WorldWideScience

Sample records for tdr-nbs-gs-000027 rev00 icn02

  1. Natural analogue synthesis report, TDR-NBS-GS-000027 REV00 ICN02

    International Nuclear Information System (INIS)

    Simmons, A.; Nieder-Westermann, G.; Stuckless, J.; Dobson, P.; Unger, A.J.A.; Kwicklis, E.; Lichtner, P.; Carey, B.; Wolde, G.; Murrel, M.; Kneafsey, T.J.; Meijer, A.; Faybishenko, B.

    2002-01-01

    The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the Yucca Mountain Site Description (CRWMS M and O 2000 [151945], Section 13) and new examples gleaned from the literature, along with results of quantitative studies conducted specifically for the Yucca Mountain Site Characterization Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement drift degradation, waste form degradation, waste package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone (SZ) transport, impact of radionuclide release on the biosphere, and potentially disruptive events. Results of these studies will be used to corroborate estimates of the magnitude and limitation of operative processes in order to build realism into conceptual and numerical process models used as a foundation for PA in the representative case of postclosure safety

  2. Natural analogue synthesis report, TDR-NBS-GS-000027 rev00 icn02

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, A.; Nieder-Westermann, G.; Stuckless, J.; Dobson, P.; Unger, A.J.A.; Kwicklis, E.; Lichtner, P.; Carey, B.; Wolde, G.; Murrel,M.; Kneafsey, T.J.; Meijer, A.; Faybishenko, B.

    2002-04-01

    The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the Yucca Mountain Site Description (CRWMS M&O 2000 [151945], Section 13) and new examples gleaned from the literature, along with results of quantitative studies conducted specifically for the Yucca Mountain Site Characterization Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement drift degradation, waste form degradation, waste package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone (SZ) transport, impact of radionuclide release on the biosphere, and potentially disruptive events. Results of these studies will be used to corroborate estimates of the magnitude and limitation of operative processes in order to build realism into conceptual and numerical process models used as a foundation for PA in the representative case of postclosure safety.

  3. Repository Surface Design Engineering Files Report Rev 00 ICN 1

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of the Repository Surface Design Engineering Files Report Supplement [herein known as the Engineering Files (EF)] is to provide the surface design data needed by the Environmental Impact Statement (EIS) contractor to prepare the EIS and evaluate options and alternatives. This document is based on the Repository Surface Design Engineering Files Report, Revision 03 (CRWMS M and O 1999f) (EF Rev 03). Where facility and system designs have been changed for the Site Recommendation (SR) effort they are described in this report. EIS information provided in this report includes the following: (1) Description of program phases; there are no changes that impact this report. (2) A description of the major design requirements and assumptions that drive the surface facilities reference design is provided herein (Section 2.2), including the surface design resulting from recommendations regarding Enhanced Design Alternative (EDA) II, as discussed in the License Application Design Section Report (CRWMS M and O 1999d), and changes to the waste stream. See Section 2, Table 2-2, for the SR waste stream. (3) The major design requirements and assumptions that drive the surface facilities reference design are by reference to EF Rev 03; there are no changes that impact this report. (4) Description of the reference design concept and existing site conditions is by reference to EF Rev 03 (including Table 4-1, which is not included in this supplement); there are no changes that impact this report. (5) Description of alternative design cases is by reference to EF Rev 03; there are no changes that impact this report. (6) Description of optional inventory modules is by reference to EF Rev 03; there are no changes that impact this report. (7) Tabular summary level engineering values (i.e., staffing, wastes, emissions, resources, and land use) for the reference design and the alternative design cases that address construction, emplacement operations, caretaker operations, and closure; changes, if any, are indicated on appropriate tables. (8) A description of a design concept for the complete retrieval and storage of waste packages, and summary-level engineering quantities for the construction and operation of this concept, is included as Attachment I; there are no changes that impact this report. (9) The concept for a 10,000 metric tons heavy metal (MTHM) Waste Staging Facility (Attachment II) has been deleted. The addition of four spent fuel assembly (SFA) staging pools in the Waste Handling Building (WHB) is described herein. (10) Description of a design concept for an on-site Cask Maintenance Facility to provide for shipping cask repair and recertification (Attachment III) is by reference to EF Rev 03; there are no changes that impact this report. (11) Figures that have changed for the SR effort are included in Attachment IV. Unchanged figures are referenced from EF Rev 03. (12) A preliminary design concept for dry vault inventory of commercial spent nuclear fuel to support thermal blending of spent fuel assemblies in waste packages has been added as Attachment V for this supplement

  4. Reference Design Description for a Geologic Repository, Rev. 03, ICN 02

    International Nuclear Information System (INIS)

    Gerald Shideler

    2001-01-01

    One of the current major national environmental problems is the safe disposal of large quantities of spent nuclear fuel and high-level radioactive waste materials, which are rapidly accumulating throughout the country. These radioactive byproducts are generated as the result of national defense activities and from the generation of electricity by commercial nuclear power plants. At present, spent nuclear fuel is accumulating at over 70 power plant sites distributed throughout 33 states. The safe disposal of these high-level radioactive materials at a central disposal facility is a high national priority. This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada for the disposal of spent nuclear fuel and high-level radioactive waste materials. This document describes a possible design for the three fundamental parts of a repository: a surface facility, subsurface repository, and waste packaging. It also presents the current conceptual design of the key engineering systems for the final four phases of repository processes: operations, monitoring, closure, and postclosure. In accordance with current law, this design does not include an interim storage option. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. It describes the natural barrier system which, together with the engineered systems, achieves the repository objectives. This design will protect the public and the environment by allowing the safe disposal of radioactive waste received from government-owned custodial spent fuel sites, high-level radioactive waste sites, and commercial power reactor sites. All design elements meet or exceed applicable regulations governing the disposal of high-level radioactive waste. The design will provide safe disposal of waste materials for at least a 10,000 year period. During this time interval, natural radioactive decay of the waste materials will result in fission products that pose a minimal radiological hazard to the public afterward. For example, after 100 years, the relative hazard from the waste fission products will have diminished approximately 90 percent. After 1,000 years, the hazard will have diminished 99 percent, and after 10,000 years it will have diminished 99.9 percent. The resulting radiological hazard after 10,000 years is minimal, being of the same order of magnitude as that posed by 0.2 percent uranium ore, which is equivalent to that which was used to originally produce the nuclear fuel. Because developing such a repository is extremely complex, the design will move forward in three stages: Site Recommendation, License Application, and Construction. This document presents the design as it will be submitted in the Site Recommendation Consideration Report; the design will be updated as the design process moves forward. As more cost-effective solutions, technical advancements, or changes to requirements occur, the design may evolve. The U.S. Department of Energy's (DOE) Office of Civilian Radioactive Waste Management is developing a system that includes this potential repository. This waste management system integrates acceptance, transportation, storage, and disposal of spent nuclear fuel and high-level radioactive waste. Acceptance and transportation will be handled by regional servicing contractors under contract to the DOE. The U.S. Nuclear Regulatory Commission will conduct an in-depth and thorough licensing review to determine the acceptability of the proposed waste management system. Eight sections of this document follow. Section 2 discusses the design requirements for the proposed repository. Section 3 describes the physical layout of the proposed repository. Section 4 describes the evolutionary phases of the development of the proposed repository. Section 5 describes the receipt of waste. Section 6 details the various systems that will package the waste and move it below ground, as well as safety monitoring and closure. Section 7 describes the systems (natural and engineered) that ensure continued safety after closure. Section 8 offers design options that may be adopted in the future, and Section 9 provides a summary statement on the repository. The design work for the engineering systems described in this document was accomplished using established engineering practices and state-of-the-art technology. Technical design work and scientific activities described in this document were conducted in accordance with quality assurance/quality control requirements outlined in the DOE Quality Assurance Requirements and Description document and its associated implementing procedures

  5. Aircraft impact qualification of RBMK systems and components. Technical report. Rev. 00, May 1999

    International Nuclear Information System (INIS)

    1999-01-01

    In the present report, the problem of qualification procedures of electrical equipment with respect to the dynamic excitation subsequent to an aircraft impact (ACC) on a Nuclear Power Plant (NPP) is approached, within the context of IAEA Benchmark on vulnerability of equipment and structures of RBMK-type NPP against the aircraft impact. After a short description of the main objectives of the work and the relevant area of concern (Chapter 1), the safety related equipment more commonly installed in a NPP are grouped in few classes, according to widely accepted classification criteria and the relevant failure modes are described (Chapter 2). Taking as reference a deeply studied RBMK reactor (Ignalina NPP), an overview of its main characteristics and of the equipment ensemble housed in is given in Chapter 3. An overview of the worldwide most used qualification standards for safety related equipment for NPPs is reported in Chapter 4, and a comparison of the practices used in Europe for the qualification of safety related electrical and I and C equipment is described with special attention to seismic and impact qualification (Chapter 5). In the hypothesis that the equipment to qualify against impact excitation has been already qualified against seismic excitation, the problems relevant to the different nature of earthquake and shock phenomena are listed, together with the main criteria to implement a procedure which, based on standardized shock pulses, could be applied for ACC qualification purposes (Chapter 6). Consequently, a possible ACC qualification procedure is outlined (Chapter 7) and the interface data (data coming from numerical analysis and seismic qualification, to be used for ACC qualification purposes) are listed (Chapter 8). Finally, the main conclusions of the work are described (Chapter 9). The main references are listed in Chapter 10. (author)

  6. Total System Performance Assessment - Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain - Input to Final Environmental Impact Statement and Site Suitability Evaluation, Rev. 00

    International Nuclear Information System (INIS)

    NA

    2001-01-01

    This Letter Report presents the results of calculations to assess long-term performance of commercial spent nuclear fuel (CSNF), U.S. Department of Energy (DOE) spent nuclear fuel (DSNF), high-level radioactive waste (HLW), and Greater Than Class C (GTCC) radioactive waste and DOE Special Performance Assessment Required (SPAR) radioactive waste at the potential Yucca Mountain repository in Nye County Nevada with respect to the 10,000-year performance period specified in 40 CFR Part 197.30 (66 FR 32074 [DIRS 155216], p. 32134) with regard to radiation-protection standards. The EPA Final Rule 40 CFR Part 197 has three separate standards, individual-protection, human-intrusion, and groundwater-protection standards, all with a compliance timeframe of 10,000 years. These calculations evaluate the dose to receptors for each of these standards. Further, this Letter Report includes the results of simulations to the 1,000,000-year performance period described in 40 CFR Part 197.35 (66 FR 32074 [DIRS 155216], p. 32135) which calls for the calculation of the peak dose to the Reasonably Maximally Exposed Individual (RMEI) that would occur after 10,000 years and within the period of geological stability. In accordance with TSPA-SR the ''period of geologic stability'' is from zero to 1,000,000 years after repository closure. The calculations also present the 5th and 95th percentiles, and the mean and median of the set of probabilistic simulations used to evaluate various disposal scenarios

  7. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    P. Sanchez

    2001-05-30

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification

  8. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    P. Sanchez

    2001-01-01

    The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M and O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M and O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M and O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M and O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses

  9. Mineralogic Model (MM3.0) Analysis Model Report

    Energy Technology Data Exchange (ETDEWEB)

    C. Lum

    2002-02-12

    The purpose of this report is to document the Mineralogic Model (MM), Version 3.0 (MM3.0) with regard to data input, modeling methods, assumptions, uncertainties, limitations and validation of the model results, qualification status of the model, and the differences between Version 3.0 and previous versions. A three-dimensional (3-D) Mineralogic Model was developed for Yucca Mountain to support the analyses of hydrologic properties, radionuclide transport, mineral health hazards, repository performance, and repository design. Version 3.0 of the MM was developed from mineralogic data obtained from borehole samples. It consists of matrix mineral abundances as a function of x (easting), y (northing), and z (elevation), referenced to the stratigraphic framework defined in Version 3.1 of the Geologic Framework Model (GFM). The MM was developed specifically for incorporation into the 3-D Integrated Site Model (ISM). The MM enables project personnel to obtain calculated mineral abundances at any position, within any region, or within any stratigraphic unit in the model area. The significance of the MM for key aspects of site characterization and performance assessment is explained in the following subsections. This work was conducted in accordance with the Development Plan for the MM (CRWMS M&O 2000). The planning document for this Rev. 00, ICN 02 of this AMR is Technical Work Plan, TWP-NBS-GS-000003, Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01 (CRWMS M&O 2000). The purpose of this ICN is to record changes in the classification of input status by the resolution of the use of TBV software and data in this report. Constraints and limitations of the MM are discussed in the appropriate sections that follow. The MM is one component of the ISM, which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1

  10. Mineralogic Model (MM3.0) Analysis Model Report

    International Nuclear Information System (INIS)

    Lum, C.

    2002-01-01

    The purpose of this report is to document the Mineralogic Model (MM), Version 3.0 (MM3.0) with regard to data input, modeling methods, assumptions, uncertainties, limitations and validation of the model results, qualification status of the model, and the differences between Version 3.0 and previous versions. A three-dimensional (3-D) Mineralogic Model was developed for Yucca Mountain to support the analyses of hydrologic properties, radionuclide transport, mineral health hazards, repository performance, and repository design. Version 3.0 of the MM was developed from mineralogic data obtained from borehole samples. It consists of matrix mineral abundances as a function of x (easting), y (northing), and z (elevation), referenced to the stratigraphic framework defined in Version 3.1 of the Geologic Framework Model (GFM). The MM was developed specifically for incorporation into the 3-D Integrated Site Model (ISM). The MM enables project personnel to obtain calculated mineral abundances at any position, within any region, or within any stratigraphic unit in the model area. The significance of the MM for key aspects of site characterization and performance assessment is explained in the following subsections. This work was conducted in accordance with the Development Plan for the MM (CRWMS M and O 2000). The planning document for this Rev. 00, ICN 02 of this AMR is Technical Work Plan, TWP-NBS-GS-000003, Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01 (CRWMS M and O 2000). The purpose of this ICN is to record changes in the classification of input status by the resolution of the use of TBV software and data in this report. Constraints and limitations of the MM are discussed in the appropriate sections that follow. The MM is one component of the ISM, which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components

  11. CREATING INPUT TABLES FROM WAPDEG FOR RIP

    International Nuclear Information System (INIS)

    K.G. Mon

    1998-01-01

    The purpose of this calculation is to create tables for input into RIP ver. 5.18 (Integrated Probabilistic Simulator for Environmental Systems) from WAPDEG ver. 3.06 (Waste Package Degradation) output. This calculation details the creation of the RIP input tables for TSPA-VA REV.00

  12. Development and Characterization of Boehmite Component Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Peterson, Reid A.; Smith, Harry D.; Rinehart, Donald E.; Aker, Pamela M.; Buck, Edgar C.

    2009-06-03

    According to Bechtel National Inc.’s (BNI’s) Test Specification 24590-PTF-TSP-RT-06-006, Rev 0, “Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes,” simulants for boehmite, gibbsite, and filtration are to be developed that can be used in subsequent bench and integrated testing of the leaching/filtration processes. These simulants will then be used to demonstrate the leaching process and to help refine processing conditions that may impact safety basis considerations (Smith 2006). This report documents the results of the boehmite simulant development and blended simulant crossflow ultrafiltration leaching completed in accordance with the test plan TP-RPP-WTP-469 Rev 0 (WTP Doc. No. 24590- 101-TSA-W000-0004-182-00001 Rev 00A) prepared and approved in response to the cited test specification. This report also includes the results of the aluminate and anion effect on boehmite dissolution performed in accordance with the test plan TP-RPP-WTP-509, Rev 0 (WTP Doc. No. 24590-101-TSA-W000-0004-72-00019 Rev 00A) prepared and approved in response to the Test Specification 24590-WTP-TSP-RT-07-004, Rev 0 (Sundar 2007).

  13. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.F.; Liu, H.H.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M and O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  14. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.; Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  15. MGR External Events Hazards Analysis

    International Nuclear Information System (INIS)

    Booth, L.

    1999-01-01

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses

  16. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  17. Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model

    International Nuclear Information System (INIS)

    Tucci, P.

    2001-01-01

    This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M and O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment

  18. INVENTORY ABSTRACTION

    International Nuclear Information System (INIS)

    Ragan, G.

    2001-01-01

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M andO 2000e for/ICN--02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M andO 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release

  19. Hydrogen Induced Cracking of Drip Shield

    Energy Technology Data Exchange (ETDEWEB)

    G. De

    2003-02-24

    One potential failure mechanism for titanium and its alloys under repository conditions is via the absorption of atomic hydrogen in the metal crystal lattice. The resulting decreased ductility and fracture toughness may lead to brittle mechanical fracture called hydrogen-induced cracking (HIC) or hydrogen embrittlement. For the current design of the engineered barrier without backfill, HIC may be a problem since the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this scientific analysis and modeling activity is to evaluate whether the drip shield will fail by HIC or not under repository conditions within 10,000 years of emplacement. This Analysis and Model Report (AMR) addresses features, events, and processes related to hydrogen induced cracking of the drip shield. REV 00 of this AMR served as a feed to ''Waste Package Degradation Process Model Report'' and was developed in accordance with the activity section ''Hydrogen Induced Cracking of Drip Shield'' of the development plan entitled ''Analysis and Model Reports to Support Waste Package PMR'' (CRWMS M&O 1999a). This AMR, prepared according to ''Technical Work Plan for: Waste Package Materials Data Analyses and Modeling'' (BSC 2002), is to feed the License Application.

  20. UZ Flow Models and Submodels

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model

  1. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-11

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.

  2. ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT

    International Nuclear Information System (INIS)

    Clinton Lum

    2002-01-01

    The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS MandO 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS MandO 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4

  3. Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges

    International Nuclear Information System (INIS)

    B. McLeod

    2002-01-01

    This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M and O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M and O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report

  4. Data Qualification Report: Precipitation and Surface Geology Data for Use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    C. Wilson

    2000-01-01

    The unqualified data addressed in this qualification report have been cited in an Analysis Model Report (AMR) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high-level radioactive waste. The unqualified data include precipitation volumes and surface geology maps The precipitation data consist of daily precipitation volumes measured at Yucca Mountain. The surface geology data include identification of the types and surface expressions of geologic units and associated structural features such as faults. These data were directly used in AMR U0010, Simulation of Net Infiltration for Modern and Potential Future Climates, ANL-NBS-HS-000032 (Hevesi et al. 2000), to estimate net infiltration into Yucca Mountain. This report evaluates the unqualified data within the context of supporting studies of this type for the Yucca Mountain Site Characterization Project (YMP). The purpose of this report is to identify data that can be cited as qualified for use in technical products to support the YMP Site Recommendation and that may also be used to support the License Application. The qualified data may either be retained in the original Data Tracking Number (DTN) or placed in new DTNs generated as a result of the evaluation. The appropriateness and limitations (if any) of the data with respect to intended use are addressed in this report. In accordance with Attachment 1 of procedure AP-3.15Q, Rev. 02, Managing Technical Product Inputs, it has been determined that the unqualified precipitation and surface geology data are not used in the direct calculation of Principal Factors for postclosure safety or disruptive events. References to tables, figures, and sections from Hevesi et al. (2000) are based on Rev. 00 of that document

  5. DATA QUALIFICATION REPORT: DATA QUALIFICATION REPORT FOR 1991 1:1200 TOPOGRAPHIC MAPS FOR USE ON THE YUCCA MOUNTAIN PROJECT

    International Nuclear Information System (INIS)

    Knop, M.F.; Grant, T.A.; Bonisolli, R.W.

    2005-01-01

    This Data Qualification Report (DQR) is prepared in accordance with the provisions of AP-SIII.2Q, Rev. 0, ICN 3, Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data and Data Qualification Plan for 1991 Topographic Maps 1:1200 Scale for use on the Yucca Mountain Project, DQP-WHS-CI-000001, Rev. 00 (BSC 2002a). This DQR presents an evaluation of a set of 90 topographic sheets at 1:1200 scale (and an associated electronic file) that covers an approximate 18 square mile area surrounding the proposed Yucca Mountain Project repository surface facilities location in Midway Valley, Nevada. These maps, that require qualification, are now being used to determine the physical characteristics of watershed sub-areas, interconnecting channels, and drainage channel cross-sections for hydrologic engineering studies of the north portal pad and vicinity. The result of this effort is to qualify one data tracking number (DTN) containing the electronic version of the mapping data. This DTN is: M09906COV98462.000. Coverage: TOP02FTS. The underlying quality assurance (QA) issue associated with these topographic maps is that the maps were originally designated as not for use in the design of items important to safety, waste isolation, and/or of programmatic importance. The maps were therefore generated outside the U.S. Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) QA program. Based on a comparison with corroborating information, this report concludes that the topographic maps are qualified. The comparison found that the mapping was reasonably accurate when compared with other mapping and survey data within the coverage area of the maps. Relative map accuracy was found to be very good and suitable for the hydrologic engineering studies being considered. Absolute accuracy is good but could not be demonstrated to comply with national map accuracy standards. Point locations that require high absolute accuracy should be

  6. Physical and Chemical Environmental Abstraction Model

    International Nuclear Information System (INIS)

    Nowak, E.

    2000-01-01

    As directed by a written development plan (CRWMS M and O 1999a), Task 1, an overall conceptualization of the physical and chemical environment (P/CE) in the emplacement drift is documented in this Analysis/Model Report (AMR). Included are the physical components of the engineered barrier system (EBS). The intended use of this descriptive conceptualization is to assist the Performance Assessment Department (PAD) in modeling the physical and chemical environment within a repository drift. It is also intended to assist PAD in providing a more integrated and complete in-drift geochemical model abstraction and to answer the key technical issues raised in the U.S. Nuclear Regulatory Commission (NRC) Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). EBS-related features, events, and processes (FEPs) have been assembled and discussed in ''EBS FEPs/Degradation Modes Abstraction'' (CRWMS M and O 2000a). Reference AMRs listed in Section 6 address FEPs that have not been screened out. This conceptualization does not directly address those FEPs. Additional tasks described in the written development plan are recommended for future work in Section 7.3. To achieve the stated purpose, the scope of this document includes: (1) the role of in-drift physical and chemical environments in the Total System Performance Assessment (TSPA) (Section 6.1); (2) the configuration of engineered components (features) and critical locations in drifts (Sections 6.2.1 and 6.3, portions taken from EBS Radionuclide Transport Abstraction (CRWMS M and O 2000b)); (3) overview and critical locations of processes that can affect P/CE (Section 6.3); (4) couplings and relationships among features and processes in the drifts (Section 6.4); and (5) identities and uses of parameters transmitted to TSPA by some of the reference AMRs (Section 6.5). This AMR originally considered a design with backfill, and is now being updated (REV 00 ICN1) to address

  7. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    deposition and, as a direct consequence, radionuclide concentration in resuspended particulate matter in the atmosphere. The analysis was performed in accordance with the technical work plan for the biosphere modeling and expert support (TWP) (BSC 2003 [163602]). This analysis revises the previous one titled ''Evaluate Soil/Radionuclide Removal by Erosion and Leaching'' (CRWMS M and O 2001 [152517]). In REV 00 of this report, the data generated were fixed (i.e., taking no account of uncertainty and variability) values. This revision incorporates uncertainty and variability into the values for the bulk density, elemental partition coefficients, average annual loss of soil from erosion, resuspension enhancement factor, and field capacity water content

  8. Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model

    International Nuclear Information System (INIS)

    J. J. Tappen

    2003-01-01

    The purpose of this revision of ''Evaluation of the Applicability of Biosphere-Related Features, Events, and Processes (FEPs)'' (BSC 2001) is to document the screening analysis of biosphere-related primary FEPs, as identified in ''The Development of Information Catalogued in REV00 of the YMP FEP Database'' (Freeze et al. 2001), in accordance with the requirements of the final U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR Part 63. This database is referred to as the Yucca Mountain Project (YMP) FEP Database throughout this document. Those biosphere-related primary FEPs that are screened as applicable will be used to develop the conceptual model portion of the biosphere model, which will in turn be used to develop the mathematical model portion of the biosphere model. As part of this revision, any reference to the screening guidance or criteria provided either by Dyer (1999) or by the proposed NRC regulations at 64 FR 8640 has been removed. The title of this revision has been changed to more accurately reflect the purpose of the analyses. In addition, this revision will address Item Numbers 19, 20, 21, 25, and 26 from Attachment 2 of ''U.S. Nuclear Regulatory Commission/U.S. Department of Energy Technical Exchange and Management Meeting on Total System Performance Assessment and Integration (August 6 through 10, 2001)'' (Reamer 2001). This Scientific Analysis Report (SAR) does not support the current revision to the YMP FEP Database (Freeze et al. 2001). Subsequent to the release of the YMP FEP Database (Freeze et al. 2001), a series of reviews was conducted on both the FEP processes used to support Total System Performance Assessment for Site Recommendation and to develop the YMP FEP Database. In response to observations and comments from these reviews, particularly the NRC/DOE TSPA Technical Exchange in August 2001 (Reamer 2001), several Key Technical Issue (KTI) Agreements were developed. ''The Enhanced Plan for Features, Events and Processes

  9. RIP Input From WAPDEG for LA Design Selection: Enhanced Design Alternative II

    International Nuclear Information System (INIS)

    B.E. Bullard

    1999-01-01

    The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. This analysis is being prepared to document an investigation of design concepts, current available technology, technology trends, and technical issues associated with data acquisition during the PC period. This analysis utilizes the ''Performance Confirmation Plan'' (CRWMS M and O 2000b) to help define the scope for the PC data acquisition system. The focus of this analysis is primarily on the PC period for a minimum of 30 years after emplacement of the last waste package. The design of the data acquisition system shall allow for a closure deferral up to 300 years from initiation of waste emplacement. (CRWMS M and O 2000h, page 5-1). This analysis is a revision to and supercedes analysis, ''Performance Confirmation Data Acquisition System'', DI No. BCAI00000-017 17-0200-00002 Rev 00 (CRWMS M and O 1997), and incorporates the latest repository design changes following the M and O and DOE evaluation of a series of Enhanced Design Alternatives (EDAs), as described in the ''Enhanced Design Alternatives II Report'' (CRWMS M and O 1999d). Significant design changes include: thermal line loading of the emplacement drifts, closer spacing of the waste packages (WPs), wider spacing and fewer emplacement drifts, continuous ventilation of all active emplacement drifts, thinner walled WP designs which will increase external radiation levels, a 50-year repository closure option, inclusion of a drip-shield, exclusion of backfill, and new conceptual designs for the waste emplacement vehicles and equipment (Stroupe 2000). The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, ''Performance

  10. Evaluation of Features, Events, and Processes (FEP) for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Tappen

    2003-02-16

    The purpose of this revision of ''Evaluation of the Applicability of Biosphere-Related Features, Events, and Processes (FEPs)'' (BSC 2001) is to document the screening analysis of biosphere-related primary FEPs, as identified in ''The Development of Information Catalogued in REV00 of the YMP FEP Database'' (Freeze et al. 2001), in accordance with the requirements of the final U.S. Nuclear Regulatory Commission (NRC) regulations at 10 CFR Part 63. This database is referred to as the Yucca Mountain Project (YMP) FEP Database throughout this document. Those biosphere-related primary FEPs that are screened as applicable will be used to develop the conceptual model portion of the biosphere model, which will in turn be used to develop the mathematical model portion of the biosphere model. As part of this revision, any reference to the screening guidance or criteria provided either by Dyer (1999) or by the proposed NRC regulations at 64 FR 8640 has been removed. The title of this revision has been changed to more accurately reflect the purpose of the analyses. In addition, this revision will address Item Numbers 19, 20, 21, 25, and 26 from Attachment 2 of ''U.S. Nuclear Regulatory Commission/U.S. Department of Energy Technical Exchange and Management Meeting on Total System Performance Assessment and Integration (August 6 through 10, 2001)'' (Reamer 2001). This Scientific Analysis Report (SAR) does not support the current revision to the YMP FEP Database (Freeze et al. 2001). Subsequent to the release of the YMP FEP Database (Freeze et al. 2001), a series of reviews was conducted on both the FEP processes used to support Total System Performance Assessment for Site Recommendation and to develop the YMP FEP Database. In response to observations and comments from these reviews, particularly the NRC/DOE TSPA Technical Exchange in August 2001 (Reamer 2001), several Key Technical Issue (KTI) Agreements were developed