL - electroluminescent layer of Bis(8-hydroxy-2-methylquinoline)-(4-phenylpheno-xy)aluminum (BAlq) and ETL - electron-transporting layer of Tris-(8-hydroxyquinoline) aluminum (Alq3) or Bis[2-(2-benzothiazoly) phenolato]zinc (Zn(btz)2). We established that the electroluminescent spectra of OLEDs at different concentrations of the dopant were basically the sum of the greenish-blue emission of BAlq and yellowish-green emission of Ir complex. It was found that with increasing of the dopant concentration the relative electroluminescent intensity of Iridium complex emission increased and this of BAlq decreased and as a result the fine tuning of OLED color was observed.

  12. Preparation and characterization of electrodeposited SnS:In thin films: Effect of In dopant

    Science.gov (United States)

    Kafashan, Hosein; Balak, Zohre

    2017-09-01

    SnS:In thin films were grown on fluorine doped tin oxide (FTO) substrate by cathodic electrodeposition technique. The solution was containing 2 mM SnCl2 and 16 mM Na2S2O3 and different amounts of 1 mM InCl3 as In-dopant. The pH, bath temperature, deposition time, and deposition potential (E) were fixed at 2.1, 60 °C, 30 min, and - 1 V, respectively. The XRD results showed that the synthesized films were polycrystalline orthorhombic SnS. The XPS results demonstrated that the films were composed of Sn, S and In. According to the FESEM images, an increase in In-dopant concentration leads to a change in morphology from grain-like to sheet-like having a nanoscale thickness of 20-80 nm and fiber-like. The PL spectra of undoped SnS exhibited four emission peaks including a UV peak, two blue emission peaks, and an IR emission peak. According to the UV-Vis spectra, the direct band gap of SnS:In thin films was estimated to be 1.40-1.66 eV.

  13. Quantitative dopant profiling in semiconductors. A new approach to Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, Christine

    2012-07-01

    Failure analysis and optimization of semiconducting devices request knowledge of their electrical properties. To meet the demands of today's semiconductor industry, an electrical nanometrology technique is required which provides quantitative information about the doping profile and which enables scans with a lateral resolution in the sub-10 nm range. In the presented work it is shown that Kelvin probe force microscopy (KPFM) is a very promising electrical nanometrology technique to face this challenge. The technical and physical aspects of KPFM measurements on semiconductors required for the correct interpretation of the detected KPFM bias are discussed. A new KPFM model is developed which enables the quantitative correlation between the probed KPFM bias and the dopant concentration in the investigated semiconducting sample. Quantitative dopant profiling by means of the new KPFM model is demonstrated by the example of differently structured, n- and p-type doped silicon. Additionally, the transport of charge carriers during KPFM measurements, in particular in the presence of intrinsic electric fields due to vertical and horizontal pn junctions as well as due to surface space charge regions, is discussed. Detailed investigations show that transport of charge carriers in the semiconducting sample is a crucial aspect and has to be taken into account when aiming for a quantitative evaluation of the probed KPFM bias.

  14. Photoreflection investigations of the dopant activation in InP doped with beryllium ions

    International Nuclear Information System (INIS)

    Avakyants, L.P.; Bokov, P.Yu.; Chervyakov, A.V.

    2005-01-01

    The processes of the dopant activation in the InP crystals implanted with Be + ions (energy 100 keV, dose 10 13 cm -2 and subsequent thermal annealing during 10 s) have been studied by means of photoreflection spectroscopy. Spectral lines of the crystal InP were absent in the photoreflection spectra of the samples annealed at temperatures less then 400 Deg C. This fact is connected with the disordering of the crystal structure due to the ion implantation. In the temperature range 400-700 Deg C the lines from InP band gap (1.34 eV) and conductance band-spin-orbit splitting valence subband (1.44 eV) have been observed due to the recovery of the crystal structure. In the photoreflectance spectra of a 800 Deg C annealed sample the Franz-Keldysh oscillations have been observed, which can be an evidence in favour of the dopant activation. Carrier concentration calculated from the period of Franz-Keldysh oscillations was equal to 2.2 x 10 16 cm -3 [ru

  15. On substrate dopant engineering for ET-SOI MOSFETs with UT-BOX

    International Nuclear Information System (INIS)

    Wu Hao; Xu Miao; Wan Guangxing; Zhu Huilong; Zhao Lichuan; Tong Xiaodong; Zhao Chao; Chen Dapeng; Ye Tianchun

    2014-01-01

    The importance of substrate doping engineering for extremely thin SOI MOSFETs with ultra-thin buried oxide (ES-UB-MOSFETs) is demonstrated by simulation. A new substrate/backgate doping engineering, lateral non-uniform dopant distributions (LNDD) is investigated in ES-UB-MOSFETs. The effects of LNDD on device performance, V t -roll-off, channel mobility and random dopant fluctuation (RDF) are studied and optimized. Fixing the long channel threshold voltage (V t ) at 0.3 V, ES-UB-MOSFETs with lateral uniform doping in the substrate and forward back bias can scale only to 35 nm, meanwhile LNDD enables ES-UB-MOSFETs to scale to a 20 nm gate length, which is 43% smaller. The LNDD degradation is 10% of the carrier mobility both for nMOS and pMOS, but it is canceled out by a good short channel effect controlled by the LNDD. Fixing V t at 0.3 V, in long channel devices, due to more channel doping concentration for the LNDD technique, the RDF in LNDD controlled ES-UB-MOSFETs is worse than in back-bias controlled ES-UB-MOSFETs, but in the short channel, the RDF for LNDD controlled ES-UB-MOSFET is better due to its self-adaption of substrate doping engineering by using a fixed thickness inner-spacer. A novel process flow to form LNDD is proposed and simulated. (semiconductor devices)

  16. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films.

    Science.gov (United States)

    Gudjonsdottir, Solrun; van der Stam, Ward; Kirkwood, Nicholas; Evers, Wiel H; Houtepen, Arjan J

    2018-05-16

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li + and Na + the onset is at significantly less negative potentials. For larger ions (K + , quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li + and Na + . Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.

  17. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.

    Science.gov (United States)

    Somodi, P K; Twitchett-Harrison, A C; Midgley, P A; Kardynał, B E; Barnes, C H W; Dunin-Borkowski, R E

    2013-11-01

    Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p-n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p-n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. © 2013 Elsevier B.V. All rights reserved.

  18. Atom-probe for FinFET dopant characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kambham, A.K., E-mail: kambham@imec.be [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W. [K.U.Leuven, Instituut voor Kern-en Stralings fysika, Celestijnenlaan 200D, B-3001, Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2011-05-15

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10{sup o} and 45{sup o}) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: {yields} This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). {yields} Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. {yields} The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions

  19. Atom-probe for FinFET dopant characterization

    International Nuclear Information System (INIS)

    Kambham, A.K.; Mody, J.; Gilbert, M.; Koelling, S.; Vandervorst, W.

    2011-01-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10 o and 45 o ) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. -- Research highlights: → This paper provides the information on how to characterize the FinFET devices using atom probe tomography (APT). → Importance of this work is to assess the performance of these devices at different processing conditions by extracting the compositional profiles. → The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions. → In this publication we

  20. The half-metallic ferromagnetism character in Be{sub 1−x}V{sub x}Y (Y=Se and Te) alloys: An ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Sajjad, M. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Manzoor, Sadia [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Zhang, H.X. [School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Noor, N.A. [Department of Physics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore (Pakistan); Alay-e-Abbas, S.M. [Department of Physics, GC University Faisalabad, Allama Iqbal Road, Faisalabad 38000 (Pakistan); Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Shaukat, A. [Department of Physics, University of Sargodha, Sargodha 40100 (Pakistan); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara 29000 (Algeria)

    2015-04-01

    Ab-initio calculations for V-doped BeSe and BeTe semiconductors are performed by means of all-electrons full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method. The structural properties are optimized using the Wu-Cohen generalized gradient approximation functional, whereas modified Becke and Jhonson local density approximation functional has been employed for evaluating the spin-polarized electronic and magnetic properties. Magnetic stability at various doping concentrations in ferromagnetic (FM) and anti-ferromagnetic (AFM) ordering is investigated by comparing the minimum total energies and enthalpies of formation (ΔH). Studied band structures, density of states, total energy, exchange interactions and magnetic moments manifest both alloys with half-metallic ferromagnetic behavior. Moreover, their valance bands are found to be paired ferromagnetically with V atoms. Furthermore, it was observed that the magnetic moment of vanadium atom reduces from free space charge value due to p–d hybridization which yields small magnetic moments on the Be, Se and Te sites. - Highlights: • Density functional calculations for V-doped BeSe and BeTe are performed. • V-doped BeSe and BeTe are found to be stable half-metallic ferromagnetism. • Improved electronic properties are achieved using mBJLDA which confirm HMF. • The half-metallic gaps show non-linear variation with increasing dopant concentration.

  1. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors.

    Science.gov (United States)

    Chen, Jiafeng; Han, Yulei; Kong, Xianghua; Deng, Xinzhou; Park, Hyo Ju; Guo, Yali; Jin, Song; Qi, Zhikai; Lee, Zonghoon; Qiao, Zhenhua; Ruoff, Rodney S; Ji, Hengxing

    2016-10-24

    Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A reliable method for the counting and control of single ions for single-dopant controlled devices

    International Nuclear Information System (INIS)

    Shinada, T; Kurosawa, T; Nakayama, H; Zhu, Y; Hori, M; Ohdomari, I

    2008-01-01

    By 2016, transistor device size will be just 10 nm. However, a transistor that is doped at a typical concentration of 10 18 atoms cm -3 has only one dopant atom in the active channel region. Therefore, it can be predicted that conventional doping methods such as ion implantation and thermal diffusion will not be available ten years from now. We have been developing a single-ion implantation (SII) method that enables us to implant dopant ions one-by-one into semiconductors until the desired number is reached. Here we report a simple but reliable method to control the number of single-dopant atoms by detecting the change in drain current induced by single-ion implantation. The drain current decreases in a stepwise fashion as a result of the clusters of displaced Si atoms created by every single-ion incidence. This result indicates that the single-ion detection method we have developed is capable of detecting single-ion incidence with 100% efficiency. Our method potentially could pave the way to future single-atom devices, including a solid-state quantum computer

  3. Dopant redistribution and electrical activation in silicon following ultra-low energy boron implantation and excimer laser annealing

    International Nuclear Information System (INIS)

    Whelan, S.; La Magna, A.; Privitera, V.; Mannino, G.; Italia, M.; Bongiorno, C.; Fortunato, G.; Mariucci, L.

    2003-01-01

    Excimer laser annealing (ELA) of ultra-low-energy (ULE) B-ion implanted Si has been performed. High-resolution transmission electron microscopy has been used to assess the as-implanted damage and the crystal recovery following ELA. The electrical activation and redistribution of B in Si during ELA has been investigated as a function of the laser energy density (melted depth), the implant dose, and the number of laser pulses (melt time). The activated and retained dose has been evaluated with spreading resistance profiling and secondary ion mass spectrometry. A significant amount of the implanted dopant was lost from the sample during ELA. However, the dopant that was retained in crystal material was fully activated following rapid resolidification. At an atomic concentration below the thermodynamic limit, the activation efficiency (dose activated/dose implanted into Si material) was a constant for a fixed melt depth, irrespective of the dose implanted and hence the total activated dose was raised as the implant dose was increased. The electrical activation was increased for high laser energy density annealing when the dopant was redistributed over a deeper range

  4. Dynamics of δ-dopant redistribution during heterostructure growth

    Science.gov (United States)

    Pankratov, E. L.

    2007-06-01

    It has recently been shown that growth of a multilayer structure with one or more delta-layers at high temperature leads to spreading and asymmetrization of the dopant distribution [see, for example, E.F.J. Schubert, Vac. Sci. Technol. A. 8, 2980 (1990), A.M. Nazmul, S. Sugahara, M. Tanaka, J. Crystal Growth 251, 303 (2003); R.C. Newman, M.J. Ashwin, M.R. Fahy, L. Hart, S.N. Holmes, C. Roberts, X. Zhang, Phys. Rev. B 54, 8769 (1996); E.F. Schubert, J.M. Kuo, R.F. Kopf, H.S. Luftman, L.C. Hopkins, N.J. Sauer, J. Appl. Phys. 67, 1969 (1990); P.M. Zagwijn, J.F. van der Veen, E. Vlieg, A.H. Reader, D.J. Gravesteijn, J. Appl. Phys. 78, 4933 (1995); W.S. Hobson, S.J. Pearton, E.F. Schubert, G. Cabaniss, Appl. Phys. Lett. 55, 1546 (1989); Delta Doping of Semiconductors, edited by E.F. Schubert (Cambridge University Press, Cambridge, 1996); Yu.N. Drozdov, N.B. Baidus', B.N. Zvonkov, M.N. Drozdov, O.I. Khrykin, V.I. Shashkin, Semiconductors 37, 194 (2003); E. Skuras, A.R. Long, B. Vogele, M.C. Holland, C.R. Stanley, E.A. Johnson, M. van der Burgt, H. Yaguchi, J. Singleton, Phys. Rev. B 59, 10712 (1999); G. Li, C. Jagadish, Solid-State Electronics 41, 1207 (1997)]. In this work analytical and numerical analysis of dopant dynamics in a delta-doped area of a multilayer structure has been accomplished using Fick's second law. Some reasons for asymmetrization of a delta-dopant distribution are illustrated. The spreading of a delta-layer has been estimated using example materials of a multilayer structure, a delta-layer and an overlayer.

  5. Synthesis and characterization of the polyaniline dopant Schiff base

    Directory of Open Access Journals (Sweden)

    Mirian Y. Matsumoto

    2012-06-01

    Full Text Available The Schiff base, N-salicilidenoanilina was used as dopant to induce polymerization of aniline and thus preparing polyaniline (PAni. The different conditions of preparation, including Schiff base structure, and the dosage of acidity reaction medium, were investigated to discuss the influence of these conditions relative conductivity of the resulting samples. The products were also characterized by Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, electrochemical impedance spectroscopy (EIE. The results showed the synthesis conditions play an important in the formation and the final properties of the polyaniline

  6. Effects of co-dopants on the magnetic properties of Ni–Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sea-Fue, E-mail: sfwang@ntut.edu.tw; Hsu, Yung-Fu; Chou, Kai-Mou; Tsai, Jeng-Ting

    2015-01-15

    In this study, substitution of co-dopants into the Ni{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} ceramic was performed. Al{sup 3+}, Sn{sup 4+} and Ti{sup 4+} ions were added to the Ni{sub 0.4}Zn{sub 0.4}Li{sub 0.10}Fe{sub 2.10}O{sub 4} ceramic to improve magnetic properties. After sintering, all samples were indexed on a spinel structure and no detectable second phase was observed. When the concentration of dopants increased, the grain size of the Ni–Zn ferrites increased from 1.40 to 6.05 μm and the saturation magnetization declined from 428.8 emu/cm{sup 3} to 374.0 emu/cm{sup 3}. Amongst the systems investigated, the Ni{sub 0.4}Zn{sub 0.4}Li{sub 0.10}Al{sub 0.050}Fe{sub 2.050}O{sub 4}, Ni{sub 0.4}Zn{sub 0.425}Li{sub 0.10}Ti{sub 0.025}Fe{sub 2.050}O{sub 4}, and Ni{sub 0.4}Zn{sub 0.450}Li{sub 0.10}Ti{sub 0.050}Fe{sub 2.000}O{sub 4} ceramics revealed promising magnetic properties for applications. The measured initial permeability and quality factor were respectively 291.9 and 45.1 for the Ni{sub 0.4}Zn{sub 0.4}Li{sub 0.10}Al{sub 0.050}Fe{sub 2.050}O{sub 4} ceramic, 316.9 and 42.5 for the Ni{sub 0.4}Zn{sub 0.425}Li{sub 0.10}Ti{sub 0.025}Fe{sub 2.050}O{sub 4} ceramic, 429.4 and 34.8 for the Ni{sub 0.4}Zn{sub 0.450}Li{sub 0.10}Ti{sub 0.050}Fe{sub 2.000}O{sub 4} ceramic. The high initial permeability and quality factor values associated with good electrical resistivity (>10{sup 6} Ω-cm) qualify the ceramics for high frequency applications. - Highlights: • Co-dopants Al{sup 3+}–Li{sup +}, Sn{sup 4+}–Li{sup +}, and Ti{sup 4}–Li{sup +} were substituted into Ni–Zn lattices. • Grain size of Ni–Zn ferrites grew from 1.40 to 6.05 μm with rising dopants content. • Saturation magnetization declined from 428.8 to 374.0 emu/cm{sup 3} with adding dopants. • Ni{sub 0.4}Zn{sub 0.4}Li{sub 0.10}Al{sub 0.050}Fe{sub 2.050}O{sub 4} ceramic showed an μ{sub i} of 291.9 and a Q{sub f} of 45.1.

  7. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    International Nuclear Information System (INIS)

    Dangbegnon, J.K.; Talla, K.; Roro, K.T.; Botha, J.R.

    2009-01-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  8. Metalorganic chemical vapor deposition of ZnO:N using NO as dopant

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K., E-mail: JulienKouadio.Dangbegnon@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Talla, K.; Roro, K.T.; Botha, J.R. [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2009-12-01

    Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 deg. C in an oxygen ambient.

  9. Valence and atomic size dependent exchange barriers in vacancy-mediated dopant diffusion

    International Nuclear Information System (INIS)

    Nelson, J.S.; Schultz, P.A.; Wright, A.F.

    1998-01-01

    First-principles pseudopotential calculations of dopant-vacancy exchange barriers indicate a strong dependency on dopant valence and atomic size, in contrast to current models of vacancy-mediated dopant diffusion. First-row elements (B, C, N) are found to have exchange barriers which are an order of magnitude larger than the assumed value of 0.3 eV (the Si vacancy migration energy). copyright 1998 American Institute of Physics

  10. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand K.; Riris, Haris; Allan, Graham R.; Sun, Xiaoli; Hasselbrack, William E.; Mao, Jianping; Wu, Stewart; Chen, Jeffrey; Numata, Kenji; Kawa, Stephan R.; Yang, Mei Ying Melissa; DiGangi, Joshua

    2018-04-01

    Here we report on measurements made with an improved CO2 Sounder lidar during the ASCENDS 2014 and 2016 airborne campaigns. The changes made to the 2011 version of the lidar included incorporating a rapidly wavelength-tunable, step-locked seed laser in the transmitter, using a much more sensitive HgCdTe APD detector and using an analog digitizer with faster readout time in the receiver. We also improved the lidar's calibration approach and the XCO2 retrieval algorithm. The 2014 and 2016 flights were made over several types of topographic surfaces from 3 to 12 km aircraft altitudes in the continental US. The results are compared to the XCO2 values computed from an airborne in situ sensor during spiral-down maneuvers. The 2014 results show significantly better performance and include measurement of horizontal gradients in XCO2 made over the Midwestern US that agree with chemistry transport models. The results from the 2016 airborne lidar retrievals show precisions of ˜ 0.7 parts per million (ppm) with 1 s averaging over desert surfaces, which is an improvement of about 8 times compared to similar measurements made in 2011. Measurements in 2016 were also made over fresh snow surfaces that have lower surface reflectance at the laser wavelengths. The results from both campaigns showed that the mean values of XCO2 retrieved from the lidar consistently agreed with those based on the in situ sensor to within 1 ppm. The improved precision and accuracy demonstrated in the 2014 and 2016 flights should benefit future airborne science campaigns and advance the technique's readiness for a space-based instrument.

  11. Microstructure, mechanical properties, and thermoelectric properties of hot-extruded p-type Te-doped Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Park, K; Seo, J; Lee, C

    1997-07-01

    The p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} compounds with Te dopant (4.0 and 6.0 wt%) and without dopant were fabricated by hot extrusion in the temperature range of 300 to 510 C under an extrusion ratio of 20:1. The undoped and Te doped compounds were highly dense and showed high crystalline quality. The grains contained many dislocations and were fine equiaxed ({approximately}1.0 {micro}m) owing to the dynamic recrystallization during the extrusion. The hot extrusion gave rise to the preferred orientation of grains. The bending strength and the figure of merit of the undoped and Te doped compounds were increased with increasing the extrusion temperature. The Te dopant significantly increased the figure of merit. The values of the figure of merit of the undoped and 4.0 wt% Te-doped compounds hot extruded at 440 C were 2.11 x 10{sup {minus}3}/K and 2.94 x 10{sup {minus}3}/K, respectively.

  12. Effect of Low Concentration Sn Doping on Optical Properties of CdS Films Grown by CBD Technique

    Directory of Open Access Journals (Sweden)

    Mohd Sabri Mohd Ghazali

    2011-09-01

    Full Text Available Thin and transparent films of doped cadmium sulfide (CdS were obtained on commercial glass substrates by Chemical Bath Deposition (CBD technique. The films were doped with low concentration of Sn, and annealed in air at 300 °C for 45 min. The morphological characterization of the films with different amounts of dopant was made using SEM and EDAX analysis. Optical properties of the films were evaluated by measuring transmittance using the UV-vis spectrophotometer. A comparison of the results revealed that lower concentration of Sn doping improves transmittance of CdS films and makes them suitable for application as window layer of CdTe/CIGS solar cells.

  13. Observation of two-dimensional p-type dopant diffusion across a p+-InP/n–-InGaAs interface using scanning electron microscopy

    International Nuclear Information System (INIS)

    Tsurumi, Daisuke; Hamada, Kotaro; Kawasaki, Yuji

    2013-01-01

    Scanning electron microscopy (SEM) with potential calculations has been shown to be effective for the detection of p-type dopant diffusion, even across a Zn doped p + -InP/non-doped n – -InGaAs/n + -InP heterojunction. Heterojunction samples were observed using SEM and the electrostatic potential was calculated from Zn concentration profiles obtained by secondary ion mass spectrometry. The sensitivity of SEM for the potential was derived from the SEM observations and potential calculation results. The results were then used to investigate the dependence of the SEM contrast on the Zn diffusion length across the p + -InP/non-doped n – -InGaAs interface. Accurate dopant mapping was difficult when the Zn diffusion length was shorter than 30 nm, because the heterojunction affects the potential at the interface. However, accurate dopant mapping was possible when the Zn diffusion length was longer than 30 nm, because the factor dominating the potential variation was not the heterojunction, but rather Zn diffusion 30 nm distant from the interface. Thus, Zn diffusion further than 30 nm from a Zn-doped p + -InP/non-doped n – -InGaAs interface can be effectively detected by secondary electron (SE) imaging. SE imaging with potential calculations can be widely used for accurate dopant mapping, even at heterojunctions, and is, therefore, expected to be of significant assistance to the compound semiconductor industry.

  14. Low-cost copper complexes as p-dopants in solution processable hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellermann, Renate [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany); Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Taroata, Dan; Maltenberger, Anna; Hartmann, David; Schmid, Guenter [Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Brabec, Christoph J. [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany)

    2015-09-07

    We demonstrate the usage of the Lewis-acidic copper(II)hexafluoroacetylacetonate (Cu(hfac){sub 2}) and copper(II)trifluoroacetylacetonate (Cu(tfac){sub 2}) as low-cost p-dopants for conductivity enhancement of solution processable hole transport layers based on small molecules in organic light emitting diodes (OLEDs). The materials were clearly soluble in mixtures of environmentally friendly anisole and xylene and spin-coated under ambient atmosphere. Enhancements of two and four orders of magnitude, reaching 4.0 × 10{sup −11} S/cm with a dopant concentration of only 2 mol% Cu(hfac){sub 2} and 1.5 × 10{sup −9} S/cm with 5 mol% Cu(tfac){sub 2} in 2,2′,7,7′-tetra(N,N-ditolyl)amino-9,9-spiro-bifluorene (spiro-TTB), respectively, were achieved. Red light emitting diodes were fabricated with reduced driving voltages and enhanced current and power efficiencies (8.6 lm/W with Cu(hfac){sub 2} and 5.6 lm/W with Cu(tfac){sub 2}) compared to the OLED with undoped spiro-TTB (3.9 lm/W). The OLED with Cu(hfac){sub 2} doped spiro-TTB showed an over 8 times improved LT{sub 50} lifetime of 70 h at a starting luminance of 5000 cd/m{sup 2}. The LT{sub 50} lifetime of the reference OLED with PEDOT:PSS was only 8 h. Both non-optimized OLEDs were operated at similar driving voltage and power efficiency.

  15. The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films

    Science.gov (United States)

    2018-01-01

    Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li+ and Na+ the onset is at significantly less negative potentials. For larger ions (K+, quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li+ and Na+. Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies. PMID:29718666

  16. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    International Nuclear Information System (INIS)

    Kumar, Pragati; Saxena, Nupur; Gupta, Vinay; Agarwal, Avinash

    2015-01-01

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag 2 O or Ag 2 S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration

  17. Analysis of CdS/CdTe devices incorporating a ZnTe:Cu/Ti Contact

    International Nuclear Information System (INIS)

    Gessert, T.A.; Asher, S.; Johnston, S.; Young, M.; Dippo, P.; Corwine, C.

    2007-01-01

    High-performance CdS/CdTe photovoltaic devices can be produced using a ZnTe:Cu/Ti back contact deposited onto the CdTe layer. We observe that prolonged exposure of the ZnTe:Cu and Ti sputtering targets to an oxygen-containing plasma significantly reduces device open-circuit voltage and fill factor. High-resolution compositional analysis of these devices reveals that Cu concentration in the CdTe and CdS layers is lower for devices with poor performance. Capacitance-voltage analysis and related numerical simulations indicate that the net acceptor concentration in the CdTe is also lower for devices with poor performance. Photoluminescence analyses of the junction region reveal that the intensity of a luminescent peak associated with a defect complex involving interstitial Cu (Cu i ) and oxygen on Te (O Te ) is reduced in devices with poor performance. Combined with thermodynamic considerations, these results suggest that oxygen incorporation into the ZnTe:Cu sputtering target reduces the ability of sputtered ZnTe:Cu film to diffuse Cu into the CdTe

  18. Thermal analyzes of phosphate glasses doped with Yb{sup 3+} and ZnTe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, A.M.; Bell, M.J.V. [Laboratório de Espectroscopia de Materiais, Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG (Brazil); Anjos, V., E-mail: virgilio@fisica.ufjf.br [Laboratório de Espectroscopia de Materiais, Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG (Brazil); Pinheiro, A.S.; Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física da Universidade Federal de Uberlândia, CP 593, CEP 38400-902 Uberlândia, MG (Brazil)

    2016-01-15

    This work studies the thermal properties of a glass matrix called PZABP doped with ZnTe and co-doped with Yb{sup 3+} with nominal composition 60P{sub 2}O{sub 5}, 15ZnO, 5Al{sub 2}O{sub 3}, 10BaO, and 10 PbO (mol%). The presence of ZnTe results in the formation of nanocrystals which are evidenced by optical absorption, X-Ray Diffraction (XRD) and Raman scattering. Thermal lens and Volumetric Heat Capacity techniques were used to investigate thermal diffusivity (D), thermal conductivity (K) and optical path variation with temperature (ds/dT). The outcomes indicate high values for the thermal diffusivity and a relatively small thermal conductivity, i.e., around 2.6×10{sup −3} cm{sup 2}/s and 3.4×10{sup −3} W cm{sup −1} K{sup −1}, respectively. On the other hand, a low ds/dT value, 1.0×10{sup −6} K{sup −1}, was obtained as required for an active laser medium. Moreover, it has been observed that the matrix allows high concentration of dopants without compromising its thermal properties. As a result, PZABP glasses may be pointed out as a promising material to applications in high power photonics devices. - Highlights: • UV transparentglass matrix (PZABP) is used for Yb{sup 3+}doping. • Bulk like and quantum dots like crystals of ZnTe were grown. • Thermal properties point out PZABP as a material to high power photonics devices.

  19. Designing Diameter-Modulated Heterostructure Nanowires of PbTe/Te by Controlled Dewetting.

    Science.gov (United States)

    Kumar, Abinash; Kundu, Subhajit; Samantaray, Debadarshini; Kundu, Paromita; Zanaga, Daniele; Bals, Sara; Ravishankar, N

    2017-12-13

    Heterostructures consisting of semiconductors with controlled morphology and interfaces find applications in many fields. A range of axial, radial, and diameter-modulated nanostructures have been synthesized primarily using vapor phase methods. Here, we present a simple wet chemical routine to synthesize heterostructures of PbTe/Te using Te nanowires as templates. A morphology evolution study for the formation of these heterostructures has been performed. On the basis of these control experiments, a pathway for the formation of these nanostructures is proposed. Reduction of a Pb precursor to Pb on Te nanowire templates followed by interdiffusion of Pb/Te leads to the formation of a thin shell of PbTe on the Te wires. Controlled dewetting of the thin shell leads to the formation of cube-shaped PbTe that is periodically arranged on the Te wires. Using control experiments, we show that different reactions parameters like rate of addition of the reducing agent, concentration of Pb precursor and thickness of initial Te nanowire play a critical role in controlling the spacing between the PbTe cubes on the Te wires. Using simple surface energy arguments, we propose a mechanism for the formation of the hybrid. The principles presented are general and can be exploited for the synthesis of other nanoscale heterostructures.

  20. Thermoelectric transport properties of BaBiTe{sub 3}-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yiming; Zhao, Li-Dong, E-mail: zhaolidong@buaa.edu.cn

    2017-05-15

    BaBiTe{sub 3}, a material with low thermal conductivity, is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. We choose two types of dopants, K and La, trying to optimize its electrical transport properties. The minority carriers, which harm the Seebeck coefficient in this system, are suppressed by La doping. With the increase of both electrical conductivity and Seebeck coefficient, the power factor of 3% La doped BaBiTe{sub 3} reaches 3.7 μW cm{sup −1} K{sup −2} which increased by 40% from undoped BaBiTe{sub 3}. Besides high power factor, the thermal conductivity is also reduced in it. Eventually, a high ZT value, 0.25 at 473 K, for n-type BaBiTe{sub 3} is achieved in 3% La doped BaBiTe{sub 3}. - Graphical abstract: BaBiTe{sub 3} possesses a low thermal conductivity. However, it is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. A high ZT value of 0.25 at 473 K for n-type BaBiTe{sub 3} can be achieved through optimizing electrical transport properties via La doping. - Highlights: • BaBiTe{sub 3} is an analogue of these promising thermoelectric materials: such as CsBi{sub 4}Te{sub 6} and K{sub 2}Bi{sub 8}Se{sub 13}, etc. • BaBiTe{sub 3} possesses a low thermal conductivity. • La is an effective dopant to enhance electrical transport properties. • A high ZT value of 0.25 at 473 K can be achieved in n-type La-doped BaBiTe{sub 3}.

  1. A β-cyclodextrin based binary dopant for polyaniline: Structural, thermal, electrical, and sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanushree; Mishra, Satyendra [University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India); Shimpi, Navinchandra G., E-mail: navin_shimpi@rediffmail.com [Department of Chemistry, University of Mumbai, Kalina, Mumbai 400098, Maharashtra (India)

    2017-06-15

    Highlights: • A binary dopant based on β-cyclodextrin has been proposed for PANI. • The binary dopant provided long term stability to electrically conducting PANI. • The β-cyclodextrin based binary dopant rendered PANI sensitive towards CO at RT. - Abstract: The effect of hydrochloric acid/β-cyclodextrin (HCl/β-CD) binary dopant on the morphological, thermal, electrical, and sensing properties of PANI was investigated and compared with those of the conventionally doped PANI. The PANI samples were characterized using FTIR, UV–Vis, {sup 1}H NMR, and FESEM. Significant changes were observed in the structural, thermal, and electrical character of PANI doped with the HCl/β-CD binary dopant. A higher doping level was obtained for the PANI-binary dopant system, as observed from its {sup 1}H NMR spectra. Moreover, the binary dopant imparted long-term stability to the sensor in its conductive form. In addition, the PANI-binary dopant system exhibited a significantly high gas response towards carbon monoxide gas at room temperature.

  2. Manipulation and analysis of a single dopant atom in GaAs

    NARCIS (Netherlands)

    Wijnheijmer, A.P.

    2011-01-01

    This thesis focuses on the manipulation and analysis of single dopant atoms in GaAs by scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperatures. The observation of ionization rings is one of the key results, showing that we can control the charge state of a single dopant atom

  3. Using Dopants to Tune Oxygen Vacancy Formation in Transition Metal Oxide Resistive Memory.

    Science.gov (United States)

    Jiang, Hao; Stewart, Derek A

    2017-05-17

    Introducing dopants is an important way to tailor and improve electronic properties of transition metal oxides used as high-k dielectric thin films and resistance switching layers in leading memory technologies, such as dynamic and resistive random access memory (ReRAM). Ta 2 O 5 has recently received increasing interest because Ta 2 O 5 -based ReRAM demonstrates high switching speed, long endurance, and low operating voltage. However, advances in optimizing device characteristics with dopants have been hindered by limited and contradictory experiments in this field. We report on a systematic study on how various metal dopants affect oxygen vacancy formation in crystalline and amorphous Ta 2 O 5 from first principles. We find that isoelectronic dopants and weak n-type dopants have little impact on neutral vacancy formation energy and that p-type dopants can lower the formation energy significantly by introducing holes into the system. In contrast, n-type dopants have a deleterious effect and actually increase the formation energy for charged oxygen vacancies. Given the similar doping trend reported for other binary transition metal oxides, this doping trend should be universally valid for typical binary transition metal oxides. Based on this guideline, we propose that p-type dopants (Al, Hf, Zr, and Ti) can lower the forming/set voltage and improve retention properties of Ta 2 O 5 ReRAM.

  4. Thermodynamic modelling of fast dopant diffusion in Si

    Science.gov (United States)

    Saltas, V.; Chroneos, A.; Vallianatos, F.

    2018-04-01

    In the present study, nickel and copper fast diffusion in silicon is investigated in the framework of the cBΩ thermodynamic model, which connects point defect parameters with the bulk elastic and expansion properties. All the calculated point defect thermodynamic properties (activation Gibbs free energy, activation enthalpy, activation entropy, and activation volume) exhibit temperature dependence due to the non-linear anharmonic behavior of the isothermal bulk modulus of Si. Calculated activation enthalpies (0.15-0.16 eV for Ni and 0.17-0.19 eV for Cu) are in agreement with the reported experimental results. Small values of calculated activation volumes for both dopants (˜4% of the mean atomic volume) are consistent with the interstitial diffusion of Ni and Cu in Si.

  5. Defect and dopant kinetics in laser anneals of Si

    International Nuclear Information System (INIS)

    La Magna, A.; Fisicaro, G.; Mannino, G.; Privitera, V.; Piccitto, G.; Svensson, B.G.; Vines, L.

    2008-01-01

    In this work a modeling approach is applied to investigate the kinetics of the defect-dopant system in the extremely far-from-the equilibrium conditions caused by the laser irradiation in Si. A rigorous derivation of the master equations for the evolution of the defect-impurity system is obtained starting from the Boltzmann's formalism. The model derived is not limited by the stringent hypothesis of instantaneous equilibration of the local system energy to the lattice thermal field. This fact allows: (a) the formalization of a reliable theoretical formalism for the study of evolving defect-impurity systems in a non-uniform fast varying thermal field and (b) the generalization of the kinetic parameters (e.g. diffusivity, clustering rate constants, etc.). Early comparisons between simulations and experimental analysis of the processes are discussed. These results indicate the reliability of the energetic calibration for the self-interstitial clusters derived using conventional thermal processes

  6. Transient enhanced diffusion of dopants in preamorphized Si layers

    International Nuclear Information System (INIS)

    Claverie, A.; Bonafos, C.; Omri, M.; Mauduit, B. de; Ben Assayag, G.; Martinez, A.; Alquier, D.; Mathiot, D.

    1997-01-01

    Transient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects. For this reason, the authors discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphized Si layers

  7. Interplay of dopants and defects in making Cu doped TiO{sub 2} nanoparticle a ferromagnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Biswajit, E-mail: biswa.tezu@gmail.com [Department of Physics, Tezpur University, Napaam 784028, Assam (India); Choudhury, Amarjyoti [Department of Physics, Tezpur University, Napaam 784028, Assam (India); Borah, Debajit [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)

    2015-10-15

    Here we have studied the role of oxygen defects and Cu dopants on ferromagnetism in Cu doped TiO{sub 2} nanoparticles with nominal Cu concentration of 2%, 4% and 6 mol%. Electron paramagnetic resonance (EPR) spectra analysis reveals the presence of Cu{sup 2+} in the distorted octahedral coordination of TiO{sub 2}. Cu d-states undergo strong p-d coupling with the valence band O 2p state of TiO{sub 2} resulting the extended absorption hump in the visible region. Photoluminescence results reveal the presence of oxygen defect related emission peaks in Cu doped TiO{sub 2}. Room temperature ferromagnetism is observed in all the Cu doped TiO{sub 2} nanoparticles. Saturation magnetization is the highest at 4 mol% and then there is a decrease in magnetization at 6 mol%. Ferromagnetism completely disappears on calcinations of 4% Cu doped TiO{sub 2} in air at 450 °C for 8 h. It is speculated that both oxygen vacancies and Cu d-states are involved in the room temperature ferromagnetism. Spin polarization occurs by the formation of bound magnetic polaron between electrons in Cu{sup 2+}d-states and the unpaired spins in oxygen vacancies. Presence of Cu{sup 2+}-Cu{sup 2+}d-d exchange interaction and Cu{sup 2+}-O{sup 2−}-Cu{sup 2+} antiferromagnetic superexchange interactions might have resulted in the reduction in magnetization at 6 mol% Cu. - Graphical abstract: Ferromagnetism in Cu doped TiO{sub 2} requires presence of both Cu dopant and oxygen vacancies. - Highlights: • Cu doped TiO{sub 2} nanoparticle displays room temperature ferromagnetism. • Ferromagnetism requires presence of both Cu and oxygen vacancies. • Antiferromagnetic interaction persists at high Cu dopant concentration. • Paramagnetism appears on air annealing of the doped system for longer period.

  8. Concentrations of Radionuclides and Trace Elements in Environmantal Media arond te Dual-Axis Radiographic Hydrodynamic Test Facilit at Los Alamos National Laboratory during 2005

    Energy Technology Data Exchange (ETDEWEB)

    G.J.Gonzales; P.R. Fresquez; C.D.Hathcock; D.C. Keller

    2006-05-15

    The Mitigation Action Plan (MAP) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory requires that samples of biotic and abiotic media be collected after operations began to determine if there are any human health or environmental impacts. The DARHT facility is the Laboratory's principal explosive test facility. To this end, samples of soil and sediment, vegetation, bees, and birds were collected around the facility in 2005 and analyzed for concentrations of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, {sup 238}U, Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Bird populations have also been monitored. Contaminant results, which represent up to six sample years since the start of operations, were compared with (1) baseline statistical reference levels (BSRLs) established over a four-year preoperational period before DARHT facility operations, (2) screening levels (SLs), and (3) regulatory standards. Most radionuclides and trace elements were below BSRLs and those few samples that contained radionuclides and trace elements above BSRLs were below SLs. Concentrations of radionuclides and nonradionuclides in biotic and abiotic media around the DARHT facility do not pose a significant human health hazard. The total number of birds captured and number of species represented were similar in 2003 and 2004, but both of these parameters increased substantially in 2005. Periodic interruption of the scope and schedule identified in the MAP generally should have no impact on meeting the intent of the MAP. The risk of not sampling one of the five media in any given year is that if a significant impact to contaminant levels were to occur there would exist a less complete understanding of the extent of the change to the baseline for these media and to the ecosystem as a whole. Since the MAP is a requirement that was established under the regulatory framework of

  9. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim; Amad, Maan H.; Al-Talla, Zeyad

    2012-01-01

    with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs

  10. Three-dimensional analysis of Eu dopant atoms in Ca-α-SiAlON via through-focus HAADF-STEM imaging

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Genki, E-mail: genki@eng.hokudai.ac.jp; Yamaki, Fuuta; Kunisada, Yuji; Sakaguchi, Norihito; Akiyama, Tomohiro

    2017-04-15

    Highlights: • Through-focus HAADF-STEM imaging was studied. • Spatial distribution of Eu atoms in Ca-α-SiAlON was analyzed. • A large convergence semi-angle increased the depth resolution. • The radial distribution function of Eu dopants was analyzed. - Abstract: Three-dimensional (3D) distributional analysis of individual dopant atoms in materials is important to development of optical, electronic, and magnetic materials. In this study, we adopted through-focus high-angle annular dark-field (HAADF) imaging for 3D distributional analysis of Eu dopant atoms in Ca-α-SiAlON phosphors. In this context, the effects of convergence semi-angle and Eu z-position on the HAADF image contrast were investigated. Multi-slice image simulation revealed that the contrast of the dopant site was sensitive to change of the defocus level. When the defocus level matched the depth position of a Eu atom, the contrast intensity was significantly increased. The large convergence semi-angle greatly increased the depth resolution because the electron beam tends spread instead of channeling along the atomic columns. Through-focus HAADF-STEM imaging was used to analyze the Eu atom distribution surrounding 10 nm cubes with defocus steps of 0.68 nm each. The contrast depth profile recorded with a narrow step width clearly analyzed the possible depth positions of Eu atoms. The radial distribution function obtained for the Eu dopants was analyzed using an atomic distribution model that was based on the assumption of random distribution. The result suggested that the Ca concentration did not affect the Eu distribution. The decreased fraction of neighboring Eu atoms along z-direction might be caused by the enhanced short-range Coulomb-like repulsive forces along the z-direction.

  11. CdTe aggregates in KBr crystalline matrix

    International Nuclear Information System (INIS)

    Bensouici, A.; Plaza, J.L.; Dieguez, E.; Halimi, O.; Boudine, B.; Addala, S.; Guerbous, L.; Sebais, M.

    2009-01-01

    In this work, we report the experimental results on the fabrication and optical characterization of Czochralski (Cz) grown KBr single crystals doped with CdTe crystallites. The results of the optical absorption have shown two bands, the first one located at 250 nm demonstrates the incorporation of cadmium atoms in the KBr host followed by a partial chemical decomposition of CdTe, the second band located at 585 nm shows an optical response of CdTe aggregates. Photoluminescence spectra at room temperature before annealing showed a band located at 520 nm (2.38 eV), with a blue shift from the bulk gap of 0.82 eV (E g (CdTe)=1.56 eV). While the photoluminescence spectra after annealing at 600 deg. C showed a band situated at 640 nm (1.93 eV), these bands are due to band-to-band transitions of CdTe nanocrystals with a blue shift from the bulk gap at 0.38 eV. Blue shift in optical absorption and photoluminescence spectra confirm nanometric size of dopant. X-ray diffraction (XRD) spectra have shown the incorporation of CdTe aggregates in KBr.

  12. CdTe aggregates in KBr crystalline matrix

    Energy Technology Data Exchange (ETDEWEB)

    Bensouici, A., E-mail: bensouicia@yahoo.f [Laboratory of Crystallography, Department of Physics, Mentouri-Constantine University, Constantine 25000 (Algeria); Plaza, J.L., E-mail: joseluis.plaza@uam.e [Crystal Growth Laboratory (CGL), Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid (Spain); Dieguez, E. [Crystal Growth Laboratory (CGL), Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid (Spain); Halimi, O.; Boudine, B.; Addala, S. [Laboratory of Crystallography, Department of Physics, Mentouri-Constantine University, Constantine 25000 (Algeria); Guerbous, L. [Centre de recherche nucleaire d' Alger (CRNA), Alger 16000 (Algeria); Sebais, M. [Laboratory of Crystallography, Department of Physics, Mentouri-Constantine University, Constantine 25000 (Algeria)

    2009-09-15

    In this work, we report the experimental results on the fabrication and optical characterization of Czochralski (Cz) grown KBr single crystals doped with CdTe crystallites. The results of the optical absorption have shown two bands, the first one located at 250 nm demonstrates the incorporation of cadmium atoms in the KBr host followed by a partial chemical decomposition of CdTe, the second band located at 585 nm shows an optical response of CdTe aggregates. Photoluminescence spectra at room temperature before annealing showed a band located at 520 nm (2.38 eV), with a blue shift from the bulk gap of 0.82 eV (E{sub g} (CdTe)=1.56 eV). While the photoluminescence spectra after annealing at 600 deg. C showed a band situated at 640 nm (1.93 eV), these bands are due to band-to-band transitions of CdTe nanocrystals with a blue shift from the bulk gap at 0.38 eV. Blue shift in optical absorption and photoluminescence spectra confirm nanometric size of dopant. X-ray diffraction (XRD) spectra have shown the incorporation of CdTe aggregates in KBr.

  13. Roles of Cu in the Enhanced Thermoelectric Properties in Bi0.5Sb1.5Te3

    Directory of Open Access Journals (Sweden)

    Feng Hao

    2017-03-01

    Full Text Available Recently, Cu-containing p-type Bi0.5Sb1.5Te3 materials have shown high thermoelectric performances and promising prospects for practical application in low-grade waste heat recovery. However, the position of Cu in Bi0.5Sb1.5Te3 is controversial, and the roles of Cu in the enhancement of thermoelectric performance are still not clear. In this study, via defects analysis and stability test, the possibility of Cu intercalation in p-type Bi0.5Sb1.5Te3 materials has been excluded, and the position of Cu is identified as doping at the Sb sites. Additionally, the effects of Cu dopants on the electrical and thermal transport properties have been systematically investigated. Besides introducing additional holes, Cu dopants can also significantly enhance the carrier mobility by decreasing the Debye screen length and weakening the interaction between carriers and phonons. Meanwhile, the Cu dopants interrupt the periodicity of lattice vibration and bring stronger anharmonicity, leading to extremely low lattice thermal conductivity. Combining the suppression on the intrinsic excitation, a high thermoelectric performance—with a maximum thermoelectric figure of merit of around 1.4 at 430 K—has been achieved in Cu0.005Bi0.5Sb1.495Te3, which is 70% higher than the Bi0.5Sb1.5Te3 matrix.

  14. Systems and methods for the synthesis of high thermoelectric performance doped-SnTe materials

    Science.gov (United States)

    Ren, Zhifeng; Zhang, Qian; Chen, Gang

    2018-02-27

    A thermoelectric composition comprising tin (Sn), tellurium (Te) and at least one dopant that comprises a peak dimensionless figure of merit (ZT) of 1.1 and a Seebeck coefficient of at least 50 .mu.V/K and a method of manufacturing the thermoelectric composition. A plurality of components are disposed in a ball-milling vessel, wherein the plurality of components comprise tin (Sn), tellurium (Te), and at least one dopant such as indium (In). The components are subsequently mechanically and thermally processed, for example, by hot-pressing. In response to the mechanical-thermally processing, a thermoelectric composition is formed, wherein the thermoelectric composition comprises a dimensionless figure of merit (ZT) of the thermoelectric composition is at least 0.8, and wherein a Seebeck coefficient of the thermoelectric composition is at least 50 .mu.V/K at any temperature.

  15. Local polarization phenomena in In-doped CdTe x-ray detector arrays

    International Nuclear Information System (INIS)

    Sato, Toshiyuki; Sato, Kenji; Ishida, Shinichiro; Kiri, Motosada; Hirooka, Megumi; Yamada, Masayoshi; Kanamori, Hitoshi

    1995-01-01

    Local polarization phenomena have been studied in detector arrays with the detector element size of 500 microm x 500 microm, which are fabricated from high-resistivity In-doped CdTe crystals grown by the vertical Bridgman technique. It has been found for the first time that a polarization effect, which is characterized by a progressive decrease of the pulse counting rate with increasing photon fluence, strongly depends on the detector elements, that is, the portion of crystals used. The influence of several parameters, such as the applied electric field strength, time, and temperature, on this local polarization effect is also investigated. From the photoluminescence measurements of the inhomogeneity of In dopant, it is concluded that the local polarization effect observed here originates from a deep level associated with In dopant in CdTe crystals

  16. Influence of the dopant during the one step mechano-chemical synthesis of sodium alanate

    International Nuclear Information System (INIS)

    Rongeat, C; Geipel, C; Llamas-Jansa, I; Schultz, L; Gutfleisch, O

    2009-01-01

    High-pressure reactive milling under hydrogen atmosphere is used for the one-step synthesis of doped sodium alanate. In-situ monitoring of the pressure and the temperature inside the vial gives a direct feedback about the reactions occurring during the milling. This information is used to study the influence of the dopant during synthesis, e.g. the amount of dopant added. The study of the pressure variations during milling is a reliable tool for screening the efficiency of different dopants.

  17. Simple one-pot aqueous synthesis of CdHgTe nanocrystals using sodium tellurite as the Te source

    International Nuclear Information System (INIS)

    Shen, Zhitao; Luo, Chunhua; Huang, Rong; Wang, Yiting; Peng, Hui; Travas-sejdic, Jadranka

    2014-01-01

    In this work, we systematically investigated the one-pot aqueous synthesis conditions of CdHgTe nanocrystals (NCs) using sodium tellurite (Na 2 TeO 3 ) as the Te source, and found that the added content of Hg 2+ and the initial pH value of reaction solutions significantly affected the photoluminescence quantum yield (PL QY) of alloyed CdHgTe NCs. When the concentration of Cd was 1.0 mmol L −1 , the mole ratio of Cd/Te/Hg/MPA was 1:0.5:0.05:2.4, and the initial pH value of the reaction solution was about 8.78, the PL QY of as-prepared CdHgTe NCs was up to 45%. Characterization by HRTEM and XRD confirmed the crystalline nature of CdHgTe NCs. Compared to other synthetic approaches of CdHgTe NCs, our experimental results indicate that Na 2 TeO 3 could be an attractive alternative Te source to directly synthesize CdHgTe NCs in aqueous media. - Highlights: • A one-pot method was developed for the synthesis of highly luminescent CdHgTe nanocrystals (NCs). • Sodium tellurite was used as the Te source. • The quantum yield reached up to 45%. • The experimental conditions were optimized and the prepared CdHgTe NCs were characterized

  18. CuGaTe2-CuAlTe2 system

    International Nuclear Information System (INIS)

    Bodnar', I.V.

    2003-01-01

    The results of studies on the chemical interaction in the CuGaTe 2 -CuAlTe 2 as well as on the thermal and optical properties of the formed solid solutions are presented. It is shown, that continuous number of solid solutions are formed in the CuGaTe 2 -CuAlTe 2 system, which crystallize in the chalcopyrite structure. The diagram of state of this system is plotted. The thermal expansion of these materials is studied through the dilatometric method. The linear dependence of the thermal expansion coefficient on the composition is established. The concentration dependences of the forbidden zone width diverge from the linearity [ru

  19. A low-cost non-toxic post-growth activation step for CdTe solar cells

    Science.gov (United States)

    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K.

    2014-07-01

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 1014 cm-3) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  20. Sc and Nb Dopants in SrCoO3 Modulate Electronic and Vacancy Structures for Improved Water Splitting and SOFC Cathodes

    KAUST Repository

    Tahini, Hassan A.

    2017-01-12

    SrCoO3 is a promising material in the field of electrocatalysis. Difficulties in synthesising the material in its cubic phase have been overcome by doping it with Sc and Nb ions [Mater. Horiz.2015, 2, 495–501]. Using ab initio calculations and special quasi random structures we undertake a systematic study of these dopants in order to elucidate the effect of doping on electronic structure of the SrCoO3 host and the formation of oxygen vacancies. We find that while the overall electronic structure of SrCoO3 is preserved, increasing the Sc fraction leads to a decrease of electrical conductivity, in agreement with earlier experimental work. For low Sc and Nb doping fractions we find that the oxygen vacancy formation increases relative to undoped SrCoO3. However, as the dopants concentration is increased the vacancy formation energy drops significantly, indicating a strong tendency to accommodate high concentration of oxygen vacancies and hence non-stoichiometry. This is explained based on the electronic instabilities caused by the presence of Sc ions which weakens the B-O interactions as well as the increased degree of electron delocalization on the oxygen sublattice. Sc dopants also shift the p-band centre closer to the Fermi level, which can be associated with experimentally reported improvements in oxygen evolution reactions. These findings provide crucial baseline information for the design of better electrocatalysts for oxygen evolution reactions as well as fuel-cell cathode materials.

  1. Sc and Nb Dopants in SrCoO3 Modulate Electronic and Vacancy Structures for Improved Water Splitting and SOFC Cathodes

    KAUST Repository

    Tahini, Hassan A.; Tan, Xin; Zhou, Wei; Zhu, Zhonghua; Schwingenschlö gl, Udo; Smith, Sean C.

    2017-01-01

    SrCoO3 is a promising material in the field of electrocatalysis. Difficulties in synthesising the material in its cubic phase have been overcome by doping it with Sc and Nb ions [Mater. Horiz.2015, 2, 495–501]. Using ab initio calculations and special quasi random structures we undertake a systematic study of these dopants in order to elucidate the effect of doping on electronic structure of the SrCoO3 host and the formation of oxygen vacancies. We find that while the overall electronic structure of SrCoO3 is preserved, increasing the Sc fraction leads to a decrease of electrical conductivity, in agreement with earlier experimental work. For low Sc and Nb doping fractions we find that the oxygen vacancy formation increases relative to undoped SrCoO3. However, as the dopants concentration is increased the vacancy formation energy drops significantly, indicating a strong tendency to accommodate high concentration of oxygen vacancies and hence non-stoichiometry. This is explained based on the electronic instabilities caused by the presence of Sc ions which weakens the B-O interactions as well as the increased degree of electron delocalization on the oxygen sublattice. Sc dopants also shift the p-band centre closer to the Fermi level, which can be associated with experimentally reported improvements in oxygen evolution reactions. These findings provide crucial baseline information for the design of better electrocatalysts for oxygen evolution reactions as well as fuel-cell cathode materials.

  2. Gold fillings unravel the vacancy role in the phase transition of GeTe

    Science.gov (United States)

    Feng, Jinlong; Xu, Meng; Wang, Xiaojie; Lin, Qi; Cheng, Xiaomin; Xu, Ming; Tong, Hao; Miao, Xiangshui

    2018-02-01

    Phase change memory (PCM) is an important candidate for future memory devices. The crystalline phase of PCM materials contains abundant intrinsic vacancies, which plays an important role in the rapid phase transition upon memory switching. However, few experimental efforts have been invested to study these invisible entities. In this work, Au dopants are alloyed into the crystalline GeTe to fill the intrinsic Ge vacancies so that the role of these vacancies in the amorphization of GeTe can be indirectly studied. As a result, the reduction of Ge vacancies induced by Au dopants hampers the amorphization of GeTe as the activation energy of this process becomes higher. This is because the vacancy-interrupted lattice can be "repaired" by Au dopants with the recovery of bond connectivity. Our results demonstrate the importance of vacancies in the phase transition of chalcogenides, and we employ the percolation theory to explain the impact of these intrinsic defects on this vacancy-ridden crystal quantitatively. Specifically, the threshold of amorphization increases with the decrease in vacancies. The understanding of the vacancy effect sheds light on the long-standing puzzle of the mechanism of ultra-fast phase transition in PCMs. It also paves the way for designing low-power-consumption electronic devices by reducing the threshold of amorphization in chalcogenides.

  3. Solvent effects on dopant-free pH-falling polymerization of aniline

    Czech Academy of Sciences Publication Activity Database

    Rakić, A. A.; Vukomanović, M.; Trifunovic, S.; Travas-Sejdic, J.; Chaudhary, O. J.; Horský, Jiří; Ciric-Marjanovic, G.

    2015-01-01

    Roč. 209, November (2015), s. 279-296 ISSN 0379-6779 Institutional support: RVO:61389013 Keywords : dopant-free template -free method * nanostructures * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.299, year: 2015

  4. Chromium 51 em K2CrO4: reactions of dopant atoms in solid state

    International Nuclear Information System (INIS)

    Valim, J.B.; Nascimento, R.L.G. do; Collins, C.H.; Collins, K.E.

    1986-01-01

    The study of the chemistry of 'dopant' 51 Cr(III) atoms in crystalline Cr(VI) compounds began as a sub-field of Hot Atom Chemistry. We shall review the attempts to use 'dopant' chromium-51 atoms as surrogate chromium recoil atoms with the special property of having a low-energy, recoil-dam-age-free history. These dopant atoms have shown behaviors very similar to those of high energy recoil 51 Gr atoms, thus offering little hope of learning about special damage site structures and reactions by behavioral differences. Recent work has shown that at least some of the 'dopant' 51 Cr(III) is present as a second, non-chromate solid phase in 'doped crystal' experiments. Monodisperse 51 Cr(OH) 3 particles mixed with pure K 2 CrO 4 are very reactive. (Author) [pt

  5. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    International Nuclear Information System (INIS)

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-01-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage (C-V) measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with 60 Co γ-rays at 100 C and zero bias, where the dopant deactivation is significant

  6. Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro.

    Science.gov (United States)

    Linden, Tim; Buckman, Benjamin J

    2018-03-23

    Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models of hadronic γ-ray production, and has been named the "TeV excess." We show that TeV emission from pulsars naturally explains this excess. Recent observations have detected "TeV halos" surrounding pulsars that are either nearby or particularly luminous. Extrapolating this emission to the full population of Milky Way pulsars indicates that the ensemble of "subthreshold" sources necessarily produces bright TeV emission diffusively along the Milky Way plane. Models indicate that the TeV halo γ-ray flux exceeds that from hadronic γ rays above an energy of ∼500  GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.

  7. Electrical and optical properties of SnEuTe and SnSrTe films

    Science.gov (United States)

    Ishida, Akihiro; Tsuchiya, Takuro; Yamada, Tomohiro; Cao, Daoshe; Takaoka, Sadao; Rahim, Mohamed; Felder, Ferdinand; Zogg, Hans

    2010-06-01

    The SnTe, Sn1-xEuxTe and Sn1-xSrxTe (x<0.06) films were prepared by hot wall epitaxy. The ternary alloy films prepared in cation rich condition had hole concentration around 1×1019 cm-3 with high mobility exceeding 2000 cm2/V s at room temperature. Optical transmission spectra were also measured in the temperature range from 100 to 400 K and compared with theoretical calculations. Optical transmission spectra of the SnTe were simulated successfully assuming bumped band edge structures. A band inversion model was proposed for the Sn1-xEuxTe and Sn1-xSrxTe systems, and the optical transmission spectra were also simulated successfully assuming the band inversion model.

  8. Materials properties of hafnium and zirconium silicates: Metal interdiffusion and dopant penetration studies

    Science.gov (United States)

    Quevedo Lopez, Manuel Angel

    Hafnium and Zirconium based gate dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in CMOS processing. Furthermore, the addition of nitrogen into this pseudo-binary alloy has been shown to improve their thermal stability, electrical properties, and reduce dopant penetration. Because CMOS processing requires high temperature anneals (up to 1050°C), it is important to understand the diffusion properties of any metal associated with the gate dielectric in silicon at these temperatures. In addition, dopant penetration from the doped polysilicon gate into the Si channel at these temperatures must also be studied. Impurity outdiffusion (Hf, Zr) from the dielectric, or dopant (B, As, P) penetration through the dielectric into the channel region would likely result in deleterious effects upon the carrier mobility. In this dissertation extensive thermal stability studies of alternate gate dielectric candidates ZrSixOy and HfSixO y are presented. Dopant penetration studies from doped-polysilicon through HfSixOy and HfSixOyNz are also presented. Rutherford Backscattering Spectroscopy (RBS), Heavy Ion RBS (HI-RBS), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HR-TEM), and Time of Flight and Dynamic Secondary Ion Mass Spectroscopy (ToF-SIMS, D-SIMS) methods were used to characterize these materials. The dopant diffusivity is calculated by modeling of the dopant profiles in the Si substrate. In this disseration is reported that Hf silicate films are more stable than Zr silicate films, from the metal interdiffusion point of view. On the other hand, dopant (B, As, and P) penetration is observed for HfSixO y films. However, the addition of nitrogen to the Hf - Si - O systems improves the dopant penetration properties of the resulting HfSi xOyNz films.

  9. Dopant-induced ignition of helium nanoplasmas—a mechanistic study

    Science.gov (United States)

    Heidenreich, Andreas; Schomas, Dominik; Mudrich, Marcel

    2017-12-01

    Helium (He) nanodroplets irradiated by intense near-infrared laser pulses form a nanoplasma by avalanche-like electron impact ionizations (EIIs) even at lower laser intensities where He is not directly field ionized, provided that the droplets contain a few dopant atoms which provide seed electrons for the EII avalanche. In this theoretical paper on calcium and xenon doped He droplets we elucidate the mechanism which induces ionization avalanches, termed ignition. We find that the partial loss of seed electrons from the activated droplets starkly assists ignition, as the Coulomb barrier for ionization of helium is lowered by the electric field of the dopant cations, and this deshielding of the cation charges enhances their electric field. In addition, the dopant ions assist the acceleration of the seed electrons (slingshot effect) by the laser field, supporting EIIs of He and also causing electron loss by catapulting electrons away. The dopants’ ability to lower the Coulomb barriers at He as well as the slingshot effect decrease with the spatial expansion of the dopant, causing a dependence of the dopants’ ignition capability on the dopant mass. Here, we develop criteria (impact count functions) to assess the ignition capability of dopants, based on (i) the spatial overlap of the seed electron cloud with the He atoms and (ii) the overlap of their kinetic energy distribution with the distribution of Coulomb barrier heights at He. The relatively long time delays between the instants of dopant ionization and ignition (incubation times) for calcium doped droplets are determined to a large extent by the time it takes to deshield the dopant ions.

  10. Dopant profiling based on scanning electron and helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Augustus K.W., E-mail: kwac2@cam.ac.uk [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Boden, Stuart A. [University of Southampton, Electronics and Computer Science, Highfield, Southampton SO17 1BJ (United Kingdom)

    2016-02-15

    In this paper, we evaluate and compare doping contrast generated inside the scanning electron microscope (SEM) and scanning helium ion microscope (SHIM). Specialised energy-filtering techniques are often required to produce strong doping contrast to map donor distributions using the secondary electron (SE) signal in the SEM. However, strong doping contrast can be obtained from n-type regions in the SHIM, even without energy-filtering. This SHIM technique is more sensitive than the SEM to donor density changes above its sensitivity threshold, i.e. of the order of 10{sup 16} or 10{sup 17} donors cm{sup −3} respectively on specimens with or without a p–n junction; its sensitivity limit is well above 2×10{sup 17} acceptors cm{sup −3} on specimens with or without a p–n junction. Good correlation is found between the widths and slopes of experimentally measured doping contrast profiles of thin p-layers and the calculated widths and slopes of the potential energy distributions across these layers, at a depth of 1 to 3 nm and 5 to 10 nm below the surface in the SHIM and the SEM respectively. This is consistent with the mean escape depth of SEs in silicon being about 1.8 nm and 7 nm in the SHIM and SEM respectively, and we conclude that short escape depth, low energy SE signals are most suitable for donor profiling. - Highlights: • Strong doping contrast from n-type regions in the SHIM without energy-filtering. • Sensitivity limits are established of the SHIM and SEM techniques. • We discuss the impact of SHIM imaging conditions on quantitative dopant profiling. • Doping contrast stems from different surface layer thicknesses in the SHIM and SEM.

  11. Ab initio calculation of chromium oxide containing Ti dopant

    International Nuclear Information System (INIS)

    Maldonado, Frank; Novillo, Corina; Stashans, Arvids

    2012-01-01

    Highlights: ► Microstructure changes in chromium oxide due to the Ti doping. ► Discovery of magnetism in Ti-doped α-Cr 2 O 3 crystal. ► Explanation of the origin of n-type electrical conductivity. ► Detailed analysis of electronic properties and density of states. ► As to authors’ knowledge, Ti-doped crystal is studied for the first time by the DFT. - Abstract: First-principles computations based on the density functional theory within the generalised gradient approximation and introduced intra-atomic interaction term for strongly correlated electrons (DFT + U method) has been used in this work. Ti impurity doping in the α-Cr 2 O 3 crystal has been carried out considering single defect model within the periodic crystalline structure. Atomic displacements, Bader charges on atoms have been computed showing that Ti dopant converts the chemical bonding in its neighbourhood into more ionic one. The defect-local microstructure is such as there exist general tendency of atomic rearrangements away with respect to the Ti imperfection. It is found that defect incorporation produces some local changes upon the band structure of the material and also induces a metallic state. That implies n-type electrical conductivity in the Ti-doped α-Cr 2 O 3 crystals and relates our work directly to a number of experimental studies in this area. Our results provide evidence over change in magnetic moments in the vicinity of defect, which means that the chromium oxide doped with Ti impurity might not act as an antiferromagnetic substance.

  12. Ab initio calculation of chromium oxide containing Ti dopant

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, Frank [Grupo de Fisicoquimica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Novillo, Corina [Escuela de Ingenieria Quimica, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador); Stashans, Arvids, E-mail: arvids@utpl.edu.ec [Grupo de Fisicoquimica de Materiales, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)

    2012-01-17

    Highlights: Black-Right-Pointing-Pointer Microstructure changes in chromium oxide due to the Ti doping. Black-Right-Pointing-Pointer Discovery of magnetism in Ti-doped {alpha}-Cr{sub 2}O{sub 3} crystal. Black-Right-Pointing-Pointer Explanation of the origin of n-type electrical conductivity. Black-Right-Pointing-Pointer Detailed analysis of electronic properties and density of states. Black-Right-Pointing-Pointer As to authors' knowledge, Ti-doped crystal is studied for the first time by the DFT. - Abstract: First-principles computations based on the density functional theory within the generalised gradient approximation and introduced intra-atomic interaction term for strongly correlated electrons (DFT + U method) has been used in this work. Ti impurity doping in the {alpha}-Cr{sub 2}O{sub 3} crystal has been carried out considering single defect model within the periodic crystalline structure. Atomic displacements, Bader charges on atoms have been computed showing that Ti dopant converts the chemical bonding in its neighbourhood into more ionic one. The defect-local microstructure is such as there exist general tendency of atomic rearrangements away with respect to the Ti imperfection. It is found that defect incorporation produces some local changes upon the band structure of the material and also induces a metallic state. That implies n-type electrical conductivity in the Ti-doped {alpha}-Cr{sub 2}O{sub 3} crystals and relates our work directly to a number of experimental studies in this area. Our results provide evidence over change in magnetic moments in the vicinity of defect, which means that the chromium oxide doped with Ti impurity might not act as an antiferromagnetic substance.

  13. Influence of Ni-dopant on the properties of synthetic goethite

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar; Popovic, Stanko

    2005-01-01

    The influence of Ni-dopant on the properties of α-FeOOH was investigated by XRD, FT-IR, 57 Fe Moessbauer spectroscopy and transmission electron microscopy. α-FeOOH was synthesized at a highly alkaline pH by precipitation from the FeCl 3 solution with the addition of tetramethylammonium hydroxide and autoclaving at 160 o C. The samples doped with Ni 2+ ions were precipitated in the same way, but in the presence of varying concentrations of NiCl 2 . Solid solutions, having the structure of α-FeOOH, were observed in samples with the Ni/Fe ratio up to 0.05. Upon increasing the amount of Ni-dopant the XRD lines were gradually broadened. The sample with the ratio Ni/Fe=0.10 showed NiFe 2 O 4 , besides the dominant phase having the structure type of α-FeOOH. Shifts of IR bands at 892 and 796cm -1 were not observed in all samples doped with Ni. For the ratio Ni/Fe=0.10, the IR bands centered at 631 and 404cm -1 were significantly broadened. RT Moessbauer spectrum of undoped α-FeOOH and Ni-doped α-FeOOH showed distributions of hyperfine magnetic fields. B hf decreased from 35.1T for an undoped α-FeOOH to 32.1T for α-FeOOH containing Ni 2+ ions (Ni/Fe=0.05). The saturation of the α-FeOOH structure with Ni 2+ ions in amounts higher than ∼5mol% was also observed by Moessbauer spectroscopy. The particle size (length) of acicular α-FeOOH particles with a maximum in the interval 180-220nm was slightly decreased with Ni-doping, but the distribution of the length/width ratio showed no change, having a maximum at 4-5. TEM photographs additionally showed small populations of cubic-shaped or pseudocubic particles of ∼10nm in size for the ratio Ni/Fe=0.05 and about 10-20nm in size for the ratio Ni/Fe=0.10. These particles were assigned to NiFe 2 O 4

  14. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    Energy Technology Data Exchange (ETDEWEB)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S. [U.S. Army Research Laboratory, WMRD, Aberdeen Proving Ground, Maryland 21005 (United States); Shanholtz, E. R. [ORISE, Belcamp, Maryland 21017 (United States)

    2016-07-14

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  15. Transition Metal Dopants Essential for Producing Ferromagnetism in Metal Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Lydia; Thurber, Aaron P.; Anghel, Josh; Sabetian, Maryam; Engelhard, Mark H.; Tenne, D.; Hanna, Charles; Punnoose, Alex

    2010-08-13

    Recent claims that ferromagnetism can be produced in nanoparticles of metal oxides without the presence of transition metal dopants has been refuted in this work by investigating 62 high quality well-characterized nanoparticle samples of both undoped and Fe doped (0-10% Fe) ZnO. The undoped ZnO nanoparticles showed zero or negligible magnetization, without any dependence on the nanoparticle size. However, chemically synthesized Zn₁₋xFexO nanoparticles showed clear ferromagnetism, varying systematically with Fe concentration. Furthermore, the magnetic properties of Zn₁₋xFexO nanoparticles showed strong dependence on the reaction media used to prepare the samples. The zeta potentials of the Zn₁₋xFexO nanoparticles prepared using different reaction media were significantly different, indicating strong differences in the surface structure. Electron paramagnetic resonance studies clearly showed that the difference in the ferromagnetic properties of Zn₁₋xFexO nanoparticles with different surface structures originate from differences in the fraction of the doped Fe³⁺ ions that are coupled ferromagnetically.

  16. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    International Nuclear Information System (INIS)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.

    2016-01-01

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  17. Dopant-free twinning superlattice formation in InSb and InP nanowires

    International Nuclear Information System (INIS)

    Yuan, Xiaoming; Guo, Yanan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati; He, Jun

    2017-01-01

    Periodic arrangement of twin planes creates a controllable polytype that can affect both the electronic and optical properties of nanowires. The approach that is most used for inducing twinning superlattice (TSL) formation in III-V nanowires is introducing impurity dopants during growth. Here, we demonstrate that controlling the growth parameters is sufficient to produce regular twinning planes in Au-catalysed InSb and InP nanowires. Our results show that TSL formation in InSb nanowires only exists in a very narrow growth window. We suggest that growth conditions induce a high concentration of In (or Sb) in the Au droplet, which plays a similar role to that of surfactant impurities such as Zn, and increases the droplet wetting angle to yield a geometry that is favorable for TSL formation. The demonstration of TSL structure in InSb and InP nanowires by controlling the input of In (or Sb) further enhances fundamental understanding of TSL formation in III-V nanowires and allows us to tune the properties of these nanowires by crystal phase engineering. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Dopant-free twinning superlattice formation in InSb and InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaoming [School of Physics and Electronics, Hunan Key Laboratory for Supermicrostructure and Ultrafast Process, Central South University, Changsha, Hunan (China); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); Guo, Yanan; Caroff, Philippe; Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); He, Jun [School of Physics and Electronics, Hunan Key Laboratory for Supermicrostructure and Ultrafast Process, Central South University, Changsha, Hunan (China)

    2017-11-15

    Periodic arrangement of twin planes creates a controllable polytype that can affect both the electronic and optical properties of nanowires. The approach that is most used for inducing twinning superlattice (TSL) formation in III-V nanowires is introducing impurity dopants during growth. Here, we demonstrate that controlling the growth parameters is sufficient to produce regular twinning planes in Au-catalysed InSb and InP nanowires. Our results show that TSL formation in InSb nanowires only exists in a very narrow growth window. We suggest that growth conditions induce a high concentration of In (or Sb) in the Au droplet, which plays a similar role to that of surfactant impurities such as Zn, and increases the droplet wetting angle to yield a geometry that is favorable for TSL formation. The demonstration of TSL structure in InSb and InP nanowires by controlling the input of In (or Sb) further enhances fundamental understanding of TSL formation in III-V nanowires and allows us to tune the properties of these nanowires by crystal phase engineering. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Carrier transport assisted by dopants in doped poly(N-vinylcarbozole) light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaohong [Institute of Optoelectronic Technology, Bejing Jiaotong University, Beijing 100044 (China); Liu Ming [Institute of Optoelectronic Technology, Bejing Jiaotong University, Beijing 100044 (China); Xu Zheng [Institute of Optoelectronic Technology, Bejing Jiaotong University, Beijing 100044 (China); Hou Yanbing [Institute of Optoelectronic Technology, Bejing Jiaotong University, Beijing 100044 (China); Teng Feng [Institute of Optoelectronic Technology, Bejing Jiaotong University, Beijing 100044 (China); Xu Xurong [Institute of Optoelectronic Technology, Bejing Jiaotong University, Beijing 100044 (China)

    2004-04-07

    We have investigated the transient electroluminescence (EL) onset of the double-layer light-emitting devices made from poly(N-vinylcarbozole) (PVK) doped with 4-(dicyanomethylene)-2-t-butyl-6(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris(8-hydroxy-quinoline) aluminium (Alq{sub 3}). For the double-layered device in which PVK was doped with 0.1 wt% DCJTB, the EL onset of PVK lags that of DCJTB and Alq{sub 3}, while the EL onset of DCJTB and Alq{sub 3} is simultaneous. However, the EL emission of the double-layered device of PVK/Alq{sub 3} originates only from Alq{sub 3}. The results show that DCJTB dopants can not only help to tunnel electrons from Alq{sub 3} zone to PVK but can also assist electrons transfer in PVK under high electric field by hopping between DCJTB molecules or from DCJTB to PVK sites at a low doping concentration of 0.1 wt%. When the DCJTB doping concentration is 4.0 wt%, the EL onset of Alq{sub 3} lags that of DCJTB. The difference in the EL onsets of DCJTB, Alq{sub 3} and PVK is attributed to the slow build-up of the internal space charge in the vicinity of the interface between PVK and Alq{sub 3}. The electron potential difference of the interface between Alq{sub 3} and PVK doped by DCJTB can be adjusted by changing the DCJTB doping concentration in double-layer devices.

  20. First-principles study on band structures and electrical transports of doped-SnTe

    Directory of Open Access Journals (Sweden)

    Xiao Dong

    2016-06-01

    Full Text Available Tin telluride is a thermoelectric material that enables the conversion of thermal energy to electricity. SnTe demonstrates a great potential for large-scale applications due to its lead-free nature and the similar crystal structure to PbTe. In this paper, the effect of dopants (i.e., Mg, Ca, Sr, Ba, Eu, Yb, Zn, Cd, Hg, and In on the band structures and electrical transport properties of SnTe was investigated based on the first-principles density functional theory including spin–orbit coupling. The results show that Zn and Cd have a dominant effect of band convergence, leading to power factor enhancement. Indium induces obvious resonant states, while Hg-doped SnTe exhibits a different behavior with defect states locating slightly above the Fermi level.

  1. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S., E-mail: miaoxs@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-01-19

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  2. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity.

    Science.gov (United States)

    Hwang, Sunbin; Potscavage, William J; Yang, Yu Seok; Park, In Seob; Matsushima, Toshinori; Adachi, Chihaya

    2016-10-26

    Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 μW m -1 K -2 with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.

  3. Microscopic effects of Dy doping in the topological insulator Bi2Te3

    Science.gov (United States)

    Duffy, L. B.; Steinke, N.-J.; Krieger, J. A.; Figueroa, A. I.; Kummer, K.; Lancaster, T.; Giblin, S. R.; Pratt, F. L.; Blundell, S. J.; Prokscha, T.; Suter, A.; Langridge, S.; Strocov, V. N.; Salman, Z.; van der Laan, G.; Hesjedal, T.

    2018-05-01

    Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI's exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive. Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.

  4. Research into the electrical property variation of undoped CdTe and ZnTe crystals grown under Te-rich conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yadong, E-mail: xyd220@nwpu.edu.cn; Liu, Hang; He, Yihui; Yang, Rui; Luo, Lin; Jie, Wanqi

    2014-11-05

    Highlights: • Conductivity type and resistivity of undoped Te-rich ZnTe and CdTe are different. • Te{sub i} and V{sub Zn} as the dominant defects account for the p-type low resistivity ZnTe. • Te{sub Cd} as the principle defect leading to the light n-type high resistivity CdTe. • DAP and eA peaks dominate the luminescence with their intensities anti-correlated. - Abstract: Both undoped ZnTe and CdTe bulk single crystals are grown under Te-saturated conditions from the solution and melt, respectively. To give an insight into the variation of the electrical properties, the defects structures in both tellurides are discussed. According to the actual growth velocities and the entire cooling history, tellurium interstitials (Te{sub i}) and Zinc vacancies (V{sub Zn}) are proposed as the dominant grown-in defects, account for the low resistivity of p-type ZnTe. However, relatively high pulling rates and slow cooling-down processes result in tellurium anti-sites (Te{sub Cd}) as the principle grown-in defects, leading to the high resistivity of light n-type CdTe. Further low-temperature (8.6 K) photoluminescence spectra of both tellurides are obtained. The donor–acceptor pair (DAP) and recombination of free electron to neutral acceptor (eA) dominate the luminescence, however, with their intensities are anti-correlated. eA is superior to DAP in undoped Te-rich ZnTe, suggests a high concentration of Te{sub i} or V{sub Zn}. On the contrary, DAP is the principal emission for undoped Te-rich CdTe. In addition, V-line is clearly identified in undoped Te-rich ZnTe, which possibly associated with V{sub Zn} or close Frenkel pair V{sub Zn}–Zn{sub i}.

  5. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Directory of Open Access Journals (Sweden)

    Thi Dep Ha

    2016-04-01

    Full Text Available Phononic crystals (PnCs and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1 a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2 influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  6. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Thi Dep, E-mail: hathidep@yahoo.com [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City (Viet Nam); Bao, JingFu, E-mail: baojingfu@uestc.edu.cn [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China)

    2016-04-15

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  7. Cumulative effects of Te precipitates in CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Bolotnikov, A.E.; Camarda, G.S.; Carini, G.A.; Cui, Y.; Li, L.; James, R.B.

    2007-01-01

    High-quality radiation detector-grade CdZnTe material is free from large-scale defects, such as grain boundaries, twins, and large Te or Cd inclusions (>50 μm), although it usually contains high concentrations of uniformly distributed Te inclusions and precipitates, typically of ∼20-μm-diameter size or smaller. We address the effects of the small-size Te precipitates on charge collection in CZT detectors, the significance of which is not yet well characterized. The strong correlation that we earlier found between the high-resolution X-ray maps and IR images proved that even small Te precipitates can trap substantial fractions of charge from the electron cloud. In this work, we modeled the transport of an electron cloud across idealized CZT devices containing Te precipitates to demonstrate that their cumulative effect can explain the degradation of energy resolution and the detection efficiency losses observed in actual CZT devices. Due to lack of experimental data on how the Te precipitates interact with an electron cloud, we developed a simplified (phenomenological) model based on the geometrical aspects of the problem. Despite its simplicity, the model correctly reproduced many experimental facts and gave quantitative predictions on the extent to which the presence of Te precipitates and inclusions can be tolerated. The broadening of the electron cloud due to repulsion and diffusion is at the core of the problem, making even low concentrations of small precipitates important in the device's performance

  8. A computational study on the energy bandgap engineering in performance enhancement of CdTe thin film solar cells

    Directory of Open Access Journals (Sweden)

    Ameen M. Ali

    Full Text Available In this study, photovoltaic properties of CdTe thin film in the configuration of n-SnO2/n-CdS/p-CdTe/p-CdTe:Te/metal have been studied by numerical simulation software named “Analysis of Microelectronic and Photonic Structure” (AMPS-1D. A modified structure for CdTe thin film solar cell has been proposed by numerical analysis with the insertion of a back contact buffer layer (CdTe:Te. This layer can serve as a barrier that will decelerate the copper diffusion in CdTe solar cell. Four estimated energy bandgap relations versus the Tellurium (Te concentrations and the (CdTe:Te layer thickness have been examined thoroughly during simulation. Correlation between energy bandgap with the CdTe thin film solar cell performance has also been established. Keywords: Numerical modelling, CdTe thin film, Solar cell, AMPS-1D, Bandgap

  9. Determination of equilibrium phase composition in the Hg-HgTe-CdTe system by ''dew point'' method

    International Nuclear Information System (INIS)

    Vanyukov, A.V.; Krotov, I.I.; Ermakov, A.I.

    1978-01-01

    Using the ''dew point'' method a study has been made of the equilibrium composition of the solid and liquid phases in the Hg-HgTe-CdTe system at 404, 435 and 454 deg C. It has been pointed out that crystallization of cadmium-rich solid solutions of Cdsub(x)Hgsub(1-x) Te takes place from a liquid phase with a much higher concentration of Hg. The activity of Hg in the liquid phase increases along the liquidus isotherm in the direction from section Hg-HgTe to section HgCdTe in accordance with the increase of its concentration. An increase in activity of Hg in the solid phase of Cdsub(x)Hgsub(1-x)Te has been noted with the reduction of its concentration

  10. Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures.

    Science.gov (United States)

    Michałowski, Paweł Piotr; Złotnik, Sebastian; Sitek, Jakub; Rosiński, Krzysztof; Rudziński, Mariusz

    2018-05-23

    Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail. In this work we have employed secondary ion mass spectrometry to study the diffusion of magnesium in GaN/AlGaN structures. We show that magnesium has a strong tendency to form Mg-H complexes which immobilize Mg atoms and restrain their diffusion. However, these complexes are not present in samples post-growth annealed in an oxygen atmosphere or Al-rich AlGaN structures which naturally have a high oxygen concentration. In these samples, more Mg atoms are free to diffuse and thus the average diffusion length is considerably larger than for a sample annealed in an inert atmosphere.

  11. Magnetic properties of ZnO nanowires with Li dopants and Zn vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong; Cai, Ningning [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China); Yang, Chuanghua [School of Physics and Telecommunication Engineering, Shanxi University of Technology (SNUT), Hanzhong 723001, Shanxi (China); Chen, Jun [Beijing Applied Physics and Computational Mathematics, Beijing 100088 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China)

    2016-04-30

    The electronic and magnetic properties of ZnO nanowire with Li dopants and vacancies have been investigated using first-principles density functional theory. It is found that the Zn vacancy can induce magnetism while increasing the formation energy of the system. However, the calculated results indicate that the introduction of Li-dopants will reduce the formation energy of system. We also have studied the magnetic couplings with vacancies as well as their corresponding configurations with Li-dopants for four configurations of ZnO nanowires. The results show that ferromagnetic properties can be improved/reversed after the introduction of Li-dopants. Ferromagnetic mechanism is originated from the fierce p–p hybridization of O near the Fermi level. We find that ferromagnetism of Li-doped ZnO nanowires with Zn vacancies can be realized at room temperature and they are promising spintronic materials. - Highlights: • Li-dopants will reduce the formation energy of ZnO nanowires with Zn vacancy. • The fierce p–p hybridization of O near Fermi level is responsible for FM properties. • Li-doped ZnO–V{sub Zn} nanowire is a promising FM semiconductor material.

  12. Effects of small-angle mistilts on dopant visibility in ADF-STEM imaging of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Held, Jacob T.; Duncan, Samuel; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu

    2017-06-15

    Highlights: • ADF-STEM is powerful technique for 3D location of substitutionally doped atoms. • The effects of specimen mistilt on ADF-STEM imaging of doped atoms are evaluated. • Visibility changes over 0–30 mrad mistilts are large enough to preclude 3D dopant location. • Dopant visibility is a strong function of specimen mistilt and cannot be ignored. - Abstract: Quantitative ADF-STEM imaging paired with image simulations has proven to be a powerful technique for determining the three dimensional location of substitutionally doped atoms in thin films. Expansion of this technique to lightly-doped nanocrystals requires an understanding of the influence of specimen mistilt on dopant visibility due to the difficulty of accurate orientation determination in such systems as well as crystal movement under the beam. In this study, the effects of specimen mistilt on ADF-STEM imaging are evaluated using germanium-doped silicon nanocrystals as model systems. It is shown that dopant visibility is a strong function of specimen mistilt, and the accuracy of specimen orientation is an important factor in the analysis of three-dimensional dopant location, but the sensitivity to mistilt can be weakened by increasing the STEM probe convergence angle and optimizing ADF detector inner angle.

  13. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  14. Non-metallic dopant modulation of conductivity in substoichiometric tantalum pentoxide: A first-principles study

    Science.gov (United States)

    Bondi, Robert J.; Fox, Brian P.; Marinella, Matthew J.

    2017-06-01

    We apply density-functional theory calculations to predict dopant modulation of electrical conductivity (σo) for seven dopants (C, Si, Ge, H, F, N, and B) sampled at 18 quantum molecular dynamics configurations of five independent insertion sites into two (high/low) baseline references of σo in amorphous Ta2O5, where each reference contains a single, neutral O vacancy center (VO0). From this statistical population (n = 1260), we analyze defect levels, physical structure, and valence charge distributions to characterize nanoscale modification of the atomistic structure in local dopant neighborhoods. C is the most effective dopant at lowering Ta2Ox σo, while also exhibiting an amphoteric doping behavior by either donating or accepting charge depending on the host oxide matrix. Both B and F robustly increase Ta2Ox σo, although F does so through elimination of Ta high charge outliers, while B insertion conversely creates high charge O outliers through favorable BO3 group formation, especially in the low σo reference. While N applications to dope and passivate oxides are prevalent, we found that N exacerbates the stochasticity of σo we sought to mitigate; sensitivity to the N insertion site and some propensity to form N-O bond chemistries appear responsible. We use direct first-principles predictions of σo to explore feasible Ta2O5 dopants to engineer improved oxides with lower variance and greater repeatability to advance the manufacturability of resistive memory technologies.

  15. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications

    Directory of Open Access Journals (Sweden)

    Ting-Mao Chou

    2016-02-01

    Full Text Available Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future.

  16. Two-dimensional dopant profiling by electrostatic force microscopy using carbon nanotube modified cantilevers

    International Nuclear Information System (INIS)

    Chin, S.-C.; Chang, Y.-C.; Chang, C.-S.; Tsong, T T; Hsu, Chen-Chih; Wu, Chih-I; Lin, W-H; Woon, W-Y; Lin, L-T; Tao, H-J

    2008-01-01

    A two-dimensional (2D) dopant profiling technique is demonstrated in this work. We apply a unique cantilever probe in electrostatic force microscopy (EFM) modified by the attachment of a multiwalled carbon nanotube (MWNT). Furthermore, the tip apex of the MWNT was trimmed to the sharpness of a single-walled carbon nanotube (SWNT). This ultra-sharp MWNT tip helps us to resolve dopant features to within 10 nm in air, which approaches the resolution achieved by ultra-high vacuum scanning tunnelling microscopy (UHV STM). In this study, the CNT-probed EFM is used to profile 2D buried dopant distribution under a nano-scale device structure and shows the feasibility of device characterization for sub-45 nm complementary metal-oxide-semiconductor (CMOS) field-effect transistors

  17. Theory of space charge limited currents in films and nanowires with dopants

    Science.gov (United States)

    Zhang, Xiaoguang; Pantelides, Sokrates

    2015-03-01

    We show that proper description of the space charge limited currents (SCLC) in a homogeneous bulk material must account fully for the effect of the dopants and the interplay between dopants and traps. The sharp rise in the current at the trap-filled-limit (TFL) is partially mitigated by the dopant energy levels and the Frenkel effect, namely the lowering of the ionization energy by the electric field, which is screened by the free carriers. In nanowires, lack of effective screening causes the trap occupation at small biases to reach a high level comparable to the TFL in bulk. This explains the high current density in SCLCs observed in nanowires. This work is supported by the LDRD program at ORNL. Portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  18. An extended five-stream model for diffusion of ion-implanted dopants in monocrystalline silicon

    International Nuclear Information System (INIS)

    Khina, B.B.

    2007-01-01

    Low-energy high-dose ion implantation of different dopants (P, Sb, As, B and others) into monocrystalline silicon with subsequent thermal annealing is used for the formation of ultra-shallow p-n junctions in modern VLSI circuit technology. During annealing, dopant activation and diffusion in silicon takes place. The experimentally observed phenomenon of transient enhanced diffusion (TED), which is typically ascribed to the interaction of diffusing species with non-equilibrium point defects accumulated in silicon due to ion damage, and formation of small clusters and extended defects, hinders further down scaling of p-n junctions in VLSI circuits. TED is currently a subject of extensive experimental and theoretical investigation in many binary and multicomponent systems. However, the state-of-the-art mathematical models of dopant diffusion, which are based on the so-called 'five-stream' approach, and modern TCAD software packages such as SUPREM-4 (by Silvaco Data Systems, Ltd.) that implement these models encounter severe difficulties in describing TED. Solving the intricate problem of TED suppression and development of novel regimes of ion implantation and rapid thermal annealing is impossible without elaboration of new mathematical models and computer simulation of this complex phenomenon. In this work, an extended five-stream model for diffusion in silicon is developed which takes into account all possible charge states of point defects (vacancies and silicon self-interstitials) and diffusing pairs 'dopant atom-vacancy' and 'dopant atom-silicon self-interstitial'. The model includes the drift terms for differently charged point defects and pairs in the internal electric field and the kinetics of interaction between unlike 'species' (generation and annihilation of pairs and annihilation of point defects). Expressions for diffusion coefficients and numerous sink/source terms that appear in the non-linear, non-steady-state reaction-diffusion equations are derived

  19. Effect of rare earth dopants on structural and mechanical properties of nanoceria synthesized by combustion method

    International Nuclear Information System (INIS)

    Akbari-Fakhrabadi, A.; Meruane, V.; Jamshidijam, M.; Gracia-Pinilla, M.A.; Mangalaraja, R.V.

    2016-01-01

    Structural characteristics of combustion synthesized, calcined and densified pure and doped nanoceria with tri-valent cations of Er, Y, Gd, Sm and Nd were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The results showed that the as-synthesized and calcined nanopowders were mesoporous and calculated lattice parameters were close to theoretical ion-packing model. The effect of dopants on elastic modulus, microhardness and fracture toughness of sintered pure and doped ceria were investigated. It was observed that tri-valent cation dopants increased the hardness of the ceria, whereas the fracture toughness and elastic modulus were decreased.

  20. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    International Nuclear Information System (INIS)

    Amos, N.A.; Anderson, D.F.

    1992-10-01

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/π ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the Dφ uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/π ratio

  1. Defect evolution and dopant activation in laser annealed Si and Ge

    DEFF Research Database (Denmark)

    Cristiano, F.; Shayesteh, M.; Duffy, R.

    2016-01-01

    Defect evolution and dopant activation are intimately related to the use of ion implantation and annealing, traditionally used to dope semiconductors during device fabrication. Ultra-fast laser thermal annealing (LTA) is one of the most promising solutions for the achievement of abrupt and highly...... doped junctions. In this paper, we report some recent investigations focused on this annealing method, with particular emphasis on the investigation of the formation and evolution of implant/anneal induced defects and their impact on dopant activation. In the case of laser annealed Silicon, we show...

  2. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  3. PbSnTe injection lasers

    International Nuclear Information System (INIS)

    Oron, M.

    1982-03-01

    Carrier confined homostructure PbSnTe lasers were developed and investigated. In this laser structure good electrical and optical confinement can be achieved by a suitable carrier concentration profile. The advantage of these lasers over PbSnTe heterostructure lasers is the perfect lattice matching between the various layers of the structure. The desired carrier concentration profile was achieved by the growth of several epitaxial layers by the LPE method on a suitable substrate. The performance of these lasers was compared with that of previous homostructure and double heterostructure lasers. (H.K.)

  4. Self-Assembled Formation of Well-Aligned Cu-Te Nano-Rods on Heavily Cu-Doped ZnTe Thin Films

    Science.gov (United States)

    Liang, Jing; Cheng, Man Kit; Lai, Ying Hoi; Wei, Guanglu; Yang, Sean Derman; Wang, Gan; Ho, Sut Kam; Tam, Kam Weng; Sou, Iam Keong

    2016-11-01

    Cu doping of ZnTe, which is an important semiconductor for various optoelectronic applications, has been successfully achieved previously by several techniques. However, besides its electrical transport characteristics, other physical and chemical properties of heavily Cu-doped ZnTe have not been reported. We found an interesting self-assembled formation of crystalline well-aligned Cu-Te nano-rods near the surface of heavily Cu-doped ZnTe thin films grown via the molecular beam epitaxy technique. A phenomenological growth model is presented based on the observed crystallographic morphology and measured chemical composition of the nano-rods using various imaging and chemical analysis techniques. When substitutional doping reaches its limit, the extra Cu atoms favor an up-migration toward the surface, leading to a one-dimensional surface modulation and formation of Cu-Te nano-rods, which explain unusual observations on the reflection high energy electron diffraction patterns and apparent resistivity of these thin films. This study provides an insight into some unexpected chemical reactions involved in the heavily Cu-doped ZnTe thin films, which may be applied to other material systems that contain a dopant having strong reactivity with the host matrix.

  5. Process Development and Basic Studies of Electrochemically Deposited CdTe-Based Solar Cells: Final Technical Report, 15 May 1998 - 17 August 2001

    Energy Technology Data Exchange (ETDEWEB)

    Kaydanov, V. I.; Ohno, T. R.

    2002-03-01

    This report describes the long-term research and development issues related to polycrystalline thin-film solar cells. Our general research approach is based on combining activities aimed at improvement of cell performance and stability with activities aimed at increasing our fundamental understanding of the properties of materials making up the cells: CdTe, CdS, multi-layer back-contact, and transparent conducting oxide (TCO) front-contact. We emphasize the relation between structural and electronic material properties and various processing procedures, as well as the microscopic mechanisms responsible for the cell performance and its degradation. There is a lack of knowledge and understanding of basic issues behind the CdTe/CdS cell performance and stability, such as the nature and electronic properties of impurities and defects that control the majority-carrier concentration, mechanisms of the dopant compensation, recombination centers, their nature and properties, diffusion, electro migration and transformation of defects under various processing, stress, and operating conditions. We believe that better basic understanding of the specific influence of polycrystallinity, especially for fine-grain materials characteristic of CdTe-based cells, is now one of the most important issues we must address. We need to clarify the role of grain boundaries in forming the film electronic properties, as well as those of the p-n junction. It is important to study and understand the influence of the grain boundaries on the spatial distribution and migration of impurities and electrically active defects. To fulfill these tasks, one needs to develop new methods and techniques (or adjust existing ones) for material characterization, as well as develop more sophisticated approaches to data analysis and modeling.

  6. Impact of dopant profiles on the end of range defects for low energy germanium preamorphized silicon

    International Nuclear Information System (INIS)

    Camillo-Castillo, R.A.; Law, M.E.; Jones, K.S.

    2004-01-01

    As the industry continues to aggressively scale CMOS technology, the shift to lower energy ion implantation becomes essential. The consequent shallower amorphous layers result in dopant profiles that are in closer proximity to the end of range (EOR) damage and therefore a better understanding of the interaction between the dopant atoms and the EOR is required. A study is conducted on the influence of dopant profiles on the behavior of the EOR defects. Czochralski-grown silicon wafers are preamorphized with 1 x 10 15 cm -2 , 10 keV Ge + ions and subsequently implanted with 1 x 10 15 cm -2 , 1 keV B + ions. A sequence of rapid thermal and furnace anneals are performed at 750 deg. C under a nitrogen ambient for periods of 1 s up to 6 h. Plan view transmission electron microscopy (PTEM) reveals a significant difference in the defect evolution for samples with and without boron, suggesting that the boron influences the evolution of the EOR defects. The extended defects observed for samples which contain boron appear as dot-like defects which are unstable and dissolve after very short anneal times. The defect evolution however, in samples without boron follows an Oswald ripening behavior and form {3 1 1}-type defects and dislocation loops. Hall effect measurements denote a high initial activation and subsequent deactivation of the dopant atoms which is characteristic of the formation of boron interstitial clusters. Diffusion analyses via secondary ion mass spectroscopy (SIMS) support this theory

  7. Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Björketun, Mårten E; Ebbesen, Sune

    2013-01-01

    The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X3...

  8. (Invited) Pure Dopant Deposition of B and Ga for Ultrashallow Junctions in Si-based Devices

    NARCIS (Netherlands)

    Nanver, L.K.; Sammak, A.; Mohammadi, V.; Mok, K.R.C.; Qi, L.; Sakic, A.; Golshani, N.; Darakhshandeh, J.; Scholtes, T.M.L.; De Boer, W.B.

    2012-01-01

    Envisioning wide future relevance, work is reviewed here on the pure dopant deposition of boron (PureB), gallium (PureGa) and the combination of the two (PureGaB), as used in the fabrication of nanometer shallow p+n Si and/or Ge diodes. Focus is placed on the special properties that have put these

  9. Bistable Si dopants in the GaAs (1 1 0) surface

    International Nuclear Information System (INIS)

    Smakman, E P; Koenraad, P M

    2015-01-01

    In this review, recent work is discussed on bistable Si dopants in the GaAs (1 1 0) surface, studied by scanning tunneling microscopy (STM). The bistability arises because the dopant atom can switch between a positive and a negative charge state, which are associated with two different lattice configurations. Manipulation of the Si atom charge configuration is achieved by tuning the local band bending with the STM tip. Furthermore, illuminating the sample with a laser also influences the charge state, allowing the operation of the dopant atom as an optical switch. The switching dynamics without illumination is investigated in detail as a function of temperature, lateral tip position, and applied tunneling conditions. A physical model is presented that independently describes the thermal and quantum tunneling contributions to the switching frequency and charge state occupation of a single Si atom. The basic functionality of a memory cell is demonstrated employing a single bistable Si dopant as the active element, using the STM tip as a gate to write and read the information. (topical review)

  10. Determination of the dopant weight fraction in polyaniline films using a quartz-crystal microbalance

    Czech Academy of Sciences Publication Activity Database

    Ayad, M. M.; Zaki, E. A.; Stejskal, Jaroslav

    2007-01-01

    Roč. 515, č. 23 (2007), s. 8381-8385 ISSN 0040-6090 R&D Projects: GA AV ČR IAA4050313 Institutional research plan: CEZ:AV0Z40500505 Keywords : dopant weight fraction * polyaniline * polyaniline film Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.693, year: 2007

  11. Optical acetone vapor sensors based on chiral nematic liquid crystals and reactive chiral dopants

    NARCIS (Netherlands)

    Cachelin, P.; Green, J.P.; Peijs, T.; Heeney, M.; Bastiaansen, C.W.M.

    2016-01-01

    Accurate monitoring of exposure to organic vapors, such as acetone, is an important part of maintaining a safe working environment and adhering to long- and short-term exposure limits. Here, a novel acetone vapor detection system is described based on the use of a reactive chiral dopant in a nematic

  12. The Impact of Dopant Segregation on the Maximum Carrier Density in Si:P Multilayers.

    Science.gov (United States)

    Keizer, Joris G; McKibbin, Sarah R; Simmons, Michelle Y

    2015-07-28

    Abrupt dopant profiles and low resistivity are highly sought after qualities in the silicon microelectronics industry and, more recently, in the development of an all epitaxial Si:P based quantum computer. If we increase the active carrier density in silicon to the point where the material becomes superconducting, while maintaining a low thermal budget, it will be possible to fabricate nanoscale superconducting devices using the highly successful technique of depassivation lithography. In this work, we investigate the dopant profile and activation in multiple high density Si:P δ-layers fabricated by stacking individual layers with intervening silicon growth. We determine that dopant activation is ultimately limited by the formation of P-P dimers due to the segregation of dopants between multilayers. By increasing the encapsulation thickness between subsequent layers, thereby minimizing the formation of these deactivating defects, we are able to achieve an active carrier density of ns = 4.5 ×10(14) cm(-2) for a triple layer. The results of electrical characterization are combined with those of secondary ion mass spectroscopy to construct a model that accurately describes the impact of P segregation on the final active carrier density in Si:P multilayers. Our model predicts that a 3D active carrier density of 8.5 × 10(20) cm(-3) (1.7 atom %) can be achieved.

  13. Ternary logic implemented on a single dopant atom field effect silicon transistor

    NARCIS (Netherlands)

    Klein, M.; Mol, J.A.; Verduijn, J.; Lansbergen, G.P.; Rogge, S.; Levine, R.D.; Remacle, F.

    2010-01-01

    We provide an experimental proof of principle for a ternary multiplier realized in terms of the charge state of a single dopant atom embedded in a fin field effect transistor (Fin-FET). Robust reading of the logic output is made possible by using two channels to measure the current flowing through

  14. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  15. Nucleophilic Aromatic Substitution Between Halogenated Benzene Dopants and Nucleophiles in Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Kauppila, Tiina J; Haack, Alexander; Kroll, Kai; Kersten, Hendrik; Benter, Thorsten

    2016-03-01

    In a preceding work with dopant assisted-atmospheric pressure photoionization (DA-APPI), an abundant ion at [M + 77](+) was observed in the spectra of pyridine and quinoline with chlorobenzene dopant. This contribution aims to reveal the identity and route of formation of this species, and to systematically investigate structurally related analytes and dopants. Compounds containing N-, O-, and S-lone pairs were investigated with APPI in the presence of fluoro-, chloro-, bromo-, and iodobenzene dopants. Computational calculations on a density functional theory (DFT) level were carried out to study the reaction mechanism for pyridine and the different halobenzenes. The experimental and computational results indicated that the [M + 77](+) ion was formed by nucleophilic aromatic ipso-substitution between the halobenzene radical cation and nucleophilic analytes. The reaction was most efficient for N-heteroaromatic compounds, and it was weakened by sterical effects and enhanced by resonance stabilization. The reaction was most efficient with chloro-, bromo-, and iodobenzenes, whereas with fluorobenzene the reaction was scarcely observed. The calculated Gibbs free energies for the reaction between pyridine and the halobenzenes were shown to increase in the order I < Br < Cl < F. The reaction was found endergonic for fluorobenzene due to the strong C-F bonding, and exergonic for the other halobenzenes. For fluoro- and chlorobenzenes the reaction was shown to proceed through an intermediate state corresponding to [M + dopant](+), which was highly stable for fluorobenzene. For the bulkier bromine and iodine, this intermediate did not exist, but the halogens were shown to detach already during the approach by the nucleophile.

  16. Dopant structural distortions in high-temperature superconductors: an active or a passive role?

    International Nuclear Information System (INIS)

    Haskel, D.; Stern, E.A.; Dogan, F.; Moodenbaugh, A.R.

    2001-01-01

    The parent compounds of high-temperature superconductors, such as YBa 2 Cu 3 O 6 and La 2 CuO 4 , are strongly interacting electron systems, rendering them insulators with Mott-Hubbard gaps of a few electron volts. Charge carriers (holes) are introduced by chemical doping, causing an insulator-metal (IM) transition and, at low temperatures, superconductivity. The role of dopants is widely seen as limited to the introduction of holes into the CuO 2 planes (i.e. occupying electronic states derived from Cu 3d x2-y2 and O 2p x,y atomic orbitals). Most theories of high-T c superconductivity deal with pairing interactions between these planar holes. Local distortions around dopants are poorly understood, because of the experimental difficulty in obtaining such information, particularly at low doping. This has resulted in the neglect, in most theories, of the effect of such distortions on the chemical and electronic structure of high-T c superconductors. Angular-resolved X-ray absorption fine structure (XAFS) spectroscopy on oriented samples is an ideal technique to elucidate the dopant distortions. Element specificity, together with a large orientation dependence of the XAFS signal in these layered structures, allows the local structure around dopants to be resolved. Results are presented here on (Sr, Ba) and Ni dopants, which substitute at the La and Cu sites, respectively, of insulating La 2 CuO 4 . The relevance of the measured local distortions for a complete understanding of the normal and superconducting properties of cuprates is discussed. (au)

  17. Invalidity of the Fermi liquid theory and magnetic phase transition in quasi-1D dopant-induced armchair-edged graphene nanoribbons

    Science.gov (United States)

    Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen

    2018-04-01

    Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.

  18. AsTeRICS.

    Science.gov (United States)

    Drajsajtl, Tomáš; Struk, Petr; Bednárová, Alice

    2013-01-01

    AsTeRICS - "The Assistive Technology Rapid Integration & Construction Set" is a construction set for assistive technologies which can be adapted to the motor abilities of end-users. AsTeRICS allows access to different devices such as PCs, cell phones and smart home devices, with all of them integrated in a platform adapted as much as possible to each user. People with motor disabilities in the upper limbs, with no cognitive impairment, no perceptual limitations (neither visual nor auditory) and with basic skills in using technologies such as PCs, cell phones, electronic agendas, etc. have available a flexible and adaptable technology which enables them to access the Human-Machine-Interfaces (HMI) on the standard desktop and beyond. AsTeRICS provides graphical model design tools, a middleware and hardware support for the creation of tailored AT-solutions involving bioelectric signal acquisition, Brain-/Neural Computer Interfaces, Computer-Vision techniques and standardized actuator and device controls and allows combining several off-the-shelf AT-devices in every desired combination. Novel, end-user ready solutions can be created and adapted via a graphical editor without additional programming efforts. The AsTeRICS open-source framework provides resources for utilization and extension of the system to developers and researches. AsTeRICS was developed by the AsTeRICS project and was partially funded by EC.

  19. Spectroscopic study on the doping of polycrystalline CdTe layers for solar cells; Spektroskopische Untersuchungen zur Dotierung von polykristallinen CdTe-Schichten fuer Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Christian

    2011-11-29

    First in the present thesis the fundamental properties of CdTe are described. In the following it is discussed, how a CdTe solar cell is generally constructed, which specialities are to be regarded, and how an improvement of the actually reachable data of such a solar cell in view of the efficiency can be reached fundamentally and in then practical realization. In the third chapter the physical foundations of the most important methods are discussed, which are applied in the framework of this thesis for the analysis of the CdTe layers. The fourth chapter describes the details of the experiments of this thesis. The fifth chapter deals with the analysis of the photoluminescence of CdTe layers. Special attention is put on the analysis of the excitonic luminescence. The sixth chapter treats the implantation of CdTe layers with phosphor. The influence of phosphorus as dopant on the PL spectra of CdTe and the correponding characteristics of implanted solar cells are presented. Also the influence of radiation damages as consequence of the ion implantation is studied in this chapter by means of the analysis of differently thick absorber layers. In the seventh chapter finally a new procedure for the fabrication of solar cells on the base of CdTe as absorber material is introduced, which shall make possible to change the stoichiometry of cadmium mand tellurium specifically and to present additionally a suited material, in order to form the doping of CdTE a solar-cell material variably. The fundamental properties of the new facility are experimentally determined, and first solar cells are fabricated with this facility and analyzed. Also an in-situ doping with phosphorus is thereby performed and the result studied.

  20. A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of α-tetrathiophene

    International Nuclear Information System (INIS)

    Aleman, Carlos; Oliver, Ramon; Brillas, Enric; Casanovas, Jordi; Estrany, Francesc

    2006-01-01

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. The results derived from anodic polymerization of α-tetrathiophene using SCN - , Cl - , Br - , NO 3 - ClO 3 - andClO 4 - as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by α-tetrathiophene and X=SCN, Cl, Br, NO 3 , ClO 3 and ClO 4 . The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of α-tetrathiophene

  1. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    Nahalkova, P.; Nemec, P.; Sprinzl, D.; Belas, E.; Horodysky, P.; Franc, J.; Hlidek, P.; Maly, P.

    2006-01-01

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  2. Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects

    International Nuclear Information System (INIS)

    Chu, Ke; Wang, Fan; Tian, Ye; Wei, Zhen

    2017-01-01

    Heteroatom-doped graphene materials emerged as promising metal-free catalysts have recently attracted a growing interest in electrochemical sensing applications. However, their catalytic activity and sensing performances still need to be further improved. Herein, we reported the development of unique phosphorus (P)-doped and plasma-etched graphene (denoted as PG-E) as an efficient metal-free electrocatalyst for dopamine (DA) sensing. It was demonstrated that introducing both P-dopants and plasma-engineered defects in graphene could synergistically improve the activity toward electrocatalytic oxidation of DA by increasing the accessible active sites and promoting the electron transport capability. The resulting PG-E modified electrode showed exceptional DA sensing performances with low detection limit, high selectivity and good stability. These results suggested that the synergistic effect of dopants and defects might be an important factor for developing the advanced graphene-based metal-free catalysts for electrochemical sensing.

  3. Lattice site location of electrical dopant impurities in group-III nitrides

    CERN Document Server

    Amorim, Lígia; Temst, Kristiaan; Wahl, Ulrich

    Dopants are impurities introduced in semiconductors in small quantities to tailor the material characteristics, the effects of which depend on the exact site the dopant occupies in the crystal lattice. The lattice location of impurities is, thus, crucial for the overall understanding of the semiconductor characteristics. In general, several techniques can be used to investigate the lattice site of an impurity, the most accurate and dedicated being emission channeling. However, a characteristic of this technique is that it requires the implantation of radioactive probes, usually created and accelerated in a radioactive ion beam facility. In some cases, emission channeling might however be the only technique capable to investigate the lattice sites occupied by the impurity atoms, provided an appropriate isotope for this technique can be used. For instance, the use of other methods such as Rutherford backscattering spectrometry, perturbed angular correlations, Mössbauer spectroscopy and extended X-ray absorptio...

  4. Application of dopant-free hole transport materials for perovskite solar cells

    International Nuclear Information System (INIS)

    Franckevincius, M.; Gulbinas, V.; Gratzel, M.; Zakeeruddin, S.; Pauerle, P.; Mishra, A.; Steck, C.

    2015-01-01

    In this work we present the synthesis, characterization and application of a series of additive and dopant free hole transport materials (HTM) for solid-state perovskite-based solar cells. Newly synthesized HTMs showed strong absorption in the visible spectral range and suitable HOMO-LUMO energy levels for the application for methylammonium lead(II) iodide (CH_3NH_3PbI_3) perovskite. Dopant-free perovskite solar cells have been fabricated using CH_3NH_3PbI_3 perovskite and the newly synthesized HTMs following sequential deposition method, which allows us to reach power conversion efficiencies as high as 11.4 %. The easy of synthesis, low cost and relatively high performance of newly synthesized HTMs has great prospects for commercial applications in the near-future. (authors)

  5. Dopant-Modulating Mechanism of Lithium Adsorption and Diffusion at the Graphene /Li2S Interface

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Wang, Huayu; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo

    2018-02-01

    Graphene modification is one of the most effective routes to enhance the electrochemical properties of the transition-metal sulfide anode for Li-ion batteries and the Li2S cathode for Li-S batteries. Boron, nitrogen, oxygen, phosphorus, and sulfur doping greatly affect the electrochemical properties of Li2S /graphene . Here, we investigate the interfacial binding energy, lithium adsorption energy, interface diffusion barrier, and electronic structure by first-principles calculations to unveil the diverse effects of different dopants during interfacial lithiation reactions. The interfacial lithium storage follows the pseudocapacitylike mechanism with intercalation character. Two different mechanisms are revealed to enhance the interfacial lithium adsorption and diffusion, which are the electron-deficiency host doping and the vacancylike structure evolutions with bond breaking. The synergistic effect between different dopants with diverse doping effects is also proposed. The results give a theoretical basis for the materials design with doped graphene as advanced materials modification for energy storage.

  6. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  7. Damage accumulation and dopant migration during shallow As and Sb implantation into Si

    Energy Technology Data Exchange (ETDEWEB)

    Werner, M.; Berg, J.A. van den E-mail: j.a.vandenberg@salford.ac.uk; Armour, D.G.; Vandervorst, W.; Collart, E.H.J.; Goldberg, R.D.; Bailey, P.; Noakes, T.C.Q

    2004-02-01

    The damage evolution and concomitant dopant redistribution as a function of ion fluence during ultra shallow, heavy ion implants into Si have been investigated using medium energy ion scattering (MEIS) and secondary ion mass spectrometry (SIMS). These studies involved As and Sb ions implanted at room temperature, at energies of 2.5 and 2 keV to doses from 3 x 10{sup 13} to 5 x 10{sup 15} cm{sup -2}. MEIS is capable of detecting both the displaced atom and implant profiles with sub-nanometre depth resolution. These studies show that for doses up to 1 x 10{sup 14} cm{sup -2} (at which an amorphous layer is formed) the damage build up does not follow the energy deposition function. Instead it proceeds through the initial formation of a {approx}4 nm wide amorphous layer immediately under the oxide, that grows inwards into the bulk with increasing dose. This behaviour is explained in terms of the migration of some of the interstitials produced along the length of the collision cascade to the oxide or amorphous/crystal Si interface, where their trapping nucleates the growth of a shallow amorphous layer and the subsequent planar growth inwards of the damage layer. Although for doses {>=}4 x 10{sup 14} cm{sup -2} the As depth profiles agreed well with TRIM calculations, for lower doses As was observed to have a shallower profile, {approx}2 nm nearer to the surface. This behaviour is related the growth of the amorphous layer and ascribed to the movement of As into the near-surface amorphous layer (probably mediated by point defect migration) in which the larger dopant is accommodated more easily. SIMS studies have confirmed this dopant segregation effect. Shallow Sb implants also exhibit this novel dopant movement effect for low doses in combination with a damage evolution similar to As.

  8. Damage accumulation and dopant migration during shallow As and Sb implantation into Si

    International Nuclear Information System (INIS)

    Werner, M.; Berg, J.A. van den; Armour, D.G.; Vandervorst, W.; Collart, E.H.J.; Goldberg, R.D.; Bailey, P.; Noakes, T.C.Q.

    2004-01-01

    The damage evolution and concomitant dopant redistribution as a function of ion fluence during ultra shallow, heavy ion implants into Si have been investigated using medium energy ion scattering (MEIS) and secondary ion mass spectrometry (SIMS). These studies involved As and Sb ions implanted at room temperature, at energies of 2.5 and 2 keV to doses from 3 x 10 13 to 5 x 10 15 cm -2 . MEIS is capable of detecting both the displaced atom and implant profiles with sub-nanometre depth resolution. These studies show that for doses up to 1 x 10 14 cm -2 (at which an amorphous layer is formed) the damage build up does not follow the energy deposition function. Instead it proceeds through the initial formation of a ∼4 nm wide amorphous layer immediately under the oxide, that grows inwards into the bulk with increasing dose. This behaviour is explained in terms of the migration of some of the interstitials produced along the length of the collision cascade to the oxide or amorphous/crystal Si interface, where their trapping nucleates the growth of a shallow amorphous layer and the subsequent planar growth inwards of the damage layer. Although for doses ≥4 x 10 14 cm -2 the As depth profiles agreed well with TRIM calculations, for lower doses As was observed to have a shallower profile, ∼2 nm nearer to the surface. This behaviour is related the growth of the amorphous layer and ascribed to the movement of As into the near-surface amorphous layer (probably mediated by point defect migration) in which the larger dopant is accommodated more easily. SIMS studies have confirmed this dopant segregation effect. Shallow Sb implants also exhibit this novel dopant movement effect for low doses in combination with a damage evolution similar to As

  9. Three dimensional mapping of Fe dopants in ceria nanocrystals using direct spectroscopic electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Goris, Bart; Meledina, Maria; Turner, Stuart [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Zhong, Zhichao [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam (Netherlands); Batenburg, K. Joost [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam (Netherlands); Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333CA Leiden (Netherlands); Bals, Sara [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2016-12-15

    Electron tomography is a powerful technique for the 3D characterization of the morphology of nanostructures. Nevertheless, resolving the chemical composition of complex nanostructures in 3D remains challenging and the number of studies in which electron energy loss spectroscopy (EELS) is combined with tomography is limited. During the last decade, dedicated reconstruction algorithms have been developed for HAADF-STEM tomography using prior knowledge about the investigated sample. Here, we will use the prior knowledge that the experimental spectrum of each reconstructed voxel is a linear combination of a well-known set of references spectra in a so-called direct spectroscopic tomography technique. Based on a simulation experiment, it is shown that this technique provides superior results in comparison to conventional reconstruction methods for spectroscopic data, especially for spectrum images containing a relatively low signal to noise ratio. Next, this technique is used to investigate the spatial distribution of Fe dopants in Fe:Ceria nanoparticles in 3D. It is shown that the presence of the Fe{sup 2+} dopants is correlated with a reduction of the Ce atoms from Ce{sup 4+} towards Ce{sup 3+}. In addition, it is demonstrated that most of the Fe dopants are located near the voids inside the nanoparticle. - Highlights: • A direct tomographic reconstruction technique is proposed for spectroscopic data. • Spectrum fitting is combined with a tomography reconstruction in a single step. • The technique yields superior results for data with a low signal to noise ratio. • The technique is applied to map Fe dopants in ceria nanoparticles.

  10. One- and two-dimensional dopant/carrier profiling for ULSI

    Science.gov (United States)

    Vandervorst, W.; Clarysse, T.; De Wolf, P.; Trenkler, T.; Hantschel, T.; Stephenson, R.; Janssens, T.

    1998-11-01

    Dopant/carrier profiles constitute the basis of the operation of a semiconductor device and thus play a decisive role in the performance of a transistor and are subjected to the same scaling laws as the other constituents of a modern semiconductor device and continuously evolve towards shallower and more complex configurations. This evolution has increased the demands on the profiling techniques in particular in terms of resolution and quantification such that a constant reevaluation and improvement of the tools is required. As no single technique provides all the necessary information (dopant distribution, electrical activation,..) with the requested spatial and depth resolution, the present paper attempts to provide an assessment of those tools which can be considered as the main metrology technologies for ULSI-applications. For 1D-dopant profiling secondary ion mass spectrometry (SIMS) has progressed towards a generally accepted tool meeting the requirements. For 1D-carrier profiling spreading resistance profiling and microwave surface impedance profiling are envisaged as the best choices but extra developments are required to promote them to routinely applicable methods. As no main metrology tool exist for 2D-dopant profiling, main emphasis is on 2D-carrier profiling tools based on scanning probe microscopy. Scanning spreading resistance (SSRM) and scanning capacitance microscopy (SCM) are the preferred methods although neither of them already meets all the requirements. Complementary information can be extracted from Nanopotentiometry which samples the device operation in more detail. Concurrent use of carrier profiling tools, Nanopotentiometry, analysis of device characteristics and simulations is required to provide a complete characterization of deep submicron devices.

  11. Synthesis of Some Green Dopants for OLEDs Based on Arylamine 2,3-disubstituted Bithiophene Derivatives

    Directory of Open Access Journals (Sweden)

    Mi-Seon Song

    2013-11-01

    Full Text Available A series of green dopants based on 2,2-diphenylvinyl end-capped bithiophene and three different arylamine moieties (9-phenylcarbazole, triphenylamine, and N,N’-di-(p-tolylbenzeneamine were successfully synthesized by the Suzuki and Wittig coupling reactions. The photophysical properties of these compounds are reported. The strongest PL emitting compound with the 9-phenylcarbazole moiety has been used for fabricating an OLED device with good overall performance.

  12. Direct imaging of dopant distribution in polycrystalline ZnO films

    Czech Academy of Sciences Publication Activity Database

    Lorenzo, F.; Aebersold, A.B.; Morales-Masis, M.; Ledinský, Martin; Escrig, S.; Vetushka, Aliaksi; Alexander, D.T.L.; Hessler-Wyser, A.; Fejfar, Antonín; Hébert, C.; Nicolay, S.; Ballif, C.

    2017-01-01

    Roč. 9, č. 8 (2017), s. 7241-7248 ISSN 1944-8244 R&D Projects: GA ČR GC16-10429J Institutional support: RVO:68378271 Keywords : dopant distribution * film polarity * grain boundaries * NanoSIMS * polycrystalline film * zinc oxide Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 7.504, year: 2016

  13. Influence of photochemical transformations upon optic-spectral characteristics of iodine cadmium crystals with copper dopant

    International Nuclear Information System (INIS)

    Novosad, S.S.

    2000-01-01

    The influence of photochemical transformations upon absorption. X-ray, photo- and thermostimulated luminescence of crystals CdI 2 :CuI, CdI 2 :CuI and CdI 2 :CuO grown by Stockbarger - Czochralski method has been studied. The photochemical reactions in crystals of iodine cadmium with the dopant of copper leads to reducing the intensity of X-ray, photo- and thermostimulated luminescence, the appearance of new luminescent centers is not observed

  14. Imaging of dopant distribution in optical fibers with an orthogonal TOF SIMS

    Czech Academy of Sciences Publication Activity Database

    Lorinčík, Jan; Kašík, Ivan; Vaniš, Jan; Sedláček, L.; Dluhoš, J.

    2014-01-01

    Roč. 46, č. 1 (2014), s. 238-240 ISSN 0142-2421. [19th International Conference on Secondary Ion Mass Spectrometry ( SIMS ). Jeju, 29.09.2013-04.10.2013] Grant - others:GA AV ČR(CZ) M100761202 Institutional support: RVO:67985882 Keywords : TOF SIMS * Optical fibers * Dopant Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.245, year: 2014

  15. Effect of metallic dopants on the microstructure and mechanical properties of TiB2

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Bača, L.; Halasová, Martina; Neubauer, E.; Hadraba, Hynek; Stelzer, N.; Roupcová, Pavla

    2015-01-01

    Roč. 35, č. 10 (2015), s. 2745-2754 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Grant - others:The Austrian Research Promotion Agency (FFG)(AT) 834287 Institutional support: RVO:68081723 Keywords : Titanium diboride * Metallic dopants * Microstructure * Mechanical properties * Fracture behaviour1 Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.933, year: 2015

  16. Influence of Ag doping concentration on structural and optical properties of CdS thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com [Department of Physics, Bareilly College, Bareilly, 243 005, Uttar Pradesh (India); Department of Physics and Astrophysics, University of Delhi, Delhi, 110 007 (India); Saxena, Nupur; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110 007 (India); Agarwal, Avinash [Department of Physics, Bareilly College, Bareilly, 243 005, Uttar Pradesh (India)

    2015-05-15

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  17. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    Science.gov (United States)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  18. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China)

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  19. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions.

    Science.gov (United States)

    Zhang, Siyuan; Naab, Benjamin D; Jucov, Evgheni V; Parkin, Sean; Evans, Eric G B; Millhauser, Glenn L; Timofeeva, Tatiana V; Risko, Chad; Brédas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R

    2015-07-20

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2 , yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2 ) dissociation and of D2 -to-A electron transfer, D2 reacts with A to form D(+) and A(-) by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D(+) /0.5 D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9 V vs. FeCp2 (+/0) ) (Cp=cyclopentadienyl) due to cancelation of trends in the D(+/0) potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dopant-Free and Carrier-Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives.

    Science.gov (United States)

    Gao, Pingqi; Yang, Zhenhai; He, Jian; Yu, Jing; Liu, Peipei; Zhu, Juye; Ge, Ziyi; Ye, Jichun

    2018-03-01

    By combining the most successful heterojunctions (HJ) with interdigitated back contacts, crystalline silicon (c-Si) solar cells (SCs) have recently demonstrated a record efficiency of 26.6%. However, such SCs still introduce optical/electrical losses and technological issues due to parasitic absorption/Auger recombination inherent to the doped films and the complex process of integrating discrete p + - and n + -HJ contacts. These issues have motivated the search for alternative new functional materials and simplified deposition technologies, whereby carrier-selective contacts (CSCs) can be formed directly with c-Si substrates, and thereafter form IBC cells, via a dopant-free method. Screening and modifying CSC materials in a wider context is beneficial for building dopant-free HJ contacts with better performance, shedding new light on the relatively mature Si photovoltaic field. In this review, a significant number of achievements in two representative dopant-free hole-selective CSCs, i.e . , poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/Si and transition metal oxides/Si, have been systemically presented and surveyed. The focus herein is on the latest advances in hole-selective materials modification, interfacial passivation, contact resistivity, light-trapping structure and device architecture design, etc. By analyzing the structure-property relationships of hole-selective materials and assessing their electrical transport properties, promising functional materials as well as important design concepts for such CSCs toward high-performance SCs have been highlighted.

  1. Two dimensional dopant diffusion study by scanning capacitance microscopy and TSUPREM IV process simulation

    International Nuclear Information System (INIS)

    Kim, J.; McMurray, J. S.; Williams, C. C.; Slinkman, J.

    1998-01-01

    We report the results of a 2-step two-dimensional (2D) diffusion study by Scanning Capacitance Microscopy (SCM) and 2D TSUPREM IV process simulation. A quantitative 2D dopant profile of gate-like structures consisting heavily implanted n+ regions separated by a lighter doped n-type region underneath 0.56 μm gates is measured with the SCM. The SCM is operated in the constant-change-in-capacitance mode. The 2-D SCM data is converted to dopant density through a physical model of the SCM/silicon interaction. This profile has been directly compared with 2D TSUPREM IV process simulation and used to calibrate the simulation parameters. The sample is then further subjected to an additional diffusion in a furnace for 80 minutes at 1000C. The SCM measurement is repeated on the diffused sample. This final 2D dopant profile is compared with a TSUPREM IV process simulation tuned to fit the earlier profile with no change in the parameters except the temperature and time for the additional diffusion. Our results indicate that there is still a significant disagreement between the two profiles in the lateral direction. TSUPREM IV simulation considerably underestimates the diffusion under the gate region

  2. The effect of random dopant fluctuation on threshold voltage and drain current variation in junctionless nanotransistors

    International Nuclear Information System (INIS)

    Rezapour, Arash; Rezapour, Pegah

    2015-01-01

    We investigate the effect of dopant random fluctuation on threshold voltage and drain current variation in a two-gate nanoscale transistor. We used a quantum-corrected technology computer aided design simulation to run the simulation (10000 randomizations). With this simulation, we could study the effects of varying the dimensions (length and width), and thicknesses of oxide and dopant factors of a transistor on the threshold voltage and drain current in subthreshold region (off) and overthreshold (on). It was found that in the subthreshold region the variability of the drain current and threshold voltage is relatively fixed while in the overthreshold region the variability of the threshold voltage and drain current decreases remarkably, despite the slight reduction of gate voltage diffusion (compared with that of the subthreshold). These results have been interpreted by using previously reported models for threshold current variability, load displacement, and simple analytical calculations. Scaling analysis shows that the variability of the characteristics of this semiconductor increases as the effects of the short channel increases. Therefore, with a slight increase of length and a reduction of width, oxide thickness, and dopant factor, we could correct the effect of the short channel. (paper)

  3. Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Ho; Kim, You-Hyun; Yoon, Ju-An; Lee, Sang Youn [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Ryu, Dae Hyun [Department of Information Technology, Hansei University, Gunpo (Korea, Republic of); Wood, Richard [Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7 (Canada); Moon, C.-B. [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2013-11-15

    The electroluminescent characteristics of white organic light-emitting diodes (WOLEDs) were investigated including single emitting layer (SEL) with an ADN host and dopants; BCzVBi, C545T, and DCJTB for blue, green and red emission, respectively. The structure of the high efficiency WOLED device was; ITO/NPB(700 Å)/ADN: BCzVBi-7%:C545T-0.05%:DCJTB-0.1%(300 Å)/Bphen(300 Å)/Liq(20 Å)/Al(1200 Å) for mixing three primary colors. Luminous efficiency was 9.08 cd/A at 3.5 V and Commission Intenationale de L’eclairage (CIE{sub x,y}) coordinates of white emission was measured as (0.320, 0.338) at 8 V while simulated CIE{sub x,y} coordinates were (0.336, 0.324) via estimation from each dopant's PL spectrum. -- Highlights: • This paper observes single-emissive-layered white OLED using fluorescent dopants. • Electrical and optical properties are analyzed. • Color stability of white OLED is confirmed for new planar light source.

  4. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions

    KAUST Repository

    Zhang, Siyuan

    2015-06-18

    Dimers of 2-substituted N,N\\'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2-to-A electron transfer, D2 reacts with A to form D+ and A- by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9V vs. FeCp2+/0) (Cp=cyclopentadienyl) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots.

    Science.gov (United States)

    Nayak, Alpana; Unayama, Satomi; Tai, Seishiro; Tsuruoka, Tohru; Waser, Rainer; Aono, Masakazu; Valov, Ilia; Hasegawa, Tsuyoshi

    2018-02-01

    Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid-state nanoionics for applications in energy storage, sensing, and brain-type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α-Ag 2+ δ S nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic-scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants

    International Nuclear Information System (INIS)

    Kim, Nam Ho; Kim, You-Hyun; Yoon, Ju-An; Lee, Sang Youn; Ryu, Dae Hyun; Wood, Richard; Moon, C.-B.; Kim, Woo Young

    2013-01-01

    The electroluminescent characteristics of white organic light-emitting diodes (WOLEDs) were investigated including single emitting layer (SEL) with an ADN host and dopants; BCzVBi, C545T, and DCJTB for blue, green and red emission, respectively. The structure of the high efficiency WOLED device was; ITO/NPB(700 Å)/ADN: BCzVBi-7%:C545T-0.05%:DCJTB-0.1%(300 Å)/Bphen(300 Å)/Liq(20 Å)/Al(1200 Å) for mixing three primary colors. Luminous efficiency was 9.08 cd/A at 3.5 V and Commission Intenationale de L’eclairage (CIE x,y ) coordinates of white emission was measured as (0.320, 0.338) at 8 V while simulated CIE x,y coordinates were (0.336, 0.324) via estimation from each dopant's PL spectrum. -- Highlights: • This paper observes single-emissive-layered white OLED using fluorescent dopants. • Electrical and optical properties are analyzed. • Color stability of white OLED is confirmed for new planar light source

  7. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions

    KAUST Repository

    Zhang, Siyuan; Naab, Benjamin D.; Jucov, Evgheni V.; Parkin, Sean; Evans, Eric G B; Millhauser, Glenn L.; Timofeeva, Tatiana V.; Risko, Chad; Bredas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R.

    2015-01-01

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2-to-A electron transfer, D2 reacts with A to form D+ and A- by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9V vs. FeCp2+/0) (Cp=cyclopentadienyl) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants*

    International Nuclear Information System (INIS)

    Li Chang-Sheng; Ma Lei; Guo Jie-Rong

    2017-01-01

    We adopt a self-consistent real space Kerker method to prevent the divergence from charge sloshing in the simulating transistors with realistic discrete dopants in the source and drain regions. The method achieves efficient convergence by avoiding unrealistic long range charge sloshing but keeping effects from short range charge sloshing. Numerical results show that discrete dopants in the source and drain regions could have a bigger influence on the electrical variability than the usual continuous doping without considering charge sloshing. Few discrete dopants and the narrow geometry create a situation with short range Coulomb screening and oscillations of charge density in real space. The dopants induced quasi-localized defect modes in the source region experience short range oscillations in order to reach the drain end of the device. The charging of the defect modes and the oscillations of the charge density are identified by the simulation of the electron density. (paper)

  9. Electronic and transport properties of the Mn-doped topological insulator Bi.sub.2./sub.Te.sub.3./sub.: a first-principles study

    Czech Academy of Sciences Publication Activity Database

    Carva, K.; Kudrnovský, Josef; Máca, František; Drchal, Václav; Turek, I.; Baláž, P.; Tkáč, V.; Holý, V.; Sechovský, V.; Honolka, Jan

    2016-01-01

    Roč. 93, č. 21 (2016), s. 1-8, č. článku 214409. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-30062S Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : topological insulator * electronic structure * transport * Bi 2 Te 3 * Mn dopant Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  10. Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol-gel process

    International Nuclear Information System (INIS)

    Xiao, Mi; Zhang, Zebin; Zhang, Weikang; Zhang, Ping

    2018-01-01

    La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol-gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping. (orig.)

  11. Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol-gel process

    Science.gov (United States)

    Xiao, Mi; Zhang, Zebin; Zhang, Weikang; Zhang, Ping

    2018-01-01

    La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol-gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping.

  12. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei, E-mail: faraon@caltech.edu [T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125 (United States)

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  13. Self-assembling nano-diameter needlelike pinning centers in YBCO, utilizing a foreign element dopant

    Energy Technology Data Exchange (ETDEWEB)

    Sawh, Ravi-Persad [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Weinstein, Roy [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Obot, Victor [Department of Mathematics, Texas Southern University, 3100 Cleburne St, Houston Texas 77004-4597 (United States); Parks, Drew [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Gandini, Alberto [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States); Skorpenske, Harley [Texas Center for Superconductivity and Physics Department, University of Houston, 632 Science and Research Bldg 1, Houston Texas 77204-5005 (United States)

    2006-06-01

    Although pinning centers created by irradiation presently produce the highest J{sub c}, it is probable that ultimately these will be emulated by chemical pinning centers. The best pinning centers produced by irradiation nevertheless provide guidelines for desirable morphology of chemical pinning structures. The highest J{sub c} produced earlier in textured HTS was obtained using isotropic high-energy ions produced by fission of {sup 235}U. This so-called U/n process produces pinning centers of diameter {<=} 4.5 nm, with an effective length of {approx}2.7 {mu}m. Maximum J{sub c} occurs for pinning center density of {approx}10{sup 10} cm{sup -3}. We use this as a model for desired chemical pinning centers. Our approach to introducing chemical pinning centers has been to produce precipitates within the HTS containing elements not native to the HTS, and to seek needlelike (columnar) deposits of small diameter. We report here on the formation of needlelike or columnar deposits in textured Y123 containing a dopant foreign to Y123. It serves as a demonstration that self-assembling nanometer diameter columns utilizing a dopant foreign to the HTS system are a feasible goal. These deposits, however, do not fully meet the ultimate requirements of pinning centers because the desired deposits should be smaller. The self-assembling columns formed contain titanium, are {approx}500 nm in diameter, and up to 10 {mu}m long. The size and morphology of the deposits vary with the mass of admixed Ti dopant. J{sub c} is decreased for small dopant mass. At larger dopant masses needlelike precipitates form, and J{sub c} increases again. A small range of mass of admixed Ti exists in which J{sub c} is enhanced by pinning. In the range of admixed Ti mass studied in these experiments there is a negligible effect on T{sub c}. Magnetization studies of J{sub c} are also reported.

  14. Influence of EDTA2− on the hydrothermal synthesis of CdTe nanocrystallites

    International Nuclear Information System (INIS)

    Gong Haibo; Hao Xiaopeng; Wu Yongzhong; Cao Bingqiang; Xu Hongyan; Xu Xiangang

    2011-01-01

    Transformation from Te nanorods to CdTe nanoparticles was achieved with the assistance of EDTA as a ligand under hydrothermal conditions. Experimental results showed that at the beginning of reaction Te nucleated and grew into nanorods. With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. Finally, nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were obtained. The effects of EDTA on the morphology and formation of CdTe nanoparticles were discussed in consideration of the strong ligand-effect of EDTA, which greatly decreased the concentration of Cd 2+ . Furthermore, the possible formation process of CdTe nanoparticles from Te nanorods was further proposed. The crystal structure and morphology of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). - Graphical Abstract: Firstly, Te nucleated and grew into nanorods in the presence of EDTA 2− . Then CdTe nucleus began to emerge on Te nanorods and finally monodispersed CdTe nanoparticles were obtained. Highlights: ► EDTA serves as a strong ligand with Cd 2+ . ► The existence of EDTA constrains the nucleation of CdTe and promotes the formation of Te nanorods. ► With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. ► Nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were finally obtained.

  15. Effects of added dopants on various triboluminescent properties of europium dibenzoylmethide triethylammonium (EuD4TEA)

    Science.gov (United States)

    Owens, Constance; Fontenot, Ross S.; Bhat, Kamala N.; Aggarwal, Mohan D.

    2014-03-01

    A triboluminescent (TL) material is one that emits light upon pressure, impact, friction, or mechanical shock. TL materials are desirable for investigation because they have the potential to be used as the active element for smart impact sensors. While the material europium dibenzoylmethide triethylammonium (EuD4TEA) produces a TL emission yield that can be observed by the naked eye, it is still not sufficiently bright for use in smart sensor devices. Previous studies have shown that additional materials can be combined with EuD4TEA in order to improve the TL emission yield. In this paper, we discuss the effects of doping on EuD4TEA at different concentrations with a variety of materials on the TL emission yield and decay times. The dopants that were used in this study were nicotine, dibutyl phosphate (DBP), and magnesium. We also discuss both the effects of pH on EuD4TEA, and the doping effects on impact energy. For testing triboluminescent properties, we use a custom-built drop tower that generates triboluminescence by fracturing compounds through impact. Collected data is analyzed using specially written LabVIEW programs.

  16. Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations

    Science.gov (United States)

    Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre

    2017-07-01

    SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.

  17. Complex EUV imaging reflectometry: spatially resolved 3D composition determination and dopant profiling with a tabletop 13nm source

    Science.gov (United States)

    Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.

    2018-03-01

    With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.

  18. Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar

    2006-01-01

    The effects of Mn-dopant on the formation of solid solutions α-(Fe, Mn)OOH in dependence on the initial concentration ratio r = [Mn]/([Mn] + [Fe]), as well as on the size and morphology of the corresponding particles were investigated using Moessbauer and FT-IR spectroscopies, high-resolution scanning electron microscopy (FE SEM) and an energy dispersive X-ray analyser (EDS). The value of the hyperfine magnetic field of 34.9 T, as recorded for the reference α-FeOOH sample at RT, decreased linearly up to 21.4 T for sample with r = 0.1667. Only a paramagnetic doublet at RT was recorded for sample with r = 0.2308, a ferrite phase was additionally found for r = 0.3333. Fe-OH bending IR bands, δ OH and γ OH , were influenced by the Mn-substitution as manifested through their gradual shifts. FE SEM micrographs showed a great elongation of the starting acicular particles along the c-axis with an increase in Mn-doping. For r = 0.1667 and 0.2308 star-shaped and dendritic twin α-(Fe, Mn)OOH particles were observed. The length of these α-(Fe, Mn)OOH particles decreased, whereas their width increased. The α-Fe 2 O 3 phase was not detected in any of the samples prepared

  19. A comparison of the influence of different dopants on the radar-absorbing properties of barium hexaferrite

    International Nuclear Information System (INIS)

    Jones, M.; Suder, M.M.; Edge, A.J.J.; Stewart, G.A.; Hutchison, W.D.; Amiet, A.; Jewsbury, P.

    2004-01-01

    Full text: The ferromagnetic resonance of barium hexaferrite is at approximately 48 GHz, which sits well above the frequency bands employed by most radar systems. However, certain elements (or combinations of elements), when doped into the iron sub-lattice, have been observed to weaken the system's uniaxial magnetocrystalline anisotropy and thereby lower the ferromagnetic resonance frequency. This contribution presents a survey of ferromagnetic resonance frequencies published in the literature, as well as resonance frequencies that we have converted from published magnetic characterisations of the magnetic anisotropy. In several cases we have confirmed the reliability of such converted values, and new data will be presented for (Co 1/2 Zr 1/2 )- and (Co 1/2 Mo 1/2 )-doped barium hexaferrite. Our specimen materials were prepared by solid state reaction, and characterised using x-ray powder diffraction and 57 Fe Moessbauer spectroscopy. The electromagnetic response characteristics were recorded with a microwave network analyser, using either a co-axial specimen (0 - 18 GHz) or a larger, planar tile specimen (0 - 40 GHz). An ideal radar absorbing material would require just a small concentration of an inexpensive dopant to lower the ferromagnetic resonance frequency into the 0 - 2 GHz band that is typical of long-range radars. The likelihood of finding such a doped barium hexaferrite system will be discussed

  20. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    Science.gov (United States)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  1. High performance as-grown and annealed high band gap tunnel junctions: Te behavior at the interface

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, S. M., E-mail: bedair@ncsu.edu; Harmon, Jeffrey L.; Carlin, C. Zachary; Hashem Sayed, Islam E.; Colter, P. C. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-05-16

    The performance of n{sup +}-InGaP(Te)/p{sup +}-AlGaAs(C) high band gap tunnel junctions (TJ) is critical for achieving high efficiency in multijunction photovoltaics. Several limitations for as grown and annealed TJ can be attributed to the Te doping of InGaP and its behavior at the junction interface. Te atoms in InGaP tend to get attached at step edges, resulting in a Te memory effect. In this work, we use the peak tunneling current (J{sub pk}) in this TJ as a diagnostic tool to study the behavior of the Te dopant at the TJ interface. Additionally, we used our understanding of Te behavior at the interface, guided by device modeling, to modify the Te source shut-off procedure and the growth rate. These modifications lead to a record performance for both the as-grown (2000 A/cm{sup 2}) and annealed (1000 A/cm{sup 2}) high band gap tunnel junction.

  2. Study of the chlorine as dopant in synthesized polymers by plasma; Estudio del cloro como dopante en polimeros sintetizados por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.; Cruz, G.; Olayo, M.G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Timoshina, T. [ESIQIE, IPN, 07738 Mexico D.F. (Mexico); Morales, J.; Olayo, R. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    In the search of new and better dopants for semiconductor polymers, in this work the synthesis by plasma and the characterization of two doped polymers with chlorine, Pyrrole (PPy) and Thiophene (PTh) is presented. The characterization of the polymers it was carried out by FT-lR, it shows the C-Cl vibration that it is confirmed with the X-ray photoelectron spectroscopy technique (XPS). The elementary analysis shows a greater quantity of Cl in the PTh-CI compared with PPy-CI. However, this effect is not reflected in the electric conductivity since the PTh-Cl presents a lightly greater conductivity than the PPy-CI. SEM shows a formed structure of small agglomerated spheres of different size. (Author)

  3. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi{sub 2}Te{sub 2}Se

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, S. K., E-mail: kushwaha@princeton.edu; Gibson, Q. D.; Cava, R. J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Xiong, J.; Ong, N. P. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Pletikosic, I. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States); Weber, A. P. [National Synchrotron Light Source, Brookhaven National Lab, Upton, New York 11973 (United States); Fedorov, A. V. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Valla, T. [Condensed Matter Physics and Materials Science Department, Brookhaven National Lab, Upton, New York 11973 (United States)

    2014-04-14

    A comparative study of the properties of topological insulator Bi{sub 2}Te{sub 2}Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10{sup 14} cm{sup −3}. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E{sub F}) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E{sub F}. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.

  4. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se

    International Nuclear Information System (INIS)

    Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Xiong, J.; Ong, N. P.; Pletikosic, I.; Weber, A. P.; Fedorov, A. V.; Valla, T.

    2014-01-01

    A comparative study of the properties of topological insulator Bi 2 Te 2 Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10 14  cm −3 . Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E F ) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E F . Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed

  5. Hyperfine and ion beam interaction studies of Sn, Te, I and Sm impurities in silicon

    International Nuclear Information System (INIS)

    Kemerink, G.J.

    1981-01-01

    In this thesis the author reports investigations on ion implanted and oven or laser annealed silicon using Moessbauer spectroscopy, Rutherford backscattering (RBS) and channeling, time differential perturbed angular correlation and the Hall-effect. Chapter 1 gives an introduction to this field of research. Chapter 2 deals with an outline of the experimental methods used throughout this work. In chapter 3 results are presented from RBS and channeling experiments on Te-implanted Si. Chapters 4 and 5 concern the results from a study of dopant dependent effects in laser annealed TeSi using 119 Sn, 125 Te and 129 I-Moessbauer spectroscopy. Chapter 6 gives the results from a study of as-implanted and oven annealed TeSi using 129 I-time differential perturbed angular correlation and 129 I-Moessbauer spectroscopy. Chapter 7 describes the results from RBS and channeling experiments on oven and laser annealed ISi. Chapter 8 deals with Hall-effect measurements on TeSi and ISi. Chapter 9 finally covers the investigations of 153 Sm-implanted diamond, Si, Ge and α-Sn using channeling and 153 Eu-Moessbauer spectroscopy. (Auth.)

  6. Raman spectroscopy of glasses in the As–Te system

    International Nuclear Information System (INIS)

    Tverjanovich, A.; Rodionov, K.; Bychkov, E.

    2012-01-01

    For the first time, the Raman spectra of As x Te 1−x glasses, 0.2≤x≤0.6, have been measured over the entire glass-forming range. The spectra exhibit three broad spectral features attributed to vibrations of structural units having Te–Te, As–Te and As–As bonds. The observed chemical disorder in the glasses is discussed on the basis of partial bond fractions derived from the integrated intensity of the Raman modes. The underlying structural model suggests a dissociation of AsTe- or As 2 Te 3 -related units in the glass melt. The spectra of glasses quenched from different temperatures, as well as those of the annealed vitreous alloys, are consistent with predictions of the model. - Graphical abstract: Raman spectra of the As x Te 1−x glasses (0.2≤x≤0.4 and 0.4≤x≤0.6). Fractional concentrations of Te–Te, As–Te and As–As bonds in the As x Te 1−x glasses calculated using experimental Raman data. The solid lines represent predictions of the dissociation model assuming that the main chemically ordered structural units are related to AsTe. Highlights: ► For the first time, the Raman spectra of As x Te 1−x glasses, 0.2≤x≤0.6, were measured. ► The partial bond fractions were derived from the integrated intensity of the Raman modes. ► An empirical quantitative approach to the Raman data was proposed for the reaction modeling.

  7. Understanding arsenic incorporation in CdTe with atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Burton, G. L.; Diercks, D. R.; Ogedengbe, O. S.; Jayathilaka, P. A. R. D.; Edirisooriya, M.; Myers, T. H.; Zaunbrecher, K. N.; Moseley, J.; Barnes, T. M.; Gorman, B. P.

    2018-08-01

    Overcoming the open circuit voltage deficiency in Cadmium Telluride (CdTe) photovoltaics may be achieved by increasing p-type doping while maintaining or increasing minority carrier lifetimes. Here, routes to higher doping efficiency using arsenic are explored through an atomic scale understanding of dopant incorporation limits and activation in molecular beam epitaxy grown CdTe layers. Atom probe tomography reveals spatial segregation into nanometer scale clusters containing > 60 at% As for samples with arsenic incorporation levels greater than 7-8 x 10^17 cm-3. The presence of arsenic clusters was accompanied by crystal quality degradation, particularly the introduction of arsenic-enriched extended defects. Post-growth annealing treatments are shown to increase the size of the As precipitates and the amount of As within the precipitates.

  8. Optical Properties of Al- and Sb-Doped CdTe Thin Films

    Directory of Open Access Journals (Sweden)

    A. A. J. Al-Douri

    2010-01-01

    Full Text Available Nondoped and (Al, Sb-doped CdTe thin films with 0.5, 1.5, and 2.5  wt.%, respectively, were deposited by thermal evaporation technique under vacuum onto Corning 7059 glass at substrate temperatures ( of room temperature (RT and 423 K. The optical properties of deposited CdTe films such as band gap, refractive index (n, extinction coefficient (, and dielectric coefficients were investigated as function of Al and Sb wt.% doping, respectively. The results showed that films have direct optical transition. Increasing and the wt.% of both types of dopant, the band gap decrease but the optical is constant as n, and real and imaginary parts of the dielectric coefficient increase.

  9. Diffusion and influence of Cu on properties of CdTe thin films and CdTe/CdS cells

    Energy Technology Data Exchange (ETDEWEB)

    Dzhafarov, T.D.; Yesilkaya, S.S.; Yilmaz Canli, N.; Caliskan, M. [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2005-01-31

    The effective diffusion coefficients of Cu for thermal and photodiffusion in the CdTe films have been estimated from resistivity versus duration of thermal or photoannealing curves. In the temperature range 60-200{sup o}C the effective coefficient of thermal diffusion (D{sub t}) and photodiffusion (D{sub ph}) are described as D{sub t}=7.3x10{sup -7}exp(-0.33/kT) and D{sub ph}=4.7x10{sup -8}exp(-0.20/kT). It is found that the diffusion doping of CdTe thin films by Cu at 400{sup o}C results in a sharp decrease of resistivity up to 7 orders of magnitude of p-type material, depending on thickness of Cu film. The comparative study of performance of CdTe(Cu)/CdS and CdTe/CdS cells has been studied. It is shown that the diffusion doping of CdTe film by Cu increases efficiency of CdTe(Cu)/CdS cells from 0.9% to 6.8%. The degradation of photovoltaic parameters of CdTe(Cu)/CdS cell, during testing under forward and reverse bias at room temperature, proceeds at a larger rate than those of CdTe/CdS cell without Cu. The degradation of performance of CdTe(Cu)/CdS cells is tentatively assigned to electrodiffusion of Cu in CdTe, resulting in redistribution of concentration of Cu-related centers in CdTe film and heterojunction region.

  10. Structural and electric properties of AgGaTe{sub 2} layers prepared using mixed source of Ag{sub 2}Te and Ga{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Uruno, Aya [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Tokyo (Japan)

    2017-01-15

    AgGaTe{sub 2} layers were prepared on Si substrates by a closed space sublimation method using a mixed powder source of Ag{sub 2}Te and Ga{sub 2}Te{sub 3}. Ag{sub 2}Te buffer layer deposition was introduced to eliminate melt-back etching. The effect of the molar ratio of Ag{sub 2}Te and Ga{sub 2}Te{sub 3} in the mixed source on the crystallinity of the AgGaTe{sub 2} layer was investigated. The composition and the phase of the layer was found to change depending on the molar ratio in the deposits, which could be controlled by the source molar ratio along with the Ag{sub 2}Te buffer layer thickness. It was confirmed that (112) oriented uniform AgGaTe{sub 2} layer with an abrupt interface between AgGaTe{sub 2} and Si was formed after those parameters were tuned. The obtained layer exhibited the acceptor concentration of around 2.5 x 10{sup 16} cm{sup -3}. A solar cell was fabricated using the p-AgGaTe{sub 2}/n-Si heterojunction, and exhibited a conversion efficiency of 1.15%. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Nd3+-doped TeO2-Bi2O3-ZnO transparent glass ceramics for laser application at 1.06 μm

    Science.gov (United States)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian

    2017-04-01

    The high crystallinity transparent glass ceramics based on Nd3+-doped 70TeO2-15Bi2O3-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd2O3 content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd2O3 enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi2Te4O11 in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd2O3 content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd2O3 content due to the obvious energy migration among Nd3+. According to the extreme strong emission band around 1062 nm and the optimum Nd2O3 content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications.

  12. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.

    Science.gov (United States)

    Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert

    2016-03-15

    Today's information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi

  13. The effect of excitons on CdTe solar cells

    International Nuclear Information System (INIS)

    Karazhanov, S. Zh.; Zhang, Y.; Mascarenhas, A.; Deb, S.

    2000-01-01

    Temperature and doping-level dependence of CdTe solar cells is investigated, taking into account the involvement of excitons on photocurrent transport. We show that the density of excitons in CdTe is comparable with that of minority carriers at doping levels ≥10 15 cm -3 . From the investigation of the dark-saturation current, we show that the product of electron and hole concentrations at equilibrium is several orders of magnitude more than the square of the intrinsic carrier concentration. With this assumption, we have studied the effect of excitons on CdTe solar cells, and the effect is negative. CdTe solar cell performance with excitons included agrees well with existing experimental results. (c) 2000 American Institute of Physics

  14. Modulation of the acidity of niobic acid by ion-doping: Effects of nature and amount of the dopant ions

    Energy Technology Data Exchange (ETDEWEB)

    Carniti, Paolo [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Gervasini, Antonella, E-mail: antonella.gervasini@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Marzo, Matteo [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Auroux, Aline [Université Lyon 1, CNRS, UMR 5256, (IRCELYON), Villeurbanne (France)

    2013-09-10

    Highlights: ► Mitigation of the surface acidity of niobic acid was pursued by K-, Ba-, and Nd-doping. ► Thermal techniques of study were effective for the acidity study. ► The nature of the dopant influences the effectiveness of the acidity tuning of niobic acid. ► The acidity of the doped surfaces decreased with increasing the dopant species added to niobic acid. ► The samples showed different acidity when measured in gas–solid phase (intrinsic acidity) and water (effective acidity). - Abstract: The acidity of niobic acid (NBO) has been successfully mitigated and tuned by addition of K{sup +}, Ba{sup 2+} and Nd{sup 3+} dopant species in amounts from 1 to 15 atom nm{sup −2}. The characterization of the intrinsic acid properties of the samples was performed by adsorption of NH{sub 3} in a volumetric–microcalorimetric coupled line and by temperature programmed desorption (TPD) of 2-phenylethylamine in a thermogravimetric apparatus. The K-dopant was more effective in decreasing the acidity of niobic acid than the Ba- and Nd-dopants. Complementary measurements of the effective acidity of the samples in water by base titrations with 2-phenylethylamine completed the study and revealed a different picture of the effect of the three dopants on the NBO acidity in water. All the results indicated that the K-dopant targeted more selectively the Brønsted acid sites, acting as an ion-exchanger, while Ba- and Nd-species predominantly acted on the Lewis acid sites of the NBO surface.

  15. Optically detected SdH oscillations in CdTe/(CdMg)Te and CdTe/(CdMnMg)Te modulation doped quantum wells

    International Nuclear Information System (INIS)

    Shen, J.X.; Ossau, W.; Fischer, F.; Waag, A.; Landwehr, G.

    1995-01-01

    Oscillations of photoluminescence properties in external magnetic fields are investigated in CdTe modulation doped quantum wells. The oscillatory behaviour of the luminescence intensity, the line width and the g factor is due to many-body effects in the 2-dimensional electron gas. The oscillation of photoluminescence intensity can be easily used as optically detected Shubnikov de Haas effect to determine the electron concentration in quantum wells without contacts. (author)

  16. Optically detected SdH oscillations in CdTe/(CdMg)Te and CdTe/(CdMnMg)Te modulation doped quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.X.; Ossau, W.; Fischer, F.; Waag, A.; Landwehr, G. [Physikalisches Institut der Uniwersitaet Wuerzburg, Wuerzburg (Germany)

    1995-12-31

    Oscillations of photoluminescence properties in external magnetic fields are investigated in CdTe modulation doped quantum wells. The oscillatory behaviour of the luminescence intensity, the line width and the g factor is due to many-body effects in the 2-dimensional electron gas. The oscillation of photoluminescence intensity can be easily used as optically detected Shubnikov de Haas effect to determine the electron concentration in quantum wells without contacts. (author). 5 refs, 3 figs, 1 tab.

  17. Aggregation in thin-film silver: Induced by chlorine and inhibited by alloying with two dopants

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Shimada, Koichi; Fukuda, Shin

    2009-01-01

    The Ag aggregation mechanism triggered by chlorine (Cl) is discussed. The frontier orbital theory by K. Fukui is applied in order to determine the growing point in the silver (Ag) cluster. Ag in the thin-film silver would grow to Ag n Cl and stack, triggered by Cl from the outside according to the mechanism described. This would lead to an aggregate with a high Ag density. It is suggested that this would be the generating mechanism of the silver-gray aggregate consisting mostly of Ag, which is generated by exposing it to Cl. Two tactics in order to prevent restrain aggregation induced by Cl according to the mechanism are proposed. Tactic 1 is a restraining of structure change to a plane in the process of Ag 6 Cl + Ag → Ag 7 Cl. Tactic 2 is the trapping of Cl before it generates a bond to Ag. The ability of the two combined dopants with the abilities of tactics 1 and 2, such as in an Ag alloy including palladium and copper (APC), and including neodymium and gold (ANA) is expected to be very high. The aggregation resistance of an Ag alloy including two dopants is evaluated by a salt water immersion test. The APC and ANA demonstrated a very high resistance to Cl, because of the combination of the dopants working with tactic 1 (Pd, Au) and tactic 2 (Cu, Nd). The multilayer sputter coating with an ANA layer demonstrated a very interesting profile where the light transmittance and the electrical sheet resistance are almost the same as the multilayer sputter coating with a pure Ag. The multilayer sputter coating with AIS also demonstrates a very interesting profile, where the light transmittance is higher than the multilayer sputter coating with a pure Ag.

  18. Trivalent dopants on ZnO semiconductor obtained by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C., E-mail: damonte@fisica.unlp.edu.a [Dto. De Fisica, UNLP, IFLP-CONICET, C.C.67 (1900) La Plata (Argentina); Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Valencia (Spain); Donderis, V. [Dto. De Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n, 46071 Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Valencia (Spain)

    2009-08-26

    Al-doped ZnO powders were obtained by mechanical milling. This n-type oxide material is of interest for application in electronic devices as solar cells. The incorporation of the metal dopant into the ZnO wurtzite structure has been verified by X-ray diffraction, positron annihilation spectroscopy and optical analysis. The optical reflection measurements were strongly affected by the Al incorporation. The positron annihilation spectroscopy constituted an adequate probe to sense the cation substitution in the doped semiconductor.

  19. Trivalent dopants on ZnO semiconductor obtained by mechanical milling

    International Nuclear Information System (INIS)

    Damonte, L.C.; Donderis, V.; Hernandez-Fenollosa, M.A.

    2009-01-01

    Al-doped ZnO powders were obtained by mechanical milling. This n-type oxide material is of interest for application in electronic devices as solar cells. The incorporation of the metal dopant into the ZnO wurtzite structure has been verified by X-ray diffraction, positron annihilation spectroscopy and optical analysis. The optical reflection measurements were strongly affected by the Al incorporation. The positron annihilation spectroscopy constituted an adequate probe to sense the cation substitution in the doped semiconductor.

  20. Phosphorus {delta}-doped silicon: mixed-atom pseudopotentials and dopant disorder effects

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Damien J; Marks, Nigel A [Nanochemistry Research Institute, Curtin University, PO Box U1987, Perth WA 6845 (Australia); Warschkow, Oliver; McKenzie, David R, E-mail: d.carter@curtin.edu.au [Centre for Quantum Computer Technology, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-02-11

    Within a full density functional theory framework we calculate the band structure and doping potential for phosphorus {delta}-doped silicon. We compare two different representations of the dopant plane; pseudo-atoms in which the nuclear charge is fractional between silicon and phosphorus, and explicit arrangements employing distinct silicon and phosphorus atoms. While the pseudo-atom approach offers several computational advantages, the explicit model calculations differ in a number of key points, including the valley splitting, the Fermi level and the width of the doping potential. These findings have implications for parameters used in device modelling.

  1. Substitutional Co dopant on the GaAs(110) surface: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhou; Yi, Zhijun, E-mail: zhijunyi@cumt.edu.cn

    2016-12-01

    Using the first principles ground state method, the electronic properties of single Co dopant replacing one Ga atom on the GaAs(110) surface are studied. Our calculated local density of states (LDOS) at Co site presents several distinct peaks above the valence band maximum (VBM), and this agrees with recent experiments. Moreover, the calculated STM images at bias voltages of 2 eV and −2 eV also agree with experiments. We discussed the origin of Co impurity induced distinct peaks, which can be characterized with the hybridization between Co d orbitals and p-like orbitals of surface As and Ga atoms.

  2. High Thermoelectric Figure of Merit by Resonant Dopant in Half-Heusler Alloys

    OpenAIRE

    Chen, Long; Liu, Yamei; He, Jian; Tritt, Terry M.; Poon, S. Joseph

    2017-01-01

    Half-Heusler alloys have been one of the benchmark high temperature thermoelectric materials owing to their thermal stability and promising figure of merit ZT. Simonson et al. early showed that small amounts of vanadium doped in Hf0.75Zr0.25NiSn enhanced the Seebeck coefficient and correlated the change with the increased density of states near the Fermi level. We herein report a systematic study on the role of vanadium (V), niobium (Nb), and tantalum (Ta) as prospective resonant dopants in e...

  3. Photosensitive self-assembling materials as functional dopants for organic photovoltaic cells

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Iwan, A.; Cigl, Martin; Boharewicz, B.; Tazbir, I.; Wójcik, K.; Sikora, A.; Hamplová, Věra

    2016-01-01

    Roč. 6, č. 14 (2016), s. 11577-11590 ISSN 2046-2069 R&D Projects: GA MŠk 7AMB13PL041; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : self-assembling materials * functional dopants * organic photovoltaic cells * azo group * liquid crystal Subject RIV: JI - Composite Materials Impact factor: 3.108, year: 2016

  4. Optical properties of CuCdTeO thin films sputtered from CdTe-CuO composite targets

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Galván, A., E-mail: amendoza@qro.cinvestav.mx [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico); Laboratory of Applied Optics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Arreola-Jardón, G. [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico); Karlsson, L.H.; Persson, P.O.Å. [Thin Film Physics Division, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Jiménez-Sandoval, S. [Cinvestav-IPN, Unidad Querétaro, Libramiento Norponiente 2000, 76230 Querétaro (Mexico)

    2014-11-28

    The effective complex dielectric function (ε) of Cu and O containing CdTe thin films is reported in the spectral range of 0.05 to 6 eV. The films were fabricated by rf sputtering from targets comprised by a mixture of CdTe and CuO powders with nominal Cu and O concentrations in the range of 2–10 at.%. Low concentration levels improved the crystalline quality of the films. Spectroscopic ellipsometry and transmittance measurements were used to determine ε. The critical point energies E{sub 1}, E{sub 1} + Δ{sub 1}, and E{sub 2} of CdTe are red-shifted with the incorporation of Cu and O. Also, an absorption band is developed in the infrared range which is associated with a mixture of CdTe and low resistivity phases Cu{sub 2−x}Te according to an effective medium analysis. The elemental distribution of the films was mapped by energy dispersive X-ray spectroscopy using scanning transmission electron microscopy. - Highlights: • Incorporation of 2 to 10 at.% of Cu and O atoms in CdTe films • Improved crystalline quality with 2 and 3 at.% of Cu and O • Complex dielectric function of Cu and O containing CdTe thin films • Effective medium modeling of below band-gap absorption.

  5. Ga-Bi-Te system

    International Nuclear Information System (INIS)

    Rustamov, P.G.; Seidova, N.A.; Shakhbazov, M.G.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neorganicheskoj i Fizicheskoj Khimii)

    1976-01-01

    To elucidate the nature of interaction in the system Ga-Bi-Te, a study has been made of sections GaTe-Bi 2 Te 3 , Ga 2 Te 3 -Bi, GaTe-Bi and Bi 2 Te 3 -Ga. The alloys have been prepared by direct melting of the components or their alloys with subsequent homogenizin.o annealing at 400 deg C. The study has been made by the methods of differential thermal, microstructural analysis and by microhardness measurements. On the basis of literature data and data obtained a projection of the liquidus surface of the phase diagram for the system Ga-Bi-Te has been constructed. In the ternary system there are 17 curves of monovariant equilibrium dividing the liquidus into 10 fields of primary crystallization of phases, 9 points of non-variant equilibrium of which 4 points are triple eutectics and 5 points are triple peritectics

  6. Estimation of Te-132 distribution in Fukushima Prefecture at the early stage of the Fukushima Daiichi Nuclear Power Plant reactor failures.

    Science.gov (United States)

    Tagami, Keiko; Uchida, Shigeo; Ishii, Nobuyoshi; Zheng, Jian

    2013-05-21

    Tellurium-132 ((132)Te, half-life: 3.2 d) has been assessed as the radionuclide with the third largest release from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011; thus it would have made some dose contribution during the early stage of the reactor failures. The available data for (132)Te are, however, limited. In this study, available reported values of other isotopes of Te were compiled to estimate (132)Te concentration (in MBq m(-2)). It was found that (132)Te and (129m)Te (half-life: 33.6 d) concentrations were well correlated (R = 0.99, p < 0.001) by t test. Thus, (132)Te concentrations on March 11, 2011 were estimated from (129m)Te using the concentration conversion factor ((132)Te /(129m)Te) of 14.5. It was also found that since deposited (129m)Te was well retained in the soil, the data collected in March-May of 2011 were applicable to (132)Te estimation. It was possible to obtain the first (132)Te concentration contour map for the eastern part of Fukushima Prefecture, including data from within the 20-km exclusion zone around the FDNPP, using these newly available estimated (132)Te data sets.

  7. Growth And Characterization Of LPE CdHgTe/CdZnTe/CdZnTe Structure

    Science.gov (United States)

    Pelliciari, B.; Chamonal, J. P.; Destefanis, G. L.; Dicioccio, L.

    1988-05-01

    The liquid phase epitaxial technique is used to grow Hgl_x Cdx Te (x = .23) from a Te - rich solution onto a Cdl_y ZnyTe (y = .04) buffer layer grown from a Te-rich solution onto a Cdi_yZnyTe bulk substrate in an open tube multibin horizontal slider apparatus.Growth conditions and physical characterizations of both the buffer layer and the CdHgTe layer are given ; electrical properties of the CdHgTe layer are also presen-ted. PV detectors were successfully obtained on such a structure using an ion-implanted technology and their characteristics at 77 K for a 10.1 ,um cut-off wavelength are given.

  8. Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping.

    Science.gov (United States)

    Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu

    2018-03-01

    Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals

    KAUST Repository

    Abdelhady, Ahmed L.

    2016-01-02

    Controllable doping of semiconductors is a fundamental technological requirement for electronic and optoelectronic devices. As intrinsic semiconductors, hybrid perovskites have so far been a phenomenal success in photovoltaics. The inability to dope these materials heterovalently (or aliovalently) has greatly limited their wider utilizations in electronics. Here we show an efficient in situ chemical route that achieves the controlled incorporation of trivalent cations (Bi3+, Au3+, or In3+) by exploiting the retrograde solubility behavior of perovskites. We term the new method dopant incorporation in the retrograde regime. We achieve Bi3+ incorporation that leads to bandgap tuning (∼300 meV), 104 fold enhancement in electrical conductivity, and a change in the sign of majority charge carriers from positive to negative. This work demonstrates the successful incorporation of dopants into perovskite crystals while preserving the host lattice structure, opening new avenues to tailor the electronic and optoelectronic properties of this rapidly emerging class of solution-processed semiconductors. © 2016 American Chemical Society.

  10. High thermoelectric figure of merit by resonant dopant in half-Heusler alloys

    Science.gov (United States)

    Chen, Long; Liu, Yamei; He, Jian; Tritt, Terry M.; Poon, S. Joseph

    2017-06-01

    Half-Heusler alloys have been one of the benchmark high temperature thermoelectric materials owing to their thermal stability and promising figure of merit ZT. Simonson et al. early showed that small amounts of vanadium doped in Hf0.75Zr0.25NiSn enhanced the Seebeck coefficient and correlated the change with the increased density of states near the Fermi level. We herein report a systematic study on the role of vanadium (V), niobium (Nb), and tantalum (Ta) as prospective resonant dopants in enhancing the ZT of n-type half-Heusler alloys based on Hf0.6Zr0.4NiSn0.995Sb0.005. The V doping was found to increase the Seebeck coefficient in the temperature range 300-1000 K, consistent with a resonant doping scheme. In contrast, Nb and Ta act as normal n-type dopants, as evident by the systematic decrease in electrical resistivity and Seebeck coefficient. The combination of enhanced Seebeck coefficient due to the presence of V resonant states and the reduced thermal conductivity has led to a state-of-the-art ZT of 1.3 near 850 K in n-type (Hf0.6Zr0.4)0.99V0.01NiSn0.995Sb0.005 alloys.

  11. Effects of Lithium Dopant on Size and Morphology of Magnesium Oxide Nano powders

    International Nuclear Information System (INIS)

    Mohd Sufri Mastuli; Siti Nur Hazlinda Hasbu; Noraziahwati Ibrahim; Mohd Azizi Nawawi; Mohd Sufri Mastuli

    2014-01-01

    Lithium doped of magnesium oxide powders have been synthesized using the sol-gel method with magnesium acetate tetrahydrate, oxalic acid dihydrate and lithium acetate dihydrate used as the starting materials. The dried sol-gel products were calcined at 950 degree Celsius for 36 h to form the Li doped-MgO samples. The calcined samples were characterized using X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The present work is investigated the effect of lithium ion on the band gap energy of studied samples. The band gap energies were obtained from a Tauc plot that drawn based on absorption edge of each sample that measured using a UV-Vis spectrophotometer. It is found that the doped and undoped MgO samples showed a slightly different in their band gap energies. The lithium ion that present in the MgO as a dopant affects the crystallite size and morphology of the final products. Our study shows that the lithium dopant can modified optical properties of the metal oxide which to be beneficial in some industrial applications. (author)

  12. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  13. Hard-Wired Dopant Networks and the Prediction of High Transition Temperatures in Ceramic Superconductors

    International Nuclear Information System (INIS)

    Phillips, J.C.

    2010-01-01

    The review multiple successes of the discrete hard-wired dopant network model ZZIP, and comment on the equally numerous failures of continuum models, in describing and predicting the properties of ceramic superconductors. The prediction of transition temperatures can be regarded in several ways, either as an exacting test of theory, or as a tool for identifying theoretical rules for defining new homology models. Popular first principle methods for predicting transition temperatures in conventional crystalline superconductors have failed for cuprate HTSC, as have parameterized models based on CuO2 planes (with or without apical oxygen). Following a path suggested by Bayesian probability, it was found that the glassy, self-organized dopant network percolative model is so successful that it defines a new homology class appropriate to ceramic superconductors. The reasons for this success in an exponentially complex (non-polynomial complete, NPC) problem are discussed, and a critical comparison is made with previous polynomial (PC) theories. The predictions are successful for the superfamily of all ceramics, including new non-cuprates based on FeAs in place of CuO2.

  14. Characteristics of titanium oxide memristor with coexistence of dopant drift and a tunnel barrier

    International Nuclear Information System (INIS)

    Tian Xiao-Bo; Xu Hui

    2014-01-01

    The recent published experimental data of titanium oxide memristor devices which are tested under the same experimental conditions exhibit the strange instability and complexity of these devices. Such undesired characteristics preclude the understanding of the device conductive processes and the memristor-based practical applications. The possibility of the coexistence of dopant drift and tunnel barrier conduction in a memristor provides preliminary explanations for the undesired characteristics. However, current research lacks detailed discussion about the coexistence case. In this paper, dopant drift and tunnel barrier-based theories are first analyzed for studying the relations between parameters and physical variables which affect characteristics of memristors, and then the influences of each parameter change on the conductive behaviors in the single and coexistence cases of the two mechanisms are simulated and discussed respectively. The simulation results provide further explanations of the complex device conduction. Theoretical methods of eliminating or reducing the coexistence of the two mechanisms are proposed, in order to increase the stability of the device conduction. This work also provides the support for optimizing the fabrications of memristor devices with excellent performance

  15. Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes.

    Science.gov (United States)

    Zeng, ZhenHua; Björketun, Mårten E; Ebbesen, Sune; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-14

    The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X(3+) and the sulfur tolerance of the Ni-XSZ anode; the smaller the ionic radius, the higher the sulfur tolerance. The mechanistic study shows that the size of X(3+) strongly influences XSZ's surface energy, which in turn determines the adhesion of Ni to XSZ. The Ni-XSZ interaction has a direct impact on the Ni-S interaction and on the relative stability of reconstructed and pristine Ni(100) facets at the TPB. Together, these two effects control the sulfur adsorption on the Ni atoms at the TPB. The established relationships explain experimentally observed dopant-dependent anode performances and provide a blueprint for the future search for and preparation of highly sulfur tolerant anodes.

  16. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants.

    Science.gov (United States)

    Pinchetti, Valerio; Di, Qiumei; Lorenzon, Monica; Camellini, Andrea; Fasoli, Mauro; Zavelani-Rossi, Margherita; Meinardi, Francesco; Zhang, Jiatao; Crooker, Scott A; Brovelli, Sergio

    2018-02-01

    Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag + is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag + is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag + . This optical activation process and the associated modification of the electronic configuration of Ag + remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag + to paramagnetic Ag 2+ . The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

  17. Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals

    KAUST Repository

    Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; Banavoth, Murali; Adinolfi, Valerio; Voznyy, Oleksandr; Katsiev, Khabiboulakh; Alarousu, Erkki; Comin, Riccardo; Dursun, Ibrahim; Sinatra, Lutfan; Sargent, Edward H.; Mohammed, Omar F.; Bakr, Osman

    2016-01-01

    Controllable doping of semiconductors is a fundamental technological requirement for electronic and optoelectronic devices. As intrinsic semiconductors, hybrid perovskites have so far been a phenomenal success in photovoltaics. The inability to dope these materials heterovalently (or aliovalently) has greatly limited their wider utilizations in electronics. Here we show an efficient in situ chemical route that achieves the controlled incorporation of trivalent cations (Bi3+, Au3+, or In3+) by exploiting the retrograde solubility behavior of perovskites. We term the new method dopant incorporation in the retrograde regime. We achieve Bi3+ incorporation that leads to bandgap tuning (∼300 meV), 104 fold enhancement in electrical conductivity, and a change in the sign of majority charge carriers from positive to negative. This work demonstrates the successful incorporation of dopants into perovskite crystals while preserving the host lattice structure, opening new avenues to tailor the electronic and optoelectronic properties of this rapidly emerging class of solution-processed semiconductors. © 2016 American Chemical Society.

  18. A combined theoretical and experimental investigation about the influence of the dopant in the anodic electropolymerization of {alpha}-tetrathiophene

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Carlos [Departament d' Enginyeria Quimica, E.T.S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.edu; Oliver, Ramon [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain); Brillas, Enric [Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1, Barcelona E-08028 (Spain); Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No. 69, Lleida E-25001 (Spain); Estrany, Francesc [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain)], E-mail: francesc.estrany@upc.edu

    2006-04-21

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of {alpha}-tetrathiophene. The results derived from anodic polymerization of {alpha}-tetrathiophene using SCN{sup -}, Cl{sup -}, Br{sup -}, NO{sub 3}{sup -}ClO{sub 3}{sup -}andClO{sub 4}{sup -} as dopant agents are compared with theoretical results provided by quantum mechanical calculations on 1:1 charge-transfer complexes formed by {alpha}-tetrathiophene and X=SCN, Cl, Br, NO{sub 3}, ClO{sub 3} and ClO{sub 4}. The consistency between experimental and theoretical results allows explain and rationalize the influence of the dopant in the electropolymerization of {alpha}-tetrathiophene.

  19. Site-selective dopant profiling of p-n junction specimens in the dual-beam FIB/SEM system

    International Nuclear Information System (INIS)

    Chee, K W A; Beanland, R; Midgley, P A; Humphreys, C J

    2010-01-01

    Results from site-specific dopant profiling in a dual-beam FIB/SEM system are reported. Si specimens containing p-n junctions were milled using Ga + ion beam energies ranging from 30 keV to 2 keV, and analysed in situin the vacuum chamber. We compare the dopant contrast observed when milling a cleaved surface to that obtained from a side-wall of a trench cut using 30 kV Ga + ions, and using successively lower ion beam energies. The latter technique is suitable for site-specific dopant profiling. We find that lower energy ion beam milling significantly improves contrast, but only achieves 50 % of that observed on a freshly-cleaved surface. Furthermore, the contrast on a side-wall previously milled using high energy Ga + ions is less than that of a cleaved surface subjected to the same ion beam energy.

  20. The effect of dopant-induced electron traps on spectrum evolution of doped organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Y.Q. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China)]. E-mail: yqzhan@fudan.edu.cn; Zhou, J. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Zhou, Y.C. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Y. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Yang, H. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Li, F.Y. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Ding, X.M. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China); Hou, X.Y. [Surface Physics Laboratory (National Key Laboratory), Lab of Advanced Materials, Fudan University, Shanghai 200433 (China)]. E-mail: xyhou@fudan.edu.cn

    2007-05-07

    A prototype of light emitting device with two symmetrically located Al/LiF electrodes is fabricated to study the voltage dependence of emission spectra. 4-(dicyanomethylene)-2-methyl-6- (pdimethylaminostyryl)-4H-pyran doped tris-(8-hydroxy-quinolinato) aluminum thin film is the emitting layer of the device. Experiments show that with increasing applied voltage the emission intensity of the device decreases, of which the dopant emission intensity decreases more steeply than that of the host. Based on the theory of space-charge-limited current in insulator with a single shallow trap level it is deduced that the photoluminescence intensity of the dopant emission decreases linearly with applied voltage, in good agreement with experimental measurements. The evolution of the emission spectra can be well explained by the suggested mechanism that the electrons are trapped in the dopant molecules, which blocks the energy transfer from the host, and leads to more excitons in the host to emit light.

  1. The effect of dopant-induced electron traps on spectrum evolution of doped organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhan, Y.Q.; Zhou, J.; Zhou, Y.C.; Wu, Y.; Yang, H.; Li, F.Y.; Ding, X.M.; Hou, X.Y.

    2007-01-01

    A prototype of light emitting device with two symmetrically located Al/LiF electrodes is fabricated to study the voltage dependence of emission spectra. 4-(dicyanomethylene)-2-methyl-6- (pdimethylaminostyryl)-4H-pyran doped tris-(8-hydroxy-quinolinato) aluminum thin film is the emitting layer of the device. Experiments show that with increasing applied voltage the emission intensity of the device decreases, of which the dopant emission intensity decreases more steeply than that of the host. Based on the theory of space-charge-limited current in insulator with a single shallow trap level it is deduced that the photoluminescence intensity of the dopant emission decreases linearly with applied voltage, in good agreement with experimental measurements. The evolution of the emission spectra can be well explained by the suggested mechanism that the electrons are trapped in the dopant molecules, which blocks the energy transfer from the host, and leads to more excitons in the host to emit light

  2. HIGH SPATIAL-RESOLUTION IMAGING OF TE INCLUSIONS IN CZT MATERIAL

    International Nuclear Information System (INIS)

    CAMARDA, G.S.; BOLOTNIKOV, A.E.; CARINI, G.A.; CUI, Y.; KOHMAN, K.T.; LI, L.; JAMES, R.B.

    2006-01-01

    We present new results from our studies of defects in current single-crystal CdZnTe material. Our previous measurements, carried out on thin (∼1 mm) and long (>12 mm) CZT detectors, indicated that small (1-20 (micro)m) Te inclusions can significantly degrade the device's energy resolution and detection efficiency. We are conducting detailed studies of the effects of Te inclusions by employing different characterization techniques with better spatial resolution, such as quantitative fluorescence mapping, X-ray micro-diffraction, and TEM. Also, IR microscopy and gamma-mapping with pulse-shape analysis with higher spatial resolution generated more accurate results in the areas surrounding the micro-defects (Te inclusions). Our results reveal how the performance of CdZnTe detectors is influenced by Te inclusions, such as their spatial distribution, concentration, and size. We also discuss a model of charge transport through areas populated with Te inclusions

  3. Concentration-dependent photoluminescence of Te-doped In{sub 0.14}Ga{sub 0.86}As{sub 0.13}Sb{sub 0.87}

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Reyes, J [CIBA-IPN, Ex-Hacienda de San Juan Molino Km 1.5, Tepetitla, Tlaxcala 90700 (Mexico); Mendoza-Alvarez, J G [Departamento de Fisica, CINVESTAV-IPN, Apartado Postal 14-740, Mexico, DF 07000 (Mexico); Gomez-Herrera, M L [CICATA-IPN, Unidad Legaria, Avenida Legaria 694, Colonia Irrigacion, Mexico, DF 11500 (Mexico)

    2006-12-06

    Quaternary layers of N-type In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y} were grown by liquid phase epitaxy on (100) GaSb substrates under lattice-matching conditions. Low-temperature photoluminescence spectra were obtained as a function of tellurium concentration. These spectra were interpreted taking into account the nonparabolicity of the conduction band. Calculations of the peak position and photoluminescence transitions were performed. Both the band filled as well as band tailing effects due to Coulomb interaction of free carriers with ionized impurities and shrinkage due to exchange interaction between free carriers were considered in order to properly account for the observed features of the photoluminescence spectra. It is shown that the band-to-band energy transition can be used to obtain the carrier concentration in N-type In{sub x}Ga{sub 1-x}As{sub y}Sb{sub 1-y}, in the range from 1 x 10{sup 16} to 3.42 x 10{sup 18} cm{sup -3}.

  4. On the doping problem of CdTe films: The bismuth case

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Brown, M. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Ruiz, C.M. [Depto. Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Vidal-Borbolla, M.A. [Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Lomas 4a. Secc., 78210 San Luis Potosi, SLP (Mexico); Ramirez-Bon, R. [CINVESTAV-IPN, U. Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Queretaro, Qro. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)], E-mail: mtufinovel@yahoo.com.mx; Calixto, M. Estela [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Compaan, A.D. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)

    2008-08-30

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10{sup 13} cm{sup -3}, depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10{sup 15} cm{sup -3}. Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented.

  5. On the doping problem of CdTe films: The bismuth case

    International Nuclear Information System (INIS)

    Vigil-Galan, O.; Brown, M.; Ruiz, C.M.; Vidal-Borbolla, M.A.; Ramirez-Bon, R.; Sanchez-Meza, E.; Tufino-Velazquez, M.; Calixto, M. Estela; Compaan, A.D.; Contreras-Puente, G.

    2008-01-01

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10 13 cm -3 , depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10 15 cm -3 . Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented

  6. Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaleji, Behzad Koozegar, E-mail: bkaleji@yahoo.com [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box:14115-143, Tehran (Iran, Islamic Republic of); Sarraf-Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box:14115-143, Tehran (Iran, Islamic Republic of); Fujishima, Akira [Photo-catalyst Group, Kanagawa Academy of Science and Technology, KSP East 412, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012 (Japan)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer We coated Nb-doped TiO{sub 2} films on glazed porcelain via sol-gel dip coating method. Black-Right-Pointing-Pointer We examined coatings by degradation of MB solution and optical light transmittance. Black-Right-Pointing-Pointer Coatings show enhanced photo-catalytic activity in 1 mol% Nb. Black-Right-Pointing-Pointer Nb doping inhibited the grain growth, and which are found to inhibit the anatase to rutile phase transformation. - Abstract: In this study, preparation of Nb-doped (0-20 mol% Nb) TiO{sub 2} dip-coated thin films on glazed porcelain substrates via sol-gel process has been investigated. The effects of Nb on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films was examined by atomic force microscope and X-ray photoelectron spectroscopy. XRD and Raman study showed that the Nb doping inhibited the grain growth. The photo-catalytic activity of the film was tested on degradation of methylene blue. Best photo-catalytic activity of Nb-doped TiO{sub 2} thin films were measured in the TiO{sub 2}-1 mol% Nb sample. The average optical transmittance of about 47% in the visible range and the band gap of films became wider with increasing Nb doping concentration. The Nb{sup 5+} dopant presented substitutional Ti{sup 4+} into TiO{sub 2} lattice.

  7. Selenium Se and tellurium Te

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for determining selenium and tellurium in various objects are presented. The bichromatometric determination of Te in cadmium, zinc and mercury tellurides is based on oxidation of Te(4) to (6) in H 2 SO 4 with potassium bichromate. In steels, Te is determined photometrically with the aid of KI. The determination is hindered by Fe(3), Cu(2), Bi(3) and Se(4) ions, which must be separated. The extraction-photometric determination of Te in native sulfur is carried out with the aid of 5-mercapto-3-(naphthyl-2)-1,3,4-thiadiazolthione-2 (pH=4.8-5.0). The dyed complex is readily extracted with chloroform and benzene. The spectrophotometric determination of Te in selenium is performed with the aid of 3,5-diphenylpyrazoline-1-dithiocarbamate of sodium. Te is determined in commercial indium, arsenic and their semiconductor compounds photometrically with the aid of copper diethyldithiocarbamate. The method permits determining 5x10 -5 % Te in a weighed amount of 0.5 g. The chloride complex of Te(4) with diantipyriodolpropylmethane is quantitatively extracted with dichloroethane from hydrochloric acid solutions. Thus, any amounts of Te can be separated from Se and determined photometrically. The extraction-photometric determination of Te in commercial lead and bismuth is carried out with the aid of pyrazolone derivatives, in commercial copper with the aid of diantipyridolpropylmethane, and in ores (more than 0.01% Te) with the aid of bismuthol 2. Also described is the extraction-polarographic determination of Te in sulfide ores

  8. High-performance germanium n+/p junction by nickel-induced dopant activation of implanted phosphorus at low temperature

    International Nuclear Information System (INIS)

    Huang Wei; Lu Chao; Yu Jue; Wei Jiang-Bin; Chen Chao-Wen; Wang Jian-Yuan; Xu Jian-Fang; Li Cheng; Chen Song-Yan; Lai Hong-Kai; Wang Chen; Liu Chun-Li

    2016-01-01

    High-performance Ge n + /p junctions were fabricated at a low formation temperature from 325 °C to 400 °C with a metal(nickel)-induced dopant activation technique. The obtained NiGe electroded Ge n + /p junction has a rectification ratio of 5.6× 10 4 and a forward current of 387 A/cm 2 at −1 V bias. The Ni-based metal-induced dopant activation technique is expected to meet the requirement of the shallow junction of Ge MOSFET. (paper)

  9. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    International Nuclear Information System (INIS)

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-01

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm 2 has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  10. A theoretical study of dopant atom detection and probe behavior in STEM

    Science.gov (United States)

    Mittal, Anudha

    Very detailed information about the atomic and electronic structure of materials can be obtained via atomic-scale resolution scanning transmission electron microscopy (STEM). These experiments reach the limits of current microscopes, which means that optimal experimental design is a key ingredient in success. The step following experiment, extraction of information from experimental data is also complex. Comprehension of experimental data depends on comparison with simulated data and on fundamental understanding of aspects of scattering behavior. The research projects discussed in this thesis are formulated within three large concepts. 1. Usage of simulation to suggest experimental technique for observation of a particular structural feature.. Two specific structural features are explored. One is the characterization of a substitutional dopant atom in a crystal. Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms in a crystal based on contrast between intensities of doped and non-doped column in the image. The magnitude of the said contrast is heavily influenced by specimen and microscope parameters. Analysis of multislice-based simulations of ADF-STEM images of crystals doped with one substitutional dopant atom for a wide range of crystal thicknesses, types and locations of dopant atom inside the crystal, and crystals with different atoms revealed trends and non-intuitive behaviors in visibility of the dopant atom. The results provide practical guidelines for the optimal experimental setup regarding both the microscope and specimen conditions in order to characterize the presence and location of a dopant atom. Furthermore, the simulations help in recognizing the cases where detecting a single dopant atom via ADF-STEM imaging is not possible. The second is a more specific case of detecting intrinsic twist in MoS2 nanotubes. Objective molecular dynamics simulations coupled with a density

  11. Growth of CdTe: Al films; Crecimiento de peliculas de CdTe: Al

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez A, M.; Zapata T, M. [CICATA-IPN, 89600 Altamira, Tamaulipas (Mexico); Melendez L, M. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico); Pena, J.L. [CINVESTAV-IPN, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico)

    2006-07-01

    CdTe: AI films were grown by the close space vapor transport technique combined with free evaporation (CSVT-FE). The Aluminum (Al) evaporation was made by two kinds of sources: one made of graphite and the other of tantalum. The films were deposited on glass substrates. The Al source temperature was varied maintaining the CdTe source temperature fixed as well as the substrate temperature. The films were characterized by x-ray energy dispersive analysis (EDAX), x-ray diffraction and optical transmission. The results showed for the films grown with the graphite source for Al evaporation, the Al did not incorporate in the CdTe matrix, at least to the level of EDAX sensitivity; they maintained the same crystal structure and band gap. For the samples grown with the tantalum source, we were able to incorporate the Al. The x-ray diffraction patterns show that the films have a crystal structure that depends on Al concentration. They were cubic up to 2.16 at. % Al concentration; for 19.65 at. % we found a mixed phase; for Al concentration higher than 21 at. % the films were amorphous. For samples with cubic structure it was found that the lattice parameter decreases and the band gap increases with Al concentration. (Author)

  12. Strong sp-d exchange coupling in ZnMnTe/ZnMgTe core/shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wojnar, Piotr; Janik, Elzbieta; Szymura, Malgorzata; Zaleszczyk, Wojciech; Kret, Slawomir; Klopotowski, Lukasz; Wojciechowski, Tomasz; Baczewski, Lech T.; Wiater, Maciej; Karczewski, Grzegorz; Wojtowicz, Tomasz; Kossut, Jacek [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Suffczynski, Jan; Papierska, Joanna [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)

    2014-07-15

    In this work, our recent progress in the growth and optical studies of telluride nanowire heterostructures containing a small molar fraction of magnetic Mn-ions of only a few percent is overviewed. ZnMnTe/ZnMgTe core/shell nanowires (NWs) are grown by molecular beam epitaxy by employing the vapor-liquid-solid growth mechanism assisted with gold catalyst. The structures are studied by means of photoluminescence and microphotoluminescence in an external magnetic field. In the first step, however, an activation of the near band edge emission from ZnTe and ZnMnTe nanowires is described, which is achieved by coating the nanowires with shells made of ZnMgTe. The role of these shells is to passivate Zn(Mn)Te surface states. The incorporation of Mn ions into the crystalline lattice of ZnMnTe nanowires is manifested as a considerable blue shift of near band edge emission with increasing Mn concentration inside the nanowire cores, which reflects directly the increase of their energy gap. In an external magnetic field the near band edge emission exhibits a giant spectral redshift accompanied by an increase of the circular polarization of the emitted light. Both effect are fingerprints of giant Zeeman splitting of the band edges due to sp-d exchange interaction between the band carriers and magnetic Mn-ions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Te/C nanocomposites for Li-Te Secondary Batteries

    Science.gov (United States)

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  14. Aardkastanje, onopvallend en te weinig om te eten

    NARCIS (Netherlands)

    Spruijt, T.

    2010-01-01

    Hij staat vanaf half juni volop in bloei, maar wordt door weinigen gezien. Hoewel een zoektocht op Google anders doet vermoeden, wordt hij niet meer gegeten. De Aardkastanje is daarvoor te onopvallend en te zeldzaam in Nederland. Toch is het een bijzondere schermbloem.

  15. PbTe mechanosynthesis from PbO and Te

    International Nuclear Information System (INIS)

    Rojas-Chavez, Hugo; Diaz-de la Torre, Sebastian; Jaramillo-Vigueras, David; Plascencia, Gabriel

    2009-01-01

    Experimental results concerning the mechanosynthesis (MSY), of PbTe from the PbO-Te powder system, at room temperature an atmospheric conditions are reported. XRD results for samples milled for and after 5.4 ks only show PbTe diffraction peaks; neither Te nor PbO or any other solid phase were detected. Particle size and morphology, was followed by SEM observations. Phase evolution and quantification was monitored by Rietveld refinements of the X-ray diffraction data. It was found that the use of lead oxide as a component of the mechanosynthesis system reduces milling time with respect to the Pb-Te metallic system with mechanical alloying.

  16. A new method to characterize dopant profiles in NMOSFETs using conventional transmission electron microscopy

    International Nuclear Information System (INIS)

    Kawamura, Kazuo; Ikeda, Kazuto; Terauchi, Masami

    2004-01-01

    We have developed a new method using conventional transmission electron microscopy (TEM) to obtain two dimensional dopant profiles in silicon and applied it to 40 nm-gate-length N + /p metal oxide semiconductor field effect transistors (MOSFETs). The results are consistent with those of selective-chemically etched samples observed by TEM. This method, using focused ion beam (FIB) sample preparation and conventional TEM, has the great advantage of simple sample preparation and high spatial resolution compared to other characterization methods, such as atomic capacitance microscopy, spreading resistance microscopy, and TEM combined with selective chemical etching. This indicates that this method can be applicable to the analysis of FETs at the 65 nm or smaller node

  17. Effect of indium dopant on surface and mechanical characteristics of ZnO : In nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Fang, T.-H.; Kang, S.-H. [Institute of Mechanical and Electromechanical Engineering, National Formosa University, No 64, Wenhua Rd., Huwei, Yunlin 632, Taiwan (China)], E-mail: fang.tehua@msa.hinet.net

    2008-12-21

    Epitaxial ZnO : In nanorod films were grown on SiO{sub 2} substrates using a chemical solution method with a pre-coated ZnO sputtered seed layer. Structural and surface characterizations of the ZnO : In nanostructured films were achieved by means of x-ray diffraction, a scanning electron microscope, an atomic force microscope and contact angle measurements. The hardness and Young's modulus of the nanostructured films were investigated by nanoindentation measurements. The results showed that when the indium dopant was increased, the hardness and Young's modulus of the films also rose. The films exhibited hydrophobic behaviour with contact angles of about 128-138 deg., and a decrease in the hardness and Young's modulus with decreasing loads or indentation depths. Buckling behaviour took place during the indentation process, and the fracture strength of the films was also discussed.

  18. Role of dopant in annealing of chemical radiation damage in potassium nitrate

    International Nuclear Information System (INIS)

    Mohapatra, B.M.; Bhatta, D.

    1984-01-01

    The role of cationic vacancy in th annealing of gamma-irradiated potassium nitrate has been investigated using Ba 2+ as a dopant. Isothermal annealing data show that the pure potassium nitrate is immune to annealing above and below the temperature of crystal transition 127degC (Rhombic↔tTrigonal), while the doped crystals undergo recovery by a combination of one first order and one second order process above the phase change and by a second order process below this temperature. The recovery process above 127degC is initially fast (upto 1 hr) but subsequently it slows down to a pseudo-plateau. The proportion of damage which recombines by first and second order processes is 40.6 and 59.4 respectively. (author)

  19. Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Sidiroglou, F.; Baxter, G. [Optical Technology Research Laboratory, College of Engineering and Science, Victoria University, P.O. Box 14428, Melbourne, VIC 8001 (Australia); Roberts, A. [School of Physics, The University of Melbourne, Melbourne, VIC 3010 (Australia)

    2016-04-15

    Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developing the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers.

  20. Operation and scalability of dopant-segregated Schottky barrier MOSFETs with recessed channels

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Hsia, Jui-Kai

    2013-01-01

    Recessed channels were used in scaled dopant-segregated Schottky barrier MOSFETs (DS-SBMOS) to control the severe short-channel effect. The physical operation and device scalability of the DS-SBMOS resulting from the presence of recessed channels and associated gate-corners are elucidated. The coupling of Schottky and gate-corner barriers has a key function in determining the on–off switching and drain current. The gate-corner barriers divide the channel into three regions for protection from the drain penetration field. To prevent resistive degradations in the drive current, an alternative asymmetric recessed channel (ARC) without a source-side gate-corner is proposed to simultaneously optimize both the short-channel effect and drive current in the scaled DS-SBMOS. By employing the proposed ARC architecture, the DS-SBMOS devices can be successfully scaled down, making them promising candidates for next-generation CMOS devices. (paper)

  1. Study of the chlorine as dopant in synthesized polymers by plasma

    International Nuclear Information System (INIS)

    Vasquez, M.; Cruz, G.; Olayo, M.G.; Timoshina, T.; Morales, J.; Olayo, R.

    2003-01-01

    In the search of new and better dopants for semiconductor polymers, in this work the synthesis by plasma and the characterization of two doped polymers with chlorine, Pyrrole (PPy) and Thiophene (PTh) is presented. The characterization of the polymers it was carried out by FT-lR, it shows the C-Cl vibration that it is confirmed with the X-ray photoelectron spectroscopy technique (XPS). The elementary analysis shows a greater quantity of Cl in the PTh-CI compared with PPy-CI. However, this effect is not reflected in the electric conductivity since the PTh-Cl presents a lightly greater conductivity than the PPy-CI. SEM shows a formed structure of small agglomerated spheres of different size. (Author)

  2. A survey of acceptor dopants for β-Ga2O3

    Science.gov (United States)

    Lyons, John L.

    2018-05-01

    With a wide band gap, high critical breakdown voltage and commercially available substrates, Ga2O3 is a promising material for next-generation power electronics. Like most wide-band-gap semiconductors, obtaining better control over its electrical conductivity is critically important, but has proven difficult to achieve. Although efficient p-type doping in Ga2O3 is not expected, since theory and experiment indicate the self-trapping of holes, the full development of this material will require a better understanding of acceptor dopants. Here the properties of group 2, group 5 and group 12 acceptor impurities in β-Ga2O3 are explored using hybrid density functional calculations. All impurities are found to exhibit acceptor transition levels above 1.3 eV. After examining formation energies as a function of chemical potential, Mg (followed closely by Be) is determined to be the most stable acceptor species.

  3. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    Science.gov (United States)

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Simple structured hybrid WOLEDs based on incomplete energy transfer mechanism: from blue exciplex to orange dopant

    Science.gov (United States)

    Zhang, Tianyou; Zhao, Bo; Chu, Bei; Li, Wenlian; Su, Zisheng; Yan, Xingwu; Liu, Chengyuan; Wu, Hairuo; Gao, Yuan; Jin, Fangming; Hou, Fuhua

    2015-05-01

    Exciplex is well known as a charge transfer state formed between electron-donating and electron-accepting molecules. However, exciplex based organic light emitting diodes (OLED) often performed low efficiencies relative to pure phosphorescent OLED and could hardly be used to construct white OLED (WOLED). In this work, a new mechanism is developed to realize efficient WOLED with extremely simple structure by redistributing the energy of triplet exciplex to both singlet exciplex and the orange dopant. The micro process of energy transfer could be directly examined by detailed photoluminescence decay measurement and time resolved photoluminescence analysis. This strategy overcomes the low reverse intersystem crossing efficiency of blue exciplex and complicated device structure of traditional WOLED, enables us to achieve efficient hybrid WOLEDs. Based on this mechanism, we have successfully constructed both exciplex-fluorescence and exciplex-phosphorescence hybrid WOLEDs with remarkable efficiencies.

  5. Current status of models for transient phenomena in dopant diffusion and activation

    International Nuclear Information System (INIS)

    Pichler, P.; Stiebel, D.

    2002-01-01

    Transient phenomena caused by ion-implantation processes have been studied for more than 25 years now with a continuously increasing number of research articles published in this field per year. One driving force of this research is the ongoing miniaturization of ULSI MOS and bipolar technology which uses extensively the capabilities of technology-computer-aided-design (TCAD). The other driving force which attracts also academic institutions and research institutes is the high complexity of the phenomena, involving the interaction of dopants, intrinsic point defects, extended defects and impurities like carbon as well as the interactions of mobile defects with surfaces and interfaces and their redistribution in multilayer structures. This paper outlines some recent advances towards a quantitative description of such phenomena

  6. Off-axis electron holography for the measurement of active dopants in silicon semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, David

    2016-01-01

    There is a need in the semiconductor industry for a dopant profiling technique with nm-scale resolution. Here we demonstrate that off-axis electron holography can be used to provide maps of the electrostatic potential in semiconductor devices with nm-scale resolution. In this paper we will discuss issues regarding the spatial resolution and precision of the technique. Then we will discuss problems with specimen preparation and how this affects the accuracy of the measurements of the potentials. Finally we show results from experimental off-axis electron holography applied to nMOS and pMOS CMOS devices grown on bulk silicon and silicon- on-insulator type devices and present solutions to common problems that are encountered when examining these types of devices. (paper)

  7. The quadrupole interaction of 125Te and 129I in polycrystalline Te and in Te single crystals

    International Nuclear Information System (INIS)

    Langouche, G.; Rossum, M. van; Schmidt, K.P.; Coussement, R.

    1975-01-01

    Single crystals as hosts for Te and I sources were used in a study of Te. The Moessbauer spectra of 125 Te and 129 I in polycrystalline Te at liquid He temperature are given. Also presented are the Moessbauer spectra of 125 Te in a Te single crystal for the gamma ray parallel to the c-axis and perpendicular to the c-axis of the crystal at liquid He temperature. (Z.S.)

  8. Dopant induced variations in microstructure and optical properties of CeO2 nanoparticles

    International Nuclear Information System (INIS)

    Mohanty, Bhaskar Chandra; Lee, Jong Won; Yeon, Deuk-Ho; Jo, Yeon-Hwa; Kim, Jong Hak; Cho, Yong Soo

    2011-01-01

    Research highlights: → Dopant (Zr 4+ , La 3+ , and Ca 2+ ) induced phase stability, and changes in microstructure and optical properties of CeO 2 nanoparticles have been studied. → The nanoparticles were prepared by hydrothermal synthesis of nitrate solutions. → The results show modification of the unit cell parameter by -0.39, +0.83 and +0.16% for doping of 20% Zr 4+ , La 3+ , and Ca 2+ , respectively. → For each batch prepared, nanoparticles with a narrow size distribution of 5-15 nm have been obtained. These particles are single crystals mostly having polygonal two-dimensional projections. → UV-visible spectra of doped particles exhibit shift of the absorption edge and absorption peak with respect to those of the undoped ones and has been attributed to compensation of Ce 3+ and decreasing crystallite size as result of doping. -- Abstract: Nanocrystalline CeO 2 particles doped in the range of 0-20% of Ca 2+ , La 3+ , and Zr 4+ have been prepared from hydrothermal synthesis of nitrate solutions at 200 o C and the influences of the dopants on microstructure and optical properties of the nanoparticles have been investigated. The unit cell parameter is found to be modified by -0.39, +0.83 and +0.16% for doping of 20% Zr 4+ , La 3+ , and Ca 2+ , respectively. For each batch prepared, nanoparticles with a narrow size distribution of 5-15 nm have been obtained. A high-resolution transmission electron microscopy investigation reveals that these particles are single crystals mostly having hexagonal, square or circular two-dimensional projections. UV-visible spectra of doped powders exhibit shift of the absorption edge and absorption peak with respect to those of the undoped CeO 2 particles and has been attributed to compensation of Ce 3+ and decreasing crystallite size as result of doping.

  9. Sintering of nickel catalysts. Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants

    Energy Technology Data Exchange (ETDEWEB)

    Sehested, Jens; Gelten, Johannes A.P.; Helveg, Stig [Haldor Topsoee A/S, Nymoellevej 55, DK-2800 Kgs. Lyngby (Denmark)

    2006-08-01

    Supported nickel catalysts are widely used in the steam-reforming process for industrial scale production of hydrogen and synthesis gas. This paper provides a study of sintering in nickel-based catalysts (Ni/Al{sub 2}O{sub 3} and Ni/MgAl{sub 2}O{sub 4}). Specifically the influence of time, temperature, atmosphere, nickel-carrier interactions and dopants on the rate of sintering is considered. To probe the sintering kinetics, all catalysts were analyzed by sulfur chemisorption to determine the Ni surface area. Furthermore selected samples were further analyzed using X-ray diffraction (XRD), mercury porosimetry, BET area measurements, and electron microscopy (EM). The observed sintering rates as a function of time, temperature, and P{sub H{sub 2}O}/P{sub H{sub 2}} ratio were consistent with recent model predictions [J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Norskov, J. Catal. 223 (2004) 432] over a broad range of environmental conditions. However, exposing the catalysts to severe sintering conditions the loss of nickel surface area is faster than model predictions and the deviation is attributed to a change in the sintering mechanism and nickel removal by nickel-carrier interactions. Surprisingly, alumina-supported Ni particles grow to sizes larger than the particle size of the carrier indicating that the pore diameter does not represent an upper limit for Ni particle growth. The effects of potassium promotion and sulfur poisoning on the rates of sintering were also investigated. No significant effects of the dopants were observed after ageing at ambient pressure. However, at high pressures of steam and hydrogen (31bar and H{sub 2}O:H{sub 2}=10:1) potassium promotion increased the sintering rate relative to that of the unpromoted catalyst. Sulfur also enhances the rate of sintering at high pressures, but the effect of sulfur is less than for potassium. (author)

  10. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    Science.gov (United States)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  11. Theoretical characterization of a class of orange dopants for white-light-emitting single polymers

    International Nuclear Information System (INIS)

    Hu, Bo; Yao, Chan; Wang, Qingwei; Zhang, Hao; Yu, Jiankang

    2012-01-01

    New single-polymer white electroluminescent systems containing two individual emission species − polyfluorene as a blue host and 2,1,3-benzothiadiazole(BTD) derivative as an orange dopant − have been designed and investigated on the basis of the quantum chemical calculations. Calculations show that the change of chemical composition along the backbone in BTD-based derivative yields modifications to the electronic and optical properties. Furthermore, by introducing electron-donating groups [−CH 3 , –OCH 3 , and –NH 2 ] on terminal N,N-disubstituted amino groups, desirable orange emission can be obtained and may be further combined with polyfluorene to form white light. Also, we estimate the reorganization energies upon cation or anion formation as one of the important parameters of mobility with the charge hopping model to determine whether the molecular structural changes may improve the hole/electron transport. The electrostatic surface potentials are finally taken into account to evaluate stability. -- Graphical abstract: New single-polymer white electroluminescent systems containing two individual emission species − polyfluorene as a blue host and 2,1,3-benzothiadiazole(BTD) derivative as an orange dopant − have been designed and investigated on the basis of the quantum chemical calculations. Highlights: ► The change of chemical composition along the backbone yields modifications to the electronic and optical properties. ► Introducing [–CH 3 , –OCH 3 , and –NH 2 ] on terminal N,N-disubstituted amino groups, desirable orange emission can be obtained. ► Desirable orange emission may be further combined with polyfluorene to form white light. ► Designed BTD-based derivatives can function as good hole or ambipolar transport materials in the OLEDs. ► According to the calculated electrostatic surface potentials, OMC-PZ has better stability than that of OMC-PZT.

  12. Ti-dopant-enhanced photocatalytic activity of a CaFe{sub 2}O{sub 4}/MgFe{sub 2}O{sub 4} bulk heterojunction under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Borse, Pramod H. [International Advanced Research Center for Powder Metallurgy and New Materials, Hyderabad (India); Kim, Jae Y.; Lee, Jae S. [Pohang University of Science and Technology, Pohang (Korea, Republic of); Lim, Kwon T. [Pukyong National University, Busan (Korea, Republic of); Jeong, Euh D.; Bae, Jong S.; Yoon, Jang H.; Yu, Seong M.; Kim, Hyun G. [Korea Basic Science Institute, Busan (Korea, Republic of)

    2012-07-15

    The effect substitution of Ti{sup 4+} at the Fe{sup 3+} site in a CaFe{sub 2}O{sub 4{sup -}}MgFe{sub 2}O{sub 4} bulk hetero-junction (BH) lattice photocatalyst was explored and the Ti ion concentration was optimized to fabricate an efficient photocatalyst. A BH consisting of an optimum dopant concentration (Ti{sup +4}) level of x = 0.03 exhibited an increased band gap and generated a 1.5 times higher photocurrent. The newly fabricated Ti ion doped photocatalyst showed an enhanced quantum yield (up to ∼13.3%) for photodecomposition of a H{sub 2}O-CH{sub 3}OH mixture, as compared to its undoped BH counterpart under visible light (λ ≥ 420 nm). In contrast, the material doped with a very high Ti-dopant concentration displayed deteriorated photochemical properties. An efficient charge-separation induced by Ti-ion doping seems to be responsible for the higher photocatalytic activity in a doped bulk BH.

  13. Bouwlogistieke innovaties weerbarstig te implementeren

    NARCIS (Netherlands)

    Ludema, M.W.; Vries, A.M.R.

    2015-01-01

    Toelevering van bouwmaterialen aan bouwprojecten is complex en verregaande gesegregeerd. De bouwsector staat voor een kans te innoveren op het vlak van de bouwlogistiek. In het verleden is ervaring opgedaan met ‘best-practices’ die voldoende kansen bieden de noodzakelijk innovatie door te voeren.

  14. TU-H-CAMPUS-TeP3-04: Probing the Dose Enhancement Due to a Clinically-Relevant Concentration of Gold Nanoparticles and Yb-169 Gamma Rays Using PRESAGE Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J [UT MD Anderson Cancer Center, Houston, TX (United States); Oklahoma State University, Stillwater, OK (United States); Alqathami, M; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Reynoso, F [UT MD Anderson Cancer Center, Houston, TX (United States); Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To probe physical evidences of the dose enhancement due to a low/clinically-relevant concentration of gold nanoparticles (GNPs) and Yb-169 gamma rays using PRESAGE dosimeters. Methods: A PRESAGE cuvette was placed at approximately 2 mm above the plane containing three novel Yb-169 brachytherapy seeds (3.2, 3.2, and 5.3 mCi each). Two types of PRESAGE dosimeters were used – plain PRESAGEs (controls) and PRESAGEs loaded with 0.02 wt. % of GNPs (GNP-PRESAGEs). Each PRESAGE dosimeter was irradiated with different time durations (0 to 24 hours) to deliver 0, 4, 8, 16 and 24 Gy of dose. For a reference/comparison, both types of PRESAGEs were also irradiated using 250 kVp x-rays with/without Er-filter to deliver 0, 3, 10, and 30 Gy of dose. Er-filter was used to emulate Yb-169 spectrum using 250 kVp x-rays. The absorption spectra of PRESAGEs were measured using a UV spectrophotometer and used to determine the corresponding optical densities (ODs). Results: GNP-PRESAGEs exposed to Yb-169 sources showed ∼65% increase in ODs compared with controls. When exposed to Er-filtered and unfiltered 250 kVp x-rays, they produced smaller increases in ODs, ∼41% and ∼37%, respectively. There was a linear relationship between ODs and delivered doses with a goodness-of-fit (R2) greater than 0.99. Conclusion: A notable increase in the ODs (∼65%) was observed for GNP-PRESAGEs irradiated by Yb-169 gamma rays. Considering the observed OD increases, it was highly likely that Yb-169 gamma rays were more effective than both Er-filtered and unfiltered 250 kVp x-rays, in terms of producing the dose enhancement. Due to several unknown factors (e.g., possible difference in the dose response of GNP-PRESAGEs vs. PRESAGEs), however, a further investigations is necessary to establish the feasibility of quantifying the exact amount of macroscopic or microscopic/local GNP-mediated dose enhancement using PRESAGE or similar volumetric dosimeters. Supported by DOD/PCRP grant W81XWH-12

  15. Anomalous radial and angular strain relaxation around dilute p-, isoelectronic-, and n-type dopants in Si crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingshu [School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Dong, Juncai, E-mail: dongjc@ihep.ac.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Dongliang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-01

    Doping is widely applied in yielding desirable properties and functions in silicon technology; thus, fully understanding the relaxation mechanism for lattice-mismatch strain is of fundamental importance. Here we systematically study the local lattice distortion near dilute IIIA-, IVA-, and VA-group substitutional dopants in Si crystal using density functional theory, and anomalous radial and angular strain relaxation modes are first revealed. Both the nearest-neighbor (NN) bond-distances and the tetrahedral bond-angles are found to exhibit completely opposite dependence on the electronic configurations for the low Z (Z<26) and high Z (Z>26) dopants. More surprisingly, negative and positive angular shifts for the second NN twelve Si2 atoms are unveiled surrounding the p- and n-type dopants, respectively. While electron localization function shows that the doped hole and electron are highly localized near the dopants, hence being responsible for the abnormal angular shifts, a universal radial strain relaxation mechanism dominated by a competition of the Coulomb interactions among the ion-core, bond-charge, and the localized hole or electron is also proposed. These findings may prove to be instrumental in precise design of silicon-based solotronics.

  16. P2 Asymmetry of Au's M-band Flux and its smoothing effect due to high-Z ablator dopants

    Science.gov (United States)

    Li, Yongsheng; Zhai, Chuanlei; Ren, Guoli; Gu, Jianfa; Huo, Wenyi; Meng, Xujun; Ye, Wenhua; Lan, Ke; Zhang, Weiyan

    2017-10-01

    X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of ``high-foot'' experiments on the National Ignition Facility. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped and a Si-doped ignition capsule driven by x-ray sources with asymmetric M-band flux. As the results, (1) mid- or high-Z dopants absorb M-band flux and re-emit isotropically, helping to smooth M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2) the smoothing effect of Ge-dopant is more remarkable than Si-dopant due to its higher opacity than the latter in Au's M-band; and (3) placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as Inertial Confinement Fusion (ICF) experiments very near the performance cliffs of asymmetric x-ray drives.

  17. On the roles of the dopants in LiF: Mg,Cu,Na,Si thermoluminescent material

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, J. L.; Chang, S. Y.; Chung, K. S.; Choe, H. S.

    2005-01-01

    In this paper, some results of the study on the roles of the dopants in the LiF:Mg,Cu,Na,Si thermoluminescent (TL) material that was developed at the Korea Atomic Energy Research Inst. for radiation protection are presented. Although there have been many studies to investigate the roles of the dopants in LiF:Mg,Cu,P TL material in the TL process, there are some discrepancies in the understanding of the roles of Cu and P between various researchers. In case of LiF:Mg,Cu,Na,Si TL material, there are a few studies on the roles of the dopants. Three kinds of samples in each of which one dopant is excluded, and the optimised sample, were prepared for this study. The measurements and analysis of the three-dimensional TL spectra, based on the temperature, wavelength and intensity, and the glow curves for those samples are used in this study. The results show that Mg plays a role in the trapping of the charge carriers and Cu plays a role in the luminescence recombination process; however, the effect of Na and Si on the glow curve structure and the TL emission spectra is much less than that of Mg and Cu. It is considered that Na and Si each plays a role in the improvement of the luminescence efficiency. (authors)

  18. Analysis of Etched CdZnTe Substrates

    Science.gov (United States)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-09-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  19. Location of rare-earth dopants on LiCAF and LiSAF laser hosts via XRD, EXAFS and computer modeling technique

    International Nuclear Information System (INIS)

    Valerio, Mario Ernesto Giroldo; Amaral, Jomar Batista de; Baldochi, Sonia Licia Vera; Mazzocchi, L.; Sasaki, Jose Marcos; Jackson, Robert A.

    2004-01-01

    Full text: Cr-doped LiCaAlF 6 (LiCAF) and LiSrAlF 6 (LiSAF) were used as laser operating in the near infrared region. Ce-doped LiCAF and LiSAF have been reported as leading candidates for tunable all-solid-state lasers in the UV region. Spectroscopic properties of LiCaAlF 6 : Nd suggest that this crystal can be used as selective optical filter and refractive element for 157 nm photolithography. The question of whether the RE dopant will prefer the Li + , the M 2+ site or the Al 3+ site is not yet known. Nevertheless most of the optical properties of these hosts including their laser action depend on the local symmetry, charge compensation mechanism and possible deformation of the lattice. In the present work, Powder X-ray Diffraction (XRD), X-ray Absorption Spectroscopy (XAS), Spectro fluorimetry, combined with computer modeling, were used to study the local structure around the dopant and determine the site occupied by them and also the distance and nature of the co-ordinating atoms. The compounds were prepared from commercially available CaF2 and SrF2 powders of high purity; LiF previously purified by the zone melting method, and AlF3 and RE dopants obtained from the hydro fluorination of commercial Al 2 O 3 . The synthesis of 2 mol % RE doped LiCAF and LiSAF samples were performed in a platinum reactor. The compositions were 2 mol % LiF and AlF3 enriched to compensate for their high vaporization. Powder XRD measurements were performed at room temperature in a Rigaku DMAX diffractometer in step scan mode using Cu K radiation. The Rietveld method (DBWS-9807a software) was employed in the analysis of the patterns. It was found that in the doped samples the concentration of the LiCAF or LiSAF phases are 84-95% and a small amount of AlF 3 and α - Li 3 AlF 6 were formed. The XAS experiments were performed on and above the L III absorption edge of the Er, Ho and Nd ions in fluorescence and transmission mode at room temperature in the XAS station at the LNLS, Campinas

  20. Crystal structure, chemical bond and enhanced performance of β-Zn4Sb3 compounds with interstitial indium dopant

    International Nuclear Information System (INIS)

    Tang, Dingguo; Zhao, Wenyu; Yu, Jian; Wei, Ping; Zhou, Hongyu; Zhu, Wanting; Zhang, Qingjie

    2014-01-01

    Highlights: • The interstitial In dopant leads to the local structural perturbations in β-Zn 4 Sb 3 . • The simultaneous increases in α and σ are observed in the In-doped Zn 4 Sb 3 compounds. • The In dopant plays different doping behaviors by the dopant contents in the samples. • A maximum ZT of 1.41 at 700 K is achieved for the In-doped Zn 4 Sb 3 compounds. - Abstract: In-doped β-Zn 4 Sb 3 compounds (Zn 4−x In x Sb 3 , 0 ⩽ x ⩽ 0.24) were prepared by melt-quenching and spark plasma sintering technology in the work. The resultant samples were systematically investigated by X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry and thermoelectric property measurements. The In dopant was identified to preferentially occupy the interstitial site in β-Zn 4 Sb 3 and led to the local structural perturbations near the 12c Sb2 and 36f Zn1 sites. The Auger parameters of Zn and Sb indicated that the increase in the valence of Zn was attributed to the charge transfer from Zn to In atoms. The binding energies of In 3d 5/2 core level showed that the interstitial In dopant was n-type dopant (In 3+ ) in slightly In-doped Zn 4−x In x Sb 3 , but acted as acceptor and was p-type dopant (In + ) in heavily In-doped ones. The discovery provides a reasonable explanation for the puzzled relation between σ and x for Zn 4−x In x Sb 3 . Simultaneously increasing the electrical conductivity and Seebeck coefficient of Zn 4−x In x Sb 3 can be realized through the local structural perturbations. The significantly enhanced power factor and the intrinsic low thermal conductivity resulted in a remarkable increase in the dimensionless figure of merit (ZT). The highest ZT reached 1.41 at 700 K for Zn 3.82 In 0.18 Sb 3 and increased by 68% compared with that of the undoped β-Zn 4 Sb 3

  1. Multicomponent mixed dopant optimization for rapid screening of polycyclic aromatic hydrocarbons using ultra high performance liquid chromatography coupled to atmospheric pressure photoionization high-resolution mass spectrometry

    KAUST Repository

    Sioud, Salim

    2012-05-04

    RATIONALE To enhance the ionization efficiencies in atmospheric pressure photoionization mass spectrometry a dopant with favorable ionization energy such as chlorobenzene is typically used. These dopants are typically toxic and difficult to mix with water-soluble organic solvents. In order to achieve a more efficient and less toxic dopant, a multicomponent mixed dopant was explored. METHODS A multicomponent mixed dopant for non-targeted rapid screening of polycyclic aromatic hydrocarbons (PAHs) was developed and optimized using ultra high performance liquid chromatography (UPLC) coupled to atmospheric pressure photoionization high-resolution mass spectrometry. Various single and multicomponent mixed dopants consisting of ethanol, chlorobenzene, bromobenzene, anisole and toluene were evaluated. RESULTS Fourteen out of eighteen PAHs were successfully separated and detected at low pg/μL levels within 5 min with high mass accuracy ≤4 ppm. The optimal mixed multicomponent dopant consisted of ethanol/chlorobenzene/bromobenzene/anisole (98.975:0.1:0.9:0.025, v/v %) and it improved the limit of detection (LOD) by 2- to 10-fold for the tested PAHs compared to those obtained with pure chlorobenzene. CONCLUSIONS A novel multicomponent dopant that contains 99% ethanol and 1% mixture of chlorobenzene, bromobenzene and anisole was found to be an effective dopant mixture to ionize PAHs. The developed UPLC multicomponent dopant assisted atmospheric pressure photoionization high-resolution mass spectrometry offered a rapid non targeted screening method for detecting the PAHs at low pg/;μL levels within a 5 min run time with high mass accuracy a;circ4 ppm. Copyright © 2012 John Wiley & Sons, Ltd.

  2. The use of isoprene as a novel dopant in negative ion atmospheric pressure photoionization mass spectrometry coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Dousty, Faezeh; O'Brien, Rob

    2015-06-15

    As in the case with positive ion atmospheric pressure photoionization (PI-APPI), the addition of dopants significantly improves the sensitivity of negative ion APPI (NI-APPI). However, the research on dopant-assisted-NI-APPI has been quite limited compared to the studies on dopant-assisted PI-APPI. This work presents the potential of isoprene as a novel dopant for NI-APPI. Thirteen compounds, possessing suitable gas-phase ion energetic properties in order to make stable negative ions, were selected. Dopants were continuously introduced into a tee junction prior to the ion source through a fused-silica capillary, while analytes were directly injected into the same tee. Then both were mixed with the continuous solvent from high-performance liquid chromatography (HPLC), nebulized, and entered the source. The nebulized stream was analyzed by APPI tandem quadrupole mass spectrometry in the negative ion mode. The results obtained using isoprene were compared with those obtained by using toluene as a dopant and dopant-free NI-APPI. Isoprene enhanced the ionization intensities of the studied compounds, which were found to be comparable and, in some cases, more effective than toluene. The mechanisms leading to the observed set of negative analyte ions were also discussed. Because in NI-APPI, thermal electrons, which are produced during the photoionization of a dopant, are considered the main reagent ions, both isoprene and toluene promoted the ionization of analytes through the same mechanisms, as expected. Isoprene was shown to perform well as a novel dopant for NI-APPI. Isoprene has a high photoabsorption cross section in the VUV region; therefore, its photoionization leads to a highly effective production of thermal electrons, which further promotes the ionization of analytes. In addition, isoprene is environmentally benign and less toxic compared to currently used dopants. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Origin and Quenching of Novel ultraviolet and blue emission in NdGaO3: Concept of Super-Hydrogenic Dopants.

    Science.gov (United States)

    Ghosh, Siddhartha; Saha, Surajit; Liu, Zhiqi; Motapothula, M; Patra, Abhijeet; Yakovlev, Nikolai; Cai, Yao; Prakash, Saurav; Huang, Xiao Hu; Tay, Chuan Beng; Cong, Chun Xiao; Bhatt, Thirumaleshwara; Dolmanan, Surani B; Chen, Jianqiang; Lü, Weiming; Huang, Zhen; Tripathy, Sudhiranjan; Chua, Soo Jin; Yu, Ting; Asta, Mark; Ariando, A; Venkatesan, T

    2016-11-03

    In this study we report the existence of novel ultraviolet (UV) and blue emission in rare-earth based perovskite NdGaO 3 (NGO) and the systematic quench of the NGO photoluminescence (PL) by Ce doping. Study of room temperature PL was performed in both single-crystal and polycrystalline NGO (substrates and pellets) respectively. Several NGO pellets were prepared with varying Ce concentration and their room temperature PL was studied using 325 nm laser. It was found that the PL intensity shows a systematic quench with increasing Ce concentration. XPS measurements indicated that nearly 50% of Ce atoms are in the 4+ state. The PL quench was attributed to the novel concept of super hydrogenic dopant (SHD)", where each Ce 4+ ion contributes an electron which forms a super hydrogenic atom with an enhanced Bohr radius, due to the large dielectric constant of the host. Based on the critical Ce concentration for complete quenching this SHD radius was estimated to be within a range of 0.85 nm and 1.15 nm whereas the predicted theoretical value of SHD radius for NdGaO3 is ~1.01 nm.

  4. Quantum efficiency of Yb{sup 3+}–ZnTe co-doped phosphate glass system

    Energy Technology Data Exchange (ETDEWEB)

    Falci, R.F.; Freitas, A.M.; Silva, G.H. [Laboratório de Espectroscopia de Materiais, Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil); Pinheiro, A.S. [Centro Federal de EducaçãoTecnológica Celso Suckow da Fonseca (CEFET/RJ) - Campus Petrópolis, CEP 25620-003, Petrópolis - RJ (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física da Universidade Federal de Uberlândia, CP 593, CEP 38400-902, Uberlândia, MG (Brazil); Anjos, V., E-mail: virgilio@fisica.ufjf.br [Laboratório de Espectroscopia de Materiais, Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil); Bell, M.J.V. [Laboratório de Espectroscopia de Materiais, Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil)

    2016-08-15

    The present paper deals with optical properties of a highly transparent phosphate glass co-doped with Yb{sup 3+} and ZnTe nanocrystals. The presence of ZnTe nanocrystals is due to a sequential melting–nucleation procedure evidenced by optical absorption and Atomic Force Microscopy. From the perspective of compositional variation of the dopants, photoluminescence and lifetime measurements were performed. As a result, it was demonstrated that the ZnTe nanocrystals increase the Yb{sup 3+} emission by a factor up to five, when the pumping wavelength is resonant with the ZnTe absorption. It was also verified that the ZnTe nanocrystals inhibit the self-trapping of the rare earth luminescence. As a consequence, the quantum efficiency of the {sup 5}F{sub 7/2}→{sup 5}F{sub 5/2} transitions of the Yb{sup 3+} is considerably increased. Finally, we have found that the glass thermal diffusivity is not sensitive to temperature variations comprising the interval from room temperature to cryogenic temperatures. This can be an important property when considering this material to future applications in high-power photonic devices.

  5. MoSbTe for high-speed and high-thermal-stability phase-change memory applications

    Science.gov (United States)

    Liu, Wanliang; Wu, Liangcai; Li, Tao; Song, Zhitang; Shi, Jianjun; Zhang, Jing; Feng, Songlin

    2018-04-01

    Mo-doped Sb1.8Te materials and electrical devices were investigated for high-thermal-stability and high-speed phase-change memory applications. The crystallization temperature (t c = 185 °C) and 10-year data retention (t 10-year = 112 °C) were greatly enhanced compared with those of Ge2Sb2Te5 (t c = 150 °C, t 10-year = 85 °C) and pure Sb1.8Te (t c = 166 °C, t 10-year = 74 °C). X-ray diffraction and transmission electron microscopy results show that the Mo dopant suppresses crystallization, reducing the crystalline grain size. Mo2.0(Sb1.8Te)98.0-based devices were fabricated to evaluate the reversible phase transition properties. SET/RESET with a large operation window can be realized using a 10 ns pulse, which is considerably better than that required for Ge2Sb2Te5 (∼50 ns). Furthermore, ∼1 × 106 switching cycles were achieved.

  6. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  7. CdTe as a passivating layer in CdTe/HgCdTe heterostructures

    International Nuclear Information System (INIS)

    Virt, I. S.; Kurilo, I. V.; Rudyi, I. A.; Sizov, F. F.; Mikhailov, N. N.; Smirnov, R. N.

    2008-01-01

    CdTe/Hg 1-x Cd x Te heterostructures are studied. In the structures, CdTe is used as a passivating layer deposited as a polycrystal or single crystal on a single-crystal Hg 1-x Cd x Te film. The film and a passivating layer were obtained in a single technological process of molecular beam epitaxy. The structure of passivating layers was studied by reflection high-energy electron diffraction, and the effect of the structure of the passivating layer on the properties of the active layer was studied by X-ray diffractometry. Mechanical properties of heterostructures were studied by the microhardness method. Electrical and photoelectrical parameters of the Hg 1-x Cd x Te films are reported.

  8. Comparative concentration analysis of Cr and Co in FeSi2 films performed by ERDA and RBS

    International Nuclear Information System (INIS)

    Bohne, W.; Reinsperger, G.-U.; Roehrich, J.; Roeschert, G.; Selle, B.; Stauss, P.

    2000-01-01

    Thin films of β-FeSi 2 doped by Co or Cr were grown on Si substrates by molecular beam epitaxy (MBE) using three separately controlled evaporation sources. The dopant concentration was measured concurrently by heavy-ion ERDA with 129 Xe ions of 140-250 MeV, by heavy-ion RBS with 15 MeV 14 N and by standard RBS with 1.4 MeV 4 He ions. Among these techniques, the TOF-ERDA was most powerful in providing a high mass resolution and a low detection limit for Co and Cr (∼0.1 at.%). Because of the complete overlap of the dopant signals with the Fe signal the standard RBS spectra were evaluated by relying on the differences between the scattering cross-sections from the dopant atoms and Fe. This approach proved to be applicable as far as the dopants had a constant depth profile with sufficiently high concentration. For Cr concentrations exceeding the miscibility limit the RBS results deviate significantly from those of ERDA due to increasing dopant depth inhomogeneities

  9. Nd{sup 3+}-doped TeO{sub 2}-Bi{sub 2}O{sub 3}-ZnO transparent glass ceramics for laser application at 1.06 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolin; Luo, Zhiwei; Liu, Taoyong; Lu, Anxian [Central South of University, School of Materials Science and Engineering, Changsha (China)

    2017-04-15

    The high crystallinity transparent glass ceramics based on Nd{sup 3+}-doped 70TeO{sub 2}-15Bi{sub 2}O{sub 3}-15ZnO (TBZ) compositions were successfully prepared by two-step heat treatment process. The effects of Nd{sub 2}O{sub 3} content on the thermal, structural, mechanical, and optical properties of TBZ glass ceramics were studied. The incorporation of Nd{sub 2}O{sub 3} enhanced the crystallization tendency in the matrix glass composition. The crystal phase and morphology of Bi{sub 2}Te{sub 4}O{sub 11} in the glass ceramics were confirmed by X-ray diffraction and field emission scanning electron microscopy. Due to precipitate more crystal phase, the hardness values increased from 3.21 to 3.66 GPa. Eight absorption peaks were observed from 400 to 900 nm and three emission bands appeared in the range of 850-1400 nm. With the increasing of Nd{sub 2}O{sub 3} content from 0.5 to 2.5 wt%, the intensity of absorption peaks enhanced and the emission intensity increased up to 1.0 wt% and then fell down for further dopant concentration. The fluorescence decay lifetime decreased rapidly starting from 1.5 wt% Nd{sub 2}O{sub 3} content due to the obvious energy migration among Nd{sup 3+}. According to the extreme strong emission band around 1062 nm and the optimum Nd{sub 2}O{sub 3} content (1.0 wt%), N10 glass ceramic was considered as a potential material for 1.06 μm laser applications. (orig.)

  10. Effect of intermixing at CdS/CdTe interface on defect properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Sang, E-mail: jspark@anl.gov; Yang, Ji-Hui; Barnes, Teresa [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Wei, Su-Huai, E-mail: suhuaiwei@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100094 (China)

    2016-07-25

    We investigated the stability and electronic properties of defects in CdTe{sub 1−x}S{sub x} that can be formed at the CdS/CdTe interface. As the anions mix at the interface, the defect properties are significantly affected, especially those defects centered at cation sites like Cd vacancy, V{sub Cd}, and Te on Cd antisite, Te{sub Cd}, because the environment surrounding the defect sites can have different configurations. We show that at a given composition, the transition energy levels of V{sub Cd} and Te{sub Cd} become close to the valence band maximum when the defect has more S atoms in their local environment, thus improving the device performance. Such beneficial role is also found at the grain boundaries when the Te atom is replaced by S in the Te-Te wrong bonds, reducing the energy of the grain boundary level. On the other hand, the transition levels with respect to the valence band edge of CdTe{sub 1−x}S{sub x} increases with the S concentration as the valence band edge decreases with the S concentration, resulting in the reduced p-type doping efficiency.

  11. Technical report Development of a piezoelectric inkjet dopant delivery device for an atmospheric pressure photoionization source with liquid chromatography/mass spectrometry

    KAUST Repository

    Amad, Maan H.

    2013-01-01

    This paper describes a simple robust and integrated piezoelectric actuated printhead as a dopant delivery system for atmospheric pressure photoionization with liquid chromatography/mass spectrometry The newly designed dopant delivery system avoids problems associated with traditional liquid delivery systems such as solvent immiscibility backpressure and increased post-column dead volume issues The performance of the new device was tested and evaluated using chlorobenzene as a dopant with a test mixture consisting of 18 different polycyclic aromatic hydrocarbons (PAHs) The results show that the new system works robustly at low dopant consumption level (16 uL min-1) consuming only approximately 5% of the amount used by conventional sources The low dopant consumption has resulted in up to a 20-fold reduction in signal intensity of tested PAH molecules but has led to less presence of background cluster ions and dopant trace contaminant background ions in the source area Consequently all tested PAHs were detected with excellent signal-to-noise ratio with at least two-to ten-fold improvements in the limit of detection and quantification compared to those obtained with traditional dopant assistance using a post-column addition method © IM Publications LLP 2013.

  12. Inhibition of DNA synthesis and radiosensitization effects of thalidomide on esophageal carcinoma TE1 cells

    International Nuclear Information System (INIS)

    Yu Jingping; Sun Suping; Sun Zhiqiang; Sun Meiling; Liu Fenju

    2010-01-01

    Objective: To explore the radiosensitization effect of thalidomide combined with X-ray on esophageal carcinoma TE1 cells. Methods: Cell scratch assay was used to detect the inhibition ability of different concentration of Thalidomide on cell invasion and metastasis. H 3 -TdR incorporation assay was used to investigate the inhibition of DNA synthesis in TE1 cells by treated with Thalidomide singly or combination with X-rays. The colony formation assay was used to analyze the radiosensitization of Thalidomide effect on TE1 cells. Results: Thalidomide had obvious inhibition effect on TE1 cell metastasis, DNA synthesis and colony formation, which were correlated with drug concentration. The values D 0 , D q and SF 2 in TE1 cells were gradually decreased with thalidomide concentration increased. When the concentration of thalidomide was 100μg/ml, the SER D 0 and SER D 0 and SER D q were (1.4±0.2) and (1.5±0.1), respectively, While the concentration of thalidomide was 150 μg/ml, the SER D 0 and SER D q were (1.5±0.2) and (1.8±0.2), respectively. Conclusions: Thalidomide could inhibit TE1 cell invasion, metastasis, DNA synthesis, and significantly enhance the radiosensitizing effect on esophageal carcinoma TE1 cells. (authors)

  13. Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations

    International Nuclear Information System (INIS)

    Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre

    2017-01-01

    Highlights: • Nanostructured SnS_1_-_xSe_x thin films were prepared by using electrodeposition method. • The XRD patterns obviously showed that the synthesized films were polycrystalline. • The PL spectra of SnS_1_-_xSe_x thin films showed four emission peaks. • The UV–vis spectra shows a variation in the optical band gap energy of SnS_1_-_xSe_x thin films from 1.22 to 1.65 eV. • SnS_1_-_xSe_x thin films would be suitable for use as absorber layers. - Abstract: SnS_1_-_xSe_x nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, −1 V, and 30 min, respectively. SnS_1_-_xSe_x nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV–vis spectroscopy. The XRD patterns revealed that the SnS_1_-_xSe_x nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS_1_-_xSe_x nanostructures due to Se-doping. PL and UV–vis spectroscopy were used to evaluate the optical properties of SnS_1_-_xSe_x thin films. The PL spectra of SnS_1_-_xSe_x nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV–vis spectra showed that the optical band gap energy (E_g) of SnS_1_-_xSe_x nanostructures varied between 1.22–1.65 eV, due to Se-doping.

  14. Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Kafashan, Hosein, E-mail: hosein840521@gmail.com; Azizieh, Mahdi; Balak, Zohre

    2017-07-15

    Highlights: • Nanostructured SnS{sub 1-x}Se{sub x} thin films were prepared by using electrodeposition method. • The XRD patterns obviously showed that the synthesized films were polycrystalline. • The PL spectra of SnS{sub 1-x}Se{sub x} thin films showed four emission peaks. • The UV–vis spectra shows a variation in the optical band gap energy of SnS{sub 1-x}Se{sub x} thin films from 1.22 to 1.65 eV. • SnS{sub 1-x}Se{sub x} thin films would be suitable for use as absorber layers. - Abstract: SnS{sub 1-x}Se{sub x} nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, −1 V, and 30 min, respectively. SnS{sub 1-x}Se{sub x} nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV–vis spectroscopy. The XRD patterns revealed that the SnS{sub 1-x}Se{sub x} nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS{sub 1-x}Se{sub x} nanostructures due to Se-doping. PL and UV–vis spectroscopy were used to evaluate the optical properties of SnS{sub 1-x}Se{sub x} thin films. The PL spectra of SnS{sub 1-x}Se{sub x} nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV–vis spectra showed that the optical band gap energy (E{sub g}) of SnS{sub 1-x}Se{sub x} nanostructures varied between 1.22–1.65 eV, due to Se-doping.

  15. The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media

    International Nuclear Information System (INIS)

    Krehula, Stjepko; Music, Svetozar; Skoko, Zeljko; Popovic, Stanko

    2006-01-01

    The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media was monitored by X-ray diffraction (XRD), 57 Fe Moessbauer and Fourier transform infrared (FT-IR) spectroscopies and field emission scanning electron microscopy (FE SEM). Acicular and monodisperse α-FeOOH particles were precipitated at a very high pH by adding a tetramethylammonium hydroxide solution to an aqueous solution of FeCl 3 . The XRD analysis of the samples precipitated in the presence of Zn 2+ ions showed the formation of solid solutions of α-(Fe, Zn)OOH up to a concentration ratio r = [Zn]/([Zn] + [Fe]) = 0.0909. ZnFe 2 O 4 was additionally formed in the precipitate for r = 0.1111, whereas the three phases α-FeOOH, α-Fe 2 O 3 and ZnFe 2 O 4 were formed for r 0.1304. In the corresponding FT-IR spectra, the Fe-OH and Fe-O stretching bands were sensitive to the Zn 2+ substitution, whereas the Fe-OH bending bands of α-FeOOH at 892 and 796 cm -1 were almost insensitive. The Moessbauer spectra showed a high sensitivity to the formation of α-(Fe, Zn)OOH solid solutions which were monitored on the basis of a decrease in B hf values in dependence on Zn-doping. A strictly linear decrease in B hf for α-FeOOH doped with Zn 2+ ions was measured up to r = 0.0291, whereas for r = 0.0476 and higher there was a deviation from linearity. The presence of α-(Fe, Zn)OOH, α-Fe 2 O 3 and ZnFe 2 O 4 phases in the samples was determined quantitatively by Moessbauer spectroscopy. Likewise, Moessbauer spectroscopy did not show any formation of the solid solutions of α-Fe 2 O 3 with Zn 2+ ions. FE SEM showed a strong effect of Zn-doping on the elongation of acicular α-FeOOH particles (∼500-700 nm in length) up to r = 0.1111. For r = 0.1304 the sizes of ZnFe 2 O 4 particles were around 30-50 nm, and those of α-Fe 2 O 3 particles were around 500 nm, whereas a relatively small number of very elongated α-(Fe, Zn)OOH particles was observed. A possible mechanism of the formation of

  16. Physical properties of high-Tc superconducting oxides. Modification of tc using organic dopants. Final report. Proprietes physiques d'oxydes supraconducteurs a haute Tc. Modification de tc sous l'effet de dopants organiques

    Energy Technology Data Exchange (ETDEWEB)

    Brau, A

    1993-01-01

    An attempt was made to significantly modify the Tc transition temperature of certain copper-based superconducting oxides by introducing organic or mineral dopants, and to study the mobility of 300K-carriers in crystallized tallium-base superconducting oxides. Since the critical transition temperature of superconducting oxides is highly influenced by the density of the free carriers they contain, the authors tried making superconducting powders react with either an organic electron acceptor or a mineral compound. The goal was to increase the density of the holes by altering the copper's degree of oxidation. Their preparatory work showed a direct charge-transfer reaction between the electron-donor copper and the acceptor TCNQ and studied the degree to which the electron acceptor can alter the copper's oxidation. Initial results also showed that dopants can affect superconducting Tc and the course of R(T) curves.

  17. Schreibende Messgeräte

    Science.gov (United States)

    Plaßmann, Wilfried

    Die schreibenden Messgeräte werden hauptsächlich eingesetzt, um Vorgänge aufzuzeichnen und zu dokumentieren, die sich im Minuten- und Stunden-Bereich abspielen. Sie sind weitgehend durch Oszilloskope oder elektronische Geräte ähnlich einem Oszilloskop ersetzt worden, die entsprechend für Langzeitaufnahmen ausgelegt sind. Der Vorteil dieser Geräte gegenüber den schreibenden Messgeräten ist der, dass die Daten dauerhaft gespeichert sind, einschließlich der notwendigen Kenngrößen wie Zeitmaßstab, Amplitude, Datum, Aufzeichnungsgerät usw., und sich in dieser Form beliebig oft ausdrucken und vor allem direkt weiterverarbeiten lassen. Weiterhin entfallen die Probleme mit der Mechanik, dem Papier und den Schreibstiften. Deshalb folgt hier eine nur kurze Darstellung der Geräte.

  18. Magnetospectroscopy of double HgTe/CdHgTe quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bovkun, L. S.; Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Aleshkin, V. Ya.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Ruffenach, S.; Consejo, C.; Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM (France); Orlita, M.; Piot, B.; Potemski, M. [Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA (France); Mikhailov, N. N.; Dvoretskii, S. A. [Russian Academy of Sciences, Siberian Branch, Rzhanov Institute of Semiconductor Physics (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-11-15

    The magnetoabsorption spectra in double HgTe/CdHgTe quantum wells (QWs) with normal and inverted band structures are investigated. The Landau levels in symmetric QWs with a rectangular potential profile are calculated based on the Kane 8 × 8 model. The presence of a tunnel-transparent barrier is shown to lead to the splitting of states and “doubling” of the main magnetoabsorption lines. At a QW width close to the critical one the presence of band inversion and the emergence of a gapless band structure, similar to bilayer graphene, are shown for a structure with a single QW. The shift of magnetoabsorption lines as the carrier concentration changes due to the persistent photoconductivity effect associated with a change in the potential profile because of trap charge exchange is detected. This opens up the possibility for controlling topological phase transitions in such structures.

  19. Gamma transitions in 127Te

    International Nuclear Information System (INIS)

    Batista, Wagner Fonseca; Zamboni, Cibele Bugno

    2009-01-01

    This study of the 127 Te β - decay was carried out by means of gamma spectroscopy measurements using high resolution Ge detector, in the region from 150 keV up to 1000 keV, aiming to get a better understanding of the 127 Te nuclear structure. Several gamma transitions were confirmed when compared with those published in the last compilation. These data resulting in lower uncertainty. (author)

  20. A simple method to fabricate an NIR detector by PbTe nanowires in a large scale

    International Nuclear Information System (INIS)

    Baghchesara, Mohammad Amin; Yousefi, Ramin; Cheraghizade, Mohsen; Jamali-Sheini, Farid; Saáedi, Abdolhossein; Mahmmoudian, M.R.

    2016-01-01

    Highlights: • PbTe nanowires were grown by tellurization of the Pb sheets for the first time. • It was observed a band gap value for the PbTe nanostructures in the NIR region. • NIR detector was fabricated in a large scale using a simple method. • Effect of Te concentration on morphology of PbTe nanostructures was investigated. - Abstract: A simple method was used to fabricate a near-infrared (NIR) detector using PbTe nanostructures. Samples were synthesized by tellurization of lead sheets in a tube furnace. PbTe nanostructures with wires and flakes shapes were grown on the lead sheets that were placed at 300 and 330 °C, respectively, while, PbTe nanoporous were grown at 360 and 390 °C. X-ray diffraction patterns and X-ray photoelectron spectra results indicated that, the PbTe phase was formed in all samples. UV–vis diffuse reflectance spectra measurements showed a band gap for the PbTe nanostructures in the near-infrared region of the electromagnetic spectrum. Actually, the results indicated that, the band gap values of the PbTe nanowires and nanoporous were 1.54 eV and 1.61 eV, respectively. Finally, the PbTe nanostructures were used as a simple photoresponse device under a red light source. The photoresponse results revealed, PbTe nanowires are promising for photoelectrical applications in the NIR region.

  1. Thermoelectric properties of p-type (Bi{sub 1{minus}x}Sb{sub x}){sub 2}Te{sub 3} fabricated by mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Jung, B Y; Choi, J S; Oh, T S; Hyun, D B

    1997-07-01

    Thermoelectric properties of polycrystalline (Bi{sub 1{minus}x}Sb{sub x}){sub 2}Te{sub 3} (0.75 {le} x {le} 0.85), fabricated by mechanical alloying and hot pressing methods, have been investigated. Formation of (Bi{sub 0.25}Sb{sub 0.75}){sub 2}Te{sub 3} alloy powder was completed by mechanical alloying for 5 hours at ball-to-material ratio of 5:1, and processing time for (Bi{sub 1{minus}sub x}Sb{sub x}){sub 2}Te{sub 3} formation increased with Sb{sub 2}Te{sub 3} content x. When (Bi{sub 0.25}Sb{sub 0.75}){sub 2}Te{sub 3} was hot pressed at temperatures ranging from 300 C to 550 C for 30 minutes, figure-of-merit increased with hot pressing temperature and maximum value of 2.8 x 10{sup {minus}3}/K could be obtained by hot pressing at 550 C. When hot pressed at 550 C, (Bi{sub 0.2}Sb{sub 0.8}){sub 2}Te{sub 3} exhibited figure-of-merit of 2.92 x 10{sup {minus}3}/K, which could be improved to 2.97 x 10{sup {minus}3}/K with addition of 1 wt% Sb as acceptor dopant.

  2. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.

    Science.gov (United States)

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-04-27

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4-0.7 eV to 0.2-0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.

  3. Dopant site location in dual-implanted GaP using (111) planar channeling

    International Nuclear Information System (INIS)

    Parikh, N.R.; Kao, C.T.; Lee, D.R.; Muse, J.; Swanson, M.L.; Venkatasubramanian, R.; Timmons, M.

    1990-01-01

    Previous studies have indicated that dual implantation can efficiently introduce group IV dopant onto selected sub-lattice sites in III--V compound semiconductors, thus enhancing electrical activation. The authors have studied this phenomenon in GaP using Rutherford Backscattering Spectroscopy (RBS) to determine the lattice location of Sn atoms. The authors used single crystals of GaP (100) which had been implanted at 400 degrees C with 120 Sn + following previously implanted 69 Ga + or 31 P + . Energies were selected for equivalent projected ranges, and all species were implanted with doses of 1 x 10 15 atoms/cm 2 . Asymmetry in the angular scan of the {111} planar channel was then used to determine the sub-lattice location of the implanted Sn. RBS results indicated that for all implants Sn atoms were substituting Ga and P sites equally. However, Hall effect measurements gave p type conduction for GaP implanted with Sn alone, while those with prior implants of Ga or P resulted in n-type conduction. RBS and Hall effect results are explained by a vacancy complex model

  4. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study

    International Nuclear Information System (INIS)

    Zhang Yonghui; Chen Yabin; Zhou Kaige; Liu Caihong; Zeng Jing; Zhang Haoli; Peng Yong

    2009-01-01

    The interactions between four different graphenes (including pristine, B- or N-doped and defective graphenes) and small gas molecules (CO, NO, NO 2 and NH 3 ) were investigated by using density functional computations to exploit their potential applications as gas sensors. The structural and electronic properties of the graphene-molecule adsorption adducts are strongly dependent on the graphene structure and the molecular adsorption configuration. All four gas molecules show much stronger adsorption on the doped or defective graphenes than that on the pristine graphene. The defective graphene shows the highest adsorption energy with CO, NO and NO 2 molecules, while the B-doped graphene gives the tightest binding with NH 3 . Meanwhile, the strong interactions between the adsorbed molecules and the modified graphenes induce dramatic changes to graphene's electronic properties. The transport behavior of a gas sensor using B-doped graphene shows a sensitivity two orders of magnitude higher than that of pristine graphene. This work reveals that the sensitivity of graphene-based chemical gas sensors could be drastically improved by introducing the appropriate dopant or defect.

  5. Defect- and dopant-controlled carbon nanotubes fabricated by self-assembly of graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Cun Zhang and Shaohua Chen

    2015-01-01

    Molecular dynamics simulations showed that a basal carbon nanotube can activate and guide the fabrication of single-walled carbon nanotubes (CNTs) on its internal surface by self-assembly of edge-unpassivated graphene nanoribbons with defects. Furthermore, the distribution of defects on self-assembled CNTs is controllable. The system temperature and defect fraction are two main factors that influence the success of self-assembly. Due to possible joint flaws formed at the boundaries under a relatively high constant temperature, a technique based on increasing the temperature is adopted. Self-assembly is always successful for graphene nanoribbons with relatively small defect fractions, while it will fail in cases with relatively large ones. Similar to the self-assembly of graphene nanoribbons with defects, graphene nanoribbons with different types of dopants can also be self-assembled into carbon nanotubes. The finding provides a possible fabrication technique not only for carbon nanotubes with metallic or semi-con- ductive properties but also for carbon nanotubes with electromagnetic induction characteristics.

  6. Size limit on the phosphorous doped silicon nanocrystals for dopant activation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, P., E-mail: pengyuan.yang@surrey.ac.uk [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 5XH (United Kingdom); Gwilliam, R.M. [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 5XH (United Kingdom); Crowe, I.F.; Papachristodoulou, N.; Halsall, M.P. [Photon Science Institute, School of Electrical and Electronic Engineering, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Hylton, N.P. [Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hulko, O.; Knights, A.P. [Department of Engineering Physics and the Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton L8S 4L7, Ontario (Canada); Shah, M.; Kenyon, A.J. [Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2013-07-15

    We studied the photoluminescence spectra of silicon nanocrystals doped with and without phosphorus as a function of isothermal annealing time. Silicon nanocrystals were prepared by the implantation of 80 keV Si{sup +} into a 500 nm SiO{sub 2} film to an areal density of 8 × 10{sup 16} at/cm{sup 2}. Half of the samples were co-implanted with P{sup +} at 80 keV to 5 × 10{sup 15} at/cm{sup 2}. The photoluminescence of the annealed samples were photo-excited at wavelength of 405 nm. For short anneal times, when the nanocrystal size distribution has a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts to the red. Our results indicate the donor electron generation depends strongly on the nanocrystal size. We also found a critical limit above which it allows dopant activation.

  7. Effect of Metal Dopant on Ninhydrin—Organic Nonlinear Optical Single Crystals

    Directory of Open Access Journals (Sweden)

    R. S. Sreenivasan

    2013-01-01

    Full Text Available In the present work, metal (Cu2+-substituted ninhydrin single crystals were grown by slow evaporation method. The grown crystals have been subjected to single crystal XRD, powder X-ray diffraction, FTIR, dielectric and SHG studies. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in monoclinic system with noncentrosymmetric space group P21 with lattice parameters a=11.28 Å, b=5.98 Å, c=5.71 Å, α=90∘, β=98.57, γ=90∘, and V=381 (Å3, which agrees very well with the reported value. The sharp and strong peaks in the powder X-ray diffraction pattern confirm the good crystallinity of the grown crystals. The presence of dopants marginally altered the lattice parameters without affecting the basic structure of the crystal. The UV-Vis transmittance spectrum shows that the crystal has a good optical transmittance in the entire visible region with lower cutoff wavelength 314 nm. The vibrational frequencies of various functional groups in the crystals have been derived from FT-IR analysis. Based on the shifts in the vibrations, the presence of copper in the lattice of the grown crystal is clearly established from the pure ninhydrin crystals. Both dielectric constant and dielectric loss decrease with the increase in frequency. The second harmonic generation efficiency was measured by employing powder Kurtz method.

  8. The effects of dopants on the electrical resistivity in lead magnesium niobate multilayer ceramic capacitors

    International Nuclear Information System (INIS)

    Chang, D.D.; Ling, H.C.

    1989-01-01

    Electrical resistivity studies were performed on multilayer ceramic capacitors (MLC) based on lead magnesium niobate and containing dopants of lead titanate, lead zinc niobate, and lead cobalt niobate. The results showed that lead titanate and/or lead zinc niobate had no effect on the electrical resistivity while lead cobalt niobate decreased the resistivity. In samples without lead cobalt niobate, we observed a conduction mechanism with an activation energy of --1 eV, which is commonly observed in barium titanate based dielectrics. This is attributed to ionic conduction via the motion of oxygen vacancies. The increase in conductivity (or decrease in resistivity) resulting from the addition of lead cobalt niobate was rationalized as due to electronic conduction through charge hopping among the cations. This conduction mechanism was characterized by an activation energy of --0.5 eV. Since the activation energy associated with the long-term failure was previously determined by a matrix of temperature and voltage accelerated life tests to be -- 1 eV, they conclude that conduction through charge hopping is not affecting the long-term reliability of these devices

  9. Synthesis and crytallization of amorphous In-Te alloys

    International Nuclear Information System (INIS)

    Vengrenovich, R.D.; Lopatnyuk, I.A.; Mikhal'chenko, V.P.; Kasiyan, I.M.; Geshko, E.I.

    1988-01-01

    Tendency of Te-In alloys with indium content from 5 to 40 % to amorphization is investigated. It is marked that in this interval of concentrations the alloys have the tendency to subcooling even at cooling velocities equalling only 0.2-0.3 K/s. Maximal subcooling ΔT=70 deg takes place for the eutectic composition. Tendency of Te-In alloys to vitrification is explained by the character to interatomic interactions in a liquid, the interactions promote the formation of molecular clusters in it in cooling, that leads to fast increase of viscosity and to increase of T g amorphization temperature

  10. P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants

    Directory of Open Access Journals (Sweden)

    Yongsheng Li

    2017-03-01

    Full Text Available X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of “high-foot” experiments on the National Ignition Facility [Miller et al., Nucl. Fusion 44, S228 (2004]. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance of ignition capsules [Li et al., Phys. Plasmas 23, 072705 (2016]. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on Au's M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped ignition capsule and a Si-doped one driven by X-ray sources with P2 M-band flux asymmetry. As the results, (1 mid- or high-Z dopants absorb hard X-rays (M-band flux and re-emit isotropically, which helps to smooth the asymmetric M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2 the smoothing effect of Ge-dopant is more remarkable than Si-dopant because its opacity in Au's M-band is higher than the latter's; and (3 placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as inertial confinement fusion (ICF experiments very near the performance cliffs of asymmetric X-ray drives.

  11. Optical phonons in PbTe/CdTe multilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. N.; Yakovlev, V. A. [Russian Academy of Sciences, Institute for Spectroscopy (Russian Federation); Kucherenko, I. V., E-mail: kucheren@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Karczewski, G. [Polish Academy of Sciences, Institute of Physics (Poland); Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-05-15

    The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.

  12. Formation of nanodots and enhancement of thermoelectric power induced by ion irradiation in PbTe:Ag composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Manju, E-mail: manjubala474@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Meena, Ramcharan; Gupta, Srashti; Pannu, Compesh [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Tripathi, Tripurari S. [Aalto University, Värmemansgränden 2, 02150 Espoo (Finland); Varma, Shikha [Institute of Physics, Bhubaneshwar, Odisha 751005 (India); Tripathi, Surya K. [Department of Physics, Panjab University, Chandigarh 160 014 (India); Asokan, K., E-mail: asokaniuac@gmail.com [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Avasthi, Devesh K. [Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Present study demonstrates an enhancement in thermoelectric power of 10% Ag doped PbTe (PbTe:Ag) thin films when irradiated with 200 keV Ar ion. X-ray diffraction showed an increase in crystallinity for both PbTe and PbTe:10Ag nano-composite films after Ar ion irradiation due to annealing of defects in the grain boundaries. The preferential sputtering of Pb and Te ions in comparison to Ag ions resulted in the formation of nano-dots. This was further confirmed by X-ray photoelectron spectroscopy (XPS). Such an enhancement in thermoelectric power of irradiated PbTe:10Ag films in comparison to pristine PbTe:10Ag film is attributed to the decrease in charge carrier concentration that takes part in the transport process via restricting the tunneling of carriers through the wider potential barrier formed at the interface of nano-dots.

  13. Dopant-site-dependent scattering by dislocations in epitaxial films of perovskite semiconductor BaSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Useong; Park, Chulkwon; Kim, Rokyeon; Mun, Hyo Sik; Kim, Hoon Min; Kim, Namwook; Yu, Jaejun; Char, Kookrin, E-mail: kchar@phya.snu.ac.kr [Center for Strongly Correlated Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Ha, Taewoo; Kim, Jae Hoon [Department of Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyung Joon; Kim, Tai Hoon; Kim, Kee Hoon [Center for Novel States of Complex Materials Research, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-05-01

    We studied the conduction mechanism in Sb-doped BaSnO{sub 3} epitaxial films, and compared its behavior with that of the mechanism of its counterpart, La-doped BaSnO{sub 3}. We found that the electron mobility in BaSnO{sub 3} films was reduced by almost 7 times when the dopant was changed from La to Sb, despite little change in the effective mass of the carriers. This indicates that the scattering rate of conduction electrons in the BaSnO{sub 3} system is strongly affected by the site at which the dopants are located. More importantly, we found that electron scattering by threading dislocations also depends critically on the dopant site. We propose that the large enhancement of scattering by the threading dislocations in Sb-doped BaSnO{sub 3} films is caused by the combination effect of the change in the distribution of Sb impurities in the films, the formation of the Sb impurity clusters near the threading dislocations, and the conduction electron clustering near the Sb impurities.

  14. Dopant-site-dependent scattering by dislocations in epitaxial films of perovskite semiconductor BaSnO3

    Directory of Open Access Journals (Sweden)

    Useong Kim

    2014-05-01

    Full Text Available We studied the conduction mechanism in Sb-doped BaSnO3 epitaxial films, and compared its behavior with that of the mechanism of its counterpart, La-doped BaSnO3. We found that the electron mobility in BaSnO3 films was reduced by almost 7 times when the dopant was changed from La to Sb, despite little change in the effective mass of the carriers. This indicates that the scattering rate of conduction electrons in the BaSnO3 system is strongly affected by the site at which the dopants are located. More importantly, we found that electron scattering by threading dislocations also depends critically on the dopant site. We propose that the large enhancement of scattering by the threading dislocations in Sb-doped BaSnO3 films is caused by the combination effect of the change in the distribution of Sb impurities in the films, the formation of the Sb impurity clusters near the threading dislocations, and the conduction electron clustering near the Sb impurities.

  15. On exceeding the solubility limit of Cr+3 dopants in SnO2 nanoparticles based dilute magnetic semiconductors

    Science.gov (United States)

    URS, Kusuma; Bhat, S. V.; Kamble, Vinayak

    2018-04-01

    The paper investigates the magnetic behavior of chromium doped SnO2 Dilute Magnetic Semiconductor (DMS) nanoparticles, through structural, spectroscopic, and magnetic studies. A non-equilibrium solution combustion method is adopted to synthesize 0-5 at. % Cr doped SnO2 nanoparticles. The detailed spectroscopic studies on the system using micro-Raman spectroscopy, x-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy along with the structural analysis confirm the presence of Cr in 3+ oxidation state, which substitutes at Sn4+ site in SnO6 octahedra of the rutile structure. This doping is found to enhance the defects in the system, i.e., oxygen vacancies. All the synthesized SnO2 nanoparticles (with or without dopants) are found to exhibit Room Temperature Ferromagnetism (RTFM). This occurrence of RTFM is attributed to the magnetic exchange interaction through F-centers of oxygen vacancies as well as dopant magnetic impurities and explained through the Bound Magnetic Polaron (BMP) model of DMS systems. Nonetheless, as the doping of Cr is further increased beyond 2%, the solubility limit is achieved. This antiferromagnetic exchange interaction from interstitial Cr dopants dominates over the BMP mechanism and, hence, leads to the decrease in the net magnetic moment drastically.

  16. Theoretical study of nitrogen-doped graphene nanoflakes: Stability and spectroscopy depending on dopant types and flake sizes.

    Science.gov (United States)

    Lin, Chih-Kai

    2018-03-05

    As nitrogen-doped graphene has been widely applied in optoelectronic devices and catalytic reactions, in this work we have investigated where the nitrogen atoms tend to reside in the material and how they affect the electron density and spectroscopic properties from a theoretical point of view. DFT calculations on N-doped hexagonal and rectangular graphene nanoflakes (GNFs) showed that nitrogen atoms locating on zigzag edges are obviously more stable than those on armchair edges or inside flakes, and interestingly, the N-hydrogenated pyridine moiety could be preferable to pure pyridine moiety in large models. The UV-vis absorption spectra of these nitrogen-doped GNFs display strong dependence on flake sizes, where the larger flakes have their major peaks in lower energy ranges. Moreover, the spectra exhibit different connections to various dopant types and positions: the graphitic-type dopant species present large variety in absorption profiles, while the pyridinic-type ones show extraordinary uniform stability and spectra independent of dopant positions/numbers and hence are hardly distinguishable from each other. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  17. A molecular dynamics study on the oxygen diffusion in doped fluorites: the effect of the dopant distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon, A. [M2E/XaRMAE/IREC, Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Josep Pla 2, Torre 2, B2, 08019 Barcelona (Spain); Morata, A.; Peiro, F. [MIND/XaRMAE/IN2UB, Department of Electronics, University of Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Dezanneau, G. [Laboratoire Structures, Proprietes et Modelisation des Solides, Grande Voie des Vignes, Ecole Centrale Paris, F-92295 Chatenay-Malabry Cedex (France)

    2011-02-15

    The effect of the dopant distribution on the oxygen diffusion in doped fluorites typically used for solid oxide fuel cells electrolyte applications has been analysed by using molecular dynamics simulations. The oxygen mass transport in both yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria has been studied and compared in the range of temperatures between 1,159 and 1,959 K. A new methodology based on the analysis of local environments is used to describe the diffusion process at an atomic scale. Preferred vacancy migration pathways, most suitable conduction models, energy landscapes and jump efficiency have been detailed for each material. Finally, a particular case of non-random distribution of dopants in YSZ is presented in order to quantitatively evaluate the effect of the dopant pattern on the mass transport properties and the potential of the methodology developed here for understanding and foreseeing real configurations at the nanoscale. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Myocardial imaging with 9-[Te-123m]tellurapheptadecanoic acid

    International Nuclear Information System (INIS)

    Elmaleh, D.R.; Knapp, F.F.; Yasuda, T.; Coffey, J.L.; Kopiwoda, S.; Okada, R.; Strauss, W.H.

    1981-01-01

    The distribution of radioactivity in the myocardium of rats and dogs infarcted by ligation of the left anterior coronary artery has been determined after intravenous injection of 9-[Te-123m]telluraheptadecanoic acid (Te-123m HDA). In rats the normal myocardium concentrated radioactivity (3.7% +/- 0.28 injected dose/g) to nearly three times that in the zones of infarction (1.12% +/- 0.18 dose/g). The focal defects detected in the gamma-camera images of rats and dogs correspond well with areas of infarction identified in the excised hearts by staining with triphenyltetrazolium chloride. The distribution of radioactivity from Te-123m HDA in dog hearts sectioned at autopsy showed a linear correlation (r = 0.94) with blood flow as determined with scandium-46-labeled microspheres

  19. Dopant induced single electron tunneling within the sub-bands of single silicon NW tri-gate junctionless n-MOSFET

    Science.gov (United States)

    Uddin, Wasi; Georgiev, Yordan M.; Maity, Sarmistha; Das, Samaresh

    2017-09-01

    We report 1D electron transport of silicon junctionless tri-gate n-type transistor at 4.2 K. The step like curve observed in the current voltage characteristic suggests 1D transport. Besides the current steps for 1D transport, we found multiple spikes within individual steps, which we relate to inter-band single electron tunneling, mediated by the charged dopants available in the channel region. Clear Coulomb diamonds were observed in the stability diagram of the device. It is shown that a uniformly doped silicon nanowire can provide us the window for the single electron tunnelling. Back-gate versus front-gate color plot, where current is in a color scale, shows a crossover of the increased conduction region. This is a clear indication of the dopant-dopant interaction. It has been shown that back-gate biasing can be used to tune the coupling strength between the dopants.

  20. Investigations of small-gap semiconductors: HgTe, HgMnTe and PbMnTe in the far infrared region using Fourierspectroscopic methods

    International Nuclear Information System (INIS)

    Roschger, I.

    1985-05-01

    A special method was developed in the framework of this thesis to solve the inherent problem of dynamic range in Fourier spectrometry by using optical compensation. The so-called dual beam spectrometer consists of two coupled interferometers. This technique was adapted for measurements on small gap semiconductors. The investigated sample was n-HgTe, for which a resonant acceptor absorption in the conduction band was predicted. By alloying Mn-ions into the inverted gap-HgTe-crystal the band gap can be tuned to an open gap band structure. The mixed crystal exhibits additional structures in the phonon spectrum. The model of Barker and Verleur (including clustering) was applied. The substitution of Mn-ions in the IV-VI-compound PbTe leads to semimagnetic effects resolved by magneto-reflectivity measurements. The extrapolation in the fan-charts to zero-magnetic field suggests residual spin splitting either in the conduction and/or in the valence band. To evaluate the data an oscillator fit was applied to cyclotron absorption (Faraday- and Voigt-configuration) and was proved to be in agreement with the experimental data. Zero field splitting appears in PbMnTe in the valence band and indicates a weak ferromagnetism already observed in other measurements cited in the literature. Kramers-Kronig-data were in agreement with the theoretical results of the Barker-Verleur-model. The influence of clustering in the mixed crystal HgMnTe on the phonon spectra must be taken into account for Mn concentrations > 20%. The existence of the resonance acceptor state in HgTe was proved by optical transmission measurements. (Author, shortened by G.Q.)

  1. Superstrengthening Bi2Te3 through Nanotwinning

    Science.gov (United States)

    Li, Guodong; Aydemir, Umut; Morozov, Sergey I.; Wood, Max; An, Qi; Zhai, Pengcheng; Zhang, Qingjie; Goddard, William A.; Snyder, G. Jeffrey

    2017-08-01

    Bismuth telluride (Bi2Te3 ) based thermoelectric (TE) materials have been commercialized successfully as solid-state power generators, but their low mechanical strength suggests that these materials may not be reliable for long-term use in TE devices. Here we use density functional theory to show that the ideal shear strength of Bi2Te3 can be significantly enhanced up to 215% by imposing nanoscale twins. We reveal that the origin of the low strength in single crystalline Bi2Te3 is the weak van der Waals interaction between the Te1 coupling two Te 1 - Bi - Te 2 - Bi - Te 1 five-layer quint substructures. However, we demonstrate here a surprising result that forming twin boundaries between the Te1 atoms of adjacent quints greatly strengthens the interaction between them, leading to a tripling of the ideal shear strength in nanotwinned Bi2Te3 (0.6 GPa) compared to that in the single crystalline material (0.19 GPa). This grain boundary engineering strategy opens a new pathway for designing robust Bi2Te3 TE semiconductors for high-performance TE devices.

  2. Process controls for Bi2Te3-Sb2Te3 prepared by mechanical alloying and hot pressing

    International Nuclear Information System (INIS)

    Lee, Go-Eun; Kim, Il-Ho; Choi, Soon-Mok; Lim, Young-Soo; Seo, Won-Seon; Park, Jae-Soung; Yang, Seung-Ho

    2014-01-01

    p-Type Bi 2 Te 3 -Sb 2 Te 3 solid solutions were prepared by mechanical alloying (MA) and hot pressing (HP) under different process conditions, after which the transport and the thermoelectric properties were evaluated. The relative densities of all hot-pressed specimens were over 98%, and the microstructure and crystal orientation were independent of the HP direction. All specimens exhibited p-type conduction, and the electrical resistivity was observed to increase slightly with increasing temperature, indicating a degenerate semiconductor behavior. The carrier concentration decreased with increasing HP temperature while the mobility increased. The maximum figure of merit obtained was 0.86 at 323 K for Bi 0.5 Sb 1.5 Te 3 hot-pressed at 648 K.

  3. Hydrogen Storage Properties of Lithium Aluminohydride Modified by Dopants and Mechanochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Keita [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Alkali metal aluminohydrides have high potential as solid hydrogen storage materials. They have been known for their irreversible dehydrogenation process below 100 atm until Bogdanovic et al [1, 2] succeeded in the re-hydrogenation of NaAlH4 below 70 atm. They achieved 4 wt.% H2 reversible capacity by doping NaAlH4 with Ti and/or Fe organo-metalic compounds as catalysts. This suggests that other alkali and, possibly alkaline earth metal aluminohydrides can be used for reversible hydrogen storage when modified by proper dopants. In this research, Zr27Ti9Ni38V5Mn16Cr5, LaNi4.85Sn0.15, Al3Ti, and PdCl2 were combined , LaNi4.85Sn0.15, Al3Ti, and PdCl2 were combined with LiAlH4 by ball-milling to study whether or not LiAlH4 is capable to both absorb and desorb hydrogen near ambient conditions. X-ray powder diffraction, differential thermal analysis, and scanning electron microscopy were employed for sample characterizations. All four compounds worked as catalysts in the dehydrogenation reactions of both LiAlH4 and Li3AlH6 by inducing the decomposition at lower temperature. However, none of them was applicable as catalyst in the reverse hydrogenation reaction at low to moderate hydrogen pressure.

  4. Hydrogen Storage Properties of Lithium Aluminohydride modified by dopants and mechanochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Keita [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Alkali metal aluminohydrides have high potential as solid hydrogen storage materials. They have been known for their irreversible dehydrogenation process below 100 atm until Bogdanovic et al [1, 2] succeeded in the re-hydrogenation of NaAlH4 below 70 atm. They achieved 4 wt.% H2 reversible capacity by doping NaAlH4 with Ti and/or Fe organo-metalic compounds as catalysts. This suggests that other alkali and, possibly alkaline earth metal aluminohydrides can be used for reversible hydrogen storage when modified by proper dopants. In this research, Zr27Ti9Ni38V5Mn16Cr5, LaNi4.85Sn0.15, Al3Ti, and PdCl2 were combined with LiAlH4 by ball-milling to study whether or not LiAlH4 is capable to both absorb and desorb hydrogen near ambient conditions. X-ray powder diffraction, differential thermal analysis, and scanning electron microscopy were employed for sample characterizations. All four compounds worked as catalysts in the dehydrogenation reactions of both LiAlH4 and Li3AlH6 by inducing the decomposition at lower temperature. However, none of them was applicable as catalyst in the reverse hydrogenation reaction at low to moderate hydrogen pressure.

  5. Hydrogen Storage Properties of Lithium Aluminohydride Modified by Dopants and Mechanochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Ketia [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Alkali metal aluminohydrides have high potential as solid hydrogen storage materials. They have been known for their irreversible dehydrogenation process below 100 atm until Bogdanovic et al succeeded in the re-hydrogenation of NaAlH4 below 70 atm. They achieved 4 wt.% H2 reversible capacity by doping NaAlH4 with Ti and/or Fe organo-metallic compounds as catalysts. This suggests that other alkali and, possibly alkaline earth metal aluminohydrides can be used for reversible hydrogen storage when modified by proper dopants. In this research, Zr27Ti9Ni38V5Mn16Cr5, LaNi 4.85Sn0.15, Al3Ti, and PdCl2 were combined with LiAlH4 by ball-milling to study whether or not LiAlH4 is capable to both absorb and desorb hydrogen near ambient conditions. X-ray powder diffraction, differential thermal analysis, and scanning electron microscopy were employed for sample characterizations. All four compounds worked as catalysts in the dehydrogenation reactions of both LiAlH4 and Li3AlH6 by inducing the decomposition at lower temperature. However, none of them was applicable as catalyst in the reverse hydrogenation reaction at low to moderate hydrogen pressure.

  6. Liquid chromatography-dopant-assisted atmospheric pressure photoionization-mass spectrometry: Application to the analysis of aldehydes in atmospheric aerosol particles.

    Science.gov (United States)

    Ruiz-Jiménez, José; Hautala, Sanna; Parshintsev, Jevgeni; Laitinen, Totti; Hartonen, Kari; Petäjä, Tuukka; Kulmala, Markku; Riekkola, Marja-Liisa

    2013-01-01

    A complete methodology based on LC-anisole-toluene dopant-assisted atmospheric pressure photoionization-IT-MS was developed for the determination of aldehydes in atmospheric aerosol particles. For the derivatization, ultrasound was used to accelerate the reaction between the target analytes and 2,4-dinitrophenylhydrazine. The developed methodology was validated for three different samples, gas phase, ultrafine (Dp = 30 ± 4 nm; where Dp stands for particle diameter) and all-sized particles, collected on Teflon filters. The method quantitation limits ranged from 5 to 227 pg. The accuracy and the potential matrix effects were evaluated using standard addition methodology. Recoveries ranged between 91.7 and 109.9%, and the repeatability and the reproducibility of the method developed between 0.5 and 8.0% and between 2.9 and 11.1%, respectively. The results obtained by the developed methodology compared to those provided by the previously validated method revealed no statistical differences. The method developed was applied to the determination of aldehydes in 16 atmospheric aerosol samples (30 nm and all-sized samples) collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations II during spring 2011. The mean concentrations of aldehydes, and oxidation products of terpenes were between 0.05 and 82.70 ng/m(3). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    International Nuclear Information System (INIS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-01-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  8. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, Bartlomiej [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Liskova, Aurelia; Kuricova, Miroslava [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Banski, Mateusz; Misiewicz, Jan [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Dusinska, Maria [Norwegian Institute for Air Research, Health Effects Laboratory, Department of Environmental Chemistry (Norway); Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Rollerova, Eva [Slovak Medical University, Faculty of Public Health, Department of Toxicology (Slovakia); Podhorodecki, Artur, E-mail: artur.p.podhorodecki@pwr.edu.pl [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Tulinska, Jana, E-mail: jana.tulinska@szu.sk [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia)

    2017-02-15

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  9. Measurement of the transport properties of (Sb2Te3)sub(0.75)(Bi2Te3)sub(0.25) solid solution with addition of Tl2Te3

    International Nuclear Information System (INIS)

    Sher, A.

    1983-03-01

    The thermoelectric parameters of the solid solution (Sb 3 Te 3 )sub(0.75)(Bi 2 Te 3 )sub(0.25) in the presence of a low concentration of Tl 3 Te 3 were examined. The electrical conductivity, thermal conductivity, Seebeck coefficient and Hall constant were measured on samples which represent the upper parts of the ingots, in the temperature range 10K-300K. The lattice thermal conductivity, carrier, mobility, effective mass and carrier concentration were calculated from the measured parameters. The variation of the carrier mobility with temperature was similar in all the measured samples. At temperatures higher than 80K the mobility was proportional to Tsup(-33/2). At lower temperatures the mobility approached a saturation value which decreased with increasing Tl 2 Te 3 concentration. At about room temperature, the mobility was already not proportional to Tsup(x). Increasing the Tl 2 Te 3 or Sb 2 Se 3 concentration resulted in a lower deviation from the Tsup(x) dependence and a slower increase in the lattice thermal conductivity with decreasing temperature. Addition of Tl 2 Te 3 to the solid solution resulted in minor improvement in the thermoelectric quality which depends on the mobility, effective mass and lattice thermal conductivity. The thermoelectric properties were nearly the same as those obtained by addition of Sb 2 Se 3 to the solid solution. The addition of Tl 2 Te 3 annuled an effect of increasing carrier concentration with decreasing temperature. It resulted in a slower decrease in the Seebeck coefficient. (H.K.)

  10. Characteristics of phase transition and separation in a In-Ge-Sb-Te system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Jin [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Jang, Moon Hyung [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Park, Seung-Jong [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Cho, Mann-Ho, E-mail: mh.cho@yonsei.ac.kr [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Ko, Dae-Hong [Department of Material Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer InGeSbTe films were fabricated via co-deposition stoichiometric GST and IST targets. Black-Right-Pointing-Pointer As the amount of IST was increased in InGeSbTe, the value for V{sub th} and the phase transition temperature were increased. Black-Right-Pointing-Pointer The phase separation in InGeSbTe is caused by differences in the enthalpy change for formation and different atomic concentrations. - Abstract: In-doped GeSbTe films were deposited by ion beam sputtering deposition (IBSD) using Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) and In{sub 3}Sb{sub 1}Te{sub 2} (IST) as targets. The phase change characteristics of the resulting films were then investigated by electrical measurements, including static testing, in situ 4-point R{sub s} measurements, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The threshold voltage of the films increased, with increasing levels of IST. This phenomenon is consistent with the increased crystallization temperature in X-ray data and in situ 4-point R{sub s} data. In addition, in In{sub 28}Ge{sub 12}Sb{sub 26}Te{sub 34}, multiple V{sub th} values with a stepwise change are observed. The minimum time for the crystallization of InGeSbTe films was shorter than that for GST. X-ray data and Raman data for the crystalline structure show that phase separation to In{sub 2}Te{sub 3} occurred in all of the InGeSbTe samples after annealing at 350 Degree-Sign C. Moreover, in the case of InGeSbTe films with high concentrations of In (28 at.%), Sb phase separation was also observed. The observed phases indicate that the origin of the phase separation of InGeSbTe films is from the enthalpy change of formation and differences in Ge-Te, In-Te, Sb-Te, In-Sb and In-In bond energies.

  11. Comprehensive thermodynamic description of the quasiternary system PbTe-GeTe-SnTe

    International Nuclear Information System (INIS)

    Yashina, Lada V.; Leute, Volkmar; Shtanov, Vladimir I.; Schmidtke, Heinrich M.; Neudachina, Vera S.

    2006-01-01

    The equilibrium phase diagram of the quasiternary system PbTe-GeTe-SnTe was studied experimentally in the ranges of spinodal demixing and (solid + liquid) equilibrium by means of X-ray diffraction (XRD), electron microprobe analysis (EMA) and differential thermal analysis (DTA). A model description of the phase diagram was done on the base of composition dependent interaction parameters, which were determined for the solid and the liquid phases. The interaction parameters for the quasibinary systems were recalculated in order to reach better correlation between all experimental data. It was shown that the quasiternary phase diagram can be principally described using the interaction parameters for the quasibinary subsystems, but an additional ternary interaction parameter has also to be considered. The local structure of the quasiternary solid solution is described by a four-particle cluster model. Due to the tendency of the solid solution to demix, the probability of the (GeGeGe)Te cluster was found to be higher and that of the (PbGeGe)Te cluster to be lower than it is expected for the purely statistical distribution of the clusters

  12. M rate at TE. Monitoring at TeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, Daniela [Universitaet Wuerzburg (Germany); Bretz, Thomas [RWTH Aachen (Germany); Gonzalez, Magdalena; Alfaro, Ruben [Universidad Nacional Autonoma de Mexico (Mexico); Tovmassian, Gagik [Instituto de Astronomia Sede Ensenada (Mexico)

    2016-07-01

    A dedicated long-term monitoring programm at TeV energies has been started by the FACT project about four years ago. Being limited to one site, gaps due to the rotation of the Earth remain in the measured light curves. This makes it difficult to study typical variability time scales of few hours to one day. To allow for systematic studies of continuous observations over up to 12 hours, a second telescope is being installed at a site in about six hours distance in longitude. For the M rate at TE (Monitoring at TeV energies) telescope, a mount from a previous experiment is being refurbished and will be equipped with a new camera. Using silicon based photo sensors like in FACT, an excellent and stable performance will be achieved. M rate at TE is a joint project of German and Mexican universities which aims at extending the blazar monitoring to so far unexplored time ranges. In the presentation, the status of this emerging project is reported.

  13. Concentrated Ownership

    DEFF Research Database (Denmark)

    Rose, Caspar

    2014-01-01

    This entry summarizes the main theoretical contributions and empirical findings in relation to concentrated ownership from a law and economics perspective. The various forms of concentrated ownership are described as well as analyzed from the perspective of the legal protection of investors......, especially minority shareholders. Concentrated ownership is associated with benefits and costs. Concentrated ownership may reduce agency costs by increased monitoring of top management. However, concentrated ownership may also provide dominating owners with private benefits of control....

  14. n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.

    2018-04-01

    Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.

  15. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  16. Te hard van stapel gelopen.

    NARCIS (Netherlands)

    W-J. Verhoeven (Willem-Jan)

    2008-01-01

    textabstractHoe goed we ook trachten de samenleving te organiseren, fraude maakt er deel van uit. Dit blijkt uit spraakmakende grote schandalen zoals de Enron-zaak, de Bouwfraude-zaak en de Nigerian letter scams. Maar fraude komt ook op minder geruchtmakende schaal voor, zoals oplichting op

  17. X = S, Se, Te) heterostructures

    KAUST Repository

    Zhang, Qingyun; Schwingenschlö gl, Udo

    2018-01-01

    Using first-principles calculations, we investigate the electronic properties of the two-dimensional GaX/MX2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between GaX and MX2 is found to result in Rashba splitting at the valence

  18. Elliptical concentrators.

    Science.gov (United States)

    Garcia-Botella, Angel; Fernandez-Balbuena, Antonio Alvarez; Bernabeu, Eusebio

    2006-10-10

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used to produce optical devices, including the use of reflective and refractive components or inverse engineering techniques. However, many of these optical components are based on translational symmetries, rotational symmetries, or free-form surfaces. We study a new family of nonimaging concentrators called elliptical concentrators. This new family of concentrators provides new capabilities and can have different configurations, either homofocal or nonhomofocal. Translational and rotational concentrators can be considered as particular cases of elliptical concentrators.

  19. Desorption of Te capping layer from ZnTe (100): Auger spectroscopy ...

    African Journals Online (AJOL)

    ... configurations of tellurium Te (c (2x2)) and Te (c (2x1)) are confirmed by scanning tunneling microscopy (STM). Such a study reveals a phase transition from a rich-Te to a poor-Te surface as the annealing temperature increases. Keywords: Zinc Tellure; solar cells; structural properties; optoelectronics; semiconductors.

  20. BOREAS TE-9 NSA Canopy Biochemistry

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Charest, Martin; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJR, OBS, UBS, and OA sites, including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. BOREAS TE-9 NSA Photosynthetic Response Data

    Science.gov (United States)

    Hall, Forrest G.; Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves. This data set describes: (1) the response of leaf and shoot-level photosynthesis to ambient and intercellular CO2 concentration, temperature, and incident photosynthetically active radiation (PAR) for black spruce, jack pine, and aspen during the three intensive field campaigns (IFCs) in 1994 in the Northern Study Area (NSA); (2) the response of stomatal conductance to vapor pressure difference throughout the growing season of 1994; and (3) a range of shoot water potentials (controlled in the laboratory) for black spruce and jack pine. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. Detection of electron and hole traps in CdZnTe radiation detectors by thermoelectric emission spectroscopy and thermally stimulated conductivity

    International Nuclear Information System (INIS)

    Lee, E.Y.; Brunett, B.A.; Olsen, R.W.; Van Scyoc, J.M. III; Hermon, H.; James, R.B.

    1998-01-01

    The electrical properties of CdZnTe radiation detectors are largely determined by electron and hole traps in this material. The traps, in addition to degrading the detector performance, can function as dopants and determine the resistivity of the material. Thermoelectric emission spectroscopy and thermally stimulated conductivity are used to detect these traps in a commercially available spectrometer-grade CdZnTe detector, and the electrical resistivity is measured as a function of temperature. A deep electron trap having an energy of 695 meV and cross section of 8 x 10 -16 cm 2 is detected and three hole traps having energies of 70 ± 20 meV, 105 ± 30 meV and 694 ± 162 meV are detected. A simple model based on these traps explains quantitatively all the data, including the electrical properties at room temperature and also their temperature dependence

  3. Theoretical study of the local structures and the EPR parameters for RLNKB glasses with VO2+ and Cu2+ dopants

    Science.gov (United States)

    Ding, Chang-Chun; Wu, Shao-Yi; Wu, Li-Na; Zhang, Li-Juan; Peng, Li; Wu, Ming-He; Teng, Bao-Hua

    2018-02-01

    The electron paramagnetic resonance (EPR) parameters and local structures for impurities VO2+ and Cu2+ in RO-Li2O-Na2O-K2O-B2O3 (RLNKB; R = Zn, Mg, Sr and Ba) glasses are theoretically investigated by using the perturbation formulas of the EPR parameters for tetragonally compressed octahedral 3d1 and tetragonally elongated octahedral 3d9 clusters, respectively. The VO2+ and Cu2+ dopants are found to undergo the tetragonal compression (characterized by the negative relative distortion ratios ρ ≈ -3%, -0.98%, -1% and -0.8% for R = Zn, Mg, Sr and Ba) and elongation (characterized by the positive relative distortion ratios ρ ≈ 29%, 17%, 16% and 28%), respectively, due to the Jahn-Teller effect. Both dopants show similar overall decreasing trends of cubic field parameter Dq and covalency factor N with decreasing electronegativity of alkali earth cation R. The conventional optical basicities Λth and local optical basicities Λloc are calculated for both systems, and the local Λloc are higher for Cu2+ than for VO2+ in the same RLNKB glass, despite the opposite relationship for the conventional Λth. This point is supported by the weaker covalency or stronger ionicity for Cu2+ than VO2+ in the same RLNKB system, characterized by the larger N in the former. The above comparative analysis on the spectral and local structural properties would be helpful to understand structures and spectroscopic properties for the similar oxide glasses with transition-metal dopants of complementary electronic configurations.

  4. Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant.

    Science.gov (United States)

    Saygili, Yasemin; Turren-Cruz, Silver-Hamill; Olthof, Selina; Saes, Bartholomeus Wilhelmus Henricus; Pehlivan, Ilknur Bayrak; Saliba, Michael; Meerholz, Klaus; Edvinsson, Tomas; Zakeeruddin, Shaik M; Grätzel, Michael; Correa-Baena, Juan-Pablo; Hagfeldt, Anders; Freitag, Marina; Tress, Wolfgang

    2018-04-26

    In perovskite solar cells (PSCs), the most commonly used hole transport material (HTM) is spiro-OMeTAD, which is typically doped by metalorganic complexes, for example, based on Co, to improve charge transport properties and thereby enhance the photovoltaic performance of the device. In this study, we report a new hemicage-structured iron complex, 1,3,5-tris(5'-methyl-2,2'-bipyridin-5-yl)ethylbenzene Fe(III)-tris(bis(trifluoromethylsulfonyl)imide), as a p-type dopant for spiro-OMeTAD. The formal redox potential of this compound was measured as 1.29 V vs. the standard hydrogen electrode, which is slightly (20 mV) more positive than that of the commercial cobalt dopant FK209. Photoelectron spectroscopy measurements confirm that the iron complex acts as an efficient p-dopant, as evidenced in an increase of the spiro-OMeTAD work function. When fabricating planar PSCs with the HTM spiro-OMeTAD doped by 5 mol % of the iron complex, a power conversion efficiency of 19.5 % (AM 1.5G, 100 mW cm -2 ) is achieved, compared to 19.3 % for reference devices with FK209. Open circuit voltages exceeding 1.2 V at 1 sun and reaching 1.27 V at 3 suns indicate that recombination at the perovskite/HTM interface is low when employing this iron complex. This work contributes to recent endeavors to reduce recombination losses in perovskite solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. First-principles study of the effects of halogen dopants on the properties of intergranular films in silicon nitride ceramics

    International Nuclear Information System (INIS)

    Painter, Gayle S.; Becher, Paul F.; Kleebe, H.-J.; Pezzotti, G.

    2002-01-01

    The nanoscale intergranular films that form in the sintering of ceramics often occur as adherent glassy phases separating the crystalline grains in the ceramic. Consequently, the properties of these films are often equal in importance to those of the constituent grains in determining the ceramic's properties. The measured characteristics of the silica-rich phase separating the crystalline grains in Si 3 N 4 and many other ceramics are so reproducible that SiO 2 has become a model system for studies of intergranular films (IGF's). Recently, the influence of fluorine and chlorine dopants in SiO 2 -rich IGF's in silicon nitride was precisely documented by experiment. Along with the expected similarities between the halogens, some dramatically contrasting effects were found. But the atomic-scale mechanisms distinguishing the effects F and Cl on IGF behavior have not been well understood. First-principles density functional calculations reported here provide a quantum-level description of how these dopant-host interactions affect the properties of IGF's, with specific modeling of F and Cl in the silica-rich IGF in silicon nitride. Calculations were carried out for the energetics, structural changes, and forces on the atoms making up a model cluster fragment of an SiO 2 intergranular film segment in silicon nitride with and without dopants. Results show that both anions participate in the breaking of bonds within the IGF, directly reducing the viscosity of the SiO 2 -rich film and promoting decohesion. Observed differences in the way fluorine and chlorine affect IGF behavior become understandable in terms of the relative stabilities of the halogens as they interact with Si atoms that have lost one if their oxygen bridges

  6. Organometallic tris(8-hydroxyquinoline)aluminum complexes as buffer layers and dopants in inverted organic solar cells

    International Nuclear Information System (INIS)

    Tolkki, Antti; Kaunisto, Kimmo; Heiskanen, Juha P.; Omar, Walaa A.E.; Huttunen, Kirsi; Lehtimäki, Suvi; Hormi, Osmo E.O.; Lemmetyinen, Helge

    2012-01-01

    Tris(8-hydroxyquinoline)aluminum (Alq 3 ) is a frequently used material for organic light emitting diodes. The electronic properties and solubility can be tuned by chemical tailoring of the quinoline part, which makes it an interesting candidate for organic solar cells. Steady-state absorption and fluorescence, as well as time-resolved fluorescence properties of the parent Alq 3 and a series of complexes consisting of derivatives, such as 4-substituted pyrazol, methylpyrazol, arylvinyl, and pyridinoanthrene moieties, of the quinoline ligand, were studied in solutions and in thin films. Suitability of the complexes as anodic buffer layers or dopants in inverted organic solar cells based on the well known bulk heterojunction of poly(3-hexylthiophene) (P3HT) and phenyl-C 61 -butyric acid methyl ester (PCBM) was tested. The devices equipped with the derivatives showed higher power conversion efficiency (η) compared to the photocells containing the parent Alq 3 . Open circuit voltage (V oc ) was increased when the derivatives were utilized as the anodic buffer layer. Doping of the P3HT:PCBM with a small amount of Alq 3 or its derivative improved short circuit current density, V oc , fill factor, and η, while the series resistance decreased. In addition, the devices were stable in air over several weeks without encapsulation. Possible mechanisms leading to the improvements in the photovoltaic performance by using the parent Alq 3 or its derivative as buffer layer or dopant are discussed. - Highlights: ► Tris(8-hydroxyquinoline)aluminum (Alq 3 ) complexes in inverted organic solar cells. ► The Alq 3 complexes were used as an anodic buffer layer and as a dopant. ► Efficiency increased and the derivatives revealed varying open circuit voltage. ► Photovoltaic performance was stable after storage in a dark ambient atmosphere.

  7. Organometallic tris(8-hydroxyquinoline)aluminum complexes as buffer layers and dopants in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tolkki, Antti, E-mail: antti.tolkki@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Kaunisto, Kimmo [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Heiskanen, Juha P. [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Omar, Walaa A.E. [Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Chemistry Branch, Department of Science and Mathematics, Suez Canal University, Suez 43721 (Egypt); Huttunen, Kirsi; Lehtimaeki, Suvi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland); Hormi, Osmo E.O. [Department of Chemistry, University of Oulu, P.O. Box 3000, FI-90014, Oulu (Finland); Lemmetyinen, Helge [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere (Finland)

    2012-04-30

    Tris(8-hydroxyquinoline)aluminum (Alq{sub 3}) is a frequently used material for organic light emitting diodes. The electronic properties and solubility can be tuned by chemical tailoring of the quinoline part, which makes it an interesting candidate for organic solar cells. Steady-state absorption and fluorescence, as well as time-resolved fluorescence properties of the parent Alq{sub 3} and a series of complexes consisting of derivatives, such as 4-substituted pyrazol, methylpyrazol, arylvinyl, and pyridinoanthrene moieties, of the quinoline ligand, were studied in solutions and in thin films. Suitability of the complexes as anodic buffer layers or dopants in inverted organic solar cells based on the well known bulk heterojunction of poly(3-hexylthiophene) (P3HT) and phenyl-C{sub 61}-butyric acid methyl ester (PCBM) was tested. The devices equipped with the derivatives showed higher power conversion efficiency ({eta}) compared to the photocells containing the parent Alq{sub 3}. Open circuit voltage (V{sub oc}) was increased when the derivatives were utilized as the anodic buffer layer. Doping of the P3HT:PCBM with a small amount of Alq{sub 3} or its derivative improved short circuit current density, V{sub oc}, fill factor, and {eta}, while the series resistance decreased. In addition, the devices were stable in air over several weeks without encapsulation. Possible mechanisms leading to the improvements in the photovoltaic performance by using the parent Alq{sub 3} or its derivative as buffer layer or dopant are discussed. - Highlights: Black-Right-Pointing-Pointer Tris(8-hydroxyquinoline)aluminum (Alq{sub 3}) complexes in inverted organic solar cells. Black-Right-Pointing-Pointer The Alq{sub 3} complexes were used as an anodic buffer layer and as a dopant. Black-Right-Pointing-Pointer Efficiency increased and the derivatives revealed varying open circuit voltage. Black-Right-Pointing-Pointer Photovoltaic performance was stable after storage in a dark ambient

  8. S and Te inter-diffusion in CdTe/CdS hetero junction

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, J. Pantoja [Cuerpo Academico-Energia y Sustentabilidad, Universidad Politecnica de Chiapas, Eduardo J. Selvas S/N, Col. Magisterial, Tuxtla Gutierrez 29010, Chiapas (Mexico); Gomez Barojas, E. [CIDS-ICUAP, Apdo. Postal 1651, 72000 Puebla (Mexico); Silva Gonzalez, R.; Pal, U. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2007-09-22

    Effects of post formation thermal annealing of the CdTe-CdS device on the inter-diffusion of S and Te at the junction in a substrate configuration device have been studied by Auger electron spectroscopy. While the migration of S and Te atoms increases with annealing temperature, the extent of S diffusion is always higher than the diffusion of Te atoms. Inter-diffusion of S and Te causes the formation of CdTe{sub 1-x}S{sub x} ternary compound at the CdTe-CdS interface. (author)

  9. Near-infrared emission bands of TeH and TeD

    Science.gov (United States)

    Fink, E. H.; Setzer, K. D.; Ramsay, D. A.; Vervloet, M.

    1989-11-01

    High-resolution emission spectra of TeH and TeD have been obtained in the region 4200 to 3600 cm -1 using a Bomem DA3.002 Fourier transform spectrometer. Analyses are given for the 0-0 and 1-1 bands of the X 22Π{1}/{2}-X 12Π{3}/{2} system of TeH and for the 0-0 band of TeD. In addition the 2-0 vibrational overtone bands of 130TeH, 128TeH, and 126TeH are observed and analyzed. Accurate molecular constants are given for the first time.

  10. Liquidus surface of the triple reciprocal system PbTe+CdS↔PbS+CdTe

    International Nuclear Information System (INIS)

    Tomashik, Z.F.; Tomashik, V.N.

    1987-01-01

    Using differential-thermal and microstructural analyses and mathematical design interaction in PbTe-CdS system is studied. Liquidus surface of the triple reciprocal system PbTe+CdS↔PbS+CdTe is plotted. It is shown that PbTe-CdS system phase diagram is of eutectic type. Maximal solubility of CdS in PbTe attains 13 mol%, and of PbTe in CdS is not over 1 mol%. Projection of liquidus surface of the PbTe+CdS↔PbS+CdTe triple reciprocal system consists of two primary crystallization fields: CdTe x S 1-x and PbTe x S 1-x solid solutions separated by eutectic line

  11. Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark

    Science.gov (United States)

    Bera, Swades Ranjan; Saha, Satyajit

    2018-04-01

    CdTe nanoparticles have been grown by chemical reduction method using EDA as capping agent. These are used to fabricate Schottky barrier in a simple cost-effective way at room temperature. The grown nanoparticles are structurally characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM). The optical properties of nano CdTe is characterized by UV-Vis absorption spectra, PL spectra. The band gap of the CdTe nanoparticles is increased as compared to CdTe bulk form indicating there is blue shift. The increase of band gap is due to quantum confinement. Photoluminescence spectra shows peak which corresponds to emission from surface state. CdTe nanofilm is grown on ITO coated glass substrate by dipping it on toluene containing dispersed CdTe nanoparticles. Schottky barrier of Au/n-CdTe is fabricated on ITO coated glass by vacuum deposition of gold. I- V and C- V characteristics of Au/n-CdTe Schottky barrier junction have been studied under dark and light condition. It is found that these characteristics are influenced by surface or interface traps. The values of barrier height, ideality factor, donor concentration and series resistance are obtained from the reverse bias capacitance-voltage measurements.

  12. Thermopower of thermoelectric materials with resonant levels: PbTe:Tl versus PbTe:Na and Cu1 -xNix

    Science.gov (United States)

    Wiendlocha, Bartlomiej

    2018-05-01

    Electronic transport properties of thermoelectric materials containing resonant levels are discussed by analyzing the two best known examples: copper-nickel metallic alloy (Cu-Ni, constantan) and thallium-doped lead telluride (PbTe:Tl). As a contrasting example of a material with a nonresonant impurity, sodium-doped PbTe is considered. Theoretical calculations of the electronic structure, Bloch spectral functions, and energy-dependent electrical conductivity at T =0 K are done using the Korringa-Kohn-Rostoker method with the coherent potential approximation and the Kubo-Greenwood formalism. The effect of a resonance on the residual resistivity and electronic lifetimes in PbTe is analyzed. By using the full Fermi integrals, room-temperature thermopower is calculated, confirming its increase in PbTe:Tl versus PbTe:Na, due to the presence of the resonant level. In addition, our calculations support the self-compensation model, in which the experimentally observed reduction of carrier concentration in PbTe:Tl against the nominal one is explained by the presence of n -type Te vacancies.

  13. A combined theoretical and experimental investigation about the influence of the dopant in the anionic electropolymerization of {alpha}-tetrathiophene

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Carlos [Departament d' Enginyeria Quimica, E.T.S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.es; Oliver, Ramon [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain); Brillas, Enric [Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1, Barcelona E-08028 (Spain); Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No. 69, Lleida E-25001 (Spain); Estrany, Francesc [Unitat de Quimica Industrial, E.U.E. Tecnica Industrial de Barcelona, Universitat Politecnica de Catalunya, Comte d' Urgell 187, Barcelona E-08036 (Spain)], E-mail: francesc.estrany@upc.es

    2005-07-18

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of {alpha}-tetrathiophene. Adherent, insoluble, and black polymeric films were obtained in the presence of LiClO{sub 4}, while no evidence about the formation of polymer was detected with LiCl and LiBr electrolytes. On the other hand, quantum mechanical calculations based on the density functional theory were performed on 1:1 charge-transfer complexes formed by {alpha}-tetrathiophene and X = ClO{sub 4}, Cl or Br. The consistency between experimental and theoretical results is discussed.

  14. Effect of additionally introduced Zn and Eu dopants on the photoluminescence spectra of Er-Doped GaN crystals

    International Nuclear Information System (INIS)

    Mezdrogina, M. M.; Krivolapchuk, V. V.; Petrov, V. N.; Rodin, S. N.; Cherenkov, A. V.

    2006-01-01

    It is shown that the effect of dopants on the photoluminescence spectrum depends on the conductivity type of the initial GaN crystals. Sensitization of emission is observed in wurtzite p-GaN crystals doped with Er. The same effect was previously observed in such crystals doped with Eu and Zn. In n-type GaN crystals sequentially doped with Eu, Zn, and Er, emission is observed in the visible (λ = 360-440 and 530-560 nm) and IR (λ = 1.54 μm) spectral regions

  15. Effect of additionally introduced Zn and Eu dopants on the photoluminescence spectra of Er-doped GaN crystals

    International Nuclear Information System (INIS)

    Mezdrogina, M.M.; Krivolapchuk, V.V.; Petrov, V.N.; Rodin, S.N.; Cherenkov, A.V.

    2006-01-01

    It is shown that the effect of dopants on the photoluminescence spectrum depends on the conductivity type of the initial GaN crystals. The sensitizing effect of emission is observed in wurtzite p-GaN crystals doped with Er. The same effect was previously observed in such crystals doped with Eu and Zn. In n-type GaN crystals sequentially doped with Eu, Zn, and Er, the emission is observed in visible and infrared ranges of the photoluminescence spectrum [ru

  16. A combined theoretical and experimental investigation about the influence of the dopant in the anionic electropolymerization of α-tetrathiophene

    International Nuclear Information System (INIS)

    Aleman, Carlos; Oliver, Ramon; Brillas, Enric; Casanovas, Jordi; Estrany, Francesc

    2005-01-01

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. Adherent, insoluble, and black polymeric films were obtained in the presence of LiClO 4 , while no evidence about the formation of polymer was detected with LiCl and LiBr electrolytes. On the other hand, quantum mechanical calculations based on the density functional theory were performed on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = ClO 4 , Cl or Br. The consistency between experimental and theoretical results is discussed

  17. Structure and dynamics of liquid helium systems and their interaction with atomic dopants and free electrons

    OpenAIRE

    Mateo Valderrama, David

    2013-01-01

    En esta tesis se presenta una colección de cuatro artículos publicados y un manuscrito aún no publicado, todos ellos en el campo de la física de bajas temperaturas y fluidos cuánticos. Cada uno de ellos reporta un paso adelante en la descripción teórica de los sistemas de helio por medio de la teoría del funcional de la densidad. Los primeros dos artículos están clasificados como “estructura" ya que tratan cuestiones relacionadas con la descripción del estado fundamental de complejos de helio...

  18. Concentration risk

    Directory of Open Access Journals (Sweden)

    Matić Vesna

    2016-01-01

    Full Text Available Concentration risk has been gaining a special dimension in the contemporary financial and economic environment. Financial institutions are exposed to this risk mainly in the field of lending, mostly through their credit activities and concentration of credit portfolios. This refers to the concentration of different exposures within a single risk category (credit risk, market risk, operational risk, liquidity risk.

  19. Structure and properties of ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5}-TeO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mosner, Petr, E-mail: petr.mosner@upce.cz [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Vosejpkova, Katerina; Koudelka, Ladislav [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Montagne, Lionel; Revel, Bertrand [Unite de Catalyse et de Chimie du Solide - UCCS, Univ Lille Nord de France, F-59000, CNRS UMR 8181, USTL F-59655, ENSCL F-59652, Villeneuve d' Ascq (France)

    2010-11-01

    Zinc borophosphate glasses doped with TeO{sub 2} were studied in the compositional series (100 - x)[0.5ZnO-0.1B{sub 2}O{sub 3}-0.4P{sub 2}O{sub 5}]-xTeO{sub 2} in a broad concentration range of x = 0-80 mol% TeO{sub 2}. The structure of the glasses was studied by Raman and IR spectroscopy and by {sup 31}P and {sup 11}B MAS NMR spectroscopy. According to the Raman and IR spectra, TeO{sub 2} is incorporated in the structural network in the form of TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} structural units. The ratio of TeO{sub 4}/TeO{sub 3} increases with increasing TeO{sub 2} content in the glasses. The incorporation of TeO{sub x} units into the glass network is associated with the depolymerisation of phosphate chains, as revealed by Raman spectroscopy. The incorporation of TeO{sub 2} modifies also the coordination of boron atoms, where B(OP){sub 4} structural units are gradually replaced by B(OP){sub 4-n}(OTe){sub n} units. The addition of TeO{sub 2} to the parent zinc borophosphate glass results in a decrease of glass transition temperature associated with the replacement of stronger P-O and B-O bonds by weaker Te-O bonds. Chemical durability of glasses reveals a minimum at the glass containing 10 mol% TeO{sub 2}, but with further additions of TeO{sub 2} it improves and the glasses with a high TeO{sub 2} content reveal better durability than the parent zinc borophosphate glass.

  20. Diffusion of ion-implanted B in high concentration P- and As-doped silicon

    International Nuclear Information System (INIS)

    Fair, R.B.; Pappas, P.N.

    1975-01-01

    The diffusion of ion-implanted B in Si in the presence of a uniform background of high concentration P or As was studied by correlating numerical profile calculations with profiles determined by secondary-ion mass spectrometry (SIMS). Retarded B diffusion is observed in both As- and P-doped Si, consistent with the effect of the local Fermi-level position in the Si band gap on B diffusivity, D/sub B/. It is shown that D/sub B/ is linearly dependent on the free hole concentration, p, over the range 0.1 less than p/n/sub ie/ less than 30, where n/sub ie/ is the effective intrinsic electron concentration. This result does not depend on the way in which the background dopant has been introduced (implantation predeposition or doped-oxide source), nor the type of dopant used (P or As). (U.S.)

  1. Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics

    Science.gov (United States)

    Ghosh, S.; Ghosh, D.; Bag, P. K.; Bhattacharya, S. C.; Saha, A.

    2011-03-01

    The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera.The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they

  2. Solution Grown Se/Te Nanowires: Nucleation, Evolution, and The Role of Triganol Te seeds

    Directory of Open Access Journals (Sweden)

    Shan Xudong

    2009-01-01

    Full Text Available Abstract We have studied the nucleation and growth of Se–Te nanowires (NWs, with different morphologies, grown by a chemical solution process. Through systematic characterization of the Se–Te NW morphology as a function of the Te nanocrystallines (NCs precursor, the relative ratio between Se and Te, and the growth time, a number of significant insights into Se–Te NW growth by chemical solution processes have been developed. Specifically, we have found that: (i the growth of Se–Te NWs can be initiated from either long or short triganol Te nanorods, (ii the frequency of proximal interactions between nanorod tips and the competition between Se and Te at the end of short Te nanorods results in V-shaped structures of Se–Te NWs, the ratio between Se and Te having great effect on the morphology of Se–Te NWs, (iii by using long Te nanorods as seeds, Se–Te NWs with straight morphology were obtained. Many of these findings on Se–Te NW growth can be further generalized and provide very useful information for the rational synthesis of group VI based semiconductor NW compounds.

  3. Partial Pressures of Te2 and Thermodynamic Properties of Ga-Te System

    Science.gov (United States)

    Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    The partial pressures of Te2 in equilibrium with Ga(1-x)Te(x) samples were measured by optical absorption technique from 450 to 1100 C for compositions, x, between 0.333 and 0.612. To establish the relationship between the partial pressure of Te, and the measured optical absorbance, the calibration runs of a pure Te sample were also conducted to determine the Beer's Law constants. The partial pressures of Te2 in equilibrium with the GaTe(s) and Ga2Te3(s)compounds, or the so-called three-phase curves, were established. These partial pressure data imply the existence of the Ga3Te4(s) compound. From the partial pressures of Te2 over the Ga-Te melts, partial molar enthalpy and entropy of mixing for Te were derived and they agree reasonable well with the published data. The activities of Te in the Ga-Te melts were also derived from the measured partial pressures of Te2. These data agree well with most of the previous results. The possible reason for the high activity of Te measured for x less than 0.60 is discussed.

  4. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  5. DFT-derived reactive potentials for the simulation of activated processes: the case of CdTe and CdTe:S.

    Science.gov (United States)

    Hu, Xiao Liang; Ciaglia, Riccardo; Pietrucci, Fabio; Gallet, Grégoire A; Andreoni, Wanda

    2014-06-19

    We introduce a new ab initio derived reactive potential for the simulation of CdTe within density functional theory (DFT) and apply it to calculate both static and dynamical properties of a number of systems (bulk solid, defective structures, liquid, surfaces) at finite temperature. In particular, we also consider cases with low sulfur concentration (CdTe:S). The analysis of DFT and classical molecular dynamics (MD) simulations performed with the same protocol leads to stringent performance tests and to a detailed comparison of the two schemes. Metadynamics techniques are used to empower both Car-Parrinello and classical molecular dynamics for the simulation of activated processes. For the latter, we consider surface reconstruction and sulfur diffusion in the bulk. The same procedures are applied using previously proposed force fields for CdTe and CdTeS materials, thus allowing for a detailed comparison of the various schemes.

  6. MOCVD growth of CdTe and HgTe on GaAs in a vertical, high-speed, rotating-disc reactor

    International Nuclear Information System (INIS)

    Tompa, G.S.; Nelson, C.R.; Reinert, P.D.; Saracino, M.A.; Terrill, L.A.; Colter, P.C.

    1989-01-01

    The metalorganic chemical vapor deposition (MOCVD) growth of CdTe and HgTe on GaAs (111) and (100) substrates in a vertical, high-speed, rotating-disc reactor was investigated. A range of total reactor pressure, carrier gas flow rate, chemical concentrations, deposition temperature, and rotation rate have been investigated in an attempt to optimize growth conditions. Diisopropyltelluride (DIPTe) and Dimethylcadmium (DMCd) were used as growth precursors. Thickness uniformity varies less than +/- 1.5% over 50 mm diameter wafers. Films having FWHM X-ray rocking curves less than 90 arcsec were obtained on GaAs (111) substrates. The films have excellent surface morphology, exhibiting less than 5 x 10 4 cm - 2 orange peel dents which are much-lt 1 μm in size. An elemental mercury source was added to the growth system. Initial results for the growth of HgTe and HgCdTe are discussed

  7. Amino Acid Functionalization of Doped Single-Walled Carbon Nanotubes: Effects of Dopants and Side Chains as Well as Zwitterionic Stabilizations.

    Science.gov (United States)

    Jiang, Lisha; Zhu, Chang; Fu, Yujie; Yang, Gang

    2017-04-06

    Functionalization of single-walled carbon nanotubes (SWCNTs) is necessitated in a number of conditions such as drug delivery, and here amino acid functionalization of SWCNTs is conducted within the framework of density functional theory. Functionalization efficiencies of Gly are largely determined by dopants, as a combined effect of atomic radius, electronic configuration, and distortion to SWCNTs. Different functionalization sites in Gly have divergent interaction strengths with M/SWCNTs that decline as O b > N > O a , and this trend seems almost independent of the identity of metallic dopants. B/SWCNT behaves distinctly and prefers to the N site. Dopants affect principally interaction strengths, while amino acids regulate significantly both functionalization configurations and interaction energies. Then focus is given to stabilization of zwitterionic amino acids due to enhanced interactions with the widely used zwitterionic drugs. All metallic dopants render zwitterionic Gly to be the most stable, and side chains in amino acids rather than dopants in M/SWCNTs cause more pronounced effects to zwitterionic stabilizations. Charge transfers between amino acids and M/SWCNTs are closely associated with zwitterionic stabilization effects, and different charge transfer mechanisms between M/SWCNTs and metal ions are interpreted. Thus, this work provides a comprehensive understanding of amino acid functionalization of M/SWCNTs.

  8. Impact of ytterbium on photoluminescence from the modifier in TeO{sub 2}–ZnO:Ho{sup 3+} glass

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Anurag, E-mail: anuragpandey439@gmail.com; Kroon, R.E.; Kumar, Vinod; Swart, Hendrik C., E-mail: swarthc@ufs.ac.za

    2016-01-01

    The effect of incorporation of Yb{sup 3+} ions in Ho{sup 3+} doped TeO{sub 2}–ZnO glass prepared by a melt quenching method is discussed. The amorphous nature of the prepared glass was confirmed by X-ray diffraction analysis. The optical absorption spectrum displayed several peaks, which correspond to the dopant ions embedded into the TeO{sub 2}–ZnO glass. The photoluminescence emission spectra measured upon excitation with a 325 nm He–Cd laser revealed a broad emission band of the modifier (ZnO) along with other peaks of the Ho{sup 3+} ions. A comparison of codoped glass emission with the singly Ho{sup 3+} doped system showed significant enhancement of the ZnO emissions while the Ho{sup 3+} peaks were reduced. This may be due to the energy transfer involved between the dopant ions and the glass modifier at an excitation wavelength of 325 nm. The energy transfer mechanism is discussed with a suitable energy level structure and the colour of the light emitted from the glass has been examined by calculating the corresponding colour coordinates.

  9. Growth features of HgCdTe LPE layers

    International Nuclear Information System (INIS)

    Huseynov, E.K.; Eminov, Sh.O.; Ibragimov, T.I.; Ismaylov, N.J.; Rajabli, A.A.

    2010-01-01

    different methods: microscopic examinations, optical transmission at 300 K, X-ray diffraction and scanning electron microscopy measurements. The electrical properties of the layer at 77 K were measured by Van Der Pauw technique using a Bio-Rad system. Typical layers show that the as grown layers are p-type conductivity with a carrier concentration 1.4*10 1 7 cm - 3 and mobility 260 cm 2 V - 1s - 1. Under thermal annealing at 200 degrees Celsium for 10 h in the presence of Hg overpressure, point defects, such as Cd, Te precipitates are annealed out and their size and density are reduced considerably causing improved transmission that is increased in 5-6 times. Redistribution of constituents Hg, Cd and Te takes place upon annealing that improves the homogeneity of the epilayer leading to the sharpening of absorption edge. The annealed layers display charge carriers concentration 9*10 1 6 cm - 3 and a mobility 1.1*10 4 cm 2 V - 1s - 1.

  10. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    Science.gov (United States)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  11. n-(CdMgTe/CdTe)/(p-(CdTe/ZnCdTe/ZnTe)/p-GaAs heterostructure diode for photosensor applications

    Science.gov (United States)

    Yahia, I. S.; AlFaify, S.; Abutalib, M. M.; Chusnutdinow, S.; Wojtowicz, T.; Karczewski, G.; Yakuphanoglu, F.; Al-Bassam, A.; El-Naggar, A. M.; El-Bashir, S. M.

    2016-05-01

    High quality n-(CdMgTe:I/n-CdTe:I)/(p-CdTe:N/p-ZnCdTe:N/p-ZnTe:N)/p-GaAs heterojunction diodes have been fabricated by molecular beam epitaxial growth. The illumination effect on the complex impedance and conductivity of heterostructure diode was investigated. The illumination intensities were taken up to the 200 mW/cm2 with frequency range of 42 Hz to 1 MHz. The observed real and imaginary parts of the complex impedance were strongly dependent on the illumination frequency. The inverse relation was observed between the illumination intensity and the complex impedance. The relaxation mechanism of the diode was analyzed by the Cole-Cole plots. The radius of the Cole-Cole curve decreases with increasing illumination intensity. This suggests a mechanism of illumination dependent on the relaxation process. It is also found that the conductivity increases linearly with increasing the illumination intensity. We can conclude that the new design heterostructure diode in our work is a good candidate in photodetector and optoelectronic applications.

  12. Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413 (Saudi Arabia); Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Shkir, Mohd, E-mail: shkirphysics@gmail.com [Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413 (Saudi Arabia); AlFaify, S.; Ganesh, V. [Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413 (Saudi Arabia); Zahran, H.Y. [Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413 (Saudi Arabia); Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Kilany, Mona [Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413 (Saudi Arabia); Department of Microbiology, National Organization for Drug Control and Research (NODCAR), Cairo (Egypt)

    2017-03-01

    In this work, the authors have fabricated the nanorods and nanosheets of pure and Te-doped HAp with different Te concentrations (0.04, 0.08, 0.16, 0.24 wt%) by microwave-assisted technique at low temperature. The crystallite size, degree of crystallinity and lattice parameters are calculated. FE-SEM study confirms that the fabricated nanostructures are nanorods of diameter about 10 nm in undoped and at low concentration of Te doping. However, at and higher concentration, it becomes nanosheets of about 5 nm thickness. X-ray diffraction, FT-IR and FT-Raman studies shows that the prepared products are of HAp and Te has been successfully incorporated. From EDX the Ca/P molar ratio of the pure HAp is about 1.740, while this ratio for 0.04, 0.08, 0.16, 0.24 wt% Te doped is about 1.53, 1.678, 1.724, 1.792, respectively. Crystallite size was found to be increased with Te doping from 15 nm to 62 nm. The value of dielectric constant is found to be enhanced at higher concentrations of Te. The values of linear absorption coefficient were also determined and show that the prepared material with Te doping is more absorbable than pure and will be highly applicable in radiation detection applications. Furthermore, the antimicrobial potential of pure and Te doped HAp was examined against some Gram- negative and positive bacteria and fungi by agar disk diffusion method. The results demonstrated that the antimicrobial activity of Te doped HAp is stronger than that of pure HAp where it exhibited the highest activity against Bacillus subtilis > Candida albicans > Shigella dysenteriae. - Highlights: • The crystallinity was found to be enhanced and so the crystal size with Te doping. • The enhancement in the relative permittivity was observed at some concentrations. • The linear absorption coefficient was found to be enhanced by Te doping. • Te doped HAp may be used for radiation shielding applications in medical. • The antimicrobial activity was found to be enhanced with Te

  13. Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications

    International Nuclear Information System (INIS)

    Yahia, I.S.; Shkir, Mohd; AlFaify, S.; Ganesh, V.; Zahran, H.Y.; Kilany, Mona

    2017-01-01

    In this work, the authors have fabricated the nanorods and nanosheets of pure and Te-doped HAp with different Te concentrations (0.04, 0.08, 0.16, 0.24 wt%) by microwave-assisted technique at low temperature. The crystallite size, degree of crystallinity and lattice parameters are calculated. FE-SEM study confirms that the fabricated nanostructures are nanorods of diameter about 10 nm in undoped and at low concentration of Te doping. However, at and higher concentration, it becomes nanosheets of about 5 nm thickness. X-ray diffraction, FT-IR and FT-Raman studies shows that the prepared products are of HAp and Te has been successfully incorporated. From EDX the Ca/P molar ratio of the pure HAp is about 1.740, while this ratio for 0.04, 0.08, 0.16, 0.24 wt% Te doped is about 1.53, 1.678, 1.724, 1.792, respectively. Crystallite size was found to be increased with Te doping from 15 nm to 62 nm. The value of dielectric constant is found to be enhanced at higher concentrations of Te. The values of linear absorption coefficient were also determined and show that the prepared material with Te doping is more absorbable than pure and will be highly applicable in radiation detection applications. Furthermore, the antimicrobial potential of pure and Te doped HAp was examined against some Gram- negative and positive bacteria and fungi by agar disk diffusion method. The results demonstrated that the antimicrobial activity of Te doped HAp is stronger than that of pure HAp where it exhibited the highest activity against Bacillus subtilis > Candida albicans > Shigella dysenteriae. - Highlights: • The crystallinity was found to be enhanced and so the crystal size with Te doping. • The enhancement in the relative permittivity was observed at some concentrations. • The linear absorption coefficient was found to be enhanced by Te doping. • Te doped HAp may be used for radiation shielding applications in medical. • The antimicrobial activity was found to be enhanced with Te

  14. Use of Cu+1 dopant and it's doping effects on polyaniline conducting system in water and tetrahydrofuran

    Science.gov (United States)

    Ali, Vazid; Kaur, Raminder; Kamal, Neel; Singh, Sukhmehar; Jain, S. C.; Kang, H. P. S.; Zulfequar, M.; Husain, M.

    2006-04-01

    The structural modification and properties of polymeric materials are of utmost importance in deciding their applications. In the present study, the synthesis of polyaniline (PANI) has been carried out via chemical oxidation in acidic medium by potassium-dichromate and the yield of synthesized polyaniline was found to be 75 80%. The copper per chlorate tetrabenzonitrile salt (CuClO4·4BN) used for chemical doping in synthesized polyaniline is stable in organic solvent like acetonitrile (AN) and benzonitrile (BN). The effect of Cu+1 oxidation state (dopant) in polyaniline has been characterized by FTIR. Electrical and dielectric measurements show the decrease in the intensity of the Cu+1 salt signal and the appearance of a radical signal due to the formation of oxidative coupled in polymeric species. Electrical and dielectric properties of doped polyaniline samples show significant changes due to the effect of dopant (CuClO4·4BN). It is observed that the conductivity is contributing both by formation of ionic complex and particularly dominated by electronic due to the mobility of charge carriers along the polyaniline chain.

  15. Growth temperature and dopant species effects on deep levels in Si grown by low temperature molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Sung-Yong; Jin, Niu; Rice, Anthony T.; Berger, Paul R.; Yu, Ronghua; Fang, Z-Q.; Thompson, Phillip E.

    2003-01-01

    Deep-level transient spectroscopy measurements were performed in order to investigate the effects of substrate growth temperature and dopant species on deep levels in Si layers during low-temperature molecular beam epitaxial growth. The structures studied were n + -p junctions using B doping for the p layer and p + -n junctions using P doping for the n layer. While the density of hole traps H1 (0.38-0.41 eV) in the B-doped p layers showed a clear increase with decreasing growth temperature from 600 to 370 degree sign C, the electron trap density was relatively constant. Interestingly, the minority carrier electron traps E1 (0.42-0.45 eV) and E2 (0.257 eV), found in the B-doped p layers, are similar to the majority carrier electron traps E11 (0.48 eV) and E22 (0.269 eV) observed in P-doped n layers grown at 600 degree sign C. It is hypothesized that these dominating electron traps are associated with pure divacancy defects and are independent of the dopant species

  16. TE Wave Measurement and Modeling

    CERN Document Server

    Sikora, John P; Sonnad, Kiran G; Alesini, David; De Santis, Stefano

    2013-01-01

    In the TE wave method, microwaves are coupled into the beam-pipe and the effect of the electron cloud on these microwaves is measured. An electron cloud (EC) density can then be calculated from this measurement. There are two analysis methods currently in use. The first treats the microwaves as being transmitted from one point to another in the accelerator. The second more recent method, treats the beam-pipe as a resonant cavity. This paper will summarize the reasons for adopting the resonant TE wave analysis as well as give examples from CESRTA and DA{\\Phi}NE of resonant beam-pipe. The results of bead-pull bench measurements will show some possible standing wave patterns, including a cutoff mode (evanescent) where the field decreases exponentially with distance from the drive point. We will outline other recent developments in the TE wave method including VORPAL simulations of microwave resonances, as well as the simulation of transmission in the presence of both an electron cloud and magnetic fields.

  17. Highest-order optical phonon-mediated relaxation in CdTe/ZnTe quantum dots

    International Nuclear Information System (INIS)

    Masumoto, Yasuaki; Nomura, Mitsuhiro; Okuno, Tsuyoshi; Terai, Yoshikazu; Kuroda, Shinji; Takita, K.

    2003-01-01

    The highest 19th-order longitudinal optical (LO) phonon-mediated relaxation was observed in photoluminescence excitation spectra of CdTe self-assembled quantum dots grown in ZnTe. Hot excitons photoexcited highly in the ZnTe barrier layer are relaxed into the wetting-layer state by emitting multiple LO phonons of the barrier layer successively. Below the wetting-layer state, the LO phonons involved in the relaxation are transformed to those of interfacial Zn x Cd 1-x Te surrounding CdTe quantum dots. The ZnTe-like and CdTe-like LO phonons of Zn x Cd 1-x Te and lastly acoustic phonons are emitted in the relaxation into the CdTe dots. The observed main relaxation is the fast relaxation directly into CdTe quantum dots and is not the relaxation through either the wetting-layer quantum well or the band bottom of the ZnTe barrier layer. This observation shows very efficient optical phonon-mediated relaxation of hot excitons excited highly in the ZnTe conduction band through not only the ZnTe extended state but also localized state in the CdTe quantum dots reflecting strong exciton-LO phonon interaction of telluride compounds

  18. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications

    International Nuclear Information System (INIS)

    Szeles, Csaba

    2004-01-01

    Good detection efficiency and high energy-resolution make Cadmium Zinc Telluride (CdZnTe) and Cadmium Telluride (CdTe) detectors attractive in many room temperature X-ray and gamma-ray detection applications such as medical and industrial imaging, industrial gauging and non-destructive testing, security and monitoring, nuclear safeguards and non-proliferation, and astrophysics. Advancement of the crystal growth and device fabrication technologies and the reduction of bulk, interface and surface defects in the devices are crucial for the widespread practical deployment of Cd 1-x Zn x Te-based detector technology. Here we review the effects of bulk, interface and surface defects on charge transport, charge transport uniformity and device performance and the progress in the crystal growth and device fabrication technologies aiming at reducing the concentration of harmful defects and improving Cd 1-x Zn x Te detector performance. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Piezoelectric effect in CdTe/CdMnTe and CdTe/CdZnTe quantum wells

    International Nuclear Information System (INIS)

    Andre, Regis

    1994-01-01

    Materials with zinc-blende type structure are piezoelectric: any strain along a polar axis generates an electrical polarisation. Strained quantum wells of cubic II-VI or III-V semiconductors, grown along [111] or [112] axis, exhibit a strong built-in piezo-electric field (100 kV/cm for 1% strains). Such structures are very promising for applications to optical modulation, but it is necessary to study first the physical properties of piezoelectric heterostructures before they can be used in optical devices. For this purpose, we have performed an optical study of strained CdTe/CdMnTe or CdTe/CdZnTe quantum wells coherently grown by molecular beam epitaxy on [111] or [112] oriented substrates. Effects of piezoelectric field on optical and electronic properties of quantum wells have been analyzed in terms of the envelop function model, taking into account the effects of biaxial strains for [hhk] growth axis. Moreover, we have proposed an original way of measuring piezoelectric field in strained quantum wells, and we have used this method to show that CdTe exhibits strong non-linearities for piezoelectric field versus strain. This effect has never been mentioned before. We have also performed measurements of the piezoelectric coefficient e14 under high hydrostatic pressure inducing strains up to 2%, which shows that part of the non-linear effect is a volume effect. We have also studied the effects of the piezoelectric field on excitons in quantum wells. The binding energy decreases slightly when the electric field increases, but the oscillator strength, for the fundamental transition, decreases dramatically with the overlap of the envelope wavefunctions of electrons and holes. We have performed a modelization of an exciton in a piezoelectric quantum well using two variational parameters. This model provides an accurate calculation of excitonic absorption. Our experimental and theoretical results are in very good agreement, without any fitting parameters, for a large

  20. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    International Nuclear Information System (INIS)

    Saleh, Navid B.; Milliron, Delia J.; Aich, Nirupam; Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo

    2016-01-01

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  1. Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Guo Wei; Shen Yihua; Boschloo, Gerrit; Hagfeldt, Anders; Ma Tingli

    2011-01-01

    Highlights: → Three different types of nanocrystalline N-doped TiO 2 synthesized by several nitrogen dopants. → N-doped DSCs achieves a high conversion efficiency of 8.32%. → Ammonia acts as good nitrogen dopants. → Enhanced photocurrent of ca. 36% in N-doped DSCs. → Less charge are needed to get a high open-circuit voltage in N-doped films. - Abstract: Three different types of nanocrystalline, N-doped TiO 2 electrodes were synthesized using several nitrogen dopants through wet methods. The obtained nanocrystalline, N-doped TiO 2 electrodes possessed different crystallite sizes, surface areas, and N-doping amounts. Characterizations were performed to reveal the nitrogen-doping processes for the wet methods using ammonia, urea, and triethylamine as the nitrogen dopants. Additionally, a high conversion efficiency of 8.32% was achieved by the dye-sensitized solar cells, based on the N-doped TiO 2 electrodes. For instance, in comparison with the commercial P25 (5.76%) and pure anatase TiO 2 electrodes (7.14%), significant improvements (44% and 17%, respectively) in the efficiencies were obtained. The findings also indicated that the ammonia nitrogen dopant was more efficient than other two nitrogen dopants. The electron transports, electron lifetimes, and charge recombination in the dye-sensitized N-doped TiO 2 solar cells also differed from those in the pure TiO 2 -based dye-sensitized solar cells (DSCs). Specifically, an enhanced photocurrent of ca. 36% in N-doped DSCs resulted from the synergistic effects of the high dye uptake and the efficient electron transport. Moreover, the relationship between charge and voltage revealed that less charge was needed to get a high open-circuit voltage in the N-doping films.

  2. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Navid B., E-mail: navid.saleh@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States); Milliron, Delia J. [McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712 (United States); Aich, Nirupam [Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 (United States); Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States)

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  3. Partial enthalpies of Bi and Te in Bi-Te melts and of In and Te in In-Te melts

    International Nuclear Information System (INIS)

    Yassin, Abeer; Amzil, Abdelhamid; Castanet, Robert

    2000-01-01

    Full text.Calorimetric measurement are reported which allow the enthalpic behaviour of Bi-Te melts to be established. Further work is required, however, to supplement results obtained for In-Te melts. The partial enthalpies of bismuth and tellurium in the Bi-Te melts at 755K and those of indium and tellurium in the In-Te melts at 1010 and 987K were measured at high dilution by direct reaction calorimetry (drop method) with the help of a Tian-Calvet calorimeter. The limiting partial enthalpies of the components were deduced by extrapolation at infinite dilution: Δh f,∞ B i(755K)/KJ.mol -1 = -34.0 and Δh f,∞ Te(755K) /KJ·mol -1 = -24.1 in the Bi-Te melts Δh f,∞ In(1010K) /KJ·mol -1 = -75.9 and Δh f,∞ Te(1010K) /KJ·mol -1 = -47.8 in the In-Te melts Δh f,∞ In(987K) /KJ·mol -1 = -75.2 and Δh f,∞ Te(987K) /KJ·mol -1 = -48.0 in the In-Te melts

  4. Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications.

    Science.gov (United States)

    Yahia, I S; Shkir, Mohd; AlFaify, S; Ganesh, V; Zahran, H Y; Kilany, Mona

    2017-03-01

    In this work, the authors have fabricated the nanorods and nanosheets of pure and Te-doped HAp with different Te concentrations (0.04, 0.08, 0.16, 0.24wt%) by microwave-assisted technique at low temperature. The crystallite size, degree of crystallinity and lattice parameters are calculated. FE-SEM study confirms that the fabricated nanostructures are nanorods of diameter about 10nm in undoped and at low concentration of Te doping. However, at and higher concentration, it becomes nanosheets of about 5nm thickness. X-ray diffraction, FT-IR and FT-Raman studies shows that the prepared products are of HAp and Te has been successfully incorporated. From EDX the Ca/P molar ratio of the pure HAp is about 1.740, while this ratio for 0.04, 0.08, 0.16, 0.24 wt% Te doped is about 1.53, 1.678, 1.724, 1.792, respectively. Crystallite size was found to be increased with Te doping from 15nm to 62nm. The value of dielectric constant is found to be enhanced at higher concentrations of Te. The values of linear absorption coefficient were also determined and show that the prepared material with Te doping is more absorbable than pure and will be highly applicable in radiation detection applications. Furthermore, the antimicrobial potential of pure and Te doped HAp was examined against some Gram- negative and positive bacteria and fungi by agar disk diffusion method. The results demonstrated that the antimicrobial activity of Te doped HAp is stronger than that of pure HAp where it exhibited the highest activity against Bacillus subtilis>Candida albicans>Shigella dysenteriae. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. History of HgTe-based photodetectors in Poland

    Science.gov (United States)

    Rogalski, A.

    2010-09-01

    In Poland, the HgCdTe studies began in 1960 at the Institute of Physics, Warsaw University. The material processing laboratory was created by Giriat and later by Dziuba, Gałązka, and others. Bridgman technique with sealed thick wall quartz ampoules was used to grow material suitable for research and experimental devices. Among the first papers published in 1961 and 1963 there were the Polish works devoted to preparation, doping, and electrical properties of HgCdTe. Infrared detector's research and development efforts in Poland were concentrated mostly on uncooled market niche. At the beginning, a modified isothermal vapour phase epitaxy has been used for research and commercial fabrication of photoconductive, photoelectromagnetic and other HgCdTe devices. Bulk growth and liquid phase epitaxy were also used. Recently, the fabrication of infrared devices relies on low temperature epitaxial technique, namely metalorganic vapour phase deposition. At present stage of development, the photoconductive and photoelectromagnetic (PEM) detectors are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, photodiodes offer high performance and very fast response. However, conventional photovoltaic uncooled detectors suffer from low quantum efficiency and very low junction resistance. The problems have been solved with advanced band gap engineered architecture, multiple cell heterojunction devices connected in series, and monolithic integration of the detectors with microoptics. In final part of the paper, the Polish achievements in technology and performance of HgMnTe and HgZnTe photodetectors are presented.

  6. Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity

    Science.gov (United States)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-12-01

    In this work, ultrathin Te nanowires (NWs) with high-aspect-ratio are prepared by a simple hydrothermal method. By using Te NWs as the sacrificial template, we demonstrate a facile and efficient method for the synthesis of PdAgTe NWs with high-quality through the partly galvanic replacement between Te NWs and the corresponding noble metal salts precursors in an aqueous solution. The compositions of PdAgTe NWs can be tuned by simply altering the concentration of the precursors. After cyclic voltammetry treatment, multi-component PdAgTe NW with a highly active and stable surface can be obtained. The structure and composition of the as-prepared nanomaterials are analyzed by transmission electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized PdAgTe NWs present superior catalytic activity toward ethanol electrooxidation in alkaline solution than the commercial Pd/C catalyst, which making them can be used as effective catalysts for the direct ethanol fuel cells.

  7. Concentrating Radioactivity

    Science.gov (United States)

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  8. Surface passivation for CdTe devices

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Matthew O.; Perkins, Craig L.; Burst, James M.; Gessert, Timothy A.; Barnes, Teresa M.; Metzger, Wyatt K.

    2017-08-01

    In one embodiment, a method for surface passivation for CdTe devices is provided. The method includes adjusting a stoichiometry of a surface of a CdTe material layer such that the surface becomes at least one of stoichiometric or Cd-rich; and reconstructing a crystalline lattice at the surface of the CdTe material layer by annealing the adjusted surface.

  9. Superconducting transition in TlBiTe/sub 2/ and TlTe compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kantser, V G; Popovich, N S; Sidorenko, A S

    1985-10-01

    On the basis of zone structure calculation for TlBiTe/sub 2/ and TlTe it is found that TlBiTe/sub 2/ is a narrow-gap semiconductor and TlTe is a p-metal. At Tsub(c)=0.19 K TlTe is found to experience the superconducting transition. In TlBiTe/sub 2/ superconductivity is not observed to occur up to 0.05 K, since there is a possibility of occupying the high density of states zones because they are remote from actual ones. The earlier discovered superconducting transition in TlBiTe/sub 2/ is inherent in the alien phase of TlTe.

  10. Analysis of the electrical conduction in CdHgTe crystals

    International Nuclear Information System (INIS)

    Dziuba, Z.

    1987-01-01

    The electrical conduction versus magnetic field in p-like CdHgTe samples at 77 K is investigated by analysing the conductivity tensor components. The electrical conduction is mainly due to electrons in the conduction band and low-mobility carriers in an impurity band. In the investigated samples Cd/sub x/Hg/sub 1-x/Te with the composition x approximately 0.17 the concentration of electrons in the conduction band is higher than the intrinsic one and in samples with the composition close to HgTe the concentration of electrons in the conduction band is equal to or lower than the intrinsic one. The model of a half-filled impurity band situated close to the bottom of the conduction band is proposed to account for the concentration of electrons in the conduction band. (author)

  11. Current simulation of symmetric contacts on CdTe

    International Nuclear Information System (INIS)

    Ruzin, A.

    2011-01-01

    This article presents the calculated current-voltage characteristics of symmetric Metal-Semiconductor-Metal configurations for Schottky, Ohmic, and injecting-Ohmic contacts on high resistivity CdTe. The results clearly demonstrate that in the wide band-gap, semi-insulating semiconductors, such as high resistivity CdTe, the linearity of the I-V curves cannot be considered a proof of the ohmicity of the contacts. It is shown that the linear I-V curves are expected for a wide range of contact barriers. Furthermore, the slope of these linear curves is governed by the barrier height, rather than the bulk doping concentration. Therefore the deduction of bulk's resistivity from the I-V curves may be false.

  12. Current simulation of symmetric contacts on CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Ruzin, A., E-mail: aruzin@post.tau.ac.il [School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel)

    2011-12-01

    This article presents the calculated current-voltage characteristics of symmetric Metal-Semiconductor-Metal configurations for Schottky, Ohmic, and injecting-Ohmic contacts on high resistivity CdTe. The results clearly demonstrate that in the wide band-gap, semi-insulating semiconductors, such as high resistivity CdTe, the linearity of the I-V curves cannot be considered a proof of the ohmicity of the contacts. It is shown that the linear I-V curves are expected for a wide range of contact barriers. Furthermore, the slope of these linear curves is governed by the barrier height, rather than the bulk doping concentration. Therefore the deduction of bulk's resistivity from the I-V curves may be false.

  13. Reactively sputtered TeOx optical recording media

    International Nuclear Information System (INIS)

    Di Giulio, M.; Manno, D.; Micocci, G.; Rella, R.; Rizzo, A.; Tepore, A.

    1987-01-01

    Telluriom suboxide (TeO x ) thin films have been obtained by R.F. reactive sputtering deposition by using a Te target and an Ar-O 2 gas mixture. This technique of preparation has been shown to be a valid method because it is possible to easily obtain films with desired characteristics by an appropriate selection of the deposition conditions. Different samples were prepared by changing both the R.F. power (80-300 Watt) and the oxygen concentration in the sputtering gas. The films were analyzed in order to study their optical characteristics and the morphology before and after heat treatment. In particular, transmissivity and reflectivity have been found to change markedly by thermal treatment and critical temperatures in the range 120-150 grades centigrade. This property makes these films suitable for optical recording with a low output power laser diode

  14. A 90 element CdTe array detector

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Y.; Onozuka, A.; Ohmori, M. (Nippon Mining Co. Ltd., Toda, Saitama (Japan). Electronic Material and Components Labs.); Funaki, M. (Nippon Mining Co. Ltd., Toda, Saitama (Japan). Materials Development Research Labs.)

    1992-11-15

    The fabrication of a CdTe array radiation detector and its radiation detection characteristics are described. In order to obtain high efficiency of charge collection and realize uniform detection sensitivity, current-voltage characteristics with the combination of large and small barrier height contacts and three kinds of CdTe crystals have been investigated. It was found that the Schottky barrier height of electroless Pt deposition was 0.97 eV, which effectively suppressed electron injection. By using the crystal grown by the travelling heater method with a Cl concentration of 2 ppm, carrier lifetimes for electrons and holes of 1.0 and 0.5 [mu]s, respectively, were achieved. A 90 element array detector exhibited an energy resolution as low as 4.5 keV and a count rate variation of less than 5% for 60 keV [gamma]-rays. (orig.).