WorldWideScience

Sample records for tc superconducting oxides

  1. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  2. Critical currents and superconductivity ferromagnetism coexistence in high-Tc oxides

    CERN Document Server

    Khene, Samir

    2016-01-01

    The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superco...

  3. Phases and structural characteristics of high Tc superconducting oxide in (Bi, Pb)-Sr-Ca-Cu-O system

    International Nuclear Information System (INIS)

    Chen, Zuyano; Li, Zhengrong; Qian, Yitai; Zhou, Quien; Cheng, Tingzhu

    1989-01-01

    The various phases, which are responsible for variant maximum d-value including 18.5 angstrom, 15.4 angstrom, 12.2 angstrom, 6.2 angstrom, 3.2 angstrom and possible 9.1 angstrom respectively, observed in high Tc superconducting complex oxide of (Bi,Pb)-Sr-Ca-Cu-O system are reported in this paper according to the result of X-ray diffraction on platelike crystals or crystallites synthesized under different preparation conditions. The phase of tetragonal system with c=3.21 angstrom, a=3.86 angstrom is possible parent structural unit and it is of great significance to the structure constitution of various phases with large lattice parameter c and structural characteristics of superconducting oxide. In view of the above a model of two-dimension stack-up which causes a stack in variant styles along c-axis and constitute various phases with different lattice parameter c is proposed and discussed

  4. MOCVD superconducting oxide films

    Science.gov (United States)

    Hirai, Toshio; Yamane, Hisanori

    1991-01-01

    Preparation of high- Tc superconducting oxide films by MOCVD, their films structure and superconducting properties are reviewed from the standpoint of "nano-composites" and "fine-composites". Y-Ba-Cu-O (YBCO) films formed on SrTiO 3(100) at 850°C showed a superconducting transition temperature with zero resistivity above 90 K. The maximum critical current density was 2.0×10 6 A/cm 2 at 77.3 K and 0 T, and 6.5×10 4 A/cm 2 at 77.3 K and 27 T. CuO and a-axis oriented YBCO grains were contained in the matrix of c-axis oriented YBCO. A transmission electron microscope observation revealed that inclusions of about 10-30 nm were embedded in the a- b plane of YBCO. MOCVD-YBCO films prepared on MgO(100) were used for superconducting devices. Some studies on the MOCVD films of Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O are also reviewed.

  5. The Mercereau effect as a guide to the theory of high-Tc superconductivity in rare earth oxide ceramics

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Martin, P.; Rodriguez-Nunez, J.

    1988-08-01

    We emphasize the importance of performing definite experiments on quantum interferometers, basing our work on a phenomenological theory of high-T c superconductivity co-existing with antiferromagnetism. The theory satisfies all the general requirements of previous models, including minimal gauge invariant coupling terms. Yet, since no doping-dependent displacements are implied in the Mercereau diffraction pattern, this phenomenological approach underlines the urgency of performing new experiments in order to guide the theory. (author). 21 refs, 1 fig

  6. Anelastic spectroscopy in superconducting oxides

    International Nuclear Information System (INIS)

    Albuquerque Gimenez, J.M. de; Grandini, C.R.; Santos, D.L. dos; Cunha, A.G. da

    2005-01-01

    Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the ''step'' in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and O5 of the lattice. (orig.)

  7. Anelastic spectroscopy in superconducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque Gimenez, J.M. de [USP, Inst. de Fisica de Sao Carlos, Sao Carlos, SP (Brazil); UNESP, Dept. de Fisica, Bauru, SP (Brazil); Grandini, C.R.; Santos, D.L. dos [UNESP, Dept. de Fisica, Bauru, SP (Brazil); Cunha, A.G. da [UFES, Dept. de Fisica, Vitoria, ES (Brazil)

    2005-07-01

    Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the ''step'' in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and O5 of the lattice. (orig.)

  8. Technical issues of a high-Tc superconducting bulk magnet

    Science.gov (United States)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  9. The Goettingen high-Tc superconductivity research pool: the effects of structure and structural defects on the performance of high-Tc superconductors. Final reports

    International Nuclear Information System (INIS)

    1992-02-01

    The compilation presents the final reports prepared by the various teams of the Goettingen research pool for high-Tc superconductivity. The reports are entitled: Structure and phase transition in high-Tc superconductors (Krebs/Freyhardt). Preparation and critical properties of high-Tc superconductors (Freyhardt/Heinemann/Zimmermann). EMC measurements in high-Tc superconductors (Bormann/Noelting). Phase analysis of the various phases observed in the preparation of high-Tc superconductors (Faupel/Hehenkamp). Positron annihilation in high-Tc superconductors (Hehenkamp). Preparation and characterization of thin films consisting of superconducting oxide ceramics (v. Minnigerode/Samwer). High-Tc superconductivity in monocrystals (Winzer/Beuermann). Microwave conductivity in high-Tc superconductors (Helberg). High-resolution structural analyses in high-Tc superconductors (Kupcik/Bente). Synthesis, structural analyses and spectroscopy of high-Tc superconductors (Bente). Synthesis, monocrystal growing, crystal structure of high-Tc superconductors (Schwarzmann). Ion-beam-aided studies in high-Tc superconductors (Uhrmacher). (orig./MM) [de

  10. Pressure and high-Tc superconductivity in sulfur hydrides

    Science.gov (United States)

    Gor'Kov, Lev P.; Kresin, Vladimir Z.

    2016-05-01

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

  11. Bec Model of HIGH-Tc Superconductivity in Layered Cuprates

    Science.gov (United States)

    Lomnitz, M.; Villarreal, C.; de Llano, M.

    2013-11-01

    High-Tc superconductivity in layered cuprates is described in a BCS-BEC formalism with linearly-dispersive s- and d-wave Cooper pairs moving in quasi-2D finite-width layers around the CuO2 planes. This yields a closed formula for Tc involving the layer width, the Debye frequency, the pairing energy and the in-plane penetration depth. The new formula has no free parameters and reasonably reproduces empirical values of superconducting Tcs for 11 different layered superconductors over a wide doping regime including YBCO itself as well as other compounds like LSCO, BSCCO and TBCCO. In agreement with the London formalism, the formula also yields a fair description of the Tc dependence of the lower critical magnetic field in highly underdoped YBCO.

  12. Electronic properties of high-Tc superconductors. The normal and the superconducting state of high-Tc materials. Proceedings

    International Nuclear Information System (INIS)

    Kuzmany, H.; Mehring, M.; Fink, J.

    1993-01-01

    The International Winter School on Electronic Properties of High-Temperature Superconductors, held between March 7-14, 1992, in Kirchberg, (Tyrol) Austria, was the sixth in a series of meetings to be held at this venue. Four of the earlier meetings were dedicated to issues in the field of conducting polymers, while the winter school held in 1990 was devoted to the new discipline of high-Tc superconductivity. This year's meeting constituted a forum not only for the large number of scientists engaged in high-Tc research, but also for those involved in the new and exciting field of fullerenes. Many of the issues raised during the earlier winter schools on conducting polymers, and the last one on high-Tc superconductivity, have taken on a new significance in the light of the discovery of superconducting C 60 materials. The Kirchberg meetings are organized in the style of a school where experienced scientists from universities, research laboratories and industry have the opportunity to discuss their most recent results, and where students and young scientists can learn about the present status of research and applications from some of the most eminent workers in their field. In common with the previous winter school on high-Tc superconductors, the present one focused on the electronic properties of the cuprate superconductors. In addition, consideration was given to related compounds which are relevant to the understanding of the electronic structure of the cuprates in the normal state, to other oxide superconductors and to fulleride superconductors. Contributions dealing with their preparation, transport and thermal properties, high-energy spectroscopies, nuclear magnetic resonance, inelastic neutron scattering, and optical spectroscopy are presented in this volume. The theory of the normal and superconducting states also occupies a central position. (orig.)

  13. Internal friction around Tc connected with superconductivity in high Tc superconductors

    International Nuclear Information System (INIS)

    Wang Yening

    1993-01-01

    Internal friction and ultrasonic measurements show that there always exists a phase-like transition (PLT) characterized by the jump of lattice parameters at tens degrees above Tc in superconducting YBaCuO, BiSrCaCuO and TlBaCaCuO. Ferroelastic loops and shape memory effect associated with elastic softening invariably occur at the PLT temperature, showing the characteristics of thermoelastic martensitic transition. Internal frictions in KHz of Bi(Pb)SrCaCuO reveal a static hysteretic plateau (Qp -1 ) above Tc that drops linearly with temperature below Tc. The Qp -1 of YBaCuO decreases with decreasing oxygen content. The origin of the hysteretic Qp -1 is attributed to the lattice distortions around the carriers. (orig.)

  14. Molecular beam epitaxy for high Tc superconducting films

    International Nuclear Information System (INIS)

    Kothiyal, G.P.

    1992-01-01

    The discovery of high temperature superconductivity with T c above 30K in Ba doped La 2 CuO 4 by Bednorz and Muller generated considerable research interest world wide for developing new layered oxide superconductors. These layered copper oxides based superconductors have inherently short coherence lengths which make them very sensitive to interfacial degradation of the SNS and SIS junctions. Therefore, there is an intrinsic need for the growth of thin films with high degree of compositional homogeneity, crystalline orientation and perfection with sharp interfaces. The low growth temperatures, atomic layering capability that molecular beam epitaxy (MBE) has demonstrated for the growth of semiconductors suggest its potential use in the growth of high T c superconducting device structures fulfilling above requirements. The article focusses the attention on the special features of MBE and the difficulties in adopting conventional systems for the growth of high T c superconductors (HTSCs). The problems related to oxygenation required for achieving in situ superconductivity using MBE are discussed in brief. A review of the work pertaining to MBE growth of HTSCs including efforts made in author's laboratory is presented. (author). 47 refs., 6 figs

  15. High-Tc superconducting quantum interference device recordings of spontaneous brain activity: Towards high-Tc magnetoencephalography

    Science.gov (United States)

    Öisjöen, F.; Schneiderman, J. F.; Figueras, G. A.; Chukharkin, M. L.; Kalabukhov, A.; Hedström, A.; Elam, M.; Winkler, D.

    2012-03-01

    We have performed single- and two-channel high transition temperature (high-Tc) superconducting quantum interference device (SQUID) magnetoencephalography (MEG) recordings of spontaneous brain activity in two healthy human subjects. We demonstrate modulation of two well-known brain rhythms: the occipital alpha rhythm and the mu rhythm found in the motor cortex. We further show that despite higher noise-levels compared to their low-Tc counterparts, high-Tc SQUIDs can be used to detect and record physiologically relevant brain rhythms with comparable signal-to-noise ratios. These results indicate the utility of high-Tc technology in MEG recordings of a broader range of brain activity.

  16. A novel propulsion method for high- Tc superconducting maglev vehicle

    Science.gov (United States)

    Ma, Guangtong; Wang, Jiasu; Wang, Suyu; Liu, Minxian; Jing, Hua; Lu, Yiyun; Lin, Qunxu

    2008-01-01

    High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method.

  17. Superconducting fluctuations and pseudogap in high-Tc cuprates

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x. These experiments allow us to determine the field Hc’(T and the temperature Tc’ above which the SCFs are fully suppressed. A careful investigation near optimal doping shows that Tc’ is higher than the pseudogap temperature T*, which is an unambiguous evidence that the pseudogap cannot be assigned to preformed pairs. Accurate determinations of the SCF contribution to the conductivity versus temperature and magnetic field have been achieved. They can be accounted for by thermal fluctuations following the Ginzburg-Landau scheme for nearly optimally doped samples. A phase fluctuation contribution might be invoked for the most underdoped samples in a T range which increases when controlled disorder is introduced by electron irradiation. Quantitative analysis of the fluctuating magnetoconductance allows us to determine the critical field Hc2(0 which is found to be be quite similar to Hc’ (0 and to increase with hole doping. Studies of the incidence of disorder on both Tc’ and T* allow us to to propose a three dimensional phase diagram including a disorder axis, which allows to explain most observations done in other cuprate families.

  18. Resonance of High Tc Superconducting Microstrip Patch in a Substrate-Superstrate Configuration

    Directory of Open Access Journals (Sweden)

    S. Benkouda

    2014-02-01

    Full Text Available The effect of a protecting dielectric superstrate on the resonance of a high Tc superconducting microstrip patch is investigated. The analysis approach is based on the spectral-domain method of moments in conjunction with the complex resistive boundary condition. The complex surface impedance of the superconducting thin film is determined using London’s equation and the two-fluid model of Gorter and Casimir. Numerical results show that the resonant frequency of the high Tc superconducting rectangular patch decreases monotonically with increasing superstrate thickness, the decrease being greater for high permittivity loading.

  19. A study on the development of high Tc superconducting materials

    International Nuclear Information System (INIS)

    Won, D. Y.; Hong, G. Y.; Lee, H. G.; Lee, H. J.; Kim, C. J.; Kwon, S. C.; Kim, K. B.; Kang, Y. H.; Chang, I. S.; Choi, M. J.

    1992-01-01

    The major work of this project aims to develop the frictionless superconducting bearing with a high speed. The high magnetization YBaCuO bulk superconductor was prepared by Quasi-melt process. The frictionless superconducting magnetic bearing standed a rotating bar with a speed of 75,000 rpm, which were operated by an electric controller. The low temperature chemical vapor deposition technique was developed. YBaCuO superconducting film showing a superconductivity above 77K was successfully prepared at 650 deg C. Effect of oxygen partial pressure, substrate, deposition temperature on the film properties were also investigated. (Author)

  20. Quasiparticles in the superconducting state of high-Tc metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2003-01-01

    The behavior of quasiparticles in the superconducting state of high-T c metals within the framework of the theory of superconducting state based on the fermion condensation quantum phase transition is considered. It is shown that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as Landau-Fermi liquid. These observations are in good agreement with recent experimental facts [ru

  1. Structural, electronic, superconducting and mechanical properties of ReC and TcC

    Science.gov (United States)

    Kavitha, M.; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Santhosh, M.

    2015-06-01

    The structural, electronic, superconducting and mechanical properties of ReC and TcC are investigated using density functional theory calculations. The lattice constants, bulk modulus, and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The density of states reveals that ReC and TcC exhibit metallic behavior at ambient condition. A pressure-induced structural phase transition is observed in both materials.

  2. Introduction to superconductivity and high-Tc materials

    International Nuclear Information System (INIS)

    Cyrot, M.; Pavuna, D.

    1991-01-01

    What sets this book apart from other introductions to superconductivity and high-T c materials is its pragmatic approach. In this book the authors describe all relevant superconducting phenomena and rely on the macroscopic Ginzburg-Landau theory to derive the most important results. Examples are chosen from selected conventional superconductors like NbTi and compared to those high-T c materials. The text should be of interest to non-specialists in superconductivity either as a textbook for those entering the field (one semester course) or as researchers in advanced technologies and even some managers of interdisciplinary research projects

  3. Second international Israeli conference on High Tc Superconductivity

    International Nuclear Information System (INIS)

    1993-01-01

    The superconductivity fields covered in this conference are: theory, applications, devices, flux properties high frequencies, Josephson junctions, magnetism, material sciences and physical properties of superconductors, spectroscopy and resonances and thin films

  4. A study on the development of high Tc superconducting materials

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Lee, Hee Gyoun; Kim, Chan Joong

    1990-01-01

    The microstructure, crystal structure and formation kinetics for the superconducting phases were studied in the lead-doped BiSrCaCuO system. The formation kinetics was also investigated in the samples with different Pb/Bi ratio and it was observed that the 30 % Pb addition is most perferable for the formation of the high T c phase. The formation of the high T c phase was delayed by the excessive addition of Pb. The lattice parameter (c) of the unit cell of both low T c and high T c phases increased with increasing Pb content. Superconducting thin film was sucessfully prepared by chemical vapor deposition (CVD). Film deposited on MgO substrate showed a T c , onset of 85 K and did not reach to zero resistivity down to 77 K. Superconducting 124 phase in Y-system, which is more stable than 123 phase at high temperature showed a T c , onser of 84 K. Additionally, 0.1 mole of Pb, Sn and Ca was substituted for yttrium in 124 phase, respectively. For Pb and Sn-subsituted specimens, 124 phase was formed and for Ca substituted specimen, 124 phase was not formed and revealed no superconductivity down to 77 K. For Sn-substituted specimens, 124 phase was formed but showed no superconductivity down to 77 K. (author)

  5. Spin dynamics in high-TC superconducting cuprates

    International Nuclear Information System (INIS)

    Bourges, Ph.

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system

  6. High-Tc superconductivity in the d-p electron system

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Zaitsev, R.A.

    1991-01-01

    The relaxation time with spin flip τ s and the parameters ξ, δ, χ of superconducting phase have been calculated on the basis of the kinematical mechanism of superconductivity in strongly correlated oxide models. An inter-relation between the superconducting gap Δ o and the specific heat jump Δ c allowing the experimental verification was obtained and the Ginsburg-Landau equation derived. (author). 8 refs., 2 figs

  7. Carbon-based superconductors towards high-Tc superconductivity

    CERN Document Server

    Haruyama, Junji

    2014-01-01

    Introduction of Condensed Matter Physics; Spin-state Crossover; Li Ion Battery; Huge Thermoelectric Power; Room-temperature Ferromagnetism; Partially Disordered Antiferromagnetic Transition; Superconductivity; Transport Properties Combined with Charge, Spin, and Orbital; Magnetoresistance and Spin Blocade; Intrinsic Inhomogeneity; Move/diffuse and Charge/discharge Effect.

  8. Response of high Tc superconducting Josephson junction to nuclear radiation

    International Nuclear Information System (INIS)

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  9. Pulsed laser deposition of high Tc superconducting thin films

    International Nuclear Information System (INIS)

    Singh, R.K.; Narayan, J.

    1990-01-01

    This paper reports on the pulsed laser evaporation (PLE) technique for deposition of thin films characterized by a number of unique properties. Based on the experimental characteristics, a theoretical model is developed which considers the formation and anisotropic three dimensional expansion of the laser generated plasma. This model explains most of the experimental features observed in PLE. We have also employed the PLE technique for in-situ fabrication of YBa 2 Cu 3 O 7 superconducting thin films on different substrates in the temperature range of 500--650 degrees C. At temperatures below 600 degrees C, a biased interposing ring between the substrate and the target was found to significantly improve the superconducting properties. The minimum ion channeling yields were between 3--3.5% for films deposited on (100) SrTiO 3 and (100) LaAlO 3 substrates

  10. Plasma polymerization for high Tc oxide superconductors

    Science.gov (United States)

    Morohashi, Shin'ichi; Tamura, Hirotaka; Yoshida, Akira; Hasuo, Shinya

    1988-05-01

    Plasma polymerization using CHF3 gas, which prevents the degradation of high Tc oxide superconductors due to moisture and annealing, was developed. The resistive transitions of Y1Ba2Cu3Ox thin films, coated by plasma polymerization, did not change before and after soaking in 20 °C water for 60 min. In addition, the critical temperature of those films was unchanged after annealing at 200 °C for 30 min in air, and then soaking in 90 °C water for 10 min. We confirmed that the polymer film grown by this method was dense, and the Y1Ba2Cu3Ox film reacted with the fluorine at the interface using x-ray photoelectron spectroscopy.

  11. Challenges to high-Tc superconductivity in cuprates by exploring condensate properties

    Science.gov (United States)

    Maeda, A.

    2008-03-01

    In this paper, I introduce recent our results on superconductivity fluctuation measurement of high-Tc cuprate both for the hole-doped La2-xSrxCuO4 (LSCO) and the electron-doped La2-xCexCuO4 (LCCO). In hole doped LSCO, the universality class was found to change twice as a function of doping, starting from the 2D-XY, changing to the 3D XY and another 2D 'unknown' behavior. The results favors theoretical interpretations of the phase diagram of high-Tc cuprate which assume the existence of an additional hidden quantum critical point around at the optimum doping. In electron doped cuprate, the superconductivity fluctuation is 3D XY for all samples with different hole doping, which is in sharp contrast to the hole doped cuprate. Thus, the asymmetry of the phase diagram between the hole doped and the electron doped materials is another important key factor to judge the applicability of various theories on high-Tc superconductivity. Under finite magnetic fields, the scaling relation was valid only for weak fields, and for higher fields, aspects as vortices appeared. However, even at low temperatures, just above the first order phase transition, vortex picture alone cannot describe the data satisfactory. Thus, we need a unified theory for the description of a large superconductivity fluctuation under finite magnetic fields for high-Tc cuprates. Finally, I showed that our novel technique of fabricating high-Tc Josephson bridge junction using a small island of Fe was turned out to be very promising.

  12. The stability of high-Tc BSCCO/Ag superconducting microcomposites in water, some inorganic solutions and organic solvents

    International Nuclear Information System (INIS)

    Gao, W.; Chen, J.; Yang, C.O.; McNabb, D.; Sande, J. vander

    1992-01-01

    Bi(Pb)-Sr-Ca-Cu-O/Ag (BSCCO/Ag) superconducting microcomposites with zero-resistance temperatures from 102 to 108 K and critical current densities of ∝600 A/cm 2 at 77 K were produced by oxidation and annealling of metallic precursor alloys. The stabilities and degradation behavior of BSCCO/Ag specimens in various environments were studied by a combination of mass loss measurement, electrical transport measurement and microstructural observation. The environmental conditions used in the present work were moist air, distilled water, aqueous solutions of NaCl, NaOH and acetic acid, and organic solvents methanol and acetone. Although there is a general tendency toward a decrease in critical current density after a long exposure to most of the testing conditions, the specimens containing a high percent of Ag (≥70 wt.%) showed very little decrease in Tc and J c up to 200 days of exposure in moist air and distilled water, and up to 20 days in NaCl solution, methanol and acetone. It was found that the superconducting ''2223'' phase is stable in water, neutral solutions and the organic solvents, reacts very slowly with basic solutions, and dissolves rapidly in acidic solutions. Some non-superconducting Ca-rich oxides dissolve in water and neutral and basic solutions and therefore damage the connection of the superconducting grains in low-Ag containing specimens. The excellent stability of the BSCCO/Ag superconducting microcomposites containing high Ag provides an important advantage for their potential industrial application. (orig.)

  13. Laser patterning of superconducting oxide films

    International Nuclear Information System (INIS)

    Gupta, A.; Hussey, B.W.; Koren, G.; Cooper, E.I.; Jagannathan, R.

    1988-01-01

    The focused output of an argon ion laser (514.5 nm) has been used for wiring superconducting lines of Y/sub 1/Ba/sub 2/CU/sub 3/O/sub 7-δ/ using films prepared from nitrate and trifluoroacetate solution precursors. A stoichiometric solution of the precursors is sprayed or spun on to the substrate to form a film. The film is patterned by irradiating in selected areas to convert the irradiated layers to an intermediate oxide or fluoride state, the nonirradiated areas being unchanged. The nonirradiated areas are then dissolved away, leaving a pattern of the oxide or fluoride material. This patterned layer is converted to the superconducting 1-2-3 oxide in a subsequent annealing step. Maskless patterning of superconducting films has also been demonstrated by laser-assisted etching of the films in aqueous KOH solution. Although superconductivity is destroyed when the films are placed in solution, it can be restored after a brief anneal in oxygen

  14. Theory of high-Tc superconducting cuprates based on experimental evidence

    International Nuclear Information System (INIS)

    Abrikosov, A. A.

    1999-01-01

    A model of superconductivity in layered high-temperature superconducting cuprates is proposed, based on the extended saddle point singularities in the electron spectrum, weak screening of the Coulomb interaction and phonon-mediated interaction between electrons plus a small short-range repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the large values of Tc, features of the isotope effect on oxygen and copper, the existence of two types of the order parameter, the peak in the inelastic neutron scattering, the positive curvature of the upper critical field, as function of temperature etc

  15. Superconductive properties, interaction mechanisms, materials preparation and electronic transport in high-Tc superconductors

    International Nuclear Information System (INIS)

    Saemann-Ischenko, G.

    1993-01-01

    The final report is composed of eight chapters dealing with the following aspects: I. Mixed state, critical currents, anisotropy, intrinsic and extrinsic pinning. II. Microwave properties and far-infrared reflectivity of epitactic HTSC films. III. Hall effect at the states of normal conductivity and superconductivity, magnetoresistance, superconducting fluctuation phenomena. IV. Effects of the nuclear and the electronic energy loss. V. Scanning electron microscopy. VI. p- and n-doped high-Tc superconductors: Charge symmetry and magnetism. VII. Preparation methods. VIII. Electrochemical examinations of HTSC films and HTSC monocrystals at low temperatures. (orig./MM) [de

  16. High Tc superconducting thin film deposition by excimer laser ablation

    International Nuclear Information System (INIS)

    Fogarassy, E.; Fuchs, C.; Stoquert, J.P.; Siffert, P.; Defourneau, R.M.; Perriere, J.; Rochet, F.; Rosenman, I.; Simon, C.

    1988-01-01

    The possibility to deposite YBaCuO and BiSrCaCuO thin films by laser evaporation in a clean environment has been studied using a pulsed ArF excimer laser. The as-deposited thin films were converted into the superconducting phase by a subsequent anneal in oxygen in the 850-900 0 C temperature range. The onset critical temperatures were respectively 85 and 92 K with a zero resistance at 83 K for BiSrCaCuO [fr

  17. Spin-polarons and high-Tc superconductivity

    International Nuclear Information System (INIS)

    Wood, R.F.

    1994-03-01

    The spin-polaron concept is introduced in analogy to ionic and electronic polarons and the assumptions underlying the author's approach to spin-polaron mediated high-T c superconductivity are discussed. Elementary considerations about the spin-polaron formation energy are reviewed and the possible origin of the pairing mechanism illustrated schematically. The electronic structure of the CuO 2 planes is treated from the standpoint of antiferromagnetic band calculations that lead directly to the picture of holes predominantly on the oxygen sublattice in a Mott-Hubbard/charge transfer insulator. Assuming the holes to be described in a Bloch representation but with the effective mass renormalized by spin-polaron formation, equations for the superconducting gap, Δ, and transition temperature, T c , are developed and the symmetry of Δ discussed. After further simplifications, T c is calculated as a function of the carrier concentration, x. It is shown that the calculated behavior of T c (x) follows the experimental results closely and leads to a natural explanation of the effects of under- and over-doping. The paper concludes with a few remarks about the evidence for the carriers being fermions (polarons) or bosons (bipolarons)

  18. Applications using high-Tc superconducting terahertz emitters.

    Science.gov (United States)

    Nakade, Kurama; Kashiwagi, Takanari; Saiwai, Yoshihiko; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A; Kadowaki, Kazuo

    2016-03-17

    Using recently-developed THz emitters constructed from single crystals of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, we performed three prototype tests of the devices to demonstrate their unique characteristic properties for various practical applications. The first is a compact and simple transmission type of THz imaging system using a Stirling cryocooler. The second is a high-resolution Michelson interferometer used as a phase-sensitive reflection-type imaging system. The third is a system with precise temperature control to measure the liquid absorption coefficient. The detailed characteristics of these systems are discussed.

  19. RESISTANCE NOISE IN HIGH-TC AND LOW-TC GRANULAR SUPERCONDUCTING FILMS

    NARCIS (Netherlands)

    APONTE, JM; BELLORIN, A; OENTRICH, R; VANDERKUUR, J; GUTIERREZ, G; OCTAVIO, M

    1993-01-01

    Measurements of the resistance noise in thick films of Y-Ba-Cu-0, in thick films of Bi-Sr-Ca-Cu-O, and in thin films of NbN, at the superconducting transition are reported. The transition to the R = 0 state was obtained by either changing the temperature at fixed currents or by lowering the current

  20. Studies of the Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2010-01-01

    The oxidation state is an important aspect of the speciation of Tc in groundwater that contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg L -1 and the Tc (Ⅶ) concentration range is about 10 -8 mol l -1 . The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation methods were carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (IPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (Ⅳ) and Tc (Ⅶ) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentrations are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (Ⅶ) is very stable in the Tc (Ⅶ)-humic acid system during a 350 days experimental period, and the Tc (Ⅳ) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (Ⅶ) in aqueous solutions under anaerobic conditions. That is means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  1. Studies of Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2011-01-01

    The oxidation state of Tc is an important aspect of the speciation in groundwater which contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg/L and the Tc (VII) concentration is about 10 -8 mol/L. The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation method was carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (TPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (IV) and Tc (VII) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentration are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (VII) is very stable in the Tc (VII)-humic acid system during a 350 days experimental period, and the Tc (IV) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (VII) in aqueous solutions under anaerobic conditions. That means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  2. Fabrication of high Tc superconducting tape by solid reaction method

    International Nuclear Information System (INIS)

    Mukai, H.; Shibuta, N.; Hikata, T.; Sato, K.; Nagata, M.; Hitotsuyanagi, H.

    1988-01-01

    Ag sheathed high T c superconducting tapes (wires) of YBA 2 Cu 3 O y and Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O y were fabricated by the powder-in-tube method. Improvements of the powder core density and the crystal orientation were achieved by the pressing and rolling. The critical current density Jc of 4,140 A./cm 2 in Y-systems and of 6,930 A/cm 2 in Bi-systems were obtained at 77.3 K in a zero magnetic field. Using these samples, the authors clarify that magnetic dependence of the Jc was largely improved by increasing the Jc at a zero magnetic field. The critical current Jc was uniform within 3% of distribution in a 15 m long wires. A coil made of the rolled wires could generate 64 gauss of the maximum magnetic fields

  3. High-Tc superconducting antenna-coupled microbolometer on silicon

    Science.gov (United States)

    Rice, Joseph P.; Grossman, Erich N.; Borcherdt, L. J.; Rudman, D. A.

    1994-05-01

    A process is described for fabricating antenna-coupled resistive-edge microbolometers based on the high-Tc superconductor YBa2Cu3O7 (YBCO) on silicon. The YBCO and a buffer layer of yttria-stabilized zirconia (YSZ) were grown epitaxially on silicon to minimize excess electrical noise. A silicon-micromachined YBCO/YSZ air-bridge was incorporated to minimize the thermal conductance and the heat capacity. The thermal conductance of the air-bridge was measured to be 3 X 10-6 W/K at a temperature of 100 K. At an operating temperature of 89 K, the detector is estimated to have a response time of 2 microsecond(s) , a responsivity of the 1000 V/W range, and a noise-equivalent power in the 10-12 W/Hz1/2 range at 1000 Hz.

  4. High-{Tc} superconducting antenna-coupled microbolometer on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J.P.; Grossman, E.N.; Borcherdt, L.J.; Rudman, D.A. [National Inst. of Standards and Technology, Boulder, CO (United States). Cryoelectronic Metrology Group

    1994-12-31

    A process is described for fabricating antenna-coupled resistive-edge microbolometers based on the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) on silicon. The YBCO and a buffer layer of yttria-stabilized zirconia (YSZ) were grown epitaxially on silicon to minimize excess electrical noise. A silicon-micromachined YBCO/YSZ air-bridge was incorporated to minimize the thermal conductance and the heat capacity. The thermal conductance of the air-bridge was measured to be 3 {times} 10{sup {minus}6} W/K at a temperature of 100 K. At an operating temperature of 89 K, the detector is estimated to have a response time of 2 {micro}s, a responsivity in the 1,000 V/W range, and a noise-equivalent power (NEP) in the 10{sup {minus}12} W/Hz{sup 1/2} range at 1,000 Hz.

  5. Processing of films for high Tc superconducting electronics; Proceedings of the Meeting, Santa Clara, CA, Oct. 10-12, 1989

    Science.gov (United States)

    Venkatesan, T.

    Recent advances in the production and applications of high-Tc superconducting films (HTSFs) are discussed in reviews and reports. Sections are devoted to HTSF preparation, laser deposition, thin-film properties, and devices and device characteristics. Topics addressed include substrates for HTSFs, the growth of coevaporated thin YBa2Cu3O(7-x) HTSFs oxidized by pure ozone, pulsed-laser deposition of thallium HTSFs, MOCVD of thin YBaCuO HTSFs, electron microscopy and spectroscopy for the characterization of HTSF surfaces, the predicted mechanical behavior of HTSFs, focused ion-beam modification and patterning of HTSFs, Raman spectroscopy diagnostics for HTSFs, the FIR photoresponse of two-dimensional granular YBa2Cu3O(7-x) films, a bridge-type Josephson junction in YBaCuO thin films by MOCVD, tunneling in e-beam evaporated HTSFs, stripline measurements of surface resistance, and ohmic contacts to HTSFs.

  6. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  7. Efficient CAD Model to Analysis of High Tc Superconducting Circular Microstrip Antenna on Anisotropic Substrates

    Directory of Open Access Journals (Sweden)

    S. Bedra

    2017-05-01

    Full Text Available In this paper, an electromagnetic approach based on cavity model in conjunction with electromagnetic knowledge was developed. The cavity model combined with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant characteristics of high Tc superconducting circular microstrip patch in the case where the patch is printed on uniaxially anisotropic substrate materials.  Merits of our extended model include low computational cost and mathematical simplify. The numerical simulation of this modeling shows excellent agreement with experimental results available in the literature. Finally, numerical results for the dielectric anisotropic substrates effects on the operating frequencies for the case of superconducting circular patch are also presented.

  8. A phenomenological approach to high Tc oxide superconductors

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Das, M.P.; Saif, A.G.

    1987-06-01

    Oxide superconductors are described in terms of macroscopic wave functions Ψ and Φ corresponding, respectively, to electron pairs of the superconducting and insulating states. In terms of the total free energy of the system, including the effect of interaction, we discuss the electrodynamic responses of the oxide superconductors in relation with the experiments to data. (author). 10 refs

  9. Internal resonance of an elastic body levitated above high-Tc superconducting bulks

    International Nuclear Information System (INIS)

    Kokuzawa, T; Toshihiko, S; Yoshizawa, M

    2010-01-01

    In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.

  10. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system

    Science.gov (United States)

    Kokail, Christian; von der Linden, Wolfgang; Boeri, Lilia

    2017-12-01

    We investigate the superconducting ternary lithium borohydride phase diagram at pressures of 0 and 200 GPa using methods for evolutionary crystal structure prediction and linear-response calculations for the electron-phonon coupling. Our calculations show that the ground state phase at ambient pressure, LiBH4, stays in the P n m a space group and remains a wide band-gap insulator at all pressures investigated. Other phases along the 1 :1 :x Li:B:H line are also insulating. However, a full search of the ternary phase diagram at 200 GPa revealed a metallic Li2BH6 phase, which is thermodynamically stable down to 100 GPa. This superhydride phase, crystallizing in a F m 3 ¯m space group, is characterized by sixfold hydrogen-coordinated boron atoms occupying the fcc sites of the unit cell. Due to strong hydrogen-boron bonding this phase displays a critical temperature of ˜100 K between 100 and 200 GPa. Our investigations confirm that ternary compounds used in hydrogen-storage applications should exhibit high-Tc conventional superconductivity in diamond anvil cell experiments, and suggest a viable route to optimize the superconducting behavior of high-pressure hydrides, exploiting metallic covalent bonds.

  11. Analysis of High Tc Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Abderraouf Messai

    2013-01-01

    Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.

  12. On the electronegativity of the high-Tc oxide superconductor

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1991-08-01

    We employ a very useful quantity, the electronegativity, to classify the superconductor. The value of the group average electronegativity to separate superconductor into two categories is 2. Each category has unique chemical bond features. The high-T c oxide superconductor belongs to the second category with group average electronegativity being larger than 2. Their unusual bond nature also gives new insight into some essential factors beneficial to enhance superconductivity. (author). 9 refs, 2 tabs

  13. New superconductors from granular to high T$_{c}$

    CERN Document Server

    Deutscher, Guy

    2006-01-01

    How new are the high Tc superconductors, as compared to the conventional low Tc ones? In what sense are these oxides different from regular metals in their normal state? How different is the mechanism for high Tc superconductivity from the well-known electron-phonon interaction that explains so well superconductivity in metals and alloys? What are the implications of the new features of the high Tc oxides for their practical applications? This book aims to give some answers to those questions, drawing particularly on similarities between the high Tc oxides and granular superconductors, which also present a maximum of their critical temperature near the metal-insulator transition.

  14. New superconductors from granular to high T$_{c}$

    CERN Document Server

    Deutscher, Guy

    2018-01-01

    How new are the high Tc superconductors, as compared to the conventional low Tc ones? In what sense are these oxides different from regular metals in their normal state? How different is the mechanism for high Tc superconductivity from the well-known electron-phonon interaction that explains so well superconductivity in metals and alloys? What are the implications of the new features of the high Tc oxides for their practical applications? This interesting book aims to provide some answers to those questions, drawing particularly on similarities between the high Tc oxides and granular superconductors, which also present a short coherence length, a small superfluid density and an inhomogeneous structure.

  15. Microwave effective surface impedance of structures including a high-Tc superconducting film

    International Nuclear Information System (INIS)

    Hartemann, P.

    1992-01-01

    The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs

  16. Determination of copper oxidizing power in superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Pontaler, R.P.; Lebed', N.B.

    1989-01-01

    A new photometric method for determining the formal copper degree of oxidation and oxygen deficiency in superconducting high-temperature oxides containing yttrium, barium and copper is developed. The method is based on oxidation of Co(2) complex with EDTA by Cu(3) ions in acetrate buffer solution with pH 4.2-4.7 and allows one to determine 1-10% of Cu(3). Relative standard deviation when determining Cu(3) makes up 0.03-0.05. Using a qualitative reaction with the application of sodium vanadate hydrochloride solution the absence of peroxide compound in superconducting yttrium ceramics is ascertained

  17. A novel propulsion method for high-Tc superconducting maglev vehicle

    International Nuclear Information System (INIS)

    Ma Guangtong; Wang Jiasu; Wang Suyu; Liu Minxian; Jing Hua; Lu Yiyun; Lin Qunxu

    2008-01-01

    High-Tc superconducting (HTS) maglev is considered as a perfect transportation type because of its unique inherent stability. A direct current (DC) linear motor using the permanent magnet guideway (PMG) as the stator and the on-board coil as the rotor instead of the present inductive or synchronous alternate current (AC) linear motor which has an economic disadvantage due to the necessity to lay primary coil along the guideway is proposed in this paper. In order to modulate the magnetic field under the PMG, an inverse E shape ferromagnetic device (IESFD) core is designed. The possible winding method for the on-board coil is listed, and the analytical result shows that a considerable net ampere force and thus the propulsion force can be generated by this special structure. The influence of the concentrated effect of the IESFD on the maglev performance of HTS bulk is studied by a numerical program, and the results show that the levitation force with the IESFD is 90% of that without. It is also indicated that the load capability and lateral performance of the maglev vehicle combined this propulsion method can be improved thanks to the attractive effect between the IESFD and PMG. The cost of the HTS maglev vehicle will be remarkably reduced and then shorten the distance to practical application with this propulsion method

  18. Thermoreflectance microscopy measurements of the Joule heating characteristics of high- Tc superconducting terahertz emitters

    Science.gov (United States)

    Kashiwagi, Takanari; Tanaka, Taiga; Watanabe, Chiharu; Kubo, Hiroyuki; Komori, Yuki; Yuasa, Takumi; Tanabe, Yuki; Ota, Ryusei; Kuwano, Genki; Nakamura, Kento; Tsujimoto, Manabu; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo

    2017-12-01

    Joule heating is the central issue in order to develop high-power and high-performance terahertz (THz) emission from mesa devices employing the intrinsic Josephson junctions in a layered high transition-temperature Tc superconductor. Here, we describe a convenient local thermal measurement technique using charge-coupled-device-based thermoreflectance microscopy, with the highest spatial resolution to date. This technique clearly proves that the relative temperature changes of the mesa devices between different bias points on the current-voltage characteristics can be measured very sensitively. In addition, the heating characteristics on the surface of the mesa devices can be detected more directly without any special treatment of the mesa surface such as previous coatings with SiC micro-powders. The results shown here clearly indicate that the contact resistance strongly affects the formation of an inhomogeneous temperature distribution on the mesa structures. Since the temperature and sample dependencies of the Joule heating characteristics can be measured quickly, this simple thermal evaluation technique is a useful tool to check the quality of the electrical contacts, electrical wiring, and sample defects. Thus, this technique could help to reduce the heating problems and to improve the performance of superconducting THz emitter devices.

  19. The t J model for the oxide high-Tc superconductors

    Science.gov (United States)

    Ogata, Masao; Fukuyama, Hidetoshi

    2008-03-01

    A theoretical review is given on high temperature superconductivity in copper oxides (cuprates) by focusing on the hole doping cases based on the view that it is realized in carrier doped Mott insulators, as noted by Anderson in the initial stage. From the detailed knowledge of electronic states deduced from experiments that showed the undoped parent case is Mott insulators (charge transfer type insulators, to be precise) and that the hole doping is mainly on oxygen sites, the t-J model, as derived by Zhang and Rice, is shown to be a canonical model for hole doped cuprates and values of various parameters of the model have been assessed. Results of many different numerical methods so far obtained for this t-J model, especially the variational Monte Carlo method, have clearly indicated the stability of the \\rmd_{x^2-y^2} -wave superconductivity at absolute zero for the parameter region of actual experimental interest and the particular doping dependences of the condensation energy of superconductivity reflecting particular features of doped Mott insulators. For finite temperatures, on the other hand, the field theoretical slave-boson approximation based on the spin (spinons) and charge (holons) separations and the gauge fields as a glue combining them predicts qualitatively particular features of the existence of characteristic crossover temperatures of the spin singlet of the resonating valence bond (RVB) state, TRVB and the onset of Bose condensation of holons, TB, triggering coherent motion of electrons as convoluted particles of spinons and holons. The considerations based on the gauge field indicate that the onset temperature of superconductivity, Tc, is the lower one of these two, i.e. either TB (overdoped cases) or TRVB (underdoped cases), respectively. These characteristic features of the 'phase diagram' at finite temperatures are in overall agreement with various experimental observations, especially with the existence of spin-gap or pseudo-gap phases. In

  20. Magnetic preferential orientation of metal oxide superconducting materials

    Science.gov (United States)

    Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  1. Relations between structural and superconducting properties of bulk and thin film high-Tc materials

    International Nuclear Information System (INIS)

    Hessel Andersen, N.

    1994-06-01

    The structural ordering of oxygen deficient and Co-doped YBCO (YBa 2 Cu 3-y Co y O 6+x ) have been studied experimentally, and by computer simulations of the oxygen ordering in the basal plane of the structure. The calculations are based on the two-dimensional ASYNNNI model and its modifications. Good agreement is established between the ASYNNNI calculations and the experimentally observed structural properties of the double cell ortho-II structure and the oxygen disordering process from Co-doping into the basal plane. A model that relates the superconducting transition temperature T c (x) of undoped YBCO and T c (y) of Co-doped YBCO to the formation of specific domains of the two orthorhombic ordered oxygen phases, ortho-I and ortho-II, shows a close agreement with experimental T c (x) and T c (y) data of samples prepared under equilibrium conditions. The structural changes as a result of metal ion substitutions and oxidation/reduction processes have been studied by neutron powder diffraction in Pb 2 Sr 2 Ln 1-x Ca x Cu 3 O 8+y (Ln = Y and Ho), Nd 1.85 Ce 0.15 CuO 4+y , and chemically oxidized La 2-x Sr x CuO 4+y 2 Cu 3-y Al y O 6+x (y 2 Cu 3 O 6+x and Bi 2 Sr 2 CaCu 2 O 8+x thin films deposited on SrTiO 3 (001), MgO (001), LaAlO 3 (001), and NdGaO 3 (001) substrates has been studied by x-ray diffraction, TEM and RBS, and the structural ordering has been analysed in relation to their superconducting properties. (au) (30 ills., 29 refs.)

  2. A study on the development of high-Tc superconducting wire

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Chang, In Soon; Lee, Jong Min; Um, Tae Yoon; Hong, Kyae Won; Lee, Ho Jin; Lee, Hee Kwun; Kim, Chan Joong; Park, Soon Dong; Kim, Woo Gon; Kim, Ki Baek; Kwon, Sun Chil

    1992-10-01

    On this study Y-Ba-Cu-O was prepared by partial melt process and superconducting wire was fabricated by powder-in-tube method. First, mechancial properties, electrical properties, microstructure and oxygen diffusion behavior were observed. Second, through fabricated superconducting wire, conceptual design, composition and plasticity of filament superconducting wire were investigated. (Author)

  3. Conductive polymer/high-TC superconductor sandwich structures: An example of a molecular switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Lo, R.K.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-x microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7- film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to modulate reversibly the magnitude of J c , the superconducting critical current. Thus, a new type of molecular switch for controlling superconductivity is demonstrated. Electrochemical, resistance vs. temperature, atomic force microscopy and scanning electron microscopy measurements are utilized to explore the polymer/superconductor interactions

  4. Possible universal cause of high-Tc superconductivity in different metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Shaginyan, V.R.

    2002-01-01

    Using the theory of the high temperature superconductivity based on the idea of the fermion condensation quantum phase transition (FCQPT) it is shown that neither the d-wave pairing symmetry, nor the pseudogap phenomenon, nor the presence of the Cu-O 2 planes are of decisive importance for the existence of the high-T c superconductivity. The analysis of recent experimental data on this type of superconductivity in different materials is carried out. It is shown that these facts can be understood within the theory of superconductivity based on the FCQPT. The main features of a room-temperature superconductor are discussed [ru

  5. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  6. Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing

    International Nuclear Information System (INIS)

    Wood, R.F.

    1993-06-01

    The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons

  7. Reduction of Tc(VII) by Fe(II) sorbed on Al (hydr)oxides.

    Science.gov (United States)

    Peretyazhko, T; Zachara, J M; Heald, S M; Kukkadapu, R K; Liu, C; Plymale, A E; Resch, C T

    2008-08-01

    Under oxic conditions, Tc exists as the soluble, weakly sorbing pertechnetate [TcO4-] anion. The reduced form of technetium, Tc(IV), is stable in anoxic environments and is sparingly soluble as TcO2 x nH2O(s). Here we investigate the heterogeneous reduction of Tc(VII) by Fe(II) adsorbed on Al (hydr)oxides [diaspore (alpha-AlOOH) and corundum (alpha-Al2O3)]. Experiments were performed to study the kinetics of Tc(VII) reduction, examine changes in Fe surface speciation during Tc(VII) reduction (Mössbauer spectroscopy), and identify the nature of Tc(IV)-containing reaction products (X-ray absorption spectroscopy). We found that Tc(VII) was completely reduced by adsorbed Fe(II) within 11 (diaspore suspension) and 4 days (corundum suspension). Mössbauer measurements revealed thatthe Fe(II) signal became less intense with Tc(VII) reduction and was accompanied by an increase in the intensity of the Fe(III) doublet and magnetically ordered Fe(III) sextet signals. Tc-EXAFS spectroscopy revealed that the final heterogeneous redox product on corundum was similar to Tc(IV) oxyhydroxide, TcO2 x nH2O.

  8. Design and Characteristics Analysis of a Rod Type High-Tc Superconducting Fault Current Limiter through Electromagnetic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, O.B. [Korea Electric Power Research Institute, Taejeon (Korea); Lee, C.J.; Lee, S.J.; Ko, T.K. [Yonsei University, Seoul (Korea)

    2001-07-01

    The existence of a large air gaps between a High-Tc Superconducting (HTS) tube and an iron core, or between a primary winding and a HTS tube possibly causes magnetic flux leaks, resulting in undesirable voltage drops under normal operation. For this reason optimization of air gaps is essential in designing a high-Tc superconducting fault current limiter (SFCL). In this paper we performed the electromagnetic analysis for the optimization. The inductance L decreases by 20% as the hight of the winding increases from 50 to 200 mm. But, L increases from 5.6 mH to 10.5 mH as the hight of the rod changes from 150 to 400 mm. L is found to be almost constant for the air gap between 5 to 10 mm, but L decreases by 20% as the gap increases from 10 to 20 mm. The computational and experimental results will bo compared. (author). 7 refs., 8 figs., 1 tab.

  9. Synthesis of high T.sub.C superconducting coatings and patterns by melt writing and oxidation of metallic precursor alloys

    Science.gov (United States)

    Gao, Wei; Vander Sande, John B.

    1998-01-01

    A method is provided for fabrication of superconducting oxides and superconducting oxide composites and for joining superconductors to other materials. A coating of a molten alloy containing the metallic elements of the oxide is applied to a substrate surface and oxidized to form the superconducting oxide. A material can be contacted to the molten alloy which is subsequently oxidized joining the material to the resulting superconducting oxide coating. Substrates of varied composition and shape can be coated or joined by this method.

  10. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  11. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  12. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    Science.gov (United States)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  13. Origin of the pressure-dependent Tc valley in superconducting simple cubic phosphorus

    Science.gov (United States)

    Wu, Xianxin; Jeschke, Harald O.; Di Sante, Domenico; von Rohr, Fabian O.; Cava, Robert J.; Thomale, Ronny

    2018-03-01

    Motivated by recent experiments, we investigate the pressure-dependent electronic structure and electron-phonon (e-ph) coupling for simple cubic phosphorus by performing first-principles calculations within the full potential linearized augmented plane-wave method. As a function of increasing pressure, our calculations show a valley feature in Tc, followed by an eventual decrease for higher pressures. We demonstrate that this Tc valley at low pressures is due to two nearby Lifshitz transitions, as we analyze the band-resolved contributions to the e-ph coupling. Below the first Lifshitz transition, the phonon hardening and shrinking of the γ Fermi surface with s -orbital character results in a decreased Tc with increasing pressure. After the second Lifshitz transition, the appearance of δ Fermi surfaces with 3 d -orbital character generate strong e-ph interband couplings in α δ and β δ channels, and hence lead to an increase of Tc. For higher pressures, the phonon hardening finally dominates, and Tc decreases again. Our study reveals that the intriguing Tc valley discovered in experiment can be attributed to Lifshitz transitions, while the plateau of Tc detected at intermediate pressures appears to be beyond the scope of our analysis. This strongly suggests that aside from e-ph coupling, electronic correlations along with plasmonic contributions may be relevant for simple cubic phosphorus. Our findings hint at the notion that increasing pressure can shift the low-energy orbital weight towards d character, and as such even trigger an enhanced importance of orbital-selective electronic correlations despite an increase of the overall bandwidth.

  14. Understanding the superconductivity in copper oxides

    CERN Document Server

    2019-01-01

    The aim of this book is to clarify the situation by adopting a very different approach from the above electronic/magnetic models, where explicitly local dynamical distortions are considered. These are distinctly different from conventional phonons which are a property of the infinite translational invariant symmetric lattice. The local dynamical distortions are shown to account for bulk properties and provide consistent and quantitative agreement with experimental data together with explicit predictions. Selected published experimental and theoretical papers are presented which support the above arguments, but have been ignored on purpose by the originators of the RVB/t-J bubble. To summarize the scope of this book, comprising nine chapters, it is shown, that the phenomenon of HTS in copper oxides is much better understood than publically claimed by RVB/t-J followers. Using the words of B. Laughlin, the presence of the antiferromagnetism in HTS masks the underlying physics where vibronic bipolarons with spin...

  15. Environmental testing of high Tc superconductive thermal isolators for space-borne cryogenic detector systems

    Science.gov (United States)

    Wise, Stephanie A.; Buckley, John D.; Randolf, Henry W.; Verbelyi, Darren; Haertling, Gene H.; Hooker, Matthew W.; Selim, Raouf; Caton, Randall

    1992-01-01

    Thick films of superconductive material on low thermal conductivity substrates (e.g., yttria-stabilized zirconia and fused silica) are considered as a replacement for the existing electrical connections between the detector array and data acquisition and storage electronics in the cryogenic detector systems being developed by NASA. The paper describes some of the design constraints on the superconducting device and presents results of a preliminary analysis of the effects of vibration, gamma irradiation, and long-term exposure to high vacuum and liquid nitrogen encountered in operating such a device in space.

  16. Noise and conversion performance of a high-Tc superconducting Josephson junction mixer at 0.6 THz

    Science.gov (United States)

    Gao, Xiang; Du, Jia; Zhang, Ting; Guo, Yingjie Jay

    2017-11-01

    This letter presents both theoretical and experimental investigations on the noise and conversion performance of a high-Tc superconducting (HTS) step-edge Josephson-junction mixer at the frequency of 0.6 THz and operating temperatures of 20-40 K. Based on the Y-factor and U-factor methods, a double-sideband noise temperature of around 1000 K and a conversion gain of -3.5 dB were experimentally obtained at 20 K. At the temperature of 40 K, the measured mixer noise and conversion efficiency are around 2100 K and -10 dB, respectively. The experimental data are in good agreement with the numerical analysis results using the three-port model. A detailed performance comparison with other reported HTS terahertz mixers has confirmed the superior performance of our presented mixer device.

  17. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  18. Models of high-Tc superconductivity and applications to electric generators and motors

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter

    We present the Ginzburg Landau model for mesoscopic high-Tc superconductors of complex geometry. It is shown that giant vortices can form at boundary defects. The relation between total magnetic flux penetration through the superconductor and the externally applied field is established. This is i......We present the Ginzburg Landau model for mesoscopic high-Tc superconductors of complex geometry. It is shown that giant vortices can form at boundary defects. The relation between total magnetic flux penetration through the superconductor and the externally applied field is established...

  19. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  20. Oxidative Stability of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-17

    Technetium (Tc), which exists predominately in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site, is one of the most difficult contaminants to dispose of and/or remediate. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, based on experimentation to-date, a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non-pertechnetate species. The presence of a non pertechnetate species significantly complicates disposition of low-activity waste (LAW), and the development of methods to either convert them to pertechnetate or to separate the non-pertechnetate species directly is needed. The challenge is the uncertainty regarding the nature and stability of the alkaline-soluble, low-valence, non pertechnetate species in the liquid tank waste. One objective of the Tc management project is to address this knowledge gap. This fiscal year (FY) 2015 report summarizes experimental work exploring the oxidative stability of model low-valence Tc(I) tricarbonyl species, derived from the [Tc(CO)3]+ moiety. These compounds are of interest due to their implied presence in several Hanford tank waste supernatants. Work in part was initiated in FY 2014, and a series of samples containing non-pertechnetate Tc generated ex situ or in situ in pseudo-Hanford tank supernatant simulant solutions was prepared and monitored for oxidation to Tc(VII) (Levitskaia et al. 2014). This experimentation continued in FY 2015, and new series of samples containing Tc(I) as [Tc(CO)3]+•Ligand was tested. The monitoring method used for these studies was a combination of 99Tc NMR and EPR spectroscopies.

  1. Topological superconductivity and Majorana fermions in hybrid structures involving cuprate high-Tc superconductors

    Science.gov (United States)

    Takei, So; Fregoso, Benjamin M.; Galitski, Victor; Das Sarma, S.

    2013-01-01

    The possibility of inducing topological superconductivity with cuprate high-temperature superconductors (HTSC) is studied for various heterostructures. We first consider a ballistic planar junction between a HTSC and a metallic ferromagnet. We assume that inversion symmetry breaking at the tunnel barrier gives rise to Rashba spin-orbit coupling in the barrier and allows equal-spin triplet superconductivity to exist in the ferromagnet. Bogoliubov-de Gennes equations are obtained by explicitly modeling the barrier and taking account of the transport anisotropy in the HTSC. By making use of the self-consistent boundary conditions and solutions for the barrier and HTSC regions, an effective equation of motion for the ferromagnet is obtained where Andreev scattering at the barrier is incorporated as a boundary condition for the ferromagnetic region. For a ferromagnet layer deposited on a (100) facet of the HTSC, triplet p-wave superconductivity is induced. For the layer deposited on a (110) facet, the induced gap does not have the p-wave orbital character, but has an even orbital symmetry and an odd dependence on energy. For the layer on the (001) facet, an exotic f-wave superconductivity is induced. We also consider the induced triplet gap in a one-dimensional half-metallic nanowire deposited on a (001) facet of a HTSC. Due to the breaking of translational symmetry in the direction perpendicular to the wire axis, the expression for the gap receives contributions from different perpendicular momentum eigenstates in the superconductor. We find that for a wire axis along the a axis, these different contributions constructively interfere and give rise to a robust triplet p-wave gap. For a wire oriented 45∘ away from the a axis, the different contributions destructively interfere and the induced triplet p-wave gap vanishes. For the appropriately oriented wire, the induced p-wave gap may give rise to Majorana fermions at the ends of the half-metallic wire. In light of the

  2. Preparation and characterization of high-Tc superconducting thin films with high critical current densities

    International Nuclear Information System (INIS)

    Vase, P.

    1991-08-01

    The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)

  3. An investigation in texturing high Tc superconducting ceramics by creep sintering

    International Nuclear Information System (INIS)

    Regnier, P.; Deschanels, X.; Maurice, F.; Schmirgeld, L.; Aguillon, C.; Senoussi, S.; Mac Carthy, M.; Tatlock, G.J.

    1991-01-01

    We study in detail the possibility of high-T c superconducting ceramics texturing by high pressing them during sintering. We show texture variations as a function of the applied load, of the deformation, of the temperature, and of the sintering stage length, of the rate of variation of temperature, of the material nature in contact with ceramic and of the original powder quality. We present results obtained by optical microscopy, electronic microscopy, X-rays, and local chemical analysis

  4. A large scale high-Tc superconducting shield and its cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Shintomi, K.; Yahara, A.; Irisawa, D.; Imai, K.; Matsuba, H. [Yokohama R& D Labs., Yokohama, Kanagawa (Japan)

    1996-12-31

    The authors have developed a cryostat for a large scale high-T{sub c} superconducting shield enclosing a human body to measure biomagnetism. The cryostat has an interior space of {phi} 0.8 m x L2.8 m and cools a high-T{sub c} superconducting shield {phi} 0.87 m x L2.4 m. The cryostat is made of non-magnetic materials to avoid internal magnetic noise. It also includes other provisions to achieve a very low magnetic noise environment. The authors investigated the optimal design of the radiation shields for the cryostats using liquid nitrogen and concluded that one radiation shield has sufficient performance for the thermal insulation. They designed the liquid nitrogen reservoir to keep the superconductor at 77.3 K until the reservoir is nearly emptied. A magnetic shielding capacity of the superconducting shield for an external magnetic fields reaching 1.8 mT was found. This sufficed for biomagnetic measurements. The critical current density distribution of the superconductor was evaluated using a magnetic field source formed by a pair of small opposing coils placed near the wall of the cryostat. The mean critical current density of the superconductor was about 450 A/cm{sup 2}. External noise was attenuated by 160 dB within the shielded space. This kept the external noises below the internal noise of the SQUID magnetometer.

  5. Observation of high Tc one dimensional superconductivity in 4 angstrom carbon nanotube arrays

    KAUST Repository

    Zhang, Bing

    2017-02-14

    The only known approach to fabricate large, uniform arrays of 4-Å single wall carbon nanotubes (SWNTs) is by using zeolite crystals as the template, in which the nanotubes are formed by chemical vapor deposition inside the linear channels of the AlPO-5 (AFI for short) zeolite. However, up to now the pore filling factor has been very low, as evidenced by the weight percentage of carbon in thermal gravimetric analysis (TGA) measurements. In this work, we show that by using a new, micro-platelet AFI crystals as the template, combined with the use of a new CVD process, we can increase the TGA result to 22.5wt%, which translates to a pore filling factor of 91%. We have observed one dimensional (1D) superconductivity in such samples. The temperature dependence of resistance shows a smooth decreasing trend below 60 K, and the differential resistance displays a gap that disappears above the 1D superconducting initiation temperature. The observed behaviour is shown to agree very well with the theoretical predictions of 1D superconductivity.

  6. Assessment of potential advantages of high Tc-superconductors for technical application of superconductivity

    International Nuclear Information System (INIS)

    Schauer, F.; Juengst, K.P.; Komarek, P.; Maurer, W.

    1987-09-01

    A first assessment of the technical and economical consequences of liquid nitrogen cooling of new superconductors is given. For the investigation the applications of superconductivity are classified in two categories: First, systems where superconductors are practically indispensable for achieving the system's objectives; second, superconductor applications in competition with highly developed conventional technologies. Further development of those superconducting systems in the first category for which the cost of cryogenic equipment is a smaller fraction of the total system cost (e.g. fusion reactor or MHD generator) will hardly be affected. However, for systems like particle accelerators, research magnets, and NMR spectroscopy and imaging systems, the cryogenic equipment expenditures are significant and LN 2 cooling leads here to a reduction of investment and operating costs, to simplified handling and maintenance, to better reliability and availability, and will thereby improve the acceptance and further spread of these systems. In the second category each application of superconductivity has to be compared with its conventional counterpart, separately. Here, electonic components, power switches, resistive current limiters, and especially the power transmission cables are those applications which look most promising. For magnet applications the main advantageous arguments are less the cost saving aspect but more the higher reliability, simplicity, N 2 -availability, and ease of handling. (orig.) [de

  7. An increase in Tc under hydrostatic pressure in the superconducting doped topological insulator Nb 0.25 Bi 2 Se 3

    Energy Technology Data Exchange (ETDEWEB)

    Smylie, M. P.; Willa, K.; Ryan, K.; Claus, H.; Kwok, W. -K.; Qiu, Y.; Hor, Y. S.; Welp, U.

    2017-12-01

    We report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb0.25Bi2Se3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues CuxBi2Se3 and SrxBi2Se3 where smooth suppression of T-c is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi2Se3 family are believed to be single-band.

  8. Plasma clearance and biodistribution of oxidatively modified 99mTc-ß-VLDL in rabbits

    Directory of Open Access Journals (Sweden)

    Silva E.L.

    1997-01-01

    Full Text Available The biodistribution and removal from plasma (measured as fractional clearance rate, FCR, per hour of native and oxidatively modified 99mtechnetium-labeled ß-very low density lipoprotein (99mTc-ß-VLDL were investigated in hypercholesterolemic (HC and control (C three-month old New Zealand rabbits. The intracellular accumulation of ß-VLDL labeled with 99mTc was studied in vitro in THP-1 cells and monocyte-derived macrophages isolated from rabbits. After intravenous injection into C rabbits, copper-oxidized ß-VLDL (99mTc-ox-ß-VLDL was cleared from the circulation faster (0.362 ± 0.070/h than native ß-VLDL (99mTc-nat-ß-VLDL, 0.241 ± 0.070/h. In contrast, the FCR of 99mTc-ox-ß-VLDL in HC rabbits was lower (0.100 ± 0.048/h than that of 99mTc-nat-ß-VLDL (0.163 ± 0.043/h. The hepatic uptake of radiolabeled lipoproteins was lower in HC rabbits (0.114 ± 0.071% injected dose/g tissue for 99mTc-nat-ß-VLDL and 0.116 ± 0.057% injected dose/g tissue for 99mTc-ox-ß-VLDL than in C rabbits (0.301 ± 0.113% injected dose/g tissue for 99mTc-nat-ß-VLDL and 0.305 ± 0.149% injected dose/g tissue for 99mTc-ox-ß-VLDL. The uptake of 99mTc-nat-ß-VLDL and 99mTc-ox-ß-VLDL by atherosclerotic aorta lesions isolated from HC rabbits (99mTc-nat-ß-VLDL: 0.033 ± 0.012% injected dose/g tissue and 99mTc-ox-ß-VLDL: 0.039 ± 0.017% injected dose/g tissue was higher in comparison to that of non-atherosclerotic aortas from C rabbits (99mTc-nat-ß-VLDL: 0.023 ± 0.010% injected dose/g tissue and 99mTc-ox-ß-VLDL: 0.019 ± 0.010% injected dose/g tissue. However, 99mTc-nat-ß-VLDL and 99mTc-ox-ß-VLDL were taken up by atherosclerotic lesions at similar rates. In vitro studies showed that both monocyte-derived macrophages isolated from rabbits and THP-1 macrophages significantly internalized more 99mTc-ox-ß-VLDL than 99mTc-nat-ß-VLDL. These results indicate that in cholesterol-fed rabbits 99mTc-ox-ß-VLDL is slowly cleared from plasma and accumulates in

  9. Lateral restorable characteristics of the high-Tc superconducting maglev vehicle above the permanent magnet guideway

    International Nuclear Information System (INIS)

    Ma, G.T.; Wang, J.S.; Lin, Q.X.; Liu, M.X.; Deng, Z.G.; Li, X.C.; Liu, H.F.; Zheng, J.; Wang, S.Y.

    2009-01-01

    The lateral restorable characteristics of a translational symmetry high-T c superconducting maglev system are investigated by measuring its resonant frequency (f RF ) after a lateral displacement. The difference between whether this lateral displacement is restorable, meaning elastic or inelastic, is determined by whether or not the maglev body returns to its original position after a lateral displacement. The maximum restorable lateral displacement (δ MRLD ) is determined by the sudden change of the f RF vs. the maximum lateral displacement (δ MLD ) curve. The f RF of the high-T c superconducting maglev system with different field-cooling height (FCH) and working height (WH) was obtained from the frequency domain vibration curve which was measured by a vibration measurement system. The results showed that, the δ MRLD was reduced when the WH was decreased. The maximum restorable guidance force (F MRGF ) was found to not always increase with the lowering of the WH for the same FCH. The lateral restorable stiffness (k LRS ) was always enhanced with the decrease of the WH. The decrease of the δ MRLD with the WH is interpreted by the fact that, the tangential field component (ΔH) across the surface of the high-T c superconductor (HTSC) is easier to exceed the J c λ value (J c is the critical current density and λ is the London penetration depth) when the WH is lowered, and this makes the trapped flux lines become more susceptible in escaping its pinning sites.

  10. Separation of 99Tc from irradiated molybdenum oxide by extraction with trioctilamine

    International Nuclear Information System (INIS)

    Carvalho, O.G. de.

    1979-01-01

    A separation method of sup( 99 m)Tc, from irradiated molybdenum oxide, by extraction with trioctilamino in 1,2 dichloroethane, 2% v/v is studied. Two preliminary studies are done: 1) Stablishment of the shaking time necessary to reach the equilibrium between the organic and the aqueous phase; 2) Choice of the concentration of solution of TOA in 1,2 dichloroethane to obtain the best separation conditions of sup( 99 m)Tc. After stablishing these two parameters, the study of extraction in solutions of hydrochloric nitric and sulfuric acids in different concentrations is done, followed by the study of the variation of extraction percentage of sup( 99 m)Tc in relation to the molybdenum oxide mass and the back-extraction of sup( 99 m)Tc to the aqueous phase with solutions of perchloric acid 1,0 and 0,1 N and ammonium hydroxide 1,0 N. (Author) [pt

  11. Theoretical Calculation of Inductance of Flat Type Fault Current Limiter with High Tc Superconducting Plate

    International Nuclear Information System (INIS)

    Matsumura, Toshiro; Mutsuura, Keita; Yokomizu, Yasunobu; Iioka, Daisuke; Shimizu, Hirotaka; Shibuya, Masatoyo; Kado, Hiroyuki; Ichikawa, Michiharu

    2006-01-01

    A flat type fault current limiter (FCL) proposed by us consists of a spiral primary winding and high T c superconducting (HTS) plate. In order to clarify the static current-limiting performance of the flat type FCL, the magnetic field analyses were carried out for small modules of the FCL. The inductance of the FCL was calculated by analyzing the magnetic field. The magnetic field analysis suggested that a high inductance ratio might be realized by radically enlarging both the primary winding and the HTS plate, installing the high permeability material such as an iron on the FCL and stacking the FCL modules vertically in layers. It is also pointed out that the volume of the flat type FCL is smaller than that of the cylinder type FCL with same magnitude of the limiting inductance

  12. Magnetism and superconductivity of some Tl-Cu oxides

    Science.gov (United States)

    Datta, Timir

    1991-01-01

    Many copper oxide based Thallium compounds are now known. In comparison to the Bi-compounds, the Tl-system shows a richer diversity; i.e., High Temperature Superconductors (HTSC) can be obtained with either one or two Tl-0 layers (m = 1,2); also, the triple-digit phases are easier to synthesize. The value of d, oxygen stoichiometry, is critical to achieving superconductivity. The Tl system is robust to oxygen loss; Tl may be lost or incorporated by diffusion. A diffusion coefficient equal to 10 ms at 900 C was determined. Both ortho-rhombic and tetragonal structures are found, but HTSC behavior is indifferent to the crystal symmetry. This system has the highest T(sub c) confirmed. T(sub c) generally increases with p, the number of CuO layers, but tends to saturate at p = 3. Zero resistance was observed at temperatures as great as 125 K. Most of these HTSC's are hole type, but the Ce-doped specimens may be electronic. The magnetic aspects were studied; because in addition to defining the perfectly diamagnetic ground state as in conventional superconductors, magnetism of the copper oxides show a surprising variety. This is true of both the normal and the superconducting states. Also, due to the large phonon contribution to the specific heat at the high T(sub c) jump, electronic density of states, D(Ef), and coherence length are uncertain, and thus, are estimated from the magnetic results. Results from the Tl-system CuO, LaBaCuO,120 and the Bi-CuO compounds are discussed. The emphasis is on the role of magnetism in the Tl-CuO HTSC, but technological aspects are also pointed out.

  13. Oxidation induced superconductivity and Mo/Cu charge equilibrium in Mo0.3Cu0.7Sr2ErCu2Oy

    Science.gov (United States)

    Marik, Sourav; Santos-Garcia, A. J. D.; Labrugere, Christine; Morán, Emilio; Toulemonde, O.; Alario-Franco, M. A.

    2015-04-01

    A detailed study of the structure-composition-properties correlation is reported for the as-prepared (AP) and two oxygenated (oxygenation carried out at ambient pressure and under high pressure) Mo0.3Cu0.7Sr2ErCu2Oy samples. Their crystal structures were characterized by combining the x-ray/neutron powder diffraction (NPD) and electron diffraction techniques. All the samples show tetragonal symmetry, crystallizing in the P4/mmm space group. The influence of oxygenation in the electronic states for the Mo0.3Cu0.7Sr2ErCu2Oy system associated with an oxidation reaction leading from a non-superconducting to a superconducting state has also been investigated by means of x-ray photoelectron spectroscopy (XPS). XPS measurements show the predominance of the MoV oxidation state over the MoVI one in the AP sample; annealing under flowing oxygen enhances both the MoVI and CuII amounts. The AP sample shows the existence of ferromagnetic clusters originated from the short-range magnetic correlations of the paramagnetic MoV cations. On the other hand, all the oxygenated samples are not magnetic but superconducting. The high-pressure oxygenated sample shows the highest superconducting transition temperature of TC = 84 K. A partial oxygen ordering in the (Mo/Cu)O1+δ chain and a decrease in the charge transfer energy after oxygenation induces superconductivity in the oxygenated samples.

  14. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field

    Science.gov (United States)

    Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang

    2017-06-01

    The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.

  15. A magnetic levitation rotating plate model based on high-Tc superconducting technology

    Science.gov (United States)

    Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang

    2017-09-01

    With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.

  16. A study on the development of high-Tc superconducting wire

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Lee, Hee Gyoun; Kim, Chan Joong

    1991-09-01

    High magnetization YBaCuO superconductor was prepared with additions of BaSnO 3 , SnO 2 and SiC by partial melt processing. Addition of BaSnO 3 increased the magnetic property of YBaCuO by flux pinning action of finely dispersed BaSnO 3 particles, while addition of SnO 2 decreased the magnetic property, because the size of particle was larger than that of BaSnO 3 . BiPbSrCaCuO superconducting tape of single filament was prepared by powder-in-tube method using silver as a shearth material. The fabrication techniques involves powder packing, swaging, drawing and cold rolling/pressing method. The final dimension of wire after drawing is 1.2mm diameter. The wire was pressed into a tape form with a thickness of 70micron and a width of 3mm. The obtained critical current density of the prepared tape was 2000A/cm 2 at 77K. (Author)

  17. Low noise high-Tc superconducting bolometers on silicon nitride membranes for far-infrared detection

    International Nuclear Information System (INIS)

    de Nivelle, M.J.; Bruijn, M.P.; de Vries, R.; Wijnbergen, J.J.; de Korte, P.A.; Sanchez, S.; Elwenspoek, M.; Heidenblut, T.; Schwierzi, B.; Michalke, W.; Steinbeiss, E.

    1997-01-01

    High-T c GdBa 2 Cu 3 O 7-δ superconductor bolometers with operation temperatures near 89 K, large receiving areas of 0.95mm 2 and very high detectivity have been made. The bolometers are supported by 0.62 μm thick silicon nitride membranes. A specially developed silicon-on-nitride layer was used to enable the epitaxial growth of the high-T c superconductor. Using a gold black absorption layer an absorption efficiency for wavelengths between 70 and 200 μm of about 83% has been established. The noise of the best devices is fully dominated by the intrinsic phonon noise of the thermal conductance G, and not by the 1/f noise of the superconducting film. The temperature dependence of the noise and the resulting optimum bias temperature have been investigated. In the analysis the often neglected effect of electrothermal feedback has been taken into account. The minimum electrical noise equivalent power (NEP) of a bolometer with a time constant τ of 95 ms is 2.9pW/Hz 1/2 which corresponds with an electrical detectivity D * of 3.4x10 10 cmHz 1/2 /W. Similar bolometers with τ=27ms and NEP=3.8pW/Hz 1/2 were also made. No degradation of the bolometers could be observed after vibration tests, thermal cycling and half a year storage. Measurements of the noise of a Pr doped YBa 2 Cu 3 O 7-δ film with T c =40K show that with such films the performance of air bridge type high-T c bolometers could be improved. copyright 1997 American Institute of Physics

  18. Study of some superconducting and magnetic materials on high T sub c oxide superconductors

    Science.gov (United States)

    Wu, M. K.

    1987-01-01

    On the basis of existing data it appears that the high-temperature superconductivity above 77 K reported here, occurs only in compound systems consisting of a phase other than the K2NiF4 phase. A narrow superconducting transition was obtained with T sub c0 = 98 K and T sub c1 = 94 K in Y-Ba-Cu-O (YBCO). Preliminary results indicate that YBCO is rather different from the layered LaBCO, LaSCO, and LaCCO. While electron-photon interaction cannot be absent from this compound system, nonconventional enhanced superconducting interactions due to interfaces, Resonating Valence Bond (RVB) states, or even a superconducting state beyond the BCS framework, may be required to account for the high T sub c in YBCO. It is believed that study of the possible subtle correlation between magnetism and superconductivity will definitely provide important insight into the superconducting mechanism in YBCO and other oxides.

  19. High-Tc Superconducting Thick-Film Spiral Magnet: Development and Characterization of a Single Spiral Module

    National Research Council Canada - National Science Library

    McGinnis, W

    1997-01-01

    The objective of this project was to make characterized and numerically model prototype modules of a new type of superconducting electromagnet based on stacked spirals of superconducting thick films...

  20. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  1. Biogeochemistry of Fe and Tc Reduction and Oxidation in FRC Sediment

    International Nuclear Information System (INIS)

    John M, Zachara; James K, Fredrickson; Ravi K, Kukkadapu; Steven C, Smith; David W, Kennedy

    2004-01-01

    The objectives are: (1) To rigorously characterize the distribution of Fe(II) and Fe(III) in FRC sediment. (2) To identify changes to Fe(II)/Fe(III) distribution and concentration resulting from DIRB activity. (3) To determine the dependence of Tc(VII) reduction rate on biogenic Fe(II) and it's forms. (4) To establish tendency of Tc(IV) and biogenic Fe(II) to oxidize and their effects on Tc immobilization. The mineralogic and chemical properties of the pristine, bioreduced, and chemically extracted FRC sediments were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), X-ray microscopy (XRM, at the PNC-CAT beamline at APS), Moessbauer spectroscopy, and scanning and transmission electron microscopy with lattice fringe imaging. Chemical extraction included dithionite-citrate-bicarbonate (DCB), acid ammonium oxalate (AAO), and hydroxylamine hydrochloride (HAH). The FRC sediment was incubated under anoxic conditions with the facultative dissimilatory metal-reducing bacterium Shewanella putrefaciens, strain CN32 in defined aqueous solutions/media with bicarbonate and PIPES buffers for time periods exceeding 75 d. Lactate was used as the electron donor. Aqueous and sorbed Fe(II) (ferrozine assay and 0.5 N HCl extraction) and Mn(II) (ICP-MS and 10 mM CuSO 4 extraction), and pH were monitored to define the reduction progress and extent. The bioreduced materials were characterized using the abovementioned techniques. Bioreduced (pasteurized) sediment or chemically extracted/reduced sediment spiked with Fe(II) was washed with a PIPES buffer/electrolyte solution, and spiked with NaTc(VII)O 4 to yield a concentration of 20 (micro)M. The Tc(VII)-spiked samples were agitated and equilibrated at 25 C and sampled over time to assess the Tc(VII) reduction rate. Selected sediment samples containing 20 (micro)M of reduced Tc [Tc(IV)] were subjected to oxidation by: (1) successive headspace replacements of air, and (2) open system equilibration with air. Removed aqueous

  2. Oxide-based platform for reconfigurable superconducting nanoelectronics

    International Nuclear Information System (INIS)

    Veazey, Joshua P; Cheng Guanglei; Irvin, Patrick; Cen Cheng; Bogorin, Daniela F; Bi Feng; Huang Mengchen; Levy, Jeremy; Bark, Chung-Wung; Ryu, Sangwoo; Cho, Kwang-Hwan; Eom, Chang-Beom

    2013-01-01

    We report quasi-1D superconductivity at the interface of LaAlO 3 and SrTiO 3 . The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ∼ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO 3 /SrTiO 3 , placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below T c ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V–I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to ‘write’ gate-tunable superconducting nanostructures on an insulating LaAlO 3 /SrTiO 3 ‘canvas’, opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics. (paper)

  3. Powder of a copper oxide superconductor precursor, fabrication process and use for the preparation of superconducting oxide

    International Nuclear Information System (INIS)

    Dehaudt, P.

    1990-01-01

    The precursor powder comprises at least a copper compound (hydroxide, oxide and hydroxynitrates), at least a rare earth and/or yttrium compound (nitrates, hydroxides and hydroxynitrates) or bismuth oxide and at least an alkaline earth nitrate. It can be prepared by atomization drying of a suspension a copper precipitate or coprecipitate and other elements of the superconducting oxide in solution [fr

  4. Degradation of superconducting Nb/NbN films by atmospheric oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Wolfley, Steven L.; Young, Travis Ryan; Monson, Todd; Pearce, Charles Joseph; Lewis, Rupert M.; Clark, Blythe; Brunke, Lyle Brent; Missert, Nancy A.

    2017-03-01

    Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

  5. On the combination of the Cooper pair and the Ogg pair in the high-Tc oxide superconductor

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1991-08-01

    In this paper it is argued that the superconductivity of the high-T c oxide superconductor (HTOS) can be explained by the combinating mechanism of the Cooper pair and the Ogg pair. The properties of the superconducting state of the HTOS have been calculated under this mechanism, and the theoretical results are overall consistent with the experiment. (author). 37 refs

  6. Redox mechanisms and superconductivity in layered copper oxides

    International Nuclear Information System (INIS)

    Raveau, B.; Michel, C.; Hervieu, M.; Provost, J.

    1992-01-01

    Redox reactions in high T c superconductors cuprates are complex and play an important role in superconductivity: oxygen non-stoichiometry is influencing the critical temperature, and rock salt layers interact with copper layers. 25 refs., 7 figs

  7. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  8. Novel magnetic order in pseudogap state of high Tc copper oxides superconductors

    OpenAIRE

    Bourges, Philippe; Sidis, Yvan

    2011-01-01

    One of the leading issues in high-$\\rm T_c$ copper oxide superconductors is the origin of the pseudogap phase in the underdoped regime of their phase diagram. Using polarized neutron diffraction, a novel magnetic order has been identified as an hidden order parameter of the pseudogap as the transition temperature corresponds to what is expected for the pseudogap. The observed magnetic order preserves translational symmetry as predicted for orbital moments in the circulating current theory. Be...

  9. Emerging boom in nano magnetic particle incorporated high-Tc superconducting materials and technologies - A South African perspective

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2009-01-01

    Full Text Available With a strategy to establish and embrace the emerging nano particle incorporated superconductivity technology (based on the HTS materials and nano magnetic particles) in South Africa, the author has initiated the following research activity in South...

  10. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  11. Analysis of the superconductivity in perovskite oxides using three ...

    Indian Academy of Sciences (India)

    Components of the new coupling are: the attractive acoustic phonon–electron, optical phonon–electron and repulsive Coulomb interactions. With these in the BCS pairing Hamiltonian, expressions for the superconducting transition temperature and isotope effect exponent are obtained. Results of our analysis are consistent ...

  12. A new quantum interferometer effect in superconducting oxide ceramics

    International Nuclear Information System (INIS)

    Chela Flores, J.; Shehata, L.N.

    1987-08-01

    On the basis of a phenomenological approach to type II high T c superconductivity, we suggest that in the lanthanum compounds the Mercereau effect for a coupled junction pair should display and ex-dependent shift in the period of modulation of the tunnelling current. (author). 14 refs

  13. Analysis of the superconductivity in perovskite oxides using three ...

    Indian Academy of Sciences (India)

    metal–oxygen layers (planes), (ii) absence of magnetic degrees of freedom, (iii) overriding presence of electron–phonon ... Other tunnelling measurements on thin films [27] and single crystals [11] of BKBO favour the ... effect of spin fluctuations in the superconducting properties of phonon-mediated super- conductors have ...

  14. High-Tc SQUID biomagnetometers

    Science.gov (United States)

    Faley, M. I.; Dammers, J.; Maslennikov, Y. V.; Schneiderman, J. F.; Winkler, D.; Koshelets, V. P.; Shah, N. J.; Dunin-Borkowski, R. E.

    2017-08-01

    In this paper, we review the preparation technology, integration in measurement systems and tests of high-Tc superconducting quantum interference devices (SQUIDs) intended for biomagnetic applications. A focus is on developments specific to Forschungszentrum Jülich GmbH, Chalmers University of Technology, MedTech West, and the University of Gothenburg, while placing these results in the perspective of those achieved elsewhere. Sensor fabrication, including the deposition and structuring of epitaxial oxide heterostructures, materials for substrates, epitaxial bilayer buffers, bicrystal and step-edge Josephson junctions, and multilayer flux transformers are detailed. The properties of the epitaxial multilayer high-Tc direct current SQUID sensors, including their integration in measurement systems with special electronics and liquid nitrogen cryostats, are presented in the context of biomagnetic recording. Applications that include magnetic nanoparticle based molecular diagnostics, magnetocardiography, and magnetoencephalography are presented as showcases of high-Tc biomagnetic systems. We conclude by outlining future challenges.

  15. The Geochemical Behavior of Tc, Np, and Pu in Spent Nuclear Fuel in an Oxidizing Environment

    International Nuclear Information System (INIS)

    Buck, Edgar C.; Hanson, Brady D.; McNamara, Bruce K.; R. Giere; P. Stille

    2004-01-01

    Studies at the Nopal and Shinkolowbwe uranium deposits show that the primary uraninite (UO2) altered to a suite of secondary uranyl minerals similar to those observed in corrosion tests with uranium oxide . Although the Nopal I deposit tells us something about the possible fate of uranium, it tells us little about the likely fate of the important long-lived radionuclides; iodine (129I), cesium (135Cs), technetium (99Tc), neptunium (237Np), and plutonium (239Pu). Most performance assessment (PA) models, assume conservatively, that as the UO2 matrix corrodes, the key radionuclides (129I, 99Tc, 237Np, and 239Pu) will be released congruently. In so doing, these PA models force increased reliance on human engineered barriers

  16. The Geochemical Behaviour of Tc, Np, and Pu in Spent Nuclear Fuel in an Oxidizing Environment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Edgar C.; Hanson, Brady D.; McNamara, Bruce K.; R. Giere and P. Stille

    2004-10-01

    Studies at the Nopal and Shinkolowbwe uranium deposits show that the primary uraninite (UO2) altered to a suite of secondary uranyl minerals similar to those observed in corrosion tests with uranium oxide . Although the Nopal I deposit tells us something about the possible fate of uranium, it tells us little about the likely fate of the important long-lived radionuclides; iodine (129I), cesium (135Cs), technetium (99Tc), neptunium (237Np), and plutonium (239Pu). Most performance assessment (PA) models, assume conservatively, that as the UO2 matrix corrodes, the key radionuclides (129I, 99Tc, 237Np, and 239Pu) will be released congruently. In so doing, these PA models force increased reliance on human engineered barriers.

  17. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    International Nuclear Information System (INIS)

    Liu, C.-J.; Wu, T.-H.; Hsu, L.-L.; Wang, J.-S.; Chen, S.-Y.

    2007-01-01

    By deintercalation of Na + followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of γ-Na 0.7 CoO 2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na 0.35 (H 2 O) 1.3 CoO 2-δ with the c-axis expanded from c ∼ 10.9 A to c ∼ 19.6 A. In this paper, we demonstrate that the superconducting phase of c ∼ 19.6 A can be directly obtained by simply immersing γ-Na 0.7 CoO 2 powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c ∼ 19.6 A phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides

  18. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    Science.gov (United States)

    Liu, Chia-Jyi; Wu, Tsung-Hsien; Hsu, Lin-Li; Wang, Jung-Sheng; Chen, Shu-Yo

    2007-09-01

    By deintercalation of Na+ followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of γ-Na0.7CoO2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na0.35(H2O)1.3CoO2-δ with the c-axis expanded from c ≈ 10.9 Å to c ≈ 19.6 Å. In this paper, we demonstrate that the superconducting phase of c ≈ 19.6 Å can be directly obtained by simply immersing γ-Na0.7CoO2 powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c ≈ 19.6 Å phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides.

  19. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-J. [Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan (China)], E-mail: liucj@cc.ncue.edu.tw; Wu, T.-H.; Hsu, L.-L.; Wang, J.-S.; Chen, S.-Y. [Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan (China)

    2007-09-01

    By deintercalation of Na{sup +} followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of {gamma}-Na{sub 0.7}CoO{sub 2} undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na{sub 0.35}(H{sub 2}O){sub 1.3}CoO{sub 2-{delta}} with the c-axis expanded from c {approx} 10.9 A to c {approx} 19.6 A. In this paper, we demonstrate that the superconducting phase of c {approx} 19.6 A can be directly obtained by simply immersing {gamma}-Na{sub 0.7}CoO{sub 2} powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c {approx} 19.6 A phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides.

  20. High-Tc superconducting materials in Y-Ba-Cu-O system with the dopants of alkaline metals

    International Nuclear Information System (INIS)

    Kuznetsov, M.V.

    1996-01-01

    The dopants of alkaline metals being introduced into the system Y-Ba-Cu-O do not greatly effect the value of T c . The dopants of alkaline metals lead to the formation of new super-conducting structures o the solid solutions types incorporating an alkaline metal; however, the region of homogeneity of these solutions are different due to the variety of conditions and methods of synthesis. Super-conducting structures, containing an alkaline metal, are characterized by the lowered content of oxygen in comparison with the system YBa 2 Cu 3 O 7-y . Probably, the presence of an alkaline metal in the structure of super-conducting system Y-Ba-Cu-O promotes the retaining of an orthorhombic nature of the crystalline lattice of the product at any dopant concentration. 49 refs

  1. Generic superconducting phase behavior in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Tallon, J.L.; Bernhard, C.; Shaked, H.; Hitterman, R.L.; Jorgensen, J.D.

    1995-01-01

    A direct determination of the relationship between T c and hole concentration p for Y 1-x Ca x Ba 2 Cu 3 O 7-δ is obtained by investigating the properties of the fully oxygen-deficient (δ∼1.0) compound for which p=x/2. Measurements of T c , the thermoelectric power S, and bond-valence sums calculated from neutron-diffraction refinements for various values of x and δ allow the full determination of the relations p=p(δ), T c =T c (p), and S=S(T,p) confirming that YBa 2 Cu 3 O 7-δ satisfies the same universal relations in these quantities as the other high-T c superconducting cuprates

  2. In-situ growth of YBCO high- Tc superconducting thin films by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Zhao, J.; Chern, C. S.; Li, Y. Q.; Noh, D. W.; Norris, P. E.; Zawadzki, P.; Kear, B.; Gallois, B.

    1991-01-01

    Highly c-axis oriented, highly dense, low carbon YBa 2Cu 3O x superconducting thin films have been formed in-situ at a reduced substrate temperature as low as 570°C by a novel plasma enhanced metalorganic chemical vapor deposition process. Superconducting YBa 2Cu 3O x thin films, having a zero resistance transition temperature of 82 K and critical current density of 10 4A/cm 2 at 70 K have been directly deposited on sapphire substrates by such a process.

  3. The robustness of high-Tc superconductivity in underdoped YBa2Cu3O6+x investigated in under strong magnetic fields

    Science.gov (United States)

    Harrison, Neil; Hsu, Y.-T.; Hartstein, M.; Chan, M.; Porras, J.; Loew, T.; Le Tacon, M.; Lonzarich, G.; Keimer, B.; Flux, V.; Sebastian, S.

    A central unresolved mystery in high-Tc superconductivity is whether the pairing amplitude is small in the underdoped regime and relates to the superfluid density or whether it is large and relate to the intrinsic energy scales of the Mott insulating parent state. The magnetic field provides a sensitive probe of the pairing amplitude. However, experimental probes of the extent of the vortex state in temperature and magnetic field have thus far been indirect and hence subject to debate. Here we report measurements over a broad range of temperature and magnetic fields which we use to probe the extent of the vortex region in underdoped YBa2Cu3O6+x. and its interplay with quantum oscillations. N.H. acknowledges UU DOE BES Support for ''Science of 100 Tesla''.

  4. Low-temperature in situ formation of Y-Ba-Cu-O high Tc superconducting thin films by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.

    1990-06-01

    Highly textured, highly dense, superconducting YBa2Cu3O7-x thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 °C by a remote microwave plasma-enhanced metalorganic chemical vapor deposition process (PE-MOCVD). Nitrous oxide was used as the oxidizer gas. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K. PE-MOCVD was carried out in a commercial scale MOCVD reactor.

  5. Preparation and properties of high-Tc Bi-oxide superconductors

    International Nuclear Information System (INIS)

    Maeda, H.

    1989-01-01

    Bulk superconductors of Pb-doped Bi-oxide system (BSCCO) dominated with the high-Tc phase have the critical transition temperature, Tc of 110 K, and the upper critical fields, H c2 of 140 T at OK and 60 T at 77 K. A highly dense and a highly oriented microstructure is obtained by inserting an intermediate uniaxial pressing process. The critical current density, Jc at 77 K in zero field, Jc (77K,OT) of some 5000 A/cm 2 can be easily obtained by this process, and the field dependence of Jc is also improved. Flexible high-Tc BSCCO ribbons with a Jc (77K,Ot) of 1850 A/cm 2 have been successfully prepared by the combined process of doctor blade casting, cold rolling and sintering. Aq-sheeted multifilamentary wires with 1330 filaments and tapes with 30 filaments have also been successfully fabricated and the 36-filament tape shows a Jc(77K,OT) of 1050 A/cm 2 . (Auth.). 7 refs.; 7 figs

  6. Ab initio molecular-orbital study on electron correlation effects in CuO6 clusters relating to high-Tc superconductivity

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yamaguchi, K.; Nasu, K.

    1990-01-01

    Ab initio molecular-orbital calculations for CuO 6 clusters have been performed to elucidate the electronic structures of undoped and doped copper oxides, which are of current interest in relation to high-T c superconductivity. The electron correlation effects for these species are thoroughly investigated by the full-valence configuration-interaction method and the complete-active-space self-consistent-field method. The electron correlation effect is relatively simple for the A g state (σ hole), whereas pair excitations and spin-flip excitations give sizable contributions to the configuration-interaction wave function for the B state (in-plane π hole). Implications of these results are discussed in relation to the mechanisms of the high-T c superconductivity

  7. The Electrical Aspects of the choice of Former in a High T-c Superconducting Power Cable

    DEFF Research Database (Denmark)

    Däumling, Manfred; Kühle (fratrådt), Anders Van Der Aa; Olsen, Søren Krüger

    1999-01-01

    Centrally located in a superconducting power cable the former supplies a rigid means onto which to wind the superconducting tapes and enables a continuous supply of cooling power via a flow of liquid cryogen through it. Therefore, the choice of former has a broad impact on the construction...... and design of a cable. The diameter of the former determines the overall diameter of the total cable, influences the heat loss to the ambient and enters into the total AC-losses. Depending on whether the former is made of a good or poor electrical conductor eddy currents in the former itself may also...... contribute significantly to the AC-loss of the cable; the choice between an open and a closed former determines how and where the pressure load (pressurized coolant) has to be accommodated. In this work the electrical impact of the choice of material and diameter of the former on the AC-loss of a cable...

  8. Thermoelectric Power and Normal State of the High - Tc Copper Oxides

    International Nuclear Information System (INIS)

    Goodenough, J.B.; Zhou, J.S.; Besuker, G.I.

    1995-01-01

    The temperature dependence of the thermoelectric power and resistance for the system La 2-x Sr x CuO 4 , 0≤ x ≤0.30, are presented and interpreted. The following model emerges: (1) In the underdoped region 0 2 sheets by Sr substitution form non-adiabatic large polarons containing 6 ± 1 Cu atoms; a cooperative pseudo Jahn-Teller vibronic coupling increases the size of the polaron, but a contraction of the equilibrium Cu-O distance inside the polaron limits the size. Polaron motion occurs via a tunneling of one Cu - O bond at a time. A dynamic segregation into a hole-poor parent phase and a hole-rich superconductive phase occurs below 150K. (2) The range 0.10 2 sheet. In the polaron liquid, pairs of polarons form zig-zag polaron chains; these chains form an ordered array of alternating polaron and parent-phase stripes. Complete ordering of the stripes occurs below Tc. (4) In the overdoped region x>0.27, polaron overcrowding suppresses polaron formation; however, the vibronic coupling stabilized by the dynamic pseudo Jahn -Teller deformations persists to give unusual properties to the overdoped metallic phase. (author)

  9. Femtosecond optical detection of quasiparticle dynamics in high-Tc YBa2Cu3O7-δ superconducting thin films

    International Nuclear Information System (INIS)

    Han, S.G.; Vardeny, Z.V.; Wong, K.S.; Symko, O.G.; Koren, G.

    1990-01-01

    Femtosecond dynamics of photogenerated quasiparticles in YBa 2 Cu 3 O 7-δ superconducting thin films shows, at T≤T c , two main electronic processes: (i) quasiparticle avalanche production during hot-carrier thermalization, which takes about 300 fsec; (ii) recombination of quasiparticles to form Cooper pairs, which is completed within 5 psec. In contrastr, nonsuperconducting epitaxial films such as PrBa 2 Cu 2 O 7 and YBa 2 Cu 3 O 6 show regular picosecond electronic response

  10. Effects of graphene oxide doping on the structural and superconducting properties of YBa2Cu3O7-δ

    Science.gov (United States)

    Dadras, S.; Falahati, S.; Dehghani, S.

    2018-05-01

    In this research we reported the effects of graphene oxide (GO) doping on the structural and superconducting properties of YBa2Cu3O7-δ (YBCO) high temperature superconductors. We synthesized YBCO powder by sol-gel method. After calcination, the powder mixed with different weight percent (0, 0.1, 0.3, 0.7, 1 wt.%) of GO. Refinement of X-ray diffraction (XRD) was carried out by material analysis using diffraction (MAUD) program to obtain the structural parameters such as lattice parameters, site occupancy of different atoms and orthorhombicity value for the all samples. Results show that GO doping does not change the structure of YBCO compound, Cu (1), Cu (2) and oxygen sites occupancy. It seems that GO remains between the grains and can play the role of weak links. We found that GO addition to YBCO compound increases transition temperature (TC). The oxygen contents of the all GO-doped samples are increased with respect to the pure one. The strain (ɛ) of the samples obtained from Williamson-Hall method, varies with increasing of GO doping. The scanning electron microscopy (SEM) images of the samples show better YBCO grain connections by GO doping.

  11. Atomic Layer Epitaxy of Superconducting Oxides and Heterostructures

    National Research Council Canada - National Science Library

    Chang, R

    1998-01-01

    ...) materials and insulating metal oxides. Improving the nature of such interfaces is a crucial barrier which must be surmounted before HTS materials can be successfully incorporated on a large scale into a myriad of advanced active...

  12. Simulation of Field Dependence of Critical Current Densities of Bulk High Tc Superconducting Materials regarding Thermally Activated Flux Motion

    Science.gov (United States)

    Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.

    2017-07-01

    In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.

  13. Experimental study of yttrium barium copper oxide superconducting ...

    Indian Academy of Sciences (India)

    667–676. Experimental study of yttrium barium copper oxide ... In the present study, torsional strain dependence of the critical current of the coated conductor is investigated experimentally for different current ramp rates. Again, the .... An empirical formula was proposed and established using a curve fit expressed in eq. (1).

  14. Flux Flow, Pinning, and Resistive Behavior in Superconducting Networks

    International Nuclear Information System (INIS)

    Stephen Teitel

    2005-01-01

    Numerical simulators are used to study the behavior of interacting quantized vortices and vortex lines in superconducting networks, films, and three dimensional bulk samples. An emphasis is on the explanation of the phenomenological behavior of the ''high-Tc'' copper-oxide superconductors and related model systems

  15. High-pressure effects on the superconductivity of β-pyrochlore oxides AOs2O6

    International Nuclear Information System (INIS)

    Muramatsu, Takaki; Takeshita, Nao; Terakura, Chikeko; Takagi, Hidenori; Tokura, Yoshinori; Yonezawa, Shigeki; Muraoka, Yuji; Hiroi, Zenji

    2006-01-01

    High-pressure effects on the superconducting transitions of β-pyrochlore oxide superconductors AOs 2 O 6 (A=Cs, Rb, K) are studied by measuring resistivity under high pressures up to 16 GPa. The superconducting transition temperature T c first increases with increasing pressure in all the compounds and then exhibits a broad maximum at 7.6 K (6 GPa), 8.2 K (2 GPa) and 10 K (0.6 GPa) for A=Cs, Rb and K, respectively. Finally, the superconductivity is suppressed completely at a critical pressure near 7 and 6 GPa for A=Rb and K and probably above 10 GPa for A=Cs. Characteristic changes in the temperature dependence of resistivity of RbOs 2 O 6 under high pressure. The residual resistivity largely increases with pressure above 4 GPa and, as a result, resistivity indicates small temperature dependence down to 4.2 K at 7 GPa and application of further pressure up to 10 GPa indicates that temperature dependence of resistivity decrease below 100 K. This characteristic behavior in the β-pyrochlore oxides may originate from the nesting of nearly octahedron shape of Fermi surface

  16. Optimal T$_c$ of cuprates: role of screening and reservoir layers

    OpenAIRE

    Raghu, S.; Thomale, R.; Geballe, T. H.

    2012-01-01

    We explore the role of charge reservoir layers (CRLs) on the superconducting transition temperature of cuprate superconductors. Specifically, we study the effect of CRLs with efficient short distance dielectric screening coupled capacitively to copper oxide metallic layers. We argue that dielectric screening at short distances and at frequencies of the order of the superconducting gap, but small compared to the Fermi energy can significantly enhance T$_c$, the transition temperature of an unc...

  17. Crystalline phases and electronic structures in superconducting Bi endash Sr endash Ca endash Cu oxides

    International Nuclear Information System (INIS)

    Giardina, M.D.; Feduzi, R.; Inzaghi, D.; Manara, A.; Giori, C.; Sora, I.N.; Dallacasa, V.

    1997-01-01

    Two classes of samples, designated A and B, of layered Bi endash Sr endash Ca endash Cu oxides having the same nominal composition 4:3:3:4, but different thermal histories, were investigated by using field modulated microwave absorption (ESR), powder x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near the edge structure (XANES). Previous electrical resistivity measurements showed that the B samples only presented two superconducting phases with midpoints of the transition temperatures at ∼80K and ∼105K. The microwave absorption technique indicated instead the presence of islands which became superconducting at the above-mentioned temperatures also in the A samples. The crystalline and electronic structures of the two types of samples are illustrated and discussed. A plausible theoretical interpretation of the experimental results, based on a quantum percolation model with Coulomb interaction, is also given. copyright 1997 Materials Research Society

  18. Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, S., E-mail: dadras@alzahra.ac.ir; Dehghani, S.; Davoudiniya, M.; Falahati, S.

    2017-06-01

    In this research, we report the synthesis and characterization of YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) high temperature superconductor prepared by sol-gel method and doped with Graphene Oxide (GO) in different weight percentages, 0, 0.1, 0.7 and 1 % wt. The x-ray diffraction (XRD) analysis confirms the formation of orthorhombic phase of superconductivity for all the prepared samples. We found that GO doping reduces the crystalline size of the samples. We evaluated the effects of GO doping on the normal state resistivity (ρ), superconducting transition temperature (T{sub c}) and critical current density (J{sub c}). The results show that the GO doping has a positive effect on these properties. Also, the highest J{sub c} is obtained for the 0.7 %wt GO doped YBCO compound that its critical current density is about 15 times more than the J{sub c} of pure one in 0.4 T magnetic field. The scanning electron microscope (SEM) analysis shows that there are better connections between the grains of GO doped samples. - Highlights: • Graphene Oxide doping increased the YBCO critical current density. • Graphene Oxide creates a better connection between the YBCO grains. • The normal resistivity of samples were decreased by GO doping to YBCO compounds. • Graphene Oxide doping has a positive effect on the critical transition temperature.

  19. Rotational decay torques of superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Takahata, R.; Yotsuya, T.

    1991-01-01

    This paper proposes a superconducting magnetic bearing as one of application of a high critical temperature (Tc) oxide superconducting material. The authors have assembled new models of bearing with free rotation axis. In these models, superconductor, YBa 2 Cu 3 O X , prepared by the quench and melt growth (QMG) method was applied to the bearing section and a permanent magnet was used for a rotor. This development originated from the knowledge that YBa 2 Cu 3 O X prepared by QMG method had a stronger pinning force of magnetic flux than that of conventional superconductors

  20. Superconducting materials

    International Nuclear Information System (INIS)

    Kormann, R.; Loiseau, R.; Marcilhac, B.

    1989-01-01

    The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr

  1. International Workshop on Novel Mechanisms of Superconductivity

    CERN Document Server

    Wolf, Stuart A; Novel superconductivity

    1987-01-01

    The Novel Mechanisms of Superconductivity Conference was initially conceived in the early part of 1986 as a small, 2-1/2 day workshop of 40-70 scientists, both theorists and experimentalists interested in exploring the possible evidence for exotic, non phononic superconductivity. Of course, the historic discoveries of high temperature oxide superconductors by Bednorz and Mftller and the subsequent enhancements by the Houston/Alabama groups made such a small conference impractical. The conference necessarily had to expand, 2-1/2 days became 4-1/2 days and superconductivity in the high Tc oxides became the largest single topic in the workshop. In fact, this conference became the first major conference on this topic and thus, these proceedings are also the first maj or publication. However, heavy fermion, organic and low carrier concentration superconductors remained a very important part of this workshop and articles by the leaders in these fields are included in these proceedings. Ultimately the work...

  2. Novel proximity effect between high-Tc superconductor and magnetic manganese oxide

    International Nuclear Information System (INIS)

    Kozono, Y.; Kasai, M.; Kanke, Y.; Ohno, T.; Hanazono, M.; Sugita, Y.

    1991-01-01

    A novel proximity effect between high-Tc superconductor and magnetic manganese oxide has been found. Supercurrents were observed through La 0.7 Ca 0.3 MnO z (LCMO) magnetic barrier as thick as 500 nm in YBCO/LCMO/YBCO trilayered junctions. We confirmed this proximity effect in coplanar-type junctions with spacing of 200 nm, and presented a possibility that this phenomenon occurs between NbN and LCMO. Furthermore we investigated current-voltage (I-V) characteristics and magnetic properties for Y 1 Ba 2 Cu 3 O y /La 1-x Sr x MnO z (200nm)/Y 1 Ba 2 Cu 3 O y (YBCO/LSMO/YBCO) junctions. I-V characteristics changed systematically with varying the magnetism of the barrier. When x value was 0.2, supercurrents passed through the barrier, and it was found that ferromagnetism (Ms=135emu/cc) and supercurrents coexist in this proximity state. Magnetism of the LSMO is understood as a complicated and fluctuated state of ferromagnetic coupling in a-b plane and antiferromagnetic coupling along c-axis. Considering supercurrents passed through the La 1-x Sr x (Mn 3+ 1-x Mn 4+ x )O z along c-axis, our results suggest a novel proximity effect mechanism, that is antiferromagnetic spin fluctuation and charge fluctuation can transport Cooper-pairs over a long range. (orig.)

  3. Experimental study of {sup 99m}Tc-aluminum oxide use for sentinel lymph nodes detection

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V. I., E-mail: Chernov@oncology.tomsk.ru; Sinilkin, I. G.; Zelchan, R. V.; Medvedeva, A. A. [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Lyapunov, A. Yu., E-mail: Lyapunov1720.90@mail.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Bragina, O. D.; Varlamova, N. V.; Skuridin, V. S. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The purpose of the study was a comparative research in the possibility of using the radiopharmaceuticals {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis for visualizing sentinel lymph nodes. The measurement of the sizes of {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis colloidal particles was performed in seven series of radiopharmaceuticals. The pharmacokinetics of {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis was researched on 50 white male rats. The possibility of the use of {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis for lymphoscintigraphy was studied in the experiments on 12 white male rats. The average dynamic diameter of the sol particle was 52–77 nm for {sup 99m}Tc-Al{sub 2}O{sub 3} and 16.7–24.5 nm for {sup 99m}Tc-Nanocis. Radiopharmaceuticals accumulated in the inguinal lymph node in 1 hour after administration; the average uptake of {sup 99}mTc-Al{sub 2}O{sub 3} was 8.6% in it, and the accumulation of {sup 99m}Tc-Nanocis was significantly lower—1.8% (p < 0.05). In all study points the average uptake of {sup 99m}Tc-Al{sub 2}O{sub 3} in the lymph node was significantly higher than {sup 99m}Tc-Nanocis accumulation. The results of dynamic scintigraphic studies in rats showed that {sup 99m}Tc-Al{sub 2}O{sub 3} and {sup 99m}Tc-Nanocis actively accumulated into the lymphatic system. By using {sup 99m}Tc-Al{sub 2}O{sub 3} inguinal lymph node was determined in 5 minutes after injection and clearly visualized in all the animals in the 15th minute, when the accumulation became more than 1% of the administered dose. Further observation indicated that the {sup 99m}Tc-Al{sub 2}O{sub 3} accumulation reached a plateau in a lymph node (average 10.5%) during 2-hour study and then its accumulation remained practically at the same level, slightly increasing to 12% in 24 hours. In case of {sup 99m}Tc-Nanocis inguinal lymph node was visualized in all animals for 15 min when it was accumulated on the average 1.03% of the administered dose

  4. Characterization of transparent superconductivity Fe-doped CuCrO{sub 2} delafossite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Taddee, Chutirat [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Kamwanna, Teerasak, E-mail: teekam@kku.ac.th [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand); Amornkitbamrung, Vittaya [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center (INRC), Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-09-01

    Graphical abstract: - Highlights: • Effect of Fe substitution on the physical properties in CuCrO{sub 2} is studied. • The substitution of Cr{sup 3+} by Fe{sup 3+} produces a mixed effect on the magnetic properties. • CuCr{sub 1−x}Fe{sub x}O{sub 2} delafossite oxides show transparent superconductivity. - Abstract: Delafossite CuCr{sub 1−x}Fe{sub x}O{sub 2} (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr{sub 1−x}Fe{sub x}O{sub 2} slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV–visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO{sub 2} samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe{sup 3+} for Cr{sup 3+} produced a mixed effect on the magnetic properties of CuCrO{sub 2} delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr{sub 1−x}Fe{sub x}O{sub 2} with a superconducting transition up to 118 K.

  5. Correlation of Fe-Based Superconductivity and Electron-Phonon Coupling in an FeAs /Oxide Heterostructure

    Science.gov (United States)

    Choi, Seokhwan; Johnston, Steven; Jang, Won-Jun; Koepernik, Klaus; Nakatsukasa, Ken; Ok, Jong Mok; Lee, Hyun-Jung; Choi, Hyun Woo; Lee, Alex Taekyung; Akbari, Alireza; Semertzidis, Yannis K.; Bang, Yunkyu; Kim, Jun Sung; Lee, Jhinhwan

    2017-09-01

    Interfacial phonons between iron-based superconductors (FeSCs) and perovskite substrates have received considerable attention due to the possibility of enhancing preexisting superconductivity. Using scanning tunneling spectroscopy, we studied the correlation between superconductivity and e -ph interaction with interfacial phonons in an iron-based superconductor Sr2VO3FeAs (Tc≈33 K ) made of alternating FeSC and oxide layers. The quasiparticle interference measurement over regions with systematically different average superconducting gaps due to the e -ph coupling locally modulated by O vacancies in the VO2 layer, and supporting self-consistent momentum-dependent Eliashberg calculations provide a unique real-space evidence of the forward-scattering interfacial phonon contribution to the total superconducting pairing.

  6. Contribution of nuclear microanalysis and of 18O tracer technique to study the oxygen sublattice in high Tc superconducting thin films

    International Nuclear Information System (INIS)

    Siejka, J.

    1994-01-01

    At first a short review of IBA contribution to the determination of composition and structure, including phonon properties of high T c superconducting oxides is presented. In the second part, IBA contribution to the elucidation of the mechanisms of thin film growth is presented. The emphasis is on the complementarity of IBA, Raman spectroscopy and XRD techniques to characterize thin films of high T c superconducting oxides. In the third part, some recent results related mainly to YBaCuO films grown on (100) oriented single crystalline bulk materials (MgO, LaAlO 3 , SrTiO 3 ) is discussed. In these experiments, IBA, XRD and Raman spectroscopies were used to study the oxygen content in a series of YBaCuO films prepared in different conditions of pressure and temperature. In the case of c-axis oriented films a good agreement between these three methods was found for the films cooled down at high oxygen pressure and a significant disagreement for the films cooled down at low oxygen pressure, showing structures with anomalous c-axis parameter. In the case of a-axis oriented films grown on SrTiO 3 substrates it was found that the low T c values (∼ 70-80 K) are not correlated with the oxygen content but rather with a disorder in the oxygen sublattice. The disorder in the oxygen sublattice was studied using the 16 O(α, α) 16 O resonance in random and channeling geometry. These results are correlated with the data provided by Raman spectroscopy. The 18 O tracer technique was used to estimate the diffusion coefficient in the a-axis oriented YBaCuO films showing a huge anisotropy of the 18 O labelling. Combining Raman and IBA techniques, the selective 18 O labelling of the CuO chain-planes was evidenced. The defects in the 18 O enriched CuO chain-planes were studied using the 18 O(p, α) 15 N nuclear resonant reaction in random and channeling geometries. Some preliminary results related to roughness of YBaCuO films are also discussed. The physical implications of these

  7. High-Tc copper oxide superconductors and related novel materials dedicated to prof K. A. Müller on the occasion of his 90th birthday

    CERN Document Server

    Keller, Hugo; Bianconi, Antonio

    2017-01-01

    Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Müller's ground-breaking research on SrTiO3.

  8. Thermoelectric power rounding above Tc versus paraconductivity in copper oxide superconductors

    International Nuclear Information System (INIS)

    Cabeza, O.; Yadava, Y.P.; Maza, J.; Torron, C.; Vidal, F.

    1991-01-01

    Thermolelectric power, electrical conductivity and magnetic susceptibility measurements near and above Tc are reported. The observed TEP rounding may be explained in terms of a diffusion electronic contribution to TEP alone, with a non-critical thermoelectric coefficient. (orig.)

  9. Solid-state ionics: Studies of lithium-conducting sulfide glasses and a superconducting oxide compound

    International Nuclear Information System (INIS)

    Ahn, Byung Tae.

    1989-01-01

    The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated

  10. Introducing Barium in Transition Metal Oxide Frameworks: Impact upon Superconductivity, Magnetism, Multiferroism and Oxygen Diffusion and Storage.

    Science.gov (United States)

    Raveau, Bernard

    2017-06-01

    The role of barium in the structural chemistry of some transition metal oxides of the series "Cu, Mn, Fe,Co" is reviewed, based on its size effect and its particular chemical bonding. Its impact upon various properties, superconductivity, magnetism, multiferroism, oxygen storage is emphasized. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photoinduced Melting of Superconductivity in the High-Tc Superconductor La2−xSrxCuO4 Probed by Time-resolved Optical and Terahertz Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Logvenov, G.; Beyer, M.; Staedter, D.; Beck, M.; Schaefer, H.; Kabanov, V.V.; Bozovic, I.; Koren, G.; Demsar, J.

    2011-06-13

    The dynamics of depletion and recovery of a superconducting state in La{sub 2-x}Sr{sub x}CuO{sub 4} thin films is investigated utilizing optical pump-probe and optical pump-THz-probe techniques as a function of temperature and excitation fluence. The absorbed energy density required to suppress superconductivity is found to be about eight times higher than the thermodynamically determined condensation energy density and nearly temperature independent between 4 and 25 K. These findings indicate that, during the time when the superconducting state suppression takes place ({approx}0.7 ps), a large part (nearly 90%) of the energy is transferred to the phonons with energy lower than twice the maximum value of the superconducting gap and only 10% is spent on Cooper pair breaking.

  12. Photoreduction of 99Tc Pertechnetate by Nanometer-Sized Metal Oxides: New Strategies for Formation and Sequestration of Low-Valent Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Burton-Pye, Benjamin P. [Hunter College of the City Univ. of New York, NY (United States); Radivojevic, Ivana [Hunter College of the City Univ. of New York, NY (United States); McGregor, Donna [Hunter College of the City Univ. of New York, NY (United States). Graduate Center; Mbomekalle, Israel M. [Hunter College of the City Univ. of New York, NY (United States); Lukens, Wayne W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Francesconi, Lynn C. [Hunter College of the City Univ. of New York, NY (United States). Graduate Center

    2011-11-23

    Technetium-99 (99Tc)(β-max: 293.7 keV; t1/2: 2.1 x 105 years) is a byproduct of uranium-235 fission and comprises a large component of radioactive waste. Under aerobic conditions and in a neutral- basic environment, the pertechnetate anion (99TcO4-) is stable. 99TcO4- is very soluble, migrates easily through the environment and does not sorb well onto mineral surfaces, soils or sediments. This study moves forward a new strategy for the reduction of TcO4- and chemical incorporation of the reduced 99Tc into a metal oxide material. This strategy employs a single material, a polyoxometalate (POM), α2-[P2W17O61]10-, that can be photoactivated in the presence of 2-propanol to transfer electrons to TcO4- and incorporate the reduced 99Tc covalently into the α2- framework to form the TcVO species, TcVO(α2-P2W17O61)7-. This occurs via the formation of an intermediate species that slowly converts to TcVO(α2-P2W17O61)7-. EXAFS and XANES analysis and preliminary EPR analysis, suggests that the intermediate consists of a Tc(IV) α2- species where the 99Tc is likely bound to only 2 of the 4 W-O oxygen atoms in the α2-[P2W17O61]10- defect. This intermediate then oxidizes and converts to the 99TcVO(α2-P2W17O61)7- product. The reduction and incorporation of 99TcO4- was accomplished in a ''one pot'' reaction using both sunlight and UV irradiation, and monitored as a function of time

  13. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  14. Internal oxidation of ag-Y1Ba2Cu3,-Bi2Sr2Ca1Cu2 and -Bi(1. 8)Pb(0. 3)Sr2Ca2Cu3 alloys, and their resulting superconducting properties. Ag-Y1Ba2Cu3, -Bi2Sr2Ca1Cu2, -Bi(1. 8)Pb(0. 3)Sr2Ca2Cu3 gokin no naibu sanka to sono chodendo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Numazawa, T.; Kimura, H.; Kimura, T.; Fukamachi, M. (National Research Inst. for Metals, Tsukuba, Ibaraki (Japan))

    1994-02-20

    Concerning wire rods for magnets and materials for magnetic shielding, etc. using oxide superconducting substances, studies and development are being made for making the above materials to be composite materials using Ag. In this study, concerning the solute composition of Ag-based alloys, Y1Ba2Cu3, Bi2Sr2Ca1Cu2, and Bi(1.8)Pb(0.3)Sr2Ca2Cu3 have been selected imaging the 123 phase at the Y system, and the 2212 low Tc phase as well as the 2223 high Tc phase at the Bi system. And oxide superconducting substances have been made precipitated in Ag by internal oxidation and thermal treatment of the dissolved alloys compound of Ag-Y1Ba2Cu3, Ag-Bi2Sr2Ca1Cu2, and Ag-Bi(1.8)Pb(0.3)Sr2Ca2Cu3, and its superconducting properties have been studied. Thereby electroconducting paths have been formed by the precipitated oxide superconducting substances and the critical current, though at a low value, has been attained. Also the composition of the above oxide superconducting substances has been image-analyzed from the observation result with an electron beam probe X-ray microanalyzer. With regard to the Ag-Bi(1.8)Pb(0.3)Sr2Ca2Cu3 alloy, precipitation of the single phase of the 2223 phase has not been able to obtain by thermal treatment. 11 refs., 8 figs.

  15. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1999-01-01

    We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...... to the recently derived plasma resonance phenomena for high T-c superconductors of the BSCCO type is discussed....

  16. Superconducting YBa 2Cu 3O 7-δ -Ag Thin Films (TC( 0) = 90 K) by Pulsed Laser Deposition on Polycrystalline Ba 2NdNbO 6; A Novel Substrate for YBa 2Cu 3O 7-δ Films

    Science.gov (United States)

    Kurian, Jose; John, Asha; Sajith, Poo; Koshy, Jacob; Pai, Subash; Pinto, Richard

    1998-10-01

    The development and characterisation of \\ba, a novel ceramicsubstrate material for \\yb superconductor, are reported. \\ba hasa complex cubic perovskite structure [\\bb] with lattice constanta = 8.573Å. The dielectric properties of \\ba are in a rangesuitable for its use as a substrate for microwave applications.\\ba was found to have a thermal expansion coefficient of8.6× 10-6{ }\\circC-1 and a thermal conductivityof 87 W·m-1·K-1. Superconducting \\yb-Ag thin filmshave been grown in situ on polycrystalline \\ba by pulsedlaser ablation technique and the optimum conditions have beenestablished. The films exhibited (00l) orientation of anorthorhombic \\yb phase and gave a zero resistivitysuperconducting transition [TC(0)] at 90 K with atransition width of ˜1.5 K and JC ˜3×105 A/cm2 at 77 K.

  17. Superconductivity: Is there a problem in transuranics?

    International Nuclear Information System (INIS)

    Colineau, Eric; Griveau, Jean-Christophe; Eloirdi, Rachel; Hen, Amir; Caciuffo, Roberto

    2014-01-01

    Superconductivity was first reported in 1942 for uranium metal (¡-U) and in 1958 for U compounds: UCo, U6Mn, U6Fe, and U6Co, with critical temperatures Tc, of 1.7, 2.3, 3.9, and 2.3K, respectively. A new class of U superconductors emerged in the early 1980’s with the discovery of U heavy fermion superconductors : UBe13 (Tc = 0.85K), UPt3 (Tc = 0.53K), URu2Si2 (Tc = 1.5K) , UPd2Al3 (Tc = 1.9K) … Furthermore, in most of these systems, the superconducting phases coexist with antiferromagnetic (AF) correlations which have characteristic temperatures, usually the Néel temperature TN, that are typically one order of magnitude greater than the corresponding superconducting critical temperatures Tc. Superconductivity was even shown to co-exist with ferromagnetism in e.g. UGe2 (Tc ï» 0.8K, TC ï» 30K at p ï» 1.2GPa) and URhGe (Tc = 0.25K, TC = 9.5K). Heavy fermion superconductors still remain a major challenge for condensed matter physics. The existence of heavy fermion superconductivity and its coexistence or proximity with magnetic order suggests that the conventional mechanism of phonon-mediated superconductivity is inappropriate and that alternative mechanisms, like spin fluctuations, should be considered for Cooper pairing

  18. High-Tc superconducting thin films with composition control on a sub-unit cell level; the effect of the polar nature of the cuprates

    NARCIS (Netherlands)

    Koster, Gertjan; Brinkman, Alexander; Hilgenkamp, Johannes W.M.; Rijnders, Augustinus J.H.M.; Blank, David H.A.

    2008-01-01

    Inspired by the work of Ohtomo and Hwang in 2004, we shed new light on thin films of layered cuprate high-Tc superconductors (HTS). In principle all HTS materials consist of charged perovskite-like layers which in thin films can lead to polar discontinuities at the interfaces of different materials.

  19. Fabrication of superconducting wire using organometallic precursors and infiltration

    International Nuclear Information System (INIS)

    Lee, Y.J.

    1991-01-01

    Organometallic precursors from naphthenic acid and metal nitrates were used for the synthesis of YBCO oxide superconducting compounds. The characteristics of metal naphthenates as organometallic precursors were investigated by IR spectra, viscosity measurements, and infiltration. 123 superconducting compound obtained from 123 naphthenate showed a Tc of 90 degree K and a rather dense and elongated microstructure. Also, the melting behavior of Ba-cuprates which were used for 123 making was studied. A low-temperature melting process was developed to fabricate silver-sheathed superconducting wire with the powder-in-tube method; flowing argon gas is introduced to the system at 930-945 degree C to reduce the melting temperature of the 123 compound without silver sheath melting. It resulted in a 90 degree K Tc superconducting core with dense and locally aligned microstructure. SEM-EDS and XRD analysis, 4-probe resistance and Jc measurements, and carbon-content determinations were carried out to characterize the microstructure, grain alignment, and superconducting properties of the samples

  20. Surface damage mitigation of TC4 alloy via micro arc oxidation for oil and gas exploitation application: Characterizations of microstructure and evaluations on surface performance

    Science.gov (United States)

    Xie, Ruizhen; Lin, Naiming; Zhou, Peng; Zou, Jiaojuan; Han, Pengju; Wang, Zhihua; Tang, Bin

    2018-04-01

    Because of its excellent corrosion resistance, high specific strength and high tensile strength, TC4 titanium alloys used as petroleum tubes have received wide interest from material engineers after many technical investigations and estimations. However, because of its low surface hardness values, high coefficient of friction and poor wear resistance, the TC4 alloy is seldom adopted in tribological-related engineering components. In this work, micro-arc oxidation (MAO) coatings were fabricated on TC4 alloys in NaAlO2 and (NaPO3)6 electrolytes with and without ultrasonic assistance. The microstructural characterizations of the produced MAO coatings were investigated. Comparative estimations of electrochemical corrosion in CO2-saturated simulated oilfield brine and tribological behaviours on MAO coatings and TC4 alloys were conducted. The results showed that the introduction of ultrasound increased the thickness of the MAO coatings. The thickness increased by 34% and 15% in the NaAlO2 and (NaPO3)6 electrolytes, respectively. There was no significant discrepancy in phase constitutions when the MAO processes were conducted with and without ultrasonic assistance. Both MAO coatings obtained with and without ultrasonic assistance were found to improve the corrosion and wear resistance of the TC4 alloy. MAO treatments made it possible to ensure the working surface of a TC4 alloy with an enhanced surface performance for oil and gas exploitation applications.

  1. In situ growth of YBa2Cu3O7 - x high Tc superconducting thin films directly on sapphire by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Chern, C. S.; Zhao, J.; Li, Y. Q.; Norris, P.; Kear, B.; Gallois, B.

    1990-08-01

    Highly c-axis oriented YBa2Cu3O7-x superconducting thin films have been, in situ, deposited directly on sapphire substrate by a remote microwave plasma-enhanced metalorganic chemical vapor deposition process (PE-MOCVD). The films were deposited at a substrate temperature of 730 °C followed by a fast cooling. The as-deposited films show attainment of zero resistance at 82 K and have critical current density of 104 A/cm2 at 70 K. ac susceptibility measurement indicated that the films contain a single superconducting phase. PE-MOCVD was carried out in a commercial-scale MOCVD reactor with capability of uniform deposition over 100 cm2 per growth run.

  2. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  3. The Rashba spin-orbit coupling for superconductivity in oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2014-07-01

    We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.

  4. Microstructure and critical current density in high-Tc metal oxide superconductors

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.

    1992-03-01

    Superconductor powders in the U-Ba-Cu-O (YBCO) and Bi-Pb-Sr-Ca-Cu-O (BSCCO) systems were synthesized by freeze-drying. Powders were characterized, and processed into samples for evaluation of superconducting behavior. Freeze-drying is attractive because the powders have high purity, are homogeneous, have a small size and are active. YBCO powders can be sintered to high density at 890 degrees C. Many compositions, processing approaches and heat treatments were explored in an effort to understand relations between microstructure and critical density, and to improve the critical current density. Powders were also formed into sputtering targets for coating preparation at Stanford University. The highest critical current density achieved with the YBCO powders was ∼15,000 A/cm 2 at 4.2K and 0.5T using powders treated to prevent carbon contamination. The BSCCO materials with the highest critical current density, ∼30,000 A/cm 2 at the same conditions were formed by heat treating melted and quenched samples. All critical current density measurements were made by Stanford University, a subcontractor to this effort. Stanford University also prepared coatings by off-axis magnetron sputtering

  5. The synthesis, and crystal and magnetic structure of the iron selenide BaFe2Se3 with possible superconductivity at Tc = 11 K.

    Science.gov (United States)

    Krzton-Maziopa, A; Pomjakushina, E; Pomjakushin, V; Sheptyakov, D; Chernyshov, D; Svitlyk, V; Conder, K

    2011-10-12

    We report on the synthesis of single crystals of BaFe(2)Se(3) and study their crystal and magnetic structures by means of synchrotron single-crystal x-ray and neutron powder diffraction. The crystal structure has orthorhombic symmetry and consists of double chains of FeSe(4) edge connected tetrahedra intercalated with barium. Below 240 K, long range spin-block checkerboard antiferromagnetic order is developed. The magnetic structure is similar to one observed in A(0.8)Fe(1.6)Se(2) (A = K, Rb or Cs) superconductors. The crystals exhibit a transition to the diamagnetic state with an onset transition temperature of T(c) ∼ 11 K. Though we observe FeSe as an impurity phase (superconductor, which has T(c) ≈ 8.5 K.

  6. Enhanced 99 Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Luksic, Steven A.; Wang, Guohui; Saslow, Sarah; Kim, Dong-Sang; Schweiger, Michael J.; Soderquist, Chuck Z.; Bowden, Mark E.; Lukens, Wayne W.; Kruger, Albert A.

    2017-11-01

    Technetium (99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals. Two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 – 1,000 oC. After being cooled, the solid glass specimens prepared at different temperatures were analyzed for Tc oxidation state using Tc K-edge XANES. In most samples, Tc was partially oxidized from Tc(IV) to Tc(VII) as the melt temperature increased. However, Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were moderately higher than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.

  7. Trinitromethyl Heterocyclic Oxidizers as a Solid Propellant Ingredient Final Report CRADA No TC02146.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Racoveanu, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis of two novel energetic heterocyclic oxidizers as possible replacements for ammonium perchlorate (AP) in rocket propellant formulations. This CRADA resulted from the award of the Phase I Small Business Technology Transfer (STTR) from DOD. The CRADA consisted of two phases. The goal for Phase 1 was to produce a new oxidizer called TNMDNP. Phase 2 is optional (based on the success of Phase 1) and the goal of Phase 2 (optional) was to produce a new oxidizer called TNMDNT. Phase 2 tasks would be performed based on the successful results of Phase 1.

  8. Reactive nanophase oxide additions to melt-processed high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.; Hu, J.; Miller, D.J.; Sengupta, S. [Argonne National Lab., IL (United States); Parker, J.C.; Ali, M.N. [Nanophase Technologies Corp., Darien, IL (United States); Chen, Nan [Illinois Superconductor Corp., Evanston, IL (United States)

    1994-10-01

    Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing a depresion of the transition temperature.

  9. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  10. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    Science.gov (United States)

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  11. High temperature superconducting material: Bismuth strontium calcium copper oxide. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the development, fabrication, and analysis of a high temperature superconducting material based on bismuth-strontium-calcium-copper-oxides (Bi-Sr-Ca-Cu-O). Topics include the physical properties, structural and compositional analysis, magnetic field and pressure effects, and noble metal dopings of Bi-Sr-Ca-Cu-O based systems. The highest transition temperature recorded to date for this material was 120 degrees Kelvin. Fabrication methods and properties of Bi-Sr-Ca-Cu-O films and ceramics are also considered. (Contains 250 citations and includes a subject term index and title list.)

  12. Structure of superconducting Sr0.9La0.1CuO2 (Tc=42 K) from neutron powder diffraction

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Radaelli, P.G.; Hinks, D.G.; Wagner, J.L.; Kikkawa, S.; Er, G.; Kanamaru, F.

    1993-01-01

    We have refined the crystal structure of the electron-doped infinite-layer superconducting compound Sr 0.9 La 0.1 CuO 2 (T c =42 K) from neutron-powder-diffraction data for an 82-mg sample synthesized at high pressure. The metal- and oxygen-atom lattices are perfectly stoichiometric and there is no excess (interstitial) oxygen in the Sr(La) layer. Thus, neither oxygen vacancies nor interstitial oxygen play a role in the doping of this compound

  13. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.

    Science.gov (United States)

    Drozdov, A P; Eremets, M I; Troyan, I A; Ksenofontov, V; Shylin, S I

    2015-09-03

    A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the

  14. Microwave plasma CVD of oxide films relating to high Tc Bi-Sr-Ca-Cu-O superconductor

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kosaka, T.; Yoshida, Y.; Yoshimoto, M.; Koinuma, H.

    1989-01-01

    Microwave plasma CVD was applied to the synthesis of Bi, Sr, Ca, and Cu oxide films at relatively low temperatures. Gas source materials used were Bi(C 6 H 5 ) 3 , Sr(PPM) 2 , Ca(PPM) 2 , and Cu(HFA) 2 , where PPM and HFA represent C 2 F 5 COCHCOC(CH 3 ) 3 and CF 3 COCHCOCF 3 , respectively. Films were deposited on MgO (100) substrate at temperatures between 200 C and 400 C under an atmosphere of 1000mTorr Ar-O 2 (50/100) mixture which was partially excited by plasma. From Bi(C 6 H 5 ) 3 , Bi 2 O 3 was formed at 200 C without containing carbon above the detection level by XPS analysis. From Cu(HFA) 2 , CuO was prepared at 400 C by increasing oxygen partial pressure to 0.1Torr. (At lower oxygen partial pressure, CuF 2 or amorphous films were deposited.) From Sr(PPM) 2 and Ca(PPM) 2 , SrF 2 and CaF 2 were obtained at 400 C. The attempt to fabricate superconducting films is also reported

  15. Oxidation and contact resistance of Sn–Ag coated superconducting strands for the Large Hadron Collider (LHC)

    CERN Document Server

    Scheuerlein, C; Cantoni, M

    2006-01-01

    The oxides formed on the Sn-Ag coated LHC superconducting cables during a 200°C heat treatment in air are described and the oxide composition is compared with the interstrand contact resistance (Rc). The analysis of more than 250 interstrand contact areas shows that the higher the average Cu content with respect to the Sn content in the oxide, the higher is Rc. During the 200°C heat treatment, Sn in the coating is transformed into a Cu3Sn layer, on which an oxide grows that consists essentially of a thin outermost layer of CuO on top of Cu2O, similar to the oxide structure formed on bare Cu. The underlying Cu3Sn layer acts as an O diffusion barrier that prevents O diffusion into the Cu bulk during the subsequent cable heat treatment under high pressure. On contact zones where the Cu3Sn layer is not formed during the 200°C heat treatment mainly Sn oxide grows and Rc is comparatively low.

  16. Magnetically-related properties of bismuth containing high Tc superconductors

    Science.gov (United States)

    Vezzoli, Gary C.; Chen, M. F.; Craver, F.; Safari, A.; Moon, B. M.; Lalevic, B.; Burke, Terence; Shoga, M.

    1990-08-01

    The effect of magnetic fields to 15 T on electrical resistance has been measured for the BiSrCaCuO superconductor at precise temperatures during the transition to the superconducting state from pre-onset conditions to essentially zero resistance conditions. The results show that the temperature at which the magnetic field causes a divergence in the resistance versus 1000/ T curve is approximately the same temperature as the value at which, during cooling, the positive Hall coefficient begins its abrupt descent to zero. This temperature gives the best measure of Tc. It is also shown that small oscillations of low frequency start near onset conditions, the amplitude of which at a given temperature is B-field dependent. Additionally, Hall effect studies as a function of temperature at 4 T in three separate experiments (including high Tc BiSrCaCu PbO of > 90% theoretical density) show that sharp delta-function-like peaks in + RH are observed near Tc and are superimposed on a broader maximum. The Hall data are explicable in terms of exciton formation and ionization. The bound holes associated with these excitons are believed to be the mediators producing Cooper-pairing, and scale very well with Tc for all the known high Tc oxides.

  17. The interaction between ApoA2 -265T>C polymorphism and dietary fatty acids intake on oxidative stress in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Zamani, Elham; Sadrzadeh-Yeganeh, Haleh; Sotoudeh, Gity; Keramat, Laleh; Eshraghian, Mohammadreza; Rafiee, Masoumeh; Koohdani, Fariba

    2017-08-01

    Apolipoprotein A2 (APOA2) -265T>C polymorphism has been studied in relation to oxidative stress and various dietary fatty acids. Since the interaction between APOA2 polymorphism and dietary fatty acids on oxidative stress has not yet discussed, we aimed to investigate the interaction on oxidative stress in type 2 diabetes mellitus (T2DM) patients. The subjects were 180 T2DM patients with known APOA2 genotype, either TT, TC or CC. Superoxide dismutase (SOD) activity was determined by colorimetric method. Total antioxidant capacity (TAC) and serum level of 8-isoprostane F2α were measured by spectrophotometry and ELISA, respectively. Dietary intake was collected through a food frequency questionnaire. Based on the median intake, fatty acids intake was dichotomized into high or low groups. The interaction between APOA2 polymorphism and dietary fatty acids intake was analyzed by ANCOVA multivariate interaction model. Higher than median intake of omega-6 polyunsaturated fatty acids (n-6 PUFA) was associated with increased serum level of 8-isoprostane F2α in subjects with TT/TC genotype (p = 0.004), and higher than median intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) was associated with increased serum SOD activity in CC genotype (p fatty acids intake on oxidative stress. More investigations on different populations are required to confirm the interaction.

  18. High Density, Insensitive Oxidizer With RDX Performance Final Report CRADA No. TC02178.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Preda, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis and evaluate a novel high density, insensitive oxidizer with RDX performance. This CRADA resulted from the award of a Phase I STTR ("STTR") from DOD. In recent years, the synthesis of new energetic heterocyclic compounds to replace the energetic materials currently in the stockpile has received a great amount of attention. The Office of the Secretary of Defense has identified that there is a need to incorporate new energetic materials in current and future weapon systems in an effort to increase performance and decrease sensitivity. For many of the future weapon systems, incorporation of energetic compounds currently in the stockpile will not provide the desired performance and sensitivity goals. The success of this CRADA may lead to a Phase I option STTR from DOD and to a Phase II STTR from DOD. The goal of this CRADA was to produce and test a novel oxidizer, 2,5,8-trinitroheptazine (TNH).

  19. The potential of large critical currents in the high Tc oxides

    International Nuclear Information System (INIS)

    Deutcher, G.

    1993-01-01

    The potential for high critical current densities is examined. on a thermodynamical basis, the energy scale for vortex pinning can be derived for instance from a measurement of the width of the critical region. This energy scale is of the order of 0.2 eV in YBCO, which is sufficient for practical applications. Another important parameter is the short coherence length. The inner plane length, of the order of a few lattice spacing, is favorable for pinning by point defects. But the very short outer plane length gives rise to anomalous magnetic behavior, unfavorable for high-field applications at high temperature; this is true in particular in most anisotropic oxides, such as the Bi compounds (author)

  20. Pressure Effect on Superconductivity of Rhenium

    Science.gov (United States)

    Takahama, Kazushi; Matsuoka, Takahiro; Shimizu, Katsuya

    2013-06-01

    Rhenium metal is often used as a gasket material in high pressure experiments using DACs. It has been known that Re become a superconductor with superconducting transition temperature Tc of 1.6-2.8 K at ambient pressure. Although, pressure dependence of Tc, have not been studied in detail over 2 GPa. It's important to study pressure effect on Tc of Re in two points. First is that hard simple elements Os, W, Ir and Re are known to superconduct with very low Tcs at ambient pressure, but high pressure properties of their Tc have not been well studies so far. Another point is a technical aspect. In the studies of superconductivity under high pressures, we employ electrical resistance and magnetic susceptibility measurements to detect superconductivity. Superconducting Re-gasket below 4 K masks superconducting signal of sample in magnetic susceptibility measurements. In electrical resistance measurements, if the electric circuit has a short with Re-gasket, superconducting transition comes to be mixed in measured data. We present pressure dependence of Tc of rhenium up to 65 GPa measured using a DAC. We observed Tc increases in pressure range of 0-10 GPa and it gradually decreased with applied pressure.

  1. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  2. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7-x high-Tc superconducting bulks and NdFeB magnets

    Science.gov (United States)

    Li, Jipeng; Zheng, Jun; Huang, Huan; Li, Yanxing; Li, Haitao; Deng, Zigang

    2017-10-01

    The flux pinning effect of YBa2Cu3O7-x high temperature superconducting (HTS) bulk can achieve self-stable levitation over a permanent magnet or magnet array. Devices based on this phenomenon have been widely developed. However, the self-stable flux pinning effect is not unconditional, under disturbances, for example. To disclose the roots of this amazing self-stable levitation phenomenon in theory, mathematical and mechanical calculations using Lyapunov's stability theorem and the Hurwitz criterion were performed under the conditions of magnetic levitation and suspension of HTS bulk near permanent magnets in Halbach array. It is found that the whole dynamical system, in the case of levitation, has only one equilibrium solution, and the singular point is a stable focus. In the general case of suspension, the system has two singular points: one is a stable focus, and the other is an unstable saddle. With the variation of suspension force, the two first-order singular points mentioned earlier will get closer and closer, and finally degenerate to a high-order singular point, which means the stable region gets smaller and smaller, and finally vanishes. According to the center manifold theorem, the high-order singular point is unstable. With the interaction force varying, the HTS suspension dynamical system undergoes a saddle-node bifurcation. Moreover, a deficient damping can also decrease the stable region. These findings, together with existing experiments, could enlighten the improvement of HTS devices with strong anti-interference ability.

  3. On the structural properties and superconductivity of room-temperature chemically oxidized La2-xBaxCuO4+y (0<=x<=0.15)

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario-Franco, M.A.

    1996-01-01

    The insertion of oxygen within the structure of La2-xBaxCuO4+y (x less than or equal to 0.15), by means of room-temperature chemical oxidation, modifies both the physical and the structural features of these materials, Concerning the superconducting properties, the extra oxygen gives rise...

  4. Effects of extra oxygen on the structure and superconductivity of La2-xCaxCuO4+y prepared by chemical oxidation

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario Franco, M.A.

    1998-01-01

    The insertion of an excess of oxygen within the structure of La2-xCaxCuO4 (x less than or equal to 0.12) by means of room temperature chemical oxidation modifies the physical properties and the crystal structure of these cuprates. The superconducting features of the starting La2-xCaxCuO4 samples...

  5. Experimental investigations of superconductivity in quasi-two-dimensional epitaxial copper oxide superlattices and trilayers

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Norton, D.P.

    1993-01-01

    Epitaxial trilayer and superlattice structures grown by pulsed laser ablation have been used to study the superconducting-to-normal transition of ultrathin (one and two c-axis unit cells) YBa 2 Cu 3 O 7-x layers. The normalized flux-flow resistances for several epitaxial structures containing two-cell-thick YBa 2 Cu 3 O 7-x films collapse onto the ''universal'' curve of the Ginzburg-Landau Coulomb Gas (GLCG) model. Analysis of normalized resistance data for a series of superlattices containing one-cell-thick YBa 2 Cu 3 O 7-x layers also is consistent with the behavior expected for quasi-two-dimensional layers in a highly anisotropic, layered three-dimensional superconductor. Current-voltage measurements for one of the trilayer structures also are consistent with the normalized resistance data, and with the GLCG model. Scanning tunneling microscopy, transmission electron microscopy, and electrical transport studies show that growth-related steps in ultrathin YBa 2 Cu 3 O 7-x layers affect electrical continuity over macroscopic distances, acting as weak links. However , the perturbation of the superconducting order parameter can be minimized by utilizing hole-doped buffer and cap layers, on both sides of the YBa 2 Cu 3 O 7-x layer, in trilayers and superlattices. These results demonstrate the usefulness of epitaxial trilayer and superlattice structures as tools for systematic, fundamental studies of high-temperature superconductivity

  6. Infrared studies of the superconducting energy gap and normal-state dynamics of the high-Tc superconductor YBa2Cu3O7

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Collins, R.T.; Holtzberg, F.; Feild, C.; Koren, G.; Gupta, A.

    1990-01-01

    A detailed study of infrared properties (reflectivity, conductivity, and dielectric response), emphasizing reproducible results from fully oxygenated YBa 2 Cu 3 O 7 crystals (T c congruent 93 K) and films, is presented. The extrapolated values of σ 1 (ω) at low frequency are roughly consistent with the measured temperature-dependent dc resistivity. Although not well understood, this infrared conductivity can be interpreted in terms of a frequency-dependent scattering rate of ∼kT+ℎω, with a low-frequency mass enhancement of roughly 2 to 4 associated with a carrier-spin related interaction. Infrared measurements polarized along the c axis suggest a conductivity anisotropy of roughly 40:1 near T c in the normal state. In the superconducting state an energy scale of 2Δ c congruent 3kT c is suggested by c-axis polarized measurements, while a much larger characteristic energy of 2Δ a-b congruent 8kT c is evident in the (a-b)-plane conductivity. From the area missing from the conductivity up to this very large gap, a reasonable estimate (congruent 1700 A) for the (a-b)-plane penetration depth is obtained. Evidence for non-BCS temperature dependence, strong pair breaking scattering, and possible fluctuation effects is discussed. A comparison to infrared data from Bi 2 Sr 2 CaCu 2 O 8-y shows a similarly large energy scale, 2Δ a-b congruent 8kT c ; for the cubic Ba 0.6 K 0.4 BiO 3 superconductor a more conventional energy scale, 2Δ congruent 4kT c is observed

  7. Superconducting Technology Assessment

    National Research Council Canada - National Science Library

    2005-01-01

    This Superconducting Technology Assessment (STA) has been conducted by the National Security Agency to address the fundamental question of a potential replacement for silicon complementary metal oxide semiconductor (CMOS...

  8. Measurements of AC losses in oxide superconducting tapes and coils; Sankabutsu chodendo senzai oyobi koiru no koryu sonshitsu shokutei

    Energy Technology Data Exchange (ETDEWEB)

    Nakagami, M.; Watabe, K.; Kawagoe, A.; Sumiyoshi, F. [Kagoshima Univ., Kagoshima (Japan); Hayashi, H. [Kyushu Electric Power Co., Inc., Fukuoka (Japan)

    1999-06-07

    The application to the electric power equipment is expected oxide superconductivity wire rod, and short length linearity under the operating condition and quantitative evaluation of the ac loss in coil shape are important. Until now, we propose the pointing vector method as loss measuring method of the short length linear sample, and the equipment has been produced experimentally. However, in this measuring method, it was small within the signal of electric field with 10{sup -4}-10{sup -6} at loss component ratio, and there was a problem that the sensitometry was not sufficiently taken, since moreover, they are about number 10nV and weak signal very. Then, noise counterplan method in the measuring circuit, etc. were examined in order to improve the sensitometry this time. In addition, the examination of loss measuring method of the wire rod as coil shape is also reported, because it was done. (NEDO)

  9. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    Meij, G.P. van der.

    1984-01-01

    This thesis describes a study of flux pinning by small voids (roughly 10 nm) in the type II superconductors niobium and vanadium. These voids were created in rectangular foils (with typical dimensions of 30x3x0.2 mm) during an irradiation with fast neutrons in the High Flux Reactor at Petten at temperatures between 400 and 1000 0 C. The pinning force per unit volume is determined from the magnetic properties of the superconducting samples. The experiments were carried out in a slowly ramped magnetic field, as well as in a combination of a static and a much smaller alternating field. (Auth.)

  10. Semiconductor/High-Tc-Superconductor Hybrid ICs

    Science.gov (United States)

    Burns, Michael J.

    1995-01-01

    Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.

  11. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  12. Electronic properties of high Tc superconductors

    International Nuclear Information System (INIS)

    Rojo, A.G.

    1989-01-01

    Using analytical and numerical methods, the electronic properties of the copper-oxygen plane in the normal phase of high Tc superconductors are described. Using the slave-boson technique in the saddle point, a theory of the metal insulator transition which generalizes the notions of a Mott insulator to the case of more than a single band for those planes is presented. A phase-diagram is obtained in the parameter space and effective masses, optical gaps and metallization are calculated as a function of the number of carriers. Based on the experimental evidence, the theory permits classification of superconducting compounds as charge transfer insulators in the stoichiometric case. The insulator state is characterized by a non-zero optical gap and a divergent effective mass which corresponds to the breakage of a Fermi-liquid scheme. The results obtained are applicable to metal-transition-oxides whose behaviour has been traditionally controversial and it is concluded that it is necessary to broaden the meaning of a Mott insulator to the case of more than a single band to better understand them. Based on the ideas of group renormalization in a real space, a lattice approximation is presented, which allows: a) To complement the treatment of slave-bosons in phase diagrams and optical gaps; b) Identification of an attraction mechanism between carriers originating from purely repulsive interactions. Numerical calculations in small clusters show the existence of a pairing mechanism showing a superconducting instability from a charge transfer insulator. (Author) [es

  13. Theoretical analyses of superconductivity in iron based ...

    African Journals Online (AJOL)

    This paper focuses on the theoretical analysis of superconductivity in iron based superconductor Ba1−xKxFe2As2. After reviewing the current findings on this system, we suggest that phononexciton combined mechanism gives a right order of superconducting transition temperature (TC) for Ba1−xKxFe2As2 . By developing ...

  14. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1999-01-01

    We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...

  15. Simulating the effect of boron doping in superconducting carbon

    Science.gov (United States)

    Sakai, Yuki; Chelikowsky, James R.; Cohen, Marvin L.

    2018-02-01

    We examine the effect of boron doping in superconducting forms of amorphous carbon. By judiciously optimizing boron substitutional sites in simulated amorphous carbon, we predict a superconducting transition temperature near 37 K at 14% boron concentration. Our findings have direct implications for understanding the recently discovered high-Tc superconductivity in Q-carbon.

  16. Orbital Kondo effect due to assisted hopping: Superconductivity, mass enhancement in Cooper oxides with apical oxygen

    International Nuclear Information System (INIS)

    Zawadowski, A.; Penc, K.; Zimanyi, G.

    1991-07-01

    Orbital Kondo effect is treated in a model, where additional to the conduction band there are localized orbitals with energy not very far from the Fermi energy. If the hopping between the conduction band and the localized heavy orbitals depends on the occupation of the conduction band orbital then orbital Kondo correlation occurs. The assisted hopping vertex is enhanced due to the Coulomb interaction between the heavy orbital and the conduction band. The enhanced hopping results in mass enhancement and attractive interaction in the conduction band. The superconductivity transition temperature is calculated. The models of this type can be applied to the high-T c superconductors where the non-bonding oxygen orbitals of the apical oxygens play the role of heavy orbitals. For an essential range of the parameters the T c obtained is about 100K. (author). 22 refs, 9 figs

  17. Optical properties of copper-oxygen planes in superconducting oxides and related materials

    International Nuclear Information System (INIS)

    Kelly, M.K.; Barboux, P.; Tarascon, J.; Aspnes, D.E.

    1989-01-01

    The optical spectra of YBa 2 Cu 3 O 7-x and other Cu-O-based superconductors have several common features in the visible and near uv. Chemical changes that affect the conductivity of these materials also have a strong effect on some of these features. By comparing the spectra of many materials containing similar Cu-O structures, we have determined that some of the optical features are associated with specific local structures within the unit cell. Of particular interest is a sharp feature at 1.7 eV that appears for nonmetallic compositions of many of the materials and is removed by the introduction of carriers. Similar features in materials not yet showing superconductivity encourage further investigation of them

  18. Experimental study of yttrium barium copper oxide superconducting tape's critical current under twisting moment

    International Nuclear Information System (INIS)

    Khan, Ziauddin; Kundu, Ananya; Pradhan, Subrata

    2013-01-01

    Critical current (I c ) characteristics of 2G YBCO superconducting tape under the influence of twisting moment was experimentally investigated at varying current ramp rates in the self-field. Under a uniform twist, the degradation in the current-carrying capacity of YBCO tape up to 30% was observed at 77 K. The degradation is largely attributed to the shear stress and torsional shear strain resulting from the twisting. The superconductor to resistive transition index, n, is also found to behave in an identical manner with increase in the twisting. Finite element analysis (FEA) of the tape in the experimental configuration with twisting moment being applied on to it has been carried out in COMSOL. The torsional strain calculated analytically as per the experimental configuration matches closely with that of FEA results, which shows that the critical current degradation is a function of strain. (author)

  19. The effect of FFAR1 on pioglitazone-mediated attenuation of palmitic acid-induced oxidative stress and apoptosis in βTC6 cells.

    Science.gov (United States)

    Shen, Ximei; Yang, Liyong; Yan, Sunjie; Wei, Wenfeng; Liang, Liyu; Zheng, Huanhuan; Cai, Xiuhui

    2014-03-01

    We sought to determine whether free fatty acid receptor 1 (FFAR1), a receptor for free fatty acids on the β-cell membrane, can mediate the pioglitazone (PIO)-attenuating effect on lipoapoptosis in β cells and its relationship to oxidative stress. The glucose-sensitive mouse beta pancreatic cell line βTC6 was used to investigate the effect of FFAR1 on PIO-attenuating palmitic acid (PA)-induced oxidative stress and apoptosis. (1) PIO reduced PA-induced lipoapoptosis in β cells and upregulated the expression of FFAR1 at the mRNA and protein levels in a dose- and time-dependent manner. Silencing of FFAR1 expression was shown to weaken the protective effect of PIO on PA-induced lipoapoptosis in βTC6 cells; while lentiviral-mediated overexpression of FFAR1 was shown to enhance the protective effect of PIO against lipoapoptosis in β cells. (2) Downregulation of FFAR1 expression reduced the attenuating effect of PIO on the expression of NAPDH oxidase subunit p47(phox), Bax, cleaved caspase 3, and the production of reactive oxygen specific (ROS) induced by lipotoxicity, thereby preventing the upregulation of the expression of bcl-2. Inducing the overexpression of FFAR1 enhanced the anti-oxidative stress effect of PIO. Similarly, these effects of FFAR1 on PIO were reproduced under conditions of oxidative stress and apoptosis in βTC6 cells that were induced by H2O2. (3) PIO was found to increase the expression of PLCγ, ERK1/2, and PPARγ in lipotoxic β cells. Silencing FFAR1 expression reduced the PIO-mediated increases in the expression of above proteins; while inducing FFAR1 overexpression showed the opposite effect. Use of an inhibitor of PLCγ, ERK1/2, PPARγ was shown to restrict the protective effect of PIO on oxidative stress and lipoapoptosis of β cells. FFAR1 can mediate PIO suppression of β-cell lipoapoptosis through anti-oxidative stress, which may be related to the activation of the PLCγ-ERK1/2-PPARγ pathway. Copyright © 2014 Elsevier Inc. All rights

  20. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  1. Superconductivity of metallic aluminum antimonide.

    Science.gov (United States)

    Wittig, J

    1967-02-10

    The high-pressure metallic phase of aluminunm antimnonide is super conducting [critical temperature T(c) (P approximately 125 kilobars) = 2.8 degrees +/-0.2 degrees K]. This transition temperature is significantly lower than the transition temperature of metallic germanium under an equivalent high pressure. A similar result had been previously found for superconducting indiumantimonide in comparison to tin.

  2. Effects of weak magnetic fields on post-implantation damage in superconducting oxides

    International Nuclear Information System (INIS)

    Khait, Y.L.

    1996-01-01

    Experimentally verifiable effects of weak permanent magnetic fields (PMF's) acting during ion implantation in high-T c superconducting (HTSC) materials at T∼300 K on post-implantation damage (PID) and material parameters are considered. The presence of PMF's of H∼10 3 Oe during ion implantation can enlarge substantially the PID in HTSC materials implanted with ions of moderate energies (e.g. 200-400 keV) and dosage (10 11- 10 12 cm -3 ) at room temperature. The PMF-induced increase in the radiation damage causes the corresponding enhancement in the material resistivity R and reduction in the critical current j cir (measured after the cooling of the HTSC material down to T (L) c after the ion implantation). This is an extension of the PMF effects found experimentally (and explained theoretically) in semiconductors in our previous work. The experimentally verifiable PMF effects on the defect (atomic) migration and radiation damage is a generic consequence of the kinetic electron-related theory of atomic rate processes in solids. The theory links the PMF effects with electron transitions occurring in the nanometer vicinity of atoms overcoming energy barriers which affect exponentially rates of atomic (defect) diffusion. The magnetic field can enhance the number of downward electron transitions that accompany atomic (defect) jumps over energy barriers and synchronize with the jumps. This enhances exponentially the rates of defect migration out of thermal spikes that prevents the defects from fast recombination, and thus, the PMF increases the PID and changes correspondingly R and j cir . (orig.)

  3. CO2-laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths

    Science.gov (United States)

    Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J. B.; Danforth, S.; Wilkens, B. J.

    1990-03-01

    We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO2-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-Å thin films have a Tc (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm2.

  4. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor.

    Science.gov (United States)

    Di Bernardo, A; Millo, O; Barbone, M; Alpern, H; Kalcheim, Y; Sassi, U; Ott, A K; De Fazio, D; Yoon, D; Amado, M; Ferrari, A C; Linder, J; Robinson, J W A

    2017-01-19

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  5. Advances in superconducting materials and electronics technologies

    International Nuclear Information System (INIS)

    Palmer, D.N.

    1990-01-01

    Technological barriers blocking the early implementation of ceramic oxide high critical temperature [Tc] and LHe Nb based superconductors are slowly being dismantled. Spearheading these advances are mechanical engineers with diverse specialties and creative interests. As the technology expands, most engineers have recognized the importance of inter-disciplinary cooperation. Cooperation between mechanical engineers and material and system engineers is of particular importance. Recently, several problems previously though to be insurmountable, has been successfully resolved. These accomplishment were aided by interaction with other scientists and practitioners, working in the superconductor research and industrial communities, struggling with similar systems and materials problems. Papers published here and presented at the 1990 ASME Winter Annual Meeting held in Dallas, Texas 25-30 November 1990 can be used as a bellwether to gauge the progress in the development of both ceramic oxide and low temperature Nb superconducting device and system technologies. Topics are focused into two areas: mechanical behavior of high temperature superconductors and thermal and mechanical problems in superconducting electronics

  6. SPIN SUSCEPTIBILITY IN HIGH - TC SUPERCONDUCTIVITY

    African Journals Online (AJOL)

    USER

    2012-07-05

    Jul 5, 2012 ... Anderson (KGA)rules(Suzuki,Suzuki,2009) will upturn the. Cu spins. It turns that this process introduces the now measurable spin fluctuations in the cuprates. The AFM sublattices contain two spin magnetic moments as we know and according to basic theory of magnetism, equal and opposite spin currents ...

  7. Effects of phase fraction on superconductivity of low-valence eutectic titanate films

    Science.gov (United States)

    Kurokawa, Hikaru; Yoshimatsu, Kohei; Sakata, Osami; Ohtomo, Akira

    2017-08-01

    Creation and characterization of mixed valence states in transition-metal oxides are a fundamental approach to search for the unprecedented electronic and magnetic properties. In contrast to complex oxides, mixed-valence simple oxides tend to form binary or ternary phases, and turning a valence from one to next must be accompanied by structural transformations owing to a lower tolerance for oxygen non-stoichiometry. In this paper, epitaxial growth and transport properties of low-valence titanate thin films are reported to shed light on recently discovered superconducting γ-phase Ti3O5 (γ-Ti3O5). Single-phase TiO and Ti2O3 films and eutectic films including TiO, Ti2O3, and γ-Ti3O5 phases were independently grown on α-Al2O3 (0001) substrates by using pulsed-laser deposition. The X-ray diffraction measurements revealed clear epitaxial relationships with substrates and among three eutectic phases. Temperature dependence of the resistivity revealed that the γ-Ti3O5-rich films exhibited superconductivity with a maximum of transition temperature (TC) of 6.3 K. Distinct effects of the phase fraction on TC are found between TiO- and Ti2O3-enriched samples, suggesting the complex mechanisms of the superconducting proximity effect.

  8. High-Tc superconductor applications

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    There has been much speculation about new products and business opportunities which high-Tc superconductors might make possible. However, with the exception of one Japanese survey, there have not been any recognized forecasts suggesting a timeframe and relative economic impact for proposed high-Tc products. The purpose of this survey is to provide definitive projections of the timetable for high-Tc product development, based on the combined forecasts of the leading U.S. superconductivity experts. The FTS panel of experts on high-Tc superconductor applications, representing both business and research, forecast the commercialization and economic impact for 28 classes of electronic, magnetic, communications, instrumentation, transportation, industrial, and power generation products. In most cases, forecasts predict the occurrence of developments within a 90% statistical confidence limit of 2-to-3 years. The report provides background information on the 28 application areas, as well as other information useful for strategic planners. The panel also forecast high-Tc research spending, markets, and international competitiveness, and provide insight into how the industry will evolve

  9. Lighting up superconducting stripes

    Science.gov (United States)

    Ergeçen, Emre; Gedik, Nuh

    2018-02-01

    Cuprate superconductors display a plethora of complex phases as a function of temperature and carrier concentration, the understanding of which could provide clues into the mechanism of superconductivity. For example, when about one-eighth of the conduction electrons are removed from the copper oxygen planes in cuprates such as La2‑xBaxCuO4 (LBCO), the doped holes (missing electrons) organize into one-dimensional stripes (1). The bulk superconducting transition temperature (Tc) is greatly reduced, and just above Tc, electrical transport perpendicular to the planes (along the c axis) becomes resistive, but parallel to the copper oxygen planes, resistivity remains zero for a range of temperatures (2). It was proposed a decade ago (3) that this anisotropic behavior is caused by pair density waves (PDWs); superconducting Cooper pairs exist along the stripes within the planes but cannot tunnel to the adjacent layers. On page 575 of this issue, Rajasekaran et al. (4) now report detection of this state in LBCO using nonlinear reflection of high-intensity terahertz (THz) light.

  10. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B.; Heinen, Vernon O.

    1990-10-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  11. Bulk superconductivity at 84 K in the strongly overdoped regime of cuprates

    Science.gov (United States)

    Gauzzi, A.; Klein, Y.; Nisula, M.; Karppinen, M.; Biswas, P. K.; Saadaoui, H.; Morenzoni, E.; Manuel, P.; Khalyavin, D.; Marezio, M.; Geballe, T. H.

    2016-11-01

    By means of magnetization, specific heat, and muon-spin relaxation measurements, we investigate newly synthesized high-pressure oxidized Cu0.75Mo0.25Sr2YCu2O7.54 , in which overdoping is achieved up to p ˜0.46 hole/Cu, well beyond the Tc-p superconducting dome of cuprates, where Fermi-liquid behavior is expected. Surprisingly, we find bulk superconductivity with Tc=84 K and superfluid density similar to those of optimally doped YBa2Cu3O7 -δ . On the other hand, specific heat data display a large electronic contribution at low temperature, comparable to that of nonsuperconducting overdoped La2 -xSrxCuO4 . These results point at an unusual high-Tc phase with a large fraction of unpaired holes. Further experiments may assess the Fermi-liquid properties of the present phase, which would put into question the paradigm that the high Tc of cuprates originates from a non-Fermi-liquid ground state.

  12. Superconductivity, structures, ESR and SIMS-analysis of a high-Tc Y0.33Ba0.67Cu2.33O3.67-σ compound

    International Nuclear Information System (INIS)

    Porjesz, T.; Bankuti, J.; Karman, T.

    1987-10-01

    In a new kind of high-T c Y 0.33 Ba 0.67 Cu 2.33 O 3.67-σ compound the superconducting transition comes into being between 92 and 84 K, the value of Meissner state is 68 vol.%, the change in ESR signal provides a possible proof for superconductivity, the main phase has an orthorhombic symmetry and the SIMS analysis offers quite new and valuable information on the material components. (author). 10 refs, 6 figs

  13. Fundamentals and applications of neutron diffraction. Applications 5. Crystal structure analysis of high-Tc oxide superconductors by neutron diffraction

    International Nuclear Information System (INIS)

    Mochiku, Takashi

    2010-01-01

    Crystal structure analysis with neutron diffraction is necessary for the study of high-T c oxide superconductors, which oxygen atoms play an important role in. The crystal structure of a lot of superconductors has been analyzed by neutron powder diffraction. On the basis of the neutron powder diffraction study, the guiding principle of material design in high-T c oxide superconductors has been constructed, and contributes the discovery of new materials. The crystallographic data obtained by the neutron powder diffraction study is also the fundamentals to the study for the exotic physical properties in high-T c oxide superconductors. (author)

  14. A novel pre-sintering technique for the growth of Y-Ba-Cu-O superconducting single grains from raw metal oxides

    Science.gov (United States)

    Li, Jiawei; Shi, Yun-Hua; Dennis, Anthony R.; Namburi, Devendra Kumar; Durrell, John H.; Yang, Wanmin; Cardwell, David A.

    2017-09-01

    Most established top seeded melt growth (TSMG) processes of bulk, single grain Y-Ba-Cu-O (YBCO) superconductors are performed using a mixture of pre-reacted precursor powders. Here we report the successful growth of large, single grain YBCO samples by TSMG with good superconducting properties from a simple precursor composition consisting of a sintered mixture of the raw oxides. The elimination of the requirement to synthesize precursor powders in a separate process prior to melt processing has the potential to reduce significantly the cost of bulk superconductors, which is essential for their commercial exploitation. The growth morphology, microstructure, trapped magnetic field and critical current density, J c, at different positions within the sample and maximum levitation force of the YBCO single grains fabricated by this process are reported. Measurements of the superconducting properties show that the trapped filed can reach 0.45 T and that a zero field J c of 2.5 × 104 A cm-2 can be achieved in these samples. These values are comparable to those observed in samples fabricated using pre-reacted, high purity commercial oxide precursor powders. The experimental results are discussed and the possibility of further improving the melt process using raw oxides is outlined.

  15. Superconductivity in carrier-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Takahiro Muranaka, Yoshitake Kikuchi, Taku Yoshizawa, Naoki Shirakawa and Jun Akimitsu

    2008-01-01

    Full Text Available We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm−3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  16. Structural and superconducting properties of La2−xNdxCuO4+y (0≤x≤0.5) prepared by room temperature chemical oxidation

    DEFF Research Database (Denmark)

    Rial, C.; Morán, E.; Alario-Franco, M.A.

    1997-01-01

    The systematic characterization of the structural and superconducting properties of room temperature chemically oxidized T/O La2-xNdxCuO4+y (0 less than or equal to x less than or equal to 0.5) has been performed by neutron powder diffraction and magnetic susceptibility measurements. Similarities...... and differences as regards the modifications induced by interstitial oxygen in these materials and in related La2-xMxCuO4+y (M = Ca, Sr, Pa) are discussed....

  17. Superconductivity in bundles of double-wall carbon nanotubes.

    Science.gov (United States)

    Shi, Wu; Wang, Zhe; Zhang, Qiucen; Zheng, Yuan; Ieong, Chao; He, Mingquan; Lortz, Rolf; Cai, Yuan; Wang, Ning; Zhang, Ting; Zhang, Haijing; Tang, Zikang; Sheng, Ping; Muramatsu, Hiroyuki; Kim, Yoong Ahm; Endo, Morinobu; Araujo, Paulo T; Dresselhaus, Mildred S

    2012-01-01

    We present electrical and thermal specific heat measurements that show superconductivity in double-wall carbon nanotube (DWCNT) bundles. Clear evidence, comprising a resistance drop as a function of temperature, magnetoresistance and differential resistance signature of the supercurrent, suggest an intrinsic superconducting transition below 6.8 K for one particular sample. Additional electrical data not only confirm the existence of superconductivity, but also indicate the T(c) distribution that can arise from the diversity in the diameter and chirality of the DWCNTs. A broad superconducting anomaly is observed in the specific heat of a bulk DWCNT sample, which yields a T(c) distribution that correlates well with the range of the distribution obtained from the electrical data. As quasi one dimensionality of the DWCNTs dictates the existence of electronic density of state peaks, confirmation of superconductivity in this material system opens the exciting possibility of tuning the T(c) through the application of a gate voltage.

  18. Superconductivity and fast proton transport in nanoconfined water

    Science.gov (United States)

    Johnson, K. H.

    2018-04-01

    A real-space molecular-orbital density-wave description of Cooper pairing in conjunction with the dynamic Jahn-Teller mechanism for high-Tc superconductivity predicts that electron-doped water confined to the nanoscale environment of a carbon nanotube or biological macromolecule should superconduct below and exhibit fast proton transport above the transition temperature, Tc ≅ 230 K (-43 °C).

  19. Experimenting with a Superconducting Levitation Train

    Science.gov (United States)

    Miryala, Santosh; Koblischka, M. R.

    2014-01-01

    The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…

  20. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  1. A universal order underlying the pseudogap regime of the underdoped high Tc cuprates

    Science.gov (United States)

    Harrison, Neil

    2014-03-01

    A major achievement in condensed matter physics in the last quarter century has been a step towards the understanding of the unconventional d-wave superconducting state in the copper-oxide materials. Surprisingly, the normal state out of which the superconducting state emerges remains a mystery at low charge carrier densities, i.e., in the underdoped regime. This regime is of particular interest because it is characterised by an unusual momentum dependent energy pseudogap in the excitation spectrum that has defied explanation and is key to a full understanding of the unconventional d-wave superconducting state. I will present new quantum oscillation experimental results within the pseudogap regime of the high Tc superconductors YBa2Cu3O6+x and YBa2Cu4O8 which now extend up to the optimally-doped regime. These data reveal the evolution of the Fermi surface approaching the putative quantum critical point under the superconducting dome. A comprehensive angle-resolved study of the Fermi surface enables us to unambiguously identify a specific form of order that accounts for the observed quantum oscillations as well as other spectroscopic, transport and thermodynamic probes within the pseudogap regime. The author would like to thank B. Ramshaw, S. Sebastian, F. Balakirev, C. Mielke, M. Altarawneh, P. Goddard, S. Sabok, B. Babrowski, D. Bonn, W. Hardy, R. Liang and G. Lonzarich. This work was supported by the DOE BES ``Science of 100 tesla'' project and by the NSF and Florida State.

  2. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  3. Superconductivity in compressed lithium at 20 K.

    Science.gov (United States)

    Shimizu, Katsuya; Ishikawa, Hiroto; Takao, Daigoroh; Yagi, Takehiko; Amaya, Kiichi

    2002-10-10

    Superconductivity at high temperatures is expected in elements with low atomic numbers, based in part on conventional BCS (Bardeen-Cooper-Schrieffer) theory. For example, it has been predicted that when hydrogen is compressed to its dense metallic phase (at pressures exceeding 400 GPa), it will become superconducting with a transition temperature above room temperature. Such pressures are difficult to produce in a laboratory setting, so the predictions are not easily confirmed. Under normal conditions lithium is the lightest metal of all the elements, and may become superconducting at lower pressures; a tentative observation of a superconducting transition in Li has been previously reported. Here we show that Li becomes superconducting at pressures greater than 30 GPa, with a pressure-dependent transition temperature (T(c)) of 20 K at 48 GPa. This is the highest observed T(c) of any element; it confirms the expectation that elements with low atomic numbers will have high transition temperatures, and suggests that metallic hydrogen will have a very high T(c). Our results confirm that the earlier tentative claim of superconductivity in Li was correct.

  4. Effective valence as the control parameter of the superconducting ...

    African Journals Online (AJOL)

    In this paper, we have demonstrated that the effective valence of iron can be used as the control parameter to tune the Tc of this family of superconducting materials. This is achieved by postulating that our model of spin fluctuation which has been used to successfully account for the superconductivity in the cuprates in Ref.

  5. Effective valence as the control parameter of the superconducting ...

    African Journals Online (AJOL)

    One approach to investigating the superconductivity in the ironbased materials is understanding the chemical and structural parameters that can be used to tune their remarkably high Tc. In this paper, we have demonstrated that the effective valence of iron can be used as the control parameter to tune the Tc of this family of ...

  6. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  7. Point nodes persisting far beyond Tc in Bi2212

    Science.gov (United States)

    Kondo, Takeshi; Malaeb, W.; Ishida, Y.; Sasagawa, T.; Sakamoto, H.; Takeuchi, Tsunehiro; Tohyama, T.; Shin, S.

    2015-01-01

    In contrast to a complex feature of antinodal state, suffering from competing orders, the pairing gap of cuprates is obtained in the nodal region, which therefore holds the key to the superconducting mechanism. One of the biggest question is whether the point nodal state as a hallmark of d-wave pairing collapses at Tc like the BCS-type superconductors, or it instead survives above Tc turning into the preformed pair state. A difficulty in this issue comes from the small magnitude of the nodal gap, which has been preventing experimentalists from solving it. Here we use a laser ARPES capable of ultrahigh-energy resolution, and detect the point nodes surviving far beyond Tc in Bi2212. By tracking the temperature evolution of spectra, we reveal that the superconductivity occurs when the pair-breaking rate is suppressed smaller than the single-particle scattering rate on cooling, which governs the value of Tc in cuprates. PMID:26158431

  8. Characterization of superconducting coil for fault current limitation

    International Nuclear Information System (INIS)

    Polasek, Alexander; Dias, Rodrigo; Niedu, Daniel Brito; Ogasawara, Tsuneharu; Oliveira Filho, Orsino Borges de; Serra, Eduardo Torres; Gomes Junior, George; Amorim, Helio Salim

    2010-01-01

    The increasing power demand has been raising fault currents up to dangerous levels. Superconducting fault current limiters are a promising solution for this problem. In the present work, we studied a superconducting Bi-2212 coil that is used for fault current limitation. Samples were analyzed by XRD, SEM/EDS and measurement of critical temperature (Tc). The Rietveld method was employed for phase quantification. Relatively high Bi-2212 fractions were found. However, Tc varies from a sample to another one. Variations of local Tc are attributed to variations of oxygen content in Bi- 2212 phase. (author)

  9. BCS superconductivity in mixed valence and heavy fermion superconductors

    Science.gov (United States)

    Gor'kov, Lev P.; Barzykin, Victor

    2005-03-01

    We consider competition of Kondo effect and s-wave superconductivity in heavy fermion and mixed valence superconductors, using the slave boson 1/N approach for the periodic Anderson model. Similar to the well known results for single-impurity Kondo effect in superconductors, we have found that re-entrant behavior of the superconducting transition temperature, Tc, should be observed in heavy fermion superconductors as a function of model parameters or concentration of impurities. Suppression of Tc in mixed valence superconductors is much weaker, without re-entrant behavior of Tc. Our results have most validity in the low-temperature regime.

  10. Superconducting critical temperature under pressure

    Science.gov (United States)

    González-Pedreros, G. I.; Baquero, R.

    2018-05-01

    The present record on the critical temperature of a superconductor is held by sulfur hydride (approx. 200 K) under very high pressure (approx. 56 GPa.). As a consequence, the dependence of the superconducting critical temperature on pressure became a subject of great interest and a high number of papers on of different aspects of this subject have been published in the scientific literature since. In this paper, we calculate the superconducting critical temperature as a function of pressure, Tc(P), by a simple method. Our method is based on the functional derivative of the critical temperature with the Eliashberg function, δTc(P)/δα2F(ω). We obtain the needed coulomb electron-electron repulsion parameter, μ*(P) at each pressure in a consistent way by fitting it to the corresponding Tc using the linearized Migdal-Eliashberg equation. This method requires as input the knowledge of Tc at the starting pressure only. It applies to superconductors for which the Migdal-Eliashberg equations hold. We study Al and β - Sn two weak-coupling low-Tc superconductors and Nb, the strong coupling element with the highest critical temperature. For Al, our results for Tc(P) show an excellent agreement with the calculations of Profeta et al. which are known to agree well with experiment. For β - Sn and Nb, we found a good agreement with the experimental measurements reported in several works. This method has also been applied successfully to PdH elsewhere. Our method is simple, computationally light and gives very accurate results.

  11. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  12. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  13. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  14. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  15. Chemical approaches to understanding the environmental behavior of Pu, Np, and Tc

    International Nuclear Information System (INIS)

    Bondietti, E.A.

    1978-01-01

    Some topics discussed are as follows: speciation behavior of Pu, Np, and Tc; thermodynamic and radiochemical behavior; sorption studies with soils; Pu oxidation states in fresh water; Np oxidation states in soils; effect of oxidation state of Tc on environmental transport predictions; and thermodynamic calculations of Tc speciation

  16. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  17. On the application of High-Tc superconductors in power coils and transformers

    NARCIS (Netherlands)

    Chevtchenko, O.A.

    2002-01-01

    In this study, the electro-magnetic properties of high-Tc tapes and coils are investigated. The focus is on Bi-2223/Ag tapes with non-twisted superconducting filaments as these are the only high-Tc superconductors at present available in sufficient length for practical applications. The study is

  18. Electrochemical investigations of high-Tc superconductors - low-temperature electrochemistry

    International Nuclear Information System (INIS)

    Lorenz, W.J.

    1992-01-01

    This research report presents a summary of results obtained by electrochemical investigations of high-Tc superconductors at room temperature and below the critical temperature (Tc). The studies were to reveal the behaviour of the ceramic superconducting materials at the interface between superconductor and ionic conductor. (MM) With 4 tabs., 8 figs [de

  19. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high-TC

  20. Correlation effects in high-Tc superconductors and heavy fermion compounds

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1993-10-01

    This paper describes certain aspects of Highly Correlated Systems (HCS) such as high Tc superconductors (HTSC) and some new class of Heavy Fermion (HF) systems which have been studied recently. The problem is discussed on how the charge and spin degrees of freedom participate in the specific character of superconductivity in the copper oxides and competition of the magnetism and Kondo screening in heavy fermions. The electronic structure and possible superconducting mechanisms of HTSC compounds are discussed. The similarity and dissimilarity with HF compounds is pointed out. It is shown that the spins and carriers in the copper oxides are coupled in a very nontrivial way in order to introduce the discussion and the comparison of the Emery model, the t - J-model and the Kondo-Heisenberg model. It concerns attempts to derive from fundamental multi-band Hamiltonian the reduced effective Hamiltonians to extract and separate the relevant low-energy physics. A short review of the arguments which seem to support the spin-polaron pairing mechanism in HTSC are presented. Many other topics like the idea of mixed valence states in oxides, the role of charge transfer (CT) excitations, phase separation, self-consistent nonperturbative technique, etc. are also discussed. (author). 161 refs

  1. Two-dimensional electron systems in functional oxides studied by photoemission spectroscopy

    OpenAIRE

    Rödel , Tobias

    2016-01-01

    Many transition metal oxides (TMOs) show complex physics, ranging from ferroelectricity to magnetism, high-Tc superconductivity and colossal magnetoresistance. The existence of a variety of ground states often occurs as different degrees of freedom (e.g. lattice, charge, spin, orbital) interact to form different competing phases which are quite similar in energy. The capability to epitaxially grow heterostructures of TMOs increased the complexity even more as new phenomena can emerge at the i...

  2. On the interaction of granite with Tc(IV) and Tc(VII) in aqueous solution

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Cui, Daquing

    1991-10-01

    The behaviour of technetium in granite-groundwater systems under reducing conditions was investigated. The anion TcO 4 - was reduced to Tc(IV) and simultaneously precipitated as TcO 2 xnH 2 O on the granite surfaces. The electron sources are assumed to be iron oxides and/or iron containing minerals in the granite. The technetium concentration in ground water under repository conditions may be predicted assuming TcO 2 xnH 2 O as the solid phase and TcO(OH) 2 0 and TcO 4 - as the predominant aqueous complexes using a formation constant for TcO(OH) 2 0 of log K = -8.16 and a standard reduction potential E 0 for the reaction TcO 4 - + 3e - + 4H + = TcO 2 xnH 2 O of 0.738 V. The surface related distribution ratio K a for TcO(OH) 2 0 between Stripa granite and ground water is approximately 1 cm based on geometrical surface area. (au)

  3. Spontaneous vortex phase (SVP) of ruthenocuprate high Tc ...

    Indian Academy of Sciences (India)

    RuSr2(RE1.5Ce0.5)Cu2O10, has given rise to the concept of spontaneous vortex phase (SVP). In these compounds, the magnetic ordering temperature (Tmag >. 100 K) is higher than the superconducting transition temperature (Tc ~ 30 K). Hence, due to internal magnetic fields, these compounds remain in a spontaneous.

  4. Five-fold way to new high Tc superconductors

    Indian Academy of Sciences (India)

    Some of the difficulties in this route is explained by the mineral tenorite CuO ..... CuO should undergo a Mott insulator superconductor transition, perhaps with an intermediate antifer- romagnetic metallic state. The superconducting Tc will ... Last century witnessed the birth of semiconductor electronics and nanotechnology.

  5. Temperature profile evolution in quenching high-Tc ...

    Indian Academy of Sciences (India)

    Temperature profile evolution in quenching high-Tc superconducting composite tape. ZIAUDDIN KHAN1,∗. , SUBRATA PRADHAN1 and IRFAN AHMAD2. 1Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428, India. 2Shibli National College, Sikandarpur Market Road, Paharpur, Azamgarh 276 ...

  6. High T$_{c}$ superconductors and related transition metal oxides special contributions in honor of K. Alex Müller on the occasion of his 80th birthday

    CERN Document Server

    Bussmann-Holder, Annette

    2007-01-01

    This book containing 30 articles written by highly reputed experts is dedicated to K. Alex Müller on the occasion of his 80th birthday. The contributions reflect the major research areas of K. Alex Müller which he activated in high temperature superconductivity and phase transitions. They are theoretical as well as experimental ones and focus mainly on high temperature superconductivity. A smaller part deals with ferroelectricity and their applications. Also in this field there have recently been major break throughs experimentally as well as theoretically which will be addressed by the invited authors. During the scientific career of K. Alex Müller he made major advances in the understanding of ferroelectricity, which used to be his major research field. The discovery of superconductivity in cuprates for which he received together with J. Georg Bednorz the Nobel Prize in 1987 has not diminished his interest in this area, but has enlarged his activities considerably.

  7. The use of microemulsions for the synthesis of oxalate precursors of YBaCuO superconduction oxide

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, Y.; Muhammed, M.

    1992-01-01

    Although emulsion technique has been used as an advanced separation method, little attention has been paid to the particular feature of emulsions as a powerful reaction media for synthesis of powders, e.g., precipitation of fine particles. In the present paper, the authors report the use of some microemulsion systems as a reaction media in a controlled coprecipitation of the oxalate precursors of superconducting YBa 2 Cu 3 O 7-δ ceramics. The phase diagram of the system: oil (hydrocarbon) - surfactant (Aerosol Orange T) - water, in the absence and presence of nitric/oxalic acids and nitrates, have been systematically investigated. Several hydrocarbons, n-hexane, n-haptene and n-octane have been tested. The different stability regions of microemulsions have been determined. The oxalate coprecipitation of Y, Ba and Cu from nitrate solution was studied under various operating conditions, pH, ratio of oil/surfactant/water and ratio of Y/Ba/Cu/.H 2 C 2 O 4 2 . The chemical and morphological properties of the oxalate powders obtained in the microemulsion systems have been examined by different techniques, e.g., ICP, TGA, XRD and SEM. By XRD, the optimum products are found to be amorphous oxalate composite with exact required stoichiometry and high homogeneity. The average size of the dispersed particles is 50-70 nm while the mean diameter of the agglomerates is around 300 nm. The best sinters bulk sample has T, (R = 0) at 92 K. These powders are used as fine precursors for the synthesis of high T c superconducting ceramics as bulk material and particularly thick films

  8. Inelastic electron scattering influence on the strong coupling oxide superconductors

    International Nuclear Information System (INIS)

    Gabovich, A.M.; Voitenko, A.I.

    1995-01-01

    The superconducting order parameters Δ and energy gap Δ g are calculated taking into account the pair-breaking inelastic quasiparticle scattering by thermal Bose-excitations, e.g., phonons. The treatment is self-consistent because the scattering amplitude depends on Δ. The superconducting transition for any strength of the inelastic scattering is the phase transition of the first kind and the dependences Δ (T) and Δ g (T) tend to rectangular curve that agrees well with the experiment for high-Tc oxides. On the basis of the developed theory the nuclear spin-lattice relaxation rate R s in the superconducting state is calculated. The Hebel-Slichter peak in R s (T) is shown to disappear for strong enough inelastic scattering

  9. Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells

    Directory of Open Access Journals (Sweden)

    A Bianconi

    2006-09-01

    Full Text Available   The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.

  10. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  11. Superconducting rotating electronic machine

    International Nuclear Information System (INIS)

    Cheon, Hui Yeong

    1989-04-01

    This book is divided into ten chapters, which handles summary of superconducting electronic machine, aspect of using of superconductor, superconducting direct current : Homopolar D. C. Machines, Drum machines, segmented slip-ring principle and carbon fibre brushes, superconducting alternating current turbine generator, design of superconducting alternating current machine, performance of superconducting alternating current machine, superconducting turbo generator by new rotor design, basic design of superconducting current generator, generator and power model, design of rotor and information of material property.

  12. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  13. Superconducting materials

    International Nuclear Information System (INIS)

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors

  14. Superconducting magnets

    International Nuclear Information System (INIS)

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature

  15. Bipolar superconductivity

    International Nuclear Information System (INIS)

    Pankratov, S.G.

    1987-01-01

    A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular

  16. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2018-01-02

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  17. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Science.gov (United States)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  18. Status of RF superconductivity at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-{Tc} oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs.

  19. Superconducting junctions and method of making same

    International Nuclear Information System (INIS)

    Kapituinik, A.

    1993-01-01

    A method of making Josephson junctions in high critical temperature superconductors is described comprising the consecutive steps of: first forming a layer of high Tc copper oxide superconductor on a substrate by forming the constituent components of the superconductor onto the substrate so as to epitaxially grow the superconductor on the substrate with copper-oxygen planes parallel to the surface of the substrate, said layer formed in a pattern to create a desired electronic circuit; then narrowing selected portions of the superconductor circuit at locations where Josephson junctions are desired; then creating weak link areas at said selected portions by moving an electrode across the surface of said selected portions, generally from one side of the selected portion to the other side of the selected portion, at a distance from the surface suitable to maintain a tunnel current between the electrode and the selected portion and maintaining said tunnel current directly into said junction locations while the electrode is proximate to the selected portions and sustaining said tunnel current through the electrodes long enough to physically remove superconducting material from the selected portion; and then depositing a noble metal in the selected portion by evaporating an electrode made from the noble metal

  20. Observation of two superconducting domes under pressure in tetragonal FeS

    Science.gov (United States)

    Zhang, Jun; Liu, Feng-Liang; Ying, Tian-Ping; Li, Na-Na; Xu, Yang; He, Lan-Po; Hong, Xiao-Chen; Yu, Yun-Jie; Wang, Ming-Xiang; Shen, Jian; Yang, Wen-Ge; Li, Shi-Yan

    2017-09-01

    We investigate the evolution of superconductivity and structure with pressure for the new superconductor FeS (Tc ≈ 4.5 K), a sulfide counterpart of FeSe. A rapid suppression of Tc and vanishing of superconductivity at 4.0 GPa are observed, followed by a second superconducting dome from 5.0 to 22.3 GPa with a 30% enhancement in maximum Tc. An onsite tetragonal to hexagonal phase transition occurs around 7.0 GPa, followed by a broad pressure range of phase coexistence. The residual deformed tetragonal phase is considered as the source of second superconducting dome. The observation of two superconducting domes in iron-based superconductors poses great challenges for understanding their pairing mechanism.

  1. Experimenting with a superconducting levitation train

    OpenAIRE

    Miryala, Santosh; Koblischka, Michael

    2014-01-01

    The construction and operation of a prototype high-Tc superconducting train model is presented. The train is levitated by a melt-processed GdBa2Cu3Ox (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron plate. The train bodies are constructed with FRP sheets forming a vessel to maintain the temperature of liquid nitrogen. The superconductors are field-cooled on the magnetic track, which provides...

  2. Midwest Superconductivity Consortium: 1994 Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high {Tc} superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  3. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67

    DEFF Research Database (Denmark)

    Chang, J.; Blackburn, E.; Holmes, A. T.

    2012-01-01

    Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves (CDW). A number of materials in the cuprate family, which includes the high transition-temperature (high-Tc) superconductors, show spin...... and charge density wave order. Thus a fundamental question is to what extent do these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy X-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc= 67 K......). This sample has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity in this typical high-Tc material are competing orders with similar energy...

  4. Superconductivity proximate to antiferromagnetism in a copper-oxide monolayer grown on Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Wang, Shuai; Zhang, Long; Wang, Fa

    2018-01-01

    A nodeless superconducting (SC) gap was reported in a recent scanning tunneling spectroscopy experiment of a copper-oxide monolayer grown on a Bi2Sr2CaCu2O8 +δ (Bi2212) substrate [Zhong et al., Sci. Bull. 61, 1239 (2016), 10.1007/s11434-016-1145-4], which is in stark contrast to the nodal d -wave pairing gap in the bulk cuprates. Motivated by this experiment, we first show with first-principles calculations that the tetragonal CuO (T-CuO) monolayer on the Bi2212 substrate is more stable than the commonly postulated CuO2 structure. The T-CuO monolayer is composed of two CuO2 layers sharing the same O atoms. The band structure is obtained by first-principles calculations, and its strong electron correlation is treated with the renormalized mean-field theory. We argue that one CuO2 sublattice is hole doped while the other sublattice remains half filled and may have antiferromagnetic (AF) order. The doped Cu sublattice can show d -wave SC; however, its proximity to the AF Cu sublattice induces a spin-dependent hopping, which splits the Fermi surface and may lead to a full SC gap. Therefore, the nodeless SC gap observed in the experiment could be accounted for by the d -wave SC proximity to an AF order, thus it is extrinsic rather than intrinsic to the CuO2 layers.

  5. Nano-engineering via intercalation: Layer-by-layer interstratification of high-Tc superconducting and superionic materials, AgxIyBi2Sr2Can-1CunO2n+4 (n = 1, 2, and 3)

    International Nuclear Information System (INIS)

    Choy, J.H.; Kim, Y.I.; Park, N.G.; Hwang, S.H.

    1996-01-01

    Through intercalation, the authors have successfully synthesized new materials having layer-by-layer stacking of superconducting and superionic conductor, Ag x I y Bi 2 Sr 2 Ca n-1 Cu n O 2n+4 (n = 1, 2, and 3). According to powder X-ray diffraction analyses, the lattice expansions along the c-axis upon intercalation of Ag-I are ∼ 7.3 angstrom independent on various x values (0.75 c depressions. In order to investigate the evolution of electronic and crystal structures of host compound upon Ag-I intercalation and to determine the intracrystalline structure of the intercalated silver iodide, Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES) analyses have been performed. According to the nonlinear curve fitting for the Ag K-edge EXAFS spectra, the coordination number for silver in the Ag-I intercalate has been determined to be 4, which is in good agreement with the previous results for Ag + ionic conductors. This strongly suggests that the new compounds may also have Ag + ionic conductivity, which has been measured by the a.c. impedance spectroscopy and the pulsed method. All the intercalates have been proved to be mixed conductors with substantial ionic contributions. For example, the ionic conductivity of Ag x I y Bi 2 Sr 2 CaCu 2 O 8 (x = 1.09) is about 10 -1.5 (ohm · cm) -1 at 270 C, which is comparable to those of other Ag + superionic conductors such as Ag + -β-alumina and Py 5 Ag 18 I 23 (Py = C 5 H 5 NH), with an ionic transference number (t i ) of 0.40

  6. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  7. The NMR probe of high-Tc materials and correlated electron systems

    CERN Document Server

    Walstedt, Russell E

    2018-01-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-Tc materials, heavy fermion systems and actinide oxides are presented.  The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-Tc materials, especially the advances in the area of pseudogap studies are reviewed.  An in depth overview of heavy fermion systems is presented in the second part,  notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth o...

  8. Tc(p) for a disordered superconductor

    Science.gov (United States)

    Yao, K.-L.; Halley, J. W.

    1984-06-01

    We describe a calculation of Tc(p) in a model of a disordered superconductor which is based on the de Gennes-Skal-Shklovskii (dGSS) picture of the large cluster in a percolation system. The calculation is done by carrying out successive decimations on the Landau-Ginzburg Hamiltonian describing the "links" in the model. We calculate Tc(p) by evaluating the renormalized LandauGinzburg coupling when the renormalized Landau-Ginzburg length equals the percolation link length in the dGSS picture. The results reduce to a previous scaling theory in an appropriate limit but contain effects of variations in the amplitude of the superconducting order parameter. The results are in good agreement with experiments on HgxXe1-x mixtures by Epstein, Goldman, Dahlberg, and Mikkelson.

  9. High-pressure studies on Tc and crystal structure of iron chalcogenide superconductors

    Directory of Open Access Journals (Sweden)

    Hiroki Takahashi, Takahiro Tomita, Hiroyuki Takahashi, Yoshikazu Mizuguchi, Yoshihiko Takano, Satoshi Nakano, Kazuyuki Matsubayashi and Yoshiya Uwatoko

    2012-01-01

    Full Text Available The superconducting transition temperature, Tc, in iron-based solids can be enhanced by applied pressure: Tc increases from 8 to 37 K for the 11-type FeSe when the pressure is raised from 0 to 4 GPa. High-pressure studies can elucidate the mechanism of superconductivity in such novel materials. In this paper, we present a high-pressure study of Fe(Se1−xTex and Fe(Se1−xSx. In the case of Fe(Se1−xTex, the maximum Tc under high pressure did not exceed the Tc of FeSe, which can be attributed to the structural transition to the monoclinic phase. For Fe(Se1−xSx (0 < x < 0.3, Tc exhibited a significant increase with pressure; however, the maximum Tc under high pressure did not exceed the Tc of FeSe. This may be due to the disorder induced by substituting S for Se, which is similar to the pressure effect on Tc for the 1111-type superconductor Ca(Fe1−xCoxAsF. The Tc of Fe(Se1−xSx showed a complex behavior below 1 GPa, first decreasing and then increasing with increasing pressure. From high-pressure x-ray diffraction measurements, the Tc (P curve was correlated with the local structural parameter.

  10. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  11. Superconductivity and ceramic superconductors II; Proceedings of the Symposium, Orlando, FL, Nov. 12-15, 1990. Ceramic transactions. Vol. 18

    International Nuclear Information System (INIS)

    Nair, K.M.; Balachandran, U.; Chiang, Y.-M.; Bhalla, A.S.

    1991-01-01

    The present symposium on superconductivity and ceramic superconductors discusses fundamentals and general principles, powder processing and properties, fabrication and properties, and device reliability and applications. Attention is given to phase formation in the Tl-Ca-Ba-Cu-O system, comparative defect studies in La2CuO4 and La2NiO4, solid solution and defect behavior in high Tc oxides, oxygen ion transport and disorder in cuprates, and Sr-free Bi-Ln-Ca-Cu-O superconductors. Topics addressed include the preparation of superconductor Y-Ba-Cu-O powder by single-step calcining in air, low-temperature synthesis of YBa2Cu3O(7-x), synthesis of high-phase purity ceramic oxide superconductors by the xerogel method, and the preparation and characterization of the BYa2Cu4O8 superconductor. Also discussed are optical studies of humidity-based corrosion effects on thin film and bulk ceramic YBa2Cu3O(7-delta), thermomechanical processing of YBa2Cu3O(x)/Ag sheathed wires, and the expansion of high-Tc superconducting ceramics

  12. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  13. Resonance of Superconducting Microstrip Antenna with Aperture in the Ground Plane

    Directory of Open Access Journals (Sweden)

    S. Benkouda

    2013-08-01

    Full Text Available This paper presents a rigorous full-wave analysis of a high Tc superconducting rectangular microstrip antenna with a rectangular aperture in the ground plane. To include the effect of the superconductivity of the microstrip patch in the full-wave analysis, a complex surface impedance is considered. The proposed approach is validated by comparing the computed results with previously published data. Results showing the effect of the aperture on the resonance of the superconducting microstrip antenna are given.

  14. The superconducting phases of UPt3

    Science.gov (United States)

    Joynt, Robert; Taillefer, Louis

    2002-01-01

    The heavy-fermion compound UPt3 is the first compelling example of a superconductor with an order parameter of unconventional symmetry. To this day, it is the only unambiguous case of multiple superconducting phases. Twenty years of experiment and theory on the superconductivity of UPt3 are reviewed, with the aim of accounting for the multicomponent phase diagram and identifying the superconducting phases. First, the state above the superconducting critical temperature at Tc=0.5 K is briefly described: de Haas-van Alphen and other measurements demonstrate that this state is a Fermi liquid, with degeneracy fully achieved at Tc. This implies that the usual BCS theory of superconductivity should hold, although the strong magnetic interactions suggest the possibility of an unconventional superconducting order parameter. The role of the weak antiferromagnetic order below TN=5 K in causing phase multiplicity is examined. A comprehensive analysis of which superconducting states are possible is given, and the theoretical basis for each of the main candidates is considered. The behavior of various properties at low temperature (Tnodes in the superconducting gap function of all three phases. In particular, the low-temperature low-field phase has a gap with a line node in the basal plane and point nodes along the hexagonal c axis. The phase diagram in the magnetic-field-temperature plane has been determined in detail by ultrasound and thermodynamic measurements. Experiments under pressure indicate a coupling between antiferromagnetism and superconductivity and provide additional clues about the order parameter. Theoretically, Ginzburg-Landau theory is the tool that elucidates the phase diagram, while calculations of the temperature and field dependence of physical quantities have been used to compare different order parameters to experiment. On balance, the data point to a two-component order parameter belonging to either the E1g or the E2u representation, with degeneracy

  15. Colloquium: High pressure and road to room temperature superconductivity

    Science.gov (United States)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  16. Modern aspects of superconductivity theory of superconductivity

    CERN Document Server

    Kruchinin, Sergei; Aono, Shigeyuki

    2011-01-01

    Superconductivity remains one of the most interesting research areas in physics and stood as a major scientific mystery for a large part of this century. This book, written for graduate students and researchers in the field of superconductivity, discusses important aspects of the experiment and theory surrounding superconductivity. New experimental investigations of magnetic and thermodynamic superconducting properties of mesoscopic samples are explored with the help of recent developments in nanotechnologies and measurement techniques, and the results are predicted based upon theoretical mode

  17. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  18. Structural analysis and superconductivity of CeFeAsO1-xHx

    Science.gov (United States)

    Matsuishi, Satoru; Hanna, Taku; Muraba, Yoshinori; Kim, Sung Wng; Kim, Jung Eun; Takata, Masaki; Shamoto, Shin-Ich; Smith, Ronald I.; Hosono, Hideo

    2012-01-01

    We performed the neutron powder diffraction (NPD) and synchrotron x-ray diffraction measurements on CeFeAsO1-x(D,H)x (x = 0.0 - 0.48) as a representative of 1111-type family of iron-based superconductors LnFeAsO1-xHx (Ln = lanthanoid). Deuterated and hydrogenated samples (CeFeAsO1-xDx and CeFeAsO1-xHx) were synthesized by the solid-state reaction of a metal oxide, arsenides, and a hydride and a deuteride source under an applied pressure of 2 GPa. No distinct differences were found between the structural and superconducting properties of the hydride and deuteride samples. Rietveld analyses of the NPD patterns demonstrated that deuterium exclusively substitutes on the oxygen sites in the 1111-type structures according to the nominal composition. Bulk superconductivity was observed over a wide x region (0.1 x x = 0.25. It was concluded from density functional theory calculations and comparison with the superconducting dome of the fluorine-substituted system that the charge state of the hydrogen substituting the oxygen sites was -1. The relationship between the lattice parameter a and Tc in our samples prepared from metal hydrides is almost the same as that reported previously for samples prepared from cerium hydroxide. These results strongly suggest that H- ions exclusively occupy the oxygen sites in both samples, regardless of the hydrogen species in the starting material.

  19. Superconductivity, antiferromagnetism, and neutron scattering

    International Nuclear Information System (INIS)

    Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-01

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations

  20. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  1. Applied superconductivity handbook on devices and applications

    CERN Document Server

    2015-01-01

    This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, las...

  2. Fundamental studies of shock-wave-induced degradation of superconductivity in explosively fabricated, bulk, metal-matrix, copper oxide, high-temperature superconductors

    International Nuclear Information System (INIS)

    Niou, Chornyg-Shyr.

    1991-01-01

    Explosive fabrication involves the simultaneous consolidation and encapsulation of superconducting powders within a metal-matrix monolith. However, the residual superconducting properties are found to be degraded as a result of the shock-wave pressure effect. In this study shock pressure varying from 4 GPa to 19 GPa revealed that the degradation of superconductivity increased with increasing peak pressures, and exhibited a steep increase in normal-state resistance (resistance-temperature or R-T curve) and broad superconducting resistance transitions, with decreasing critical temperature. Complete recovery of superconductivity could be achieved for all shock-loaded or explosively fabricated Y-Ba-Cu-O materials above 930 degree C, and above 860 degree C for Bi-Pb-Sr-Ca-Cu-O. Detailed kinetic studies on Y-Ba-Cu-O revealed a two-stage recovery process having different activation energies which were also sensitive to the peak pressure, and therefore to the densities of defects. In the context of the experimental results, a materials engineering strategy was investigated for optimizing the explosive fabrication of superconducting monoliths

  3. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  4. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  5. High pressure superconductivity in iron-based layered compounds studied using designer diamonds.

    Science.gov (United States)

    Tsoi, Georgiy; Stemshorn, Andrew K; Vohra, Yogesh K; Wu, Phillip M; Hsu, F C; Huang, Y L; Wu, M K; Yeh, K W; Weir, Samuel T

    2009-06-10

    High pressure superconductivity in iron-based superconductor FeSe(0.5)Te(0.5) has been studied up to 15 GPa and 10 K using an eight probe designer diamond anvil in a diamond anvil cell device. Four probe electrical resistance measurements show the onset of superconductivity (T(c)) at 14 K at ambient pressure with T(c) increasing with increasing pressure to 19 K at a pressure of 3.6 GPa. At higher pressures beyond 3.6 GPa, T(c) decreases and extrapolation suggests non-superconducting behavior above 10 GPa. The loss of superconductivity coincides with the pressure induced disordering of the Fe(SeTe)(4) tetrahedra reported at 11 GPa in x-ray diffraction studies at ambient temperature.

  6. Electronic structure and superconductivity of MgB2

    Indian Academy of Sciences (India)

    Unknown

    culated band structure to obtain the T = 0 K values of the London penetration depth and the superconducting coherence length. The penetration depth ... determined values of these quantities. This indicates the limitations of a the- ... bulk modulus and Tc. In §3 we present the calculations of the zero temperature penetration ...

  7. Superconducting state parameters of indium-based binary alloys

    Indian Academy of Sciences (India)

    Abstract. Our well-recognized pseudopotential is used to investigate the superconducting state pa- rameters viz; electron–phonon coupling strength λ, Coulomb pseudopotential µ∗. , transition temper- ature Tc, isotope effective exponent α and interaction strength N0V for the In1−x Znx and In1−xSnx binary alloys. We have ...

  8. The effect of ammonia intercalation on the superconducting ...

    African Journals Online (AJOL)

    A theoretical investigation of the electronic properties of the relatively high-Tc alkali-metal doped superconducting fullerides when they are further exposed to ammonia molecules as dopants is presented. Our numerical method relies on a group theoretical technique for the formation of molecular orbitals (MO's) for the solid ...

  9. Macroscopic structural coherence in two-component superconductivity

    International Nuclear Information System (INIS)

    Bar-Yam, Y.

    1991-01-01

    In two-component theory pairing arises from localized negative-U states and mobility arises from extended single particle states. A small hybridization of localized and extended states enables mobility and pairing to provide a high Tc. RPA analysis of the ''normal'' state implies uncondensed charged pairs carry current, while long lived single particle excitations are neutral electron-hole hybrids. At Tc pairs condense and single particle states undergo Cooper pairing. In the superconducting state pair-pair excitations exist in the BCS-like fermionic gap. Signatures of this theory range from distintive Tc, Δ, H c , ξ, conductance anomalies in sound and bulk modulii at Tc, linear temperature dependence of normal state resistivity, 2e charge carriers in the normal state, linear voltage dependence in normal-state-tunneling conductance, and finite zero-bias conductance in superconducting state tunneling. Quantitative comparisons with superconducting properties of YBa 2 Cu 3 O 7 were presented. A distinctive signature is the prediction of dynamical structural correlations which are local above Tc and macroscopic below Tc. Experiments provide direct evidence for such dynamical correlations: neutron diffraction ''thermal ovals'', channeling experiment cross section changes as a function of temperature near Tc, pair-distribution-function neutron diffraction including inelastic and elastic scattering showing direct evidence for dynamic correlations which change at Tc, and EXAFS showing a large dynamical displacement of oxygen atoms tunneling between sites separated by 0.13A. In two-component theory strong lattice coupling is consistent with low isotope shifts since tunneling occurs by a virtual Franck-Condon transition. Predictions for the dynamical structure factor are presented. (orig.)

  10. Superconductivity driven by pairing of the coherent parts of the physical electrons

    Science.gov (United States)

    Su, Yuehua; Zhang, Chao

    2018-03-01

    How the superconductivity in unconventional superconductors emerges from the diverse mother normal states is still a big puzzle. Whatever the mother normal states are the superconductivity is normal with BCS-like behaviours of the paired quasiparticles in condensation. To reconcile the diverse mother normal states and the normal superconductivity in unconventional superconductors, we revisit a proposal that the emergence of the low-energy coherent parts of the physical electrons, which survive from the interaction correlations, is an essential prerequisite for superconductivity. The superconductivity is driven by the pair condensation of these coherent parts of the physical electrons. Moreover the incoherent parts of the physical electrons can enhance the superconducting transition temperature Tc although they are not in driving role in the emergence of the superconductivity. Some experimental responses of the coherent parts of the physical electrons are predicted.

  11. Superconductivity Bordering Rashba Type Topological Transition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q.

    2017-01-04

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi–Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

  12. Phase diagram of the layered oxide SnO: GW and electron-phonon studies

    Science.gov (United States)

    Chen, Peng-Jen; Jeng, Horng-Tay

    2015-11-01

    First-principles calculations are performed to study the electronic properties and the electron-phonon interactions of the layered oxide semiconductor SnO. In addition to the high hole mobility that makes SnO a promising material in electronics, it has recently been reported that the semimetallic phase under pressure is superconducting. The superconducting Tc curve exhibits a dome-like feature under pressure and reaches the maximum of 1.4 K at p = 9.2 GPa. Both its crystal structure and the dome-like Tc curve are reminiscent of the Fe-based superconductor FeSe. Motivated by this observation, we investigate the electronic, phonon, and their interactions in SnO using first-principles schemes. GW approximation is adopted to correct the underestimated band gaps, including real and continuous band gaps in the semiconducting and semimetallic phases. The phase diagram showing the semiconductor-to-semimetal transition and the Tc curve has been successfully reproduced. Detailed analysis of the electron-phonon interactions demonstrate the importance of the out-of-plane motions of O atoms and the Sn-s lone pairs for the superconductivity to occur. Our method combining GW and e-ph calculations can be further extended to the study of other materials that undergo insulator-to-superconductor phase transition.

  13. Superconductivity, Antiferromagnetism, and Neutron Scattering

    OpenAIRE

    Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.

    2013-01-01

    High-temperature superconductivity in both the copper-oxide and the iron-pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements...

  14. Rietveld texture analysis of complex oxides: examples of polyphased Bi2223 superconducting and Co349 thermoelectric textured ceramics characterization using neutron and X-ray diffraction

    International Nuclear Information System (INIS)

    Guilmeau, E.; Chateigner, D.; Noudem, J.; Funahashi, R.; Horii, S.

    2005-01-01

    Orientation distributions of cobaltite thermoelectric and polyphased bismuth-based cuprate superconducting textured materials are determined from neutron and X-ray diffraction analysis. Curved position-sensitive detectors coupled to a tilt-angle (χ) scan enable the treatment of the whole diffraction pattern using the combined Rietveld-WIMV-Popa algorithm. The textures of three phases of superconducting compounds are determined. The critical current densities, measured for four samples, are strongly dependent on the calculated texture strengths, crystallite sizes and phase ratios. For the cobaltite compounds, a comparison between X-ray and neutron analysis shows the advantages of the latter technique for avoiding the limitations of the X-ray analysis with respect to the defocusing effect. The results highlight the necessity and efficiency of the combined approach for a quantitative texture analysis of complex materials and exemplify the texture-anisotropic physical properties relationship for a better understanding and design of improved bulk superconducting and thermoelectric materials

  15. Dimensionality Driven Enhancement of Ferromagnetic Superconductivity in URhGe

    Science.gov (United States)

    Braithwaite, Daniel; Aoki, Dai; Brison, Jean-Pascal; Flouquet, Jacques; Knebel, Georg; Nakamura, Ai; Pourret, Alexandre

    2018-01-01

    In most unconventional superconductors, like the high-Tc cuprates, iron pnictides, or heavy-fermion systems, superconductivity emerges in the proximity of an electronic instability. Identifying unambiguously the pairing mechanism remains nevertheless an enormous challenge. Among these systems, the orthorhombic uranium ferromagnetic superconductors have a unique position, notably because magnetic fields couple directly to ferromagnetic order, leading to the fascinating discovery of the reemergence of superconductivity in URhGe at a high field. Here we show that uniaxial stress is a remarkable tool allowing the fine-tuning of the pairing strength. With a relatively small stress, the superconducting phase diagram is spectacularly modified, with a merging of the low- and high-field superconducting states and a significant enhancement of the superconductivity. The superconducting critical temperature increases both at zero field and under a field, reaching 1 K, more than twice higher than at ambient pressure. This enhancement of superconductivity is shown to be directly related to a change of the magnetic dimensionality detected from an increase of the transverse magnetic susceptibility: In addition to the Ising-type longitudinal ferromagnetic fluctuations, transverse magnetic fluctuations also play an important role in the superconducting pairing.

  16. Tc Reductant Chemistry and Crucible Melting Studies with Simulated Hanford Low-Activity Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Soderquist, Chuck Z.; Icenhower, Jonathan P.; McGrail, B PETER.; Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Schweiger, Michael J.; Crum, Jarrod V.; Yeager, John D.; Matyas, Josef; Darnell, Lori P.; Schaef, Herbert T.; Owen, Antionette T.; Kozelisky, Anne E.; Snow, Lanee A.; Steele, Marilyn J.

    2005-03-30

    The FY 2003 risk assessment (RA) of bulk vitrification (BV) waste packages used 0.3 wt% of the technetium (Tc) inventory as a leachable salt and found it sufficient to create a significant peak in the groundwater concentration in a 100-meter down-gradient well. Although this peak met regulatory limits, considering uncertainty in the actual Tc salt fraction, peak concentrations could exceed the maximum concentration limit (MCL) under some scenarios so reducing the leachable salt inventory is desirable. The main objective of this study was to reduce the mobile Tc species available within a BV disposal package by reducing the oxidation state of the Tc in the waste feed and/or during melting because Tc in its reduced form of Tc(IV) has a much lower volatility than Tc(VII). Reduced Tc volatility has a secondary benefit of increasing the Tc retention in glass.

  17. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    Science.gov (United States)

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  18. Conductive polymer switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-σ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layout. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-σ film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to reversibly modulate the magnitude of J c , the superconducting critical current. Thus, a new type of molecule switch for controlling superconductivity is demonstrated

  19. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  20. Theoretical Modeling of 99 Tc NMR Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Gabriel B.; Andersen, Amity; Washton, Nancy M.; Chatterjee, Sayandev; Levitskaia, Tatiana G.

    2016-09-06

    Technetium (Tc) displays a rich chemistry due to the wide range of oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and 99Tc NMR spec-troscopy is widely used to probe chemical environments of Tc in odd oxidation states. However interpretation of the 99Tc NMR data is hindered by the lack of reference compounds. DFT computations can help fill this gap, but to date few com-putational studies have focused on 99Tc NMR of compounds and complexes. This work systematically evaluates the inclu-sion small percentages of Hartree-Fock exchange correlation and relativistic effects in DFT computations to support in-terpretation of the 99Tc NMR spectra. Hybrid functionals are found to perform better than their pure GGA counterparts, and non-relativistic calculations have been found to generally show a lower mean absolute deviation from experiment. Overall non-relativistic PBE0 and B3PW91 calculations are found to most accurately predict 99Tc NMR chemical shifts.

  1. Structure and superconductivity of room temperature chemically oxidized La2-xNdxCuO4+y (0<=x<=0.5)

    DEFF Research Database (Denmark)

    Rial, C.; Moran, E.; Alario-Franco, M.A.

    1997-01-01

    of oxygen introduced in the semiconducting starting materials relieves partially the distortion of the structure, which increases for increasing Nd content, and provides the hole doping required for superconductivity. The extra oxygen content decreases along this series of compounds as the Nd...

  2. High-Tc superconducting Josephson mixers for terahertz heterodyne detection

    International Nuclear Information System (INIS)

    Malnou, M.; Feuillet-Palma, C.; Olanier, L.; Lesueur, J.; Bergeal, N.; Ulysse, C.; Faini, G.; Febvre, P.; Sirena, M.

    2014-01-01

    We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa 2 Cu 3 O 7 Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies f c of the junctions

  3. Fermi surface of underdoped high-Tc superconducting cuprates

    International Nuclear Information System (INIS)

    Dai, X.; Su, Z.; Yu, L.

    1997-01-01

    The coexistence of a π-flux state and a d-wave resonant-valance-bond (RVB) state is considered in this paper within the slave-boson approach. A critical value of doping concentration δ c is found, below which the coexisting π-flux and d-wave RVB state is favored in energy. The pseudo-Fermi surface of spinons and the physical electron spectral function are calculated. A clear Fermi-level crossing is found along the (0,0) to (π, π) direction, but no such crossing is detected along the (π, 0) to (π, π) direction. Also, an energy gap of d-wave symmetry appears at the Fermi level in our calculation. The above results are in agreement with the angle-resolved photoemission experiments which indicate at a d-wave pseudogap and a half-pocket-like Fermi surface in underdoped cuprates. copyright 1997 The American Physical Society

  4. Study of silverclad high Tc superconducting film. ; Critical current

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N.; Oka, Y.; Muranaka, S. (Kyoto University, Kyoto (Japan))

    1992-10-15

    In this paper, critical current value of Pb(0.2)Bi(0.9)Sr(1.0)Ca(1.0)Cu(1.6)Oy film was investigated at the temperature of liquid nitrogen. It was shown that if the cyclic process of uniaxial loading and sintering is adopted in the specimen, it should be done in the narrow temperature range of around 835 centigrade. In addition, silver metal of 100[mu]m thickness was used for metalclad. Repeated process of uniaxial loading and sintering was also adopted for the silverclad specimen. Consequently, observed maximum current value was found to increase with increase of the number of processing times. The obtained maximum current value reached around 4A (an equivalent critical current density value of around 2,000A/cm[sup 2]). Accordingly, it was found that silverclad was useful for enhancement of the critical current. The result of this study suggests that the silverclad thick film is worth developing as a current wire manufacturing technique. 1 ref., 6 figs.

  5. A magnetic anomaly near Tc in superconducting UPt3

    International Nuclear Information System (INIS)

    Shivaram, B.S.; Gannon, J.J. Jr.; Hinks, D.G.

    1988-12-01

    We report observation of a peak in the r.f. susceptibility of a single crystal of the heavy fermion superconductor UPt 3 . The peak occurs close to but below T c = 0.53 K. In addition our measurements in the low temperature limit (T c ) yield the magnetic field penetration depth in UPt 3 . We obtain a T 4 power law for the penetration depth parallel to the c-axis of the crystal. Based on existing calculations of the penetration depth in anisotropic superconductors we identify the order-parameter in UPt 3 as an odd-parity axial state. 19 refs., 3 figs

  6. Re-emerging superconductivity at 48 kelvin in iron chalcogenides.

    Science.gov (United States)

    Sun, Liling; Chen, Xiao-Jia; Guo, Jing; Gao, Peiwen; Huang, Qing-Zhen; Wang, Hangdong; Fang, Minghu; Chen, Xiaolong; Chen, Genfu; Wu, Qi; Zhang, Chao; Gu, Dachun; Dong, Xiaoli; Wang, Lin; Yang, Ke; Li, Aiguo; Dai, Xi; Mao, Ho-kwang; Zhao, Zhongxian

    2012-02-22

    Pressure has an essential role in the production and control of superconductivity in iron-based superconductors. Substitution of a large cation by a smaller rare-earth ion to simulate the pressure effect has raised the superconducting transition temperature T(c) to a record high of 55 K in these materials. In the same way as T(c) exhibits a bell-shaped curve of dependence on chemical doping, pressure-tuned T(c) typically drops monotonically after passing the optimal pressure. Here we report that in the superconducting iron chalcogenides, a second superconducting phase suddenly re-emerges above 11.5 GPa, after the T(c) drops from the first maximum of 32 K at 1 GPa. The T(c) of the re-emerging superconducting phase is considerably higher than the first maximum, reaching 48.0-48.7 K for Tl(0.6)Rb(0.4)Fe(1.67)Se(2), K(0.8)Fe(1.7)Se(2) and K(0.8)Fe(1.78)Se(2).

  7. Anharmonic model for high-Tc superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.; Aksenov, V.L.; Drechsler, S.L.

    1987-01-01

    A considerable enhancement of the superconducting transition temperature T c in perovskite oxide compounds is explained in the framework of the anharmonic model for superconductors with structurally unstable lattices. It is shown that anharmonic local excitations with fluctuation amplitudes much greater than harmonic vibrations amplitudes lead to a considerable enhancement of the coupling constant λ. The obtained estimations for T c are in agreement with experimental data for La(Y)BaCuO systems

  8. Superconductivity mediated by quantum critical antiferromagnetic fluctuations: The rise and fall of hot spots

    Science.gov (United States)

    Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael M.

    2017-05-01

    In several unconventional superconductors, the highest superconducting transition temperature Tc is found in a region of the phase diagram where the antiferromagnetic transition temperature extrapolates to zero, signaling a putative quantum critical point. The elucidation of the interplay between these two phenomena—high-Tc superconductivity and magnetic quantum criticality—remains an important piece of the complex puzzle of unconventional superconductivity. In this paper, we combine sign-problem-free quantum Monte Carlo simulations and field-theoretical analytical calculations to unveil the microscopic mechanism responsible for the superconducting instability of a general low-energy model, called the spin-fermion model. In this approach, low-energy electronic states interact with each other via the exchange of quantum critical magnetic fluctuations. We find that even in the regime of moderately strong interactions, both the superconducting transition temperature and the pairing susceptibility are governed not by the properties of the entire Fermi surface, but instead by the properties of small portions of the Fermi surface called hot spots. Moreover, Tc increases with increasing interaction strength, until it starts to saturate at the crossover from hot-spots-dominated to Fermi-surface-dominated pairing. Our work provides not only invaluable insights into the system parameters that most strongly affect Tc, but also important benchmarks to assess the origin of superconductivity in both microscopic models and actual materials.

  9. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  10. Superconductivity and ferromagnetism in nanomaterial NbSe2

    Science.gov (United States)

    Gill, Raminder

    2017-07-01

    Finding of superconductivity (SC) in ultra thin layer of Niobium diselenide (NbSe2) caught the attention of each condensed matter physicist in the era of nanotechnology. The coexistence of SC and magnetism have been a topic of interesting research in solid-state physics since the discovery of superconductivity. Ferromagnetism induced in any compound could destroy superconductivity by disturbing the cooper pairing of electrons of the atoms. The interplay between ferromagnetism (FM) and SC in nanomaterial NBSe2 impressed to study and to know the exact mechanism behind this coexistence which can lead to a very interesting research: superconductivity at room temperature. In this paper, I have theoretically studied the coexistence of SC and FM in NbSe2 and how this material could be useful in finding many high Tc nanomaterials.

  11. Superconductivity in Weyl semimetal candidate MoTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yanpeng; Naumov, Pavel; Rajamathi, Catherine; Barkalov, Oleg; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Suess, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Schnelle, Walter; Felser, Claudia; Medvedev, Sergey [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Ali, Mazhar; Cava, Robert [Department of Chemistry, Princeton University, Princeton (United States); Hanfland, Michael [European Synchrotron Radiation Facility, Grenoble (France); Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Parkin, Stuart [Max Planck Institute of Microstructure Physics, Halle (Germany); Foerster, Tobias; Kampert, Erik [Dresden High Magnetic Field Laboratory, Dresden (Germany); Yan, Binghai [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany)

    2016-07-01

    In this work, we investigate the sister compound of WTe{sub 2}, MoTe{sub 2}, which is also predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that MoTe{sub 2} exhibits superconductivity with a resistive transition temperature T{sub c} of 0.1 K. The application of a small pressure is shown to dramatically enhance the T{sub c}, with a maximum value of 8.2 K being obtained at 11.7 GPa (a more than 80-fold increase in Tc). This yields a dome-shaped superconducting phase diagram. Further explorations into the nature of the superconductivity in this system may provide insights into the interplay between superconductivity and topological physics.

  12. Method for making high-current, ohmic contacts between semiconductors and oxide superconductors

    International Nuclear Information System (INIS)

    Talvacchio, J.J.

    1992-01-01

    This patent describes a method for making ohmic contacts between a semiconductor and a high Tc Cu-oxide material having superconducting capability, in which current can pass between the semiconductor and the Cu-oxide material without going through a degraded interface. It comprises depositing a buffer layer which is essentially inert to Cu-oxide material on a first portion of a semiconductor substrate which comprises silicon, and depositing a high Tc Cu-oxide material having superconducting capability on the buffer layer, and depositing a first contact layer of gold on the Cu-oxide material, and depositing a second contact layer on a second portion of the semiconductor substrate, the second contact layer being of aluminum; and then depositing an interconnecting layer of at least one of gold, silver, aluminum, titanium, chromium, or a refractory metal silicide on the second contact layer and on at least a portion of the first contact layer, to electrically connect the second contact layer and the first contact layer

  13. Competition between phonon superconductivity and Kondo screening in mixed valence and heavy fermion compounds

    Science.gov (United States)

    Barzykin, Victor; Gor'Kov, L. P.

    2005-06-01

    We consider competition of the Kondo effect and s -wave superconductivity in heavy fermion and mixed valence superconductors, using the phenomenological approach for the periodic Anderson model. Similar to the well known results for the single-impurity Kondo effect in superconductors, we have found the principal possibility of a reentrant regime of the superconducting transition temperature, Tc , in heavy fermion superconductors in a narrow range of model parameters and concentration of f electrons. Suppression of Tc in mixed valence superconductors is much weaker. Our theory has the most validity in the low-temperature Fermi liquid regime, without reentrant behavior of Tc . To check its applicability, we performed the fit for the x dependence of Tc in Ce1-xLaxRu3Si2 and obtained an excellent agreement with the experimental data, although no reentrance was found in this case. Other experimental data are discussed in the light of our theoretical analysis. In particular, we compare temperatures of the superconducting transition for some known homologs, i.e., the analog periodic lattice compounds with and without f elements. For a few pairs of homologs, superconductivity exists only in the heavy fermion materials, thus confirming the uniqueness of superconductivity mechanisms for the latter. We suggest that for some other compounds, the value of Tc may remain of the same order in the two homologs, if superconductivity originates mainly on some light Fermi surface, but induces a sizable superconducting gap on another Fermi surface, for which hybridization or other heavy fermion effects are more significant. By passing, we cite the old results that show that the jump in the specific heat at the transition reflects the heaviness of carriers on this Fermi surface independently of mechanisms responsible for superconductivity.

  14. Superconductivity in the background of disordered flux state of spins

    International Nuclear Information System (INIS)

    Feng Shiping; Guo Rui; Han Fei

    1992-01-01

    The phase diagram of the copper oxide materials with the antiferromagnetic and the superconducting properties as a function of doping δ is obtained in the framework of the t-J model by using the Schwinger boson-slave fermion theory. The results show that the spiral order of spins competes and coexists with superconductivity for small doping δ. For large doping δ, superconductivity appears, which may be caused by the occurrence of a disordered flux state of spins. The phase diagram suggests a strong relationship between antiferromagnetism and superconductivity. (orig.)

  15. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  16. Synthesis of a Novel Energetic Heterocyclic Oxidizer with Higher Energy and Lower Sensitivity Final Report CRADA No. TC02099.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Racoveanu, A. [Physical Sciences, Inc., Andover, MD (United States)

    2017-09-08

    The project involved the synthesis of 5g of a target energetic compound, 3,4-bis(5-nitro-1,2,5- oxadiazol-4-yl)-1,2,5-oxadiazole-1-oxide (DNTF. The deliverables were the synthesis of 5g of DNTF along with quantities of the precursor compounds. In addition, small-scale safety tests on DNTF were performed, which to confirmed that DNTF has no undesirable safety properties before scaling up the synthesis in Phase II of this project.

  17. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Superconducting fluctuations in molybdenum nitride thin films

    Science.gov (United States)

    Baskaran, R.; Thanikai Arasu, A. V.; Amaladass, E. P.; Vaidhyanathan, L. S.; Baisnab, D. K.

    2018-02-01

    MoN thin films have been deposited using reactive sputtering. The change in resistance near superconducting transition temperature at various magnetic fields has been analyzed based on superconducting fluctuations in the system. The Aslamazov and Larkin scaling theory has been utilized to analyze the conductance change. The results indicate that most of the measurements show two dimensional (2D) nature and exhibit scaling behavior at lower magnetic fields (7T). We have also analyzed our data based on the model in which there is no explicit dependence of Tc. These analyses also substantiate a crossover from a 2D nature to a 3D at larger fields. Analysis using lowest Landau level scaling theory for a 2D system exhibit scaling behavior and substantiate our observations. The broadening at low resistance part has been explained based on thermally activated flux flow model and show universal behavior. The dependence of Uo on magnetic field indicates both single and collective vortex behavior.

  19. Midwest Superconductivity Consortium: 1995 Progress report

    International Nuclear Information System (INIS)

    1996-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high Tc superconductivity. During the past year, 26 projects produced over 133 talks and 127 publications. Three Master's Degrees and 9 Doctor's of Philosophy Degrees were granted to students working on MISCON projects. Group activities and interactions involved 2 MISCON group meetings (held in January and July); the third MISCON Summer School held in July; 12 external speakers; 81 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 54 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temp superconductors

  20. Strong enhancement of superconductivity in a nanosized Pb bridge

    Science.gov (United States)

    Misko, V. R.; Fomin, V. M.; Devreese, J. T.

    2001-07-01

    In recent experiments with a superconducting nanosized Pb bridge formed between a scanning tunneling microscope tip and a substrate, superconductivity has been detected at magnetic fields, that are a few times larger than the third (surface) critical field. We describe the observed phenomenon on the basis of a numerical solution of the Ginzburg-Landau equations in a model structure consisting of six conoids. The spatial distribution of the superconducting phase is shown to be strongly inhomogeneous, with a concentration of the superconducting phase near the narrowest part (the ``neck'') of the bridge. We show that suppression of superconductivity in the bridge by applied magnetic field or by temperature first occurs near the bases and then in the neck region, what leads to a continuous superconducting-to-normal resistive transition. A position of the transition midpoint depends on temperature and, typically, is by one order of magnitude higher than the second critical field Hc2. We find that the vortex states can be realized in the bridge at low temperatures T/Tc<=0.6. The vortex states lead to a fine structure of the superconducting-to-normal resistive transition. We also analyze vortex states in the bridge that are characterized by a varying vorticity as a function of the bridge's height.

  1. Spectroscopic Properties of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Andersen, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-04

    Technetium-99 (Tc) exists predominately in soluble forms in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, attempts to remove Tc from the Hanford tank waste using ion-exchange processes specific to TcO4- only met with limited success, particularly processing tank waste samples containing elevated concentrations of organic complexants. This suggests that a significant fraction of the soluble Tc can be present as non-pertechnetate low-valent Tc (oxidation state < +7) (non-pertechnetate). The chemical identities of these non-pertechnetate species are poorly understood. Previous analysis of the SY-101 and SY-103 tank waste samples provided strong evidence that non-pertechnetate can be comprised of [Tc(CO)3]+ complexes containing Tc in oxidation state +1 (Lukens et al. 2004). During the last two years, our team has expanded this work and demonstrated that high-ionic-strength solutions typifying tank waste supernatants promote oxidative stability of the [Tc(CO)3]+ species (Rapko et al. 2013; Levitskaia et al. 2014). It also was observed that high-ionic-strength alkaline matrices stabilize Tc(VI) and potentially Tc(IV) oxidation states, particularly in presence organic chelators, suggesting that the relevant Tc compounds can serve as important redox intermediates facilitating the reduction of Tc(VII) to Tc(I). Designing strategies for effective Tc processing, including separation and immobilization, necessitates understanding the molecular structure of these non-pertechnetate species and their identification in the actual tank waste samples. To-date, only limited information exists regarding the nature and characterization of the Tc(I), Tc(IV), and Tc(VI) species. One objective of this project is to

  2. Relaxation of polarized nuclei in superconducting rhodium

    DEFF Research Database (Denmark)

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.

    2000-01-01

    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c ... is unchanged, the nuclear spin entropy was fully sustained across the sc transition. The relaxation in the sc state was slower at all temperatures without the coherence enhancement close to T-c. Nonzero nuclear polarization strongly reduced the difference between the relaxation rates in the sc and normal...

  3. Electron-hole balance and the anomalous pressure-dependent superconductivity in black phosphorus

    Science.gov (United States)

    Guo, Jing; Wang, Honghong; von Rohr, Fabian; Yi, Wei; Zhou, Yazhou; Wang, Zhe; Cai, Shu; Zhang, Shan; Li, Xiaodong; Li, Yanchun; Liu, Jing; Yang, Ke; Li, Aiguo; Jiang, Sheng; Wu, Qi; Xiang, Tao; Cava, Robert J.; Sun, Liling

    2017-12-01

    Here we report the in situ high-pressure (up to ˜50 -GPa) Hall-effect measurements on single-crystal black phosphorus. We find a strong correlation between the sign of the Hall coefficient, an indicator of the dominant carrier type, and the superconducting transition temperature (TC). Importantly, we find a change from electron-dominant to hole-dominant carriers in the simple cubic phase of phosphorus at a pressure of ˜17.2 GPa, providing an explanation for the puzzling valley it displays in its superconducting TC vs pressure phase diagram. Our results reveal that hole carriers play an important role in developing superconductivity in elemental phosphorus and the valley in TC at 18.8 GPa is associated with a Lifshitz transition.

  4. Quenching superconductivity by Zn doping in YBCO(123)

    Science.gov (United States)

    Sharma, P. K.; Samariya, A.; Dhawan, M. S.; Dolia, S. N.; Singhal, R. K.

    2013-06-01

    Polycrystalline YBa2(Cu1-XZnX)3O7-δ samples (x=0.0 to 0.06) were studied using XRD, titration, resistivity, magnetization and XPS measurements. The O2 stoichiometry (δ) is found to change on Zn substitution which affects the normal state resistivity of the system as well as the superconducting transition temperature (TC). Interestingly, the non-magnetic Zn ions also induce local magnetic moment as confirmed from the M-H curves. It is concluded that Zn doping induced change in O2 stoichiometry and the magnetic pair breaking cause a rapid suppression in superconductivity.

  5. Structure and Magnetic Interactions in FeS: A low-Tc superconductor

    Science.gov (United States)

    Kuhn, S. J.; Eskildsen, M. R.; Debeer-Schmitt, L.; Li, L.; de La Cruz, C.; Sefat, A. S.

    Tetragonal-phase iron sulfide (FeS), with the same structure as the well-known superconductor FeSe (Tc ~ 8 K), was recently discovered as a superconductor with a Tc of ~ 5 K. Although it has been difficult to synthesize this binary in pure tetragonal, crystalline, and superconducting form by various methods (e.g.), the simple low-temperature hydrothermal method yields pure FeS products. Careful composition and particle size analyses, in addition to the results of neutron diffraction and magnetization across transition temperature(s), will be presented. Preliminary results show high sensitivity of pure products to synthesis procedure, particle sizes of ~40 nm, and phase transitions in addition to Tc. We explain reasons for superconductivity.

  6. Synthesis of a Novel Energetic Heterocyclic Oxidizer with Higher Energy and Lower Sensitivity (Phase 2) Final Report CRADA No. TC02125.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Racoveanu, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-08

    This project was a continuation of work originally performed under a Phase 1 of the Small Business Technology Transfer (STIR). The success of the Phase 1 led to the award of a Phase 2 of the STIR. In Phase 1 of the STIR, the target energetic compound, 3,4-bis(4-nitro-l,2,5- oxadiazol-3yl)-1,2,5-oxadiazole-l-oxide (DNTF), was synthesized at the 5g scale and small-scale safety tests were performed. DNTF showed promising performance· and safety properties. DNTF was shown to be relatively insensitive while performing better than the current industry standard, H1vIX, in solid propellant formulations. Because of the successful research and development project involving PSI, LLNL and Aerojet in Phase I of the STIR, the sponsors wanted to obtain larger quantities of DNTF for further testing.

  7. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    Science.gov (United States)

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  8. PREFACE: ISEC 2005: The 10th International Superconductive Electronics Conference

    Science.gov (United States)

    Rogalla, Horst

    2006-05-01

    The 10th International Superconductive Electronics Conference took place in Noordwijkerhout in the Netherlands, 5-9 September 2005, not far from the birthplace of superconductivity in Leiden nearly 100 years ago. There have been many reasons to celebrate the 10th ISEC: not only was it the 20th anniversary, but also the achievements since the first conference in Tokyo in 1987 are tremendous. We have seen whole new groups of superconductive materials come into play, such as oxide superconductors with maximum Tc in excess of 100 K, carbon nanotubes, as well as the realization of new digital concepts from saturation logic to the ultra-fast RSFQ-logic. We have learned that superconductors not only show s-wave symmetries in the spatial arrangement of the order parameter, but also that d-wave dependence in oxide superconductors is now well accepted and can even be successfully applied to digital circuits. We are now used to operating SQUIDs in liquid nitrogen; fT sensitivity of SQUID magnetometers is not surprising anymore and can even be reached with oxide-superconductor based SQUIDs. Even frequency discriminating wide-band single photon detection with superconductive devices, and Josephson voltage standards with tens of thousands of junctions, nowadays belong to the daily life of advanced laboratories. ISEC has played a very important role in this development. The first conferences were held in 1987 and 1989 in Tokyo, and subsequently took place in Glasgow (UK), Boulder (USA), Nagoya (Japan), Berlin (Germany), Berkeley (USA), Osaka (Japan), Sydney (Australia), and in 2005 for the first time in the Netherlands. These conferences have provided platforms for the presentation of the research and development results of this community and for the vivid discussion of achievements and strategies for the further development of superconductive electronics. The 10th conference has played a very important role in this context. The results in laboratories show great potential and

  9. Antiferromagnetic ordering in superconducting YBa2Cu3O6.5

    DEFF Research Database (Denmark)

    Sidis, Y.; Ulrich, C.; Bourges, P.

    2001-01-01

    Commensurate antiferromagnetic ordering has been observed in the superconducting high-T-c. cuprate YBa2Cu3O6.5 (T-c = 55 K) by polarized and unpolarized elastic neutron scattering. The magnetic peak intensity exhibits a marked enhancement at T-c. Zero-field muon-spin-resonance experiments...... demonstrate that the staggered magnetization is not truly static but fluctuates on a nanosecond time scale. These results point towards an unusual spin density wave state coexisting with superconductivity....

  10. Quantum Statistical Approach to Superconductivity

    Science.gov (United States)

    Nam, Eunsoo

    The Frohlich Hamiltonian representing an interaction between electron and phonon is derived. By exchanging a virtual phonon, a system of two electrons can lower the system's total energy if the difference of their kinetic energies is less than the energy of the phonon exchanged. This is shown by using quantum mechanical perturbation theory, which is fully developed. A general theory of superconductivity is developed, starting with a BCS Hamiltonian in which the interaction strengths (V_{11}, V_{22 }, V_{12}) among and between "electron" (1) and "hole" (2) Cooper pairs are differentiated. The supercondensate is shown to be composed of equal numbers of "electron" and "hole" ground (zero-momentum) Cooper pairs with charges mp 2e.. Based on the Hamiltonian, the normal-to-super phase transition is investigated, approaching the critical temperature T_{c} from the high temperature side. Non zero momentum Cooper pairs, that is, pairs of electrons (holes) with antiparallel spins and nearly opposite momenta above T_{c } in the bulk limit, are shown to move like independent bosons with the energy momentum relation varepsilon = (1/2)upsilon_ {F}p, where upsilon_ {F} represents the Fermi velocity. We have investigated the Bose-Einstein condensation of pairons. The system of free Cooper pairs in a 3D superconductors undergoes a phase transition of the second order with the critical temperature T_{c} given byk_{B}T_{c } = (1/2)(pi^2hbar^3v_sp {F}{3}n/1.20257)^{1over3 }where n is the number density of Cooper pairs. We calculate various properties associated with superconductivity at finite temperature. We derive general expressions for the energy gaps for both quasi electrons and pairons. Based on the independent pairon model, we explain the flux quantization, London's equation and the Josephson effects, stressing the importance of the macroscopic wave -function which represents the supercondensate in motion. We derived the basic equations governing the behavior of the

  11. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  12. Role of quasi-local modes in the theory of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gor' kov, L.P.; Eliashberg, G.M.

    1987-01-01

    An analysis of experimental data is carried out in an effort to connect superconductivity in high-Tc ceramic superconductors with low-lying quasi-local modes which interact strongly with conduction electrons. It is concluded that Eliashberg's (1960) theory of superconductivity, which takes into account the delay character of the interaction, can be used to describe the new high-temperature superconductors. 18 references.

  13. Superconducting Properties in Y-doped Semimetallic Bi3O2S3 Superconductors

    Science.gov (United States)

    Kim, Gun Cheol; Cheon, Miyeon; Ahmad, Dawood; Kwon, Yong Seung; Ko, Rock Kil; Kim, Young Cheol

    2018-02-01

    We report the superconducting properties of Y-doped semimetallic Bi3O2S3 superconductors. From electrical resistivity measurements, the Tc,zero of the optimally Y-doped Bi3O2S3 was higher than that of pure Bi3O2S3. This Y content dependence of the superconducting properties in Bi3O2S3 is explained by the chemical pressure effect.

  14. Superconductivity and its mechanism in an ab initio model for electron-doped LaFeAsO.

    Science.gov (United States)

    Misawa, Takahiro; Imada, Masatoshi

    2014-12-22

    Two families of high-temperature superconductors whose critical temperatures are higher than 50 K are known. One are the copper oxides and the other are the iron-based superconductors. Comparisons of mechanisms between these two in terms of common ground as well as distinctions will greatly help in searching for higher T(c) superconductors. However, studies on mechanisms for the iron family based on first principles calculations are few. Here we first show that superconductivity emerges in the state-of-the-art numerical calculations for an ab initio multi-orbital model of an electron-doped iron-based superconductor LaFeAsO, in accordance with experimental observations. Then the mechanism of the superconductivity is identified as enhanced uniform density fluctuations by one-to-one correspondence with the instability towards inhomogeneity driven by first-order antiferromagnetic and nematic transitions. Despite many differences, certain common features with the copper oxides are also discovered in terms of the underlying orbital-selective Mottness found in the iron family.

  15. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  16. Superconductivity and their applications

    OpenAIRE

    Roque, António

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  17. Surface and Superconductivity

    Science.gov (United States)

    Gor'kov, L. P.

    2006-07-01

    Experiments reveal the existence of metallic bands at surfaces of metals and insulators. The bands can be doped externally. We review properties of surface superconductivity that may set up in such bands at low temperatures and various means of superconductivity defection. The fundamental difference as compared to the ordinary superconductivity in metals, besides its two-dimensionality lies in the absence of the center of space inversion. This results in mixing between the singlet and triplet channels of the Cooper pairing.

  18. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  19. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  20. Conventional proximity effect in bilayers of superconducting underdoped $La_{1.88}Sr_{0.12}CuO_4$ islands coated with non superconducting overdoped $La_{1.65}Sr_{0.35}CuO_4$

    OpenAIRE

    Koren, G.; Millo, O.

    2009-01-01

    Following a recent study by our group in which a large $T_c$ enhancement was reported in bilayers of the non-superconducting $La_{1.65}Sr_{0.35}CuO_4$ and superconducting $La_{1.88}Sr_{0.12}CuO_4$ films [Phys. Rev. Lett. \\textbf{101}, 057005 (2008)], we checked if a similar effect occurs when superconducting $La_{1.88}Sr_{0.12}CuO_4$ islands are coated with a continuous layer of the non superconducting $La_{1.65}Sr_{0.35}CuO_4$. We found that no such phenomenon is observed. The bare supercond...

  1. Pretreatment of Tc-Containing Waste and Its Effect on Tc-99 Leaching From Grouts

    International Nuclear Information System (INIS)

    Aloy, Albert; Kovarskaya, Elena N.; Harbour, John R.; Langton, Christine A.; Holtzscheiter, E. William

    2007-01-01

    A salt solution (doped with Tc-99), that simulates the salt waste stream to be processed at the Saltstone Production Facility, was immobilized in grout waste forms with and without (1) ground granulated blast furnace slag and (2) pretreatment with iron salts. The degree of immobilization of Tc-99 was measured through monolithic and crushed grout leaching tests. Although Fe (+2) was shown to be effective in reducing Tc-99 to the +4 state, the strong reducing nature of the blast furnace slag present in the grout formulation dominated the reduction of Tc-99 in the cured grouts. An effective diffusion coefficient of 4.75 x 10 -12 (Leach Index of 11.4) was measured using the ANSI/ANS-16.1 protocol. The leaching results show that, even in the presence of a concentrated salt solution, blast furnace slag can effectively reduce pertechnetate to the immobile +4 oxidation state. The measured diffusivity was introduced into a flow and transport model (PORFLOW) to calculate the release of Tc-99 from a Saltstone Vault as a function of hydraulic conductivity of the matrix. (authors)

  2. Thermoelectric power of (Cu0.5Tl0.5)-1223 superconducting phase added with BaSnO3 nanoparticles

    Science.gov (United States)

    Srour, A.; Malaeb, W.; Marhaba, S.; Awad, R.

    2017-07-01

    In this study, we report the thermoelectric power (TEP) measurements of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ added with BaSnO3 nanoparticles. BaSnO3 nanoparticles were prepared by chemical co-precipitation method, while (BaSnO3)x/(CuT1)-1223 superconducting samples with 0.00 ≤ x ≤ 1.50 wt% were prepared using the solid-state reaction method. The standard four-probe technique was applied to measure DC electrical resistivity in the temperature range from 300 to 77 K. Superconducting transition temperature (Tc) increases up to 117.5 for x = 0.25 wt.% and then it decreases with further x addition. The TEP coefficient was measured as a function of temperature in a wide temperature range from ∼77 K (liquid nitrogen temperature) up to 280 K using a standard differential technique. The behavior of the obtained TEP coefficient is suit with high-Tc copper-oxide superconductors. The results were investigated according to two-band model with an extra linear term. Several parameters such as the pseudo-gap temperature (T*), Fermi energy (EF) and Fermi temperature (TF) values were calculated and discussed in terms of nanoparticles BaSnO3 addition.

  3. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  4. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  5. Terahertz superconducting plasmonic hole array.

    Science.gov (United States)

    Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Wu, Judy; Zhang, Weili

    2010-11-01

    We demonstrate a superconductor array of subwavelength holes with active thermal control over the resonant transmission induced by surface plasmon polaritons. The array was lithographically fabricated on a high-temperature yttrium barium copper oxide superconductor and characterized by terahertz time-domain spectroscopy. We observe a clear transition from a virtual excitation of the surface plasmon mode to a real surface plasmon mode. The highly controllable superconducting plasmonic crystals may find promising applications in the design of low-loss, large- dynamic-range amplitude modulation and surface-plasmon-based terahertz devices.

  6. Overdoped cuprates with high-temperature superconducting transitions

    Directory of Open Access Journals (Sweden)

    M. Marezio

    2013-08-01

    Full Text Available Evidence for high-Tc cuprate superconductivity is found in a region of the phase diagram where non-superconducting Fermi liquid metals are expected. Cu valences estimated independently from both x-ray absorption near-edge spectroscopy and bond valence sum measurements are >2.3, and are in close agreement with each other for structures in the homologous series (Cu0.75Mo0.25Sr2(Y,CesCu2O5+2s+δ with s = 1, 2, 3, and 4. The record short apical oxygen distance, at odds with current theory, suggests the possibility of a new pairing mechanism. The possibility that the charge reservoir layers are able to screen long range coulomb interactions and thus enhance Tc is discussed.

  7. International Discussion Meeting on High-Tc Superconductors

    CERN Document Server

    1988-01-01

    In the past two years conferences on superconductivity have been characterized by the attendance of hundreds of scientists. Consequently, the organizers were forced to schedule numerous parallel sessions and poster presentations with an almost unsurveyable amount of information. It was, therefore, felt that a more informal get-together, providing ample time for a thourough discussion of some topics of current interest in high-temperature superconductivity, was timely and benefitial for leading scientists as well as for newcomers in the field. The present volume contains the majority of papers presented at the International Discussion Meeting on High-Tc Superconductors held at the Mauterndorf Castle in the Austrian Alps from February 7 to 11, 1988. Each subject was introduced in review form by a few invited speakers and then discussed together with the contributed poster presentations. These discussion sessions chaired by selected scientists turned out to be the highlights of the meeting, not only because all ...

  8. Superconductivity up to 114 K in the Bi-Al-Ca-Sr-Cu-O compound system without rare-earth elements

    Science.gov (United States)

    Chu, C. W.; Bechtold, J.; Gao, L.; Hor, P. H.; Huang, Z. J.

    1988-01-01

    Stable superconductivity up to 114 K has been reproducibly detected in Bi-Al-Ca-Sr-Cu-O multiphase systems without any rare-earth elements. Pressure has only a slight positive effect on T(c). These observations provide an extra material base for the study of the mechanism of high-temperature superconductivity and also the prospect of reduced material cost for future applications of superconductivity.

  9. Laser-excited photoemission spectroscopy study of superconducting boron-doped diamond

    Directory of Open Access Journals (Sweden)

    K. Ishizaka, R. Eguchi, S. Tsuda, T. Kiss, T. Shimojima, T. Yokoya, S. Shin, T. Togashi, S. Watanabe, C.-T. Chen, C.Q. Zhang, Y. Takano, M. Nagao, I. Sakaguchi, T. Takenouchi and H. Kawarada

    2006-01-01

    Full Text Available We have investigated the low-energy electronic state of boron-doped diamond thin film by the laser-excited photoemission spectroscopy. A clear Fermi-edge is observed for samples doped above the semiconductor–metal boundary, together with the characteristic structures at 150×n meV possibly due to the strong electron–lattice coupling effect. In addition, for the superconducting sample, we observed a shift of the leading edge below Tc indicative of a superconducting gap opening. We discuss the electron–lattice coupling and the superconductivity in doped diamond.

  10. Superconductivity versus quantum criticality: Effects of thermal fluctuations

    Science.gov (United States)

    Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo

    2018-02-01

    We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.

  11. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  12. Large superconducting magnets

    CERN Document Server

    Pérot, J

    1981-01-01

    Discusses the use of large superconducting magnets in the areas of particle physics, thermonuclear fusion, and magnetohydrodynamics. In addition to considering the physics of the superconducting state, the article considers machines such as BEBC (Big European Bubble Chamber) at CERN, the LINAC at SLAC and possible Tokamak applications. The future application of superconductors to high speed trains is discussed. (0 refs).

  13. Superconducting cavities for LEP

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  14. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  15. Method of forming an oxide superconducting thin film having an R1A2C3 crystalline phase over an R2A1C1 crystalline phase

    International Nuclear Information System (INIS)

    Lelental, M.; Romanofsky, H.J.

    1992-01-01

    This patent describes a process which comprises forming a mixed rare earth alkaline earth copper oxide layer on a substrate and converting the mixed rare earth alkaline earth copper oxide layer to an electrically conductive layer. It comprises crystalline R 1 A 2 C 3 oxide phase by heating in the presence of oxygen, wherein rare earth and R is in each instance chosen from among yttrium, lanthanum, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium and alkaline earth and A is in each instance chosen from among calcium, strontium and barium, characterized in that a crystalline R 2 A 1 C 1 oxide phase is first formed as a layer on the substrate and the crystalline R 1 A 2 C 3 oxide phase is formed over the crystalline R 2 A 1 C 1 oxide phase by coating a mixed rare earth alkaline earth copper oxide on the crystalline R 2 A 1 C 1 oxide phase and heating the mixed rare earth alkaline earth copper oxide to a temperature of at least 1000 degrees C

  16. Qubit compatible superconducting interconnects

    Science.gov (United States)

    Foxen, B.; Mutus, J. Y.; Lucero, E.; Graff, R.; Megrant, A.; Chen, Yu; Quintana, C.; Burkett, B.; Kelly, J.; Jeffrey, E.; Yang, Yan; Yu, Anthony; Arya, K.; Barends, R.; Chen, Zijun; Chiaro, B.; Dunsworth, A.; Fowler, A.; Gidney, C.; Giustina, M.; Huang, T.; Klimov, P.; Neeley, M.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Martinis, John M.

    2018-01-01

    We present a fabrication process for fully superconducting interconnects compatible with superconducting qubit technology. These interconnects allow for the three dimensional integration of quantum circuits without introducing lossy amorphous dielectrics. They are composed of indium bumps several microns tall separated from an aluminum base layer by titanium nitride which serves as a diffusion barrier. We measure the whole structure to be superconducting (transition temperature of 1.1 K), limited by the aluminum. These interconnects have an average critical current of 26.8 mA, and mechanical shear and thermal cycle testing indicate that these devices are mechanically robust. Our process provides a method that reliably yields superconducting interconnects suitable for use with superconducting qubits.

  17. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...

  18. Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features

    Science.gov (United States)

    Sanna, Antonio; Flores-Livas, José A.; Davydov, Arkadiy; Profeta, Gianni; Dewhurst, Kay; Sharma, Sangeeta; Gross, E. K. U.

    2018-04-01

    We present an application of Eliashberg theory of superconductivity to study a set of novel superconducting systems with a wide range of structural and chemical properties. The set includes three intercalated group-IV honeycomb layered structures, SH3 at 200 GPa (the superconductor with the highest measured critical temperature), the similar system SeH3 at 150 GPa, and a lithium doped mono-layer of black phosphorus. The theoretical approach we adopt is a recently developed, fully ab initio Eliashberg approach that takes into account the Coulomb interaction in a full energy-resolved fashion avoiding any free parameters like μ*. This method provides reasonable estimations of superconducting properties, including TC and the excitation spectra of superconductors.

  19. Plasmonic Behavior of Deep Sub-Wavelength Superconducting RF Metamaterials

    Science.gov (United States)

    Anlage, Steven; Kurter, Cihan; Sarytchev, Liza; Abrahams, John; Bennett, C.; Lan, Tian; Zhuravel, A. P.; Ustinov, A. V.

    2011-03-01

    We have designed and built ultra-small RF metamaterials with magnetically active spiral elements made of superconducting Nb films. RF transmission measurements on single, 1-D and 2-D arrays of spirals show robust magnetic response when Nb is in the superconducting state at frequencies as low as 14 MHz (corresponding to wavelength ~ 3000 * 'atom' size). Numerical simulations capture the main features of the experimental spectra. The resonant features are tunable via variations in temperature and RF magnetic field. As temperature approaches Tc , the superconducting kinetic inductance contribution to the total inductance increases, placing this RF metamaterial in the plasmonic limit. We study this approach to the plasmonic limit and compare to the analogous situation of frequency approaching the plasma edge in normal metal metamaterials. Supported by ONR through Grant No. N000140811058 and CNAM.

  20. Anomalous superconductivity in the tJ model; moment approach

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Rodriguez-Nunez, J.J.

    1997-01-01

    By extending the moment approach of Nolting (Z, Phys, 225 (1972) 25) in the superconducting phase, we have constructed the one-particle spectral functions (diagonal and off-diagonal) for the tJ model in any dimensions. We propose that both the diagonal and the off-diagonal spectral functions...... Hartree shift which in the end result enlarges the bandwidth of the free carriers allowing us to take relative high values of J/t and allowing superconductivity to live in the T-c-rho phase diagram, in agreement with numerical calculations in a cluster, We have calculated the static spin susceptibility......, chi(T), and the specific heat, C-v(T), within the moment approach. We find that all the relevant physical quantities show the signature of superconductivity at T-c in the form of kinks (anomalous behavior) or jumps, for low density, in agreement with recent published literature, showing a generic...

  1. Effect of disorder on the superconducting properties of materials

    International Nuclear Information System (INIS)

    Brouers, F.; Derenne, M.

    1982-01-01

    The effect of the variation of the density states at the Fermi level on the critical superconductivity temperature TC of transition metal compounds is studied. This paper suggests using the technique of calculating the 5-fold degenerate d-band density of states from a continued fraction extension of a tight-binding Green function to study the relative importance of one dimensionality chain coupling, three dimensional interactions and the effect of disorder on the electronic and superconducting properties of complex phase and in particular A15 phases. The first results obtained for A15 phases density of states indicate that an extension of the suggested method can be of great interest to analyze the effect of disorder on superconductivity properties of complex phases

  2. Superconductivity in the PbO-type structure alpha-FeSe.

    Science.gov (United States)

    Hsu, Fong-Chi; Luo, Jiu-Yong; Yeh, Kuo-Wei; Chen, Ta-Kun; Huang, Tzu-Wen; Wu, Phillip M; Lee, Yong-Chi; Huang, Yi-Lin; Chu, Yan-Yi; Yan, Der-Chung; Wu, Maw-Kuen

    2008-09-23

    The recent discovery of superconductivity with relatively high transition temperature (Tc) in the layered iron-based quaternary oxypnictides La[O(1-x)F(x)] FeAs by Kamihara et al. [Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05-0.12) with Tc = 26 K. J Am Chem Soc 130:3296-3297.] was a real surprise and has generated tremendous interest. Although superconductivity exists in alloy that contains the element Fe, LaOMPn (with M = Fe, Ni; and Pn = P and As) is the first system where Fe plays the key role to the occurrence of superconductivity. LaOMPn has a layered crystal structure with an Fe-based plane. It is quite natural to search whether there exists other Fe based planar compounds that exhibit superconductivity. Here, we report the observation of superconductivity with zero-resistance transition temperature at 8 K in the PbO-type alpha-FeSe compound. A key observation is that the clean superconducting phase exists only in those samples prepared with intentional Se deficiency. FeSe, compared with LaOFeAs, is less toxic and much easier to handle. What is truly striking is that this compound has the same, perhaps simpler, planar crystal sublattice as the layered oxypnictides. Therefore, this result provides an opportunity to better understand the underlying mechanism of superconductivity in this class of unconventional superconductors.

  3. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    Science.gov (United States)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-09-08

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  4. Characterization and microstructure control of sheathed superconducting bismuth strontium calcium copper oxide thick films by AC-electric-field assisted electrophoretic deposition

    Science.gov (United States)

    Yue, Cheng-Feng Joel

    The goal of this research is to fabricate and characterize the Ag-sheathed BiSrCaCuO (BSCCO) tapes using a combination of alternating current electric field assisted electrophoretic deposition (ACEPD) and thermomechanical consolidation (TMC) technique. In this method, an alternating current (AC) electric field was applied in conjunction to the direct current (DC) electric field. This AC field parallel to substrate surface was found to assist c-axis texturing of BSCCO film. Higher uni-axial pressure and temperature for thermomechanical consolidation enhance and reduce the size and number density of micro-pores. The effect of processing variables on the microstructure of BSCCO tapes was investigated in detail. The high AC field operating at high frequencies and low DC field were found to improve the c-axis texture. To improve the c-axis texture, several novel concepts were investigated in this research, namely, (i) AC-assisted EPD and (ii) thermomechanical consolidation. Such improved green film microstructure led to better superconductivity stability. The introduction of Ag-particle interlayer into the middle of BSCCO film forms the strong two-dimensional Ag-BSCCO composite, leading to the improved fracture strength and adhesion. T-peel fracture test, scanning electron microscopy, x-ray diffractometry, and SQUID magnetometry characterization results were correlated to c-axis texturing enhancement and BSCCO tape/wire processing parameters. The effects of superconductivity changes by pre-sintering microstructure control with thermomechanical consolidation parameters were discussed. The AC field assisted electrophoretic deposition mechanism for c-axis texture enhancement was modeled by simulating the trajectory of anisotropic particle in suspension. Differential equations to demonstrate the angular motion behavior of the particle was developed. Good agreement was observed before the experimental results and numerical calculations.

  5. Applications of superconductivity to nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sasao, Nobuyuki; Kubota, Jun

    1988-01-01

    As the application of superconductivity in nuclear fuel cycle, the plasma process of uranium enrichment, the magnetic separation techniques for fuel reprocessing, waste treatment and so on, and the application of liquid metal MHD to FBRs are explained. Besides, the investigation of rare earth which is the main elements of oxide superconductive materials in the aspect of resources, and the examination of the possibility of actinide superconductive materials including uranium which is a nuclear fuel material are carried out. Through these studies, it was found that by the adoption of superconductivity, that which receives the economical and technical favors most is nuclear power. Nuclearfuel creates rare earth by nuclear fission reaction when it burns in a reactor, and there is the possibility that it becomes the creation of valuable resources for Japan where natural resources are short. The uranium enrichment by the isotope separation using plasma electromagnetic effect was examined in USA, but stopped. Magnetic separation utilizes the gradient of a magnetic field to separate superfine particles, and many applications are conceivable. In the case of liquid metal MHD, the electric conductivity is very high, accordingly the flow velocity and fluid temperature may be relatively low. The development of a superconductive electromagnetic pump for a FBR is discussed. (Kako, I.)

  6. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  7. Superconducting transition temperature: Interacting Fermi gas and phonon mechanisms in the nonadiabatic regime

    Science.gov (United States)

    Gor'kov, Lev P.

    2016-02-01

    We analyze the mathematical structure of equations for temperature TC of the superconductivity transition in a gas of interacting Fermi particles or at the phonon-mediated pairing in a metal in the case of nonadiabatic conditions ω0≥EF , i.e., when the characteristic phonon frequency ω0 is comparable or larger than the Fermi energy EF. As the methods of calculating TC in common superconductors are not applicable in the nonadiabatic regime, the integral equations for TC are derived in the logarithmic approximation. The new equations contain no divergent terms in the antiadiabatic limit. The results can be immediately generalized to anisotropic band superconductors.

  8. Induced lattice strain in epitaxial Fe-based superconducting films on CaF2 substrates: A comparative study of the microstructures of SmFeAs(O,F), Ba(Fe,Co)2As2, and FeTe0.5Se0.5

    Science.gov (United States)

    Ichinose, Ataru; Tsukada, Ichiro; Nabeshima, Fuyuki; Imai, Yoshinori; Maeda, Atsutaka; Kurth, Fritz; Holzapfel, Bernhard; Iida, Kazumasa; Ueda, Shinya; Naito, Michio

    2014-03-01

    The microstructures of SmFeAs(O,F), Ba(Fe,Co)2As2, and FeTe0.5Se0.5 prepared on CaF2 substrates were investigated using transmission electron microscopy. The SmFeAs(O,F)/CaF2 interface is steep, without a disordered layer. By contrast, a chemical reaction occurs at the interface in the cases of Ba(Fe,Co)2As2 and FeTe0.5Se0.5. The reaction layers are located on opposite sides of the interface for Ba(Fe,Co)2As2 and FeTe0.5Se0.5. We found that the lattice distortion of the three superconducting films on the CaF2 substrates enhances the TC values compared with films prepared on oxide substrates. The origin of this lattice deformation varies depending on the superconducting material.

  9. Mossbauer studies of high-Tc oxides

    International Nuclear Information System (INIS)

    Shinjo, T.; Nasu, S.

    1989-01-01

    Mossbauer spectroscopy has been known as one of the useful experimental tools in fundamental solid state physics. Main parameters which the authors obtain from Mossbauer spectra are: isomer shift, quadrupole interaction, magnetic hyperfine interaction, and recoilless fraction. An electronic structure of the relevant atom is argued from the value of isomer shift and in usual ionic cases the valance state can be determined unambiguously. If a magnetic hyperfine splitting is observed, it is helpful for confirming the existence of magnetic order. From the temperature dependence of hyperfine field, the magnetic transition temperatures is estimated

  10. Introduction to superconductivity

    CERN Document Server

    Darriulat, Pierre

    1998-01-01

    The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.

  11. Superconducting tin core fiber

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary [Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Blacksburg, VA (United States)

    2014-11-13

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  12. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  13. The chronicle of superconductivity

    International Nuclear Information System (INIS)

    Bassalo, J.M.F.

    1981-01-01

    The chronicle of the superconductivity is shown, since the first observation made of Kamerlingh-Onnes, in the begining of our century about superconductivity effects, by describing several models and theories made by the physicists, by trying to explain the phenomenons referred about supercurrent, up to the modern BCS Theory. Our fundamental purpose rather than to make a historical-philosophical evolution about the superconductivity is only to make a sequence as who made what, when and how, by using the Solla-Price meaning. (Author) [pt

  14. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  15. Superconducting materials and magnets

    International Nuclear Information System (INIS)

    1991-04-01

    The Technical Committee Meeting on Superconducting Materials and Magnets was convened by the IAEA and held by invitation of the Japanese government on September 4-6, 1989 in Tokyo. The meeting was hosted by the National Research Institute for Metals. Topics of the conference related to superconducting magnets and technology with particular application to fusion and the superconducting supercollider. Technology using both high and low-temperature superconductors was discussed. This document is a compendium of the papers presented at the meeting. Refs, figs and tabs

  16. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  17. Extended abstracts of the 12th JAERI workshop on high-Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hojou, Kiichi; Okayasu, Satoru; Sasase, Masato [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishida, Takekazu [Osaka Prefectual Univ., Sakai (JP)] (eds.)

    2001-03-01

    This workshop was held on December 7-8, 2000 at JAERI (Tokai). The research group at JAERI shares a responsibility for material modification of high-Tc superconductors by irradiation in 'the multi-core project II of the high temperature superconducting material research' organized by STA (Science and Technology Agency) of Japan. This report contains the extended abstracts of workshop presentations covering basic theories, various experimental results and material improvement studies of the superconductivity by high energy ion irradiation. The twelve presentations of the workshop were devoted to a mini symposium where the direct observations of vortices were discussed in view of the various sophisticated techniques. (author)

  18. Extended abstracts of the 12th JAERI workshop on high-Tc superconductors

    International Nuclear Information System (INIS)

    Hojou, Kiichi; Okayasu, Satoru; Sasase, Masato

    2001-03-01

    This workshop was held on December 7-8, 2000 at JAERI (Tokai). The research group at JAERI shares a responsibility for material modification of high-Tc superconductors by irradiation in 'the multi-core project II of the high temperature superconducting material research' organized by STA (Science and Technology Agency) of Japan. This report contains the extended abstracts of workshop presentations covering basic theories, various experimental results and material improvement studies of the superconductivity by high energy ion irradiation. The twelve presentations of the workshop were devoted to a mini symposium where the direct observations of vortices were discussed in view of the various sophisticated techniques. (author)

  19. Superconductivity in SnO: A Nonmagnetic Analog to Fe-Based Superconductors?

    DEFF Research Database (Denmark)

    Forthaus, M. K.; Sengupta, K.; Heyer, O.

    2010-01-01

    and superconductivity disappears for p≳16  GPa. It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of Tc...

  20. Inhomogeneous Phase Effect of Smart Meta-Superconducting MgB2

    Science.gov (United States)

    Li, Yongbo; Chen, Honggang; Qi, Weichang; Chen, Guowei; Zhao, Xiaopeng

    2018-02-01

    The inhomogeneous phase of a smart meta-superconductor has a great effect on its superconductivity. In this paper, the effect of concentration, dimensions, electroluminescence (EL) intensity, and distribution of the inhomogeneous phase on the superconducting critical temperature (TC) has been systematically investigated. An ex situ solid sintering was utilized to prepare smart meta-superconducting MgB2 doped with six kinds of electroluminescent materials, such as YVO4{:}Eu^{3+} and Y2O3{:}Eu^{3+} flakes. Elemental mappings through energy dispersive spectroscopy (EDS) show that the inhomogeneous phase is comparatively uniformly dispersed around the MgB2 particles; thus V, Y, and Eu were accumulated at a small area. The measurement results show that the optimum doping concentration of the meta-superconducting MgB2 is 2.0 wt%. The offset temperature (TC^{{ off}} ) of the sample doped with 2.0 wt% dopant A is 1.6 K higher than that of pure MgB2 . The improvement in TC^{{ off}} is likely related to the sizes, thickness, and EL intensity of the inhomogeneous phase of MgB2 smart meta-superconductor. This experiment provides a novel approach to enhance TC.

  1. Strain induced superconductivity in the parent compound BaFe2As2

    Science.gov (United States)

    Engelmann, J.; Grinenko, V.; Chekhonin, P.; Skrotzki, W.; Efremov, D. V.; Oswald, S.; Iida, K.; Hühne, R.; Hänisch, J.; Hoffmann, M.; Kurth, F.; Schultz, L.; Holzapfel, B.

    2013-12-01

    The discovery of superconductivity with a transition temperature, Tc, up to 65 K in single-layer FeSe (bulk Tc=8 K) films grown on SrTiO3 substrates has attracted special attention to Fe-based thin films. The high Tc is a consequence of the combined effect of electron transfer from the oxygen-vacant substrate to the FeSe thin film and lattice tensile strain. Here we demonstrate the realization of superconductivity in the parent compound BaFe2As2 (no bulk Tc) just by tensile lattice strain without charge doping. We investigate the interplay between strain and superconductivity in epitaxial BaFe2As2 thin films on Fe-buffered MgAl2O4 single crystalline substrates. The strong interfacial bonding between Fe and the FeAs sublattice increases the Fe-Fe distance due to the lattice misfit, which leads to a suppression of the antiferromagnetic spin density wave and induces superconductivity with bulk Tc≈10 K. These results highlight the role of structural changes in controlling the phase diagram of Fe-based superconductors.

  2. Dumbbells of five-connected Ge atoms and superconductivity in CaGe3.

    Science.gov (United States)

    Schnelle, Walter; Ormeci, Alim; Wosylus, Aron; Meier, Katrin; Grin, Yuri; Schwarz, Ulrich

    2012-05-21

    CaGe(3) has been synthesized at high-pressure, high-temperature conditions. The atomic pattern comprises intricate germanium layers of condensed moleculelike dimers. Below T(c) = 6.8 K, type II superconductivity with moderately strong electron-phonon coupling is observed.

  3. Superconductivity and magnetic order in the noncentrosymmetric half-Heusler compound ErPdBi

    NARCIS (Netherlands)

    Pan, Y.; Nikitin, A.M.; Bay, T.V.; Huang, Y.K.; Paulsen, C.; Yan, B.H.; de Visser, A.

    2013-01-01

    We report superconductivity at Tc = 1.22 K and magnetic order at TN = 1.06\\ K in the semimetallic noncentrosymmetric half-Heusler compound ErPdBi. The upper critical field, Bc2, has an unusual quasi-linear temperature variation and reaches a value of 1.6 T for T - 0 . Magnetic order is found below

  4. Superconductivity and its devices

    International Nuclear Information System (INIS)

    Forbes, D.S.

    1981-01-01

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles

  5. Superconductivity: Heike's heritage

    NARCIS (Netherlands)

    van der Marel, D.; Golden, M.

    2011-01-01

    A century ago, Heike Kamerlingh Onnes discovered superconductivity. And yet, despite the conventional superconductors being understood, the list of unconventional superconductors is growing — for which unconventional theories may be required.

  6. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  7. Industrial applied superconductivity

    International Nuclear Information System (INIS)

    Sabrie, J.L.

    1984-01-01

    This paper reviews the main applications of superconductivity in D.C. in variable current and in A.C. The existing markets are now worth the effort of producing commercial superconductors and of developing applications [fr

  8. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  9. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  10. Anomalous magnetism of superconducting Mg-doped InN film

    Directory of Open Access Journals (Sweden)

    P. H. Chang

    2016-02-01

    Full Text Available We report on the Meissner effect of Mg-doped InN film with superconducting transition onset temperature Tc,onset of 5 K. Mg-doped InN is magnetically ordered and exhibits a simultaneous first-order magnetic and electric transition near 50 K. Its behavior is similar to that of iron-based superconductors. A strong correlation is proposed to exist between structural distortion and superconductivity when Mg is doped into InN. The suppression of magnetic ordering close to Tc by doping is further demonstrated by anisotropic magnetoresistance and M-H measurements. The findings suggest that the superconducting mechanism in the system may not be conventional BCS.

  11. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  12. Electron pairing without superconductivity

    Science.gov (United States)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  13. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  14. Superconductivity in transparent zinc-doped In2O3 films having low carrier density

    Directory of Open Access Journals (Sweden)

    Kazumasa Makise, Nobuhito Kokubo, Satoshi Takada, Takashi Yamaguti, Syunsuke Ogura, Kazumasa Yamada, Bunjyu Shinozaki, Koki Yano, Kazuyoshi Inoue and Hiroaki Nakamura

    2008-01-01

    Full Text Available Thin polycrystalline zinc-doped indium oxide (In2O3–ZnO films were prepared by post-annealing amorphous films with various weight concentrations x of ZnO in the range 0≤x ≤0.06. We have studied the dependences of the resistivity ρ and Hall coefficient on temperature T and magnetic field H in the range 0.5≤T ≤300 K, H≤6 Tfor 350 nm films annealed in air. Films with 0≤x≤0.03 show the superconducting resistive transition. The transition temperature Tc is below 3.3 K and the carrier density n is about 1025–1026 m−3. The annealed In2O3–ZnO films were examined by transmission electron microscopy and x-ray diffraction analysis revealing that the crystallinity of the films depends on the annealing time. We studied the upper critical magnetic field Hc2 (T for the film with x = 0.01. From the slope of dHc2 /dT, we obtain the coherence length ξ (0 ≈ 10 nm at T = 0 K and a coefficient of electronic heat capacity that is small compared with those of other oxide materials.

  15. Availability of {sup 99}Tc in undisturbed soil cores

    Energy Technology Data Exchange (ETDEWEB)

    Denys, Sebastien; Echevarria, Guillaume E-mail: guillaume.echevarria@ensaia.inpl-nancy.fr; Florentin, Louis; Leclerc-Cessac, Elisabeth; Morel, Jean-Louis

    2003-07-01

    Models for safety assessment of radioactive waste repositories need accurate values of the soil-to-plant transfer of radionuclides. In oxidizing environments, {sup 99}Tc is expected to occur as pertechnetate ({sup 99}TcO{sub 4}{sup -}). Due to its high mobility, leaching of this element in the field might be important, potentially affecting the reliability of estimated transfer parameters of {sup 99}Tc as measured in closed experimental systems such as hydroponics or pot experiments. The aim of this experiment was to measure the leaching of {sup 99}Tc in undisturbed irrigated soil cores under cultivation as well as plant uptake and to study the possible competition between the two transfer pathways. Undisturbed soil cores (50x50 cm) were sampled from a Rendzic Leptosol (R), a colluvial Fluvic Cambisol (F) and a Dystric Cambisol (D) using PVC tubes (three cores sampled per soil type). Each core was equipped with a leachate collector at the bottom, allowing the monitoring of {sup 99}Tc leaching through the cores. Cores were placed in a greenhouse and maize (Zea mays L., cv. DEA, Pioneer[reg]) was sown. After 135 d, maize was harvested and radioactivity determined in both plant and water samples. Results showed that during the growing period, leaching of {sup 99}Tc was limited, due to the high evapotranspiration rate of maize. After harvest, leaching of {sup 99}Tc went on because of the absence of evapotranspiration. Effective uptake (EU) of {sup 99}Tc in leaves and grains was calculated. EU reached 70% of the input in the leaves and was not significantly different among soils. These results confirmed those obtained from pot experiments, even though leaching was allowed to occur in close-to-reality hydraulical conditions. As a consequence, it was concluded that pot experiments are an adequate surrogate for more complex 'close-to-reality' experimental systems for measuring transfer factors.

  16. Energy gap evolution across the superconductivity dome in single crystals of (Ba1−xKx)Fe2As2

    Science.gov (United States)

    Cho, Kyuil; Kończykowski, Marcin; Teknowijoyo, Serafim; Tanatar, Makariy A.; Liu, Yong; Lograsso, Thomas A.; Straszheim, Warren E.; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter J.; Prozorov, Ruslan

    2016-01-01

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba1−xKx)Fe2As2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ Tn, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system. PMID:27704046

  17. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    Science.gov (United States)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc =

  18. Concentration of 99Tc in seawater by coprecipitation with iron hydroxide

    International Nuclear Information System (INIS)

    Momoshima, Noriyuki; Eto, Ichiro; Muhammad Sayad; Takashima, Yoshimasa

    1991-01-01

    A method for accumulation of 99 Tc in seawater has been developed. Technetium tracer in +VII oxidation state was added to the seawater together with reducing agent, potassium pyrosulfite, and coprecipitation agent, ferric chloride. After reduction of Tc(VII) at pH 4, Tc(IV) was coprecipitated as iron hydroxide by addition of sodium hydroxide to pH 9. The reduction and coprecipitation was quantitative and overall recovery of Tc was more than 98%. The green color of iron precipitate formed at pH 9 suggested that Tc(VII) as well as ferric ion was reduced under this condition. Adsorption of Tc(IV), however, was poor for iron hydroxide which was prepared in advance indicating active surface of freshly precipitated iron hydroxide is necessary for quantitative recovery of Tc(IV). A repeating coprecipitation technique was examined for enrichment of Tc in seawater that the same iron was used repeatedly as coprecipitater. After separation of iron hydroxide with Tc(IV) from supernatant, the precipitate was dissolved by addition of acid and then new seawater which contained reducing agent and Tc(VII) was added. Reduction and coprecipitation was again carried out. Good recovery was attained for 7 repeats. The proposed repeating coprecipitation technique was applicable to a large amount of seawater without increasing the amount of iron hydroxide which is subjected to radiochemical analysis. (author)

  19. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher

    Science.gov (United States)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal

    2017-10-01

    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  20. Superconducting (YBa2Cu3O7-δ) and manganite (La0.7Sr0.3MnO3) oxide thin film based devices

    International Nuclear Information System (INIS)

    Mechin, Laurence

    2005-01-01

    This manuscript presents my research activity since my PhD thesis defended in 1993. I mainly worked on two types of oxides: YBCO et LSMO. I always kept in mind the development of devices as a whole, i.e. from the thin film to the device characterization. One part of my work has been devoted to the study of structural, electrical or magnetic properties of the thin films in order to optimize deposition conditions. Both YBCO and LSMO oxides present a perovskite structure and require similar deposition conditions (700 - 750 C in O 2 pressure). I used three deposition methods: pulsed laser deposition, on axis high pressure sputtering and RF off axis sputtering. (author)

  1. Superconducting emitters of THz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Welp, Ulrich; Kadowaki, Kazuo; Kleiner, Reinhold

    2013-08-29

    Layered superconductors such as the copper-oxide high-temperature superconductor Bi2Sr2CaCu2O8+δ are emerging as compact sources of coherent continuous-wave electromagnetic radiation in the subterahertz and terahertz frequency ranges. The basis of their operation is the Josephson effect, which intrinsically occurs between the superconducting layers. The Josephson effect naturally converts a direct-current voltage into a high-frequency electric current. Therefore, a unique property of the devices reviewed here is the wide tunability of their frequency by varying the bias voltage. Recently, emission powers of free-space radiation of several hundreds of microwatts and emission linewidths as low as 6 MHz at 600 GHz have been achieved. These devices are promising for new applications in imaging, medical diagnostics, spectroscopy and security.

  2. Interplay between superconductivity and magnetism in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey V [University of Wisconsin

    2015-06-10

    fermions, understand what sets the upper scale for attractive interaction, compute T_c, and then obtain and solve matrix non-linear gap equation for spin-mediated pairing and study various feedbacks from the pairing on fermions on ARPES spectra, optical and thermal conductivity, and other observables, The problems I have chosen are quite generic, and the understanding of magnetically-mediated superconductivity in the strong-coupling regime will not only advance the theory of superconductivity in FeSCs, but will contribute to a generic understanding of the pairing of fermions near quantum-critical points -- the problems ranging from s-wave pairing by soft optical phonons to to color superconductivity of quarks mediated by a gluon exchange.

  3. Modern trends in superconductivity and superfluidity

    CERN Document Server

    Kagan, M Yu

    2013-01-01

    This book concisely presents the latest trends in the physics of superconductivity and superfluidity and magnetism in novel systems, as well as the problem of BCS-BEC crossover in ultracold quantum gases and high-Tc superconductors. It further illuminates the intensive exchange of ideas between these closely related fields of condensed matter physics over the last 30 years of their dynamic development. The content is based on the author’s original findings obtained at the Kapitza Institute, as well as advanced lecture courses he held at the Moscow Engineering Physical Institute, Amsterdam University, Loughborough University and LPTMS Orsay between 1994 and 2011. In addition to the findings of his group, the author discusses the most recent concepts in these fields, obtained both in Russia and in the West. The book consists of 16 chapters which are divided into four parts. The first part describes recent developments in superfluid hydrodynamics of quantum fluids and solids, including the fashionable subject...

  4. On the superconductivity of vanadium based alloys

    International Nuclear Information System (INIS)

    Brouers, F.; Rest, J. Van der

    1984-01-01

    The electron density of states of solid solutions of vanadium based transition metal alloys V 90 X 10 is computed with the aim of calculating the superconducting transition temperature using the McMillan formula. As observed experimentally for X on the left hand side of V in the periodic table, one obtains an increase of Tc while for X on the right hand side of V the critical temperature decreases. The detailed comparison with experiments indicate that when the bandwidths of the two constituents are different, one cannot neglect the variation of the electron-phonon interactions. Another important conclusion is that for alloys which are in the split-band limit like VAu, VPd and VPt, the agreement with experimental data can be obtained only by assuming that these alloys have a short-range order favouring clusters of pure vanadium. (Author) [pt

  5. Superconductivity transformers in power systems

    International Nuclear Information System (INIS)

    Martini, L.; Bocchi, M.; De Nigris, M.; Morandi, A.; Trevisan, L.; Fabbri, M.; Ribani, P.; Negrini, F.

    2008-01-01

    Transformers in superconducting materials at high temperatures offer many advantages in economic, environmental and functional aspects, compared to traditional transformers. Are presented the potentials of superconducting transformers available, aspects of design and the international state of the art [it

  6. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  7. Fullerides - Superconductivity at the limit

    NARCIS (Netherlands)

    Palstra, Thomas T. M.

    The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.

  8. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  9. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  10. Tc: chemistry and radiopharmaceuticals: a prospectus

    International Nuclear Information System (INIS)

    Tulip, T.H.

    1987-01-01

    The recent explosion in technetium chemistry evident in this symposium promises to continue unabated. As in the past, radiopharmaceutical applications will lead to new Tc chemistry. In this lecture the author will discuss those areas which appear most fertile based on chemical and radiopharmaceutical criteria. Among these will be new organometallic Tc chemistry (e.g., Tc(CNR) 6 cations), Tc complexes as metabolic tracers (e.g., Tc-analogs to FDG), and peptide-based Tc chelators (e.g., Tc-metallothionein)

  11. Superconducting state in (W, Ta)5SiB2

    Science.gov (United States)

    Fukuma, M.; Kawashima, K.; Akimitsu, J.

    We characterize the superconducting state in a boro-silicide (W, Ta)5SiB2, with Tc of 6.5 K by means of magnetization, electrical resistivity, and specific heat measurements. As x increased, the transition temperature Tc abruptly enhances from 5.8 to 6.5 K. The magnetization versus magnetic field (M-H) curve indicated that (W, Ta)5SiB2 was a conventional type-II superconductor. The estimated lower critical field Hc1(0) and upper critical field Hc2(T) are about 121 Oe and 14.7 kOe, respectively. The penetration depth λ(0) and coherence length ξ(0) are calculated to be approximately 369 and 14.9 nm, respectively, using Ginzburg-Landau (GL) equations. Specific heat data shows the superconductivity in W4.5Ta0.5SiB2 belongs to a week-coupling BCS superconductor. Finally, we discuss the increasing of Tc in of (W, Ta)5SiB2 system.

  12. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  13. Superconductive Signal-Processing Circuits

    Science.gov (United States)

    1994-08-01

    September 1991. 13. P. H. Xiao, E. Charbon , A. Sangiovanni-Vincentelli, T. Van Duzer,and S.W. Whiteley, "INDEX: An inductance extractor for superconducting...APPLIED SUPERCONDUCTIVITY, VOL. 3, ,Q I, MARCH 1993 2629 INDEX: An Inductance Extractor for Superconducting Circuits P. H. Xiao, E. Charbon , A

  14. Nonlinear terahertz superconducting plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn [Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Wang, Huabing [Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  15. Applied Superconductivity Conference 2014

    CERN Document Server

    2015-01-01

    Energy Efficiency is a worldwide imperative driven by an increasing awareness of the need to conserve valuable natural resources. Superconductivity, the technology which revolutionized non-invasive medical imaging through MRI starting in the 1980’s, is one of the most promising enablers of energy efficiency in the 21st century. From energy efficient supercomputers to power generation, transmission, and storage, the spectrum of applications of superconductivity is broad in its reach and potential. As ASC comes to Charlotte, site of the hall of fame of NASCAR, our theme, “Race to Energy Efficiency,” is intended to inspire the world experts in superconductivity who will converge to Charlotte to present their latest results, exchange information, network, and plan and project the future breakthroughs.

  16. On anyon superconductivity--

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Wilczek, F.; Witten, E.; Halperin, B.I.

    1989-01-01

    We investigate the statistical mechanics of a gas of fractional statistics particles in 2 + 1 dimensions. In the case of statistics very close to Fermi statistics (statistical parameter θ = π(1 - 1/n), for large n), the effect of the statistics is a weak attraction. Building upon earlier RPA calculation for the case n = 2, the authors argue that for large n perturbation theory is reliable and exhibits superfluidity (or superconductivity after coupling to electromagnetism). They describe the order parameter for this superconductng phase in terms of spontaneous breaking of commutativity of translations as opposed to the usual pairing order parameters. The vortices of the superconducting anyon gas are charged, and superconducting order parameters of the usual type vanish. They investigate the characteristic P and T violating phenomenology

  17. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  18. Superconductivity for mass spectroscopy

    International Nuclear Information System (INIS)

    Ohkubo, Masataka

    2007-01-01

    Time-of-Flight Mass Spectroscopy (TOF-MS) with super-conducting detectors has two advantages over MS with conventional ion detectors. First, it is coverage for a very wide range of molecule weight over 1,000,000. Secondly, kinetic energies of accelerated molecules can be measured at impact events one by one. These unique features enable an ultimate detection efficiency of 100% for intact ions and a fragmentation analysis that is critical for top-down proteomics. Superconducting MS is expected to play a role in, for example, the detection of antigen-antibody complexes, which are important for medical diagnosis. In this paper, how superconductivity contributes to MS is described. (author)

  19. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  20. Solidification processing of high-Tc superconductors

    CERN Document Server

    Shiohara, Y; Nakamura, Y; Izumi, T

    2001-01-01

    Recent progress in the solidification processing of RE-system (RE:Y, Sm, Nd etc.) oxide superconducting materials is reviewed. The superconducting YBa/sub 2/Cu/sub 3/O/sub y/(Y123) phase is solidified from Y/sub 2/BaCuO/sub 5/(Y211) and liquid phases, by a peritectic reaction. The solidified micro and macro structure can not be explained by the peritectic reaction with diffusion in the solid but rather by diffusion in the liquid. A solidification model for this reaction is developed. It is confirmed that the prediction from the model calculation is in good agreement with the experimental results. Furthermore, the basic idea is expanded to develop a novel single crystal pulling process. Y211 powders were placed at the bottom of the crucible as the solute source for the growth and a BaO-CuO composite (Ba to Cu cation ratio was 3 to 5) was placed on the layer of Y211 powders. Temperature gradient was provided in the melt. Large bulk single crystals were obtained by this technique, and the growth mechanism was al...

  1. High pressure induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K

    2003-10-15

    We have developed complex extreme condition of very low temperature down to 30 mK and ultra high pressure exceeding 200 GPa by assembling compact diamond anvil cell (DAC) on a powerful {sup 3}He/{sup 4}He dilution refrigerator. We have also developed measuring techniques of electrical resistance, magnetization and optical measurement for the sample confined in the sample space of the DAC. Using the newly developed apparatus and techniques, we have searched for superconductivity in various materials under pressure. In this paper, we will shortly review our newly developed experimental apparatus and techniques and discuss a few examples of pressure induced superconductivity which were observed recently.

  2. Today's markets for superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The worldwide market for superconductive products may exceed $1 billion in 1987. These products are expanding the frontiers of science, revolutionizing the art of medical diagnosis, and developing the energy technology of the future. In general, today's customers for superconductive equipment want the highest possible performance, almost regardless of cost. The products operate within a few degrees of absolute zero, and virtually all are fabricated from niobium or niobium alloys-so far the high-temperature superconductors discovered in 1986 and 1987 have had no impact on these markets. The industry shows potential and profound societal impact, even without the new materials

  3. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  4. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  5. Superconducting cosmic strings

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.

    1986-01-01

    Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources

  6. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  7. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  8. Charge Aspects of Composite Pair Superconductivity

    Science.gov (United States)

    Flint, Rebecca

    2014-03-01

    Conventional Cooper pairs form from well-defined electronic quasiparticles, making the internal structure of the pair irrelevant. However, in the 115 family of superconductors, the heavy electrons are forming as they pair and the internal pair structure becomes as important as the pairing mechanism. Conventional spin fluctuation mediated pairing cannot capture the direct transition from incoherent local moments to heavy fermion superconductivity, but the formation of composite pairs favored by the two channel Kondo effect can. These composite pairs are local d-wave pairs formed by two conduction electrons in orthogonal Kondo channels screening the same local moment. Composite pairing shares the same symmetries as magnetically mediated pairing, however, only composite pairing necessarily involves a redistribution of charge within the unit cell originating from the internal pair structure, both as a monopole (valence change) and a quadrupole effect. This redistribution will onset sharply at the superconducting transition temperature. A smoking gun test for composite pairing is therefore a sharp signature at Tc - for example, a cusp in the Mossbauer isomer shift in NpPd5Al2 or in the NQR shift in (Ce,Pu)CoIn5.

  9. Superconductivity and vortex properties in various multilayers

    International Nuclear Information System (INIS)

    Koorevaar, P.

    1994-01-01

    In this thesis three qualitatively different type of superconducting multilayers are studied. We discuss the vortex lattice structure in Nb/NbZr multilayers, a system where both type of constituting layers are superconducting. At certain temperatures and for parallel fields close to H c2parallel , the Nb/NbZr system has a strongly modulated order parameter, and in this aspect resembles the high-Tc materials. By lowering the field the modulation decreases, having important consequences for the vortex lattice structure. By studying the transport critical currents we show that in the case of strong modulation the vortex lattice has a kinked structure, but at weaker modulations the vortices are straight, and the change in modulation actually results in a vortex lattice transition. Our study confirms the picture of the existence of kinked vortex lattices, but it is rather surprising that these kinked structures can exist in a system which in itself is not at all that anisotropic. It indicates the relevance of other parameters governing the vortex lattice structure. (orig.)

  10. Elastic properties of superconducting bulk metallic glasses

    International Nuclear Information System (INIS)

    Hempel, Marius

    2015-01-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  11. Pressure-induced reinforcement of interfacial superconductivity in a Bi2Te3/Fe1+yTe heterostructure

    Science.gov (United States)

    Shen, Junying; Heuckeroth, Claire; Deng, Yuhang; He, Qinglin; Liu, Hong Chao; Liang, Jing; Wang, Jiannong; Sou, Iam Keong; Schilling, James S.; Lortz, Rolf

    2017-12-01

    We investigate the hydrostatic pressure dependence of interfacial superconductivity occurring at the atomically sharp interface between two non-superconducting materials: the topological insulator (TI) Bi2Te3 and the parent compound Fe1+yTe of the chalcogenide iron-based superconductors. Under pressure, a significant increase in the superconducting transition temperature Tc is observed. We interpret our data in the context of a pressure-induced enhanced coupling of the Fe1+yTe interfacial layer with the Bi2Te3 surface state, which modifies the electronic properties of the interface layer in a way that superconductivity emerges and becomes further enhanced under pressure. This demonstrates the important role of the TI in the interfacial superconducting mechanism.

  12. Recurrent malignant thymoma detected by Tc-99m MIBI, Tc-99m tetrofosmin and Tc-99m (V) DMSA scan

    International Nuclear Information System (INIS)

    Seok, Ju Won; Kim, Seong Jang; Kim, In Ju; Kim, Yong Ki

    2001-01-01

    Thymoma is the most common primary tumor of anterior mediastinum, accounting for 20% to 30% of all mediastinal tumors. The recurrence rate after total resection of the thymoma ranges 8% to 18%. We reported one patient of recurrent malignant thymoma imaged with Tc-99m MIBI, Tc-99m Tetrofosmin and Tc-99m (V) DMSA. Early and delayed Tc-99m MIBI and Tc-99m Tetrofosmin scintigraphies showed an increased uptake in the mediastinal area. Also, Tc-99m (V) DMSA scintigraphy revealed an increased uptake in the corresponding area. Coronal SPECT images of Tc-99m MIBI, Tc-99m Tetrofosmin and Tc-99m (V) DMSA revealed increased uptake of each radiopharmaceutical in the tumor lesion corresponding to the mediastinal lesion on the chest CT. However, the normal blood pool activities of the heart and great vessels of Tc-99m (V) DMSA obscured the recurrent malignant thymoma. Although Tc-99m (V) DMSA is a useful tumor seeking agent, we recommend Tc-99m MIBI and Tc-99m Tetrofosmin SPECT rather than Tc-99m (V) DMSA to detect primary and recurrent malignant thymoma

  13. Recurrent malignant thymoma detected by Tc-99m MIBI, Tc-99m tetrofosmin and Tc-99m (V) DMSA scan

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Ju Won; Kim, Seong Jang; Kim, In Ju; Kim, Yong Ki [Pusan National University Hospital, Pusan (Korea, Republic of)

    2001-08-01

    Thymoma is the most common primary tumor of anterior mediastinum, accounting for 20% to 30% of all mediastinal tumors. The recurrence rate after total resection of the thymoma ranges 8% to 18%. We reported one patient of recurrent malignant thymoma imaged with Tc-99m MIBI, Tc-99m Tetrofosmin and Tc-99m (V) DMSA. Early and delayed Tc-99m MIBI and Tc-99m Tetrofosmin scintigraphies showed an increased uptake in the mediastinal area. Also, Tc-99m (V) DMSA scintigraphy revealed an increased uptake in the corresponding area. Coronal SPECT images of Tc-99m MIBI, Tc-99m Tetrofosmin and Tc-99m (V) DMSA revealed increased uptake of each radiopharmaceutical in the tumor lesion corresponding to the mediastinal lesion on the chest CT. However, the normal blood pool activities of the heart and great vessels of Tc-99m (V) DMSA obscured the recurrent malignant thymoma. Although Tc-99m (V) DMSA is a useful tumor seeking agent, we recommend Tc-99m MIBI and Tc-99m Tetrofosmin SPECT rather than Tc-99m (V) DMSA to detect primary and recurrent malignant thymoma.

  14. Magnetic profiles in ferromagnetic/superconducting superlattices.

    Energy Technology Data Exchange (ETDEWEB)

    te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

    2007-02-28

    The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

  15. 10th International Symposium on Superconductivity

    CERN Document Server

    Hirabayashi, Izumi

    1998-01-01

    The International Symposium on Superconductivity, which has been held annu­ ally since 1988, is a forum for presenting the most up-to-date information about a broad range of research and development in superconductivity, from funda­ mental aspects to applications. More than 10 years have passed since the discovery of oxide superconductors and since various developments of applications began. It may be said that the prospects for application of oxide superconductors recently have opened up. Great progress has been made toward practical use, for example, of the flywheel, which uses bulk materials, and the high-performance cryo-cooled magnet made of bismuth wire. These were the results of persistent efforts to develop materials from the viewpoint of materials science and engineering. Also important is the progress in comprehensive understanding of high­ temperature superconductivity. Unique electronic properties of cuprates such as the non-Fermi liquid normal state, spin-charge separation, spin gap, and d-wav...

  16. Superconducting Quantum Interferometers for Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    M. I. Faley

    2017-12-01

    Full Text Available We review stationary and mobile systems that are used for the nondestructive evaluation of room temperature objects and are based on superconducting quantum interference devices (SQUIDs. The systems are optimized for samples whose dimensions are between 10 micrometers and several meters. Stray magnetic fields from small samples (10 µm–10 cm are studied using a SQUID microscope equipped with a magnetic flux antenna, which is fed through the walls of liquid nitrogen cryostat and a hole in the SQUID’s pick-up loop and returned sidewards from the SQUID back to the sample. The SQUID microscope does not disturb the magnetization of the sample during image recording due to the decoupling of the magnetic flux antenna from the modulation and feedback coil. For larger samples, we use a hand-held mobile liquid nitrogen minicryostat with a first order planar gradiometric SQUID sensor. Low-Tc DC SQUID systems that are designed for NDE measurements of bio-objects are able to operate with sufficient resolution in a magnetically unshielded environment. High-Tc DC SQUID magnetometers that are operated in a magnetic shield demonstrate a magnetic field resolution of ~4 fT/√Hz at 77 K. This sensitivity is improved to ~2 fT/√Hz at 77 K by using a soft magnetic flux antenna.

  17. GASIFICATION TEST RUN TC06

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services, Inc.

    2003-08-01

    This report discusses test campaign TC06 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC06. Test run TC06 was started on July 4, 2001, and completed on September 24, 2001, with an interruption in service between July 25, 2001, and August 19, 2001, due to a filter element failure in the PCD caused by abnormal operating conditions while tuning the main air compressor. The reactor temperature was varied between 1,725 and 1,825 F at pressures from 190 to 230 psig. In TC06, 1,214 hours of solid circulation and 1,025 hours of coal feed were attained with 797 hours of coal feed after the filter element failure. Both reactor and PCD operations were stable during the test run with a stable baseline pressure drop. Due to its length and stability, the TC06 test run provided valuable data necessary to analyze long-term reactor operations and to identify necessary modifications to improve equipment and process performance as well as progressing the goal of many thousands of hours of filter element exposure.

  18. Synthesis and characterization of technetium(III) complexes with nitrogen heterocycles by O atom transfer from oxotechnetium(V) cores. Crystal structures of mer-[Cl3(pic)3Tc] and mer-[Cl3(pic)(PMe2Ph)2Tc] (pic = 4-picoline). Electrochemical parameters fore the reduction of TcII, TcIII, and TcIV

    International Nuclear Information System (INIS)

    Lu, Jun; Yamano, Akahito; Clarke, M.J.

    1990-01-01

    The combination of pyridine ligands, (OCl 4 Tc) - , and O atom acceptors of different cone angles, such as PMe 2 Ph or PPh 3 , results in Tc III complexes that vary in the coordination of the phosphine ligand. The compounds mer[Cl 3 (4-picoline) 3 Tc] and mer-(Cl 3 (4-picoline)(PMe 2 Ph) 2 Tc) have been obtained in good yield and have been characterized spectroscopically and by single-crystal x-ray diffraction. The crystal structure data are reported. Linear correlations of technetium reduction potentials in DMF with electrochemical ligand additivity parameters (E L 's) have been obtained for the Tc II,I , Tc III,II , and Tc IV,III couples. The slope and intercept (S M , I M ) pairs for each technetium oxidation-reduction couple, respectively, are (1.39, -2.07), (1.29, -0.91), and (1.00, 0.65). 32 refs., 3 figs., 6 tabs

  19. Magnetic and thermal properties of high Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonchoon.

    1990-09-21

    Measurements of the normal state magnetic susceptibility {chi}(T) of YBa{sub 2}Cu{sub 3}O{sub 7}, Bi{sub 1.8}Pb{sub 0.2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}, and Bi{sub 2{minus}x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}} (x = 0.2 and 0.25) were carried out. All {chi}(T) data show negative curvature below {approximately}2{Tc}. The data for YBa{sub 2}Cu{sub 3}O{sub 7} are in excellent agreement with a new calculation of the superconducting fluctuation diamagnetism. From the analysis, we infer s-wave pairing and microscopic parameters are obtained. For {chi}(T) of YBa{sub 2}Cu{sub 3}O{sub 7}, part of the negative curvature is inferred to arise from the normal state background. We find a strong temperature dependent anisotropy {delta}{chi} {equivalent to} {chi}{sub c} {minus} {chi}{sub ab} and estimate the normal state spin contributions to {chi}(T). The heat capacity C(T) of YBa{sub 2}Cu{sub 3}O{sub 7} is reported for 0.4 K < T < 400 K in zero and 70 kG magnetic fields. In addition to the feature associated with the onset of the superconductivity at {Tc}, two anomalies in C(T) were observed near 74 K and 330 K, with another possible anomaly near 102 K; the temperatures at which they occur correlate with anomalies in {chi}(T) and ultransonic measurements. The occurrence of the anomaly at {approx equal} 330 K is found to be sample-dependent. The influences of a magnetic field and the thermal and/or magnetic field treatment history dependence of a pellet sample on C(T), the entropy and the influence of superconducting fluctuations on C(T) near {Tc}, and the possible source of the observed intrinsic nonzero {gamma}(0) at low T are discussed.

  20. SHMUTZ & PROTON-DIAMANT H + Irradiated/Written-Hyper/Super-conductivity(HC/SC) Precognizance/Early Experiments Connections: Wet-Graphite Room-Tc & Actualized MgB2 High-Tc: Connection to Mechanical Bulk-Moduli/Hardness: Diamond Hydrocarbon-Filaments, Disorder, Nano-Powders:C,Bi,TiB2,TiC

    Science.gov (United States)

    Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle

    2013-03-01

    SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from

  1. ICES studies on 99mTc-halide complexes: formation, hydrolysis and ligand exchange

    International Nuclear Information System (INIS)

    Fiser, M.; Brabec, V.; Dragoun, O.; Kovalik, A.; Rysavy, M.; Dragounova, N.

    1988-01-01

    The Internal Conversion Electron Spectroscopy (ICES) method was employed to study the products of reduction of no-carrier-added [ 99m Tc]pertechnetate by concentrated hydrochloric, hydrobromic and hydroiodic acids. The reductions were carried out in vacuum with subbsequent evaporation of the solution to dryness. In the solid deposits, containing ∼ 10 -9 g Tc, chemical shifts of 99m Tc electron binding energies were measured and the results were compared with known data of x-ray photoelectron spectroscopy for defined technetium compounds. It was evidenced that all reduction/evaporation procedures yielded 99m Tc(IV)-halide complexes. Another technique of reduction by vapours of halogen acids was proposed to prepare thin radioactive sources for physics studies. The reduction power of alkali halides in absence of acids was examined and a partial reduction of pertechnetate by iodide was found. The product was a hydrolysed species. The hydrolysis of halide complexes yielded the same product. In the absence of acids, dissolved species were partly oxidised to Tc(VII) by air. Oxidation was most apparent for the chloride and negligible for the iodide system. Ligand exchange of chloro and bromo complexes to chelate with DTPA at pH 3 was found to be uncomplete. Tc(IV) hydrolysed species, Tc(IV)DTPA and Tc(VII) were evidenced. Tc(V)DTPA was also observed which arises from partially oxidised products. (author)

  2. The iron-age of superconductivity: structural correlations and commonalities among the various families having -Fe-Pn- slabs (Pn = P, As and Sb).

    Science.gov (United States)

    Ganguli, Ashok K; Prakash, Jai; Thakur, Gohil S

    2013-01-21

    The fascination of mankind towards a sudden change of a property, like colour, shape, elasticity, viscosity, electrical conductivity and magnetism, is well known. If the change in property is such that it leads to disapperance of an existing property or development of a new property then the effect is magical. It is for this reason that superconductivity remains an enigma for scientists for over a century after Kammerlingh Onnes discovered that the electrical resistance of mercury falls to zero below a temperature of 4.2 K. Since then scientists have been enchanted by superconductivity. Over these hundred years attempts have been made to discover materials which show this effect at higher temperatures. After a very exciting period of Cu oxide superconductors (1986-1993) there has been a lull in the search for high T(c) materials. The discovery of superconductivity in 2008 at 26 K in LaOFeAs (F-doped) has renewed the excitement in the field of superconductivity. This breakthrough in an Fe-containing compound led to the discovery of several new families of Fe-based superconductors having either pnictogens (P, As) or chalcogen (Se, Te) of the type AFFeAs (A = alkaline-earth metal), AFe(2)As(2), AFeAs (A = alkali metals), A(3)M(2)O(5)Fe(2)As(2) (M = transition metals) and A(4)M(2)O(6)Fe(2)As(2). This review article discusses in detail the structural aspects of these new Fe-based superconductors which primarily consist of edge-shared distorted FeX(4) (X = pnictogen and chalcogen) tetrahedra and these tetrahedral layers are reponsible for enabling superconductivity. Extremely large upper critical field (>200 Tesla) of these superconductors make them promising for high field application. Structural commonalities and differences among different families of these superconductors have been outlined. We also discuss the common features and differences with the copper-oxide based superconductors. Here we have discussed all the Fe-based oxypnictide families (like LnOFePn, AFe(2

  3. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  4. Checking BEBC superconducting magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  5. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    Superconductivity, the awe-inspiring word came into existence when KamerIingh Onnes (Box 1) discovered a new phenom- enon in 1911. When he cooled a sample of liquid metal mercury, it lost its electrical resistance at temperatures close to 0 K. Years of careful experimentation at Leiden preceded his success in the.

  6. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  7. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  8. Alternative superconducting systems

    International Nuclear Information System (INIS)

    1992-01-01

    In the context of the experiment on 'Development of high temperature superconducting system components' supported by the German Ministry of Research and Technology, investigations were carried out by the Working Party of Prof. von Schnering at the Max Planck Institute for Solids Research, the aim of which is to find characteristic structural features of superconducting substances. Alternative systems are to be looked for with the aid of correlation of superconducting properties with simple electronic and chemical structure models, where very powerful 3D computer graphics are used to visualize them. The theoretical and information technology part of the work was supplemented by experiments. Superconducting phases and related compounds were represented and their structures and physical properties were determined. According to the tasks described above, the report is divided into three sections. Starting with the description of a program system for three-dimensional representation of structures and properties of periodic systems, in the second section a process for calculating node surfaces is explained and the importance of curvature in chemical structures is pointed out. The results of the experiments are collected in the third part. (orig.) [de

  9. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  10. Superconducting electronics testing

    International Nuclear Information System (INIS)

    Moskowitz, P.A.; Guernsey, R.W.; Stasiak, J.W.; Flint, E.B.

    1983-01-01

    An I/O assembly has been designed and constructed to support the operation of superconducting circuitry. A system, previously described for chip testing, has been adapted for use with a Josephson technology system level experiment. The cryoinsert assembly, constructed of non-magnetic parts, provides 80 high frequency I/O lines between room temperature and 4.2 K. (author)

  11. High temperature superconductivity: Proceedings

    International Nuclear Information System (INIS)

    Bedell, K.S.; Coffey, D.; Meltzer, D.E.; Pines, D.; Schrieffer, J.R.

    1990-01-01

    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  12. Superconductivity : Controlling magnetism

    NARCIS (Netherlands)

    Golubov, Alexandre Avraamovitch; Kupriyanov, Mikhail Yu.

    Manipulation of the magnetic state in spin valve structures by superconductivity has now been achieved, opening a new route for the development of ultra-fast cryogenic memories. Spintronics is a rapidly developing field that allows insight into fundamental spin-dependent physical properties and the

  13. Superconducting magnets 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T c at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design

  14. Superconductors for superconducting magnets

    Science.gov (United States)

    Larbalestier, David

    2011-03-01

    Even in 1913 Kamerlingh Onnes envisioned the use of superconductors to create powerful magnetic fields well beyond the capability provided by cooling normal metals with liquid helium. Only some ``bad places'' in his Hg and Pb wires seemed to impede his first attempts at this dream, one that he imagined would be resolved in a few weeks of effort. In fact, of course, resolution required another 50 years and development of both a true understanding of the difference between type I and type II superconductors and the discovery of compounds such as Nb 3 Sn that could remain superconducting to fields as high as 30 T. And then indeed, starting in the 1960s, Onnes's dreams were comfortably surpassed. In the last 45 years virtually all superconducting magnets have been made from just two Nb-base materials, Nb-Ti and Nb 3 Sn. Now it seems that a new generation of magnets based on cuprate high temperature superconductors with fields well above 30 T are possible using Bi-Sr-Ca-Cu-O and the RE-Ba-Cu-O compounds. We hope that a first demonstration of this possibility will be an all-superconducting 32 T magnet with RE-Ba-Cu-O insert that we are building for NHMFL users. The magnet application potential of this new generation of superconducting conductors will be discussed.

  15. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  16. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  17. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 9. Electrical Conduction and Superconductivity. Suresh V Vettoor. General Article Volume 8 Issue 9 September 2003 pp 41-48. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/09/0041-0048 ...

  18. Ruthenocuprats: Playground for superconductivity and magnetism

    Directory of Open Access Journals (Sweden)

    A. Khajehnezhad

    2008-03-01

    Full Text Available  We have compared the structural, electrical, and magnetic properties of Ru(Gd1.5-xPrxCe0.5Sr2Cu2O10-δ (Pr/Gd samples with x = 0.0, 0.01, 0.03, 0.033, 0.035, 0.04, 0.05, 0.06, 0.1 and RuGd1.5(Ce0.5-xPrxSr2Cu2O10-δ (Pr/Ce samples with x = 0.0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2 prepared by the standard solid-state reaction technique with RuGd1.5(GdxCe0.5-x Sr2Cu2O10-δ (Gd/Ce samples with x= 0.0, 0.1, 0.2, 0.3. We obtained the XRD patterns for different samples with various x. The lattice parameters versus x for different substitutions have been obtained from the Rietveld analysis. To determine how the magnetic and superconducting properties of these layered cuprate systems can be affected by Pr substitution, the resistivity and magnetoresistivity, with Hext varying from 0.0 to 15 kOe, have been measured at various temperatures. Superconducting transition temperature Tc and magnetic transition Tirr have been obtained through resistivity and ac susceptibility measurements. The Tc suppression due to Gd/Ce, Pr/Gd and Pr/Ce substitutions show competition between pair breaking by magnetic impurity, hole doping due to different ionic valences, difference in ionic radii, and oxygen stoichiometry. Pr/Gd substitution suppresses superconductivity more rapidly than for Pr/Ce or Gd/Ce, showing that the effect of hole doping and pair breaking by magnetic impurity is stronger than the difference in ionic radii. In Pr/Gd substitution, the small difference between the ionic radii of Pr and Gd, and absorption of more oxygen due to higher valence of Pr with respect to Gd, decrease the mean Ru-Ru distance, and as a result, the magnetic exchange interaction becomes stronger with the increase of x. But, Pr/Ce and Gd/Ce substitutions have a reverse effect. The magnetic properties such as Hc, obtained through magnetization measurements versus applied magnetic field isoterm at 77K and room temperatures, become stronger with x in Pr/Gd and weaker with x in Pr

  19. MgB2 superconducting wires basics and applications

    CERN Document Server

    2016-01-01

    The compendium gives a complete overview of the properties of MgB2 (Magnesium Diboride), a superconducting compound with a transition temperature of Tc = 39K, from the fundamental properties to the fabrication of multifilamentary wires and to the presentation of various applications. Written by eminent researchers in the field, this indispensable volume not only discusses superconducting properties of MgB2 compounds, but also describes known preparation methods of thin films and of bulk samples obtained under high pressure methods. A unique selling point of the book is the detailed coverage of various applications based on MgB2, starting with MRI magnets and high current cables, cooled by Helium (He) vapor. High current cables cooled by liquid hydrogen are also highlighted as an interesting alternative due to the shrinking He reserves on earth. Other pertinent subjects comprise permanent magnets, ultrafine wires for space applications and wind generator projects.

  20. Superconductivity in engineered two-dimensional electron gases

    Science.gov (United States)

    Chubukov, Andrey V.; Kivelson, Steven A.

    2017-11-01

    We consider Kohn-Luttinger mechanism for superconductivity in a two-dimensional electron gas confined to a narrow well between two grounded metallic planes with two occupied subbands with Fermi momenta kF L>kF S . On the basis of a perturbative analysis, we conclude that non-s -wave superconductivity emerges even when the bands are parabolic. We analyze the conditions that maximize Tc as a function of the distance to the metallic planes, the ratio kF L/kF S , and rs, which measures the strength of Coulomb correlations. The largest attraction is in p -wave and d -wave channels, of which p wave is typically the strongest. For rs=O (1 ) we estimate that the dimensionless coupling λ ≈10-1 , but it likely continues increasing for larger rs (where we lose theoretical control).

  1. Superconductivity in SrNi2P2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Park, Tuscon [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory

    2009-01-01

    Heat capacity, magnetic susceptibility, and resistivity of SrNi{sub 2}P{sub 2} single crystals are presented, illustrating the structural transition at 325 K, and bulk superconductivity at 1.4 K. The magnitude of {Tc}, fits to the heat capacity data, the small upper critical field H{sub c2} = 390 Oe, and {kappa} = 2.1 suggests a conventional fully gapped superconductor. With applied pressure we find that superconductivity persists into the so-called 'collapsed tetragonal' phase, although the transition temperature is monotonically suppressed with increasing pressure. This argues that reduced dimensionality can be a mechanism for increasing the transition temperatures of layered NiP, as well as layered FeAs and NiAs, superconductors.

  2. Unconventional Superconductivity in La(7)Ir(3) Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry.

    Science.gov (United States)

    Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P

    2015-12-31

    The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25  K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.

  3. Evidence for superconductivity in Li-decorated monolayer graphene.

    Science.gov (United States)

    Ludbrook, B M; Levy, G; Nigge, P; Zonno, M; Schneider, M; Dvorak, D J; Veenstra, C N; Zhdanovich, S; Wong, D; Dosanjh, P; Straßer, C; Stöhr, A; Forti, S; Ast, C R; Starke, U; Damascelli, A

    2015-09-22

    Monolayer graphene exhibits many spectacular electronic properties, with superconductivity being arguably the most notable exception. It was theoretically proposed that superconductivity might be induced by enhancing the electron-phonon coupling through the decoration of graphene with an alkali adatom superlattice [Profeta G, Calandra M, Mauri F (2012) Nat Phys 8(2):131-134]. Although experiments have shown an adatom-induced enhancement of the electron-phonon coupling, superconductivity has never been observed. Using angle-resolved photoemission spectroscopy (ARPES), we show that lithium deposited on graphene at low temperature strongly modifies the phonon density of states, leading to an enhancement of the electron-phonon coupling of up to λ ≃ 0.58. On part of the graphene-derived π*-band Fermi surface, we then observe the opening of a Δ ≃ 0.9-meV temperature-dependent pairing gap. This result suggests for the first time, to our knowledge, that Li-decorated monolayer graphene is indeed superconducting, with Tc ≃ 5.9 K.

  4. Superconductivity in Bi/Ni bilayer system: Clear role of superconducting phases found at Bi/Ni interface

    Science.gov (United States)

    Liu, L. Y.; Xing, Y. T.; Merino, I. L. C.; Micklitz, H.; Franceschini, D. F.; Baggio-Saitovitch, E.; Bell, D. C.; Solórzano, I. G.

    2018-01-01

    Bi/Ni bilayers with varying Bi and Ni layer thicknesses have been prepared by (a) pulsed-laser deposition (PLD) at 300 K and (b) thermal evaporation at 4.2 K. A two-step superconducting transition appears on the electrical transport measurements in the samples prepared by PLD. High-resolution transmission and scanning transmission electron microscopy, supported by energy-dispersive x-ray spectroscopy (EDXS) analysis, reveal that two superconducting intermetallic alloys, namely NiBi and NiBi3, are formed by interdiffusion, if the bilayers are prepared at 300 K. The Tc of the two phases behaves very differently in an external magnetic field and the upper critical magnetic fields at zero temperature [Bc 2(0 ) ] were estimated as 1.1 and 7.4 T, respectively. The lower value corresponds to the Bc 2(0) of NiBi3 phase and the higher one is supposed to be of NiBi. These alloys are responsible for the superconductivity and the two-step transition appearing in the Bi/Ni bilayer system. Surprisingly, the Bi-rich phase (NiBi3) is formed near the Ni layer, while the Ni-rich phase (NiBi) is formed far from the Ni layer. The EDXS analysis at nanometer scale clearly shows an unusual increase of Ni concentration near the interface of Bi/substrate. The limited thickness of Bi layer in the interdiffusion process results in an unexpected distribution of Ni concentration. Samples prepared at 4.2 K after annealing at 300 K do not show any superconductivity, which indicates that a nonepitaxial Bi/Ni interface does not induce superconductivity in the case interdiffusion does not occur. These results offer a deeper understanding of the superconductivity in the Bi/Ni bilayer system.

  5. Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation.

    Science.gov (United States)

    Bhattacharyya, Amitava; Adroja, Devashibhai; Kase, Naoki; Hillier, Adrian; Akimitsu, Jun; Strydom, Andre

    2015-08-19

    Conventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high-temperature superconductors, but their identification remains experimentally controversial. We present magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 ( TC= 3.0 K). The electronic heat capacity of Y5Rh6Sn18 shows a T(3) dependence below Tc indicating an anisotropic superconducting gap with a point node. This result is in sharp contrast to that observed in the isostructural Lu5Rh6Sn18 which is a strong coupling s-wave superconductor. The temperature dependence of the deduced superfluid in density Y5Rh6Sn18 is consistent with a BCS s-wave gap function, while the zero-field muon spin relaxation measurements strongly evidences unconventional superconductivity through a spontaneous appearance of an internal magnetic field below the superconducting transition temperature, signifying that the superconducting state is categorized by the broken time-reversal symmetry.

  6. Monte Carlo study of superconductivity in the three-band Emery model

    International Nuclear Information System (INIS)

    Frick, M.; Pattnaik, P.C.; Morgenstern, I.; Newns, D.M.; von der Linden, W.

    1990-01-01

    We have examined the three-band Hubbard model for the copper oxide planes in high-temperature superconductors using the projector quantum Monte Carlo method. We find no evidence for s-wave superconductivity

  7. Preparation, Iodometric Analysis, and Classroom Demonstration of Superconductivity in YBa2Cu3O8-x.

    Science.gov (United States)

    Harris, Daniel C.; And Others

    1987-01-01

    Described is a student preparation of YBa2Cu3O8-x, a classroom demonstration of its superconductivity, and an analytical chemistry experiment dealing with the oxidation state of copper in the material. (RH)

  8. Study of superconducting Ba-Ge-Co compounds

    Science.gov (United States)

    Li, Yang; Ross, J. H.; Larrea, J. A.; Baggio-Saitovitch, Elisa

    2004-08-01

    We prepared samples with starting composition Ba 8-Ge 46- x-Co x ( x=0, 4 and 6) by direct melting. These Ge-based compounds were characterized by X-ray diffraction and WDS, and we found two superconducting transitions at TC=10 and 4 K in the Co-free sample. Co-doping results in the suppression of TC to 7 K. The superconducting volume fraction also decreases with increasing Co-doping. For Co-doped samples, there is no 4 K superconducting transition. X-ray refinement shows that the compounds are mixtures of several phases. The dominant phase is diamond Ge, and we found no Ge-clathrate phases. Besides diamond Ge, there are also several weak diffractions from an unknown Ba-Ge phase, and most of them were indexed on the basis of a monoclinic unit cell. Diffraction peaks for Ba 2Ge, BaGe, BaGe 2, BaGe 2O 5, BaGeO 3, Ba 3GeO 5, α-BaGeO 3, BaGe 2O 5, Ba 2Ge 5O 12, β-BaGeO 3, Ba 2GeO 4 and BaGe 4O 9 were carefully searched for but not seen in the samples. For the Co-doped sample, besides the main diamond Ge phase, there is also a semiconducting phase CoGe 2. With increasing Co content, the CoGe 2 content increases. The WDS results agree with this result. The main phase composition for the Co-free sample is Ba 0.01Ge 99.9. We also discuss the origin of two superconducting transitions in Ge-based compounds.

  9. Pyrochlore Oxide Superconductor Cd2Re2O7 Revisited

    Science.gov (United States)

    Hiroi, Zenji; Yamaura, Jun-ichi; Kobayashi, Tatsuo C.; Matsubayashi, Yasuhito; Hirai, Daigorou

    2018-02-01

    The superconducting pyrochlore oxide Cd2Re2O7 is revisited with a particular emphasis on the sample-quality issue. The compound has drawn attention as the only superconductor (Tc = 1.0 K) that has been found in the family of α-pyrochlore oxides since its discovery in 2001. Moreover, it exhibits two characteristic structural transitions from the cubic pyrochlore structure, with the inversion symmetry broken at the first one at 200 K. Recently, it has attracted increasing attention as a candidate spin-orbit coupled metal (SOCM), in which specific Fermi liquid instability is expected to lead to an odd-parity order with spontaneous inversion-symmetry breaking [http://doi.org/10.1103/PhysRevLett.115.026401" xlink:type="simple">L. Fu, Phys. Rev. Lett. 115, 026401 (2015)] and parity-mixing superconductivity [http://doi.org/10.1103/PhysRevLett.115.207002" xlink:type="simple">V. Kozii and L. Fu, Phys. Rev. Lett. 115, 207002 (2015); http://doi.org/10.1103/PhysRevB.93.134512" xlink:type="simple">Y. Wang et al., Phys. Rev. B 93, 134512 (2016)]. We review our previous experimental results in comparison with those of other groups in the light of the theoretical prediction of the SOCM, which we consider meaningful and helpful for future progress in understanding this unique compound.

  10. High-pressure studies of superconductivity in BiO0. 75F0. 25BiS2

    Indian Academy of Sciences (India)

    ). We have investigated the effect of pressure on magnetization measurements. Our studies suggest improved superconducting properties in polycrystalline samples of BiO 0.75 F 0.25 BiS 2 . The Tc in our sample is 5.3 K, at ambient pressure, ...

  11. Intermediate normal metal layers in superconducting circuitry

    International Nuclear Information System (INIS)

    Sweeney, M.F.; Gershenson, M.; Fleming, D.L.; Barta, R.E.

    1987-01-01

    This patent describes a superconducting device comprising a first superconducting layer, a junction layer on the first superconducting layer, an insulating layer on the first superconducting layer, at least one superconducting area on the junction layer surrounded by the insulator layer, superconducting connector pad means disposed over the superconducting area, and superconducting wire means electrically connected to the superconducting connector pad means. The improvement comprising a first metal layer is disposed over the insulator layer and intermediate the superconducting area. The connector pad means and a second metal layer are disposed between the connector pad means and the superconductor wire means. The first metal layer covers the superconducting area and the first and second metal layers are sufficiently thin to allow quantum mechanical tunneling between the connector pad means and the superconducting area and the connector pad means and the superconducting wire means, respectively

  12. Predicting Single-Layer Technetium Dichalcogenides (TcX₂, X = S, Se) with Promising Applications in Photovoltaics and Photocatalysis.

    Science.gov (United States)

    Jiao, Yalong; Zhou, Liujiang; Ma, Fengxian; Gao, Guoping; Kou, Liangzhi; Bell, John; Sanvito, Stefano; Du, Aijun

    2016-03-02

    One of the least known compounds among transition metal dichalcogenides (TMDCs) is the layered triclinic technetium dichalcogenides (TcX2, X = S, Se). In this work, we systematically study the structural, mechanical, electronic, and optical properties of TcS2 and TcSe2 monolayers based on density functional theory (DFT). We find that TcS2 and TcSe2 can be easily exfoliated in a monolayer form because their formation and cleavage energy are analogous to those of other experimentally realized TMDCs monolayer. By using a hybrid DFT functional, the TcS2 and TcSe2 monolayers are calculated to be indirect semiconductors with band gaps of 1.91 and 1.69 eV, respectively. However, bilayer TcS2 exhibits direct-bandgap character, and both TcS2 and TcSe2 monolayers can be tuned from semiconductor to metal under effective tensile/compressive strains. Calculations of visible light absorption indicate that 2D TcS2 and TcSe2 generally possess better capability of harvesting sunlight compared to single-layer MoS2 and ReSe2, implying their potential as excellent light-absorbers. Most interestingly, we have discovered that the TcSe2 monolayer is an excellent photocatalyst for splitting water into hydrogen due to the perfect fit of band edge positions with respect to the water reduction and oxidation potentials. Our predictions expand the two-dimensional (2D) family of TMDCs, and the remarkable electronic/optical properties of monolayer TcS2 and TcSe2 will place them among the most promising 2D TMDCs for renewable energy application in the future.

  13. Story of Superconductivity

    Indian Academy of Sciences (India)

    High magnetic fields became accessible only using type II super- conductors. The alloy Nb3Sn was discovered by B Matthias at. Bell Laboratories to have a critical temperature of 18.6 K [8] and. NbTi was discovered by J Hulm and R Blaugher at Westinghouse laboratory with a Tc of 11 K [9]. With these alloys, the dream of.

  14. High-Tc Superconductors Based on FeAs Compounds

    CERN Document Server

    Izyumov, Yuri

    2010-01-01

    Physical properties and models of electronic structure are analyzed for a new class of high-TC superconductors which belong to iron-based layered compounds. Despite their variable chemical composition and differences in the crystal structure, these compounds possess similar physical characteristics, due to electron carriers in the FeAs layers and the interaction of these carriers with fluctuations of the magnetic order. A tremendous interest towards these materials is explained by the prospects of their practical use. In this monograph, a full picture of the formation of physical properties of these materials, in the context of existing theory models and electron structure studies, is given. The book is aimed at a broad circle of readers: physicists who study electronic properties of the FeAs compounds, chemists who synthesize them and specialists in the field of electronic structure calculations in solids. It is helpful not only to researchers active in the fields of superconductivity and magnetism, but also...

  15. Irradiation effects in low T$_{c}$ superconductors

    CERN Document Server

    Flükiger, René

    2009-01-01

    The effects of neutron irradiation on the superconducting parameters Tc, Bc2 and Jc of Nb3Sn are reviewed in view of the determination of the radiation limit in the LHC upgrade magnets. The variation of Jc in binary as well as in Ti and Ta alloyed Nb3Sn wires is presented. The coexisting defect mechanisms in irradiated Nb3Sn type compounds are briefly presented and a model is discussed explaining the site exchange mechanism which leads to a decrease of atomic ordering after irradiation. Based on calculations of F. Cerutti and coworkers (CERN), the neutron fluence at the inner winding of the quadrupole Q2a is estimated to values below 1018 neutrons /cm2 for a life time of 10 years, which is within the safety margin with respect to the critical current density and Bc2.

  16. The Origin of Tc Enhancement in Heterostructure Cuprate Superconductors

    Directory of Open Access Journals (Sweden)

    Doron L. Bergman

    2011-10-01

    Full Text Available Recent experiments on heterostructures composed of two or more films of cuprate superconductors of different oxygen doping levels have shown a remarkable Tc enhancement (up to 50% relative to single compound films. We provide a simple explanation of the enhancement which arises naturally from a collection of experimental works. We show that the enhancement could be caused by a structural change in the lattice, namely an increase in the distance of the apical oxygen from the copper-oxygen plane. This increase modifies the effective off-site interaction in the plane which in turn enhances the d-wave superconductivity order parameter. To illustrate this point we study the extended Hubbard model using the fluctuation exchange approximation.

  17. Determination of the Tc distribution for 1000 Transition Edge Sensors

    International Nuclear Information System (INIS)

    Brink, P.L.; Saab, T.; Miller, A.J.; Cabrera, B.; Castle, J.P.; Chang, C.; Young, B.A.; Akerib, D.S.; Discroll, D.; Kamat, S.; Perera, T.A.; Schnee, R.W.; Wang, G.; Emes, J.H.; Gaitskell, R.J.; Mandic, V.; Meunier, P.; Rau, W.; Sadoulet, B.; Seitz, D.N.

    2002-01-01

    The ZIP detectors deployed in the CDMS II experiment utilize phonon sensors comprising W Transition Edge Sensors (TESs). In order to ensure uniform collection of the athermal phonon signal the TESs are dispersed uniformly on one side of a 1 cm thick, 3 inch diameter, disk. Each quadrant contains 1036 TESs connected in parallel to one series-array SQUID amplifier. The initial superconducting transition temperatures of these TESs tend to be too high for our requirements, and substantial gradients make the operation of the detectors difficult. Hence our implementation of Fe-56 ion implantation, as reported at the previous LTD meeting, to reduce in a controlled manner the transition temperature. However, the successful implementation of this ion-implantation scheme requires accurate knowledge of the initial transition temperature of each TES in a given quadrant. We report on our approaches and techniques employed to address the issue of determining the initial Tc distribution

  18. Tc-99m imaging agents

    International Nuclear Information System (INIS)

    Weininger, J.; Trumper, J.

    1984-01-01

    A wide range of pharmaceuticals for labeling with Tc-99m, developed by the Soreq Radiopharmaceuticals Department, is described. Details of the production and quality control of 13 kits are given, as well as the range of results required for consistently high quality imaging agents

  19. Can the Lateral Proximity Effect Be Used to Create the Superconducting Transition of a Micron-Sized TES?

    Science.gov (United States)

    Barrentine, E. M.; Brandl, D. E.; Brown, A. D.; Denis, K. L.; Fionkbeiner, F. M.; Hsieh, W. T.; Nagler, P. C.; Stevenson, T. R.; Timble, P. T.; U-Yen, K.

    2012-01-01

    Recent measurements of micron-sized Mo/Au bilayer Transition Edge Sensors (TESs) have demonstrated that the TES can behave like an S-S'-S weak link due to the lateral proximity effect from superconducting leads. In this regime the Tc is a function of bias current, and the effective Tc shifts from the bilayer Tc towards the lead Tc. We explore the idea that a micron-sized S-N-S weak link could provide a new method to engineer the TES Tc. This method would be particularly useful when small size requirements for a bilayer TES (such as for a hot-electron microbolometer) lead to undesirable shifts in the bilayer Te. We present measurements of a variety of micron-sized normal Au 'TES' devices with Nb leads. We find no evidence of a superconducting transition in the Au film of these devices, in dramatic contrast to the strong lateral proximity effect seen in micron-sized Mo/Au bilayer devices. The absence of a transition in these devices is also in disagreement with theoretical predictions for S-N-S weak links. We hypothesize that a finite contact resistance between the Nb and Au may be weakening the effect. We conclude that the use of the lateral proximity effect to create a superconducting transition will be difficult given current fabrication procedures.

  20. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Heinen, Vernon O.; Bhasin, Kul B.

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions. (For individual items see A93-27244 to A93-27248)

  1. Tuning of superconductivity by Ni substitution into noncentrosymmetric ThC o1 -xN ixC2

    Science.gov (United States)

    Grant, T. W.; Cigarroa, O. V.; Rosa, P. F. S.; Machado, A. J. S.; Fisk, Z.

    2017-07-01

    The recently discovered noncentrosymmetric superconductor ThCoC2 was observed to show unusual superconducting behavior with a critical temperature of Tc=2.65 K . Here we investigate the effect of nickel substitution on the superconducting state in ThC o1 -xN ixC2 . Magnetization, resistivity, and heat capacity measurements demonstrate Ni substitution has a dramatic effect with critical temperature increased up to Tc=12.1 K for x =0.4 Ni concentration, which is a rather high transition temperature for a noncentrosymmetric superconductor. In addition, the unusual superconducting characteristics observed in pure ThCoC2 appear to be suppressed or tuned with Ni substitution towards a more conventional fully gapped superconductor.

  2. Growth of epitaxial Ba2YCu3O(7-delta) thin films and control of their superconducting properties

    International Nuclear Information System (INIS)

    Siegal, M.P.; Phillips, J.M.

    1992-01-01

    The relationship is experimentally defined between the superconducting behavior of Ba2YCu3O(7-delta) (BYCO) films and their structural characteristics. The BYCO films are grown on LaAlO3 100-plane by coevaporating BaF2, Y, and Cu followed by ex situ annealing, and the crystalline quality is tested by Rutherford backscattering ion channeling. SEM is employed to study film morphology, and several techniques are used to measure the transition temperature (Tc), critical current density (Jc), and the penetration length. It is found that point defects and dislocations decrease as the high-temperature stage (Ta) increases; crevices, pinholes, and microcracks are also noted which are related to specific values of Tc, Ta, and penetration length. The results of the present experiments indicate that the material properties of superconducting materials should be examined closely to distinguish between pure superconducting behavior and characteristics related to material structure. 21 refs

  3. Study of the geometrical resonances of superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Sørensen, O. Hoffmann; Finnegan, T.F.; Pedersen, Niels Falsig

    1973-01-01

    The resonant cavity structure of superconducting Sn-Sn-oxide-Sn tunnel junctions has been investigated via photon-assisted quasiparticle tunneling. We find that the temperature-dependent losses at 35 GHz are determined by the surface resistance of the Sn films for reduced temperatures between 0.5...

  4. Influence of preparation conditions on superconducting properties of ...

    Indian Academy of Sciences (India)

    ... large broadening of resistivity curve in magnetic field suggests that this phenomenon is directly related to the intrinsic superconducting properties of the copper oxide superconductors. The sudden drop in c at relatively low magnetic field ( < 0.5 tesla) is due to the effect of Josephson weak-links at the grain boundaries.

  5. TC4 COSTA RICA LIGHTNING V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tropical Composition, Cloud and Climate Coupling (TC4) mission TC4 field experiment was completed during July and August 2007 based out of San Jose, Costa Rica....

  6. An Investigation of the Longitudinal Proximity Effect in Superconducting and Normal Metal TES

    Science.gov (United States)

    Brown, Ari-David; Chervenak, James A.; Jethava, Nikhil S.; Kletetschka, Gunther; Mikula, Vilem

    2010-01-01

    As the TES volume and (effective) Tc become very small - for volume > the TES Tc, connected at opposite ends of TES approaches zero, superconductivity is induced parallel to the current flow, or longitudinally, and results in a much higher effective TES Te. Here we present effective Te measurements of Mo/Au TES bounded by Nb leads as a function of L which ranges between 4 and 36 micrometer. We observe that the effective Te is suppressed for current density of order 10(exp -6) A/sq micrometers. We also explore the possibility of using a normal metal TES.

  7. 130-K Superconductivity in the Hg-Ba-Ca-Cu-O System

    Science.gov (United States)

    Salem, A.; Gamal, G. A.; Jakob, G.; Adrian, H.

    2006-09-01

    (Hg0.9Re0.1)Ba2Ca2Cu3 O8+δ(HgRe-1223) HTSC thin films have been prepared by pulsed laser deposition (PLD) of a precursor on (100)-oriented SrTiO3 substrates followed by annealing in a controlled mercury atmosphere. The critical temperature is 129 K determined by the temperature dependence of AC susceptibility. Resistance measurements show a superconducting transition at Tc= 130 K with transition width ΔTc ≈ 3 K.

  8. Quantum Monte Carlo simulations for high-Tc superconductors

    International Nuclear Information System (INIS)

    Muramatsu, A.; Dopf, G.; Wagner, J.; Dieterich, P.; Hanke, W.

    1992-01-01

    Quantum Monte Carlo simulations for a multi-band model of high-Tc superconductors are reviewed with special emphasis on the comparison of different observabels with experiments. It is shown that a give parameter set of the three-band Hubbard model leads to a consistent description of normal-state propteries as well as pairing correlation function for the copper-oxide superconductors as a function of doping and temperature. (orig.)

  9. Theoretical Analysis of Josephson Junction Systems and Superconducting Superlattices.

    Science.gov (United States)

    Edis, Taner

    Superconducting superlattices and Josephson junction networks provide a context for investigation of various problems related to superconductivity. Aspects of the layered nature of high-T_{c} materials, the statistical mechanics of Josephson junction systems, and the response of granular systems in the presence of a magnetic field are explored. Experiments on superlattices with a structure of alternating layers of superconducting { rm YBa_2Cu_3O}_{7-x } and insulating {rm PrBa _2Cu_3O}_{7-x} exhibit a suppression of the resistive transition temperature T_{c}, depending on layer thicknesses. This behavior can be explained by reduction of the bulk T_{c} through charge redistribution into insulating layers, and a further reduction through the Kosterlitz-Thouless nature of the transition, taking place in the effectively two-dimensional superconducting layers. The statistical mechanics of Josephson junction systems must account for their macroscopic quantum nature, and the "unusual constraints" arising from knowledge of superconducting wave function magnitudes in a steady state. Working with the maximum entropy formulation of statistical mechanics, the equivalence of state-probability level and density matrix quantum information entropy maximization is demonstrated; a state-level approach is then used to enforce the unusual constraint, providing an extension of the standard formalism. A novel physical result is predicted, where in equilibrium, the temperature dependence becomes modified from the usual 1/kT factor. Magnetically Modulated Resistance (MMR) techniques are effective in experimentally determining the quality of superconducting samples, in particular when weak links are present in granular materials. The weak link component of the MMR response can be explained using numerical studies of a disordered network of non-ideal Josephson junctions, where the non-linear oscillations in the macroscopic grain phases is simulated, in order to obtain the voltage across the

  10. Superconducting energy store

    International Nuclear Information System (INIS)

    Elsel, W.

    1986-01-01

    The advantages obtained by the energy store device according to the invention with a superconducting solenoid system consist of the fact that only relatively short superconducting forward and return leads are required, which are collected into cables as far as possible. This limits the coolant losses of the cables. Only one relatively expensive connecting part with a transition of its conductors from room temperature to a low temperature is required, which, like the normal conducting current switch, is easily accessible. As the continuation has to be cooled independently of the upper part solenoid, cooling of this continuation part can prevent the introduction of large quantities of heat into the connected part solenoid. Due to the cooling of the forward and return conductors of the connecting cable with the coolant of the lower part solenoid, there are relatively few separations between the coolant spaces of the part solenoids. (orig./MM) [de

  11. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  12. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  13. Metastable superconducting alloys

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1978-07-01

    The study of metastable metals and alloys has become one of the principal activities of specialists working in the field of superconducting materials. Metastable crystalline superconductors such as the A15-type materials have been given much attention. Non-crystalline superconductors were first studied over twenty years ago by Buckel and Hilsch using the technique of thin film evaporation on a cryogenic substrate. More recently, melt-quenching, sputtering, and ion implantation techniques have been employed to produce a variety of amorphous superconductors. The present article presents a brief review of experimental results and a survey of current work on these materials. The systematics of superconductivity in non-crystalline metals and alloys are described along with an analysis of the microscopic parameters which underlie the observed trends. The unique properties of these superconductors which arise from the high degree of structural disorder in the amorphous state are emphasized

  14. 2017 Gordon Conference on Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey [Univ. of Minnesota, Twin Cities, MN (United States)

    2017-11-14

    The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding for the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.

  15. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  16. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  17. Superconducting Ferromagnetic Nanodiamond

    Czech Academy of Sciences Publication Activity Database

    Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J. K.; Volodin, A.; Zhou, S. Q.; May, P. W.; Onufriienko, O.; Kacmarik, J.; Steele, J. A.; Li, J.; Vanacken, J.; Vacík, Jiří; Szabo, P.; Yuan, H. F.; Roeffaers, M. B. J.; Cerbu, D.; Samuely, P.; Hofkens, J.; Moshchalkov, V.V.

    2017-01-01

    Roč. 11, č. 6 (2017), s. 5358-5366 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanodiamond * superconductivity and ferromagnetism * spin fluctuations * giant positive magnetoresistance * anamalous Hall effect Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties) Impact factor: 13.942, year: 2016

  18. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A.F.

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  19. Superconducting magnets and cryogenics

    International Nuclear Information System (INIS)

    Purcell, J.R.

    1975-01-01

    Several significant superconducting beam line magnet systems are being constructed in the U. S. These will demonstrate the practicability of superconductors in beam lines. It is now time to consider some of the more subtle engineering problems associated with these magnets in order to assure a ''next generation'' of highly usable magnets. This paper presents some engineering approaches to better magnets for the future. (U.S.)

  20. Superconducting Panofsky quadrupoles

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described