WorldWideScience

Sample records for tb vaccine candidate

  1. The candidate TB vaccine, MVA85A, induces highly durable Th1 responses.

    Directory of Open Access Journals (Sweden)

    Michele Tameris

    Full Text Available Vaccination against tuberculosis (TB should provide long-term protective immunity against Mycobacterium tuberculosis (M.tb. The current TB vaccine, Bacille Calmette-Guerin (BCG, protects against disseminated childhood TB, but protection against lung TB in adolescents and adults is variable and mostly poor. One potential reason for the limited durability of protection may be waning of immunity through gradual attrition of BCG-induced T cells. We determined if a MVA85A viral-vector boost could enhance the durability of mycobacteria-specific T cell responses above those induced by BCG alone.We describe a long-term follow-up study of persons previously vaccinated with MVA85A. We performed a medical history and clinical examination, a tuberculin skin test and measured vaccine-specific T cell responses in persons previously enrolled as adults, adolescents, children or infants into three different Phase II trials, between 2005 and 2011.Of 252 potential participants, 183 (72.6% consented and completed the study visit. Vaccine-induced Ag85A-specific CD4+ T cell responses were remarkably persistent in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6 years after MVA85A vaccination. Specific CD4+ T cells expressed surface markers consistent with either CD45RA-CCR7+ central memory or CD45RA-CCR7- effector memory T cells. Similarly durable Ag85A-specific CD4+ T cell responses were detected in HIV-infected persons who were on successful antiretroviral therapy when MVA85A was administered. By contrast, Ag85A-specific CD4+ T cell frequencies in untreated MVA85A-vaccinated HIV-infected persons were mostly undetectable 3-5 years after vaccination.MVA85A induces remarkably durable T cell responses in immunocompetent persons. However, results from a recent phase IIb trial of MVA85A, conducted in infants from the same geographic area and study population, showed no vaccine efficacy, suggesting that these durable T cell responses do not

  2. Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Gloria P. Monterrubio-López

    2015-01-01

    Full Text Available Tuberculosis (TB is a chronic infectious disease, considered as the second leading cause of death worldwide, caused by Mycobacterium tuberculosis. The limited efficacy of the bacillus Calmette-Guérin (BCG vaccine against pulmonary TB and the emergence of multidrug-resistant TB warrants the need for more efficacious vaccines. Reverse vaccinology uses the entire proteome of a pathogen to select the best vaccine antigens by in silico approaches. M. tuberculosis H37Rv proteome was analyzed with NERVE (New Enhanced Reverse Vaccinology Environment prediction software to identify potential vaccine targets; these 331 proteins were further analyzed with VaxiJen for the determination of their antigenicity value. Only candidates with values ≥0.5 of antigenicity and 50% of adhesin probability and without homology with human proteins or transmembrane regions were selected, resulting in 73 antigens. These proteins were grouped by families in seven groups and analyzed by amino acid sequence alignments, selecting 16 representative proteins. For each candidate, a search of the literature and protein analysis with different bioinformatics tools, as well as a simulation of the immune response, was conducted. Finally, we selected six novel vaccine candidates, EsxL, PE26, PPE65, PE_PGRS49, PBP1, and Erp, from M. tuberculosis that can be used to improve or design new TB vaccines.

  3. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults.

    Science.gov (United States)

    Pathan, Ansar A; Minassian, Angela M; Sander, Clare R; Rowland, Rosalind; Porter, David W; Poulton, Ian D; Hill, Adrian V S; Fletcher, Helen A; McShane, Helen

    2012-08-17

    A non-randomised, open-label, Phase I safety and immunogenicity dose-finding study to assess the safety and immunogenicity of the candidate TB vaccine Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) from Mycobacterium tuberculosis (MTB) in healthy adult volunteers previously vaccinated with BCG. Healthy BCG-vaccinated volunteers were vaccinated with either 1×10(7) or 1×10(8)PFU of MVA85A. All adverse events were documented and antigen specific T cell responses were measured using an ex vivo IFN-γ ELISPOT assay. Safety and immunogenicity were compared between the 2 dose groups and with a previous trial in which a dose of 5×10(7)PFU MVA85A had been administered. There were no serious adverse events recorded following administration of either 1×10(7) or 1×10(8)PFU of MVA85A. Systemic adverse events were more frequently reported following administration of 1×10(8)PFU of MVA85A when compared to either 5×10(7) or 1×10(7)PFU of MVA85A but were mild or moderate in severity and resolved completely within 7 days of immunisation. Antigen specific T cell responses as measured by the IFN-γ ELISPOT were significantly higher following immunisation in adults receiving 1×10(8)PFU compared to the 5×10(7) and 1×10(7) doses. Additionally, a broader range of Ag85A epitopes are detected following 1×10(8)PFU of MVA85A. A higher dose of 1×10(8)PFU of MVA85A is well-tolerated, increases the frequency of IFN-γ secreting T cells detected following immunisation and broadens the range of Ag85A epitopes detected. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A review of the literature on the economics of vaccination against TB.

    Science.gov (United States)

    Tu, Hong-Anh T; Vu, Hoa D; Rozenbaum, Mark H; Woerdenbag, Herman J; Postma, Maarten J

    2012-03-01

    The BCG vaccine was introduced in 1921 and remains the only licensed vaccine for the prevention of TB worldwide. Despite its extensive use, the BCG vaccine lacks the ability to fully control the TB-endemic and -pandemic situations. The BCG vaccine is most effective in preventing pediatric TB, in particular, miliary TB and tuberculous meningitis. However, it has a limited effect in preventing pulmonary TB, which occurs more frequently in adults. BCG vaccination has now been implemented in more than 157 countries worldwide. For various countries, the benefits of vaccination are only limited and potentially not cost effective. The International Union Against Tuberculosis and Lung Diseases had set the criteria for discontinuation of BCG vaccination in 1994. This decision, however, was not based on economic considerations. Many developed countries have met the criteria set by the International Union Against Tuberculosis and Lung Disease and stopped universal BCG vaccination. For developing countries, the BCG vaccine is still an effective intervention in protecting young children from TB infection. A lot of effort has been spent on R&D of new TB vaccines, the first of which are expected to be available within 5-7 years from now. Novel TB vaccines are expected to be better and more effective than the current BCG vaccine and should provide a viable strategy in controlling TB morbidity and mortality. In this review, the aim is to explore economic evaluations that have been carried out for vaccination against TB worldwide. In addition to epidemiological evidence, economic evidence can play a crucial role in supporting the governments of countries in making proper public health decisions on BCG vaccination policies, in particular, to implement, continue, or discontinue.

  5. A review of the literature on the economics of vaccination against TB

    NARCIS (Netherlands)

    Tu, H.A.; Vu, H.D.; Rozenbaum, M.H.; Woerdenbag, H.J.; Postma, M.J.

    The BCG vaccine was introduced in 1921 and remains the only licensed vaccine for the prevention of TB worldwide. Despite its extensive use, the BCG vaccine lacks the ability to fully control the TB-endemic and -pandemic situations. The BCG vaccine is most effective in preventing pediatric TB, in

  6. Successes and failures in human tuberculosis vaccine development.

    Science.gov (United States)

    Zenteno-Cuevas, Roberto

    2017-12-01

    Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis. In 2016, the WHO estimated 10.5 million new cases and 1.8 million deaths, making this disease the leading cause of death by an infectious agent. The current and projected TB situation necessitates the development of new vaccines with improved attributes compared to the traditional BCG method. Areas covered: In this review, the authors describe the most promising candidate vaccines against TB and discuss additional key elements in vaccine development, such as animal models, new adjuvants and immunization routes and new strategies for the identification of candidate vaccines. Expert opinion: At present, around 13 candidate vaccines for TB are in the clinical phase of evaluation; however, there is still no substitute for the BCG vaccine. One major impediment to developing an effective vaccine is our lack of understanding of several of the mechanisms associated with infection and the immune response against TB. However, the recent implementation of an entirely new set of technological advances will facilitate the proposal of new candidates. Finally, development of a new vaccine will require a major coordination of effort in order to achieve its effective administration to the people most in need of it.

  7. Challenges and solutions for a rational vaccine design for TB-endemic regions.

    Science.gov (United States)

    Gowthaman, Uthaman; Mushtaq, Khurram; Tan, Amabel C; Rai, Pradeep K; Jackson, David C; Agrewala, Javed N

    2015-01-01

    Vaccines have been successful for global eradication or control of dreaded diseases such as smallpox, diphtheria, tetanus, yellow fever, whooping cough, polio, and measles. Unfortunately, this success has not been achieved for controlling tuberculosis (TB) worldwide. Bacillus Calmette Guérin (BCG) is the only available vaccine against TB. Paradoxically, BCG has deciphered success in the Western world but has failed in TB-endemic areas. In this article, we highlight and discuss the aspects of immunity responsible for controlling Mycobacterium tuberculosis infection and factors responsible for the failure of BCG in TB-endemic countries. In addition, we also suggest strategies that contribute toward the development of successful vaccine in protecting populations where BCG has failed.

  8. Advocacy, partnership and political commitment for TB vaccine research.

    Science.gov (United States)

    Olesen, Ole F; Chan, Sharon; Chappell, Janice; Guo, Yan; Leite, Luciana C C

    2016-08-01

    The 4th Global Forum on TB Vaccines, convened in Shanghai, China, from 21 - 24 April 2015, brought together a wide and diverse community involved in tuberculosis vaccine research and development to discuss the current status of, and future directions for this critical effort. This paper summarizes the sessions on Advancing the Pipeline: A Vision for the Next Decade, Engaging the BRICS: Basic Research to Manufacturing, and Regulatory and Access Issues for New TB Vaccines. Summaries of all sessions from the 4th Global Forum are compiled in a special supplement of Tuberculosis. [August 2016, Vol 99, Supp S1, S1-S30]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations.

    Science.gov (United States)

    Leunda, Amaya; Baldo, Aline; Goossens, Martine; Huygen, Kris; Herman, Philippe; Romano, Marta

    2014-06-16

    Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.

  10. Comparative Tuberculosis (TB) Prevention Effectiveness in Children of Bacillus Calmette-Guérin (BCG) Vaccines from Different Sources, Kazakhstan

    Science.gov (United States)

    Favorov, Michael; Ali, Mohammad; Tursunbayeva, Aigul; Aitmagambetova, Indira; Kilgore, Paul; Ismailov, Shakhimurat; Chorba, Terence

    2012-01-01

    Background Except during a 1-year period when BCG vaccine was not routinely administered, annual coverage of infants with Bacillus Calmette-Guérin (BCG) in Kazakhstan since 2002 has exceeded 95%. BCG preparations from different sources (Japan, Serbia, and Russia) or none were used exclusively in comparable 7-month time-frames, September through March, in 4 successive years beginning in 2002. Our objective was to assess relative effectiveness of BCG immunization. Methods/Findings We compared outcomes of birth cohorts from the 4 time-frames retrospectively. Three cohorts received vaccine from one of three manufacturers exclusively, and one cohort was not vaccinated. Cohorts were followed for 3 years for notifications of clinical TB and of culture-confirmed TB, and for 21 months for TB meningitis notifications. Prevention effectiveness based on relative risk of TB incidence was calculated for each vaccinated cohort compared to the non-vaccinated cohort. Although there were differences in prevention effectiveness observed among the three BCG vaccines, all were protective. The Japanese vaccine (currently used in Kazakhstan), the Serbian vaccine, and the Russian vaccine respectively were 69%, 43%, and 22% effective with respect to clinical TB notifications, and 92%, 82%, and 51% effective with respect to culture confirmed TB. All three vaccines were >70% effective with respect to TB meningitis. Limitations Potential limitations included considerations that 1) the methodology used was retrospective, 2) multiple risk factors could have varied between cohorts and affected prevention effectiveness measures, 3) most cases were clinically diagnosed, and TB culture-positive case numbers and TB meningitis case numbers were sparse, and 4) small variations in reported population TB burden could have affected relative risk of exposure for cohorts. Conclusions/Significance All three BCG vaccines evaluated were protective against TB, and prevention effectiveness varied by

  11. Comparative tuberculosis (TB prevention effectiveness in children of Bacillus Calmette-Guérin (BCG vaccines from different sources, Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Michael Favorov

    Full Text Available BACKGROUND: Except during a 1-year period when BCG vaccine was not routinely administered, annual coverage of infants with Bacillus Calmette-Guérin (BCG in Kazakhstan since 2002 has exceeded 95%. BCG preparations from different sources (Japan, Serbia, and Russia or none were used exclusively in comparable 7-month time-frames, September through March, in 4 successive years beginning in 2002. Our objective was to assess relative effectiveness of BCG immunization. METHODS/FINDINGS: We compared outcomes of birth cohorts from the 4 time-frames retrospectively. Three cohorts received vaccine from one of three manufacturers exclusively, and one cohort was not vaccinated. Cohorts were followed for 3 years for notifications of clinical TB and of culture-confirmed TB, and for 21 months for TB meningitis notifications. Prevention effectiveness based on relative risk of TB incidence was calculated for each vaccinated cohort compared to the non-vaccinated cohort. Although there were differences in prevention effectiveness observed among the three BCG vaccines, all were protective. The Japanese vaccine (currently used in Kazakhstan, the Serbian vaccine, and the Russian vaccine respectively were 69%, 43%, and 22% effective with respect to clinical TB notifications, and 92%, 82%, and 51% effective with respect to culture confirmed TB. All three vaccines were >70% effective with respect to TB meningitis. LIMITATIONS: Potential limitations included considerations that 1 the methodology used was retrospective, 2 multiple risk factors could have varied between cohorts and affected prevention effectiveness measures, 3 most cases were clinically diagnosed, and TB culture-positive case numbers and TB meningitis case numbers were sparse, and 4 small variations in reported population TB burden could have affected relative risk of exposure for cohorts. CONCLUSIONS/SIGNIFICANCE: All three BCG vaccines evaluated were protective against TB, and prevention effectiveness

  12. Comparative tuberculosis (TB) prevention effectiveness in children of Bacillus Calmette-Guérin (BCG) vaccines from different sources, Kazakhstan.

    Science.gov (United States)

    Favorov, Michael; Ali, Mohammad; Tursunbayeva, Aigul; Aitmagambetova, Indira; Kilgore, Paul; Ismailov, Shakhimurat; Chorba, Terence

    2012-01-01

    Except during a 1-year period when BCG vaccine was not routinely administered, annual coverage of infants with Bacillus Calmette-Guérin (BCG) in Kazakhstan since 2002 has exceeded 95%. BCG preparations from different sources (Japan, Serbia, and Russia) or none were used exclusively in comparable 7-month time-frames, September through March, in 4 successive years beginning in 2002. Our objective was to assess relative effectiveness of BCG immunization. We compared outcomes of birth cohorts from the 4 time-frames retrospectively. Three cohorts received vaccine from one of three manufacturers exclusively, and one cohort was not vaccinated. Cohorts were followed for 3 years for notifications of clinical TB and of culture-confirmed TB, and for 21 months for TB meningitis notifications. Prevention effectiveness based on relative risk of TB incidence was calculated for each vaccinated cohort compared to the non-vaccinated cohort. Although there were differences in prevention effectiveness observed among the three BCG vaccines, all were protective. The Japanese vaccine (currently used in Kazakhstan), the Serbian vaccine, and the Russian vaccine respectively were 69%, 43%, and 22% effective with respect to clinical TB notifications, and 92%, 82%, and 51% effective with respect to culture confirmed TB. All three vaccines were >70% effective with respect to TB meningitis. Potential limitations included considerations that 1) the methodology used was retrospective, 2) multiple risk factors could have varied between cohorts and affected prevention effectiveness measures, 3) most cases were clinically diagnosed, and TB culture-positive case numbers and TB meningitis case numbers were sparse, and 4) small variations in reported population TB burden could have affected relative risk of exposure for cohorts. All three BCG vaccines evaluated were protective against TB, and prevention effectiveness varied by manufacturer. When setting national immunization policy, consideration

  13. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations

    Science.gov (United States)

    Leunda, Amaya; Baldo, Aline; Goossens, Martine; Huygen, Kris; Herman, Philippe; Romano, Marta

    2014-01-01

    Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed. PMID:26344627

  14. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations

    Directory of Open Access Journals (Sweden)

    Amaya Leunda

    2014-06-01

    Full Text Available Novel efficient vaccines are needed to control tuberculosis (TB, a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine. In this review we provide up to date information on novel tuberculosis (TB vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.

  15. Adenovirus type 35-vectored tuberculosis vaccine has an acceptable safety and tolerability profile in healthy, BCG-vaccinated, QuantiFERON(®)-TB Gold (+) Kenyan adults without evidence of tuberculosis.

    Science.gov (United States)

    Walsh, Douglas S; Owira, Victorine; Polhemus, Mark; Otieno, Lucas; Andagalu, Ben; Ogutu, Bernhards; Waitumbi, John; Hawkridge, Anthony; Shepherd, Barbara; Pau, Maria Grazia; Sadoff, Jerald; Douoguih, Macaya; McClain, J Bruce

    2016-05-05

    In a Phase 1 trial, we evaluated the safety of AERAS-402, an adenovirus 35-vectored TB vaccine candidate expressing 3 Mycobacterium tuberculosis (Mtb) immunodominant antigens, in subjects with and without latent Mtb infection. HIV-negative, BCG-vaccinated Kenyan adults without evidence of tuberculosis, 10 QuantiFERON(®)-TB Gold In-Tube test (QFT-G)(-) and 10 QFT-G(+), were randomized 4:1 to receive AERAS-402 or placebo as two doses, on Days 0 and 56, with follow up to Day 182. There were no deaths, serious adverse events or withdrawals. For 1 AERAS-402 QFT-G(-) and 1 AERAS-402 QFT-G(+) subject, there were 3 self-limiting severe AEs of injection site pain: 1 after the first vaccination and 1 after each vaccination, respectively. Two additional severe AEs considered vaccine-related were reported after the first vaccination in AERAS-402 QFT-G(+) subjects: elevated blood creatine phosphokinase and neutropenia, the latter slowly improving but remaining abnormal until study end. AERAS-402 was not detected in urine or throat cultures for any subject. In intracellular cytokine staining studies, curtailed by technical issues, we saw modest CD4+ and CD8+ T cell responses to Mtb Ag85A/b peptide pools among both QFT-G(-) and (+) subjects, with trends in the CD4+ T cells suggestive of boosting after the second vaccine dose, slightly more so in QFT-G(+) subjects. CD4+ and CD8+ responses to Mtb antigen TB10.4 were minimal. Increases in Adenovirus 35 neutralizing antibodies from screening to end of study, seen in 50% of AERAS-402 recipients, were mostly minimal. This small study confirms acceptable safety and tolerability profiles for AERAS-402, in line with other Phase 1 studies of AERAS-402, now to include QFT-G(+) subjects. Published by Elsevier Ltd.

  16. Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K.

    Science.gov (United States)

    Cha, Seung Bin; Kim, Woo Sik; Kim, Jong-Seok; Kim, Hongmin; Kwon, Kee Woong; Han, Seung Jung; Cho, Sang-Nae; Coler, Rhea N; Reed, Steven G; Shin, Sung Jae

    2016-04-27

    The majority of tuberculosis (TB) vaccine candidates advanced to clinical trials have been evaluated preclinically using laboratory-adapted strains. However, it has been proposed that challenge with clinical isolates in preclinical vaccine testing could provide further and more practical validation. Here, we tested the ID93/GLA-SE TB vaccine candidate against the clinical Mycobacterium tuberculosis (Mtb) strain K (Mtb K) belonging to the Beijing family, the most prevalent Mtb strain in South Korea. Mice immunized with ID93/GLA-SE exhibited a significant reduction in bacteria and reduced lung inflammation against Mtb K when compared to non-immunized controls. In addition, we analyzed the immune responses in the lungs of ID93/GLA-SE-immunized mice, and showed that ID93/GLA-SE was able to elicit sustained Th1-biased immune responses including antigen-specific multifunctional CD4(+) T cell co-producing IFN-γ, TNF-α, and IL-2 as well as a high magnitude of IFN-γ response for up to 10 weeks post-challenge. Notably, further investigation of T cell subsets in the lung following challenge showed remarkable generation of CD8(+) central memory T cells by ID93/GLA-SE-immunization. Our findings showed that ID93/GLA-SE vaccine confers a high level of robust protection against the hypervirulent Mtb Beijing infection which was characterized by pulmonary Th1-polarized T-cell immune responses. These findings may also provide relevant information for potential utility of this vaccine candidate in East-Asian countries where the Beijing genotype is highly prevalent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis.

    Science.gov (United States)

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2017-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world's population with latent Mtb infection (LTBI), and 5-10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  18. "The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" - Meeting report.

    Science.gov (United States)

    Boggiano, Cesar; Eichelberg, Katrin; Ramachandra, Lakshmi; Shea, Jaqueline; Ramakrishnan, Lalita; Behar, Samuel; Ernst, Joel D; Porcelli, Steven A; Maeurer, Markus; Kornfeld, Hardy

    2017-06-14

    Tuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guérin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission. Copyright © 2017.

  19. Advanced Vaccine Candidates for Lassa Fever

    Directory of Open Access Journals (Sweden)

    Igor S. Lukashevich

    2012-10-01

    Full Text Available Lassa virus (LASV is the most prominent human pathogen of the Arenaviridae. The virus is transmitted to humans by a rodent reservoir, Mastomys natalensis, and is capable of causing lethal Lassa Fever (LF. LASV has the highest human impact of any of the viral hemorrhagic fevers (with the exception of Dengue Fever with an estimated several hundred thousand infections annually, resulting in thousands of deaths in Western Africa. The sizeable disease burden, numerous imported cases of LF in non-endemic countries, and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Presently there is no licensed vaccine against LF or approved treatment. Recently, several promising vaccine candidates have been developed which can potentially target different groups at risk. The purpose of this manuscript is to review the LASV pathogenesis and immune mechanisms involved in protection. The current status of pre-clinical development of the advanced vaccine candidates that have been tested in non-human primates will be discussed. Major scientific, manufacturing, and regulatory challenges will also be considered.

  20. Strategy to better select HIV-infected individuals for latent TB treatment in BCG-vaccinated population.

    Directory of Open Access Journals (Sweden)

    Chin-Hui Yang

    Full Text Available OBJECTIVE: To evaluate the T-SPOT.TB interferon-γ releasing assay and the tuberculin skin test (TST, for the diagnosis of latent tuberculosis infection(LTBI and the development of subsequent active tuberculosis, in BCG-vaccinated HIV-infected individuals. METHODS: HIV-infected individuals without clinical suspicion of active TB or a past history of TB were enrolled from 1 January 2008 to 30 November 2010. Both T-SPOT.TB test and TST were offered to the participants whom were followed up prospectively until April 30, 2012 for development of TB. RESULTS: Among the 909 participants, 25% had positive TST reactions with cut-off point of 5 mm and 15% had positive T-SPOT.TB results. After a median follow-up of 2.97 years, there were 5 cases developed culture-confirmed active TB (all had dual positive TST and T-SPOT.TB results, and the incidence was 0.17 per 100 person-years. The relative risks (RRs for subsequent active TB in HIV-infected individuals with positive TST results, positive T-SPOT.TB results and dual positive results compared with the risk for individuals with negative results were 40.6 (95% CI 2.1-767.9, 73.9 (95% CI 3.9-1397.7 and 226.5 (95% CI 12.0-4284, respectively. The number needed to treat to prevent one subsequent TB case among patients with a positive TST, a positive T-SPOT.TB and dual positive results was 35, 22 and 8 respectively. CONCLUSIONS: Adopting positive results of the TST and T-SPOT.TB to screen LTBI among BCG-vaccinated HIV-infected individuals might be feasible. Number needed to treat for isoniazid preventive therapy could be reduced significantly by using dual positive strategy.

  1. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    2018-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis (TB, causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI, and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660 TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  2. Promising new vaccine candidates against Campylobacter in broilers.

    Directory of Open Access Journals (Sweden)

    Marine Meunier

    Full Text Available Campylobacter is the leading cause of human bacterial gastroenteritis in the European Union. Birds represent the main reservoir of the bacteria, and human campylobacteriosis mainly occurs after consuming and/or handling poultry meat. Reducing avian intestinal Campylobacter loads should impact the incidence of human diseases. At the primary production level, several measures have been identified to reach this goal, including vaccination of poultry. Despite many studies, however, no efficient vaccine is currently available. We have recently identified new vaccine candidates using the reverse vaccinology strategy. This study assessed the in vivo immune and protective potential of six newly-identified vaccine antigens. Among the candidates tested on Ross broiler chickens, four (YP_001000437.1, YP_001000562.1, YP_999817.1, and YP_999838.1 significantly reduced cecal Campylobacter loads by between 2 and 4.2 log10 CFU/g, with the concomitant development of a specific humoral immune response. In a second trial, cecal load reductions results were not statistically confirmed despite the induction of a strong immune response. These vaccine candidates need to be further investigated since they present promising features.

  3. The Progress of Therapeutic Vaccination with Regard to Tuberculosis.

    Science.gov (United States)

    Cardona, Pere-Joan

    2016-01-01

    A major problem with tuberculosis (TB) control is the long duration of drug therapy-both for latent and for active TB. Therapeutic vaccination has been postulated to improve this situation, and to this end there are several candidates already in clinical phases of development. These candidates follow two main designs, namely bacilli-directed therapy based on inactivated -whole or -fragmented bacillus ( Mycobacterium w and RUTI) or fusion proteins that integrate non-replicating bacilli -related antigens (H56 vaccine), and host-directed therapy to reduce the tissue destruction. The administration of inactivated Mycobacterium vaccae prevents the "Koch phenomenon" response, and oral administration of heat-killed Mycobacterium manresensis prevents excessive neutrophilic infiltration of the lesions. This review also tries to explain the success of Mycobacterium tuberculosis by reviewing its evolution from infection to disease, and highlights the lack of a definitive understanding of the natural history of TB pathology and the need to improve our knowledge on TB immunology and pathogenesis.

  4. Novel approaches to identify protective malaria vaccine candidates

    Directory of Open Access Journals (Sweden)

    Wan Ni eChia

    2014-11-01

    Full Text Available Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood-stage or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50% protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.

  5. A novel live-attenuated vaccine candidate for mayaro Fever.

    Directory of Open Access Journals (Sweden)

    William J Weise

    2014-08-01

    Full Text Available Mayaro virus (MAYV is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.

  6. Detection of circulating Mycobacterium tuberculosis-specific DNA by droplet digital PCR for vaccine evaluation in challenged monkeys and TB diagnosis.

    Science.gov (United States)

    Song, Neng; Tan, Yang; Zhang, Lingyun; Luo, Wei; Guan, Qing; Yan, Ming-Zhe; Zuo, Ruiqi; Liu, Weixiang; Luo, Feng-Ling; Zhang, Xiao-Lian

    2018-04-24

    Mycobacterium tuberculosis (M. tb) is emerging as a more serious pathogen due to the increased multidrug-resistant TB and co-infection of human immunodeficiency virus (HIV). The development of an effective and sensitive detection method is urgently needed for bacterial load evaluation in vaccine development, early TB diagnosis, and TB treatment. Droplet digital polymerase chain reaction (ddPCR) is a newly developed sensitive PCR method for the absolute quantification of nucleic acid concentrations. Here, we used ddPCR to quantify the circulating virulent M. tb-specific CFP10 (10-kDa culture filtrate protein, Rv3874) and Rv1768 DNA copy numbers in the blood samples from Bacille Calmette-Guerin (BCG)-vaccinated and/or virulent M. tb H37Rv-challenged rhesus monkeys. We found that ddPCR was more sensitive compared to real-time fluorescence quantitative PCR (qPCR), as the detection limits of CFP10 were 1.2 copies/μl for ddPCR, but 15.8 copies/μl for qPCR. We demonstrated that ddPCR could detect CFP10 and Rv1768 DNA after 3 weeks of infection and at least two weeks earlier than qPCR in M.tb H37Rv-challenged rhesus monkey models. DdPCR could also successfully quantify CFP10 and Rv1768 DNA copy numbers in clinical TB patients' blood samples (active pulmonary TB, extrapulmonary TB (EPTB), and infant TB). To our knowledge, this study is the first to demonstrate that ddPCR is an effective and sensitive method of measuring the circulating CFP10 and Rv1768 DNA for vaccine development, bacterial load evaluation in vivo, and early TB (including EPTB and infant TB) diagnosis as well.

  7. Breaking Transmission with Vaccines: The Case of Tuberculosis.

    Science.gov (United States)

    Gonzalo-Asensio, Jesus; Aguilo, Nacho; Marinova, Dessislava; Martin, Carlos

    2017-07-01

    Members of the Mycobacterium tuberculosis complex (MTBC) have evolved causing tuberculosis (TB) in different mammalian hosts. MTBC ecotypes have adapted to diverse animal species, with M. bovis being the most common cause of TB in livestock. Cattle-to-human transmission of M. bovis through ingestion of raw milk was common before introduction of the pasteurization process. TB in humans is mainly caused by M. tuberculosis . This bacterium is considered a genetically clonal pathogen that has coevolved with humans due to its ability to manipulate and subvert the immune response. TB is a major public health problem due to airborne person-to-person transmission of M. tuberculosis . The essential yet unanswered question on the natural history of TB is when M. tuberculosis decides to establish latent infection in the host (resambling the lysogenic cycle of lambda phage) or to cause pulmonary disease (comparable to the lytic cycle of lambda phage). In this latter case, M. tuberculosis kills the host with the aim of achieving transmission to new hosts. Combating the TB epidemic requires stopping transmission. M. bovis BCG, the present vaccine against TB, is derived from M. bovis and only protects against disseminated forms of TB. Thus, a priority in TB research is development of new effective vaccines to prevent pulmonary disease. Attenuated vaccines based on M. tuberculosis as MTBVAC are potential candidates that could contribute to break the TB transmission cycle.

  8. Update on the Clinical Development of Candidate Malaria Vaccines

    National Research Council Canada - National Science Library

    Ballou, W. R; Arevalo-Herrera, Myriam; Carucci, Daniel; Richie, Thomas L; Corradin, Giampietro; Diggs, Carter; Druilhe, Pierre; Giersing, Birgitte K; Saul, Allan; Heppner, D. G

    2004-01-01

    ... powerful driver for stimulating clinical development of candidate vaccines for malaria. This new way forward promises to greatly increase the likelihood of bringing a safe and effective vaccine to licensure...

  9. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  10. Mycobacteria and TB

    National Research Council Canada - National Science Library

    Kaufmann, S. H. E. (Stephan H. E.); Hahn, Helmut

    2003-01-01

    .... Scientists investigating the epidemiology, immunology and molecular biology of TB or engaged in vaccine and drug development as well as physicians and social workers treating TB patients will benefit...

  11. The effect of current Schistosoma mansoni infection on the immunogenicity of a candidate TB vaccine, MVA85A, in BCG-vaccinated adolescents: An open-label trial.

    Directory of Open Access Journals (Sweden)

    Anne Wajja

    2017-05-01

    Full Text Available Helminth infection may affect vaccine immunogenicity and efficacy. Adolescents, a target population for tuberculosis booster vaccines, often have a high helminth burden. We investigated effects of Schistosoma mansoni (Sm on the immunogenicity and safety of MVA85A, a model candidate tuberculosis vaccine, in BCG-vaccinated Ugandan adolescents.In this phase II open label trial we enrolled 36 healthy, previously BCG-vaccinated adolescents, 18 with no helminth infection detected, 18 with Sm only. The primary outcome was immunogenicity measured by Ag85A-specific interferon gamma ELISpot assay. Tuberculosis and schistosome-specific responses were also assessed by whole-blood stimulation and multiplex cytokine assay, and by antibody ELISAs.Ag85A-specific cellular responses increased significantly following immunisation but with no differences between the two groups. Sm infection was associated with higher pre-immunisation Ag85A-specific IgG4 but with no change in antibody levels following immunisation. There were no serious adverse events. Most reactogenicity events were of mild or moderate severity and resolved quickly.The significant Ag85A-specific T cell responses and lack of difference between Sm-infected and uninfected participants is encouraging for tuberculosis vaccine development. The implications of pre-existing Ag85A-specific IgG4 antibodies for protective immunity against tuberculosis among those infected with Sm are not known. MVA85A was safe in this population.ClinicalTrials.gov NCT02178748.

  12. Efficacy of chimeric Pestivirus vaccine candidates against classical swine fever: protection and DIVA characteristics.

    Science.gov (United States)

    Eblé, P L; Geurts, Y; Quak, S; Moonen-Leusen, H W; Blome, S; Hofmann, M A; Koenen, F; Beer, M; Loeffen, W L A

    2013-03-23

    Currently no live DIVA (Differentiating Infected from Vaccinated Animals) vaccines against classical swine fever (CSF) are available. The aim of this study was to investigate whether chimeric pestivirus vaccine candidates (CP7_E2alf, Flc11 and Flc9) are able to protect pigs against clinical signs, and to reduce virus shedding and virus transmission, after a challenge with CSF virus (CSFV), 7 or 14 days after a single intramuscular vaccination. In these vaccine candidates, either the E2 or the E(rns) encoding genome region of a bovine viral diarrhoea virus strain were combined with a cDNA copy of CSFV or vice versa. Furthermore, currently available serological DIVA tests were evaluated. The vaccine candidates were compared to the C-strain. All vaccine candidates protected against clinical signs. No transmission to contact pigs was detected in the groups vaccinated with C-strain, CP7_E2alf and Flc11. Limited transmission occurred in the groups vaccinated with Flc9. All vaccine candidates would be suitable to stop on-going transmission of CSFV. For Flc11, no reliable differentiation was possible with the current E(rns)-based DIVA test. For CP7_E2alf, the distribution of the inhibition percentages was such that up to 5% false positive results may be obtained in a large vaccinated population. For Flc9 vaccinated pigs, the E2 ELISA performed very well, with an expected 0.04% false positive results in a large vaccinated population. Both CP7_E2alf and Flc9 are promising candidates to be used as live attenuated marker vaccines against CSF, with protection the best feature of CP7_E2alf, and the DIVA principle the best feature of Flc9. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Developing whole mycobacteria cell vaccines for tuberculosis: Workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014.

    Science.gov (United States)

    2015-06-12

    On July 9, 2014, Aeras and the Max Planck Institute for Infection Biology convened a workshop entitled "Whole Mycobacteria Cell Vaccines for Tuberculosis" at the Max Planck Institute for Infection Biology on the grounds of the Charité Hospital in Berlin, Germany, close to the laboratory where, in 1882, Robert Koch first identified Mycobacterium tuberculosis (Mtb) as the pathogen responsible for tuberculosis (TB). The purpose of the meeting was to discuss progress in the development of TB vaccines based on whole mycobacteria cells. Live whole cell TB vaccines discussed at this meeting were derived from Mtb itself, from Bacille Calmette-Guérin (BCG), the only licensed vaccine against TB, which was genetically modified to reduce pathogenicity and increase immunogenicity, or from commensal non-tuberculous mycobacteria. Inactivated whole cell TB and non-tuberculous mycobacterial vaccines, intended as immunotherapy or as safer immunization alternatives for HIV+ individuals, also were discussed. Workshop participants agreed that TB vaccine development is significantly hampered by imperfect animal models, unknown immune correlates of protection and the absence of a human challenge model. Although a more effective TB vaccine is needed to replace or enhance the limited effectiveness of BCG in all age groups, members of the workshop concurred that an effective vaccine would have the greatest impact on TB control when administered to adolescents and adults, and that use of whole mycobacteria cells as TB vaccine candidates merits greater support, particularly given the limited understanding of the specific Mtb antigens necessary to generate an immune response capable of preventing Mtb infection and/or disease. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.

  14. Impact of Targeted Tuberculosis Vaccination Among a Mining Population in South Africa: A Model-Based Study.

    Science.gov (United States)

    Shrestha, Sourya; Chihota, Violet; White, Richard G; Grant, Alison D; Churchyard, Gavin J; Dowdy, David W

    2017-12-15

    Optimizing the use of new tools, such as vaccines, may play a crucial role in reaching global targets for tuberculosis (TB) control. Some of the most promising candidate vaccines target adults, although high-coverage mass vaccinations may be logistically more challenging among this population than among children. Vaccine-delivery strategies that target high-risk groups or settings might yield proportionally greater impact than do those that target the general population. We developed an individual-based TB transmission model representing a hypothetical population consisting of people who worked in South African gold mines or lived in associated labor-sending communities. We simulated the implementation of a postinfection adult vaccine with 60% efficacy and a mean effect duration of 10 years. We then compared the impact of a mine-targeted vaccination strategy, in which miners were vaccinated while in the mines, with that of a community-targeted strategy, in which random individuals within the labor-sending communities were vaccinated. Mine-targeted vaccination averted an estimated 0.37 TB cases per vaccine dose compared with 0.25 for community-targeted vaccination, for a relative efficacy of 1.46 (95% range, 1.13-1.91). The added benefit of mine-targeted vaccination primarily reflected the disproportionate demographic burden of TB among the population of adult males as a whole. As novel vaccines for TB are developed, venue-based vaccine delivery that targets high-risk demographic groups may improve both vaccine feasibility and the impact on transmission. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Accelerating tuberculosis vaccine trials with diagnostic and prognostic biomarkers.

    Science.gov (United States)

    Kaufmann, Stefan H E; Weiner, January; Maertzdorf, Jeroen

    2017-08-01

    The most recent estimates on tuberculosis (TB) morbidity and mortality reveal that the global disease burden is even higher than previously assumed. Better drugs, diagnostics and vaccines are major requirements to control the ongoing TB pandemic. The high complexity of the infectious process and the underlying pathology, however, challenge elucidation of protective immune mechanisms at the various stages towards active TB disease, which need to be understood for rational design of novel intervention measures. Areas covered: Next to the more classical approaches, host biomarkers increasingly receive attention as promising tools on our way to control the disease. In the area of diagnosis, host biomarkers are recognized as promising new means because the identification of small biosignatures with high discriminatory and even prognostic potential has stimulated the hope that rapid and easy-to-perform diagnosis and prognosis will become possible in the near future. For rational design of new vaccine candidates, correlates of protection are highly desirable. High-throughput systems-vaccinology will boost the identification of such biomarker profiles. Expert commentary: Considering their potential to accelerate development of better diagnostics and vaccines, host biomarkers should be firmly integrated into future TB research.

  16. Updates on antibody functions in Mycobacterium tuberculosis infection and their relevance for developing a vaccine against tuberculosis.

    Science.gov (United States)

    Achkar, Jacqueline M; Prados-Rosales, Rafael

    2018-04-12

    A more effective vaccine to control tuberculosis (TB), a major global public health problem, is urgently needed. Current vaccine candidates focus predominantly on eliciting cell-mediated immunity but other arms of the immune system also contribute to protection against TB. We review here recent studies that enhance our current knowledge of antibody-mediated functions against Mycobacterium tuberculosis. These findings, which contribute to the increasing evidence that antibodies have a protective role against TB, include demonstrations that firstly distinct human antibody Fc glycosylation patterns, found in latent M. tuberculosis infection but not in active TB, influence the efficacy of the host to control M. tuberculosis infection, secondly antibody isotype influences human antibody functions, and thirdly that antibodies targeting M. tuberculosis surface antigens are protective. We discuss these findings in the context of TB vaccine development and highlight the need for further research on antibody-mediated immunity in M. tuberculosis infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    Science.gov (United States)

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and

  18. Comparative Infectivity Determinations of Dengue Virus Vaccine Candidates in Rhesus Monkeys, Mosquitoes, and Cell Cultures

    Science.gov (United States)

    1993-01-28

    34 are required for the evaluation of these vaccine candidates. RE: DAMDI7-89-C-9175 Page 16 REFERENCES 1. Sabin AB, Sclesinger RW, 1945. Production of...AD-A261 892 CONTRACT NO: DAMD17-89-C-9 175 \\II\\IllI\\I\\I1\\\\~il\\ TITLE: COMPARATIVE INFECTIVITY DETERMINATIONS OF DENGUE VIRUS VACCINE CANDIDATES IN... Vaccine Candidates in Rhesus Monkeys, 63002A Mosquitoes, and Cell Cultures 3M263002D870 AC 6. AUTHOR(S) DA335475 Edmundo Kraiselburd 7. PERFORMING

  19. Development of an inactivated candidate vaccine against Chandipura virus (Rhabdoviridae: Vesiculovirus).

    Science.gov (United States)

    Jadi, R S; Sudeep, A B; Barde, P V; Arankalle, V A; Mishra, A C

    2011-06-20

    A Vero cell based vaccine candidate against Chandipura (CHP) virus (Rhabdoviridae: Vesiculovirus), was developed and evaluated for immunogenicity in mice. Virus was purified by ultracentrifugation on 30% glycerol cushion followed by differential centrifugation on 10-60% sucrose gradient and inactivated with β-propio lactone at a concentration of 1:3500. The inactivated product was blended with aluminium phosphate (3%) and immunized 4-week-old Swiss albino mice. Neutralizing antibodies in the range of 1:10 to 160 and 1:80 to 1:320 was detected with 85% and 100% sero-conversion after 2nd and 3rd dose, respectively. All the immunized mice with antibody titer above 1:20 survived live virus challenge. The vaccine candidate has potential to be an efficient vaccine against CHP virus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Discovery of Novel Leptospirosis Vaccine Candidates Using Reverse and Structural Vaccinology

    Directory of Open Access Journals (Sweden)

    Alan John Alexander McBride

    2017-04-01

    Full Text Available Leptospira spp. are diderm (two membranes bacteria that infect mammals causing leptospirosis, a public health problem with global implications. Thousands of people die every year due to leptospirosis, especially in developing countries with tropical climates. Prophylaxis is difficult due to multiple factors, including the large number of asymptomatic hosts that transmit the bacteria, poor sanitation, increasing numbers of slum dwellers, and the lack of an effective vaccine. Several leptospiral recombinant antigens were evaluated as a replacement for the inactivated (bacterin vaccine; however, success has been limited. A prospective vaccine candidate is likely to be a surface-related protein that can stimulate the host immune response to clear leptospires from blood and organs. In this study, a comprehensive bioinformatics approach based on reverse and structural vaccinology was applied toward the discovery of novel leptospiral vaccine candidates. The Leptospira interrogans serovar Copenhageni strain L1-130 genome was mined in silico for the enhanced identification of conserved β-barrel (βb transmembrane proteins and outer membrane (OM lipoproteins. Orthologs of the prospective vaccine candidates were screened in the genomes of 20 additional Leptospira spp. Three-dimensional structural models, with a high degree of confidence, were created for each of the surface-exposed proteins. Major histocompatibility complex II (MHC-II epitopes were identified, and their locations were mapped on the structural models. A total of 18 βb transmembrane proteins and 8 OM lipoproteins were identified. These proteins were conserved among the pathogenic Leptospira spp. and were predicted to have epitopes for several variants of MHC-II receptors. A structural and functional analysis of the sequence of these surface proteins demonstrated that most βb transmembrane proteins seem to be TonB-dependent receptors associated with transportation. Other proteins

  1. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    National Research Council Canada - National Science Library

    Rohrbough, James G

    2007-01-01

    Presented in this dissertation are proteomic analysis studies focused on identifying proteins to be used as vaccine candidates against Coccidioidomycosis, a potentially fatal human pulmonary disease...

  2. Comparative evaluation of phenol and thimerosal as preservatives for a candidate vaccine against American cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Wilson Mayrink

    2010-02-01

    Full Text Available For decades thimerosal has been used as a preservative in the candidate vaccine for cutaneous leishmaniasis, which was developed by Mayrink et al. The use of thimerosal in humans has been banned due to its mercury content. This study addresses the standardization of phenol as a new candidate vaccine preservative. We have found that the proteolytic activity was abolished when the test was conducted using the candidate vaccine added to merthiolate (MtVac as well as to phenol (PhVac. The Montenegro's skin test conversion rates induced by MtVac and by PhVac was 68.06% and 85.9%, respectively, and these values were statistically significant (p < 0.05. The proliferative response of peripheral mononuclear blood cells shows that the stimulation index of mice immunized with both candidate vaccines was higher than the one in control animals (p < 0.05. The ability of the candidate vaccines to induce protection in C57BL/10 mice against a challenge with infective Leishmania amazonensis promastigotes was tested and the mice immunized with PhVac developed smaller lesions than the mice immunized with MtVac. Electrophoresis of phenol-preserved antigen revealed a number of proteins, which were better preserved in PhVac. These results do in fact encourage the use of phenol for preserving the immunogenic and biochemical properties of the candidate vaccine for cutaneous leishmaniasis.

  3. Difference in TB10.4 T-cell epitope recognition following immunization with recombinant TB10.4, BCG or infection with Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Billeskov, Rolf; Grandal, Michael V; Poulsen, Christian

    2010-01-01

    vaccine Ag, TB10.4, in a recombinant form, or when expressed by the pathogen Mycobacterium tuberculosis (M.tb), or by the current anti-tuberculosis vaccine, Mycobacterium bovis BCG. We showed that BCG and M.tb induced a similar CD4(+) T-cell specific TB10.4 epitope-pattern, which differed completely from...... that induced by recombinant TB10.4. This difference was not due to post-translational modifications of TB10.4 or because TB10.4 is secreted from BCG and M.tb as a complex with Rv0287. In addition, BCG and TB10.4/CAF01 were both taken up by DC and macrophages in vivo, and in vitro uptake experiments revealed...... that both TB10.4 and BCG were transported to Lamp(+)-compartments. BCG and TB10.4 however, were directed to different types of Lamp(+)-compartments in the same APC, which may lead to different epitope recognition patterns. In conclusion, we show that different vectors can induce completely different...

  4. Biohazard Analysis of Select Biodefense Vaccine Candidates - Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella Tularensis LVS

    International Nuclear Information System (INIS)

    Rao, V.

    2007-01-01

    Biohazard assessment of biodefense vaccine candidates forms the basis for a facility- and activity-specific risk assessment performed to determine the biosafety levels and general safety standards required for biological product development. As a part of our support to the US biodefense vaccine development program, we perform a systematic biohazard assessment of potential vaccine candidates with the primary objective to, (a) Identify and characterize hazard elements associated with the wild type and vaccine strains, (b) Provide biohazard information on the etiologic agent (vaccine candidate) to assess Phase 1 clinical trial facility sites, (c) Provide a baseline to conduct an agent and facility-specific risk assessment at clinical trial facilities interested in performing phase 1 clinical trial, (d) Provide comparative hazard profiles of the vaccine candidates wit MSDS for wild-type to identify and establish appropriate protective biosafety levels, and (e) Support determination of a hazard level to select personal protective equipment as required under the OSHA guidelines. This paper will describe the biohazard analysis of two vaccine candidates, Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella tularensis LVS, a viral and bacterial agent, respectively. As part of the biohazard assessment we preformed a thorough review of published literature on medical pathology, epidemiology, pre-clinical investigational studies, and environmental data on the etiologic agent subtypes and the vaccine candidates. Using standard analytical procedures, the data were then analyzed relative to two intrinsic hazard parameters-health hazard and environmental hazard. Using a weight-of-evidence (WOE) approach, the potential hazards of etiologic agent wild subtypes and vaccine candidates were ranked under three main categories: Public Health Hazard, Environmental Hazard, and Overall Hazard. A WOE scoring system allows for both a determination of the intrinsic hazard of each

  5. Biohazard Analysis of Select Biodefense Vaccine Candidates - Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella Tularensis LVS

    Energy Technology Data Exchange (ETDEWEB)

    Rao, V [National Security Programs, Computer Science Corporation, Alexandria (United States)

    2007-07-01

    Biohazard assessment of biodefense vaccine candidates forms the basis for a facility- and activity-specific risk assessment performed to determine the biosafety levels and general safety standards required for biological product development. As a part of our support to the US biodefense vaccine development program, we perform a systematic biohazard assessment of potential vaccine candidates with the primary objective to, (a) Identify and characterize hazard elements associated with the wild type and vaccine strains, (b) Provide biohazard information on the etiologic agent (vaccine candidate) to assess Phase 1 clinical trial facility sites, (c) Provide a baseline to conduct an agent and facility-specific risk assessment at clinical trial facilities interested in performing phase 1 clinical trial, (d) Provide comparative hazard profiles of the vaccine candidates wit MSDS for wild-type to identify and establish appropriate protective biosafety levels, and (e) Support determination of a hazard level to select personal protective equipment as required under the OSHA guidelines. This paper will describe the biohazard analysis of two vaccine candidates, Venezuelan Equine Encephalitis Virus Strain 3526 and Francisella tularensis LVS, a viral and bacterial agent, respectively. As part of the biohazard assessment we preformed a thorough review of published literature on medical pathology, epidemiology, pre-clinical investigational studies, and environmental data on the etiologic agent subtypes and the vaccine candidates. Using standard analytical procedures, the data were then analyzed relative to two intrinsic hazard parameters-health hazard and environmental hazard. Using a weight-of-evidence (WOE) approach, the potential hazards of etiologic agent wild subtypes and vaccine candidates were ranked under three main categories: Public Health Hazard, Environmental Hazard, and Overall Hazard. A WOE scoring system allows for both a determination of the intrinsic hazard of each

  6. Enhanced effect of BCG vaccine against pulmonary Mycobacterium tuberculosis infection in mice with lung Th17 response to mycobacterial heparin-binding hemagglutinin adhesin antigen.

    Science.gov (United States)

    Fukui, Masayuki; Shinjo, Kikuko; Umemura, Masayuki; Shigeno, Satoko; Harakuni, Tetsuya; Arakawa, Takeshi; Matsuzaki, Goro

    2015-12-01

    Although the BCG vaccine can prevent tuberculosis (TB) in infants, its ability to prevent adult pulmonary TB is reportedly limited. Therefore, development of a novel effective vaccine against pulmonary TB has become an international research priority. We have previously reported that intranasal vaccination of mice with a mycobacterial heparin-binding hemagglutinin adhesin (HBHA) plus mucosal adjuvant cholera toxin (CT) enhances production of IFN-γ and anti-HBHA antibody and suppresses extrapulmonary bacterial dissemination after intranasal infection with BCG. In the present study, the effects of intranasal HBHA + CT vaccine on murine pulmonary Mycobacterium tuberculosis (Mtb) infection were examined. Intranasal HBHA + CT vaccination alone failed to reduce the bacterial burden in the infected lung. However, a combination vaccine consisting of s.c. BCG priming and an intranasal HBHA + CT booster significantly enhanced protective immunity against pulmonary Mtb infection on day 14 compared with BCG vaccine alone. Further, it was found that intranasal HBHA + CT vaccine enhanced not only IFN-γ but also IL-17A production by HBHA-specific T cells in the lung after pulmonary Mtb infection. Therefore, this combination vaccine may be a good candidate for a new vaccine strategy against pulmonary TB. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  7. Reduced antibody responses against Plasmodium falciparum vaccine candidate antigens in the presence of Trichuris trichiura

    DEFF Research Database (Denmark)

    Esen, Meral; Mordmüller, Benjamin; de Salazar, Pablo Martinez

    2012-01-01

    BACKGROUND: Helminth infections are highly prevalent in the tropics and may have an effect on immune responses to vaccines due to their immunomodulatory effect. The prevalence of helminth infections in young children, the target group for malaria and most other vaccines, is high. Therefore we...... assessed the influence of helminth infection on vaccine-induced immune responses in a phase I clinical trial of the malaria vaccine candidate GMZ2. METHODS: Twenty Gabonese preschool-age children were vaccinated with GMZ2, a blood stage malaria vaccine candidate. Humoral immune response against the vaccine...... antigens and parasitological status were assessed. Vaccine-specific antibody concentrations and memory B-cell numbers were compared in worm infected and non-infected participants. RESULTS: Antibody response to GMZ2 was 3.4-fold (95% confidence interval: 1.6, 7.4) higher in Trichuris trichiura negative...

  8. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited to statistic......Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited...... to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM......) in particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....

  9. Generation of a parvovirus B19 vaccine candidate.

    Science.gov (United States)

    Chandramouli, Sumana; Medina-Selby, Angelica; Coit, Doris; Schaefer, Mary; Spencer, Terika; Brito, Luis A; Zhang, Pu; Otten, Gillis; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Settembre, Ethan C

    2013-08-20

    Parvovirus B19 is the causative agent of fifth disease in children, aplastic crisis in those with blood dyscrasias, and hydrops fetalis. Previous parvovirus B19 virus-like-particle (VLP) vaccine candidates were produced by co-infection of insect cells with two baculoviruses, one expressing wild-type VP1 and the other expressing VP2. In humans, the VLPs were immunogenic but reactogenic. We have developed new VLP-based parvovirus B19 vaccine candidates, produced by co-expressing VP2 and either wild-type VP1 or phospholipase-negative VP1 in a regulated ratio from a single plasmid in Saccharomyces cerevisiae. These VLPs are expressed efficiently, are very homogeneous, and can be highly purified. Although VP2 alone can form VLPs, in mouse immunizations, VP1 and the adjuvant MF59 are required to elicit a neutralizing response. Wild-type VLPs and those with phospholipase-negative VP1 are equivalently potent. The purity, homogeneity, yeast origin, and lack of phospholipase activity of these VLPs address potential causes of previously observed reactogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Immunogenicity of mumps virus vaccine candidates matching circulating genotypes in the United States and China.

    Science.gov (United States)

    Zengel, James; Phan, Shannon I; Pickar, Adrian; Xu, Pei; He, Biao

    2017-07-13

    Mumps virus (MuV) causes acute infection in humans with characteristic swelling of the parotid gland. While vaccination has greatly reduced the incidence of MuV infection, there have been multiple large outbreaks of mumps virus (MuV) in highly vaccinated populations. The most common vaccine strain, Jeryl Lynn, belongs to genotype A, which is no longer a circulating genotype. We have developed two vaccine candidates that match the circulating genotypes in the United States (genotype G) and China (genotype F). We found that there was a significant decrease in the ability of the Jeryl Lynn vaccine to produce neutralizing antibody responses to non-matched viruses, when compared to either of our vaccine candidates. Our data suggests that an updated vaccine may allow for better immunity against the circulating MuV genotypes G and F. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An Approach to Identify and Characterize a Subunit Candidate Shigella Vaccine Antigen.

    Science.gov (United States)

    Pore, Debasis; Chakrabarti, Manoj K

    2016-01-01

    Shigellosis remains a serious issue throughout the developing countries, particularly in children under the age of 5. Numerous strategies have been tested to develop vaccines targeting shigellosis; unfortunately despite several years of extensive research, no safe, effective, and inexpensive vaccine against shigellosis is available so far. Here, we illustrate in detail an approach to identify and establish immunogenic outer membrane proteins from Shigella flexneri 2a as subunit vaccine candidates.

  12. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    Directory of Open Access Journals (Sweden)

    Ai-Hsiang Chou

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 has caused several epidemics of hand, foot and mouth diseases (HFMD in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. PRINCIPAL FINDING: In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration, a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice

  13. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    Science.gov (United States)

    Chou, Ai-Hsiang; Liu, Chia-Chyi; Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele

    2012-01-01

    Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. These

  14. PROTECTIVE ACTIVITY STUDY OF A CANDIDATE VACCINE AGAINST ROTAVIRUS INFECTION BASED ON RECOMBINANT PROTEIN FliCVP6VP8

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2016-01-01

    Full Text Available Rotavirus infection is among leading causes of severe diarrhea which often leads to severe dehydration, especially, in children under 5 years old. In Russia, the incidence of rotavirus infection is constantly increased, due to higher rates of actual rotavirus infection cases and improved diagnostics of the disease. Immunity to rotavirus is unstable, thus causing repeated infections intra vitam. Anti-infectious resistance in reconvalescents is explained by induction of specific IgM, IgG, and, notably, IgA antibodies. Due to absence of market drugs with direct action against rotavirus, a rational vaccination is considered the most effective way to control the disease. Currently available vaccines for prevention of rotavirus infection are based on live attenuated rotavirus strains, human and/or animal origin, which replicate in human gut. Their implementation may result into different complications. Meanwhile, usage of vaccines based on recombinant proteins is aimed to avoid risks associated with introduction of a complete virus into humans. In this paper, we studied protective activity of candidate vaccines against rotavirus.In this work we studied protective activity of a candidate vaccine against rotavirus infection based on recombinant FliCVP6VP8 protein which includes VP6 and VP8, as well as components of Salmonella typhimurium flagellin (FliC as an adjuvant. Different components are joined by flexible bridges. Efficiency of the candidate vaccine was studied in animal model using Balb/c mice. We have shown high level of protection which occurs when the candidate vaccine is administered twice intramuscularly. Complete protection of animals against mouse rotavirus EDC after intramuscular immunization with a candidate vaccine was associated with arising rotavirus-specific IgA and IgG antibodies in serum and intestine of immunized animals. The efficacy of candidate vaccine based on recombinant protein FliCVP6VP8 against rotavirus infection was

  15. Immunogenicity of novel mumps vaccine candidates generated by genetic modification.

    Science.gov (United States)

    Xu, Pei; Chen, Zhenhai; Phan, Shannon; Pickar, Adrian; He, Biao

    2014-03-01

    Mumps is a highly contagious human disease, characterized by lateral or bilateral nonsuppurative swelling of the parotid glands and neurological complications that can result in aseptic meningitis or encephalitis. A mumps vaccination program implemented since the 1960s reduced mumps incidence by more than 99% and kept the mumps case numbers as low as hundreds of cases per year in the United States before 2006. However, a large mumps outbreak occurred in vaccinated populations in 2006 and again in 2009 in the United States, raising concerns about the efficacy of the vaccination program. Previously, we have shown that clinical isolate-based recombinant mumps viruses lacking expression of either the V protein (rMuVΔV) or the SH protein (rMuVΔSH) are attenuated in a neurovirulence test using newborn rat brains (P. Xu et al., Virology 417:126-136, 2011, http://dx.doi.org/10.1016/j.virol.2011.05.003; P. Xu et al., J. Virol. 86:1768-1776, 2012, http://dx.doi.org/10.1128/JVI.06019-11) and may be good candidates for vaccine development. In this study, we examined immunity induced by rMuVΔSH and rMuVΔV in mice. Furthermore, we generated recombinant mumps viruses lacking expression of both the V protein and the SH protein (rMuVΔSHΔV). Analysis of rMuVΔSHΔV indicated that it was stable in tissue culture cell lines. Importantly, rMuVΔSHΔV was immunogenic in mice, indicating that it is a promising candidate for mumps vaccine development.

  16. Tuberculosis Vaccines and Prevention of Infection

    Science.gov (United States)

    Day, Tracey A.; Scriba, Thomas J.; Hatherill, Mark; Hanekom, Willem A.; Evans, Thomas G.; Churchyard, Gavin J.; Kublin, James G.; Bekker, Linda-Gail; Self, Steven G.

    2014-01-01

    SUMMARY Tuberculosis (TB) is a leading cause of death worldwide despite the availability of effective chemotherapy for over 60 years. Although Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination protects against active TB disease in some populations, its efficacy is suboptimal. Development of an effective TB vaccine is a top global priority that has been hampered by an incomplete understanding of protective immunity to TB. Thus far, preventing TB disease, rather than infection, has been the primary target for vaccine development. Several areas of research highlight the importance of including preinfection vaccines in the development pipeline. First, epidemiology and mathematical modeling studies indicate that a preinfection vaccine would have a high population-level impact for control of TB disease. Second, immunology studies support the rationale for targeting prevention of infection, with evidence that host responses may be more effective during acute infection than during chronic infection. Third, natural history studies indicate that resistance to TB infection occurs in a small percentage of the population. Fourth, case-control studies of BCG indicate that it may provide protection from infection. Fifth, prevention-of-infection trials would have smaller sample sizes and a shorter duration than disease prevention trials and would enable opportunities to search for correlates of immunity as well as serve as a criterion for selecting a vaccine product for testing in a larger TB disease prevention trial. Together, these points support expanding the focus of TB vaccine development efforts to include prevention of infection as a primary goal along with vaccines or other interventions that reduce the rate of transmission and reactivation. PMID:25428938

  17. Comparative testing of six antigen-based malaria vaccine candidates directed toward merozoite-stage Plasmodium falciparum

    DEFF Research Database (Denmark)

    Arnot, David E; Cavanagh, David R; Remarque, Edmond J

    2008-01-01

    Immunogenicity testing of Plasmodium falciparum antigens being considered as malaria vaccine candidates was undertaken in rabbits. The antigens compared were recombinant baculovirus MSP-1(19) and five Pichia pastoris candidates, including two versions of MSP-1(19), AMA-1 (domains I and II), AMA-1......G concentrations. The two P. pastoris-produced MSP-1(19)-induced IgGs conferred the lowest growth inhibition. Comparative analysis of immunogenicity of vaccine antigens can be used to prioritize candidates before moving to expensive GMP production and clinical testing. The assays used have given discriminating...

  18. Identification of Novel Vaccine Candidates against Campylobacter through Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Marine Meunier

    2016-01-01

    Full Text Available Campylobacteriosis is the most prevalent bacterial foodborne gastroenteritis affecting humans in the European Union. Human cases are mainly due to Campylobacter jejuni or Campylobacter coli, and contamination is associated with the handling and/or consumption of poultry meat. In fact, poultry constitutes the bacteria’s main reservoir. A promising way of decreasing the incidence of campylobacteriosis in humans would be to decrease avian colonization. Poultry vaccination is of potential for this purpose. However, despite many studies, there is currently no vaccine available on the market to reduce the intestinal Campylobacter load in chickens. It is essential to identify and characterize new vaccine antigens. This study applied the reverse vaccinology approach to detect new vaccine candidates. The main criteria used to select immune proteins were localization, antigenicity, and number of B-epitopes. Fourteen proteins were identified as potential vaccine antigens. In vitro and in vivo experiments now need to be performed to validate the immune and protective power of these newly identified antigens.

  19. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    Science.gov (United States)

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  20. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C; Nielsen, M; Lamberth, K

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...... of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design....

  1. SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation

    DEFF Research Database (Denmark)

    Sylvester-Hvid, C.; Nielsen, Morten; Lamberth, K.

    2004-01-01

    . Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly, from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS...... of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design....

  2. Chest Radiographs for Pediatric TB Diagnosis: Interrater Agreement and Utility

    Directory of Open Access Journals (Sweden)

    G. Kaguthi

    2014-01-01

    Full Text Available The chest radiograph (CXR is considered a key diagnostic tool for pediatric tuberculosis (TB in clinical management and endpoint determination in TB vaccine trials. We set out to compare interrater agreement for TB diagnosis in western Kenya. A pediatric pulmonologist and radiologist (experts, a medical officer (M.O, and four clinical officers (C.Os with basic training in pediatric CXR reading blindly assessed CXRs of infants who were TB suspects in a cohort study. C.Os had access to clinical findings for patient management. Weighted kappa scores summarized interrater agreement on lymphadenopathy and abnormalities consistent with TB. Sensitivity and specificity of raters were determined using microbiologically confirmed TB as the gold standard (n=8. A total of 691 radiographs were reviewed. Agreement on abnormalities consistent with TB was poor; k=0.14 (95% CI: 0.10–0.18 and on lymphadenopathy moderate k=0.26 (95% CI: 0.18–0.36. M.O [75% (95% CI: 34.9%–96.8%] and C.Os [63% (95% CI: 24.5%–91.5%] had high sensitivity for culture confirmed TB. TB vaccine trials utilizing expert agreement on CXR as a nonmicrobiologically confirmed endpoint will have reduced specificity and will underestimate vaccine efficacy. C.Os detected many of the bacteriologically confirmed cases; however, this must be interpreted cautiously as they were unblinded to clinical features.

  3. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate

    DEFF Research Database (Denmark)

    Esen, Meral; Kremsner, Peter G; Schleucher, Regina

    2009-01-01

    Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easily....... Here we present the results of the first phase Ia clinical trial of GMZ2 adjuvanted in aluminium hydroxide. GMZ2 is a malaria vaccine candidate, designed upon the rationale to induce immune responses against asexual blood stages of Plasmodium falciparum similar to those encountered in semi...... is a safe and immunogenic malaria vaccine candidate suitable for further clinical development....

  4. Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine.

    Science.gov (United States)

    Singh, Susheel K; Roeffen, Will; Mistarz, Ulrik H; Chourasia, Bishwanath Kumar; Yang, Fen; Rand, Kasper D; Sauerwein, Robert W; Theisen, Michael

    2017-05-31

    The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process of a sub-unit (R0.6C) fragment representing the C-terminal 6-Cys domain of Pfs48/45 (6C) genetically fused to the R0 region (R0) of asexual stage Glutamate Rich Protein expressed in Lactococcus lactis. A series of R0.6C fusion proteins containing features, which aim to increase expression levels or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch fermentation followed by two purification steps. As such, the recombinant protein was purified to homogeneity. The composition of the final product was verified by HPLC, mass spectrometry, SDS-PAGE and Western blotting with conformation dependent antibodies against Pfs48/45. The recombinant protein induced high levels of functional TB antibodies in rats. The established production and purification process of the R0.6C fusion protein provide a strong basis for further clinical development of this candidate transmission blocking malaria vaccine.

  5. Extended Preclinical Safety, Efficacy and Stability Testing of a Live-attenuated Chikungunya Vaccine Candidate.

    Directory of Open Access Journals (Sweden)

    Kenneth S Plante

    Full Text Available We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV, both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from 30% and mortality (from 0 to 100%, CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality. These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing.

  6. Novel licensure pathways for expeditious introduction of new tuberculosis vaccines: a discussion of the adaptive licensure concept.

    Science.gov (United States)

    Rustomjee, Roxana; Lockhart, Stephen; Shea, Jacqueline; Fourie, P Bernard; Hindle, Zoë; Steel, Gavin; Hussey, Gregory; Ginsberg, Ann; Brennan, Michael J

    2014-03-01

    The ultimate goal of vaccine development is licensure of a safe and efficacious product that has a well-defined manufacturing process resulting in a high quality product. In general, clinical development and regulatory approval occurs in a linear, sequential manner: Phase 1 - safety, immunogenicity; Phase 2 - immunogenicity, safety, dose ranging and preliminary efficacy; Phase 3 - definitive efficacy, safety, lot consistency; and, following regulatory approval, Phase 4 - post-marketing safety and effectiveness. For candidate TB vaccines, where correlates of protection are not yet identified, phase 2 and 3 efficacy of disease prevention trials are, by necessity, very large. Each trial would span 2-5 years, with full licensure expected only after 1 or even 2 decades of development. Given the urgent unmet need for a new TB vaccine, a satellite discussion was held at the International African Vaccinology Conference in Cape Town, South Africa in November 2012, to explore the possibility of expediting licensure by use of an "adaptive licensure" process, based on a risk/benefit assessment that is specific to regional needs informed by epidemiology. This may be appropriate for diseases such as TB, where high rates of morbidity, mortality, particularly in high disease burden countries, impose an urgent need for disease prevention. The discussion focused on two contexts: licensure within the South African regulatory environment - a high burden country where TB vaccine efficacy trials are on-going, and licensure by the United States FDA --a well-resourced regulatory agency where approval could facilitate global licensure of a novel TB vaccine. Copyright © 2013. Published by Elsevier Ltd.

  7. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.

    Science.gov (United States)

    Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G

    2016-05-27

    Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana.

    Science.gov (United States)

    Pêra, Francisco F P G; Mutepfa, David L R; Khan, Ayesha M; Els, Johann H; Mbewana, Sandiswa; van Dijk, Alberdina A A; Rybicki, Edward P; Hitzeroth, Inga I

    2015-12-02

    Human rotaviruses are the main cause of severe gastroenteritis in children and are responsible for over 500 000 deaths annually. There are two live rotavirus vaccines currently available, one based on human rotavirus serotype G1P[8], and the other a G1-G4 P[8] pentavalent vaccine. However, the recent emergence of the G9 and other novel rotavirus serotypes in Africa and Asia has prompted fears that current vaccines might not be fully effective against these new varieties. We report an effort to develop an affordable candidate rotavirus vaccine against the new emerging G9P[6] (RVA/Human-wt/ZAF/GR10924/1999/G9P[6]) strain. The vaccine is based on virus-like particles which are both highly immunogenic and safe. The vaccine candidate was produced in Nicotiana benthamiana by transient expression, as plants allow rapid production of antigens at lower costs, without the risk of contamination by animal pathogens. Western blot analysis of plant extracts confirmed the successful expression of two rotavirus capsid proteins, VP2 and VP6. These proteins assembled into VLPs resembling native rotavirus particles when analysed by transmission electron microscopy (TEM). Expression of the rotavirus glycoprotein VP7 and the spike protein VP4 was also tried. However, VP7 expression caused plant wilting during the course of the time trial and expression could never be detected for either protein. We therefore created three fusion proteins adding the antigenic part of VP4 (VP8*) to VP6 in an attempt to produce more appropriately immunogenic particles. Fusion protein expression in tobacco plants was detected by western blot using anti-VP6 and anti-VP4 antibodies, but no regular particles were observed by TEM, even when co-expressed with VP2. Our results suggest that the rotavirus proteins produced in N. benthamiana are candidates for a subunit vaccine specifically for the G9P[6] rotavirus strain. This could be more effective in developing countries, thereby possibly providing a higher

  9. Differential cellular recognition pattern to M. tuberculosis targets defined by IFN-γ and IL-17 production in blood from TB + patients from Honduras as compared to health care workers: TB and immune responses in patients from Honduras.

    Science.gov (United States)

    Alvarez-Corrales, Nancy; Ahmed, Raija K; Rodriguez, Carol A; Balaji, Kithiganahalli N; Rivera, Rebeca; Sompallae, Ramakrishna; Vudattu, Nalini K; Hoffner, Sven E; Zumla, Alimuddin; Pineda-Garcia, Lelany; Maeurer, Markus

    2013-03-06

    A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-γ and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-γ production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. The pattern of immune target recognition is different in regard to IFN-γ and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.

  10. Review: New Vaccine Against Tuberculosis: Current Developments and Future Challenges

    Science.gov (United States)

    Liu, Jun

    2009-04-01

    Tuberculosis (TB) continues to be a global health threat. BCG was developed as an attenuated live vaccine for tuberculosis control nearly a century ago. Despite being the most widely used vaccine in human history, BCG is not an ideal vaccine and has two major limitations: its poor efficacy against adult pulmonary TB and its disconcerting safety in immunocompromised individuals. A safer and more effective TB vaccine is urgently needed. This review article discusses current strategies to develop the next generation of TB vaccines to replace BCG. While some progresses have been made in the past decade, significant challenges lie ahead.

  11. Identification and development of a promising novel mumps vaccine candidate strain.

    Science.gov (United States)

    Liang, Yan; Ma, Shaohui; Liu, Longding; Zhao, Hongling; Wang, Lichun; Jiang, Li; Xie, Zhongping; Dong, Chenghong; Li, Qihan

    2010-12-01

    Mumps epidemics are usually caused by airborne transmission of mumps virus (MuV) and have high morbidity in non-immunized children. Epidemiological studies in many regions of China show that the genotype F viral strain is the most prevalent. However, the genotype A strain is currently used to prepare vaccines. Regional epidemiological MuV data suggest a significant application for the development of live attenuated mumps vaccines targeting specific genotypes. This article reports the isolation and culture of a genotype F MuV candidate strain that could be used to prepare a live attenuated mumps vaccine. This strain is shown to have good immunological efficacy and stability in neurovirulence evaluations. This work should facilitate the implementation of mumps vaccination in mainland China by targeting the most prevalent MuV genotype, genotype F. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  12. Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease

    Science.gov (United States)

    Hines, Murray E.; Turnquist, Sue E.; Ilha, Marcia R. S.; Rajeev, Sreekumari; Jones, Arthur L.; Whittington, Lisa; Bannantine, John P.; Barletta, Raúl G.; Gröhn, Yrjö T.; Katani, Robab; Talaat, Adel M.; Li, Lingling; Kapur, Vivek

    2014-01-01

    Johne's disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a major threat to the dairy industry and possibly some cases of Crohn's disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were (1) to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne's Disease Integrated Program (JDIP) Animal Model Standardization Committee (AMSC), and (2) to validate the AMSC Johne's disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis), or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 × 109 CFU divided in two consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate). All kids were necropsied at 13 months post-challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318) do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329) reduced fecal shedding and tissue colonization. PMID

  13. Evaluation of Novel Oral Vaccine Candidates and Validation of a Caprine Model of Johne's Disease

    Directory of Open Access Journals (Sweden)

    Murray E. Hines

    2014-03-01

    Full Text Available Johne’s disease (JD caused by Mycobacterium avium subspecies paratuberculosis (MAP is a major threat to the dairy industry and possibly some cases of Crohn’s disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were 1 to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne’s Disease Integrated Program (JDIP Animal Model Standardization Committee (AMSC, and 2 to validate the AMSC Johne’s disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis, or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 X 10^9 CFU divided in 2 consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate. All kids were necropsied at 13 months post challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318 do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329 reduced fecal shedding and tissue

  14. A tuberculosis biomarker database: the key to novel TB diagnostics

    Directory of Open Access Journals (Sweden)

    Seda Yerlikaya

    2017-03-01

    Full Text Available New diagnostic innovations for tuberculosis (TB, including point-of-care solutions, are critical to reach the goals of the End TB Strategy. However, despite decades of research, numerous reports on new biomarker candidates, and significant investment, no well-performing, simple and rapid TB diagnostic test is yet available on the market, and the search for accurate, non-DNA biomarkers remains a priority. To help overcome this ‘biomarker pipeline problem’, FIND and partners are working on the development of a well-curated and user-friendly TB biomarker database. The web-based database will enable the dynamic tracking of evidence surrounding biomarker candidates in relation to target product profiles (TPPs for needed TB diagnostics. It will be able to accommodate raw datasets and facilitate the verification of promising biomarker candidates and the identification of novel biomarker combinations. As such, the database will simplify data and knowledge sharing, empower collaboration, help in the coordination of efforts and allocation of resources, streamline the verification and validation of biomarker candidates, and ultimately lead to an accelerated translation into clinically useful tools.

  15. Egg-Independent Influenza Vaccines and Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Ilaria Manini

    2017-07-01

    Full Text Available Vaccination remains the principal way to control seasonal infections and is the most effective method of reducing influenza-associated morbidity and mortality. Since the 1940s, the main method of producing influenza vaccines has been an egg-based production process. However, in the event of a pandemic, this method has a significant limitation, as the time lag from strain isolation to final dose formulation and validation is six months. Indeed, production in eggs is a relatively slow process and production yields are both unpredictable and highly variable from strain to strain. In particular, if the next influenza pandemic were to arise from an avian influenza virus, and thus reduce the egg-laying hen population, there would be a shortage of embryonated eggs available for vaccine manufacturing. Although the production of egg-derived vaccines will continue, new technological developments have generated a cell-culture-based influenza vaccine and other more recent platforms, such as synthetic influenza vaccines.

  16. Ebola Virus Disease Candidate Vaccines Under Evaluation in Clinical Trials

    Science.gov (United States)

    2016-06-02

    evidence that oral vaccines fail in populations with disturbed microbiota, poor nutrition , and high intestinal inflammation [102-104]. Additionally...countermeasure development against Ebola virus disease becoming a global public- health priority. This review summarizes the status quo of candidate...members of the mononegaviral family Filoviridae) cause two diseases recognized by the World Health Organization (WHO): Ebola virus disease (EVD) can be

  17. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    Science.gov (United States)

    2007-12-01

    that fascinating fungus known as Coccidioides. I also want to thank the UA Mass Spectrometry Facility and the UA Proteomics Consortium, especially...W. & N. N. Kav. 2006. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6: 5995-6007. 127. de Godoy, L. M., J. V...IDENTIFICATION OF PROTEIN VACCINE CANDIDATES USING COMPREHENSIVE PROTEOMIC ANALYSIS STRATEGIES by James G. Rohrbough

  18. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Science.gov (United States)

    Shcherbik, Svetlana V; Pearce, Nicholas C; Levine, Marnie L; Klimov, Alexander I; Villanueva, Julie M; Bousse, Tatiana L

    2014-01-01

    Live attenuated influenza vaccine viruses (LAIVs) can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV) and a seasonal wild-type (wt) virus. The vaccine candidates contain hemagglutinin (HA) and neuraminidase (NA) genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2) (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012) or influenza A (H7N9) (A/Anhui/1/2013) wt viruses with the MDV A/Leningrad/134/17/57(H2N2). Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  19. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Directory of Open Access Journals (Sweden)

    Svetlana V Shcherbik

    Full Text Available BACKGROUND: Live attenuated influenza vaccine viruses (LAIVs can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV and a seasonal wild-type (wt virus. The vaccine candidates contain hemagglutinin (HA and neuraminidase (NA genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. METHODOLOGY/PRINCIPAL FINDINGS: This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2 (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012 or influenza A (H7N9 (A/Anhui/1/2013 wt viruses with the MDV A/Leningrad/134/17/57(H2N2. Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  20. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate.

    Science.gov (United States)

    Wang, Xiaoyun; Chen, Wenjun; Tian, Yanli; Mao, Qiang; Lv, Xiaoli; Shang, Mei; Li, Xuerong; Yu, Xinbing; Huang, Yan

    2014-03-10

    Clonorchis sinensis (C. sinensis) infections remain the common public health problem in freshwater fish consumption areas. New effective prevention strategies are still the urgent challenges to control this kind of foodborne infectious disease. The biochemical importance and biological relevance render C. sinensis enolase (Csenolase) as a potential vaccine candidate. In the present study, we constructed Escherichia coli/Bacillus subtilis shuttle genetic engineering system and investigated the potential of Csenolase as an oral vaccine candidate for C. sinensis prevention in different immunization routes. Our results showed that, compared with control groups, both recombinant Csenolase protein and nucleic acid could induce a mixed IgG1/IgG2a immune response when administrated subcutaneously (Psinensis infection. Csenolase derived oral vaccine conferred worm reduction rate and egg reduction rate at 60.07% (Psinensis prevention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modelling the impact of vaccination on tuberculosis in badgers.

    Science.gov (United States)

    Hardstaff, J L; Bulling, M T; Marion, G; Hutchings, M R; White, P C L

    2013-07-01

    Tuberculosis (TB) in livestock, caused by Mycobacterium bovis, persists in many countries. In Britain, efforts to control TB through the culling of badgers (Meles meles), the principal wildlife host, have so far been unsuccessful, and there is significant interest in vaccination of badgers as an alternative or complementary strategy [corrected]. Using a simulation model, we show that where TB is self-contained within the badger population and there are no external sources of infection, limited-duration vaccination at a high level of efficacy can reduce or even eradicate TB from the badger population. However, where sources of external infection persist, benefits in TB reduction in badgers can only be achieved by ongoing, annual vaccination. Vaccination is likely to be most effective as part of an integrated disease management strategy incorporating a number of different approaches across the entire host community.

  2. Immune response profiles of calves following vaccination with live BCG and inactivated Mycobacterium bovis vaccine candidates.

    Directory of Open Access Journals (Sweden)

    E M D L van der Heijden

    Full Text Available Conventional control and eradication strategies for bovine tuberculosis (BTB face tremendous difficulties in developing countries; countries with wildlife reservoirs, a complex wildlife-livestock-human interface or a lack of veterinary and veterinary public health surveillance. Vaccination of cattle and other species might in some cases provide the only suitable control strategy for BTB, while in others it may supplement existing test-and-slaughter schemes. However, the use of live BCG has several limitations and the global rise of HIV/AIDS infections has furthermore warranted the exploration of inactivated vaccine preparations. The aim of this study was to compare the immune response profiles in response to parenteral vaccination with live BCG and two inactivated vaccine candidates in cattle. Twenty-four mixed breed calves (Bos taurus aged 4-6 months, were allocated to one of four groups and vaccinated sub-cutaneously with live M. bovis BCG (Danish 1331, formalin-inactivated M. bovis BCG, heat-killed M. bovis or PBS/Montanide™ (control. Interferon-γ responsiveness and antibody production were measured prior to vaccination and at weekly intervals thereafter for twelve weeks. At nine weeks post-priming, animals were skin tested using tuberculins and MTBC specific protein cocktails and subsequently challenged through intranodular injection of live M. bovis BCG. The animals in the heat-killed M. bovis group demonstrated strong and sustained cell-mediated and humoral immune responses, significantly higher than the control group in response to vaccination, which may indicate a protective immune profile. Animals in this group showed reactivity to the skin test reagents, confirming good vaccine take. Lastly, although not statistically significant, recovery of BCG after challenge was lowest in the heat-killed M. bovis group. In conclusion, the parenteral heat-killed M. bovis vaccine proved to be clearly immunogenic in cattle in the present study

  3. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  4. Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6:CFP-10 complex.

    Science.gov (United States)

    Farsiani, Hadi; Mosavat, Arman; Soleimanpour, Saman; Sadeghian, Hamid; Akbari Eydgahi, Mohammad Reza; Ghazvini, Kiarash; Sankian, Mojtaba; Aryan, Ehsan; Jamehdar, Saeid Amel; Rezaee, Seyed Abdolrahim

    2016-06-21

    Tuberculosis (TB) remains a major global health threat despite chemotherapy and Bacilli Calmette-Guérin (BCG) vaccination. Therefore, a safer and more effective vaccine against TB is urgently needed. This study evaluated the immunogenicity of a recombinant fusion protein consisting of early secreted antigenic target protein 6 kDa (ESAT-6), culture filtrate protein 10 kDa (CFP-10) and the Fc-domain of mouse IgG2a as a novel subunit vaccine. The recombinant expression vectors (pPICZαA-ESAT-6:CFP-10:Fcγ2a and pPICZαA-ESAT-6:CFP-10:His) were transferred into Pichia pastoris. After SDS-PAGE and immunoblotting, the immunogenicity of the recombinant proteins was evaluated in mice. When both recombinant proteins (ESAT-6:CFP-10:Fcγ2a and ESAT-6:CFP-10:His) were used for vaccination, Th1-type cellular responses were induced producing high levels of IFN-γ and IL-12. However, the Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a small increase in IL-4 as compared to the BCG and ESAT-6:CFP-10:His groups. Moreover, mice primed with BCG and then supplemented with ESAT-6:CFP-10:Fcγ2a produced the highest levels of IFN-γ and IL-12 in immunized groups. The findings indicate that when Fcγ2a is fused to the ESAT-6:CFP-10 complex, as a delivery vehicle, there could be an increase in the immunogenicity of this type of subunit vaccine. Therefore, additional investigations are necessary for the development of appropriate Fc-based tuberculosis vaccines.

  5. Tuberculosis: looking beyond BCG vaccines.

    Directory of Open Access Journals (Sweden)

    Mustafa Abu S

    2003-01-01

    Full Text Available Tuberculosis (TB is an infectious disease of international importance and ranks among the top 10 causes of death in the World. About one-third of the world′s population is infected with Mycobacterium tuberculosis. Every year, approximately eight million people develop active disease and two million die of TB. The currently used BCG vaccines have shown variable protective efficacies against TB in different parts of the world. Moreover, being a live vaccine, BCG can be pathogenic in immunocompromised recipients. Therefore, there is an urgent need to develop new vaccines against TB. The comparative genome analysis has revealed the existence of several M. tuberculosis-specific regions that are deleted in BCG. The work carried out to determine the immunological reactivity of proteins encoded by genes located in these regions revealed several major antigens of M. tuberculosis, including the 6 kDa early secreted antigen target (ESAT6. Immunization with ESAT6 and its peptide (aa51-70 protects mice challenged with M. tuberculosis. The protective efficacy of immunization further improves when ESAT6 is recombinantly fused with M. tuberculosis antigen 85B. In addition, ESAT6 delivered as a DNA vaccine is also protective in mice. Whether these vaccines would be safe or not cannot be speculated. The answer regarding the safety and efficacy of these vaccines has to await human trials in different parts of the world.

  6. Construction of a trivalent candidate vaccine against Shigella species with DNA recombination

    Institute of Scientific and Technical Information of China (English)

    王恒樑; 冯尔玲; 林云; 廖翔; 金明; 黄留玉; 苏国富; 黄翠芬

    2002-01-01

    In this work asd gene of Shigella flexneri 2a strain T32 was replaced by Vibrio cholerae toxin B subunit (ctxB) gene with DNA recombination in vivo and in vitro. The resulting derivative of T32, designed as FWL01, could stably express CtxB, but its growth in LB medium depended on the presence of diaminopimelic acid (DAP). Then form I plasmid of Shigella sonnei strain S7 was labeled with strain T32 asd gene and mobilized into FWL01. Thus a trivalent candidate oral vaccine strain, designed as FSW01, was constructed. In this candidate strain, a balanced-lethal system was constituted between the host strain and the form I plasmid expressing S. sonnei O antigen. Therefore the candidate strain can express stably not only its own O antigen but also CtxB and O antigen of S. sonnei in the absence of any antibiotic. Experiments showed that FSW01 did not invade HeLa cells or cause keratoconjunctivitis in guinea pigs. However, rabbits immunized FSW01 can elicit significant immune responses. In mice and rhesus monkey models, vaccinated animals were protected against the challenges of wild S. flexneri 2a strain 2457T and S. sonnei strain S9.

  7. Childhood Tuberculosis: Epidemiology, Diagnosis, Treatment, and Vaccination

    Directory of Open Access Journals (Sweden)

    Kuo-Sheng Tsai

    2013-10-01

    Full Text Available Despite the existence of a government-run tuberculosis (TB control program, the current nationwide burden of TB continues to be a public health problem in Taiwan. Intense current and previous efforts into diagnostic, therapeutic, and preventive interventions have focused on TB in adults, but childhood TB has been relatively neglected. Children are particularly vulnerable to severe disease and death following infection, and children with latent infections become reservoirs for future transmission following disease reactivation in adulthood, thus fueling future epidemics. Additional research, understanding, and prevention of childhood TB are urgently needed. This review assesses the epidemiology, diagnosis, treatment, and relevant principles of TB vaccine development and presents efficacy data for the currently licensed vaccines.

  8. Potential of Cationic Liposomes as Adjuvants/Delivery Systems for Tuberculosis Subunit Vaccines.

    Science.gov (United States)

    Khademi, Farzad; Taheri, Ramezan Ali; Momtazi-Borojeni, Amir Abbas; Farnoosh, Gholamreza; Johnston, Thomas P; Sahebkar, Amirhossein

    2018-04-27

    The weakness of the BCG vaccine and its highly variable protective efficacy in controlling tuberculosis (TB) in different age groups as well as in different geographic areas has led to intense efforts towards the development and design of novel vaccines. Currently, there are several strategies to develop novel TB vaccines. Each strategy has its advantages and disadvantages. However, the most important of these strategies is the development of subunit vaccines. In recent years, the use of cationic liposome-based vaccines has been considered due to their capacity to elicit strong humoral and cellular immune responses against TB infections. In this review, we aim to evaluate the potential for cationic liposomes to be used as adjuvants/delivery systems for eliciting immune responses against TB subunit vaccines. The present review shows that cationic liposomes have extensive applications either as adjuvants or delivery systems, to promote immune responses against Mycobacterium tuberculosis (Mtb) subunit vaccines. To overcome several limitations of these particles, they were used in combination with other immunostimulatory factors such as TDB, MPL, TDM, and Poly I:C. Cationic liposomes can provide long-term storage of subunit TB vaccines at the injection site, confer strong electrostatic interactions with APCs, potentiate both humoral and cellular (CD4 and CD8) immune responses, and induce a strong memory response by the immune system. Therefore, cationic liposomes can increase the potential of different TB subunit vaccines by serving as adjuvants/delivery systems. These properties suggest the use of cationic liposomes to produce an efficient vaccine against TB infections.

  9. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display

    DEFF Research Database (Denmark)

    Singh, Susheel K; Thrane, Susan; Janitzek, Christoph M

    2017-01-01

    Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However...

  10. Field evaluation of the efficacy of Mycobacterium bovis BCG vaccine against tuberculosis in goats.

    Science.gov (United States)

    Vidal, Enric; Arrieta-Villegas, Claudia; Grasa, Miriam; Mercader, Irene; Domingo, Mariano; Pérez de Val, Bernat

    2017-08-17

    Control of animal tuberculosis (TB) through vaccination has emerged as a long-term strategy to complement test and slaughter control strategy. A pilot trial under field conditions was conducted in a goat herd with high TB prevalence to assess the efficacy of the Mycobacterium bovis BCG vaccine. Twenty-three goat kids vaccinated with BCG and other 22 unvaccinated control kids were euthanized at 18 months post-vaccination. Gross pathological and histopathological examination of target tissues was performed for detection of tuberculous lesions and assessment of vaccine efficacy. Mycobacterial culture and DNA detection were used to confirm Mycobacterium caprae infection. Vaccination significantly reduced the number of animals with TB lesions compared to unvaccinated controls (35% and 77%, respectively; P goats can significantly reduce the TB lesion rates in high disease exposure conditions, indicating that vaccination could contribute to the control of TB in domestic goats.

  11. A multi-country study of dengue vaccination strategies with Dengvaxia and a future vaccine candidate in three dengue-endemic countries: Vietnam, Thailand, and Colombia.

    Science.gov (United States)

    Lee, Jung-Seok; Lourenço, José; Gupta, Sunetra; Farlow, Andrew

    2018-04-19

    The dengue vaccination era began when Dengvaxia (CYD-TDV) became available in 2016. In addition, several second-generation vaccine candidates are currently in phase 3 trials, suggesting that a broader availability of dengue vaccines may be possible in the near future. Advancing on the recent WHO-SAGE recommendations for the safe and effective use of CYD-TDV at the regional level on average, this study investigates the vaccination impacts and cost-effectiveness of CYD-TDV and of a hypothetical new vaccine candidate (NVC) in a country-specific manner for three endemic countries: Vietnam, Thailand, and Colombia. The vaccination impacts of CYD-TDV and NVC were derived by fitting the empirical seroprevalence rates of 9 year olds into an individual-based meta-population transmission model, previously used for the WHO-SAGE working group. The disability-adjusted life years were estimated by applying country-specific parametric values. The cost-effectiveness analyses of four intervention strategies in combination with routine and catch-up campaigns were compared for both vaccines to inform decision makers regarding the most suitable immunization program in each of the three countries. Both CYD-TDV and NVC could be cost-effective at the DALY threshold cost of $2000 depending upon vaccination costs. With CYD-TDV, targeting 9 year olds in routine vaccination programs and 10-29 year olds as a one-off catch-up campaign was the most cost-effective strategy in all three countries. With NVC, while the most cost-effective strategy was to vaccinate 9-29 and 9-18 year olds in Vietnam and Thailand respectively, vaccinating younger age cohorts between 1 and 5 years old in Colombia was more cost-effective than other strategies. Given that three countries will soon face decisions regarding whether and how to incorporate CYD-TDV or future dengue vaccines into their budget-constrained national immunization programs, the current study outcomes can be used to help decision makers

  12. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  13. Evaluation of Lethal Giant Larvae as a Schistosomiasis Vaccine Candidate

    Directory of Open Access Journals (Sweden)

    Yufan Cao

    2016-01-01

    Full Text Available Schistosomiasis is a neglected tropical disease of humans, and it is considered to be the second most devastating parasitic disease after malaria. Eggs produced by normally developed female worms are important in the transmission of the parasite, and they responsible for the pathogenesis of schistosomiasis. The tumor suppressor gene lethal giant larvae (lgl has an essential function in establishing apical-basal cell polarity, cell proliferation, differentiation, and tissue organization. In our earlier study, downregulation of the lgl gene induced a significant reduction in the egg hatching rate of Schistosoma japonicum (Sj eggs. In this study, the Sjlgl gene was used as a vaccine candidate against schistosomiasis, and vaccination achieved and maintained a stable reduction of the egg hatching rate, which is consistent with previous studies, in addition to reducing the worm burden and liver egg burden in some trials.

  14. Oral vaccination of guinea pigs with a Mycobacterium bovis bacillus Calmette-Guerin vaccine in a lipid matrix protects against aerosol infection with virulent M. bovis.

    Science.gov (United States)

    Clark, Simon; Cross, Martin L; Nadian, Allan; Vipond, Julia; Court, Pinar; Williams, Ann; Hewinson, R Glyn; Aldwell, Frank E; Chambers, Mark A

    2008-08-01

    Increased incidence of bovine tuberculosis (TB) in the United Kingdom caused by infection with Mycobacterium bovis is a cause of considerable economic loss to farmers and the government. The Eurasian badger (Meles meles) represents a wildlife source of recurrent M. bovis infections of cattle in the United Kingdom, and its vaccination against TB with M. bovis bacillus Calmette-Guérin (BCG) is an attractive disease control option. Delivery of BCG in oral bait holds the best prospect for vaccinating badgers over a wide geographical area. Using a guinea pig pulmonary challenge model, we evaluated the protective efficacy of candidate badger oral vaccines, based on broth-grown or ball-milled BCG, delivered either as aqueous suspensions or formulated in two lipids with differing fatty acid profiles (one being animal derived and the other being vegetable derived). Protection was determined in terms of increasing body weight after aerosol challenge with virulent M. bovis, reduced dissemination of M. bovis to the spleen, and, in the case of one oral formulation, restricted growth of M. bovis in the lungs. Only oral BCG formulated in lipid gave significant protection. These data point to the potential of the BCG-lipid formulation for further development as a tool for controlling tuberculosis in badgers.

  15. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available DNA-based vaccines have been safe but weakly immunogenic in humans to date.We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.ClinicalTrials.gov NCT00545987.

  16. Generation and Characterization of Live Attenuated Influenza A(H7N9 Candidate Vaccine Virus Based on Russian Donor of Attenuation.

    Directory of Open Access Journals (Sweden)

    Svetlana Shcherbik

    Full Text Available Avian influenza A (H7N9 virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV to provide temperature sensitive, cold-adapted and attenuated phenotypes.LAIV candidate A/Anhui/1/2013(H7N9-CDC-LV7A (abbreviated as CDC-LV7A, based on the Russian MDV, A/Leningrad/134/17/57 (H2N2, was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9RG-LV1 and A(H7N9RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9 virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7.Our data indicate that the A/Anhui/1/2013(H7N9-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for

  17. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity

    KAUST Repository

    Pahil, Sapna

    2017-08-02

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  18. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity.

    Science.gov (United States)

    Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G P S

    2017-01-01

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  19. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity

    KAUST Repository

    Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G. P. S.

    2017-01-01

    Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  20. In silico analysis to identify vaccine candidates common to multiple serotypes of Shigella and evaluation of their immunogenicity.

    Directory of Open Access Journals (Sweden)

    Sapna Pahil

    Full Text Available Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I, a putative heat shock protein (EL PGI II, Spa32 (EL PGI III, IcsB (EL PGI IV and a hypothetical protein (EL PGI V. These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.

  1. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates

    OpenAIRE

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L.; Long, Carole A.; Miller, Louis H.; Saul, Allan

    2007-01-01

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) for blood stage vaccines and surface protein 25 (Pfs25) for mosquito stage vaccines, each was chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66 kD) relatively good i...

  2. What We Have Learned and What We Have Missed in Tuberculosis Pathophysiology for a New Vaccine Design: Searching for the "Pink Swan".

    Science.gov (United States)

    Cardona, Pere-Joan

    2017-01-01

    This is a call to encourage the search for a new vaccine to stop the progression of Mycobacterium tuberculosis infection to tuberculosis (TB) disease. TB is a highly discreet and stigmatized disease, with a massive impact on human health. It has killed 1.2 billion people in the last 200 years and still kills 1.5 million people per year. Over the last 20 years, the TB vaccine field has experienced spectacular developments, and we have learned about (1) the importance of the Th1 response in controlling infection, mainly against RD1 and Ag85 antigens; (2) the stability of the antigenic repertoire; (3) the dynamics of M. tuberculosis granulomas; or (4) the link between typical and atypical pulmonary TB and the immune status of the host. However, we still do not (1) know how to avoid M. tuberculosis infection and reinfection; (2) understand the major role of the increase in lesion size in progression from infection to disease; (3) the role of interlobular septa in encapsulating pulmonary lesions; or (4) the role of neutrophilic infiltration and an exaggerated inflammatory response in the development of TB disease. These are strong reasons to pursue new, imaginative proposals involving both the antibody response and a balanced, tolerant immune response that averts progression toward TB. So far, the scientific mindset has been quite monolithic and has mainly focused on the stimulation of conventional T cells. But this approach has failed. For that reason, we are seeking unconventional perspectives to find a "pink swan," a more efficacious and safer vaccine candidate.

  3. Therapeutic vaccines for tuberculosis-A systematic review

    NARCIS (Netherlands)

    Gröschel, Matthias I.; Prabowo, Satria A.; Cardona, Pere-Joan; Stanford, John L.; van der Werf, Tjip S.

    2014-01-01

    For eradication of tuberculosis (TB) by 2050, the declared aim of the Stop TB Partnership, novel treatment strategies are indispensable. The emerging epidemic of multi-drug resistant (MDR) TB has fuelled the debate about TB vaccines, as increasing numbers of patients can no longer be cured by

  4. The fimbrial protein FlfA from Gallibacterium anatis is a virulence factor and vaccine candidate

    DEFF Research Database (Denmark)

    Bager, Ragnhild Jørgensen; Nesta, Barbara; Pors, Susanne Elisabeth

    2013-01-01

    in the natural chicken host. Furthermore, protection against G. anatis 12656-12 could be induced by immunizing chickens with recombinant FlfA. Finally, in vitro expression of FlfA homologs was observed in a genetically diverse set of G. anatis strains, suggesting the potential of FlfA as a serotype-independent...... vaccine candidate This is the first study describing a fimbrial subunit protein of G. anatis with a clear potential as a vaccine antigen....

  5. Global gene transcriptome analysis in vaccinated cattle revealed a dominant role of IL-22 for protection against bovine tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sabin Bhuju

    2012-12-01

    Full Text Available Bovine tuberculosis (bTB is a chronic disease of cattle caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex group of bacteria. Vaccination of cattle might offer a long-term solution for controlling the disease and priority has been given to the development of a cattle vaccine against bTB. Identification of biomarkers in tuberculosis research remains elusive and the goal is to identify host correlates of protection. We hypothesized that by studying global gene expression we could identify in vitro predictors of protection that could help to facilitate vaccine development. Calves were vaccinated with BCG or with a heterologous BCG prime adenovirally vectored subunit boosting protocol. Protective efficacy was determined after M. bovis challenge. RNA was prepared from PPD-stimulated PBMC prepared from vaccinated-protected, vaccinated-unprotected and unvaccinated control cattle prior to M. bovis challenge and global gene expression determined by RNA-seq. 668 genes were differentially expressed in vaccinated-protected cattle compared with vaccinated-unprotected and unvaccinated control cattle. Cytokine-cytokine receptor interaction was the most significant pathway related to this dataset with IL-22 expression identified as the dominant surrogate of protection besides INF-γ. Finally, the expression of these candidate genes identified by RNA-seq was evaluated by RT-qPCR in an independent set of PBMC samples from BCG vaccinated and unvaccinated calves. This experiment confirmed the importance of IL-22 as predictor of vaccine efficacy.

  6. Vacuna contra la fiebre hemorrágica argentina Candid#1 producida en la Argentina: Inmunogenicidad y seguridad Candid#1 vaccine against Argentine Hemorrhagic Fever produced in Argentina: Immunogenicity and safety

    Directory of Open Access Journals (Sweden)

    Delia A. Enria

    2010-06-01

    Full Text Available Se realizó un estudio clínico en 946 voluntarios humanos sanos, donde se comparó la vacuna Candid#1 producida en Argentina con la elaborada en EE.UU., que había sido utilizada en estudios previos. Como objetivo primario se evaluó la equivalencia en la eficacia utilizando como marcador subrogante a la inmunogenicidad medida por detección de anticuerpos neutralizantes. Como objetivo secundario se evaluó la equivalencia en inocuidad comparando las tasas de reacciones adversas. Ambas vacunas mostraron una tasa equivalente de inmunogenicidad ligeramente superior al 95.5%, que es la eficacia estimada para Candid #1 en estudios previos. No se observaron eventos adversos graves relacionados con la vacuna. Los eventos adversos generales considerados relacionados fueron de escasa significación clínica y de resolución espontánea o con tratamiento sintomático; se presentaron en los receptores de ambas vacunas en tasas equivalentes (29.9% para la vacuna fabricada en la Argentina y 35.0% para la fabricada en EE.UU., e incluyeron: cefalea, decaimiento, mialgias, plaquetopenia leve (A clinical study in 946 human volunteers was done to compare Candid #1 vaccine manufactured in Argentina with the vaccine produced in USA that had been previously used. The efficacy was evaluated using immunogenicity measured by the detection of neutralizing antibodies as a subrogate marker. Safety was evaluated comparing the rate of adverse events. Both vaccines showed a comparable rate of seroconversion, slighty higher than the efficacy estimated from previous studies (95.5%. There were no severe adverse events related to the vaccines. The general events considered related to the vaccines were not clinically relevant and disappeared either spontaneously or with symptomatic treatment. Similar rates of adverse events (29.9% for the Argentine vaccine and 35.0% for the USA vaccine were found for both vaccines. These included: headache, weakness, myalgias, mild low blood

  7. Differential Adverse Event Profiles Associated with BCG as a Preventive Tuberculosis Vaccine or Therapeutic Bladder Cancer Vaccine Identified by Comparative Ontology-Based VAERS and Literature Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Jiangan Xie

    Full Text Available M. bovis strain Bacillus Calmette-Guérin (BCG has been the only licensed live attenuated vaccine against tuberculosis (TB for nearly one century and has also been approved as a therapeutic vaccine for bladder cancer treatment since 1990. During its long time usage, different adverse events (AEs have been reported. However, the AEs associated with the BCG preventive TB vaccine and therapeutic cancer vaccine have not been systematically compared. In this study, we systematically collected various BCG AE data mined from the US VAERS database and PubMed literature reports, identified statistically significant BCG-associated AEs, and ontologically classified and compared these AEs related to these two types of BCG vaccine. From 397 VAERS BCG AE case reports, we identified 64 AEs statistically significantly associated with the BCG TB vaccine and 14 AEs with the BCG cancer vaccine. Our meta-analysis of 41 peer-reviewed journal reports identified 48 AEs associated with the BCG TB vaccine and 43 AEs associated with the BCG cancer vaccine. Among all identified AEs from VAERS and literature reports, 25 AEs belong to serious AEs. The Ontology of Adverse Events (OAE-based ontological hierarchical analysis indicated that the AEs associated with the BCG TB vaccine were enriched in immune system (e.g., lymphadenopathy and lymphadenitis, skin (e.g., skin ulceration and cyanosis, and respiratory system (e.g., cough and pneumonia; in contrast, the AEs associated with the BCG cancer vaccine mainly occurred in the urinary system (e.g., dysuria, pollakiuria, and hematuria. With these distinct AE profiles detected, this study also discovered three AEs (i.e., chills, pneumonia, and C-reactive protein increased shared by the BCG TB vaccine and bladder cancer vaccine. Furthermore, our deep investigation of 24 BCG-associated death cases from VAERS identified the important effects of age, vaccine co-administration, and immunosuppressive status on the final BCG

  8. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Directory of Open Access Journals (Sweden)

    Dhanasekaran Govindarajan

    Full Text Available Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  9. Mycobacterium tuberculosis: approach to development of improved strategies for disease control through vaccination and immunodiagnosis.

    Science.gov (United States)

    Mirlekar, B; Pathak, S; Pathade, G

    2013-01-01

    vaccine candidates. Here, we review current and future strategies toward the rational design of novel vaccines against TB, as well as the progress made thus far, and the hurdles that need to be overcome in the near and distant future.

  10. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children.

    Science.gov (United States)

    Walker, Richard I

    2015-02-18

    Despite improvements to water quality, sanitation, and the implementation of current prevention and treatment interventions, diarrhea remains a major cause of illness and death, especially among children less than five years of age in the developing world. Rotavirus vaccines have already begun making a real impact on diarrhea, but several more enteric vaccines will be necessary to achieve broader reductions of illness and death. Among the many causes of diarrheal disease, enterotoxigenic Escherichia coli (ETEC) and Shigella are the two most important bacterial pathogens for which there are no currently licensed vaccines. Vaccines against these two pathogens could greatly reduce the impact of disease caused by these infections. This review describes the approaches to ETEC and Shigella vaccines that are currently under development, including a range of both cellular and subunit approaches for each pathogen. In addition, the review discusses strategies for maximizing the potential benefit of these vaccines, which includes the feasibility of co-administration, consolidation, and combination of vaccine candidates, as well as issues related to effective administration of enteric vaccines to infants. Recent impact studies indicate that ETEC and Shigella vaccines could significantly benefit global public health. Either vaccine, particularly if they could be combined together or with another enteric vaccine, would be an extremely valuable tool for saving lives and promoting the health of infants and children in the developing world, as well as potentially providing protection to travelers and military personnel visiting endemic areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Oral administration of live Shigella vaccine candidates in rhesus monkeys show no evidence of competition for colonization and immunogenicity between different serotypes.

    Science.gov (United States)

    Ranallo, R T; Kaminski, R; Baqar, S; Dutta, M; Lugo-Roman, L A; Boren, T; Barnoy, S; Venkatesan, M M

    2014-03-26

    Live oral monovalent Shigella flexneri 2a vaccine candidates as well as bivalent formulations with Shigella sonnei were evaluated in a rhesus monkey model for colonization and immunogenicity. Freshly harvested suspensions of S. flexneri 2a vaccine candidates WRSf2G12 and WRSf2G15 as well as S. sonnei vaccine candidate WRSs3 were nasogastrically administered to groups of rhesus monkeys, Macaca mulatta, either in a monovalent form or when combined with each other. The animals were monitored daily for physical well-being, stools were subjected to quantitative colony immunoblot assays for bacterial excretion and blood and stools were evaluated for humoral and mucosal immune responses. No clinical symptoms were noted in any group of animals and the vaccine candidates were excreted robustly for 48-72h without significant changes in either the magnitude or duration of excretion when given as a monovalent or as bivalent mixtures. Similarly, immunological interferences were not apparent in the magnitude of humoral and mucosal immune responses observed toward Shigella-specific antigens when monkeys were fed monovalent or bivalent formulations. These results predict that a multivalent live oral vaccine of more than one serotype can have a favorable outcome for protection against shigellosis. Published by Elsevier Ltd.

  12. Evaluation of Granulysin and Perforin as Candidate Biomarkers for Protection Following Vaccination with Mycobacterium bovis BCG or M. bovisDeltaRD1

    Science.gov (United States)

    Tuberculosis remains a major health problem worldwide. Cell mediated immunity based on a Th1 response plays an important role in the outcome of the disease. Measurements of immune responsiveness after TB vaccination include the standard skin test, IFN gamma-based diagnostic assays and T cell prolif...

  13. Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate.

    Science.gov (United States)

    Delgado, Maité; Yero, Daniel; Niebla, Olivia; González, Sonia; Climent, Yanet; Pérez, Yusleydis; Cobas, Karem; Caballero, Evelín; García, Darien; Pajón, Rolando

    2007-12-05

    Polysaccharide-based vaccines for serogroup B Neisseria meningitidis have failed to induce protective immunity. As a result, efforts to develop vaccines for serogroup B meningococcal disease have mostly focused on outer membrane proteins (OMP). Vaccine candidates based on meningococcal OMP have emerged in the form of outer membrane vesicles (OMVs) or, more recently, purified recombinant proteins, as alternative strategies for serogroup B vaccine development. In our group, the protein composition of the Cuban OMVs-based vaccine VA-MENGOC-BC was elucidated using two-dimensional gel electrophoresis and mass spectrometry. The proteomic map of this product allowed the identification of new putative protective proteins not previously reported as components of an antimeningococcal vaccine. In the present study, we have determined the immunogenicity and protective capacity of NMB0928, one of those proteins present in the OMVs. The antigen was obtained as a recombinant protein in Escherichia coli, purified and used to immunize mice. The antiserum produced against the protein was capable to recognize the natural protein in different meningococcal strains by whole-cell ELISA and Western blotting. After immunization, recombinant NMB0928 induced bactericidal antibodies, and when the protein was administered inserted into liposomes, the elicited antibodies were protective in the infant rat model. These results suggest that NMB0928 is a novel antigen worth to be included in a broadly protective meningococcal vaccine.

  14. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates.

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-09-21

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in Escherichia coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. Published by Elsevier Ltd.

  15. Satisfactory safety and immunogenicity of MSP3 malaria vaccine candidate in Tanzanian children aged 12–24 months

    Directory of Open Access Journals (Sweden)

    Segeja Method D

    2009-07-01

    Full Text Available Abstract Background Development and deployment of an effective malaria vaccine would complement existing malaria control measures. A blood stage malaria vaccine candidate, Merozoite Surface Protein-3 (MSP3, produced as a long synthetic peptide, has been shown to be safe in non-immune and semi-immune adults. A phase Ib dose-escalating study was conducted to assess the vaccine's safety and immunogenicity in children aged 12 to 24 months in Korogwe, Tanzania (ClinicalTrials.gov number: NCT00469651. Methods This was a double-blind, randomized, controlled, dose escalation phase Ib trial, in which children were given one of two different doses of the MSP3 antigen (15 μg or 30 μg or a control vaccine (Engerix B. Children were randomly allocated either to the MSP3 candidate malaria vaccine or the control vaccine administered at a schedule of 0, 1, and 2 months. Immunization with lower and higher doses was staggered for safety reasons starting with the lower dose. The primary endpoint was safety and reactogenicity within 28 days post-vaccination. Blood samples were obtained at different time points to measure immunological responses. Results are presented up to 84 days post-vaccination. Results A total of 45 children were enrolled, 15 in each of the two MSP3 dose groups and 15 in the Engerix B group. There were no important differences in reactogenicity between the two MSP3 groups and Engerix B. Grade 3 adverse events were infrequent; only five were detected throughout the study, all of which were transient and resolved without sequelae. No serious adverse event reported was considered to be related to MSP3 vaccine. Both MSP3 dose regimens elicited strong cytophilic IgG responses (subclasses IgG1 and IgG3, the isotypes involved in the monocyte-dependant mechanism of Plasmodium falciparum parasite-killing. The titers reached are similar to those from African adults having reached a state of premunition. Furthermore, vaccination induced seroconversion in

  16. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  17. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria.

    Science.gov (United States)

    Lozano, José Manuel; Varela, Yahson; Silva, Yolanda; Ardila, Karen; Forero, Martha; Guasca, Laura; Guerrero, Yuly; Bermudez, Adriana; Alba, Patricia; Vanegas, Magnolia; Patarroyo, Manuel Elkin

    2017-11-01

    Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of Pf CSP, STARP; MSA1 and Pf 155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei -ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  18. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria

    Directory of Open Access Journals (Sweden)

    José Manuel Lozano

    2017-11-01

    Full Text Available Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  19. BCG vaccination drives accumulation and effector function of innate lymphoid cells in murine lungs.

    Science.gov (United States)

    Steigler, Pia; Daniels, Naomi J; McCulloch, Tim R; Ryder, Brin M; Sandford, Sarah K; Kirman, Joanna R

    2018-04-01

    The tuberculosis (TB) vaccine bacille Calmette-Guérin (BCG) prevents disseminated childhood TB; however, it fails to protect against the more prevalent pulmonary TB. Limited understanding of the immune response to Mycobacterium tuberculosis, the causative agent of TB, has hindered development of improved vaccines. Although memory CD4 T cells are considered the main mediators of protection against TB, recent studies suggest there are other key subsets that contribute to antimycobacterial immunity. To that end, innate cells may be involved in the protective response. In this study, we investigated the primary response of innate lymphoid cells (ILCs) to BCG exposure. Using a murine model, we showed that ILCs increased in number in the lungs and lymph nodes in response to BCG vaccination. Additionally, there was significant production of the antimycobacterial cytokine IFN-γ by ILCs. As ILCs are located at mucosal sites, it was investigated whether mucosal vaccination (intranasal) stimulated an enhanced response compared to the traditional vaccination approach (intradermal or subcutaneous). Indeed, in response to intranasal vaccination, the number of ILCs, and IFN-γ production in NK cells and ILC1s in the lungs and lymph nodes, were higher than that provoked through intradermal or subcutaneous vaccination. This work provides the first evidence that BCG vaccination activates ILCs, paving the way for future research to elucidate the protective potential of ILCs against mycobacterial infection. Additionally, the finding that lung ILCs respond rigorously to mucosal vaccination may have implications for the delivery of novel TB vaccines. © 2018 Australasian Society for Immunology Inc.

  20. Effectiveness of BCG vaccination to aged mice

    Directory of Open Access Journals (Sweden)

    Ito Tsukasa

    2010-09-01

    Full Text Available Abstract Background The tuberculosis (TB still increases in the number of new cases, which is estimated to approach 10 million in 2010. The number of aged people has been growing all over the world. Ageing is one of risk factors in tuberculosis because of decreased immune responses in aged people. Mycobacterium bovis Bacillus Calmette Guérin (BCG is a sole vaccine currently used for TB, however, the efficacy of BCG in adults is still a matter of debate. Emerging the multidrug resistant Mycobacterium tuberculosis (MDR-TB make us to see the importance of vaccination against TB in new light. In this study, we evaluated the efficacy of BCG vaccination in aged mice. Results The Th1 responses, interferon-γ production and interleukin 2, in BCG inoculated aged mice (24-month-old were comparable to those of young mice (4- to 6-week-old. The protection activity of BCG in aged mice against Mycobacterium tuberculosis H37Rv was also the same as young mice. Conclusion These findings suggest that vaccination in aged generation is still effective for protection against tuberculosis.

  1. Extensively Drug-Resistant TB

    Centers for Disease Control (CDC) Podcasts

    2016-12-16

    Dr. Charlotte Kvasnovsky, a surgery resident and Ph.D. candidate in biostatistics, discusses various types of drug resistance in TB patients in South Africa.  Created: 12/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/16/2016.

  2. What We Have Learned and What We Have Missed in Tuberculosis Pathophysiology for a New Vaccine Design: Searching for the “Pink Swan”

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-05-01

    Full Text Available This is a call to encourage the search for a new vaccine to stop the progression of Mycobacterium tuberculosis infection to tuberculosis (TB disease. TB is a highly discreet and stigmatized disease, with a massive impact on human health. It has killed 1.2 billion people in the last 200 years and still kills 1.5 million people per year. Over the last 20 years, the TB vaccine field has experienced spectacular developments, and we have learned about (1 the importance of the Th1 response in controlling infection, mainly against RD1 and Ag85 antigens; (2 the stability of the antigenic repertoire; (3 the dynamics of M. tuberculosis granulomas; or (4 the link between typical and atypical pulmonary TB and the immune status of the host. However, we still do not (1 know how to avoid M. tuberculosis infection and reinfection; (2 understand the major role of the increase in lesion size in progression from infection to disease; (3 the role of interlobular septa in encapsulating pulmonary lesions; or (4 the role of neutrophilic infiltration and an exaggerated inflammatory response in the development of TB disease. These are strong reasons to pursue new, imaginative proposals involving both the antibody response and a balanced, tolerant immune response that averts progression toward TB. So far, the scientific mindset has been quite monolithic and has mainly focused on the stimulation of conventional T cells. But this approach has failed. For that reason, we are seeking unconventional perspectives to find a “pink swan,” a more efficacious and safer vaccine candidate.

  3. What We Have Learned and What We Have Missed in Tuberculosis Pathophysiology for a New Vaccine Design: Searching for the “Pink Swan”

    Science.gov (United States)

    Cardona, Pere-Joan

    2017-01-01

    This is a call to encourage the search for a new vaccine to stop the progression of Mycobacterium tuberculosis infection to tuberculosis (TB) disease. TB is a highly discreet and stigmatized disease, with a massive impact on human health. It has killed 1.2 billion people in the last 200 years and still kills 1.5 million people per year. Over the last 20 years, the TB vaccine field has experienced spectacular developments, and we have learned about (1) the importance of the Th1 response in controlling infection, mainly against RD1 and Ag85 antigens; (2) the stability of the antigenic repertoire; (3) the dynamics of M. tuberculosis granulomas; or (4) the link between typical and atypical pulmonary TB and the immune status of the host. However, we still do not (1) know how to avoid M. tuberculosis infection and reinfection; (2) understand the major role of the increase in lesion size in progression from infection to disease; (3) the role of interlobular septa in encapsulating pulmonary lesions; or (4) the role of neutrophilic infiltration and an exaggerated inflammatory response in the development of TB disease. These are strong reasons to pursue new, imaginative proposals involving both the antibody response and a balanced, tolerant immune response that averts progression toward TB. So far, the scientific mindset has been quite monolithic and has mainly focused on the stimulation of conventional T cells. But this approach has failed. For that reason, we are seeking unconventional perspectives to find a “pink swan,” a more efficacious and safer vaccine candidate. PMID:28555137

  4. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    Science.gov (United States)

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  5. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets.

    Directory of Open Access Journals (Sweden)

    Amorsolo L Suguitan

    2006-09-01

    Full Text Available Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic.Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA and a wild-type (wt N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2, were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 10(6 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3 that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses.The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.

  6. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  7. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.

    Science.gov (United States)

    Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B

    2014-12-01

    Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.

  8. Dynamic profiles of neutralizing antibody responses elicited in rhesus monkeys immunized with a combined tetravalent DTaP-Sabin IPV candidate vaccine.

    Science.gov (United States)

    Sun, Mingbo; Ma, Yan; Xu, Yinhua; Yang, Huijuan; Shi, Li; Che, Yanchun; Liao, Guoyang; Jiang, Shude; Zhang, Shumin; Li, Qihan

    2014-02-19

    The World Health Organization has recommended that a Sabin inactivated polio vaccine (IPV) should gradually and synchronously replace oral polio vaccines for routine immunizations because its benefits in eliminating vaccine-associated paralytic poliomyelitis have been reported in different phases of clinical trials. It is also considered important to explore new tetravalent diphtheria, tetanus, and acellular pertussis-Sabin IPV (DTaP-sIPV) candidate vaccines for possible use in developing countries. In this study, the immunogenicity of a combined tetravalent DTaP-sIPV candidate vaccine was investigated in primates by evaluating the neutralizing antibody responses it induced. The dynamic profiles of the antibody responses to each of the separate antigenic components and serotypes of Sabin IPV were determined and their corresponding geometric mean titers were similar to those generated by the tetravalent diphtheria, tetanus, and acellular pertussis-conventional IPV (DTaP-cIPV), the tetravalent diphtheria, tetanus, and acellular pertussis (DTaP), and Sabin IPV vaccines in the control groups. This implies that protective immunogenic effects are conferred by this combined tetravalent formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Discovery of dormancy associated antigens of Mycobacterium tuberculosis : novel targets for the development of post-exposure or therapeutic tuberculosis vaccines

    NARCIS (Netherlands)

    Lin, May Young

    2009-01-01

    The growing number of tuberculosis (TB) casualties urges development of not only more effective drugs and preventive vaccines but also development of post-exposure/therapeutic TB vaccines. Post-exposure/therapeutic TB vaccines are needed since 2 billion people worldwide harbor a latent Mycobacterium

  10. Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by Piper betel Derived Compounds

    Science.gov (United States)

    Barh, Debmalya; Barve, Neha; Gupta, Krishnakant; Chandra, Sudha; Jain, Neha; Tiwari, Sandeep; Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; Rodrigues dos Santos, Anderson; Hassan, Syed Shah; Almeida, Síntia; Thiago Jucá Ramos, Rommel; Augusto Carvalho de Abreu, Vinicius; Ribeiro Carneiro, Adriana; de Castro Soares, Siomar; Luiz de Paula Castro, Thiago; Miyoshi, Anderson; Silva, Artur; Kumar, Anil; Narayan Misra, Amarendra; Blum, Kenneth; Braverman, Eric R.; Azevedo, Vasco

    2013-01-01

    Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species. PMID:23382822

  11. Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by Piper betel derived compounds.

    Directory of Open Access Journals (Sweden)

    Debmalya Barh

    Full Text Available Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC for most of the pathogenic Vibrio strains. Two targets (uppP and yajC are novel to Vibrio, and two targets (uppP and ompU can be used to develop both drugs and vaccines (dual targets against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species.

  12. Comparison of the nucleotide sequence of wild-type hepatitis - A virus and its attenuated candidate vaccine derivative

    International Nuclear Information System (INIS)

    Cohen, J.I.; Rosenblum, B.; Ticehurst, J.R.; Daemer, R.; Feinstone, S.; Purcell, R.H.

    1987-01-01

    Development of attenuated mutants for use as vaccines is in progress for other viruses, including influenza, rotavirus, varicella-zoster, cytomegalovirus, and hepatitis-A virus (HAV). Attenuated viruses may be derived from naturally occurring mutants that infect human or nonhuman hosts. Alternatively, attenuated mutants may be generated by passage of wild-type virus in cell culture. Production of attenuated viruses in cell culture is a laborious and empiric process. Despite previous empiric successes, understanding the molecular basis for attenuation of vaccine viruses could facilitate future development and use of live-virus vaccines. Comparison of the complete nucleotide sequences of wild-type (virulent) and vaccine (attenuated) viruses has been reported for polioviruses and yellow fever virus. Here, the authors compare the nucleotide sequence of wild-type HAV HM-175 with that of a candidate vaccine derivative

  13. Protein energy malnutrition during vaccination has limited influence on vaccine efficacy but abolishes immunity if administered during Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Hoang, Truc; Agger, Else Marie; Cassidy, Joseph P

    2015-01-01

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including tuberculosis (TB), but it is not clear how PEM influences vaccine-promoted immunity to TB. We demonstrate that PEM during low-level steady-state TB infection in a mouse model results in rapid relapse...

  14. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    than is possible with a wild-type protein, (2) reducing the number of low-prevalence k-mers minimizes the likelihood of undesirable immunodominance, and (3) excluding exogenous k-mers will result in mosaic proteins whose processing for presentation is close to what occurs with wild-type proteins. The first and second applications of the mosaic method were to HIV and Hepatitis C Virus (HCV). HIV is the virus with the largest number of known sequences, and consequently a plethora of information for the CTL vaccine designer to incorporate into their mosaics. Experience with HIV and HCV mosaics supports the validity of the three conjectures above. The available FILV sequences are probably closer to the minimum amount of information needed to make a meaningful mosaic vaccine candidate. There were 532 protein sequences in the National Institutes of Health GenPept database in November 2007 when our reference set was downloaded. These sequences come from both Ebola and Marburg viruses (EBOV and MARV), representing transcripts of all 7 genes. The coverage of viral diversity by the 7 genes is variable, with genes 1 (nucleoprotein, NP), 4 (glycoprotein, GP; soluble glycoprotein, sGP) and 7 (polymerase, L) giving the best coverage. Broadly-protective vaccine candidates for diverse viruses, such as HIV or Hepatitis C virus (HCV) have required pools of antigens. FILV is similar in this regard. While we have designed CTL mosaic proteins using all 7 types of filoviral proteins, only NP, GP and L proteins are reported here. If it were important to include other proteins in a mosaic CTL vaccine, additional sequences would be required to cover the space of known viral diversity.

  15. Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate.

    Science.gov (United States)

    Kabanova, Anna; Margarit, Immaculada; Berti, Francesco; Romano, Maria R; Grandi, Guido; Bensi, Giuliano; Chiarot, Emiliano; Proietti, Daniela; Swennen, Erwin; Cappelletti, Emilia; Fontani, Paola; Casini, Daniele; Adamo, Roberto; Pinto, Vittoria; Skibinski, David; Capo, Sabrina; Buffi, Giada; Gallotta, Marilena; Christ, William J; Campbell, A Stewart; Pena, John; Seeberger, Peter H; Rappuoli, Rino; Costantino, Paolo

    2010-12-10

    Bacterial infections caused by Group A Streptococcus (GAS) are a serious health care concern that currently cannot be prevented by vaccination. The GAS cell-wall polysaccharide (GAS-PS) is an attractive vaccine candidate due to its constant expression pattern on different bacterial strains and protective properties of anti-GAS-PS antibodies. Here we report for the first time the immunoprotective efficacy of glycoconjugates with synthetic GAS oligosaccharides as compared to those containing the native GAS-PS. A series of hexa- and dodecasaccharides based on the GAS-PS structure were prepared by chemical synthesis and conjugated to CRM(197). When tested in mice, the conjugates containing the synthetic oligosaccharides conferred levels of immunoprotection comparable to those elicited by the native conjugate. Antisera from immunized rabbits promoted phagocytosis of encapsulated GAS strains. Furthermore we discuss variables that might correlate with glycoconjugate immunogenicity and demonstrate the potential of the synthetic approach that benefits from increased antigen purity and facilitated manufacturing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Nuclear Magnetic Resonance (NMR Study for the Detection and Quantitation of Cholesterol in HSV529 Therapeutic Vaccine Candidate

    Directory of Open Access Journals (Sweden)

    Rahima Khatun

    Full Text Available This study describes the NMR-based method to determine the limit of quantitation (LOQ and limit of detection (LOD of cholesterol, a process-related impurity in the replication-deficient Herpes Simplex Virus (HSV type 2 candidate vaccine HSV529. Three signature peaks from the 1D 1H NMR of a cholesterol reference spectrum were selected for the identification of cholesterol. The LOQ for a cholesterol working standard was found to be 1 μg/mL, and the LOD was found to be 0.1 μg/mL. The identity of cholesterol, separated from the formulation of growth supplement by thin layer chromatography (TLC, was confirmed by 1D 1H NMR and 2D 1H-13C HSQC NMR. The three signature peaks of cholesterol were detected only in a six-times concentrated sample of HSV529 candidate vaccine sample and not in the single dose HSV529 vaccine sample under similar experimental conditions. Taken together, the results demonstrated that NMR is a direct method that can successfully identify and quantify cholesterol in viral vaccine samples, such as HSV529, and as well as in the growth supplement used during the upstream stages of HSV529 manufacturing. Keywords: Herpes simplex virus type 2 (HSV-2, Viral vaccine, NMR, Residuals, LOD and LOQ, TLC, Growth supplement

  17. Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections.

    Science.gov (United States)

    Romero-Saavedra, Felipe; Laverde, Diana; Budin-Verneuil, Aurélie; Muller, Cécile; Bernay, Benoit; Benachour, Abdellah; Hartke, Axel; Huebner, Johannes

    2015-01-01

    Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens. We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72%) between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm,) and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm). These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens. Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single components or as carrier proteins

  18. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    NARCIS (Netherlands)

    Jones, S; Grignard, L.; Nebie, I.; Chilongola, J.; Dodoo, D.; Sauerwein, R.W.; Theisen, M.; Roeffen, W.F.; Singh, S.K; Singh, R.K.; Kyei-Baafour, E.; Tetteh, K.; Drakeley, C.; Bousema, T.

    2015-01-01

    OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the

  19. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite.

    Science.gov (United States)

    Mistarz, Ulrik H; Singh, Susheel K; Nguyen, Tam T T N; Roeffen, Will; Yang, Fen; Lissau, Casper; Madsen, Søren M; Vrang, Astrid; Tiendrebeogo, Régis W; Kana, Ikhlaq H; Sauerwein, Robert W; Theisen, Michael; Rand, Kasper D

    2017-09-01

    Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a multi-stage malaria vaccine that targets both transmission and asexual life-cycle stages of the parasite. GMZ2'.10C was produced in Lactococcus lactis and purified using either an immunoaffinity purification (IP) or a conventional purification (CP) method. Protein purity and stability was analysed by RP-HPLC, SEC-HPLC, 2-site ELISA, gel-electrophoresis and Western blotting. Structural characterization (mass analysis, peptide mapping and cysteine connectivity mapping) was performed by LC-MS/MS. CP-GMZ2'.10C resulted in similar purity, yield, structure and stability as compared to IP-GMZ2'.10C. CP-GMZ2'.10C and IP-GMZ2'.10C both elicited a high titer of transmission blocking (TB) antibodies in rodents. The intricate disulphide-bond connectivity of C-terminus Pfs48/45 was analysed by tandem mass spectrometry and was established for GMZ2'.10C and two reference fusion proteins encompassing similar parts of Pfs48/45. GMZ2'.10C, combining GMZ2' and correctly-folded Pfs48/45 can be produced by the Lactoccus lactis P170 based expression system in purity and quality for pharmaceutical development and elicit high level of TB antibodies. The cysteine connectivity for the 10C region of Pfs48/45 was revealed experimentally, providing an important guideline for employing the Pfs48/45 antigen in vaccine design.

  20. Collaborative study to assess the suitability of a candidate International Standard for yellow fever vaccine.

    Science.gov (United States)

    Ferguson, Morag; Heath, Alan

    2004-12-01

    Yellow fever vaccines are routinely assayed by plaque assay. However, the results of these assays are then converted into mouse LD(50) using correlations/conversion factors which, in many cases, were established many years ago. The minimum required potency in WHO Recommendations is 10(3) LD(50)/dose. Thirteen participants from 8 countries participated in a collaborative study whose aim was to assess the suitability of two candidate preparations to serve as an International Standard for yellow fever vaccine. In addition, the study investigated the relationship between the mouse LD(50) test and plaque forming units with a view to updating the WHO recommendations. Plaque assays were more reproducible than mouse assays, as expected. Differences in sensitivities of plaque assays were observed between laboratories but these differences appear to be consistent within a laboratory for all samples and the expression of potency relative to the candidate standard vaccine improved the reproducibility of assays between laboratories. However, the use of potencies had little effect on the between laboratory variability in mouse LD(50) assays. There appears to be a consistent relationship between overall mean LD(50) and plaques titre for all study preparations other than sample E. The slope of the correlation curve is >1 and it would appear that 10(3) LD(50) is approximately equivalent to 10(4) plaque forming units (PFU), based on the overall means of all laboratory results. The First International Standard for yellow fever vaccine, NIBSC Code 99/616, has been established as the First International Standard for yellow fever vaccine by the Expert Committee of Biological Standards of the World Health Organisation. The International Standard has been arbitrarily assigned a potency of 10(4.5) International Units (IU) per ampoule. Manufacturers and National Control Laboratories are including the First International Standard for yellow fever vaccine in routine assays so that the minimum

  1. Effects of vaccination against paratuberculosis on tuberculosis in goats: diagnostic interferences and cross-protection

    Directory of Open Access Journals (Sweden)

    Pérez de Val Bernat

    2012-10-01

    Full Text Available Abstract Background Most countries carrying out campaigns of bovine tuberculosis (TB eradication impose a ban on the use of mycobacterial vaccines in cattle. However, vaccination against paratuberculosis (PTB in goats is often allowed even when its effect on TB diagnosis has not been fully evaluated. To address this issue, goat kids previously vaccinated against PTB were experimentally infected with TB. Results Evaluation of interferon-γ (IFN-γ secretion induced by avian and bovine tuberculins (PPD showed a predominant avian PPD-biased response in the vaccinated group from week 4 post-vaccination onward. Although 60% of the animals were bovine reactors at week 14, avian PPD-biased responses returned at week 16. After challenge with M. caprae, the IFN-γ responses radically changed to show predominant bovine PPD-biased responses from week 18 onward. In addition, cross-reactions with bovine PPD that had been observed in the vaccinated group at week 14 were reduced when using the M. tuberculosis complex-specific antigens ESAT-6/CFP-10 and Rv3615c as new DIVA (differentiation of infected and vaccinated animals reagents, which further maintained sensitivity post-challenge. Ninety percent of the animals reacted positively to the tuberculin cervical comparative intradermal test performed at 12 weeks post-infection. Furthermore, post-mortem analysis showed reductions in tuberculous lesions and bacterial burden in some vaccinated animals, particularly expressed in terms of the degree of extrapulmonary dissemination of TB infection. Conclusions Our results suggest a degree of interference of PTB vaccination with current TB diagnostics that can be fully mitigated when using new DIVA reagents. A partial protective effect associated with vaccination was also observed in some vaccinated animals.

  2. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum.

    Science.gov (United States)

    Farrance, Christine E; Rhee, Amy; Jones, R Mark; Musiychuk, Konstantin; Shamloul, Moneim; Sharma, Satish; Mett, Vadim; Chichester, Jessica A; Streatfield, Stephen J; Roeffen, Will; van de Vegte-Bolmer, Marga; Sauerwein, Robert W; Tsuboi, Takafumi; Muratova, Olga V; Wu, Yimin; Yusibov, Vidadi

    2011-08-01

    Plasmodium falciparum is transmitted to a new host after completing its sexual cycle within a mosquito. Developing vaccines against the parasite sexual stages is a critical component in the fight against malaria. We are targeting multiple proteins of P. falciparum which are found only on the surfaces of the sexual forms of the parasite and where antibodies against these proteins have been shown to block the progression of the parasite's life cycle in the mosquito and thus block transmission to the next human host. We have successfully produced a region of the Pfs230 antigen in our plant-based transient-expression system and evaluated this vaccine candidate in an animal model. This plant-produced protein, 230CMB, is expressed at approximately 800 mg/kg in fresh whole leaf tissue and is 100% soluble. Administration of 230CMB with >90% purity induces strong immune responses in rabbits with high titers of transmission-blocking antibodies, resulting in a greater than 99% reduction in oocyst counts in the presence of complement, as determined by a standard membrane feeding assay. Our data provide a clear perspective on the clinical development of a Pfs230-based transmission-blocking malaria vaccine.

  3. Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang

    2010-09-27

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and analysis system that curates, stores, and analyzes published data of commercialized vaccines, and vaccines in clinical trials or in research. VIOLIN contains information for 454 vaccines or vaccine candidates for 73 pathogens. VIOLIN also contains many bioinformatics tools for vaccine data analysis, data integration, and vaccine target prediction. To demonstrate the applicability of VIOLIN for vaccine research, VIOLIN was used for bioinformatics analysis of existing Brucella vaccines and prediction of new Brucella vaccine targets. VIOLIN contains many literature mining programs (e.g., Vaxmesh) that provide in-depth analysis of Brucella vaccine literature. As a result of manual literature curation, VIOLIN contains information for 38 Brucella vaccines or vaccine candidates, 14 protective Brucella antigens, and 68 host response studies to Brucella vaccines from 97 peer-reviewed articles. These Brucella vaccines are classified in the Vaccine Ontology (VO) system and used for different ontological applications. The web-based VIOLIN vaccine target prediction program Vaxign was used to predict new Brucella vaccine targets. Vaxign identified 14 outer membrane proteins that are conserved in six virulent strains from B. abortus, B. melitensis, and B. suis that are pathogenic in humans. Of the 14 membrane proteins, two proteins (Omp2b and Omp31-1) are not present in B. ovis, a Brucella species that is not pathogenic in humans. Brucella vaccine data stored in VIOLIN were compared and analyzed using the VIOLIN query system. Bioinformatics curation and ontological representation of Brucella vaccines

  4. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.

    Science.gov (United States)

    Ghosh, Soma; Prava, Jyoti; Samal, Himanshu Bhusan; Suar, Mrutyunjay; Mahapatra, Rajani Kanta

    2014-06-01

    Now-a-days increasing emergence of antibiotic-resistant pathogenic microorganisms is one of the biggest challenges for management of disease. In the present study comparative genomics, metabolic pathways analysis and additional parameters were defined for the identification of 94 non-homologous essential proteins in Staphylococcus aureus genome. Further study prioritized 19 proteins as vaccine candidates where as druggability study reports 34 proteins suitable as drug targets. Enzymes from peptidoglycan biosynthesis, folate biosynthesis were identified as candidates for drug development. Furthermore, bacterial secretory proteins and few hypothetical proteins identified in our analysis fulfill the criteria of vaccine candidates. As a case study, we built a homology model of one of the potential drug target, MurA ligase, using MODELLER (9v12) software. The model has been further selected for in silico docking study with inhibitors from the DrugBank database. Results from this study could facilitate selection of proteins for entry into drug design and vaccine production pipelines. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Lipid-formulated bcg as an oral-bait vaccine for tuberculosis: vaccine stability, efficacy, and palatability to brushtail possums (Trichosurus vulpecula) in New Zealand.

    Science.gov (United States)

    Cross, Martin L; Henderson, Ray J; Lambeth, Matthew R; Buddle, Bryce M; Aldwell, Frank E

    2009-07-01

    Bovine tuberculosis (Tb), due to infection with virulent Mycobacterium bovis, represents a threat to New Zealand agriculture due to vectorial transmission from wildlife reservoir species, principally the introduced Australian brushtail possum (Trichosurus vulpecula). An oral-delivery wildlife vaccine has been developed to immunize possums against Tb, based on formulation of the human Tb vaccine (M. bovis BCG) in edible lipid matrices. Here BCG bacilli were shown to be stable in lipid matrix formulation for over 8 mo in freezer storage, for 7 wk under room temperature conditions, and for 3-5 wk under field conditions in a forest/pasture margin habitat (when maintained in weatherproof bait-delivery sachets). Samples of the lipid matrix were flavored and offered to captive possums in a bait-preference study: a combination of 10% chocolate powder with anise oil was identified as the most effective attractant/palatability combination. In a replicated field study, 85-100% of wild possums were shown to access chocolate-flavored lipid pellets, when baits were applied to areas holding approximately 600-800 possums/km(2). Finally, in a controlled vaccination/challenge study, chocolate-flavored lipid vaccine samples containing 10(8) BCG bacilli were fed to captive possums, which were subsequently challenged via aerosol exposure to virulent M. bovis: vaccine immunogenicity was confirmed, and protection was identified by significantly reduced postchallenge weight loss in vaccinated animals compared to nonvaccinated controls. These studies indicate that, appropriately flavored, lipid delivery matrices may form effective bait vaccines for the control of Tb in wildlife.

  6. Replacement of the Ectodomains of the Hemagglutinin-Neuraminidase and Fusion Glycoproteins of Recombinant Parainfluenza Virus Type 3 (PIV3) with Their Counterparts from PIV2 Yields Attenuated PIV2 Vaccine Candidates

    OpenAIRE

    Tao, Tao; Skiadopoulos, Mario H.; Davoodi, Fatemeh; Riggs, Jeffrey M.; Collins, Peter L.; Murphy, Brian R.

    2000-01-01

    We sought to develop a live attenuated parainfluenza virus type 2 (PIV2) vaccine strain for use in infants and young children, using reverse genetic techniques that previously were used to rapidly produce a live attenuated PIV1 vaccine candidate. The PIV1 vaccine candidate, designated rPIV3-1cp45, was generated by substituting the full-length HN and F proteins of PIV1 for those of PIV3 in the attenuated cp45 PIV3 vaccine candidate (T. Tao et al., J. Virol. 72:2955–2961, 1998; M. H. Skiadopoul...

  7. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Essack Zaynab

    2010-03-01

    Full Text Available Abstract Background Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. Methods In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Results Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. Conclusion The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields.

  8. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa.

    Science.gov (United States)

    Mamotte, Nicole; Wassenaar, Douglas; Koen, Jennifer; Essack, Zaynab

    2010-03-09

    Africa continues to bear a disproportionate share of the global HIV/AIDS, tuberculosis (TB) and malaria burden. The development and distribution of safe, effective and affordable vaccines is critical to reduce these epidemics. However, conducting HIV/AIDS, TB, and/or malaria vaccine trials simultaneously in developing countries, or in populations affected by all three diseases, is likely to result in numerous ethical challenges. In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine Programme hosted a consultation on the Convergent Ethical Issues in HIV/AIDS, TB and Malaria Vaccine Trials in Africa in Durban, South Africa on the 10-11 February 2009. Key cross cutting ethical issues were prioritized during the consultation as community engagement; ancillary care obligations; care and treatment; informed consent; and resource sharing. The consultation revealed that while there have been few attempts to find convergence on ethical issues between HIV/AIDS, TB and malaria vaccine trial fields to date, there is much common ground and scope for convergence work between stakeholders in the three fields.

  9. Multi-stage subunit vaccine development against Mycobacterium paratuberculosis and Johne’s disease in ruminants

    DEFF Research Database (Denmark)

    Jungersen, Gregers

    paratuberculosis provide only partial protection and interfere with diagnostic tests for JD and surveillance for bovine TB. In contrast, recombinant subunit vaccines can be designed to be used without compromising control of bTB and Map. Taking advantage of data from mouse TB studies, and early Map vaccination...... in macrophages. The disease progression is very slow with neonatal animals being the most susceptible to infection, but without development of detectable IFN-γ responses for months after infection and rarely with clinical disease before the second or third year of life. Available whole cell vaccines against......- and field-studies we developed a vaccine with a single recombinant fusion protein comprising four acute-stage antigens (Ags) and one latent-stage Ag formulated in adjuvant (FET-vaccine). In post-exposure vaccination of calves and goats with necropsy 8-12 months post inoculation, we determined...

  10. Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate

    Science.gov (United States)

    Oyler, Benjamin L.; Khan, Mohd M.; Smith, Donald F.; Harberts, Erin M.; Kilgour, David P. A.; Ernst, Robert K.; Cross, Alan S.; Goodlett, David R.

    2018-02-01

    Recent advances in lipopolysaccharide (LPS) biology have led to its use in drug discovery pipelines, including vaccine and vaccine adjuvant discovery. Desirable characteristics for LPS vaccine candidates include both the ability to produce a specific antibody titer in patients and a minimal host inflammatory response directed by the innate immune system. However, in-depth chemical characterization of most LPS extracts has not been performed; hence, biological activities of these extracts are unpredictable. Additionally, the most widely adopted workflow for LPS structure elucidation includes nonspecific chemical decomposition steps before analyses, making structures inferred and not necessarily biologically relevant. In this work, several different mass spectrometry workflows that have not been previously explored were employed to show proof-of-principle for top down LPS primary structure elucidation, specifically for a rough-type mutant (J5) E. coli-derived LPS component of a vaccine candidate. First, ion mobility filtered precursor ions were subjected to collision induced dissociation (CID) to define differences in native J5 LPS v. chemically detoxified J5 LPS (dLPS). Next, ultra-high mass resolving power, accurate mass spectrometry was employed for unequivocal precursor and product ion empirical formulae generation. Finally, MS3 analyses in an ion trap instrument showed that previous knowledge about dissociation of LPS components can be used to reconstruct and sequence LPS in a top down fashion. A structural rationale is also explained for differential inflammatory dose-response curves, in vitro, when HEK-Blue hTLR4 cells were administered increasing concentrations of native J5 LPS v. dLPS, which will be useful in future drug discovery efforts. [Figure not available: see fulltext.

  11. Protein energy malnutrition during vaccination has limited influence on vaccine efficacy but abolishes immunity if administered during Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Hoang, Truc; Agger, Else Marie; Cassidy, Joseph P; Christensen, Jan P; Andersen, Peter

    2015-05-01

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including tuberculosis (TB), but it is not clear how PEM influences vaccine-promoted immunity to TB. We demonstrate that PEM during low-level steady-state TB infection in a mouse model results in rapid relapse of Mycobacterium tuberculosis, as well as increased pathology, in both Mycobacterium bovis BCG-vaccinated and unvaccinated animals. PEM did not change the overall numbers of CD4 T cells in BCG-vaccinated animals but resulted in an almost complete loss of antigen-specific cytokine production. Furthermore, there was a change in cytokine expression characterized by a gradual loss of multifunctional antigen-specific CD4 T cells and an increased proportion of effector cells expressing gamma interferon and tumor necrosis factor alpha (IFN-γ(+) TNF-α(+) and IFN-γ(+) cells). PEM during M. tuberculosis infection completely blocked the protection afforded by the H56-CAF01 subunit vaccine, and this was associated with a very substantial loss of the interleukin-2-positive memory CD4 T cells promoted by this vaccine. Similarly, PEM during the vaccination phase markedly reduced the H56-CAF01 vaccine response, influencing all cytokine-producing CD4 T cell subsets, with the exception of CD4 T cells positive for TNF-α only. Importantly, this impairment was reversible and resupplementation of protein during infection rescued both the vaccine-promoted T cell response and the protective effect of the vaccine against M. tuberculosis infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.

    Science.gov (United States)

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L; Long, Carole A; Miller, Louis H; Saul, Allan; Mullen, Gregory E D

    2007-05-16

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) to a blood stage vaccine candidate and surface protein 25 (Pfs25) a mosquito stage vaccine candidate, were each independently chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66kD) relatively good immunogen in mice; Pfs25 is a poorly immunogenic protein when presented on alum to mice. Mice were immunized on days 0 and 28 with AMA1- or Pfs25-rEPA conjugates or unconjugated AMA1 or Pfs25, all formulated on Alhydrogel. Remarkably, sera from mice 14 days after the second immunization with Pfs25-rEPA conjugates displayed over a 1000-fold higher antibody titers as compared to unconjugated Pfs25. In contrast, AMA1 conjugated under the same conditions induced only a three-fold increase in antibody titers. When tested for functional activity, antibodies elicited by the AMA1-rEPA inhibited invasion of erythrocytes by blood-stage parasites and antibodies elicited by the Pfs25-rEPA conjugates blocked the development of the sexual stage parasites in the mosquito midgut. These results demonstrate that conjugation to rEPA induces a marked improvement in the antibody titer in mice for the poor immunogen (Pfs25) and for the larger protein (AMA1). These conjugates now need to be tested in humans to determine if mice are predictive of the response in humans.

  13. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy.

    Directory of Open Access Journals (Sweden)

    Jason W Bennett

    2016-02-01

    Full Text Available A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001, a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP and a truncated repeat region that contains repeat sequences from both the VK210 (type 1 and the VK247 (type 2 parasites, was developed as a vaccine candidate for global use.We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group were given 3 intramuscular injections of 15 μg, 30 μg, or 60 μg respectively of VMP001, all formulated in 500 μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls.The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period.This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.

  14. Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review

    Directory of Open Access Journals (Sweden)

    Farzad Khademi

    2018-02-01

    Full Text Available Objective(s: Production of effective tuberculosis (TB vaccine is necessity. However, the development of new subunit vaccines is faced with concerns about their weak immunogenicity. To overcome such problems, polymers-based vaccine delivery systems have been proposed to be used via various routes. The purpose of this study was to determine the potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against TB. Materials and Methods: PubMed, Scopus, Science-Direct, and the ISI web of knowledge databases were searched for related keywords. A total of 420 articles, written up to June 25, 2016, were collected on the potential of polymeric particles as TB vaccine delivery systems after parenteral and non-parenteral immunization. Thirty-one relevant articles were selected by applying inclusion and exclusion criteria. Results: It was shown that the immunogenicity of TB vaccines had been improved by using biodegradable and non-biodegradable synthetic polymers as well as natural polymers and they are better able to enhance the humoral and cellular immune responses, compared to TB vaccines alone. The present study revealed that various polymeric particles, after M. tuberculosis challenge in animal models, provide long-lasting protection against TB. PLGA (poly (lactide-co-glycolide and chitosan polymers were widely used as TB vaccine delivery systems/adjuvants. Conclusion: It seems that PLGA and chitosan polymers are well-suited particles for the parenteral and non-parenteral administration of TB vaccines, respectively. Non-biodegradable synthetic polymers in comparison with biodegradable synthetic and natural polymers have been used less frequently. Therefore, further study on this category of polymers is required.

  15. An Investigation of Immunogenicity of Chitosan-Based Botulinum Neurotoxin E Binding Domain Recombinant Candidate Vaccine via Mucosal Route

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Bagheripour

    2017-01-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by serotypes A-G of neurotoxins of Clostridium genus. Neurotoxin binding domain is an appropriate vaccine candidate due to its immunogenic activity. In this study, the immunogenicity of chitosan-based botulinum neurotoxin E binding domain recombinant candidate vaccine was investigated via mucosal route of administration. Methods: In this experimental study, chitosan nanoparticles containing rBoNT/E protein were synthesized by ionic gelation method and were administered orally and intranasally to mice. After each administration, IgG antibody titer was measured by ELISA method. Finally, all groups were challenged with active botulinum neurotoxin type E. Data were analyzed using Duncan and repeated ANOVA tests. The significance level was considered as p0.05, even intranasal route reduced the immunogenicity.

  16. Persistence of the immune response induced by BCG vaccination

    Directory of Open Access Journals (Sweden)

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  17. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate.

    Science.gov (United States)

    Bao, Yanqing; Tian, Mingxing; Li, Peng; Liu, Jiameng; Ding, Chan; Yu, Shengqing

    2017-04-04

    Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 10 5 colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.

  18. Generation of transgenic corn-derived Actinobacillus pleuropneumoniae ApxIIA fused with the cholera toxin B subunit as a vaccine candidate

    Science.gov (United States)

    Shin, Min-Kyoung; Jung, Myung Hwan; Lee, Won-Jung; Choi, Pil Son; Jang, Yong-Suk

    2011-01-01

    Corn, one of the most important forage crops worldwide, has proven to be a useful expression vehicle due to the availability of established transformation procedures for this well-studied plant. The exotoxin Apx, a major virulence factor, is recognized as a common antigen of Actinobacillus (A.) pleuropneumoniae, the causative agent of porcine pleuropneumonia. In this study, a cholera toxin B (CTB)-ApxIIA#5 fusion protein and full-size ApxIIA expressed in corn seed, as a subunit vaccine candidate, were observed to induce Apx-specific immune responses in mice. These results suggest that transgenic corn-derived ApxIIA and CTB-ApxIIA#5 proteins are potential vaccine candidates against A. pleuropneumoniae infection. PMID:22122907

  19. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro.

    Directory of Open Access Journals (Sweden)

    Priya Saikumar Lakshmi

    Full Text Available Tuberculosis (TB caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6 kDa early secretory antigenic target and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39 fused with cholera toxin B-subunit (CTB and LipY (a cell wall protein were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential

  20. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro.

    Science.gov (United States)

    Lakshmi, Priya Saikumar; Verma, Dheeraj; Yang, Xiangdong; Lloyd, Bethany; Daniell, Henry

    2013-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading fatal infectious diseases. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, three candidate antigens, ESAT-6 (6 kDa early secretory antigenic target) and Mtb72F (a fusion polyprotein from two TB antigens, Mtb32 and Mtb39) fused with cholera toxin B-subunit (CTB) and LipY (a cell wall protein) were expressed in tobacco and/or lettuce chloroplasts to facilitate bioencapsulation/oral delivery. Site-specific transgene integration into the chloroplast genome was confirmed by Southern blot analysis. In transplastomic leaves, CTB fusion proteins existed in soluble monomeric or multimeric forms of expected sizes and their expression levels varied depending upon the developmental stage and time of leaf harvest, with the highest-level of accumulation in mature leaves harvested at 6PM. The CTB-ESAT6 and CTB-Mtb72F expression levels reached up to 7.5% and 1.2% of total soluble protein respectively in mature tobacco leaves. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Western blot analysis of lyophilized lettuce leaves stored at room temperature for up to six months showed that the CTB-ESAT6 fusion protein was stable and preserved proper folding, disulfide bonds and assembly into pentamers for prolonged periods. Also, antigen concentration per gram of leaf tissue was increased 22 fold after lyophilization. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of the ESAT-6 antigen. GM1-binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to bind with the GM1-ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB booster vaccine with potential for long

  1. HIV-1 Immunogen: an overview of almost 30 years of clinical testing of a candidate therapeutic vaccine.

    Science.gov (United States)

    Graziani, Gina M; Angel, Jonathan B

    2016-07-01

    Although current antiretroviral therapy (ART) has transformed HIV infection into a chronic, manageable disease, ART does not cure HIV infection. Furthermore, the majority of the world's infected individuals live in resource-limited countries in which access to ART is limited. Thus, the development of an effective therapeutic HIV vaccine would be an invaluable treatment alternative. Developed by the late Dr. Jonas Salk, HIV-1 Immunogen (Remune®) is a candidate therapeutic vaccine that has been studied in thousands of HIV-infected individuals in more than a dozen clinical trials during almost three decades. This Drug Evaluation, which summarizes the results of these trials that have shown the vaccine to be safe and immunogenic, also discusses the contradictory and controversial conclusions drawn from the phases 2, 2/3 and 3 trials that assessed the clinical efficacy of this vaccine. Given the lack of unequivocal clinical benefits of HIV-1 Immunogen despite almost 30 years of extensive testing, it does not appear, in our view, that this vaccine is a clinically effective immunotherapy. However, inclusion of this vaccine in the newly proposed 'Kick/Shock and Kill' strategy for HIV eradication, or use as a prophylactic vaccine, could be considered for future trials.

  2. Points for Consideration for dengue vaccine introduction - recommendations by the Dengue Vaccine Initiative.

    Science.gov (United States)

    Lim, Jacqueline Kyungah; Lee, Yong-Seok; Wilder-Smith, Annelies; Thiry, Georges; Mahoney, Richard; Yoon, In-Kyu

    2016-01-01

    Dengue is a public health problem in the tropics and subtropics. There are several vaccine candidates in clinical development. However, there may be gaps in the new vaccine introduction after vaccine licensure before it becomes available in developing countries. In anticipation of the first dengue vaccine candidate to be licensed, Dengue Vaccine Initiative (DVI) and, its predecessor, Pediatric Dengue Vaccine Initiative (PDVI) have been working on points for consideration to accelerate evidence-based dengue vaccine introduction, once a vaccine becomes available. In this paper, we review the history of PDVI and its successor, the DVI, and elaborate on the points of consideration for dengue vaccine introduction.

  3. Safety of the malaria vaccine candidate, RTS,S/AS01E in 5 to 17 month old Kenyan and Tanzanian Children.

    Directory of Open Access Journals (Sweden)

    John Lusingu

    2010-11-01

    Full Text Available The malaria vaccine candidate, RTS,S/AS01(E, showed promising protective efficacy in a trial of Kenyan and Tanzanian children aged 5 to 17 months. Here we report on the vaccine's safety and tolerability. The experimental design was a Phase 2b, two-centre, double-blind (observer- and participant-blind, randomised (1∶1 ratio controlled trial. Three doses of study or control (rabies vaccines were administered intramuscularly at 1 month intervals. Solicited adverse events (AEs were collected for 7 days after each vaccination. There was surveillance and reporting for unsolicited adverse events for 30 days after each vaccination. Serious adverse events (SAEs were recorded throughout the study period which lasted for 14 months after dose 1 in Korogwe, Tanzania and an average of 18 months post-dose 1 in Kilifi, Kenya. Blood samples for safety monitoring of haematological, renal and hepatic functions were taken at baseline, 3, 10 and 14 months after dose 1. A total of 894 children received RTS,S/AS01(E or rabies vaccine between March and August 2007. Overall, children vaccinated with RTS,S/AS01(E had fewer SAEs (51/447 than children in the control group (88/447. One SAE episode in a RTS,S/AS01(E recipient and nine episodes among eight rabies vaccine recipients met the criteria for severe malaria. Unsolicited AEs were reported in 78% of subjects in the RTS,S/AS01(E group and 74% of subjects in the rabies vaccine group. In both vaccine groups, gastroenteritis and pneumonia were the most frequently reported unsolicited AE. Fever was the most frequently observed solicited AE and was recorded after 11% of RTS,S/AS01(E doses compared to 31% of doses of rabies vaccine. The candidate vaccine RTS,S/AS01(E showed an acceptable safety profile in children living in a malaria-endemic area in East Africa. More data on the safety of RTS,S/AS01(E will become available from the Phase 3 programme.

  4. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity.

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    Full Text Available BACKGROUND: The current vaccine against tuberculosis (TB, BCG, has failed to control TB worldwide and the protective efficacy is moreover limited to 10-15 years. A vaccine that could efficiently boost a BCG-induced immune response and thus prolong protective immunity would therefore have a significant impact on the global TB-burden. METHODS/FINDINGS: In the present study we show that the fusion protein HyVac4 (H4, consisting of the mycobacterial antigens Ag85B and TB10.4, given in the adjuvant IC31® or DDA/MPL effectively boosted and prolonged immunity induced by BCG, leading to improved protection against infection with virulent M. tuberculosis (M.tb. Increased protection correlated with an increased percentage of TB10.4 specific IFNγ/TNFα/IL-2 or TNFα/IL-2 producing CD4 T cells at the site of infection. Moreover, this vaccine strategy did not compromise the use of ESAT-6 as an accurate correlate of disease development/vaccine efficacy. Indeed both CD4 and CD8 ESAT-6 specific T cells showed significant correlation with bacterial levels. CONCLUSIONS/SIGNIFICANCE: H4-IC31® can efficiently boost BCG-primed immunity leading to an increased protective anti-M.tb immune response dominated by IFNγ/TNFα/IL-2 or TNFα/IL2 producing CD4 T cells. H4 in the CD4 T cell inducing adjuvant IC31® is presently in clinical trials.

  5. BCG: the only available vaccine against tuberculosis: review article

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2017-01-01

    Full Text Available Background: Despite advances in the vaccinology and chemotherapy in the past century, tuberculosis is still responsible for two million deaths every year. Emergence of multi-drug resistant strain and coinfection of TB-HIV make it a serious concern. Treatment and control of tuberculosis is a great health burden in every community. Active tuberculosis in children has very severe consequences especially those who are under 5-years-old, therefore vaccine indication should be taken. Bacille Calmette-Guérin (BCG is a live attenuated strain of Mycobacterium bovis that has been used for providing immunity or protection against tuberculosis (TB. In addition, BCG provides relative protection against leprosy and Buruli ulcer, it also can be used for treatment of bladder cancer. BCG is the most widely administered vaccine around the world. It has been given to over three billion individuals over the past decades. At first it was developed in 1908 at the Pasteur Institute in Lille by Albert Calmette and Camille Guérin. In fact BCG is a strain of Mycobacterium bovis that bear deletion in its genome following too long subculture in special media. Deletion in region of deletion 1 (RD1, a specific region of Mycobacterium bovis genome, has decreased pathogenicity of BCG strain. Following culture of BCG on different media since 1921 make genetic variation in the BCG strains that have specific characteristics. BCG should begin given to only immune-competent individuals and should not be administered to immunocompromised people. This vaccine is not effective in people formerly infected or sensitized with environmental mycobacteria. Previous meta-analysis studies indicate that BCG has variable range of protection from 0 to 80 percent against pulmonary TB, but is very effective against severe disseminated forms such as meningitis and miliary form of TB. Despite many research and develop new generation vaccine against TB, BCG vaccine still remains as the only

  6. Leishmaniasis vaccine candidates for development: a global overview.

    Science.gov (United States)

    Khamesipour, Ali; Rafati, Sima; Davoudi, Noushin; Maboudi, Fereidoun; Modabber, Farrokh

    2006-03-01

    A vaccine against different forms of leishmaniasis should be feasible considering the wealth of information on genetics and biology of the parasite, clinical and experimental immunology of leishmaniasis, and the availability of vaccines that can protect experimental animals against challenge with different Leishmania species. However, there is no vaccine against any form of leishmaniasis for general human use. One major factor is the lack of a conceived market for human leishmaniasis vaccines. Hence pharmaceutical industries involved in vaccine development are not interested in investing millions of dollars and a decade that is required for developing a new vaccine. Besides, leishmaniasis is a local/regional problem and not a global one. According to the estimates of the World Health Organization, 90 per cent of visceral leishmaniasis occurs in five countries (Bangladesh, Brazil, India, Nepal and Sudan). Those in need are amongst the poorest people in these countries. It should therefore be the objectives of these countries to develop a vaccine. Fortunately, both Brazil and India have designated the control of visceral leishmaniasis as a top priority for their respective Ministries of Health. The purpose of this review is to present only the vaccines in use and those in development for use in dogs or humans. This is not an exhaustive review of vaccine discovery or the principles of clinical immunology underlying vaccine development.

  7. Structure and interactions of a malarial vaccine candidate, AMA1, form the parasite plasmodium falciparum

    International Nuclear Information System (INIS)

    Miles, L.A.; Keizer, D.W.; Hodder, A.N.; Nair, M.; Hinds, M.G.; Norton, R.S.; Li, F.; Foley, M.; Coley, A.; Anders, R.F.

    2001-01-01

    Full text: Apical membrane antigen 1 (AMA1), a merozoite surface protein found in all species of Plasmodium and other apicomplexan parasites, is a strong candidate for inclusion in a malarial vaccine. Recombinant AMA1 protected against P. fragile in monkeys and P. chabaudi adami in mice. P. falciparum AMA1 which has a 62-kDa ectodomain consisting of three disulphide-stabilised domains, is a target of antibodies that inhibit merozoite invasion in vitro. Here we describe the solution structure of domain III (14 kDa), determined by NMR on 15 N- and 13 C/ 15 N-labelled samples. It has a well-defined disulphide-stabilised core interrupted by a disordered loop, and both the N- and C-terminal regions of the molecule are unstructured. The structured region includes all three disulphide bonds. Naturally-occurring mutations across 11 different P falciparum strains that are located far apart in the sequence cluster around the disulphide core in the 3D structure of domain III, suggesting that this region contains the major epitopes recognised by neutralising antibodies. Consistent with this, the disulphide-bond stabilised conformation of the ectodomain was essential for protection, as the antigen was not an effective vaccine after reduction and alkylation. Peptides have been found by phage display that bind to AMA1 and block merozoite invasion of erythrocytes. We have investigated their solution structures and interaction with full-length AMA1 ectodomain in an effort to understand the structure-function relationships of this important vaccine candidate

  8. Evidence for globally shared, cross-reacting polymorphic epitopes in the pregnancy-associated malaria vaccine candidate VAR2CSA

    DEFF Research Database (Denmark)

    Avril, Marion; Kulasekara, Bridget R; Gose, Severin O

    2008-01-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size ( approximately 350 k...

  9. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques.

    Science.gov (United States)

    Borggren, Marie; Vinner, Lasse; Andresen, Betina Skovgaard; Grevstad, Berit; Repits, Johanna; Melchers, Mark; Elvang, Tara Laura; Sanders, Rogier W; Martinon, Frédéric; Dereuddre-Bosquet, Nathalie; Bowles, Emma Joanne; Stewart-Jones, Guillaume; Biswas, Priscilla; Scarlatti, Gabriella; Jansson, Marianne; Heyndrickx, Leo; Grand, Roger Le; Fomsgaard, Anders

    2013-07-19

    HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  10. Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques

    Directory of Open Access Journals (Sweden)

    Roger Le Grand

    2013-07-01

    Full Text Available HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb. We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.

  11. Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis

    Science.gov (United States)

    Gurung, Ratna B.; Purdie, Auriol C.; Whittington, Richard J.; Begg, Douglas J.

    2014-01-01

    Control of Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP) in ruminants using commercially available vaccine reduces production losses, mortality, fecal shedding and histopathological lesions but does not provide complete protection from infection and interferes with serological diagnosis of Johne's disease and bovine tuberculosis. At this time no recombinant antigens have been found to provide superior protection compared to whole killed or live-attenuated MAP vaccines. Therefore, there is a need to evaluate more candidate MAP antigens. In this study recombinant MAP antigens MAP2698c and MAP3567 were formulated with four different MONTANIDE™ (ISA 50V2, 61VG, 71VG, and 201VG) adjuvants and evaluated for their ability to produce specific immune responses in vaccinated sheep. The cellular immune response was measured with an interferon-gamma (IFN-γ) release assay and the humoral immune response was measured by antibody detection enzyme linked immunosorbent assay. Recombinant vaccine formulation with the antigen MAP2698c and MONTANIDE™ ISA 201VG adjuvant produced strong whole-MAP as well as MAP2698c-specific IFN-γ responses in a high proportion of the vaccinated sheep. The formulation caused less severe injection site lesions in comparison to other formulations. The findings from this study suggest that the MAP2698c + 201VG should be evaluated in a challenge trial to determine the efficacy of this vaccine candidate. PMID:25077074

  12. Expression and Purification of the Recombinant Cytochrome P450 CYP141 Protein of Mycobacterium Tuberculosis as a Diagnostic Tool and Vaccine Production.

    Science.gov (United States)

    Heidari, Reza; Rabiee-Faradonbeh, Mohammad; Darban-Sarokhalil, Davood; Alvandi, Amirhooshang; Abdian, Narges; Aryan, Ehsan; Soleimani, Neda; Gholipour, Abolfazl

    2015-06-01

    Tuberculosis (TB) is regarded as a health problem worldwide, particularly in developing countries. Mycobacterium tuberculosis (M. tuberculosis) is the cause of this disease. Approximately two billion people worldwide are infected by M. tuberculosis and annually about two million individuals die in consequence. Forty million people are estimated to die because of M. tuberculosis over the next 25 years if the measures for controlling this infection are not extensively developed. In the vaccination field, Bacillus Calmette-Guérin (BCG) is still the most effective vaccine but it shows no efficacy in adult pulmonary patients. One of the other problems regarding TB is its appropriate diagnosis. In this experimental study, the recombinant cytochrome P450 CYP141 protein of M. tuberculosis was expressed and purified to be used as a vaccine candidate and diagnostic purpose in subsequent investigations. The optimization of the cytochrome P450 CYP141 protein expression was evaluated in different conditions. Then, this protein was purified with a resin column of nickel-nitrilotriacetic acid and investigated via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting. The highest expression of the cytochrome P450 CYP141 protein was obtained by the addition of 1 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) to the bacterial culture grown to an optical density at 600 nm (OD600) of 0.6, 16 hours after induction. This protein was subsequently purified with a purification of higher than 80%. The results of Western Blotting indicated that the purified protein was specifically detected. In this experimental study, for the first time in Iran the expression and purification of this recombinant protein was done successfully. This recombinant protein could be used as a vaccine candidate and diagnostic purpose in subsequent investigations.

  13. Dihydrolipoamide dehydrogenase-Lpd (Rv0462)-specific T cell recall responses are higher in healthy household contacts of TB: a novel immunodominant antigen from M. tuberculosis.

    Science.gov (United States)

    Devasundaram, Santhi; Raja, Alamelu

    2017-07-01

    The partial effectiveness against pulmonary tuberculosis (PTB), displayed by the existing tuberculosis (TB) vaccine, bacillus Calmette-Guérin (BCG), highlights the need for novel vaccines to replace or improve BCG. In TB immunology, antigen-specific cellular immune response is frequently considered indispensable. Latency-associated antigens are intriguing as targets for TB vaccine development. The mycobacterial protein, dihydrolipoamide dehydrogenase (Lpd; Rv0462), the third enzyme of the pyruvate dehydrogenase (PDH) complex, facilitates Mycobacterium tuberculosis to resist host reactive nitrogen intermediates. Multicolor flow cytometry analysis of whole-blood cultures showed higher Lpd-specific Th1 recall response (IFN-γ, TNF-α, and IL-2; P = 0.0006) and memory CD4 + and CD8 + T cells (CCR7 + CD45RA - and CCR7 - CD45RA - ) in healthy household contacts (HHC) of TB ( P < 0.0001), which is comparable with or higher than the standard antigens, ESAT-6 and CFP-10. The frequency of Lpd-specific multifunctional T cells was higher in HHC compared with PTB patients. However, there is no significant statistical correlation. Regulatory T cell (T reg ) analysis of HHCs and active TB patients demonstrated very low Lpd-specific CD4 + T regs relative to ESAT-6 and CFP-10. Our study demonstrates that the Lpd antigen induces a strong cellular immune response in healthy mycobacteria-infected individuals. In consideration of this population having demonstrated immunologic protection against active TB disease development, our data are encouraging about the possible use of Lpd as a target for further TB subunit vaccine development. © Society for Leukocyte Biology.

  14. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    Directory of Open Access Journals (Sweden)

    Adriana Aporta

    Full Text Available It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.

  15. Differential cellular recognition pattern to M. tuberculosis targets defined by IFN-γ and IL-17 production in blood from TB + patients from Honduras as compared to health care workers: TB and immune responses in patients from Honduras

    Science.gov (United States)

    2013-01-01

    Background A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Methods Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-γ and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). Results M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-γ production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. Conclusions The pattern of immune target recognition is different in regard to IFN-γ and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras. PMID:23497342

  16. Farmer attitudes to vaccination and culling of badgers in controlling bovine tuberculosis.

    Science.gov (United States)

    Warren, M; Lobley, M; Winter, M

    2013-07-13

    Controversy persists in England, Wales and Northern Ireland concerning methods of controlling the transmission of bovine tuberculosis (bTB) between badgers and cattle. The National Trust, a major land-owning heritage organisation, in 2011, began a programme of vaccinating badgers against bTB on its Killerton Estate in Devon. Most of the estate is farmed by 18 tenant farmers, who thus have a strong interest in the Trust's approach, particularly as all have felt the effects of the disease. This article reports on a study of the attitudes to vaccination of badgers and to the alternative of a culling programme, using face-to-face interviews with 14 of the tenants. The results indicated first that the views of the respondents were more nuanced than the contemporary public debate about badger control would suggest. Secondly, the attitude of the interviewees to vaccination of badgers against bTB was generally one of resigned acceptance. Thirdly, most respondents would prefer a combination of an effective vaccination programme with an effective culling programme, the latter reducing population of density sufficiently (and preferably targeting the badgers most likely to be diseased) for vaccination to have a reasonable chance of success. While based on a small sample, these results will contribute to the vigorous debate concerning contrasting policy approaches to bTB control in England, Wales and Northern Ireland.

  17. Transcription status of vaccine candidate genes of Plasmodium falciparum during the hepatic phase of its life cycle.

    NARCIS (Netherlands)

    Bodescot, M.; Silvie, O.; Siau, A.; Refour, P.; Pino, P.; Franetich, J.F.; Hannoun, L.; Sauerwein, R.W.; Mazier, D.

    2004-01-01

    The CSP, EMP2/MESA, MSP2, MSP3, MSP5, RAP1, RAP2, RESA1, SERA1 and SSP2/TRAP genes of Plasmodium falciparum are vaccine candidates. The hepatic phase of the infection is of major interest due to the protection induced by immunization with radiation-attenuated sporozoites. We therefore performed

  18. CD4+ T-cell Responses Among Adults and Young Children In Response to Streptococcus pneumoniae and Haemophilus influenzae Vaccine Candidate Protein Antigens

    OpenAIRE

    Sharma, Sharad K.; Roumanes, David; Almudevar, Anthony; Mosmann, Tim R.; Pichichero, Michael E.

    2013-01-01

    We characterized cytokine profiles of CD4+ T-helper (h) cells in adults and young children to ascertain if responses occur to next-generation candidate vaccine antigens PspA, PcpA, PhtD, PhtE, Ply, LytB of Streptococcus pneumonia (Spn) and Protein D and OMP26 of non-typeable Haemophilus influenzae (NTHi). Adults had vaccine antigen-specific Th1 - and Th2 cells responsive to all antigens evaluated whereas young children had significant numbers of vaccine antigen-specific CD4+ T cells producing...

  19. A novel vaccine p846 encoding Rv3615c, Mtb10.4, and Rv2660c elicits robust immune response and alleviates lung injury induced by Mycobacterium infection.

    Science.gov (United States)

    Kong, Hongmei; Dong, Chunsheng; Xiong, Sidong

    2014-01-01

    Development of effective anti-tuberculosis (TB) vaccines is one of the important steps to improve control of TB. Cell-mediated immune response significantly affects the control of M. tuberculosis infection. Thus, vaccines able to elicit strong cellular immune response hold special advantages against TB. In this study, three well-defined mycobacterial antigens (Rv3615c, Mtb10.4 [Rv0228], and Rv2660c) were engineered as a novel triple-antigen fusion DNA vaccine p846. The p846 vaccine consists of a high density of CD4(+) and CD8(+) T-cell epitopes. Intramuscular immunization of p846 induced robust T cells mediated immune response comparable to that of bacillus Calmette-Guérin (BCG) vaccination but more effective than that of individual antigen vaccination. After mycobacterial challenge, p846 immunization decreased bacterial burden at least 15-fold compared with individual antigen-based vaccination. Notably, the lungs of mice immunized with p846 exhibited fewer inflammatory cell infiltrates and less damage than those of control group mice. Our data demonstrate that the potential of p846 vaccine to protect against TB and the feasibility of this design strategy for further TB vaccine development.

  20. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates.

    Science.gov (United States)

    Jones, Sophie; Grignard, Lynn; Nebie, Issa; Chilongola, Jaffu; Dodoo, Daniel; Sauerwein, Robert; Theisen, Michael; Roeffen, Will; Singh, Shrawan Kumar; Singh, Rajesh Kumar; Singh, Sanjay; Kyei-Baafour, Eric; Tetteh, Kevin; Drakeley, Chris; Bousema, Teun

    2015-07-01

    Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso. We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p < 0.001) and 230CMB (p = 0.031). Membrane feeding assays on a separate dataset demonstrated an association between functional transmission reducing activity and antibody prevalence for both 10C (p = 0.017) and 230CMB (p = 0.049). 17 single nucleotide polymorphisms were found in pfs48/45 (from 126 samples), with 5 non-synonymous SNPs in the Pfs48/45 10C region. We conclude there are naturally acquired antibody responses to both vaccine candidates which have functional relevance by reducing the transmissibility of infected individuals. We identified genetic polymorphisms, in pfs48/45 which exhibited geographical specificity. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  1. Treatment: Latent TB Infection (LTBI) and TB Disease

    Science.gov (United States)

    ... Adverse Events TB Treatment of Persons Living with HIV TB Treatment and Pregnancy TB Treatment for Children Drug-Resistant TB Research TB Epidemiologic Studies Consortium Research Projects Publications TB Trials Consortium Study ...

  2. Eu-, Tb-, and Dy-Doped Oxyfluoride Silicate Glasses for LED Applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Wang, J.; Zhang, M.M.

    2014-01-01

    Luminescence glass is a potential candidate for the light-emitting diodes (LEDs) applications. Here, we study the structural and optical properties of the Eu-, Tb-, and Dy-doped oxyfluoride silicate glasses for LEDs by means of X-ray diffraction, photoluminescence spectra, Commission Internationale...... de L’Eclairage (CIE) chromaticity coordinates, and correlated color temperatures (CCTs). The results show that the white light emission can be achieved in Eu/Tb/Dy codoped oxyfluoride silicate glasses under excitation by near-ultraviolet light due to the simultaneous generation of blue, green, yellow......, and red-light wavelengths from Tb, Dy, and Eu ions. The optical performances can be tuned by varying the glass composition and excitation wavelength. Furthermore, we observed a remarkable emission spectral change for the Tb3+ single-doped oxyfluoride silicate glasses. The 5D3 emission of Tb3+ can...

  3. Field Trial of an Aerially-Distributed Tuberculosis Vaccine in a Low-Density Wildlife Population of Brushtail Possums (Trichosurus vulpecula.

    Directory of Open Access Journals (Sweden)

    Graham Nugent

    Full Text Available Oral-delivery Mycobacterium bovis bacillus Calmette-Guérin (BCG vaccine in a lipid matrix has been shown to confer protection against M. bovis infection and reduce the severity of tuberculosis (TB when fed to brushtail possums (Trichosurus vulpecula, the major wildlife vector of bovine TB in New Zealand. Here we demonstrate the feasibility of aerial delivery of this live vaccine in bait form to an M. bovis-infected wild possum population, and subsequently assess vaccine uptake and field efficacy. Pre-trial studies indicated a resident possum population at very low density (5 baits available per possum. Blood sampling conducted two months later provided some evidence of vaccine uptake. A necropsy survey conducted one year later identified a lower prevalence of culture-confirmed M. bovis infection and/or gross TB lesions among adult possums in vaccinated areas (1.1% prevalence; 95% CI, 0-3.3%, n = 92 than in unvaccinated areas (5.6%; 0.7-10.5%, n = 89; P = 0.098. Although not statistically different, the 81% efficacy in protecting possums against natural infection calculated from these data is within the range of previous estimates of vaccine efficacy in trials where BCG vaccine was delivered manually. We conclude that, with further straightforward refinement to improve free-choice uptake, aerial delivery of oral BCG vaccine is likely to be effective in controlling TB in wild possums. We briefly discuss contexts in which this could potentially become an important complementary tool in achieving national eradication of TB from New Zealand wildlife.

  4. Synthesis, structural, thermal and optical studies of rare earth coordinated complex: Tb(Sal){sub 3}Phen

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gagandeep; Dwivedi, Y. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Rai, S.B., E-mail: sbrai49@yahoo.co.in [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2011-11-01

    Highlights: {yields} RE coordinated complex of Tb(Sal){sub 3}Phen in crystalline phases were synthesized. {yields} Enhancement in luminescence of Tb{sup 3+} was observed in complex on 355 nm excitation. {yields} Fluorescence enhancement is due to the efficient energy transfer from Sal to Tb{sup 3+}. {yields} An observed increase in lifetime of Tb{sup 3+} is due to encapsulation in Sal/Phen network. {yields} The present system is a deserving candidate for LSC when coupled with solar cells. - Abstract: Complexes of salicylic acid (Sal) and 1,10-phenanthroline (Phen) were synthesized coordinated with terbium ion (Tb{sup 3+}) in crystalline phases. The structural characterizations of the lanthanide complex were made using FT-IR, NMR ({sup 1}H and {sup 13}C) and XRD techniques. These measurements confirm the formation of Tb(Sal){sub 3}Phen complex structure. The thermal aspects of the complex were examined using DTA and TGA techniques. An enhancement in luminescence intensity of Tb{sup 3+} ion bands were observed in Tb(Sal){sub 3}Phen complex as compared to TbCl{sub 3} crystals on 355 nm laser excitation. Enhancement is reported due to the efficient energy transfer process from Sal to Tb{sup 3+} ions. This is also confirmed by the time resolved photoluminescence spectroscopy with increase in lifetime of Tb{sup 3+} ions due to encapsulation in Sal/Phen network. Our system in itself can be a deserving candidate for luminescent solar collector material when coupled with solar cells.

  5. Protection against Fasciola gigantica using paramyosin antigen as a candidate for vaccine production.

    Science.gov (United States)

    Abou-Elhakam, H; Rabee, I; El Deeb, S; El Amir, A

    2013-11-15

    Yet no vaccine to protect ruminants against liver fluke infection has been commercialized. In an attempt to develop a suitable vaccine against Fasciola gigantica (F. gigantica) infection in rabbits, using 97 kDa Pmy antigen. It was found that, the mean worm burdens and bile egg count after challenge were reduced significantly by 58.40 and 61.40%, respectively. On the other hand, immunization of rabbits with Pmy induced a significant expression of humoral antibodies (IgM, total IgG, IgG1, IgG2 and IgG4) and different cytokines (IL-6, IL-10, L-12 and TNF-alpha). Among Ig isotypes, IgG2 and IgG4 were most dominant Post-infection (PI) while, recording a low IgG1 level. The dominance of IgG2 and IgG4 suggested late T helper1 (Th1) involvement in rabbit's cellular response. While, the low IgG1 level suggested Th2 response to adult F. gigantica worm Pmy. Among all cytokines, IL-10 was the highest in rabbits immunized with Pmy PI suggesting also the enhancement of Th2 response. It was clear that the native F. gigantica Pmy is considered as a relevant candidate for vaccination against fascioliasis. Also, these data suggested the immunoprophylactic effect of the native F. gigantica Pmy which is mediated by a mixed Th1/Th2 response.

  6. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    Science.gov (United States)

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Immunoprotective efficacy of Acinetobacter baumannii outer membrane protein, FilF, predicted in silico as a potential vaccine candidate

    Directory of Open Access Journals (Sweden)

    Ravinder eSingh

    2016-02-01

    Full Text Available Acinetobacter baumannii is emerging as a serious nosocomial pathogen with multidrug resistance that has made it difficult to cure and development of efficacious treatment against this pathogen is direly needed. This has led to investigate vaccine approach to prevent and treat A. baumannii infections. In this work, an outer membrane putative pilus assembly protein, FilF, was predicted as vaccine candidate by in silico analysis of A. baumannii proteome and was found to be conserved among the A. baumannii strains. It was cloned and expressed in E. coli BL21(DE3 and purified by Ni-NTA chromatography. Immunization with FilF generated high antibody titer (>64000 and provided 50% protection against a standardized lethal dose (10*8 CFU of A. baumannii in murine pneumonia model. FilF immunization reduced the bacterial load in lungs by 2 and 4 log cycles, 12 and 24 h post infection as compared to adjuvant control; reduced the levels of pro-inflammatory cytokines TNF-α, IL-6, IL-33, IFN-γ and IL-1β significantly and histology of lung tissue supported the data by showing considerably reduced damage and infiltration of neutrophils in lungs. These results demonstrate the in vivo validation of immunoprotective efficacy of a protein predicted as a vaccine candidate by in silico proteomic analysis and open the possibilities for exploration of a large array of uncharacterized proteins.

  8. Conservation and diversity of influenza A H1N1 HLA-restricted T cell epitope candidates for epitope-based vaccines.

    Directory of Open Access Journals (Sweden)

    Paul Thiamjoo Tan

    2010-01-01

    Full Text Available The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated.HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54 peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-gamma ELISpot assay. The 54 peptides were compared to the 2007-2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes.Seventeen (17 T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus.

  9. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects

    NARCIS (Netherlands)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-01-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more

  10. GapA, a potential vaccine candidate antigen against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Zhang, Ze; Yu, Angen; Lan, Jiangfeng; Zhang, Hua; Hu, Minqiang; Cheng, Jiewei; Zhao, Lijuan; Lin, Li; Wei, Shun

    2017-04-01

    Streptococcosis due to the bacterium Streptococcus agalactiae (S. agalactiae) has resulted in enormous economic losses in aquaculture worldwide, especially in the tilapia culture industry. Previously, there were limited vaccines that could be employed against streptococcosis in tilapia. This study aimed to develop a vaccine candidate using the glyceraldehyde-phosphate dehydrogenase protein (GapA) of S. agalactiae encoded by the gapA gene. Tilapia were intraperitoneally injected with PBS, PBS + Freund's adjuvant, PBS + Montanide's adjuvant, GapA + Freund's adjuvant, GapA + Montanide's adjuvant, killed S. agalactiae whole cells (WC)+Freund's adjuvant, or killed S. agalactiae whole cells (WC)+ Montanide's adjuvant. They were then challenged with S. agalactiae, and the relative percentage survival (RPS) was monitored 14 days after the challenge. The highest RPSs were observed in the WC groups, with 76.7% in WC + Freund's adjuvant and 74.4% in WC + Montanide's adjuvant groups; these were followed by the GapA groups, with 63.3% in GapA + Freund's adjuvant and 45.6% in GapA + Montanide's adjuvant groups. The RPS of the PBS group was 0%, and those of PBS + Freund's adjuvant and PBS + Montanide's adjuvant groups were 6.7% and 3.3%, respectively. Additionally, the IgM antibody responses elicited in GapA groups and WC groups were significantly higher than those in PBS groups. Furthermore, the expressions of cytokine (IL-1β and TNF-α) mRNAs in the GapA groups and WC groups were significantly higher than those in the PBS groups. Taken together, these results reveal that the GapA protein is a promising vaccine candidate that could be used to prevent streptococcosis in tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates.

    Science.gov (United States)

    Ault, Alida; Tennant, Sharon M; Gorres, J Patrick; Eckhaus, Michael; Sandler, Netanya G; Roque, Annelys; Livio, Sofie; Bao, Saran; Foulds, Kathryn E; Kao, Shing-Fen; Roederer, Mario; Schmidlein, Patrick; Boyd, Mary Adetinuke; Pasetti, Marcela F; Douek, Daniel C; Estes, Jacob D; Nabel, Gary J; Levine, Myron M; Rao, Srinivas S

    2013-12-02

    Nontyphoidal Salmonella (NTS) serovars are a common cause of acute food-borne gastroenteritis worldwide and can cause invasive systemic disease in young infants, the elderly, and immunocompromised hosts, accompanied by high case fatality. Vaccination against invasive NTS disease is warranted where the disease incidence and mortality are high and multidrug resistance is prevalent, as in sub-Saharan Africa. Live-attenuated vaccines that mimic natural infection constitute one strategy to elicit protection. However, they must particularly be shown to be adequately attenuated for consideration of immunocompromised subjects. Accordingly, we examined the safety and tolerability of an oral live attenuated Salmonella typhimurium vaccine candidate, CVD 1921, in an established chronic simian immunodeficiency virus (SIV)-infected rhesus macaque model. We evaluated clinical parameters, histopathology, and measured differences in mucosal permeability to wild-type and vaccine strains. Compared to the wild-type S. typhimurium strain I77 in both SIV-infected and SIV-uninfected nonhuman primate hosts, this live-attenuated vaccine shows reduced shedding and systemic spread, exhibits limited pathological disease manifestations in the digestive tract, and induces low levels of cellular infiltration in tissues. Furthermore, wild-type S. typhimurium induces increased intestinal epithelial damage and permeability, with infiltration of neutrophils and macrophages in both SIV-infected and SIV-uninfected nonhuman primates compared to the vaccine strain. Based on shedding, systemic spread, and histopathology, the live-attenuated S. typhimurium strain CVD 1921 appears to be safe and well-tolerated in the nonhuman primate model, including chronically SIV-infected rhesus macaques. Copyright © 2013. Published by Elsevier Ltd.

  12. Bacillus Calmette-Guérin Vaccination Using a Microneedle Patch

    Science.gov (United States)

    Hiraishi, Yasuhiro; Nandakumar, Subhadra; Choi, Seong-O; Lee, Jeong Woo; Kim, Yeu-Chun; Posey, James E.; Sable, Suraj B.; Prausnitz, Mark R.

    2011-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis continues to be a leading cause of mortality among bacterial diseases, and the bacillus Calmette-Guerin (BCG) is the only licensed vaccine for human use against this disease. TB prevention and control would benefit from an improved method of BCG vaccination that simplifies logistics and eliminates dangers posed by hypodermic needles without compromising immunogenicity. Here, we report the design and engineering of a BCG-coated microneedle vaccine patch for a simple and improved intradermal delivery of the vaccine. The microneedle vaccine patch induced a robust cell-mediated immune response in both the lungs and spleen of guinea pigs. The response was comparable to the traditional hypodermic needle based intradermal BCG vaccination and was characterized by a strong antigen specific lymphocyte proliferation and IFN-γ levels with high frequencies of CD4+IFN-γ+, CD4+TNF-α+ and CD4+IFN-γ+TNF-α+ T cells. The BCG-coated microneedle vaccine patch was highly immunogenic in guinea pigs and supports further exploration of this new technology as a simpler, safer, and compliant vaccination that could facilitate increased coverage, especially in developing countries that lack adequate healthcare infrastructure. PMID:21277407

  13. Analysis of time to regulatory and ethical approval of SATVI TB ...

    African Journals Online (AJOL)

    Background. Tuberculosis (TB) vaccine trials in South Africa must be approved by the Medicines Control Council (MCC) and by a human research ethics committee (HREC). Delays in regulatory and ethical approval may affect operational and budget planning and clinical development of the product. Aim. Our aim was to ...

  14. Comparative Proteomic Profiling of Mycobacterium bovis and BCG Vaccine Strains

    KAUST Repository

    Gao, Ge

    2013-09-01

    BCG is the only licensed human vaccine currently available against TB. Derived from a virulent strain of M. bovis, the vaccine was thought to have struck a balance between reduced virulence and preserved immunogenicity. Nowadays, BCG vaccine strains used in different countries and vaccination programs show clear variations in their genomes and immune protective properties. The aim of this study was to characterize the proteomic profile on Mycobacterium bovis and five BCG strains Pasteur, Tokyo, Danish, Phipps and Birkhaug by Tandem Mass Tag® (TMT®)-labeling quantitative proteomic approach. In total, 420 proteins were identified and 377 of them were quantitated for their relative abundance. We reported the number and relationship of differential expressed proteins in BCG strains compared to M. bovis and investigated their functions by bioinformatics analysis. Several interesting up-regulated and down-regulated protein targets were found. The identified proteins and their quantitative expression profiles provide a basis for further understanding of the cellular biology of M. bovis and BCG vaccine strains, and hopefully would assist in the design of better anti-TB vaccine and drugs.

  15. A novel magneto-optical crystal Yb:TbVO4

    Science.gov (United States)

    Zhu, Xianchao; Tu, Heng; Hu, Zhanggui

    2018-04-01

    Highly transparent Yb:TbVO4 single crystal with dimensions of Ø27 × 41 mm3 alomost without scattering defects has been successfully grown by Czochralski technique. The spectra, thermal properties and laser-induced damage threshold were investigated in detailed. The Faraday rotation (FR) measurement was carried out by means of extinction method. The Verdet constant comes up to 80 rad m-1 T-1 at 1064 nm, significantly larger than TbVO4 (58 rad m-1 T-1) and TGG (40 rad m-1 T-1) reported. Meanwhile, the as-grown crystal presents lower absorption coefficient and higher magneto-optical figure of merit at measured wavelength in comparison with TGG. Moreover, the crystal exhibits a substantially improved extinction ratio (42 dB) in contrast with TbVO4 (29 dB), and exceeds the highest value of TGG (40 dB). These advantages make Yb:TbVO4 a highly promising magneto-optical material candidate for optical isolators in the visible-near infrared region.

  16. Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen.

    Science.gov (United States)

    Skeiky, Yasir A W; Dietrich, Jes; Lasco, Todd M; Stagliano, Katherine; Dheenadhayalan, Veerabadran; Goetz, Margaret Ann; Cantarero, Luis; Basaraba, Randall J; Bang, Peter; Kromann, Ingrid; McMclain, J Bruce; Sadoff, Jerald C; Andersen, Peter

    2010-01-22

    Despite the extensive success with the introduction of M. bovis Bacille Calmette-Guérin (BCG), tuberculosis (TB) remains a major global epidemic infecting between 8 and 9 million people annually with an estimated 1.7 million deaths each year. However, because of its demonstrated effectiveness against some of the most severe forms of childhood TB, it is now realized that BCG vaccination of newborns is unlikely to be replaced. Therefore, BCG or an improved BCG will continue to be used as a prime TB vaccine and there is a need to develop effective boost vaccines that would enhance and prolong the protective immunity induced by BCG prime immunization. We report on a heterologous booster approach using two highly immunogenic TB antigens comprising Ag85B and TB10.4 (HyVac4) delivered as a fusion molecule and formulated in the proprietary adjuvant IC31. This vaccine was found to be immunogenic and demonstrated greater protection in the more stringent guinea pig model of pulmonary tuberculosis than BCG alone when used in a prime/boost regimen. Significant difference in lung involvement was observed for all animals in the HyVac4 boosted group compared to BCG alone regardless of time to death or sacrifice. A vaccine toxicology study of the HyVac4:IC31 regimen was performed and it was judged safe to advance the vaccine into clinical trials. Therefore, all non-clinical data supports the suitability of HyVac4 as a safe, immunogenic, and effective vaccination in a prime-boost regimen with BCG.

  17. Chimeric Pestivirus Experimental Vaccines.

    Science.gov (United States)

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics.

  18. Field Trial of an Aerially-Distributed Tuberculosis Vaccine in a Low-Density Wildlife Population of Brushtail Possums (Trichosurus vulpecula).

    Science.gov (United States)

    Nugent, Graham; Yockney, Ivor J; Whitford, E Jackie; Cross, Martin L; Aldwell, Frank E; Buddle, Bryce M

    2016-01-01

    Oral-delivery Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine in a lipid matrix has been shown to confer protection against M. bovis infection and reduce the severity of tuberculosis (TB) when fed to brushtail possums (Trichosurus vulpecula), the major wildlife vector of bovine TB in New Zealand. Here we demonstrate the feasibility of aerial delivery of this live vaccine in bait form to an M. bovis-infected wild possum population, and subsequently assess vaccine uptake and field efficacy. Pre-trial studies indicated a resident possum population at very low density (matrix baits in weather-proof sachets could be successfully sown aerially via helicopter and were palatable to, and likely to be consumed by, a majority of wild possums under free-choice conditions. Subsequently, sachet-held lipid baits containing live BCG vaccine were sown at 3 baits/ha over a 1360 ha area, equating to >5 baits available per possum. Blood sampling conducted two months later provided some evidence of vaccine uptake. A necropsy survey conducted one year later identified a lower prevalence of culture-confirmed M. bovis infection and/or gross TB lesions among adult possums in vaccinated areas (1.1% prevalence; 95% CI, 0-3.3%, n = 92) than in unvaccinated areas (5.6%; 0.7-10.5%, n = 89); P = 0.098. Although not statistically different, the 81% efficacy in protecting possums against natural infection calculated from these data is within the range of previous estimates of vaccine efficacy in trials where BCG vaccine was delivered manually. We conclude that, with further straightforward refinement to improve free-choice uptake, aerial delivery of oral BCG vaccine is likely to be effective in controlling TB in wild possums. We briefly discuss contexts in which this could potentially become an important complementary tool in achieving national eradication of TB from New Zealand wildlife.

  19. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Beatriz Beltrán-Beck

    Full Text Available Tuberculosis (TB remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV. Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.

  20. Genome sequencing and analysis of BCG vaccine strains.

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    Full Text Available BACKGROUND: Although the Bacillus Calmette-Guérin (BCG vaccine against tuberculosis (TB has been available for more than 75 years, one third of the world's population is still infected with Mycobacterium tuberculosis and approximately 2 million people die of TB every year. To reduce this immense TB burden, a clearer understanding of the functional genes underlying the action of BCG and the development of new vaccines are urgently needed. METHODS AND FINDINGS: Comparative genomic analysis of 19 M. tuberculosis complex strains showed that BCG strains underwent repeated human manipulation, had higher region of deletion rates than those of natural M. tuberculosis strains, and lost several essential components such as T-cell epitopes. A total of 188 BCG strain T-cell epitopes were lost to various degrees. The non-virulent BCG Tokyo strain, which has the largest number of T-cell epitopes (359, lost 124. Here we propose that BCG strain protection variability results from different epitopes. This study is the first to present BCG as a model organism for genetics research. BCG strains have a very well-documented history and now detailed genome information. Genome comparison revealed the selection process of BCG strains under human manipulation (1908-1966. CONCLUSIONS: Our results revealed the cause of BCG vaccine strain protection variability at the genome level and supported the hypothesis that the restoration of lost BCG Tokyo epitopes is a useful future vaccine development strategy. Furthermore, these detailed BCG vaccine genome investigation results will be useful in microbial genetics, microbial engineering and other research fields.

  1. Interferon Gamma Release Assay versus Tuberculin Skin Testing among Healthcare Workers of Highly Diverse Origin in a Moderate Tuberculosis Burden Country.

    Directory of Open Access Journals (Sweden)

    Sahal Al Hajoj

    Full Text Available Health care workers (HCW's are always at an increased risk of contracting tuberculosis (TB infection. In Saudi Arabia, Interferon Gamma Release Assay (IGRA has not been evaluated as a screening tool for latent TB infection (LTBI among HCW's considering their high demographic diversity. During February 2012 to January 2015 a cross sectional study has been conducted in a tertiary care center with maximum demographically diverse staff population in the capital city-Riyadh. After a short interview and consenting, all the candidates were subjected to tuberculin skin test (TST and QuantiFERON TB gold In-tube test (QFT. A logistic regression analysis was carried out for establishing the associations between putative risk factors and the diagnostic tests. The candidates were classified according to geographical origin and a detailed analysis was conducted on the impact of their origin towards the results of TST and QFT. Of the 1595 candidates enrolled, 90.6% were BCG vaccinated, female (67.9% and mainly nurses (53.2%. Candidates with high risk of suspected or confirmed TB patient exposure were 56.1% and 76.5% of them had <10 year's work experience. TST positivity was observed in 503 (31.5% candidates, while QFT was positive among 399 (25%. Majority of the candidates were non-Saudi (83% and predominantly (52.4% from Western Pacific region. Concordant results were obtained in 14.2% of positive cases and 57.7% negative cases. The disagreements between the two tests were relatively high (kappa co-efficient-0.312±0.026, p value- <0.00001 as TST positive/QFT negative discordance was 54.8% while TST negative/QFT positive discordance was 15.7%. Age of the candidates, BCG vaccination, and South East Asian origin were associated with TST positivity while Occupational TB exposure and geographical origin of the candidates were associated with QFT positivity. A regular follow up on recently TST converted candidates showed no progression to active TB. The putative

  2. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    Science.gov (United States)

    2012-01-01

    . Thus, the full-length cDNA clone of FMDV can be a useful tool to develop genetically engineered FMDV vaccine candidates to help control porcinophilic FMD epidemics in China. PMID:22591597

  3. Evaluation of a genetically modified foot-and-mouth disease virus vaccine candidate generated by reverse genetics

    Directory of Open Access Journals (Sweden)

    Li Pinghua

    2012-05-01

    wild O/HN/CHA/93 virus. Thus, the full-length cDNA clone of FMDV can be a useful tool to develop genetically engineered FMDV vaccine candidates to help control porcinophilic FMD epidemics in China.

  4. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development

    Directory of Open Access Journals (Sweden)

    Anna P. Durbin

    2011-09-01

    Full Text Available Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  5. Next-generation dengue vaccines: novel strategies currently under development.

    Science.gov (United States)

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  6. A New Decade of Vaccines

    LENUS (Irish Health Repository)

    Murphy, JFA

    2011-09-01

    The call for a new decade of vaccines was made in December 2010. The aims are to secure the further discovery, development and delivery of vaccination. The first challenge is the acquisition of funds for the research and development of 20 new vaccines1. The Gates Foundation has pledged $10 billion for this venture. The other major players are WHO, UNICEF and the US National Institute of Allergy and Infectious Diseases. The top priorities are TB, AIDS and Malaria. It is hoped that a Malaria vaccine will available in 3 years. The ambitious target of saving the lives of over 7 million children has been set. The programme must also address the need for vaccines in insulin dependent diabetes, cancers and degenerative diseases2.

  7. Safety and immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12-24 months-old Burkinabe children.

    NARCIS (Netherlands)

    Sirima, S.B.; Tiono, A.B.; Diarra, A.; Ouedraogo, A.L.; Yaro, J.B.; Ouedraogo, E.; Gansane, A.; Bougouma, E.C.; Konate, A.T.; Kabore, Y.; Traore, A.; Roma, C.; Soulama, I.; Luty, A.J.F.; Cousens, S.; Nebie, I.

    2009-01-01

    BACKGROUND: A Phase Ia trial in European volunteers of the candidate vaccine merozoite surface protein 3 (MSP3), a Plasmodium falciparum blood stage membrane, showed that it induces biologically active antibodies able to achieve parasite killing in vitro, while a phase Ib trial in semi-immune adult

  8. Potential public health impact of RTS,S malaria candidate vaccine in sub-Saharan Africa: a modelling study.

    Science.gov (United States)

    Sauboin, Christophe J; Van Bellinghen, Laure-Anne; Van De Velde, Nicolas; Van Vlaenderen, Ilse

    2015-12-23

    Adding malaria vaccination to existing interventions could help to reduce the health burden due to malaria. This study modelled the potential public health impact of the RTS,S candidate malaria vaccine in 42 malaria-endemic countries in sub-Saharan Africa. An individual-based Markov cohort model was constructed with three categories of malaria transmission intensity and six successive malaria immunity levels. The cycle time was 5 days. Vaccination was assumed to reduce the risk of infection, with no other effects. Vaccine efficacy was assumed to wane exponentially over time. Malaria incidence and vaccine efficacy data were taken from a Phase III trial of the RTS,S vaccine with 18 months of follow-up (NCT00866619). The model was calibrated to reproduce the malaria incidence in the control arm of the trial in each transmission category and published age distribution data. Individual-level heterogeneity in malaria exposure and vaccine protection was accounted for. Parameter uncertainty and variability were captured by using stochastic model transitions. The model followed a cohort from birth to 10 years of age without malaria vaccination, or with RTS,S malaria vaccination administered at age 6, 10 and 14 weeks or at age 6, 7-and-a-half and 9 months. Median and 95% confidence intervals were calculated for the number of clinical malaria cases, severe cases, malaria hospitalizations and malaria deaths expected to be averted by each vaccination strategy. Univariate sensitivity analysis was conducted by varying the values of key input parameters. Vaccination assuming the coverage of diphtheria-tetanus-pertussis (DTP3) at age 6, 10 and 14 weeks is estimated to avert over five million clinical malaria cases, 119,000 severe malaria cases, 98,600 malaria hospitalizations and 31,000 malaria deaths in the 42 countries over the 10-year period. Vaccination at age 6, 7-and-a-half and 9 months with 75% of DTP3 coverage is estimated to avert almost 12.5 million clinical malaria cases

  9. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    DEFF Research Database (Denmark)

    Jones, Sophie; Grignard, Lynn; Nebie, Issa

    2015-01-01

    for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. METHODS: We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso......OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences....... We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. RESULTS: Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p assays...

  10. Functional characterization of Plasmodium berghei PSOP25 during ookinete development and as a malaria transmission-blocking vaccine candidate.

    Science.gov (United States)

    Zheng, Wenqi; Liu, Fei; He, Yiwen; Liu, Qingyang; Humphreys, Gregory B; Tsuboi, Takafumi; Fan, Qi; Luo, Enjie; Cao, Yaming; Cui, Liwang

    2017-01-05

    Plasmodium ookinete surface proteins as post-fertilization target antigens are potential malaria transmission-blocking vaccine (TBV) candidates. Putative secreted ookinete protein 25 (PSOP25) is a highly conserved ookinete surface protein, and has been shown to be a promising novel TBV target. Here, we further investigated the TBV activities of the full-length recombinant PSOP25 (rPSOP25) protein in Plasmodium berghei, and characterized the potential functions of PSOP25 during the P. berghei life-cycle. We expressed the full-length P. berghei PSOP25 protein in a prokaryotic expression system, and developed polyclonal mouse antisera and a monoclonal antibody (mAb) against the recombinant protein. Indirect immunofluorescence assay (IFA) and Western blot were used to test the specificity of antibodies. The transmission-blocking (TB) activities of antibodies were evaluated by the in vitro ookinete conversion assay and by direct mosquito feeding assay (DFA). Finally, the function of PSOP25 during Plasmodium development was studied by deleting the psop25 gene. Both polyclonal mouse antisera and anti-rPSOP25 mAb recognized the PSOP25 proteins in the parasites, and IFA showed the preferential expression of PSOP25 on the surface of zygotes, retorts and mature ookinetes. In vitro, these antibodies significantly inhibited ookinetes formation in an antibody concentration-dependent manner. In DFA, mice immunized with the rPSOP25 and those receiving passive transfer of the anti-rPSOP25 mAb reduced the prevalence of mosquito infection by 31.2 and 26.1%, and oocyst density by 66.3 and 63.3%, respectively. Genetic knockout of the psop25 gene did not have a detectable impact on the asexual growth of P. berghei, but significantly affected the maturation of ookinetes and the formation of midgut oocysts. The full-length rPSOP25 could elicit strong antibody response in mice. Polyclonal and monoclonal antibodies against PSOP25 could effectively block the formation of ookinetes in vitro

  11. Targeted BCG Vaccination Against Severe Tuberculosis in Low-prevalence Settings Epidemiologic and Economic Assessment

    NARCIS (Netherlands)

    Altes, Hester Korthals; Dijkstra, Frederika; Lugnèr, Anna; Cobelens, Frank; Wallinga, Jacco

    2009-01-01

    Background: BCG vaccine protects against the severe forms of tuberculosis (TB) in children. Several low-prevalence countries are reviewing their policy, usually shifting from universal vaccination to vaccination of infants in high-risk groups only. We combined an epidemiologic analysis with a

  12. Computational Identification and Characterization of a Promiscuous T-Cell Epitope on the Extracellular Protein 85B of Mycobacterium spp. for Peptide-Based Subunit Vaccine Design

    Directory of Open Access Journals (Sweden)

    Md. Saddam Hossain

    2017-01-01

    Full Text Available Tuberculosis (TB is a reemerging disease that remains as a leading cause of morbidity and mortality in humans. To identify and characterize a T-cell epitope suitable for vaccine design, we have utilized the Vaxign server to assess all antigenic proteins of Mycobacterium spp. recorded to date in the Protegen database. We found that the extracellular protein 85B displayed the most robust antigenicity among the proteins identified. Computational tools for identifying T-cell epitopes predicted an epitope, 181-QQFIYAGSLSALLDP-195, that could bind to at least 13 major histocompatibility complexes, revealing the promiscuous nature of the epitope. Molecular docking simulation demonstrated that the epitope could bind to the binding groove of MHC II and MHC I molecules by several hydrogen bonds. Molecular docking analysis further revealed that the epitope had a distinctive binding pattern to all DRB1 and A and B series of MHC molecules and presented almost no polymorphism in its binding site. Moreover, using “Allele Frequency Database,” we checked the frequency of HLA alleles in the worldwide population and found a higher frequency of both class I and II HLA alleles in individuals living in TB-endemic regions. Our results indicate that the identified peptide might be a universal candidate to produce an efficient epitope-based vaccine for TB.

  13. Effect of the pre-erythrocytic candidate malaria vaccine RTS,S/AS01E on blood stage immunity in young children

    DEFF Research Database (Denmark)

    Bejon, Philip; Cook, Jackie; Bergmann-Leitner, Elke

    2011-01-01

    (See the article by Greenhouse et al, on pages 19-26.) Background. RTS,S/AS01(E) is the lead candidate malaria vaccine and confers pre-erythrocytic immunity. Vaccination may therefore impact acquired immunity to blood-stage malaria parasites after natural infection. Methods. We measured, by enzyme......, MSP-1(42), and MSP-3 antibody concentrations and no significant change in GIA. Increasing anti-merozoite antibody concentrations and GIA were prospectively associated with increased risk of clinical malaria. Conclusions. Vaccination with RTS,S/AS01E reduces exposure to blood-stage parasites and, thus......-linked immunosorbent assay, antibodies to 4 Plasmodium falciparum merozoite antigens (AMA-1, MSP-1(42), EBA-175, and MSP-3) and by growth inhibitory activity (GIA) using 2 parasite clones (FV0 and 3D7) at 4 times on 860 children who were randomized to receive with RTS,S/AS01(E) or a control vaccine. Results. Antibody...

  14. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Ganzhu Feng

    Full Text Available Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e and fms-like tyrosine kinase 3 ligand (FL genes (termed Esat-6/3e-FL, and was enveloped with chitosan (CS nanoparticles (nano-chitosan. The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.

  15. Identification of mutations in the M RNA of a candidate vaccine strain of Rift Valley fever virus.

    Science.gov (United States)

    Takehara, K; Min, M K; Battles, J K; Sugiyama, K; Emery, V C; Dalrymple, J M; Bishop, D H

    1989-04-01

    The M RNA species of a candidate vaccine strain of Rift Valley fever virus (RVFV ZH-548M12), derived by consecutive high level mutagenesis using 5-fluorouracil (H. Caplen, C. J. Peters, and D. H. L. Bishop, J. Gen. Virol., 66, 2271-2277, 1985), has been cloned and the cDNA sequenced. The data have been compared to those obtained for the parent virus strain RVFV ZH-548 as well as the previously published data for RVFV ZH-501 (M. S. Collett, A. F. Purchio, K. Keegan, S. Frazier, W. Hays, D. K. Anderson, M. D. Parker, C. Schmaljohn, J. Schmidt, and J. M. Dalrymple, Virology, 144, 228-245, 1985). Some eight nucleotide and three amino acid differences were identified between the M RNAs of ZH-501 and ZH-548. Between the M RNAs of ZH-548 and that of the M12 mutant there were 12 nucleotide and 7 amino acid changes. Unique to the mutant virus is a new AUG codon upstream of that which initiates the open reading frame of the RVFV M gene product (the viral glycoprotein precursor). The significance of this and other differences in the mutant RNA with regard to the derivation and potential attenuation of the candidate vaccine is discussed.

  16. Current Ebola vaccines

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  17. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mehdi Shahbazi

    Full Text Available Canine Visceral Leishmaniasis (CVL is a major veterinary and public health problem caused by Leishmania infantum (L. infantum in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  18. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  19. BCG vaccination reduces risk of tuberculosis infection in vaccinated badgers and unvaccinated badger cubs.

    Directory of Open Access Journals (Sweden)

    Stephen P Carter

    Full Text Available Wildlife is a global source of endemic and emerging infectious diseases. The control of tuberculosis (TB in cattle in Britain and Ireland is hindered by persistent infection in wild badgers (Meles meles. Vaccination with Bacillus Calmette-Guérin (BCG has been shown to reduce the severity and progression of experimentally induced TB in captive badgers. Analysis of data from a four-year clinical field study, conducted at the social group level, suggested a similar, direct protective effect of BCG in a wild badger population. Here we present new evidence from the same study identifying both a direct beneficial effect of vaccination in individual badgers and an indirect protective effect in unvaccinated cubs. We show that intramuscular injection of BCG reduced by 76% (Odds ratio = 0.24, 95% confidence interval (CI 0.11-0.52 the risk of free-living vaccinated individuals testing positive to a diagnostic test combination to detect progressive infection. A more sensitive panel of tests for the detection of infection per se identified a reduction of 54% (Odds ratio = 0.46, 95% CI 0.26-0.88 in the risk of a positive result following vaccination. In addition, we show the risk of unvaccinated badger cubs, but not adults, testing positive to an even more sensitive panel of diagnostic tests decreased significantly as the proportion of vaccinated individuals in their social group increased (Odds ratio = 0.08, 95% CI 0.01-0.76; P = 0.03. When more than a third of their social group had been vaccinated, the risk to unvaccinated cubs was reduced by 79% (Odds ratio = 0.21, 95% CI 0.05-0.81; P = 0.02.

  20. Assessment of Lactobacillus gasseri as a candidate oral vaccine vector.

    Science.gov (United States)

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R; Dean, Gregg A

    2011-11-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3(+) colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens.

  1. Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models

    Directory of Open Access Journals (Sweden)

    Tania Rivera-Hernandez

    2016-06-01

    Full Text Available Group A Streptococcus (GAS is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i streptolysin O (SLO, interleukin 8 (IL-8 protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP], group A streptococcal C5a peptidase (SCPA, arginine deiminase (ADI, and trigger factor (TF; (ii the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model.

  2. TB Terms

    Science.gov (United States)

    ... sputum can also be used to do a culture. TB blood test – a test that uses a blood sample to find out if you are infected with TB bacteria. The test measures the response to TB proteins when they are mixed with a small amount of blood. Examples of these TB blood tests include QuantiFERON ® -TB ...

  3. The Role of Neutrophils in the Induction of Specific Th1 and Th17 during Vaccination against Tuberculosis.

    Science.gov (United States)

    Trentini, Monalisa M; de Oliveira, Fábio M; Kipnis, André; Junqueira-Kipnis, Ana P

    2016-01-01

    Mycobacterium tuberculosis causes tuberculosis (TB), a disease that killed more than 1.5 million people worldwide in 2014, and the Bacillus Calmette Guérin (BCG) vaccine is the only currently available vaccine against TB. However, it does not protect adults. Th1 and Th17 cells are crucial for TB control, as well as the neutrophils that are directly involved in DC trafficking to the draining lymph nodes and the activation of T lymphocytes during infection. Although several studies have shown the importance of neutrophils during M. tuberculosis infection, none have shown its role in the development of a specific response to a vaccine. The vaccine mc(2)-CMX was shown to protect mice against M. tuberculosis challenge, mainly due to specific Th1 and Th17 cells. This study evaluated the importance of neutrophils in the generation of the Th1- and Th17-specific responses elicited by this vaccine. The vaccine injection induced a neutrophil rich lesion with a necrotic central area. The IL-17 KO mice did not generate vaccine-specific Th1 cells. The vaccinated IL-22 KO mice exhibited Th1- and Th17-specific responses. Neutrophil depletion during vaccination abrogated the induction of Th1-specific responses and prohibited the bacterial load reduction observed in the vaccinated animals. The results show, for the first time, the role of neutrophils in the generation of specific Th1 and Th17 cells in response to a tuberculosis vaccine.

  4. Conventional influenza vaccines influence the performance of a universal influenza vaccine in mice.

    Science.gov (United States)

    Rowell, Janelle; Lo, Chia-Yun; Price, Graeme E; Misplon, Julia A; Epstein, Suzanne L; Garcia, Mayra

    2018-02-08

    Universal influenza vaccines are designed to protect against diverse strains of influenza virus. Preclinical testing of new vaccine candidates is usually done in naïve animals, despite intended use in the human population with its varied immune history including responses to previous vaccinations. As an approach more relevant to human use, we tested a candidate universal influenza vaccine in mice with a history of conventional vaccination. Female BALB/c mice were given two intramuscular doses of inactivated influenza vaccine (IIV) or diphtheria and tetanus toxoids vaccine (DT), one month apart. Another group was given two intranasal doses of live attenuated influenza virus (LAIV). One month after the second dose, mice were given the universal influenza vaccine: recombinant adenoviruses expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) (A/NP + M2-rAd). Immune responses to universal vaccine antigens A/NP and M2 were assessed by ELISA and interferon-γ ELISPOT. Protection was tested by challenge with mouse-adapted A/FM/1/47 (H1N1) and monitoring for weight loss and survival. Universal vaccine performance was enhanced, inhibited or unaffected by particular prior vaccinations. Mice given Afluria IIV and LAIV had greater antibody and T-cell response to A/NP than mice without prior vaccination, providing examples of enhanced A/NP + M2-rAd performance. Though Fluvirin IIV partially inhibited, the universal vaccine still provided considerable protection unlike conventional vaccination. Fluzone IIV and DT had no effect on A/NP + M2-rAd performance. Thus our results demonstrate that universal vaccine candidate A/NP + M2-rAd was at least partially effective in mice with diverse prior histories. However, the degree of protection and nature of the immune responses may be affected by a history of conventional vaccination and suggests that performance in humans would be influenced by immune history. Published by Elsevier Ltd.

  5. [Duties of physicians or other healthcare workers connected with diagnosis, treatment, dissemination of information, assessment and registration of TB patients].

    Science.gov (United States)

    Zielonka, Tadeusz M

    2015-01-01

    Effective laws provide a series of duties to be performed by physicians and other medical personnel associated with TB. Every TB case and death resulting from TB as well as any case of undesirable result of BCG test requires notification and filling in of a special form. The physician has a duty to inform TB patients their legal guardians, close relatives or friends about the need to undergo sanitary and diagnostic procedure, treatment or vaccination, as well as on how to prevent disease from spreading. Persons failing to comply with the relevant numerous legal requirements in this respect are subject to a fine.TB patients can use special sick benefits extending up to 270 days. There is a requirement to use appropriate codes to define TB irrespective of LCD-10 classification.

  6. Effects of Tb{sup 3+} concentration on the La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}: X% Tb{sup 3+} polycrystalline nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Mlotswa, D.V. [Physics Department, University of the Free State, Private Bag x13, Phuthaditjhaba 9866 (South Africa); Madihlaba, R.M. [Chemistry Department, University of the Western Cape, Private Bag x17, Bellville 7535 (South Africa); Koao, L.F. [Physics Department, University of the Free State, Private Bag x13, Phuthaditjhaba 9866 (South Africa); Onani, M.O., E-mail: monani@uwc.ac.za [Chemistry Department, University of the Western Cape, Private Bag x17, Bellville 7535 (South Africa); Dejene, F.B. [Physics Department, University of the Free State, Private Bag x13, Phuthaditjhaba 9866 (South Africa)

    2016-01-01

    A new green phosphor, La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}): x% Tb{sup 3+} was fabricated by solution-combustion method using urea as a fuel and ammonium nitrate as an oxidizer. The phosphor was characterised using Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Energy dispersive spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL. The results exhibit that La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}): x% Tb{sup 3+} phosphor has the strongest excitation at 209 nm with a full-width at half-maximum (FWHM) of 20 nm, and can emit bright green light at 545 nm under 209 nm excitation. The optimum concentration for Tb{sup 3+} in La{sub 2}Sr{sub 3}(BO{sub 3}){sub 4}): x% Tb{sup 3+} is 0.033 mol%. The prominent green luminescence was due to the {sup 5}D{sub 4}–{sup 7}F{sub 5} transition of Tb{sup 3+} ion. Herein, the green phosphors are promising good candidates employed in tri-color lamps.

  7. VACCINATION IN CHILDREN WITH DIFFERENT MANIFESTATIONS OF TUBERCULOSIS INFECTION

    Directory of Open Access Journals (Sweden)

    T.S. Drozdenko

    2011-01-01

    Full Text Available The paper presents the experience of childhood immunization with the various manifestations of tuberculosis infection inanimate (ADC-M, Pneumo 23 and live vaccines (domestic divaccine «measles–parotitis», combined vaccine Priorix. The safety and efficacy of vaccination in this group of children with positive clinical and laboratory dynamics of tuberculosis on the background of a specific treatment have been demonstrated, as well as the vaccination tactics of children registered at the TB clinic based on the results of the study have been elaborated.Key words: various manifestations of tuberculosis infection, vaccination tactics, safety, efficiency, children.

  8. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    Science.gov (United States)

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  9. Development and evaluation of novel recombinant adenovirus-based vaccine candidates for infectious bronchitis virus and Mycoplasma gallisepticum in chickens.

    Science.gov (United States)

    Zhang, Dongchao; Long, Yuqing; Li, Meng; Gong, Jianfang; Li, Xiaohui; Lin, Jing; Meng, Jiali; Gao, Keke; Zhao, Ruili; Jin, Tianming

    2018-04-01

    Avian infectious bronchitis caused by the infectious bronchitis virus (IBV), and mycoplasmosis caused by Mycoplasma gallisepticum (MG) are two major respiratory diseases in chickens that have resulted in severe economic losses in the poultry industry. We constructed a recombinant adenovirus that simultaneously expresses the S1 spike glycoprotein of IBV and the TM-1 protein of MG (pBH-S1-TM-1-EGFP). For comparison, we constructed two recombinant adenoviruses (pBH-S1-EGFP and pBH-TM-1-EGFP) that express either the S1 spike glycoprotein or the TM-1 protein alone. The protective efficacy of these three vaccine constructs against challenge with IBV and/or MG was evaluated in specific pathogen free chickens. Groups of seven-day-old specific pathogen free chicks were immunized twice, two weeks apart, via the oculonasal route with the pBH-S1-TM-1-EGFP, pBH-S1-EGFP, or pBH-TM-1-EGFP vaccine candidates or the commercial attenuated infectious bronchitis vaccine strain H52 and MG vaccine strain F-36 (positive controls), and challenged with virulent IBV or MG two weeks later. Interestingly, by days 7 and 14 after the booster immunization, pBH-S1-TM-1-EGFP-induced antibody titre was significantly higher (P attenuated commercial IBV vaccine; however, there was no significant difference between the pBH-S1-TM-1-EGFP and attenuated commercial MG vaccine groups (P > 0.05). The clinical signs, the gross, and histopathological lesions scores of the adenovirus vaccine constructs were not significantly different from that of the attenuated commercial IBV or MG vaccines (positive controls) (P > 0.05). These results demonstrate the potential of the bivalent pBH-S1-TM-1-EGFP adenovirus construct as a combination vaccine against IB and mycoplasmosis.

  10. The Recombinant Bacille Calmette–Guérin Vaccine VPM1002: Ready for Clinical Efficacy Testing

    Directory of Open Access Journals (Sweden)

    Natalie E. Nieuwenhuizen

    2017-09-01

    Full Text Available The only licensed vaccine against tuberculosis (TB, bacille Calmette–Guérin (BCG, protects against severe extrapulmonary forms of TB but is virtually ineffective against the most prevalent form of the disease, pulmonary TB. BCG was genetically modified at the Max Planck Institute for Infection Biology to improve its immunogenicity by replacing the urease C encoding gene with the listeriolysin encoding gene from Listeria monocytogenes. Listeriolysin perturbates the phagosomal membrane at acidic pH. Urease C is involved in neutralization of the phagosome harboring BCG. Its depletion allows for rapid phagosome acidification and promotes phagolysosome fusion. As a result, BCGΔureC::hly (VPM1002 promotes apoptosis and autophagy and facilitates release of mycobacterial antigens into the cytosol. In preclinical studies, VPM1002 has been far more efficacious and safer than BCG. The vaccine was licensed to Vakzine Projekt Management and later sublicensed to the Serum Institute of India Pvt. Ltd., the largest vaccine producer in the world. The vaccine has passed phase I clinical trials in Germany and South Africa, demonstrating its safety and immunogenicity in young adults. It was also successfully tested in a phase IIa randomized clinical trial in healthy South African newborns and is currently undergoing a phase IIb study in HIV exposed and unexposed newborns. A phase II/III clinical trial will commence in India in 2017 to assess efficacy against recurrence of TB. The target indications for VPM1002 are newborn immunization to prevent TB as well as post-exposure immunization in adults to prevent TB recurrence. In addition, a Phase I trial in non-muscle invasive bladder cancer patients has been completed, and phase II trials are ongoing. This review describes the development of VPM1002 from the drawing board to its clinical assessment.

  11. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Jedidah Mwacharo

    2009-12-01

    Full Text Available The T-cell mediated immune response plays a central role in the control of malaria after natural infection or vaccination. There is increasing evidence that T-cell responses are heterogeneous and that both the quality of the immune response and the balance between pro-inflammatory and regulatory T-cells determines the outcome of an infection. As Malaria parasites have been shown to induce immunosuppressive responses to the parasite and non-related antigens this study examined T-cell mediated pro-inflammatory and regulatory immune responses induced by malaria vaccination in children in an endemic area to determine if these responses were associated with vaccine immunogenicity.Using real-time RT- PCR we profiled the expression of a panel of key markers of immunogenecity at different time points after vaccination with two viral vector vaccines expressing the malaria TRAP antigen (FP9-TRAP and MVA-TRAP or following rabies vaccination as a control.The vaccine induced modest levels of IFN-gamma mRNA one week after vaccination. There was also an increase in FoxP3 mRNA expression in both TRAP stimulated and media stimulated cells in the FFM ME-TRAP vaccine group; however, this may have been driven by natural exposure to parasite rather than by vaccination.Quantitative PCR is a useful method for evaluating vaccine induced cell mediated immune responses in frozen PBMC from children in a malaria endemic country. Future studies should seek to use vaccine vectors that increase the magnitude and quality of the IFN-gamma immune response in naturally exposed populations and should monitor the induction of a regulatory T cell response.

  12. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    DEFF Research Database (Denmark)

    Tamborrini, Marco; Stoffel, Sabine A; Westerfeld, Nicole

    2011-01-01

    In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant ...... fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP....

  13. Identification of potential new protein vaccine candidates through pan-surfomic analysis of pneumococcal clinical isolates from adults.

    Directory of Open Access Journals (Sweden)

    Alfonso Olaya-Abril

    Full Text Available Purified polysaccharide and conjugate vaccines are widely used for preventing infections in adults and in children against the Gram-positive bacterium Streptococcus pneumoniae, a pathogen responsible for high morbidity and mortality rates, especially in developing countries. However, these polysaccharide-based vaccines have some important limitations, such as being serotype-dependent, being subjected to losing efficacy because of serotype replacement and high manufacturing complexity and cost. It is expected that protein-based vaccines will overcome these issues by conferring a broad coverage independent of serotype and lowering production costs. In this study, we have applied the "shaving" proteomic approach, consisting of the LC/MS/MS analysis of peptides generated by protease treatment of live cells, to a collection of 16 pneumococcal clinical isolates from adults, representing the most prevalent strains circulating in Spain during the last years. The set of unique proteins identified in all the isolates, called "pan-surfome", consisted of 254 proteins, which included most of the protective protein antigens reported so far. In search of new candidates with vaccine potential, we identified 32 that were present in at least 50% of the clinical isolates analyzed. We selected four of them (Spr0012, Spr0328, Spr0561 and SP670_2141, whose protection capacity has not yet been tested, for assaying immunogenicity in human sera. All of them induced the production of IgM antibodies in infected patients, thus indicating that they could enter the pipeline for vaccine studies. The pan-surfomic approach shows its utility in the discovery of new proteins that can elicit protection against infectious microorganisms.

  14. A study of luminescence from Eu"3"+, Ce"3"+, Tb"3"+ and Ce"3"+/Tb"3"+ in new potassium gadolinium phosphate K_3Gd_5(PO_4)_6

    International Nuclear Information System (INIS)

    Meng, Fangui; Zhang, Hongzhi; Chen, Cuili; Kim, Sun Il; Seo, Hyo Jin; Zhang, Xinmin

    2016-01-01

    New potassium gadolinium phosphate [K_3Gd_5(PO_4)_6] doped with Eu"3"+, Ce"3"+, Tb"3"+ and co-doped with Ce"3"+ and Tb"3"+ phosphors were prepared by high temperature solid state synthesis. Phase purity of the powders was checked by X-ray powder diffraction. Luminescence and excitation spectra of samples were reported. In particular, the interaction mechanism between Eu"3"+ ions was investigated in terms of the Inokuti–Hirayama model; it was found that the interactions between Eu"3"+ can be assigned to dipole–dipole interaction. K_3Gd_5(PO_4)_6:Eu"3"+ could act as a candidate for solid state lighting due to its strong absorption band in the near-UV region (350–400 nm). The energy transfer from Ce"3"+ to Tb"3"+ was confirmed and the mechanism was studied using Dexter's theory; it is concluded that electric dipole–dipole interaction predominates in the energy transfer process from Ce"3"+ to Tb"3"+ in the K_3Gd_5(PO_4)_6 host. The energy transfer efficiency and critical distance were also investigated. - Highlights: • Optical properties of K_3Gd_5(PO_4)_6:RE"3"+ are investigated for the first time. • The interaction mechanism between Eu"3"+ ions is attributed to dipole–dipole type. • K_3Eu_5(PO_4)_6 is a candidate phosphor for application to solid state lighting. • There exists an efficient energy transfer from Ce"3"+ to Tb"3"+ (η is up to 95%). • The mechanism of energy transfer process is electric dipole–dipole interaction.

  15. Assessment of different formulations of oral Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine in rodent models for immunogenicity and protection against aerosol challenge with M. bovis.

    Science.gov (United States)

    Clark, Simon; Cross, Martin L; Smith, Alan; Court, Pinar; Vipond, Julia; Nadian, Allan; Hewinson, R Glyn; Batchelor, Hannah K; Perrie, Yvonne; Williams, Ann; Aldwell, Frank E; Chambers, Mark A

    2008-10-29

    Bovine tuberculosis (bTB) caused by infection with Mycobacterium bovis is causing considerable economic loss to farmers and Government in the United Kingdom as its incidence is increasing. Efforts to control bTB in the UK are hampered by the infection in Eurasian badgers (Meles meles) that represent a wildlife reservoir and source of recurrent M. bovis exposure to cattle. Vaccination of badgers with the human TB vaccine, M. bovis Bacille Calmette-Guérin (BCG), in oral bait represents a possible disease control tool and holds the best prospect for reaching badger populations over a wide geographical area. Using mouse and guinea pig models, we evaluated the immunogenicity and protective efficacy, respectively, of candidate badger oral vaccines based on formulation of BCG in lipid matrix, alginate beads, or a novel microcapsular hybrid of both lipid and alginate. Two different oral doses of BCG were evaluated in each formulation for their protective efficacy in guinea pigs, while a single dose was evaluated in mice. In mice, significant immune responses (based on lymphocyte proliferation and expression of IFN-gamma) were only seen with the lipid matrix and the lipid in alginate microcapsular formulation, corresponding to the isolation of viable BCG from alimentary tract lymph nodes. In guinea pigs, only BCG formulated in lipid matrix conferred protection to the spleen and lungs following aerosol route challenge with M. bovis. Protection was seen with delivery doses in the range 10(6)-10(7) CFU, although this was more consistent in the spleen at the higher dose. No protection in terms of organ CFU was seen with BCG administered in alginate beads or in lipid in alginate microcapsules, although 10(7) in the latter formulation conferred protection in terms of increasing body weight after challenge and a smaller lung to body weight ratio at necropsy. These results highlight the potential for lipid, rather than alginate, -based vaccine formulations as suitable delivery

  16. Multifocal Equine Influenza Outbreak with Vaccination Breakdown in Thoroughbred Racehorses

    Directory of Open Access Journals (Sweden)

    Sarah Gildea

    2018-04-01

    Full Text Available Equine influenza (EI outbreaks occurred on 19 premises in Ireland during 2014. Disease affected thoroughbred (TB and non-TB horses/ponies on a variety of premises including four racing yards. Initial clinical signs presented on 16 premises within a two-month period. Extensive field investigations were undertaken, and the diagnostic effectiveness of a TaqMan RT-PCR assay was demonstrated in regularly-vaccinated and sub-clinically-affected horses. Epidemiological data and repeat clinical samples were collected from 305 horses, of which 40% were reported as clinically affected, 39% were identified as confirmed cases and 11% were sub-clinically affected. Multivariable analysis demonstrated a significant association between clinical signs and age, vaccination status and number of vaccine doses received. Vaccine breakdown was identified in 31% of horses with up to date vaccination records. This included 27 horses in four different racing yards. Genetic and antigenic analysis identified causal viruses as belonging to Clade 2 of the Florida sublineage (FCL2. At the time of this study, no commercially available EI vaccine in Ireland had been updated in line with World Organisation for Animal Health (OIE recommendations to include a FCL2 virus. The findings of this study highlight the potential ease with which EI can spread among partially immune equine populations.

  17. A 52 Kilodalton Protein Vaccine Candidate for Francisella tularensis

    Science.gov (United States)

    2004-12-01

    du vaccin vivant F. tularensis (LVS). Soixante pourcent (60%) des souris vaccindes ont survdcu la dose ltale multiple alors que toutes les souris non...le lysat des cellules de cultures vivantes du vaccin vivant F. tularensis. Plusieurs composants de Francisella tularensis ont dt6 identifids par cet...antiserum. Le s6rum de souris provenant de souris vaccin6es avec F. tularensis non- vivant n’a pas identifid ces composants. A partir de ces prot6ines

  18. Heightened vulnerability to MDR-TB epidemics after controlling drug-susceptible TB.

    Directory of Open Access Journals (Sweden)

    Jason D Bishai

    2010-09-01

    Full Text Available Prior infection with one strain TB has been linked with diminished likelihood of re-infection by a new strain. This paper attempts to determine the role of declining prevalence of drug-susceptible TB in enabling future epidemics of MDR-TB.A computer simulation of MDR-TB epidemics was developed using an agent-based model platform programmed in NetLogo (See http://mdr.tbtools.org/. Eighty-one scenarios were created, varying levels of treatment quality, diagnostic accuracy, microbial fitness cost, and the degree of immunogenicity elicited by drug-susceptible TB. Outcome measures were the number of independent MDR-TB cases per trial and the proportion of trials resulting in MDR-TB epidemics for a 500 year period after drug therapy for TB is introduced.MDR-TB epidemics propagated more extensively after TB prevalence had fallen. At a case detection rate of 75%, improving therapeutic compliance from 50% to 75% can reduce the probability of an epidemic from 45% to 15%. Paradoxically, improving the case-detection rate from 50% to 75% when compliance with DOT is constant at 75% increases the probability of MDR-TB epidemics from 3% to 45%.The ability of MDR-TB to spread depends on the prevalence of drug-susceptible TB. Immunologic protection conferred by exposure to drug-susceptible TB can be a crucial factor that prevents MDR-TB epidemics when TB treatment is poor. Any single population that successfully reduces its burden of drug-susceptible TB will have reduced herd immunity to externally or internally introduced strains of MDR-TB and can experience heightened vulnerability to an epidemic. Since countries with good TB control may be more vulnerable, their self interest dictates greater promotion of case detection and DOTS implementation in countries with poor control to control their risk of MDR-TB.

  19. Measurement of 160Tb and 161Tb in nuclear forensics samples

    International Nuclear Information System (INIS)

    Jiang, J.; Davies, A.V.; Britton, R.E.

    2017-01-01

    160 Tb and 161 Tb are important radionuclides to measure when analysing a Nuclear Forensics sample. An analytical method for the measurement of both 160 Tb and 161 Tb was developed in this study. Terbium was separated and purified using exchange resin and TrisKem LN Resin. The purified fraction containing 160 Tb and 161 Tb was measured by gamma spectrometry and liquid scintillation counting. The counting efficiencies of 160 Tb and 161 Tb were determined using the CIEMAT/NIST efficiency tracing method. The LSC count rate ratio, R160 Tb /R161 Tb , on the reference date was determined by sequential counting and calculated using a custom script based on their half-lives. (author)

  20. The recent progress in RSV vaccine technology.

    Science.gov (United States)

    Fretzayas, Andrew; Papadopoulou, Anna; Kotzia, Doxa; Moustaki, Maria

    2012-12-01

    The most effective way to control RSV infection would be the development of an expedient and safe vaccine. Subunit vaccines, live attenuated RSV vaccines, plasmid DNA vaccines have been tested either in human or in mouse models without reaching the ultimate goal of efficacy and safety, at least in humans. Viruses such as adenovirus, sendai virus, measles virus were also used as vectors for the generation of RSV vaccines with promising results in animal models. Recent patents describe new techniques for the generation of candidate vaccines. These patents include virus like particles as vaccine platforms, recombinant RSVs or modified RSV F protein as component of the vaccine. Despite the number of the candidate vaccines, the new RSV vaccines should overcome many obstacles before being established as effective vaccines for the control of RSV infections especially for the young infants who are more susceptible to the virus.

  1. Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1 vaccine candidates containing stabilized mutations in the P/C and L genes

    Directory of Open Access Journals (Sweden)

    Skiadopoulos Mario H

    2007-07-01

    Full Text Available Abstract Background Two recombinant, live attenuated human parainfluenza virus type 1 (rHPIV1 mutant viruses have been developed, using a reverse genetics system, for evaluation as potential intranasal vaccine candidates. These rHPIV1 vaccine candidates have two non-temperature sensitive (non-ts attenuating (att mutations primarily in the P/C gene, namely CR84GHNT553A (two point mutations used together as a set and CΔ170 (a short deletion mutation, and two ts att mutations in the L gene, namely LY942A (a point mutation, and LΔ1710–11 (a short deletion, the last of which has not been previously described. The latter three mutations were specifically designed for increased genetic and phenotypic stability. These mutations were evaluated on the HPIV1 backbone, both individually and in combination, for attenuation, immunogenicity, and protective efficacy in African green monkeys (AGMs. Results The rHPIV1 mutant bearing the novel LΔ1710–11 mutation was highly ts and attenuated in AGMs and was immunogenic and efficacious against HPIV1 wt challenge. The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates were highly ts, with shut-off temperatures of 38°C and 35°C, respectively, and were highly attenuated in AGMs. Immunization with rHPIV1-CR84G/Δ170HNT553ALY942A protected against HPIV1 wt challenge in both the upper and lower respiratory tracts. In contrast, rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 was not protective in AGMs due to over-attenuation, but it is expected to replicate more efficiently and be more immunogenic in the natural human host. Conclusion The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates are clearly highly attenuated in AGMs and clinical trials are planned to address safety and immunogenicity in humans.

  2. Deexcitation of superdeformed bands in the nucleus Tb-151

    NARCIS (Netherlands)

    Finck, C; Appelbe, D; Beck, FA; Byrski, T; Cullen, D; Curien, D; deFrance, G; Duchene, G; Erturk, S; Haas, B; Khadiri, N; Kharraja, B; Prevost, D; Rigollet, C; Stezowski, O; Twin, P; Vivien, JP; Zuber, K

    1997-01-01

    The aim of this work is to get more informations about the decay-out of superdeformed bands. One of the best candidates in the mass A similar or equal to 150 region for that kind of research is the nucleus Tb-151. From previous works, it has been established that the first excited band goes lower in

  3. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-01-01

    Highlights: ► Vero cell-based HPAI H5N1 vaccine with stable high yield. ► Stable high yield derived from the YNVa H3N2 backbone. ► H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  4. Ensayo preclínico de la vacuna candid #1 producida en Argentina contra la Fiebre Hemorrágica Argentina Preclinical assay of Candid #1 vaccine against Argentine Hemorrhagic Fever made in Argentina

    Directory of Open Access Journals (Sweden)

    Ana M. Ambrosio

    2005-08-01

    Full Text Available Se comparó en cobayos la seguridad, inmunogenicidad y eficacia protectora de un lote de vacuna Candid #1(C#1 fabricada en Estados Unidos de América (EE.UU. y distintos lotes de la misma vacuna fabricados en Argentina (Arg. El lote TSI 5-1-92 (EE.UU. y los lotes Exp Nº 3, 7A y 8A (Arg fueron inoculados (0.5 ml, IM en cobayos de 250-400 g. Para cada ensayo diez animales recibieron solución fisiológica y sirvieron como control. Todos fueron desafiados con la cepa patógena P23790 de virus Junin. Se registró: a temperatura rectal, b peso corporal, c presencia de anticuerpos neutralizantes (AcNT pre y post-vacunación, d respuesta al desafío. Todos los animales vacunados desarrollaron AcNT anti virus Junin (rango = 40- 81920 y sobrevivieron al desafío. En cada grupo control 8/10 animales murieron (día 23.3 ± 5.4 post-desafío. Los cobayos resultaron idénticamente protegidos de una descarga letal de virus Junin por la vacuna importada y los diferentes lotes de C#1 producidos en Argentina.Candid #1 vaccine against Argentine Hemorrhagic Fever produced in USA versus lots of the same vaccine made in Argentina were compared in guinea pigs regarding safety, immunogenicity and protective efficacy against a challenge with pathogenic Junin virus. Lots Nº Exp 3, 7A and 8A of Argentine origin as well as lot TSI 5-1-92 from USA were inoculated in guinea pigs of 250-400 g in two consecutive assays. Ten animals inoculated with saline performed as normal controls in each experiment. Parameters studied were: a temperature; b body weight; c neutralizing antibodies to Junin virus; d response to viral challenge. Animals gained weight and remained normothermic up to the challenge. Guinea pigs that received Candid #1 from any manufacturer elicited neutralizing antibodies to Junin virus (titles from 40 to 81920 and survived to challenge whilst 8/10 animals died in each control group. Data presented demonstrated that Candid #1 vaccines from USA or Argentine

  5. TB or not TB?: a case of isolated testicular TB with scrotal involvement.

    LENUS (Irish Health Repository)

    Bhargava, A

    2009-06-01

    Despite the genitourinary tract being the most common site affected by extrapulmonary TB, isolated testicular TB remains a rare clinical entity. In patients with co-morbidities such as hepatic impairment, treatment proves a challenge, as first-line hepatotoxic pharmaceuticals are contraindicated. Here, we report a case of isolated testicular TB with scrotal involvement, on a background of hepatic dysfunction.

  6. Vaccines for the 21st century

    Science.gov (United States)

    Delany, Isabel; Rappuoli, Rino; De Gregorio, Ennio

    2014-01-01

    In the last century, vaccination has been the most effective medical intervention to reduce death and morbidity caused by infectious diseases. It is believed that vaccines save at least 2–3 million lives per year worldwide. Smallpox has been eradicated and polio has almost disappeared worldwide through global vaccine campaigns. Most of the viral and bacterial infections that traditionally affected children have been drastically reduced thanks to national immunization programs in developed countries. However, many diseases are not yet preventable by vaccination, and vaccines have not been fully exploited for target populations such as elderly and pregnant women. This review focuses on the state of the art of recent clinical trials of vaccines for major unmet medical needs such as HIV, malaria, TB, and cancer. In addition, we describe the innovative technologies currently used in vaccine research and development including adjuvants, vectors, nucleic acid vaccines, and structure-based antigen design. The hope is that thanks to these technologies, more diseases will be addressed in the 21st century by novel preventative and therapeutic vaccines. PMID:24803000

  7. Post-exposure vaccination with multi-stage vaccine significantly reduce map level in tissues without interference in diagnostics

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Melvang, Heidi Mikkelsen

    A new (Fet11) vaccine against paratuberculosis based on recombinant antigens from acute and latent stages of Map infection was developed to be used without interference with diagnostic tests for bovine TB and Johne’s disease. Calves were orally inoculated with 2x10E10 live Map in their third week...... of life and randomly assigned to four groups of seven calves each. One group was left unvaccinated, while other calves were post-exposure vaccinated with either a whole-cell vaccine at 16 weeks, or Fet11 vaccine at 3 and 7, or 16 and 20 weeks of age, respectively. Antibody responses were measured by ID...... Screen® ELISA and individual vaccine protein ELISAs along with FACS and IFN-γ responses to PPDj and to individual vaccine proteins. At termination 8 or 12 months of age, Map burden in a number of gut tissues was determined by quantitative IS900 PCR and histopathology. Fet11 vaccination of calves at 16...

  8. Find TB. Treat TB. Working together to eliminate TB.

    Centers for Disease Control (CDC) Podcasts

    2014-02-26

    In this podcast, Dr. Sundari Mase, Medical Team Lead in the Field Services and Evaluation Branch in the Division of Tuberculosis Elimination, discusses World TB Day and the 2014 theme.  Created: 2/26/2014 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 2/26/2014.

  9. Assessment of Lactobacillus gasseri as a Candidate Oral Vaccine Vector ▿

    Science.gov (United States)

    Stoeker, Laura; Nordone, Shila; Gunderson, Sara; Zhang, Lin; Kajikawa, Akinobu; LaVoy, Alora; Miller, Michael; Klaenhammer, Todd R.; Dean, Gregg A.

    2011-01-01

    Lactobacillus species are commensal bacteria that have long been recognized as probiotic microbes and are generally regarded as safe (GRAS) for human consumption. We have investigated the use of L. gasseri as a vaccine vector for oral immunization against mucosal pathogens. Recent research has shown that the immune response to different lactobacilli can vary widely depending on the species or subspecies of Lactobacillus being studied. While some lactobacilli seem to induce oral tolerance, others induce an adaptive immune response. This study characterized the systemic and mucosal immune response to wild-type and genetically modified L. gasseri. L. gasseri primarily activates TLR2/6, with additional activation through the TLR2 homodimer. To expand the Toll-like receptor (TLR) activation profile of L. gasseri and the immunogenicity of the vector, a plasmid containing fliC, the gene encoding bacterial flagellin, was introduced which resulted in the strong activation of TLR5. The treatment of human myeloid dendritic cells with recombinant lactobacilli expressing flagellin triggered phenotypic maturation and the release of proinflammatory cytokines. In contrast, bacterial treatment also resulted in a statistically significant increase in IL-10 production. In vivo studies established that treatment with L. gasseri led to a diversification of B-cell populations in the lamina propria of the murine colon. Furthermore, treatment with genetically modified L. gasseri led to a significant decrease in the percentage of FoxP3+ colonic lymphocytes. Taken together, these data clarify the interaction of L. gasseri with the host immune system and support further investigation of the in vivo immunogenicity of L. gasseri expressing both flagellin and candidate vaccine antigens. PMID:21900526

  10. Energy transfer processes in Tb(III)-dibenzoylmethanate complexes with phosphine oxide ligands

    International Nuclear Information System (INIS)

    Silva Junior, Francisco A.; Nascimento, Helenise A.; Pereira, Dariston K.S.; Teotonio, Ercules E.S.; Espinola, Jose Geraldo P.; Faustino, Wagner M.; Sa, Gilberto F.

    2013-01-01

    The Tb 3+ -β-diketonate complexes [Tb(DBM) 3 L], [Tb(DBM) 2 (NO 3 )L 2 ] and [Tb(DBM)(NO 3 ) 2 (HMPA) 2 ] (DBM = dibenzoylmethanate; L: TPPO triphenylphosphine oxide or HMPA=hexamethylphosphine oxide) were prepared and characterized by elemental analysis (CHN), complexometric titration with EDTA and Fourier transform infrared (FTIR) spectroscopy, and the photoluminescence properties evaluated. The triplet state energies of the coordinated DBM ligands were determined using time-resolved phosphorescence spectra of analogous Gd 3+ complexes. The results show that the energies increase along with the number of coordinated nitrate anions replacing the DBM ligand in the complexes. The luminescence spectra and emission lifetime measurements revealed that the ligand-to-metal energy transfer efficiency follows the same tendency. Unlike the tris-DBM complexes, bis- and mono-DBM presented high luminescence, and may act as promising candidates for preparation of the emitting layer of light converting molecular devices (LCMDs). (author)

  11. Energy transfer processes in Tb(III)-dibenzoylmethanate complexes with phosphine oxide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Francisco A.; Nascimento, Helenise A.; Pereira, Dariston K.S.; Teotonio, Ercules E.S.; Espinola, Jose Geraldo P.; Faustino, Wagner M., E-mail: teotonioees@quimica.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Quimica; Brito, Hermi F. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Fundamental; Felinto, Maria Claudia F.C. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), SP (Brazil); Sa, Gilberto F. [Universidade Federal de Pernambuco (UFPE/CCEN), Recife, PE (Brazil). Centro de Ciencias Exatas e da Natureza. Departamento de Quimica Fundamental

    2013-04-15

    The Tb{sup 3+}-{beta}-diketonate complexes [Tb(DBM){sub 3}L], [Tb(DBM){sub 2}(NO{sub 3})L{sub 2}] and [Tb(DBM)(NO{sub 3}){sub 2} (HMPA){sub 2}] (DBM = dibenzoylmethanate; L: TPPO triphenylphosphine oxide or HMPA=hexamethylphosphine oxide) were prepared and characterized by elemental analysis (CHN), complexometric titration with EDTA and Fourier transform infrared (FTIR) spectroscopy, and the photoluminescence properties evaluated. The triplet state energies of the coordinated DBM ligands were determined using time-resolved phosphorescence spectra of analogous Gd{sup 3+} complexes. The results show that the energies increase along with the number of coordinated nitrate anions replacing the DBM ligand in the complexes. The luminescence spectra and emission lifetime measurements revealed that the ligand-to-metal energy transfer efficiency follows the same tendency. Unlike the tris-DBM complexes, bis- and mono-DBM presented high luminescence, and may act as promising candidates for preparation of the emitting layer of light converting molecular devices (LCMDs). (author)

  12. A phase I randomized clinical trial of candidate human immunodeficiency virus type 1 vaccine MVA.HIVA administered to Gambian infants.

    Directory of Open Access Journals (Sweden)

    Muhammed O Afolabi

    Full Text Available A vaccine to decrease transmission of human immunodeficiency virus type 1 (HIV-1 during breast-feeding would complement efforts to eliminate infant HIV-1 infection by antiretroviral therapy. Relative to adults, infants have distinct immune development, potentially high-risk of transmission when exposed to HIV-1 and rapid progression to AIDS when infected. To date, there have been only three published HIV-1 vaccine trials in infants.We conducted a randomized phase I clinical trial PedVacc 001 assessing the feasibility, safety and immunogenicity of a single dose of candidate vaccine MVA.HIVA administered intramuscularly to 20-week-old infants born to HIV-1-negative mothers in The Gambia.Infants were followed to 9 months of age with assessment of safety, immunogenicity and interference with Expanded Program on Immunization (EPI vaccines. The trial is the first stage of developing more complex prime-boost vaccination strategies against breast milk transmission of HIV-1.From March to October 2010, 48 infants (24 vaccine and 24 no-treatment were enrolled with 100% retention. The MVA.HIVA vaccine was safe with no difference in adverse events between vaccinees and untreated infants. Two vaccine recipients (9% and no controls had positive ex vivo interferon-γ ELISPOT assay responses. Antibody levels elicited to the EPI vaccines, which included diphtheria, tetanus, whole-cell pertussis, hepatitis B virus, Haemophilus influenzae type b and oral poliovirus, reached protective levels for the vast majority and were similar between the two arms.A single low-dose of MVA.HIVA administered to 20-week-old infants in The Gambia was found to be safe and without interference with the induction of protective antibody levels by EPI vaccines, but did not alone induce sufficient HIV-1-specific responses. These data support the use of MVA carrying other transgenes as a boosting vector within more complex prime-boost vaccine strategies against transmission of HIV-1 and

  13. Rotavirus vaccines

    Directory of Open Access Journals (Sweden)

    Kang G

    2006-01-01

    Full Text Available Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intussusception. Early vaccines were based on animal strains. More recently developed and licenced vaccines are either animal-human reassortants or are based on human strains. In India, two candidate vaccines are in the development process, but have not yet reached efficacy trials. Many challenges regarding vaccine efficacy and safety remain. In addition to completing clinical evaluations of vaccines in development in settings with the highest disease burden and virus diversity, there is also a need to consider alternative vaccine development strategies.

  14. Reverse Vaccinology: An Approach for Identifying Leptospiral Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Odir A. Dellagostin

    2017-01-01

    Full Text Available Leptospirosis is a major public health problem with an incidence of over one million human cases each year. It is a globally distributed, zoonotic disease and is associated with significant economic losses in farm animals. Leptospirosis is caused by pathogenic Leptospira spp. that can infect a wide range of domestic and wild animals. Given the inability to control the cycle of transmission among animals and humans, there is an urgent demand for a new vaccine. Inactivated whole-cell vaccines (bacterins are routinely used in livestock and domestic animals, however, protection is serovar-restricted and short-term only. To overcome these limitations, efforts have focused on the development of recombinant vaccines, with partial success. Reverse vaccinology (RV has been successfully applied to many infectious diseases. A growing number of leptospiral genome sequences are now available in public databases, providing an opportunity to search for prospective vaccine antigens using RV. Several promising leptospiral antigens were identified using this approach, although only a few have been characterized and evaluated in animal models. In this review, we summarize the use of RV for leptospirosis and discuss the need for potential improvements for the successful development of a new vaccine towards reducing the burden of human and animal leptospirosis.

  15. APPROACHING THE TARGET: THE PATH TOWARDS AN EFFECTIVE MALARIA VACCINE

    Directory of Open Access Journals (Sweden)

    Alberto L. García-Basteiro

    2012-01-01

    Full Text Available Eliciting an effective malaria vaccine has been the goal of the scientific community for many years. A malaria vaccine, added to existing tools and strategies, would further prevent and decrease the unacceptable malaria morbidity and mortality burden. Great progress has been made over the last decade, with some vaccine candidates in the clinical phases of development. The RTS,S malaria vaccine candidate, based on a recombinant P. falciparum protein, is the most advanced of such candidates, currently undergoing a large phase III trial. RTS,S has consistently shown an efficacy of around 50% against the first clinical episode of malaria, with protection in some cases extending up to 4 years of duration. Thus, it is hoped that this candidate vaccine will eventually become the first licensed malaria vaccine. This first vaccine against a human parasite is a groundbreaking achievement, but improved malaria vaccines conferring higher protection will be needed if the aspiration of malaria eradication is to be achieved

  16. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  17. Heterologous prime-boost vaccinations for poverty-related diseases: advantages and future prospects.

    Science.gov (United States)

    Radosević, Katarina; Rodriguez, Ariane; Lemckert, Angelique; Goudsmit, Jaap

    2009-05-01

    Classical vaccination approaches, based on a single vaccine administered in a homologous prime-boost schedule and optimized to induce primarily neutralizing antibodies, are unlikely to be sufficiently efficacious to prevent TB, malaria or HIV infections. Novel vaccines, capable of inducing a more powerful immune response, in particular T-cell immunity, are desperately needed. Combining different vaccine modalities that are able to complement each other and induce broad and sustainable immunity is a promising approach. This review provides an overview of heterologous prime-boost vaccination modalities currently in development for the 'big three' poverty-related diseases and emphasizes the need for innovative vaccination approaches.

  18. Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Directory of Open Access Journals (Sweden)

    Jayne S Sutherland

    Full Text Available Tuberculosis (TB remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb, which are relevant to protective immunity in high-endemic areas.We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda. We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens together with novel resuscitation-promoting factors (rpf, reactivation proteins, latency (Mtb DosR regulon-encoded antigens, starvation-induced antigens and secreted antigens.There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(- and TST(+ contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737 and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC, PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+ contacts (LTBI compared to TB and TST(- contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen.Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine

  19. Testing for TB Infection

    Science.gov (United States)

    ... Adverse Events TB Treatment of Persons Living with HIV TB Treatment and Pregnancy TB Treatment for Children Drug-Resistant TB Research TB Epidemiologic Studies Consortium Research Projects Publications TB Trials Consortium Study ...

  20. The clinical development process for a novel preventive vaccine: An overview

    Directory of Open Access Journals (Sweden)

    K Singh

    2016-01-01

    Full Text Available Each novel vaccine candidate needs to be evaluated for safety, immunogenicity, and protective efficacy in humans before it is licensed for use. After initial safety evaluation in healthy adults, each vaccine candidate follows a unique development path. This article on clinical development gives an overview on the development path based on the expectations of various guidelines issued by the World Health Organization (WHO, the European Medicines Agency (EMA, and the United States Food and Drug Administration (USFDA. The manuscript describes the objectives, study populations, study designs, study site, and outcome(s of each phase (Phase I-III of a clinical trial. Examples from the clinical development of a malaria vaccine candidate, a rotavirus vaccine, and two vaccines approved for human papillomavirus (HPV have also been discussed. The article also tabulates relevant guidelines, which can be referred to while drafting the development path of a novel vaccine candidate.

  1. Search for the production of narrow tb[over] resonances in 1.9 fb;{-1} of pp[over] collisions at sqrt[s] = 1.96 TeV.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Canto, A; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-07-24

    We present new limits on resonant tb[over] production in pp[over] collisions at sqrt[s] = 1.96 TeV, using 1.9 fb;{-1} of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate tb[over] mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous tb[over] production as modeled by W;{'} --> tb[over]. We set a new limit on a right-handed W;{'} with standard model-like coupling, excluding any mass below 800 GeV/c;{2} at 95% C.L. The cross section for any narrow, resonant tb[over] production between 750 and 950 GeV/c;{2} is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of the W;{'} coupling strength versus W;{'} mass over the range 300-950 GeV/c;{2}.

  2. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris.

    Science.gov (United States)

    Avril, Marion; Hathaway, Marianne J; Cartwright, Megan M; Gose, Severin O; Narum, David L; Smith, Joseph D

    2009-06-29

    VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. From a total of 42 different VAR2CSA constructs, 15 proteins (36%) were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.

  3. Optimizing expression of the pregnancy malaria vaccine candidate, VAR2CSA in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Narum David L

    2009-06-01

    Full Text Available Abstract Background VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria, but vaccine development is complicated by the large size and complex disulfide bonding pattern of the protein. Recent X-ray crystallographic information suggests that domain boundaries of VAR2CSA Duffy binding-like (DBL domains may be larger than previously predicted and include two additional cysteine residues. This study investigated whether longer constructs would improve VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were applicable across different VAR2CSA alleles. Methods VAR2CSA sequences were bioinformatically analysed to identify the predicted C11 and C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens. Results From a total of 42 different VAR2CSA constructs, 15 proteins (36% were secreted. Longer construct boundaries, including the predicted C11 and C12 cysteine residues, generally improved expression of poorly or non-secreted domains and permitted expression of all six VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes. Conclusion These findings strengthen emerging data for a revision of DBL domain boundaries in var-encoded proteins and may facilitate pregnancy malaria vaccine development.

  4. Advances and challenges in malaria vaccine development.

    Science.gov (United States)

    Crompton, Peter D; Pierce, Susan K; Miller, Louis H

    2010-12-01

    Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.

  5. Assessment of safety and interferon gamma responses of Mycobacterium bovis BCG vaccine in goat kids and milking goats.

    Science.gov (United States)

    Pérez de Val, Bernat; Vidal, Enric; López-Soria, Sergio; Marco, Alberto; Cervera, Zoraida; Martín, Maite; Mercader, Irene; Singh, Mahavir; Raeber, Alex; Domingo, Mariano

    2016-02-10

    Vaccination of domestic animals has emerged as an alternative long-term strategy for the control of tuberculosis (TB). A trial under field conditions was conducted in a TB-free goat herd to assess the safety of the Mycobacterium bovis BCG vaccine. Eleven kids and 10 milking goats were vaccinated with BCG. Bacterial shedding and interferon gamma (IFN-γ) responses were monitored throughout the study. Comprehensive pathological examination and mycobacterial culture of target tissues were performed. BCG vaccine strain was only isolated from the draining lymph node of the injection site of a kid euthanized at week 8 post-vaccination. The remaining animals were euthanized at week 24. Six out of 20 showed small granulomas at the injection site. BCG shedding was not detected in either faeces or in milk throughout the study. All vaccinated kids showed BCG-induced IFN-γ responses at week 8 post-vaccination. BCG vaccination of goats showed no lack of biological safety for the animals, environment and public health, and local adverse reactions were negligible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. HIV/TB co-infection:perspectives of TB patients and providers on the integrated HIV/TB pilot program in Tamilnadu, India

    OpenAIRE

    Lakshminarayanan, Mahalakshmi

    2009-01-01

    The WHO recommends routine HIV testing among TB patients as a key strategy to combat the dual HIV/TB epidemic. India has integrated its HIV and TB control programs and is offering provider initiated HIV testing for all TB patients since 2007. Using a mixed methods approach, this study aims to understand the perspectives of TB patients and providers on the integrated HIV/TB pilot program in Tamilnadu, India. A survey conducted by the Tuberculosis Research Center, India on 300 TB patients is th...

  7. Leptospirosis vaccines: Past, present, and future

    Directory of Open Access Journals (Sweden)

    Koizumi N

    2005-01-01

    Full Text Available It is well known that Leptospira vaccine prevents the disease. However specificity for serovars limits the efficacy of killed whole cell vaccines. Leptospiral antigens that induce cross-protective immunity to the various serovars are sought as new vaccine candidates. In this paper, we have summarized both past and current findings about leptospiral antigens that are conserved among pathogenic leptospires and that induce protective immunity in animal models. The full-length genome sequences of two Leptospira strains have been published and reverse vaccinology has been used to identify leptospiral vaccine candidates. Although humoral immunity is thought to be dominant in protection from leptospiral infection, a role for cell-mediated immunity is now being explored.

  8. Oral Vaccination with Heat-Inactivated Mycobacterium bovis Does Not Interfere with the Antemortem Diagnostic Techniques for Tuberculosis in Goats

    Directory of Open Access Journals (Sweden)

    Alvaro Roy

    2017-08-01

    Full Text Available Vaccination against tuberculosis (TB is prohibited in cattle or other species subjected to specific TB eradication campaigns, due to the interference that it may cause with the official diagnostic tests. However, immunization with a heat-inactivated (HI Mycobacterium bovis vaccine via the oral route has been suggested to overcome this issue. In this study, the main goal was to assess the interference of the HI vaccine by different routes of administration using a previous vaccination and re-vaccination (boosting protocol. TB-free kid goats were divided into three groups: oral (n = 16, intramuscular (IM; n = 16, and control (n = 16. Results showed that there was a significant difference in the percentage of animals positive to the single intradermal test (SIT and blood based interferon-gamma release assay (IGRA caused by vaccination when performed in the IM group compared to the oral group (p < 0.001. Nevertheless, no positivity to the SIT or IGRA test was observed in orally vaccinated goats regardless of the different interpretation criteria applied. None of the groups presented positive antibody titers using an in-house ELISA and samples collected 2 months after the boost. These results suggest the potential usefulness of the HI vaccine by the oral route in goats to minimize the interference on diagnostic tests (skin and IGRA tests and reducing the necessity of defined antigens to replace the traditional purified protein derivatives for diagnosis. Finally, the results pave the way to future efficacy studies in goats using different routes of HI vaccination.

  9. Technical Transformation of Biodefense Vaccines

    Science.gov (United States)

    Lu, Shan; Wang, Shixia

    2013-01-01

    Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines. PMID:19837293

  10. Vaccines in a hurry.

    Science.gov (United States)

    Søborg, Christian; Mølbak, Kåre; Doherty, T Mark; Ulleryd, Peter; Brooks, Tim; Coenen, Claudine; van der Zeijst, Ben

    2009-05-26

    Preparing populations for health threats, including threats from new or re-emerging infectious diseases is recognised as an important public health priority. The development, production and application of emergency vaccinations are the important measures against such threats. Vaccines are cost-effective tools to prevent disease, and emergency vaccines may be the only means to prevent a true disaster for global society in the event of a new pandemic with potential to cause morbidity and mortality comparable to the Spanish flu, the polio epidemics in the 1950s, or the SARS outbreak in 2003 if its spread had not been contained in time. Given the early recognition of a new threat, and given the advances of biotechnology, vaccinology and information systems, it is not an unrealistic goal to have promising prototype vaccine candidates available in a short time span following the identification of a new infectious agent; this is based on the assumption that the emerging infection is followed by natural immunity. However, major bottlenecks for the deployment of emergency vaccine are lack of established systems for fast-track regulatory approval of such candidates and limited international vaccine production capacity. In the present discussion paper, we propose mechanisms to facilitate development of emergency vaccines in Europe by focusing on public-private scientific partnerships, fast-track approval of emergency vaccine by regulatory agencies and proposing incentives for emergency vaccine production in private vaccine companies.

  11. The association between ARV and TB drug resistance on TB treatment outcome among Kazakh TB/HIV patients.

    Science.gov (United States)

    Mishkin, Kathryn; Alaei, Kamiar; Alikeyeva, Elmira; Paynter, Christopher; Aringazina, Altyn; Alaei, Arash

    2018-02-26

    TB drug resistance poses a serious threat to the public health of Kazakhstan. This paper presents findings related to TB treatment outcome and drug resistant status among people coinfected with HIV and TB in Kazakhstan. Cohort study using data were provided by the Kazakhstan Ministry of Health's National Tuberculosis Program for 2014 and 2015. Chi-square and logistical regression were performed to understand factors associated with drug resistant TB status and TB treatment outcome. In bivariate analysis, drug resistant status was significantly associated with year of TB diagnosis (p=0.001) viral load (p=0.03). TB treatment outcome was significantly associated with age at diagnosis (p=01), ARV treatment (p <0.0001), and TB drug resistant status (p=0.02). In adjusted analysis, drug resistance was associated with increased odds of successful completion of treatment with successful result compared to treatment failure (OR 6.94, 95% CI: 1.39-34.44) CONCLUSIONS: Our results suggest that being drug resistant is associated with higher odds of completing treatment with successful outcome, even when controlling for receipt of ARV therapy. Copyright © 2018. Published by Elsevier Ltd.

  12. Rotavirus vaccines: an overview.

    OpenAIRE

    Midthun, K; Kapikian, A Z

    1996-01-01

    Rotavirus vaccine development has focused on the delivery of live attenuated rotavirus strains by the oral route. The initial "Jennerian" approach involving bovine (RIT4237, WC3) or rhesus (RRV) rotavirus vaccine candidates showed that these vaccines were safe, well tolerated, and immunogenic but induced highly variable rates of protection against rotavirus diarrhea. The goal of a rotavirus vaccine is to prevent severe illness that can lead to dehydration in infants and young children in both...

  13. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models.

    Science.gov (United States)

    Kwon, Ae Jeong; Moon, Ja Young; Kim, Won Kyong; Kim, Suk; Hur, Jin

    2016-11-01

    Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile PBS, group B mice were intraperitoneally (ip) immunized with 3 × 10 8 colony-forming units (CFUs) of B. abortus strain RB51, group C mice were immunized ip with 3 × 10 8 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 × 10 9 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) were significantly higher in groups B-D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice from systemic infection with virulent B. abortus.

  14. Randomized controlled trial of RTS,S/AS02D and RTS,S/AS01E malaria candidate vaccines given according to different schedules in Ghanaian children.

    Directory of Open Access Journals (Sweden)

    Seth Owusu-Agyei

    2009-10-01

    Full Text Available The target delivery channel of RTS,S candidate malaria vaccines in malaria-endemic countries in Africa is the World Health Organisation Expanded Program on Immunization. As an Adjuvant System, age de-escalation and schedule selection step, this study assessed 3 schedules of RTS,S/AS01(E and RTS,S/AS02(D in infants and young children 5-17 months of age in Ghana.A Phase II, partially-blind randomized controlled study (blind to vaccine, not to schedule, of 19 months duration was conducted in two (2 centres in Ghana between August 2006 and May 2008. Subjects were allocated randomly (1:1:1:1:1:1 to one of six study groups at each study site, each defining which vaccine should be given and by which schedule (0,1-, 0,1,2- or 0,1,7-months. For the 0,1,2-month schedule participants received RTS,S/AS01(E or rabies vaccine at one center and RTS,S/AS01(E or RTS,S/AS02(D at the other. For the other schedules at both study sites, they received RTS,S/AS01(E or RTS,S/AS02(D. The primary outcome measure was the occurrence of serious adverse events until 10 months post dose 1.The number of serious adverse events reported across groups was balanced. One child had a simple febrile convulsion, which evolved favourably without sequelae, considered to be related to RTS,S/AS01(E vaccination. Low grade reactions occurred slightly more frequently in recipients of RTS,S/AS than rabies vaccines; grade 3 reactions were infrequent. Less local reactogenicity occurred with RTS,S/AS01(E than RTS,S/AS02(D. Both candidate vaccines were highly immunogenic for anti-circumsporozoite and anti-Hepatitis B Virus surface antigen antibodies. Recipients of RTS,S/AS01(E compared to RTS,S/AS02(D had higher peak anti-circumsporozoite antibody responses for all 3 schedules. Three dose schedules were more immunogenic than 2 dose schedules. Area under the curve analyses for anti-circumsporozoite antibodies were comparable between the 0,1,2- and 0,1,7-month RTS,S/AS01(E schedules.Both candidate

  15. Recombinant α-actinin subunit antigens of Trichomonas vaginalis as potential vaccine candidates in protecting against trichomoniasis.

    Science.gov (United States)

    Xie, Yi-Ting; Gao, Jiang-Mei; Wu, Ya-Ping; Tang, Petrus; Hide, Geoff; Lai, De-Hua; Lun, Zhao-Rong

    2017-02-16

    Human trichomoniasis caused by Trichomonas vaginalis is one of the most common sexually transmitted diseases with more than 200 million cases worldwide. It has caused a series of health problems to patients. For prevention and control of infectious diseases, vaccines are usually considered as one of the most cost-efficient tools. However, until now, work on the development of T. vaginalis vaccines is still mainly focused on the screening of potential immunogens. Alpha-actinin characterized by high immunogenicity in T. vaginalis was suggested as a promising candidate. Therefore, the purpose of this study was to evaluate the protective potency of recombinant α-actinin against T. vaginalis infection in a mouse intraperitoneal model. Two selected coding regions of α-actinin (ACT-F, 14-469 aa and ACT-T, 462-844 aa) amplified from cDNA were cloned into pET-32a (+) expression vector and transfected into BL21 cells. After induction with IPTG and purification with electroelution, the two recombinant fusion proteins were emulsified in Freund's adjuvant (FA) and used to immunize BALB/C mice. Following intraperitoneal inoculation with T. vaginalis, the survival rate of mice was monitored for the assessment of protective potency. After immunization, the antibody level in mouse serum was assessed by ELISA, splenocyte proliferation response was detected with CCK8 and cytokines in the supernatant of splenocytes were quantified with a cytometric bead-based assay. We successfully obtained purified ACT-F (70.33 kDa) and ACT-T (61.7kDa). Both recombinant proteins could provide significant protection against T. vaginalis challenge, especially ACT-T (with 100% protection within one month). Meanwhile, high levels of specific total IgG and subtypes (IgG1 > IgG2a) were detected in sera from the immunized mice. Our results also revealed a statistically significant increase in splenocyte proliferation and related cytokine (IFN-γ, IL-6, IL-17A and IL-10) production after repeated

  16. Conjugation of the CRM197-inulin conjugate significantly increases the immunogenicity of Mycobacterium tuberculosis CFP10-TB10.4 fusion protein.

    Science.gov (United States)

    Hu, Shun; Yu, Weili; Hu, Chunyang; Wei, Dong; Shen, Lijuan; Hu, Tao; Yi, Youjin

    2017-11-01

    Mycobacterium tuberculosis (Mtb) is a serious fatal pathogen that causes tuberculosis (TB). Effective vaccination is urgently needed to deal with the serious threat from TB. Mtb-secreted protein antigens are important virulence determinants of Mtb with poor immunogenicity. Adjuvants and antigen delivery systems are thus highly desired to improve the immunogenicity of protein antigens. Inulin is a biocompatible polysaccharide (PS) adjuvant that can stimulate a strong cellular and humoral immunity. Bacterial capsular PS and haptens have been conjugated with cross-reacting material 197 (CRM 197 ) to improve their immunogenicity. CFP10 and TB10.4 were two Mtb-secreted immunodominant protein antigens. A CFP10-TB10.4 fusion protein (CT) was used as the antigen for covalent conjugation with the CRM 197 -inulin conjugate (CRM-inu). The resultant conjugate (CT-CRM-inu) elicited high CT-specific IgG titers, stimulated splenocyte proliferation and provoked the secretion of Th1-type and Th2-type cytokines. Conjugation with CRM-inu significantly prolonged the systemic circulation of CT and exposure to the immune system. Moreover, CT-CRM-inu showed no apparent toxicity to cardiac, hepatic and renal functions. Thus, conjugation of CT with CRM-inu provided an effective strategy for development of protein-based vaccines against Mtb infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The meningococcal vaccine candidate neisserial surface protein A (NspA binds to factor H and enhances meningococcal resistance to complement.

    Directory of Open Access Journals (Sweden)

    Lisa A Lewis

    2010-07-01

    Full Text Available Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH to fH-binding protein (fHbp is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a approximately 17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA, a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep I chain of lipooligosaccharide (LOS, or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6-7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components.

  18. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    Directory of Open Access Journals (Sweden)

    Tamborrini Marco

    2011-12-01

    Full Text Available Abstract Background In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP. Methods The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs. The immunogenicity of this adjuvant-free virosomal formulation was compared to GMZ2 formulated with the adjuvants Montanide ISA 720 and Alum in three mouse strains with different genetic backgrounds. Results Intramuscular injections of all three candidate vaccine formulations induced GMZ2-specific antibody responses in all mice tested. In general, the humoral immune response in outbred NMRI mice was stronger than that in inbred BALB/c and C57BL/6 mice. ELISA with the recombinant antigens demonstrated immunodominance of the GLURP component over the MSP3 component. However, compared to the Al(OH3-adjuvanted formulation the two other formulations elicited in NMRI mice a larger proportion of anti-MSP3 antibodies. Analyses of the induced GMZ2-specific IgG subclass profiles showed for all three formulations a predominance of the IgG1 isotype. Immune sera against all three formulations exhibited cross-reactivity with in vitro cultivated blood-stage parasites. Immunofluorescence and immunoblot competition experiments showed that both components of the hybrid protein induced IgG cross-reactive with the corresponding native proteins. Conclusion A virosomal formulation of the chimeric protein GMZ2 induced P. falciparum blood stage parasite cross-reactive IgG responses specific for both MSP3 and GLURP. GMZ2 thus represents a candidate component suitable for inclusion into a multi-valent virosomal

  19. Working towards dengue as a vaccine-preventable disease: challenges and opportunities.

    Science.gov (United States)

    Shrivastava, Ambuj; Tripathi, Nagesh K; Dash, Paban K; Parida, Manmohan

    2017-10-01

    Dengue is an emerging viral disease that affects the human population around the globe. Recent advancements in dengue virus research have opened new avenues for the development of vaccines against dengue. The development of a vaccine against dengue is a challenging task because any of the four serotypes of dengue viruses can cause disease. The development of a dengue vaccine aims to provide balanced protection against all the serotypes. Several dengue vaccine candidates are in the developmental stages such as inactivated, live attenuated, recombinant subunit, and plasmid DNA vaccines. Area covered: The authors provide an overview of the progress made in the development of much needed dengue vaccines. The authors include their expert opinion and their perspectives for future developments. Expert opinion: Human trials of a live attenuated tetravalent chimeric vaccine have clearly demonstrated its potential as a dengue vaccine. Other vaccine candidate molecules such as DENVax, a recombinant chimeric vaccine andTetraVax, are at different stages of development at this time. The authors believe that the novel strategies for testing and improving the immune response of vaccine candidates in humans will eventually lead to the development of a successful dengue vaccine in future.

  20. Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells

    Directory of Open Access Journals (Sweden)

    Yan Mylene L

    2011-08-01

    Full Text Available Abstract Background Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1 gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. Results Five commercially available animal-component free, serum-free media (SFM were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. Conclusions We describe for the

  1. Hepatitis B vaccination: Efficiency of pretesting by RIA-methods

    Energy Technology Data Exchange (ETDEWEB)

    Hale, T I; Schmid, B

    1984-04-01

    Vaccination of individuals who possess antibodies against HBs virus from a previous infection is not necessary. Health-care personnel represents a large population of potential vaccine recipients. The risk of developing hepatitis B among these workers is proportional to the degree of their exposure to both blood and blood products as well as to patients with hepatitis B. The decision to screen before vaccination depends on the costs of screening, the costs of vaccination, and the likelihood of vaccination candidates having had hepatitis B. We have demonstrated the cost effective use of screening using RIA-methods in a group of health workers for anti-HBs. If care is taken in the organization of the vaccination program, prevaccination screening of vaccine candidates can save considerable amounts of money.

  2. Strategies & recent development of transmission-blocking vaccines against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Neha Chaturvedi

    2016-01-01

    Full Text Available Transmission blocking malaria vaccines are aimed to block the development and maturity of sexual stages of parasite within mosquitoes. The vaccine candidate antigens (Pfs25, Pfs48/45, Pfs230 that have shown transmission blocking immunity in model systems are in different stages of development. These antigens are immunogenic with limited genetic diversity. Pfs25 is a leading candidate and currently in phase I clinical trial. Efforts are now focused on the cost-effective production of potent antigens using safe adjuvants and optimization of vaccine delivery system that are capable of inducing strong immune responses. This review addresses the potential usefulness, development strategies, challenges, clinical trials and current status of Plasmodium falciparum sexual stage malaria vaccine candidate antigens for the development of transmission-blocking vaccines.

  3. Prophylactic effect of a therapeutic vaccine against TB based on fragments of Mycobacterium tuberculosis.

    Science.gov (United States)

    Vilaplana, Cristina; Gil, Olga; Cáceres, Neus; Pinto, Sergio; Díaz, Jorge; Cardona, Pere-Joan

    2011-01-01

    The prophylactic capacity of the RUTI® vaccine, based on fragmented cells of Mycobacterium tuberculosis, has been evaluated in respect to aerosol challenge with virulent bacilli. Subcutaneous vaccination significantly reduced viable bacterial counts in both lungs and spleens of C57Bl mice, when challenged 4 weeks after vaccination. RUTI® protected the spleen less than BCG. Following a 9 month vaccination-challenge interval, protection was observed for the lungs, but not for the spleen. Survival of infected guinea pigs was prolonged by vaccination given 5 weeks before challenge. Inoculations of RUTI® shortly after infection significantly reduced the viable bacterial counts in the lungs, when compared with infected control mice. Thus, vaccination by RUTI® has potential for both the prophylaxis and immunotherapy of tuberculosis.

  4. Safety and immunogenicity of three different formulations of an adjuvanted varicella-zoster virus subunit candidate vaccine in older adults: a phase II, randomized, controlled study

    NARCIS (Netherlands)

    Chlibek, Roman; Smetana, Jan; Pauksens, Karlis; Rombo, Lars; van den Hoek, J. Anneke R.; Richardus, Jan H.; Plassmann, Georg; Schwarz, Tino F.; Ledent, Edouard; Heineman, Thomas C.

    2014-01-01

    This study investigated the safety and immunogenicity of different formulations and schedules of a candidate subunit herpes zoster vaccine containing varicella-zoster virus glycoprotein E (gE) with or without the adjuvant system AS01B. In this phase II, single-blind, randomized, controlled study,

  5. Post-Genomics and Vaccine Improvement for Leishmania

    Science.gov (United States)

    Seyed, Negar; Taheri, Tahereh; Rafati, Sima

    2016-01-01

    Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies. PMID:27092123

  6. Expanded polyfunctional T cell response to mycobacterial antigens in TB disease and contraction post-treatment.

    Directory of Open Access Journals (Sweden)

    James M Young

    2010-06-01

    Full Text Available T cells producing multiple factors have been shown to be required for protection from disease progression in HIV but we have recently shown this not to be the case in TB. Subjects with active disease had a greater proportion of polyfunctional cells responding to ESAT-6/CFP-10 stimulation than their infected but non-diseased household contacts (HHC. We therefore wanted to assess this profile in subjects who had successfully completed standard TB chemotherapy.We performed a cross-sectional study using PBMC from TB cases (pre- and post-treatment and HHC. Samples were stimulated overnight with TB antigens (ESAT-6/CFP-10 and PPD and their CD4+ and CD8+ T cells were assessed for production of CD107a, IFN-gamma, IL-2 and TNF-alpha and the complexity of the responses was determined using SPICE and PESTLE software.We found that an increase in complexity (i.e., production of more than 1 factor simultaneously of the T cell profile was associated with TB disease and that this was significantly reduced following TB treatment. This implies that T cells are able to respond adequately to TB antigens with active disease (at least initially but the ability of this response to protect the host from disease progression is hampered, presumably due to immune evasion strategies by the bacteria. These findings have implications for the development of new diagnostics and vaccine strategies.

  7. A randomized trial assessing the safety and immunogenicity of AS01 and AS02 adjuvanted RTS,S malaria vaccine candidates in children in Gabon.

    Directory of Open Access Journals (Sweden)

    Bertrand Lell

    2009-10-01

    Full Text Available The malaria vaccine candidate antigen RTS,S includes parts of the pre-erythrocytic stage circumsporozoite protein fused to the Hepatitis B surface antigen. Two Adjuvant Systems are in development for this vaccine, an oil-in water emulsion--based formulation (AS02 and a formulation based on liposomes (AS01.In this Phase II, double-blind study (NCT00307021, 180 healthy Gabonese children aged 18 months to 4 years were randomized to receive either RTS,S/AS01(E or RTS,S/AS02(D, on a 0-1-2 month vaccination schedule. The children were followed-up daily for six days after each vaccination and monthly for 14 months. Blood samples were collected at 4 time-points. Both vaccines were well tolerated. Safety parameters were distributed similarly between the two groups. Both vaccines elicited a strong specific immune response after Doses 2 and 3 with a ratio of anti-CS GMT titers (AS02(D/AS01(E of 0.88 (95% CI: 0.68-1.15 post-Dose 3. After Doses 2 and 3 of experimental vaccines, anti-CS and anti-HBs antibody GMTs were higher in children who had been previously vaccinated with at least one dose of hepatitis B vaccine compared to those not previously vaccinated.RTS,S/AS01(E proved similarly as well tolerated and immunogenic as RTS,S/AS02(D, completing an essential step in the age de-escalation process within the RTS,S clinical development plan.ClinicalTrials.gov. NCT00307021.

  8. Análisis de la utilidad de la vacuna Candid 1 en la prevención de la fiebre hemorrágica argentina en niños Analysis of the usefulness of Candid 1 vaccine in preventing Argentine hemorrhagic fever in children

    Directory of Open Access Journals (Sweden)

    María Rosa Feuillade

    2005-08-01

    Full Text Available OBJETIVO: Determinar la estrategia más racional de vacunación con Candid 1 para prevenir la fiebre hemorrágica argentina (FHA en los menores de 15 años que viven en el área endémica. MÉTODOS: Para el análisis de la efectividad estimada se diseñó un modelo de árbol de decisión, con dos posibles opciones: vacunar a todos los menores del área endémica (vacunación ampliada o vacunar solamente a los menores de 15 años con mayor riesgo (vacunación selectiva. Estas opciones se compararon con la alternativa de no vacunar. La evaluación se complementó con un análisis de sensibilidad para identificar los valores umbral de las variables críticas que podrían modificar la decisión tomada. Las probabilidades empleadas se tomaron de estudios clínicos y epidemiológicos previos. RESULTADOS: Según el modelo empleado, la estrategia de vacunación ampliada fue la mejor opción, con una utilidad total esperada de 9,99998 (siendo 10 el valor máximo posible. El análisis de sensibilidad demostró que la vacunación selectiva sería la estrategia de mayor utilidad si la incidencia en la población de bajo riesgo se reduce a menos de 3 por 1 000 000 habitantes o si la tasa de reacciones adversas graves a la vacuna asciende a más de 9 por 100 000 habitantes. Ninguna variación de los parámetros empleados en el modelo respaldó la opción de no vacunar. CONCLUSIONES: Con los parámetros de riesgo y de beneficio empleados, se recomienda vacunar con Candid 1 a todos los menores de 15 años que viven en el área endémica de FHA. El modelo propuesto puede adaptarse a las necesidades futuras y ayudar a tomar decisiones mediante la incorporación de los datos prospectivos de la vigilancia de la enfermedad. Estos resultados pueden usarse como base para estudios de costo y eficacia y para otros análisis cuantitativos.OBJECTIVE: To determine the most rational strategy of vaccination with Candid 1 vaccine in order to prevent Argentine hemorrhagic

  9. Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii.

    Science.gov (United States)

    Kim, Seon-Hee; Bae, Young-An; Seoh, Ju-Young; Yang, Hyun-Jong

    2017-06-01

    Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium . Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii -infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

  10. Evaluation of the Mycobacterium tuberculosis SO2 vaccine using a natural tuberculosis infection model in goats.

    Science.gov (United States)

    Bezos, J; Casal, C; Álvarez, J; Roy, A; Romero, B; Rodríguez-Bertos, A; Bárcena, C; Díez, A; Juste, R; Gortázar, C; Puentes, E; Aguiló, N; Martín, C; de Juan, L; Domínguez, L

    2017-05-01

    The development of new vaccines against animal tuberculosis (TB) is a priority for improving the control and eradication of this disease, particularly in those species not subjected to compulsory eradication programmes. In this study, the protection conferred by the Mycobacterium tuberculosis SO 2 experimental vaccine was evaluated using a natural infection model in goats. Twenty-six goats were distributed in three groups: (1) 10 goats served as a control group; (2) six goats were subcutaneously vaccinated with BCG; and (3) 10 goats were subcutaneously vaccinated with SO 2 . Four months after vaccination, all groups were merged with goats infected with Mycobacterium bovis or Mycobacterium caprae, and tested over a 40 week period using a tuberculin intradermal test and an interferon-γ assay for mycobacterial reactivity. The severity of lesions was determined at post-mortem examination and the bacterial load in tissues were evaluated by culture. The two vaccinated groups had significantly lower lesion and bacterial culture scores than the control group (P<0.05); at the end of the study, the SO 2 vaccinated goats had the lowest lesion and culture scores. These results suggest that the SO 2 vaccine provides some protection against TB infection acquired from natural exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Vaccination against group B streptococcus.

    Science.gov (United States)

    Heath, Paul T; Feldman, Robert G

    2005-04-01

    Streptococcus agalactiae (Group B streptococcus) is an important cause of disease in infants, pregnant women, the elderly and in immunosuppressed adults. An effective vaccine is likely to prevent the majority of infant disease (both early and late onset), as well as Group B streptococcus-related stillbirths and prematurity, to avoid the current real and theoretical limitations of intrapartum antibiotic prophylaxis, and to be cost effective. The optimal time to administer such a vaccine would be in the third trimester of pregnancy. The main limitations on the production of a Group B streptococcus vaccine are not technical or scientific, but regulatory and legal. A number of candidates including capsular conjugate vaccines using traditional carrier proteins such as tetanus toxoid and mutant diphtheria toxin CRM197, as well as Group B streptococcus-specific proteins such as C5a peptidase, protein vaccines using one or more Group B streptococcus surface proteins and mucosal vaccines, have the potential to be successful vaccines. The capsular conjugate vaccines using tetanus and CRM197 carrier proteins are the most advanced candidates, having already completed Phase II human studies including use in the target population of pregnant women (tetanus toxoid conjugate), however, no definitive protein conjugates have yet been trialed. However, unless the regulatory environment is changed specifically to allow the development of a Group B streptococcus vaccine, it is unlikely that one will ever reach the market.

  12. A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets and monkeys

    Science.gov (United States)

    A live attenuated H7N7 candidate vaccine virus was generated by reverse genetics using the modified hemagglutinin (HA) and neuraminidase (NA) genes of HP A/Netherlands/219/03 (NL/03) (H7N7) wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 ca (AA ca) (...

  13. In silico prediction of monovalent and chimeric tetravalent vaccines for prevention and treatment of dengue fever.

    Science.gov (United States)

    Vijayakumar, Subramaniyan; Ramesh, Venkatachalam; Prabhu, Srinivasan; Manogar, Palani

    2017-11-01

    Reverse vaccinology method was used to predict the monovalent peptide vaccine candidate to produce antibodies for therapeutic purpose and to predict tetravalent vaccine candidate to act as a common vaccine to cover all the fever dengue virus serotypes. Envelope (E)-proteins of DENV-1-4 serotypes were used for vaccine prediction using NCBI, Uniprot/Swissprot, Swiss-prot viewer, VaxiJen V2.0, TMHMM, BCPREDS, Propred-1, Propred and MHC Pred,. E-proteins of DENV-1-4 serotypes were identified as antigen from which T cell epitopes, through B cell epitopes, were predicted to act as peptide vaccine candidates. Each selected T cell epitope of E-protein was confirmed to act as vaccine and to induce complementary antibody against particular serotype of dengue virus. Chimeric tetravalent vaccine was formed by the conjugation of four vaccines, each from four dengue serotypes to act as a common vaccine candidate for all the four dengue serotypes. It can be justifiably concluded that the monovalent 9-mer T cell epitope for each DENV serotypes can be used to produce specific antibody agaomst dengue virus and a chimeric common tetravalent vaccine candidate to yield a comparative vaccine to cover any of the four dengue virus serotype. This vaccine is expected to act as highly immunogenic against preventing dengue fever.

  14. Dengue Fever: Causes, Complications, and Vaccine Strategies

    Directory of Open Access Journals (Sweden)

    Niyati Khetarpal

    2016-01-01

    Full Text Available Dengue is a highly endemic infectious disease of the tropical countries and is rapidly becoming a global burden. It is caused by any of the 4 serotypes of dengue virus and is transmitted within humans through female Aedes mosquitoes. Dengue disease varies from mild fever to severe conditions of dengue hemorrhagic fever and shock syndrome. Globalization, increased air travel, and unplanned urbanization have led to increase in the rate of infection and helped dengue to expand its geographic and demographic distribution. Dengue vaccine development has been a challenging task due to the existence of four antigenically distinct dengue virus serotypes, each capable of eliciting cross-reactive and disease-enhancing antibody response against the remaining three serotypes. Recently, Sanofi Pasteur’s chimeric live-attenuated dengue vaccine candidate has been approved in Mexico, Brazil, and Philippines for usage in adults between 9 and 45 years of age. The impact of its limited application to the public health system needs to be evaluated. Simultaneously, the restricted application of this vaccine candidate warrants continued efforts in developing a dengue vaccine candidate which is additionally efficacious for infants and naïve individuals. In this context, alternative strategies of developing a designed vaccine candidate which does not allow production of enhancing antibodies should be explored, as it may expand the umbrella of efficacy to include infants and naïve individuals.

  15. Chikungunya Virus Vaccines: Viral Vector-Based Approaches.

    Science.gov (United States)

    Ramsauer, Katrin; Tangy, Frédéric

    2016-12-15

    In 2013, a major chikungunya virus (CHIKV) epidemic reached the Americas. In the past 2 years, >1.7 million people have been infected. In light of the current epidemic, with millions of people in North and South America at risk, efforts to rapidly develop effective vaccines have increased. Here, we focus on CHIKV vaccines that use viral-vector technologies. This group of vaccine candidates shares an ability to potently induce humoral and cellular immune responses by use of highly attenuated and safe vaccine backbones. So far, well-described vectors such as modified vaccinia virus Ankara, complex adenovirus, vesicular stomatitis virus, alphavirus-based chimeras, and measles vaccine Schwarz strain (MV/Schw) have been described as potential vaccines. We summarize here the recent data on these experimental vaccines, with a focus on the preclinical and clinical activities on the MV/Schw-based candidate, which is the first CHIKV-vectored vaccine that has completed a clinical trial. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Hepatitis B vaccination: Efficiency of pretesting by RIA-methods

    International Nuclear Information System (INIS)

    Hale, T.I.; Schmid, B.

    1984-01-01

    Vaccination of individuals who possess antibodies against HBs virus from a previous infection is not necessary. Health-care personnel represents a large population of potential vaccine recipients. The risk of developing hepatitis B among these workers is proportional to the degree of their exposure to both blood and blood products as well as to patients with hepatitis B. The decision to screen before vaccination depends on the costs of screening, the costs of vaccination, and the likelihood of vaccination candidates having had hepatitis B. We have demonstrated the cost effective use of screening using RIA-methods in a group of health workers for anti-HBs. If care is taken in the organization of the vaccination program, prevaccination screening of vaccine candidates can save considerable amounts of money. (orig.) [de

  17. Characterization of Inherent Particles and Mechanism of Thermal Stress Induced Particle Formation in HSV-2 Viral Vaccine Candidate.

    Science.gov (United States)

    Li, Lillian; Kirkitadze, Marina; Bhandal, Kamaljit; Roque, Cristopher; Yang, Eric; Carpick, Bruce; Rahman, Nausheen

    2017-11-10

    Vaccine formulations may contain visible and/or subvisible particles, which can vary in both size and morphology. Extrinsic particles, which are particles not part of the product such as foreign contaminants, are generally considered undesirable and should be eliminated or controlled in injectable products. However, biological products, in particular vaccines, may also contain particles that are inherent to the product. Here we focus on the characterization of visible and subvisible particles in a live, replication-deficient viral vaccine candidate against HSV genital herpes in an early developmental stage. HSV-2 viral vaccine was characterized using a panel of analytical methods, including Fourier transform infrared spectroscopy (FTIR), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot, liquid chromatography-mass spectrometry (LC-MS), light microscopy, transmission electron microscopy (TEM), micro-flow imaging (MFI), dynamic light scattering (DLS), right angle light scattering (RALS), and intrinsic fluorescence. Particles in HSV-2 vaccine typically ranged from hundreds of nanometers to hundreds of micrometers in size and were determined to be inherent to the product. The infectious titer did not correlate with any trend in subvisible particle concentration and size distribution as shown by DLS, MFI, and TEM under stressed conditions. This suggested that particle changes in the submicron range were related to HSV-2 virion structure and had direct impact on biological activity. It was also observed that subvisible and visible particles could induce aggregation in the viral product. The temperature induced aggregation was observed by RALS, intrinsic fluorescence, and DLS. The increase of subvisible particle size with temperature could be fitted to a two-step thermokinetic model. Visible and subvisible particles were found to be inherent to the HSV-2 viral vaccine product. The mechanism of protein aggregation was discussed and a two

  18. Safety and immunogenicity of a candidate parvovirus B19 vaccine.

    Science.gov (United States)

    Bernstein, David I; El Sahly, Hana M; Keitel, Wendy A; Wolff, Mark; Simone, Gina; Segawa, Claire; Wong, Susan; Shelly, Daniel; Young, Neal S; Dempsey, Walla

    2011-10-06

    Parvovirus B19 is an important human pathogen causing erythema infectiosum, transient aplastic crisis in individuals with underlying hemolytic disorders and hydropsfetalis. We therefore evaluated a parvovirus B19 virus like particle (VLP) vaccine. The safety and immunogenicity of a 25 μg dose of parvovirus B19 recombinant capsid; 2.5 and 25 μg doses of the recombinant capsid given with MF59; and saline placebo were assessed in healthy adults. Because of 3 unexplained cutaneous events the study was halted after enrollment of 43 subjects and before any subject received their third scheduled dose. The rashes developed 5-9 days after the first or second injection and were seen in one placebo recipient (without an injection site lesion) and two vaccine recipients (with injection site reactions). No clear cause was established. Other safety evaluations revealed mostly injection site reactions that were mild to moderate with an increase in pain in subjects receiving vaccine and MF59. After dose 2 the majority of vaccine recipients developed ELISA and neutralizing antibody to parvovirus B19. Given the possible severe consequences of parvovirus B19 infection, further development of a safe and effective vaccine continues to be important. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Broad blockade antibody responses in human volunteers after immunization with a multivalent norovirus VLP candidate vaccine: immunological analyses from a phase I clinical trial.

    Directory of Open Access Journals (Sweden)

    Lisa C Lindesmith

    2015-03-01

    Full Text Available Human noroviruses (NoVs are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP candidate vaccine in human volunteers.Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4 were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated.Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential

  20. Adjuvant-Associated Peripheral Blood mRNA Profiles and Kinetics Induced by the Adjuvanted Recombinant Protein Candidate Tuberculosis Vaccine M72/AS01 in Bacillus Calmette–Guérin-Vaccinated Adults

    Directory of Open Access Journals (Sweden)

    Robert A. van den Berg

    2018-03-01

    Full Text Available Systems biology has the potential to identify gene signatures associated with vaccine immunogenicity and protective efficacy. The main objective of this study was to identify optimal postvaccination time points for evaluating peripheral blood RNA expression profiles in relation to vaccine immunogenicity and potential efficacy in recipients of the candidate tuberculosis vaccine M72/AS01. In this phase II open-label study (NCT01669096; https://clinicaltrials.gov/, healthy Bacillus Calmette–Guérin-primed, HIV-negative adults were administered two doses (30 days apart of M72/AS01. Twenty subjects completed the study and 18 subjects received two doses. Blood samples were collected pre-dose 1, pre-dose 2, and 1, 7, 10, 14, 17, and 30 days post-dose 2. RNA expression in whole blood (WB and peripheral blood mononuclear cells (PBMCs was quantified using microarray technology. Serum interferon-gamma responses and M72-specific CD4+ T cell responses to vaccination, and the observed safety profile were similar to previous trials. Two different approaches were utilized to analyze the RNA expression data. First, a kinetic analysis of RNA expression changes using blood transcription modules revealed early (1 day post-dose 2 activation of several pathways related to innate immune activation, both in WB and PBMC. Second, using a previously identified gene signature as a classifier, optimal postvaccination time points were identified. Since M72/AS01 efficacy remains to be established, a PBMC-derived gene signature associated with the protective efficacy of a similarly adjuvanted candidate malaria vaccine was used as a proxy for this purpose. This approach was based on the assumption that the AS01 adjuvant used in both studies could induce shared innate immune pathways. Subjects were classified as gene signature positive (GS+ or gene signature negative (GS−. Assignments of subjects to GS+ or GS− groups were confirmed by significant differences in RNA

  1. The effect of oral vaccination with Mycobacterium bovis BCG on the development of tuberculosis in captive European badgers (Meles meles)

    OpenAIRE

    Chambers, MA; Aldwell, F; Williams, GA; Palmer, S; Gowtage, S; Ashford, R; Dalley, D; Davé, D; Weyer, U; Salguero Bodes, FJ; Nunez, A; Nadian, A; Crawshaw, T; Corner, LAL; Lesellier, S

    2017-01-01

    The European badger (Meles meles) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for b...

  2. Identification of synthetic vaccine candidates against SARS CoV infection

    International Nuclear Information System (INIS)

    Lien, Shu-Pei; Shih, Yi-Ping; Chen, Hsin-Wei; Tsai, Jy-Ping; Leng, Chih-Hsiang; Lin, Min-Han; Lin, Li-Hsiu; Liu, Hsin-Yu; Chou, Ai-Hsiang; Chang, Yu-Wen; Chen, Yi-Ming A.; Chong, Pele; Liu, Shih-Jen

    2007-01-01

    Three peptides, D1 (amino acid residues 175-201), D2 (a.a. 434-467), and TM (a.a. 1128-1159), corresponding to the spike protein (S) of severe acute respiratory syndrome corona virus (SARS CoV) were synthesized and their immunological functions were investigated in three different animals models (mice, guinea pigs, and rabbits). The peptides mixture formulated either with Freund's adjuvant or synthetic adjuvant Montanide ISA-51/oligodeoxy nucleotide CpG (ISA/CpG) could elicit antisera in immunized animals which were capable of inhibiting SARS/HIV pseudovirus entry into HepG2 cells. The neutralizing epitopes were identified using peptides to block the neutralizing effect of guinea pig antisera. The major neutralizing epitope was located on the D2 peptide, and the amino acid residue was fine mapped to 434-453. In BALB/c mice T-cell proliferation assay revealed that only D2 peptide contained T-cell epitope, the sequence of which corresponded to amino acid residue 434-448. The ISA/CpG formulation generated anti-D2 IgG titer comparable to those obtained from Freund's adjuvant formulation, but generated fewer antibodies against D1 or TM peptides. The highly immunogenic D2 peptide contains both neutralizing and Th cell epitopes. These results suggest that synthetic peptide D2 would be useful as a component of SARS vaccine candidates

  3. Vaccines: an ongoing promise?

    Science.gov (United States)

    Alsahli, M; Farrell, R J; Michetti, P

    2001-01-01

    Over the past decade, intensive research has focused on developing a vaccine therapy for Helicobacter pylori. Substantial unresolved questions cloud the current approach, and the development of a vaccine against this unique organism has proved very challenging. Many candidate vaccines have been tested in animal models. The immunogenicity and the safety of some vaccine formulations have been recently evaluated through clinical trials, and the efficacy of these vaccine therapies in humans will be determined in the near future. This article will provide an overview of the current knowledge of natural and vaccine-induced immune responses to H. pylori infection. It will also review past vaccine successes and failures in animal models and the limited experience to date in using vaccine therapy in humans. Several obstacles to H. pylori vaccine development efforts along with the future direction of these efforts will be discussed. Copyright 2001 S. Karger AG, Basel

  4. Tuberculosis Facts - Exposure to TB

    Science.gov (United States)

    Tuberculosis (TB) Facts Exposure to TB What is TB? “TB” is short for a disease called tuberculosis. TB is spread through the air from one ... Viral Hepatitis, STD, and TB Prevention Division of Tuberculosis Elimination

  5. Tuberculosis Facts - Testing for TB

    Science.gov (United States)

    Tuberculosis (TB) Facts Testing for TB What is TB? “TB” is short for a disease called tuberculosis. TB is spread through the air from one ... Viral Hepatitis, STD, and TB Prevention Division of Tuberculosis Elimination

  6. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51.

    Directory of Open Access Journals (Sweden)

    Yimin Wu

    2008-07-01

    Full Text Available Pfs25 and Pvs25, surface proteins of mosquito stage of the malaria parasites P. falciparum and P. vivax, respectively, are leading candidates for vaccines preventing malaria transmission by mosquitoes. This single blinded, dose escalating, controlled Phase 1 study assessed the safety and immunogenicity of recombinant Pfs25 and Pvs25 formulated with Montanide ISA 51, a water-in-oil emulsion.The trial was conducted at The Johns Hopkins Center for Immunization Research, Washington DC, USA, between May 16, 2005-April 30, 2007. The trial was designed to enroll 72 healthy male and non-pregnant female volunteers into 1 group to receive adjuvant control and 6 groups to receive escalating doses of the vaccines. Due to unexpected reactogenicity, the vaccination was halted and only 36 volunteers were enrolled into 4 groups: 3 groups of 10 volunteers each were immunized with 5 microg of Pfs25/ISA 51, 5 microg of Pvs25/ISA 51, or 20 microg of Pvs25/ISA 51, respectively. A fourth group of 6 volunteers received adjuvant control (PBS/ISA 51. Frequent local reactogenicity was observed. Systemic adverse events included two cases of erythema nodosum considered to be probably related to the combination of the antigen and the adjuvant. Significant antibody responses were detected in volunteers who completed the lowest scheduled doses of Pfs25/ISA 51. Serum anti-Pfs25 levels correlated with transmission blocking activity.It is feasible to induce transmission blocking immunity in humans using the Pfs25/ISA 51 vaccine, but these vaccines are unexpectedly reactogenic for further development. This is the first report that the formulation is associated with systemic adverse events including erythema nodosum.ClinicalTrials.gov NCT00295581.

  7. Structural, spectroscopic and cytotoxicity studies of TbF3@CeF3 and TbF3@CeF3@SiO2 nanocrystals

    International Nuclear Information System (INIS)

    Grzyb, Tomasz; Runowski, Marcin; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2013-01-01

    Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF 3 @CeF 3 and TbF 3 @CeF 3 @SiO 2 nanocrystals, formed in this way, were investigated. Spectroscopic studies showed that the differences between these two groups of products resulted from the presence of the SiO 2 shell. X-ray diffraction patterns confirmed the trigonal crystal structure of TbF 3 @CeF 3 nanocrystals. High resolution transmission electron microscopy in connection with energy-dispersive X-ray spectroscopy showed a complex structure of the formed nanocrystals. Crystallized as small discs, ‘the products’, with an average diameter around 10 nm, showed an increase in the concentration of Tb 3+ ions from surface to the core of nanocrystals. In addition to photo-physical analyses, cytotoxicity studies were performed on HSkMEC (Human Skin Microvascular Endothelial Cells) and B16F0 mouse melanoma cancer cells. The cytotoxicity of the nanomaterials was neutral for the investigated cells with no toxic or antiproliferative effect in the cell cultures, either for normal or for cancer cells. This fact makes the obtained nanocrystals good candidates for biological applications and further modifications of the SiO 2 shell.Graphical Abstract

  8. Immunogenicity and Safety of Yellow Fever Vaccine (Stamaril) When Administered Concomitantly With a Tetravalent Dengue Vaccine Candidate in Healthy Toddlers at 12-13 Months of Age in Colombia and Peru: A Randomized Trial.

    Science.gov (United States)

    López, Pio; Lanata, Claudio F; Zambrano, Betzana; Cortés, Margarita; Andrade, Teresa; Amemiya, Isabel; Terrones, Cynthia; Gil, Ana I; Verastegui, Hector; Marquez, Viviana; Crevat, Denis; Jezorwski, John; Noriega, Fernando

    2016-10-01

    Dengue and yellow fever (YF) viruses are closely related members of the Flaviviridae family. Given the inherent similarities between the YF vaccine and dengue vaccine (CYD-TDV) candidate, it is possible that the latter could interfere with the response to the licensed YF vaccine when coadministered. In this randomized, observer-blind, controlled, phase III trial, conducted in Colombia and Peru, 787 toddlers were administered YF vaccine concomitantly with CYD-TDV (group 1) or placebo (group 2), followed by CYD-TDV after 6 and 12 months. YF and dengue neutralizing antibody titers were determined using a 50% plaque reduction neutralization test. Noninferiority was demonstrated if the lower limit of the 2-sided 95% confidence interval of the difference in seroconversion rates [(YF + CYD-TDV) - YF alone] was greater than -10%. The safety of both vaccines was also assessed. Concomitant administration of YF with either CYD-TDV or placebo yielded YF seroconversion rates of 100.0% and 99.7%, respectively. The difference in YF seroconversion rates between the 2 groups was 0.33% (95% confidence interval:0.98; 1.87), demonstrating that the immune response against YF administered concomitantly with CYD-TDV was noninferior to YF administered with placebo. After 2 injections of CYD-TDV, the percentage of participants with dengue titres ≥10 (1/dil) for the 4 dengue serotypes were 91.2%-100% for group 1 and 97.2%-100% in group 2. There were no safety concerns during the study period. Concomitant administration of YF vaccine with CYD-TDV has no relevant impact on the immunogenicity or safety profile of the YF vaccine.

  9. The systems biology of host pathogen interactions.

    Directory of Open Access Journals (Sweden)

    Nikolai Petrovsky

    2013-06-01

    Full Text Available Infectious diseases constitute a major public health burden, particularly in developing countries. Amongst the pathogens afflicting humans, malaria, HIV, shigellosis and tuberculosis (TB cause a large number of deaths. Whilst antivirals, antibiotics and antiparasitic drugs have all helped to reduce the burden of disease, problems of drug resistance are increasingly common, presenting the need to come up with alternative approaches to disease prevention. Ideally, effective prophylactic vaccines would be developed against each of these infections, but unfortunately with the exception of TB, no vaccine is currently available against the other three infections. Baring a breakthrough, coming for example from the application of newer more potent adjuvants to vaccine candidates, new paradigms are needed to help tackle these infectious diseases.

  10. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis.

    Science.gov (United States)

    Moguche, Albanus O; Musvosvi, Munyaradzi; Penn-Nicholson, Adam; Plumlee, Courtney R; Mearns, Helen; Geldenhuys, Hennie; Smit, Erica; Abrahams, Deborah; Rozot, Virginie; Dintwe, One; Hoff, Søren T; Kromann, Ingrid; Ruhwald, Morten; Bang, Peter; Larson, Ryan P; Shafiani, Shahin; Ma, Shuyi; Sherman, David R; Sette, Alessandro; Lindestam Arlehamn, Cecilia S; McKinney, Denise M; Maecker, Holden; Hanekom, Willem A; Hatherill, Mark; Andersen, Peter; Scriba, Thomas J; Urdahl, Kevin B

    2017-06-14

    CD4 T cells are critical for protective immunity against Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB). Yet to date, TB vaccine candidates that boost antigen-specific CD4 T cells have conferred little or no protection. Here we examined CD4 T cell responses to two leading TB vaccine antigens, ESAT-6 and Ag85B, in Mtb-infected mice and in vaccinated humans with and without underlying Mtb infection. In both species, Mtb infection drove ESAT-6-specific T cells to be more differentiated than Ag85B-specific T cells. The ability of each T cell population to control Mtb in the lungs of mice was restricted for opposite reasons: Ag85B-specific T cells were limited by reduced antigen expression during persistent infection, whereas ESAT-6-specific T cells became functionally exhausted due to chronic antigenic stimulation. Our findings suggest that different vaccination strategies will be required to optimize protection mediated by T cells recognizing antigens expressed at distinct stages of Mtb infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Immunogenicity and Efficacy of Live L. tarentolae Expressing KMP11-NTGP96-GFP Fusion as a Vaccine Candidate against Experimental Visceral Leishmaniasis Caused by L. infantum

    Directory of Open Access Journals (Sweden)

    Vahid NASIRI

    2016-10-01

    Full Text Available Background: The aim of present study was to evaluate the protective efficacy of live recombinant L. tarentolae expressing KMP11-NTGP96-GFP fusion as candidates for live engineered recombinant vaccine against visceral leishmaniasis in BALB/c mice.Methods: KMP-11 and NT-GP96 genes cloned into the pJET1.2/blunt cloning vector and then into pEGFP-N1 expression vector. The KMP-11, NT-GP96 and GFP fused in pEGFP-N1 and subcloned into Leishmanian pLEXSY-neo vector. Finally this construct was transferred to L. tarentolae by electroporation. Tranfection was confirmed by SDS-PAGE, WESTERN blot, flowcytometry and RT-PCR. Protective efficacy of this construct was evaluated as a vaccine candidate against visceral leishmaniasis. Parasite burden, humoral and cellular immune responses were assessed before and at 4 weeks after challenge.Results: KMP- NT-Gp96-GFP Fusion was cloned successfully into pLEXSY -neo vector and this construct successfully transferred to L. tarentolae. Finding indicated that immunization with L. tarentolae tarentolae-KMP11-NTGP96-GFP provides significant protection against visceral leishmaniasis and was able to induce an increased expression of IFN-γ and IgG2a. Following challenge, a reduced parasite load in the spleen of the KMP11-NTGP96-GFP immunized group was detected.Conclusion: The present study is the first to use a combination of a Leishmania antigen with an immunologic antigen in live recombinant L. tarentolae and results suggest that L. tarentolae-KMP11-NTGP96-GFP could be considered as a potential tool in vaccination against visceral leishmaniasis and this vaccination strategy could provide a potent rout for future vaccine development. 

  12. MicroRNA expression profiling of PPD-B stimulated PBMC from M. bovis-challenged unvaccinated and BCG vaccinated cattle.

    Science.gov (United States)

    Golby, P; Villarreal-Ramos, B; Dean, G; Jones, G J; Vordermeier, M

    2014-10-07

    There is an urgent need to identify additional diagnostic biomarkers for bovine TB to complement existing read-out systems such as interferon-gamma and for predictive markers of vaccine efficacy to accelerate vaccine development. To evaluate the potential of miRNAs as such biomarkers, we have analysed their expression in bovine PPD stimulated PBMC isolated from unvaccinated and BCG vaccinated cattle before and following Mycobacterium bovis (M. bovis) infection. Using a bovine microRNA microarray, miR-155 was found to show a significant up-regulation in expression in early (week 2) and late (week 11) M. bovis post-infection samples from unvaccinated cattle, while in BCG vaccinated cattle up-regulation was observed only in late post-infection samples. No differential expression of miR-155 was observed in pre-infection samples from unvaccinated and vaccinated cattle. These observations suggest that miR-155 could be exploited as a marker distinguishing vaccinated from infected animals (DIVA). Analysis by TaqMan RT-PCR, verified the up-regulation of miR-155 in unvaccinated cattle post-infection. Significant correlation was found between the degree of pathology and miR-155 induction in the experimentally infected cattle, suggesting miR-155 is a biomarker of disease development and/or severity. Induction of miR155 expression in cattle sourced from farms with confirmed bTB that tested positive in the tuberculin skin or interferon-gamma blood test was found to be significantly higher in cattle presenting with more advanced pathology (defined by the presence of visible TB lesions) compared to infected cattle without visible pathology and thus likely to be of lower infectivity than those with more advanced disease. In conclusion, our data indicate that miR-155 has potential both as a diagnostic and prognostic biomarker that could be used to identify animals with advanced pathology and as a DIVA test read-out. Its role in the immune biology of bovine TB will also be discussed

  13. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Aimee Tan

    2016-12-01

    Full Text Available Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, due to environmental signals or phase variation (i.e., high frequency, random switching of expression, are not ideal vaccine candidates because variable expression could lead to immune evasion. Phase variation is often mediated by the presence of highly mutagenic simple tandem DNA repeats, and genes containing such sequences can be easily identified, and their use discounted as vaccine antigens reconsidered. Recent research has identified phase variably expressed DNA methyltransferases that act as global epigenetic regulators. These phase variable regulons, known as phasevarions, are associated with altered virulence phenotypes and/or expression of vaccine candidates. As such, genes encoding candidate vaccine antigens that have no obvious mechanism of phase variation may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and experimental studies are required to elucidate the distribution and mechanism of action of these DNA methyltransferases, and most importantly, whether they mediate epigenetic regulation of potential and current vaccine candidates. This process is essential to define the stably expressed antigen target profile of bacterial pathogens and thereby facilitate efficient, rational selection of vaccine antigens.

  14. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy.

    Directory of Open Access Journals (Sweden)

    Bryan E Hart

    2016-12-01

    Full Text Available Buruli ulcer (BU vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine.

  15. Idala: An unnamed Function Peptide Vaccine for Tuberculosis

    African Journals Online (AJOL)

    Color development in a microplate reader was ... peptide vaccine for tuberculosis tested by mice immunogenicity experiment. Keywords: ... potential new tuberculosis vaccine candidate. [3]. ..... New York and London: Garland Science,.

  16. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    Directory of Open Access Journals (Sweden)

    Mayara Fernanda Maggioli

    2016-10-01

    Full Text Available Central memory T cells (Tcm and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB; however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector / memory populations from bacille Calmette Guerin (BCG vaccinated and non-vaccinated calves prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves; only differing in magnitude (i.e., infected > vaccinated. BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (three weeks post-infection, non-vaccinates had greater antigen-specific IFN-γ/TNF-α and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains were detected in memory subsets, as well as in effector cells, as early as three weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB.

  17. Accuracy of the QuantiFERON-TB Gold in Tube for diagnosing tuberculosis in a young pediatric population previously vaccinated with Bacille Calmette-Guerin

    Directory of Open Access Journals (Sweden)

    Marcelo Genofre Vallada

    2014-03-01

    Full Text Available Objective: To evaluate the accuracy of an interferongamma release assay (QuantiFERON-TB Gold in Tube for diagnosing Mycobacterium tuberculosis infection in a young pediatric population. Methods: 195 children previously vaccinated with BCG were evaluated, being 184 healthy individuals with no clinical or epidemiological evidence of mycobacterial infection, and 11 with Mycobacterium tuberculosis infection, according to clinical, radiological, and laboratory parameters. A blood sample was obtained from each child and processed according to the manufacturer's instructions. The assay performance was evaluated by a Receiver Operating Characteristic (ROC curve. Results: In the group of 184 non-infected children, 130 (70.6% were under the age of four years (mean age of 35 months. In this group, 177 children (96.2% had negative test results, six (3.2% had indeterminate results, and one (0.5% had a positive result. In the group of 11 infected children, the mean age was 58.5 months, and two of them (18% had negative results. The ROC curve had an area under the curve of 0.88 (95%CI 0.82-0.92; p<0.001, disclosing a predictive positive value of 81.8% for the test (95%CI 46.3-97.4. The assay sensitivity was 81.8% (95%CI 48.2-97.2 and the specificity was 98.8% (95%CI 96-99.8. Conclusions: In the present study, the QuantiFERON-TB Gold in Tube performance for diagnosing M. tuberculosis infection was appropriate in a young pediatric population.

  18. AIDS vaccine: Present status and future challenges

    Directory of Open Access Journals (Sweden)

    Nigam P

    2006-01-01

    Full Text Available Development of a preventive vaccine for HIV is the best hope of controlling the AIDS pandemic. HIV has, however, proved a difficult pathogen to vaccinate against because of its very high mutation rate and capability to escape immune responses. Neutralizing antibodies that can neutralize diverse field strains have so far proved difficult to induce. Adjuvanting these vaccines with cytokine plasmids and a "prime-boost," approach is being evaluated in an effort to induce both CTL and antibody responses and thereby have immune responses active against both infected cells and free viral particles, thereby necessitating fewer doses of recombinant protein to reach maximum antibodies titers. Although obstacles exist in evaluation of candidate HIV vaccines, evidence from natural history studies, new molecular tools in virology and immunology, new adjuvants, new gene expression systems, new antigen delivery systems, recent discoveries in HIV entry and pathogenesis, and promising studies of candidate vaccines in animal models have provided reasons to hope that developing a safe and effective AIDS vaccine is possible and within reach.

  19. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice.

    Science.gov (United States)

    de Oliveira, Natasha Rodrigues; Jorge, Sérgio; Gomes, Charles Klazer; Rizzi, Caroline; Pacce, Violetta Dias; Collares, Thais Farias; Monte, Leonardo Garcia; Dellagostin, Odir Antônio

    2017-03-01

    Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Effect of Oral Vaccination with Mycobacterium bovis BCG on the Development of Tuberculosis in Captive European Badgers (Meles meles).

    Science.gov (United States)

    Chambers, Mark A; Aldwell, Frank; Williams, Gareth A; Palmer, Si; Gowtage, Sonya; Ashford, Roland; Dalley, Deanna J; Davé, Dipesh; Weyer, Ute; Salguero, Francisco J; Nunez, Alejandro; Nadian, Allan K; Crawshaw, Timothy; Corner, Leigh A L; Lesellier, Sandrine

    2017-01-01

    The European badger ( Meles meles ) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 10 8 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a 10-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a 10-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB

  1. Tuberculosis Facts - You Can Prevent TB

    Science.gov (United States)

    Tuberculosis (TB) Facts You Can Prevent TB What is TB? “TB” is short for a disease called tuberculosis. TB is spread through the air from one ... Viral Hepatitis, STD, and TB Prevention Division of Tuberculosis Elimination TB Facts: You Can Prevent TB What ...

  2. Tuberculosis Facts - TB Can Be Treated

    Science.gov (United States)

    Tuberculosis (TB) Facts TB Can Be Treated What is TB? “TB” is short for a disease called tuberculosis. TB is spread through the air from one ... Viral Hepatitis, STD, and TB Prevention Division of Tuberculosis Elimination Page 1 of 2 TB Facts: TB ...

  3. Novel tunable green-red-emitting oxynitride phosphors co-activated with Ce3+, Tb3+, and Eu3+: photoluminescence and energy transfer.

    Science.gov (United States)

    Huo, Jiansheng; Dong, Langping; Lü, Wei; Shao, Baiqi; You, Hongpeng

    2017-07-14

    A series of novel Ce 3+ , Tb 3+ and Eu 3+ ion doped Y 4 SiAlO 8 N-based oxynitride phosphors were synthesized by the solid-state method and characterized by X-ray powder diffraction, scanning electron microscopy, photoluminescence, lifetimes and thermo-luminescence. The excitation of the Ce 3+ /Tb 3+ co-doped and Ce 3+ /Tb 3+ /Eu 3+ tri-doped phosphor with near-UV radiation results in strong linear Tb 3+ green and Eu 3+ red emission. The occurrence of Ce 3+ -Tb 3+ and Ce 3+ -Tb 3+ -Eu 3+ energy transfer processes is responsible for the bright green or red luminescence. The Tb 3+ ion acting as an energy transfer bridge can alleviate MMCT quenching between the Ce 3+ -Eu 3+ ion pairs. The lifetime measurements demonstrated that the energy-transfer mechanisms of Ce 3+ → Tb 3+ and Tb 3+ → Eu 3+ are dipole-quadrupole and quadrupole-quadrupole interactions, respectively. The temperature dependent luminescence measurements showed that as-prepared green/red phosphors have good thermal stability against temperature quenching. The obtained results indicate that these phosphors might serve as promising candidates for n-UV LEDs.

  4. From genomes to vaccines: Leishmania as a model.

    Science.gov (United States)

    Almeida, Renata; Norrish, Alan; Levick, Mark; Vetrie, David; Freeman, Tom; Vilo, Jaak; Ivens, Alasdair; Lange, Uta; Stober, Carmel; McCann, Sharon; Blackwell, Jenefer M

    2002-01-01

    The 35 Mb genome of Leishmania should be sequenced by late 2002. It contains approximately 8500 genes that will probably translate into more than 10 000 proteins. In the laboratory we have been piloting strategies to try to harness the power of the genome-proteome for rapid screening of new vaccine candidate. To this end, microarray analysis of 1094 unique genes identified using an EST analysis of 2091 cDNA clones from spliced leader libraries prepared from different developmental stages of Leishmania has been employed. The plan was to identify amastigote-expressed genes that could be used in high-throughput DNA-vaccine screens to identify potential new vaccine candidates. Despite the lack of transcriptional regulation that polycistronic transcription in Leishmania dictates, the data provide evidence for a high level of post-transcriptional regulation of RNA abundance during the developmental cycle of promastigotes in culture and in lesion-derived amastigotes of Leishmania major. This has provided 147 candidates from the 1094 unique genes that are specifically upregulated in amastigotes and are being used in vaccine studies. Using DNA vaccination, it was demonstrated that pooling strategies can work to identify protective vaccines, but it was found that some potentially protective antigens are masked by other disease-exacerbatory antigens in the pool. A total of 100 new vaccine candidates are currently being tested separately and in pools to extend this analysis, and to facilitate retrospective bioinformatic analysis to develop predictive algorithms for sequences that constitute potentially protective antigens. We are also working with other members of the Leishmania Genome Network to determine whether RNA expression determined by microarray analyses parallels expression at the protein level. We believe we are making good progress in developing strategies that will allow rapid translation of the sequence of Leishmania into potential interventions for disease

  5. Limited variation in vaccine candidate Plasmodium falciparum Merozoite Surface Protein-6 over multiple transmission seasons

    Directory of Open Access Journals (Sweden)

    Branch OraLee H

    2010-05-01

    same community. By contrast, PfMSP6 was highly stable at the sequence level, with no SNPs detected in the 506 samples analysed. This limited diversity supports further investigation of PfMSP6 as a blood stage vaccine candidate, with the clear caveat that any such vaccine must either contain both alleles or generate cross-protective responses that react against both allele classes. Detailed immunoepidemiology studies are needed to establish the viability of these approaches before PfMSP6 advances further down the vaccine development pipeline.

  6. Dengue human infection models to advance dengue vaccine development.

    Science.gov (United States)

    Larsen, Christian P; Whitehead, Stephen S; Durbin, Anna P

    2015-12-10

    Dengue viruses (DENV) currently infect approximately 400 million people each year causing millions to seek care and overwhelming the health care infrastructure in endemic areas. Vaccines to prevent dengue and therapeutics to treat dengue are not currently available. The efficacy of the most advanced candidate vaccine against symptomatic dengue in general and DENV-2 in particular was much lower than expected, despite the ability of the vaccine to induce neutralizing antibody against all four DENV serotypes. Because seroconversion to the DENV serotypes following vaccination was thought to be indicative of induced protection, these results have made it more difficult to assess which candidate vaccines should or should not be evaluated in large studies in endemic areas. A dengue human infection model (DHIM) could be extremely valuable to down-select candidate vaccines or therapeutics prior to engaging in efficacy trials in endemic areas. Two DHIM have been developed to assess the efficacy of live attenuated tetravalent (LATV) dengue vaccines. The first model, developed by the Laboratory of Infectious Diseases at the U. S. National Institutes of Health, utilizes a modified DENV-2 strain DEN2Δ30. This virus was derived from the DENV-2 Tonga/74 that caused only very mild clinical infection during the outbreak from which it was recovered. DEN2Δ30 induced viremia in 100%, rash in 80%, and neutropenia in 27% of the 30 subjects to whom it was given. The Walter Reed Army Institute of Research (WRAIR) is developing a DHIM the goal of which is to identify DENV that cause symptomatic dengue fever. WRAIR has evaluated seven viruses and has identified two that meet dengue fever criteria. Both of these models may be very useful in the evaluation and down-selection of candidate dengue vaccines and therapeutics. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Effect of culling and vaccination on bovine tuberculosis infection in a European badger (Meles meles) population by spatial simulation modelling

    NARCIS (Netherlands)

    Abdou, Marwa; Frankena, Klaas; O'Keeffe, James; Byrne, Andrew W.

    2016-01-01

    The control of bovine tuberculosis (bTB) in cattle herds in the Republic of Ireland (ROI) is partially hindered by spill-back infection from wild badgers (Meles meles). The aim of this study was to determine the relative effects of interventions (combinations of culling and/or vaccination) on bTB

  8. Prescreening of Nicotine Hapten Linkers in Vitro To Select Hapten-Conjugate Vaccine Candidates for Pharmacokinetic Evaluation in Vivo.

    Science.gov (United States)

    Arutla, Viswanath; Leal, Joseph; Liu, Xiaowei; Sokalingam, Sriram; Raleigh, Michael; Adaralegbe, Adejimi; Liu, Li; Pentel, Paul R; Hecht, Sidney M; Chang, Yung

    2017-05-08

    Since the demonstration of nicotine vaccines as a possible therapeutic intervention for the effects of tobacco smoke, extensive effort has been made to enhance nicotine specific immunity. Linker modifications of nicotine haptens have been a focal point for improving the immunogenicity of nicotine, in which the evaluation of these modifications usually relies on in vivo animal models, such as mice, rats or nonhuman primates. Here, we present two in vitro screening strategies to estimate and predict the immunogenic potential of our newly designed nicotine haptens. One utilizes a competition enzyme-linked immunoabsorbent assay (ELISA) to profile the interactions of nicotine haptens or hapten-protein conjugates with nicotine specific antibodies, both polyclonal and monoclonal. Another relies on computational modeling of the interactions between haptens and amino acid residues near the conjugation site of the carrier protein to infer linker-carrier protein conjugation effect on antinicotine antibody response. Using these two in vitro methods, we ranked the haptens with different linkers for their potential as viable vaccine candidates. The ELISA-based hapten ranking was in an agreement with the results obtained by in vivo nicotine pharmacokinetic analysis. A correlation was found between the average binding affinity (IC 50 ) of the haptens to an anti-Nic monoclonal antibody and the average brain nicotine concentration in the immunized mice. The computational modeling of hapten and carrier protein interactions helps exclude conjugates with strong linker-carrier conjugation effects and low in vivo efficacy. The simplicity of these in vitro screening strategies should facilitate the selection and development of more effective nicotine conjugate vaccines. In addition, these data highlight a previously under-appreciated contribution of linkers and hapten-protein conjugations to conjugate vaccine immunogenicity by virtue of their inclusion in the epitope that binds and

  9. A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Carolina R Oliveira

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticles containing the antigen SmRho and coated with sodium alginate. METHODS AND FINDINGS: Our results showed an efficient performance of protein loading of nanoparticles before and after coating with alginate. Characterization of the resulting nanoparticles reported a size around 430 nm and a negative zeta potential. In vitro release studies of protein showed great stability of coated nanoparticles in simulated gastric fluid (SGF and simulated intestinal fluid (SIF. Further in vivo studies was performed with different formulations of chitosan nanoparticles and it showed that oral immunization was not able to induce high levels of antibodies, otherwise intramuscular immunization induced high levels of both subtypes IgG1 and IgG2a SmRho specific antibodies. Mice immunized with nanoparticles associated to CpG showed significant modulation of granuloma reaction. Mice from all groups immunized orally with nanoparticles presented significant levels of protection against infection challenge with S. mansoni worms, suggesting an important role of chitosan in inducing a protective immune response. Finally, mice immunized with nanoparticles associated with the antigen SmRho plus CpG had 38% of the granuloma area reduced and also presented 48% of protection against of S. mansoni infection. CONCLUSIONS: Taken together, this results support this new strategy as an efficient delivery system and a potential vaccine against schistosomiasis.

  10. Thermoluminescence properties of Yb-Tb-doped SiO2 optical fiber subject to 6 and 10 MV photon irradiation

    Science.gov (United States)

    Sahini, M. H.; Wagiran, H.; Hossain, I.; Saeed, M. A.; Ali, H.

    2014-08-01

    This paper reports thermoluminescence characteristics of thermoluminescence dosimetry 100 chips and Yb-Tb-doped optical fibers irradiated with 6 and 10 MV photons. Thermoluminescence response of both dosimeters increases over a wide photon dose range from 0.5 to 4 Gy. Yb-Tb-doped optical fibers demonstrate useful thermoluminescence properties and represent a good candidate for thermoluminescence dosimetry application with ionizing radiation. The results of this fiber have been compared with those of commercially available standard thermoluminescence dosimetry-100 media. Commercially available Yb-Tb-doped optical fibers and said standard media are found to yield a linear relationship between dose- and thermoluminescence signal, although Yb-Tb-doped optical fibers provide only 10 % of the sensitivity of thermoluminescence dosimetry-100. With better thermoluminescence characteristics such as small size (125 μm diameter), high flexibility, easy of handling and low cost, as compared to other thermoluminescence materials, indicate that commercial Yb-Tb-doped optical fiber is a promising thermoluminescence material for variety of applications.

  11. Vaccines. An Ebola whole-virus vaccine is protective in nonhuman primates.

    Science.gov (United States)

    Marzi, Andrea; Halfmann, Peter; Hill-Batorski, Lindsay; Feldmann, Friederike; Shupert, W Lesley; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro

    2015-04-24

    Zaire ebolavirus is the causative agent of the current outbreak of hemorrhagic fever disease in West Africa. Previously, we showed that a whole Ebola virus (EBOV) vaccine based on a replication-defective EBOV (EBOVΔVP30) protects immunized mice and guinea pigs against lethal challenge with rodent-adapted EBOV. Here, we demonstrate that EBOVΔVP30 protects nonhuman primates against lethal infection with EBOV. Although EBOVΔVP30 is replication-incompetent, we additionally inactivated the vaccine with hydrogen peroxide; the chemically inactivated vaccine remained antigenic and protective in nonhuman primates. EBOVΔVP30 thus represents a safe, efficacious, whole-EBOV vaccine candidate that differs from other EBOV vaccine platforms in that it presents all viral proteins and the viral RNA to the host immune system, which might contribute to protective immune responses. Copyright © 2015, American Association for the Advancement of Science.

  12. A study of luminescence from Eu{sup 3+}, Ce{sup 3+}, Tb{sup 3+} and Ce{sup 3+}/Tb{sup 3+} in new potassium gadolinium phosphate K{sub 3}Gd{sub 5}(PO{sub 4}){sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fangui; Zhang, Hongzhi [School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Chen, Cuili; Kim, Sun Il [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Zhang, Xinmin, E-mail: xmzhuga@163.com [School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China)

    2016-06-25

    New potassium gadolinium phosphate [K{sub 3}Gd{sub 5}(PO{sub 4}){sub 6}] doped with Eu{sup 3+}, Ce{sup 3+}, Tb{sup 3+} and co-doped with Ce{sup 3+} and Tb{sup 3+} phosphors were prepared by high temperature solid state synthesis. Phase purity of the powders was checked by X-ray powder diffraction. Luminescence and excitation spectra of samples were reported. In particular, the interaction mechanism between Eu{sup 3+} ions was investigated in terms of the Inokuti–Hirayama model; it was found that the interactions between Eu{sup 3+} can be assigned to dipole–dipole interaction. K{sub 3}Gd{sub 5}(PO{sub 4}){sub 6}:Eu{sup 3+} could act as a candidate for solid state lighting due to its strong absorption band in the near-UV region (350–400 nm). The energy transfer from Ce{sup 3+} to Tb{sup 3+} was confirmed and the mechanism was studied using Dexter's theory; it is concluded that electric dipole–dipole interaction predominates in the energy transfer process from Ce{sup 3+} to Tb{sup 3+} in the K{sub 3}Gd{sub 5}(PO{sub 4}){sub 6} host. The energy transfer efficiency and critical distance were also investigated. - Highlights: • Optical properties of K{sub 3}Gd{sub 5}(PO{sub 4}){sub 6}:RE{sup 3+} are investigated for the first time. • The interaction mechanism between Eu{sup 3+} ions is attributed to dipole–dipole type. • K{sub 3}Eu{sub 5}(PO{sub 4}){sub 6} is a candidate phosphor for application to solid state lighting. • There exists an efficient energy transfer from Ce{sup 3+} to Tb{sup 3+} (η is up to 95%). • The mechanism of energy transfer process is electric dipole–dipole interaction.

  13. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Wu

    2015-11-01

    Full Text Available Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD in humans and non-human primates (NHPs. Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs, vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirus∆VP30, recombinant cytomegalovirus (CMV-based vaccines, recombinant rabies virus (RABV-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  14. Antibiotic Resistance Determinant-Focused Acinetobacter baumannii Vaccine Designed Using Reverse Vaccinology.

    Science.gov (United States)

    Ni, Zhaohui; Chen, Yan; Ong, Edison; He, Yongqun

    2017-02-21

    As one of the most influential and troublesome human pathogens, Acinetobacter baumannii ( A. baumannii ) has emerged with many multidrug-resistant strains. After collecting 33 complete A. baumannii genomes and 84 representative antibiotic resistance determinants, we used the Vaxign reverse vaccinology approach to predict classical type vaccine candidates against A. baumannii infections and new type vaccine candidates against antibiotic resistance. Our genome analysis identified 35 outer membrane or extracellular adhesins that are conserved among all 33 genomes, have no human protein homology, and have less than 2 transmembrane helices. These 35 antigens include 11 TonB dependent receptors, 8 porins, 7 efflux pump proteins, and 2 fimbrial proteins (FilF and CAM87009.1). CAM86003.1 was predicted to be an adhesin outer membrane protein absent from 3 antibiotic-sensitive strains and conserved in 21 antibiotic-resistant strains. Feasible anti-resistance vaccine candidates also include one extracellular protein (QnrA), 3 RND type outer membrane efflux pump proteins, and 3 CTX-M type β-lactamases. Among 39 β-lactamases, A. baumannii CTX-M-2, -5, and -43 enzymes are predicted as adhesins and better vaccine candidates than other β-lactamases to induce preventive immunity and enhance antibiotic treatments. This report represents the first reverse vaccinology study to systematically predict vaccine antigen candidates against antibiotic resistance for a microbial pathogen.

  15. Proteomic profile of culture filtrate from the Brazilian vaccine strain Mycobacterium bovis BCG Moreau compared to M. bovis BCG Pasteur

    Directory of Open Access Journals (Sweden)

    Degrave Wim M

    2011-04-01

    Full Text Available Abstract Background Bacille Calmette-Guerin (BCG is currently the only available vaccine against tuberculosis (TB and comprises a heterogeneous family of sub-strains with genotypic and phenotypic differences. The World Health Organization (WHO affirms that the characterization of BCG sub-strains, both on genomic and proteomic levels, is crucial for a better comprehension of the vaccine. In addition, these studies can contribute in the development of a more efficient vaccine against TB. Here, we combine two-dimensional electrophoresis (2DE and mass spectrometry to analyse the proteomic profile of culture filtrate proteins (CFPs from M. bovis BCG Moreau, the Brazilian vaccine strain, comparing it to that of BCG Pasteur. CFPs are considered of great importance given their dominant immunogenicity and role in pathogenesis, being available for interaction with host cells since early infection. Results The 2DE proteomic map of M. bovis BCG Moreau CFPs in the pH range 3 - 8 allowed the identification of 158 spots corresponding to 101 different proteins, identified by MS/MS. Comparison to BCG Pasteur highlights the great similarity between these BCG strains. However, quantitative analysis shows a higher expression of immunogenic proteins such as Rv1860 (BCG1896, Apa, Rv1926c (BCG1965c, Mpb63 and Rv1886c (BCG1923c, Ag85B in BCG Moreau when compared to BCG Pasteur, while some heat shock proteins, such as Rv0440 (BCG0479, GroEL2 and Rv0350 (BCG0389, DnaK, show the opposite pattern. Conclusions Here we report the detailed 2DE profile of CFPs from M. bovis BCG Moreau and its comparison to BCG Pasteur, identifying differences that may provide relevant information on vaccine efficacy. These findings contribute to the detailed characterization of the Brazilian vaccine strain against TB, revealing aspects that may lead to a better understanding of the factors leading to BCG's variable protective efficacy against TB.

  16. A single dose of a DNA vaccine encoding apa coencapsulated with 6,6'-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in Mycobacterium bovis BCG-primed mice.

    Science.gov (United States)

    Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C C; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon; Horn, Cynthia

    2013-08-01

    Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6'-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB.

  17. New fluorophosphate glasses co-doped with Eu{sup 3+} and Tb{sup 3+} as candidates for generating tunable visible light

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, T.B. de, E-mail: thiago.branquinho-de-queiroz@uni-bayreuth.de [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil); Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth (Germany); Botelho, M.B.S. [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil); University of Brasilia, 70910-900 Brasilia, DF (Brazil); Gonçalves, T.S.; Dousti, M. Reza [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil); Camargo, A.S.S. de, E-mail: andreasc@ifsc.usp.br [Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP (Brazil)

    2015-10-25

    A series of optically active Eu{sup 3+} and Tb{sup 3+} doped fluorophosphate glasses with compositions (BaF{sub 2}){sub 0.25}(SrF{sub 2}){sub 0.25}(AlF{sub 3}){sub 0.10}[Al(PO{sub 3}){sub 3}]{sub 0.20}(YF{sub 3}){sub 0.20-x}(EuF{sub 3} and/or TbF{sub 3}){sub x} (x = 0 to 0.04) was prepared and characterized by optical spectroscopy. While embedded in the oxyfluoride host, the cited rare earth (RE) ions exhibit improved spectroscopic properties such as longer excited state lifetimes than in oxide glasses and intense emissions in the red ({sup 5}D{sub 0} → {sup 7}F{sub 2}, Eu{sup 3+}), green and blue ({sup 5}D{sub 4} → {sup 7}F{sub 5} and {sup 5}D{sub 3},{sup 5}G{sub 6} → {sup 7}F{sub 5},{sup 7}F{sub 4}, Tb{sup 3+}) spectral regions. Based on this fact, co-doped samples can be designed with appropriate concentrations of these two ions and generate tunable and white light upon excitation with suitable wavelengths, dispensing the need for a third blue emitting RE ion. Four co-doped samples with equal amounts of EuF{sub 3} and TbF{sub 3} and total concentration of 0.3, 0.5, 1.0 and 1.5 mol% were tested. Their CIE chromaticity coordinates were calculated for various excitation wavelengths in the region from 350 to 360 nm allowing tuned emission from blue to red. The long lifetime values of the emitting levels in these co-doped samples (τ ≈ 3.1 ms for Eu{sup 3+5}D{sub 0}, and τ ≈ 4.0 ms for Tb{sup 3+5}D{sub 4}), associated with fairly high quantum yields (Q.Y. = 5–12%) of the samples indicate that these materials could be efficiently pumped by high power LEDs around 355 nm. - Highlights: • Fluorophosphate glasses doped with Eu{sup 3+} and Tb{sup 3+} and excellent optical properties. • Tunable visible emission and white emission in co-doped samples. • Rare earth bonding preference to fluoride rather than phosphate ions.

  18. Third generation DIVA vaccine towards classical swine fever virus. Efficacy in face of maternal immunity

    DEFF Research Database (Denmark)

    Rangelova, Desislava Yordanova

    General purpose and objectives Classical swine fever (CSF) is a highly contagious disease that causes huge economical losses and animal welfare concerns worldwide. Generally, vaccination is an effective and safe method to control the disease. Following vaccination the pig’s immune system develops...... a new DIVA vaccine candidate. The vaccine candidate “CP7E2alf” is intended for either intramuscular vaccination of domestic pig or for bait vaccination of wild boar. In this thesis as part of the clinical testing of the injection vaccine the efficacy of “CP7E2alf” was evaluated in young piglets...

  19. MPT-51/CpG DNA vaccine protects mice against Mycobacterium tuberculosis.

    Science.gov (United States)

    Silva, Bruna Daniella de Souza; da Silva, Ediane Batista; do Nascimento, Ivan Pereira; Dos Reis, Michelle Cristina Guerreiro; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2009-07-16

    Tuberculosis (TB) is a severe infectious disease that kills approximately two million people worldwide every year. Because BCG protection is variable and does not protects adults, there is a great need for a new vaccine against TB that does not represent a risk for immunocompromised patients and that is also capable of protecting adult individuals. MPT-51 is a protein found in the genome of mycobacteria and binds to the fibronectin of the extracellular matrix, which may have a role in host tissue attachment and virulence. In order to test the usefulness of MPT-51 as a subunit vaccine, BALB/c were vaccinated and challenged with Mycobacterium tuberculosis. The infection of BALB/c with M. tuberculosis increased the number of IFN-gamma(+) T lymphocytes specific to MPT-51 in the spleen and lungs. Inoculation with rMPT-51/FIA and with rMPT-51/CpG DNA in non-infected BALB/c increased the amounts of IFN-gamma(+) T lymphocytes. Inoculation with rMPT-51/FIA also induced a humoral response specific to MPT-51. CFU counts of lung tissues done 60 days after infection showed a reduction of about 2 log in the bacteria load in the group of animals inoculated with rMPT-51/CpG DNA. These results make MPT-51 a valuable component to be further evaluated in the development of other subunit vaccines.

  20. Host markers in Quantiferon supernatants differentiate active TB from latent TB infection: preliminary report

    Directory of Open Access Journals (Sweden)

    Walzl Gerhard

    2009-05-01

    Full Text Available Abstract Background Interferon gamma release assays, including the QuantiFERON® TB Gold In Tube (QFT have been shown to be accurate in diagnosing Mycobacterium tuberculosis infection. These assays however, do not discriminate between latent TB infection (LTBI and active TB disease. Methods We recruited twenty-three pulmonary TB patients and 34 household contacts from Cape Town, South Africa and performed the QFT test. To investigate the ability of new host markers to differentiate between LTBI and active TB, levels of 29 biomarkers in QFT supernatants were evaluated using a Luminex multiplex cytokine assay. Results Eight out of 29 biomarkers distinguished active TB from LTBI in a pilot study. Baseline levels of epidermal growth factor (EGF soluble CD40 ligand (sCD40L, antigen stimulated levels of EGF, and the background corrected antigen stimulated levels of EGF and macrophage inflammatory protein (MIP-1β were the most informative single markers for differentiation between TB disease and LTBI, with AUCs of 0.88, 0.84, 0.87, 0.90 and 0.79 respectively. The combination of EGF and MIP-1β predicted 96% of active TB cases and 92% of LTBIs. Combinations between EGF, sCD40L, VEGF, TGF-α and IL-1α also showed potential to differentiate between TB infection states. EGF, VEGF, TGF-α and sCD40L levels were higher in TB patients. Conclusion These preliminary data suggest that active TB may be accurately differentiated from LTBI utilizing adaptations of the commercial QFT test that includes measurement of EGF, sCD40L, MIP-1β, VEGF, TGF-α or IL-1α in supernatants from QFT assays. This approach holds promise for development as a rapid diagnostic test for active TB.

  1. AEROMONAS SALMONICIDA INFECTION IN VACCINATED RAINBOW TROUT

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Skov, Jakob; Mohammad, Rezkar Jaafar

    In vivo testing of any candidate vaccine is influenced by the choice of challenge method and the external environmental conditions. In the present study, a comparative challenge study was performed to evaluate the efficacy of different vaccines against the bacterial pathogen Aeromonas salmonicida...

  2. Next generation vaccines.

    Science.gov (United States)

    Riedmann, Eva M

    2011-07-01

    In February this year, about 100 delegates gathered for three days in Vienna (Austria) for the Next Generation Vaccines conference. The meeting held in the Vienna Hilton Hotel from 23rd-25th February 2011 had a strong focus on biotech and industry. The conference organizer Jacob Fleming managed to put together a versatile program ranging from the future generation of vaccines to manufacturing, vaccine distribution and delivery, to regulatory and public health issues. Carefully selected top industry experts presented first-hand experience and shared solutions for overcoming the latest challenges in the field of vaccinology. The program also included several case study presentations on novel vaccine candidates in different stages of development. An interactive pre-conference workshop as well as interactive panel discussions during the meeting allowed all delegates to gain new knowledge and become involved in lively discussions on timely, interesting and sometimes controversial topics related to vaccines.

  3. Treatment Outcomes of Patients with Multidrug-Resistant Tuberculosis (MDR- TB) Compared with Non-MDR-TB Infections in Peninsular Malaysia.

    Science.gov (United States)

    Elmi, Omar Salad; Hasan, Habsah; Abdullah, Sarimah; Mat Jeab, Mat Zuki; Ba, Zilfalil; Naing, Nyi Nyi

    2016-07-01

    Treating patients with multidrug-resistant tuberculosis (MDR-TB) strains is more complicated, complex, toxic, expensive, than treating patients with susceptible TB strains. This study aims to compare the treatment outcomes and potential factors associated between patients with MDR-TB and non MDR TB infections in peninsular Malaysia. This study was a retrospective cohort study. Data were collected from the medical records of all registered MDR-TB patients and Non-MDR-TB patients at five TB hospitals in peninsular Malaysia from January 2010 to January 2014. A total of 314 subjects were studied, including 105 MDR-TB cases and 209 non-MDR-TB. After TB treatment, 24.8% of the MDR-TB patients and 17.7% of non MDR TB relapsed; 17.1% of the MDR-TB patients and 16.3% of non MDR TB defaulted from TB treatment. A significant difference seen in treatment success rate 17.1% for MDR-TB; 63.1% for non MDR TB (P history of TB treatment, and presence of HIV infection.

  4. A Comparative Study of Er3+, Er3+-Eu3+, Er3+-Tb3+, and Er3+-Eu3+-Tb3+ Codoped Y2O3 Nanoparticles as Optical Heaters

    Directory of Open Access Journals (Sweden)

    G. A. Sobral

    2015-01-01

    Full Text Available Fluorescence intensity ratio (FIR technique, based on the thermal coupling of H11/22 and S3/24 energy levels of erbium ions, was used to study the optical heating behavior of rare earth doped yttrium oxide nanophosphors (Y2O3:Er3+, Y2O3:Er3+-Eu3+, Y2O3:Er3+-Tb3+, and Y2O3:Er3+-Eu3+-Tb3+ synthesized via PVA-assisted sol-gel route. The samples were optically heated by an 800 nm CW diode laser, while the upconverted green emissions were used to measure their temperatures in real time. The experimental results indicate that the studied nanoparticles are promising candidates to applications such as photothermal treatments and hyperthermia.

  5. Evaluation of smallpox vaccines using variola neutralization.

    Science.gov (United States)

    Damon, Inger K; Davidson, Whitni B; Hughes, Christine M; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Frey, Sharon E; Newman, Frances; Belshe, Robert B; Yan, Lihan; Karem, Kevin

    2009-08-01

    The search for a 'third'-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific 'in vitro' activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination.

  6. Molecular signature of high yield (growth influenza a virus reassortants prepared as candidate vaccine seeds.

    Directory of Open Access Journals (Sweden)

    Manojkumar Ramanunninair

    Full Text Available Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8, to provide the high yield reassortant (HYR viral 'seeds' for vaccine production. HYR must contain the hemagglutinin (HA and neuraminidase (NA genes of wt virus and one to six 'internal' genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo.The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2 and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry.Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA.In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine 'seed' viruses.

  7. Lay beliefs of TB and TB/HIV co-infection in Addis Ababa, Ethiopia: a qualitative study

    Directory of Open Access Journals (Sweden)

    Frich Jan C

    2011-08-01

    Full Text Available Abstract Background Knowledge about lay beliefs of etiology, transmission and treatment of TB, and lay perceptions of the relationship between TB and HIV is important for understanding patients' health seeking behavior and adherence to treatment. We conducted a study to explore lay beliefs about TB and TB/HIV co-infection in Addis Ababa, Ethiopia. Findings We conducted a qualitative study using in-depth interviews with 15 TB/HIV co-infected patients and 9 health professionals and focus group discussions with 14 co-infected patients in Addis-Ababa, Ethiopia. We found that a predominant lay belief was that TB was caused by exposure to cold. Excessive sun exposure, exposure to mud, smoking, alcohol, khat and inadequate food intake were also reported as causes for TB. Such beliefs initially led to self-treatment. The majority of patients were aware of an association between TB and HIV. Some reported that TB could transform into HIV, while others said that the body could be weakened by HIV and become more susceptible to illnesses such as TB. Some patients classified TB as either HIV-related or non-HIV-related, and weight loss was a hallmark for HIV-related TB. The majority of patients believed that people in the community knew that there was an association between TB and HIV, and some feared that this would predispose them to HIV-related stigma. Conclusion There is a need for culturally sensitive information and educational efforts to address misperceptions about TB and HIV. Health professionals should provide information about causes and treatment of TB and HIV to co-infected patients.

  8. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines.

    Science.gov (United States)

    Surenaud, Mathieu; Lacabaratz, Christine; Zurawski, Gérard; Lévy, Yves; Lelièvre, Jean-Daniel

    2017-10-01

    Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.

  9. Characterization and protective efficacy in an animal model of a novel truncated rotavirus VP8 subunit parenteral vaccine candidate.

    Science.gov (United States)

    Xue, Miaoge; Yu, Linqi; Che, Yaojian; Lin, Haijun; Zeng, Yuanjun; Fang, Mujin; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2015-05-21

    The cell-attachment protein VP8* of rotavirus is a potential candidate parenteral vaccine. However, the yield of full-length VP8 protein (VP8*, residues 1-231) expressed in Escherichia coli was low, and a truncated VP8 protein (ΔVP8*, residues 65-231) cannot elicit efficient protective immunity in a mouse model. In this study, tow novel truncated VP8 proteins, VP8-1 (residues 26-231) and VP8-2 (residues 51-231), were expressed in E. coli and evaluated for immunogenicity and protective efficacy, compared with VP8* and ΔVP8*. As well as ΔVP8*, the protein VP8-1 and VP8-2 were successfully expressed in high yield and purified in homogeneous dimeric forms, while the protein VP8* was expressed with lower yield and prone to aggregation and degradation in solution. Although the immunogenicity of the protein VP8*, VP8-1, VP8-2 and ΔVP8* was comparable, immunization of VP8* and VP8-1 elicited significantly higher neutralizing antibody titers than that of VP8-2 and ΔVP8* in mice. Furthermore, when assessed using a mouse maternal antibody model, the efficacy of VP8-1 to protect against rotavirus-induced diarrhea in pups was comparable to that of VP8*, both were dramatically higher than that of VP8-2 and ΔVP8*. Taken together, the novel truncated protein VP8-1, with increased yield, improved homogeneity and high protective efficacy, is a viable candidate for further development of a parenterally administrated prophylactic vaccine against rotavirus infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Novel CTL epitopes identified through a Y. pestis proteome-wide analysis in the search for vaccine candidates against plague.

    Science.gov (United States)

    Zvi, Anat; Rotem, Shahar; Zauberman, Ayelet; Elia, Uri; Aftalion, Moshe; Bar-Haim, Erez; Mamroud, Emanuelle; Cohen, Ofer

    2017-10-20

    The causative agent of Plague, Yersinia pestis, is a highly virulent pathogen and a potential bioweapon. Depending on the route of infection, two prevalent occurrences of the disease are known, bubonic and pneumonic. The latter has a high fatality rate. In the absence of a licensed vaccine, intense efforts to develop a safe and efficacious vaccine have been conducted, and humoral-driven subunit vaccines containing the F1 and LcrV antigens are currently under clinical trials. It is well known that a cellular immune response might have an essential additive value to immunity and protection against Y. pestis infection. Nevertheless, very few documented epitopes eliciting a protective T-cell response have been reported. Here, we present a combined high throughput computational and experimental effort towards identification of CD8 T-cell epitopes. All 4067 proteins of Y. pestis were analyzed with state-of-the-art recently developed prediction algorithms aimed at mapping potential MHC class I binders. A compilation of the results obtained from several prediction methods revealed a total of 238,000 peptide candidates, which necessitated downstream filtering criteria. Our previously established and proven approach for enrichment of true positive CTL epitopes, which relies on mapping clusters rich in tandem or overlapping predicted MHC binders ("hotspots"), was applied, as well as considerations of predicted binding affinity. A total of 1532 peptides were tested for their ability to elicit a specific T-cell response by following the production of IFNγ from splenocytes isolated from vaccinated mice. Altogether, the screen resulted in 178 positive responders (11.8%), all novel Y. pestis CTL epitopes. These epitopes span 113 Y. pestis proteins. Substantial enrichment of membrane-associated proteins was detected for epitopes selected from hotspots of predicted MHC binders. These results considerably expand the repertoire of known CTL epitopes in Y. pestis and pave the way to

  11. Production optimisation of a DNA vaccine candidate against ...

    African Journals Online (AJOL)

    Plasmid DNA (pDNA) vaccines are promising means to prevent and treat infectious diseases, such as leishmaniasis, but immunisation protocols require large amounts of supercoiled plasmid DNA (scpDNA). Although pDNA can be produced at a reasonable cost in bioreactors; this scale of production may not be the best ...

  12. Tuberculosis Facts - TB and HIV/AIDS

    Science.gov (United States)

    Tuberculosis (TB) Facts TB and HIV/AIDS What is TB? “TB” is short for a disease called tuberculosis. TB is spread through the air from one ... Viral Hepatitis, STD, and TB Prevention Division of Tuberculosis Elimination

  13. Association between passive smoking and Mycobacterium tuberculosis infection in children with household TB contact

    Directory of Open Access Journals (Sweden)

    Novaily Zuliartha

    2015-03-01

    Full Text Available Background Tuberculosis (TB and cigarette consumption are relatively high in Indonesia. Passive smoking may increase the risk of infection and disease in adults and children exposed to TB. An association between passive smoking and Mycobacterium tuberculosis infection in children has not been well documented. Objective To assess for an association between passive smoking and M. tuberculosis infection in children who had household contact with a TB patient. Methods This cross-sectional study was conducted in February and March 2011. Children aged 5 to 18 years who had household contact with a TB patient underwent tuberculin testing for M. tuberculosis infection. Subjects were divided into two groups: those exposed to passive smoke and those not exposed to passive smoke. Chi-square test was used to assess for an association between passive smoking and M. tuberculosis infection. Results There were 140 children enrolled in this study, with 70 exposed to passive smoke and 70 not exposed to passive smoke. Prevalence of M. tuberculosis infection was significantly higher in the passive smoking group than in those not exposed to passive smoke [81.4% and 52.9%, respectively, (P= 0.0001]. In the passive smoking group there were significant associations between nutritional state, paternal and maternal education, and M. tuberculosis infection. But no associations were found between M. tuberculosis infection and familial income or BCG vaccination. Conclusion Among children who had household contact with a TB patient, they who exposed to passive smoke are more likely to have M. tuberculosis infection compared to they who not exposed to passive smoke.

  14. Subunit vaccine candidates against Aeromonas salmonicida in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Marana, Moonika Haahr; Jørgensen, Louise von Gersdorff; Skov, Jakob; Chettri, Jiwan Kumar; Holm Mattsson, Andreas; Dalsgaard, Inger; Kania, Per Walter; Buchmann, Kurt

    2017-01-01

    Aeromonas salmonicida subsp. salmonicida is the etiological agent of furunculosis and a major fish health problem in salmonid aquaculture worldwide. Injection vaccination with commercial mineral oil-adjuvanted bacterin vaccines has been partly successful in preventing the disease but in Danish rainbow trout (Oncorhynchus mykiss, Walbaum) aquaculture furunculosis outbreaks still occur. In this study we tested the efficacy of experimental subunit vaccines against A. salmonicida infection in rainbow trout. We utilized in silico screening of the proteome of A. salmonicida subsp. salmonicida strain A449 and identified potential protective protein antigens that were tested by in vivo challenge trial. A total of 14 proteins were recombinantly expressed in Escherichia coli and prepared in 3 different subunit vaccine combinations to immunize 3 groups of rainbow trout by intraperitoneal (i.p.) injection. The fish were exposed to virulent A. salmonicida 7 weeks after immunization. To assess the efficacy of the subunit vaccines we evaluated the immune response in fish after immunization and challenge infection by measuring the antibody levels and monitoring the survival of fish in different groups. The survival of fish at 3 weeks after challenge infection showed that all 3 groups of fish immunized with 3 different protein combinations exhibited significantly lower mortalities (17-30%) compared to the control groups (48% and 56%). The ELISA results revealed significantly elevated antibody levels in fish against several protein antigens, which in some cases were positively correlated to the survival.

  15. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.

    Science.gov (United States)

    Abbink, Peter; Maxfield, Lori F; Ng'ang'a, David; Borducchi, Erica N; Iampietro, M Justin; Bricault, Christine A; Teigler, Jeffrey E; Blackmore, Stephen; Parenteau, Lily; Wagh, Kshitij; Handley, Scott A; Zhao, Guoyan; Virgin, Herbert W; Korber, Bette; Barouch, Dan H

    2015-02-01

    Adenovirus vectors are widely used as vaccine candidates for a variety of pathogens, including HIV-1. To date, human and chimpanzee adenoviruses have been explored in detail as vaccine vectors. The phylogeny of human and chimpanzee adenoviruses is overlapping, and preexisting humoral and cellular immunity to both are exhibited in human populations worldwide. More distantly related adenoviruses may therefore offer advantages as vaccine vectors. Here we describe the primary isolation and vectorization of three novel adenoviruses from rhesus monkeys. The seroprevalence of these novel rhesus monkey adenovirus vectors was extremely low in sub-Saharan Africa human populations, and these vectors proved to have immunogenicity comparable to that of human and chimpanzee adenovirus vaccine vectors in mice. These rhesus monkey adenoviruses phylogenetically clustered with the poorly described adenovirus species G and robustly stimulated innate immune responses. These novel adenoviruses represent a new class of candidate vaccine vectors. Although there have been substantial efforts in the development of vaccine vectors from human and chimpanzee adenoviruses, far less is known about rhesus monkey adenoviruses. In this report, we describe the isolation and vectorization of three novel rhesus monkey adenoviruses. These vectors exhibit virologic and immunologic characteristics that make them attractive as potential candidate vaccine vectors for both HIV-1 and other pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation.

    Science.gov (United States)

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M.

  17. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  18. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    Science.gov (United States)

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD. © 2015 The Author(s) Published by S. Karger AG, Basel.

  19. Prophylactic Hepatitis E Vaccine.

    Science.gov (United States)

    Zhang, Jun; Zhao, Qinjian; Xia, Ningshao

    2016-01-01

    Hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection-associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals; two of them were tested in human and evidenced to be well tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin ® (HEV 239 vaccine), was licensed in China and launched in 2012.

  20. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    Science.gov (United States)

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  1. Immunogenicity and in vitro Protective Efficacy of a Recombinant Multistage Plasmodium falciparum Candidate Vaccine

    Science.gov (United States)

    Shi, Ya Ping; Hasnain, Seyed E.; Sacci, John B.; Holloway, Brian P.; Fujioka, Hisashi; Kumar, Nirbhay; Wohlhueter, Robert; Hoffman, Stephen L.; Collins, William E.; Lal, Altaf A.

    1999-02-01

    Compared with a single-stage antigen-based vaccine, a multistage and multivalent Plasmodium falciparum vaccine would be more efficacious by inducing "multiple layers" of immunity. We have constructed a synthetic gene that encodes for 12 B cell, 6 T cell proliferative, and 3 cytotoxic T lymphocyte epitopes derived from 9 stage-specific P. falciparum antigens corresponding to the sporozoite, liver, erythrocytic asexual, and sexual stages. The gene was expressed in the baculovirus system, and a 41-kDa antigen, termed CDC/NIIMALVAC-1, was purified. Immunization in rabbits with the purified protein in the presence of different adjuvants generated antibody responses that recognized vaccine antigen, linear peptides contained in the vaccine, and all stages of P. falciparum. In vitro assays of protection revealed that the vaccine-elicited antibodies strongly inhibited sporozoite invasion of hepatoma cells and growth of blood-stage parasites in the presence of monocytes. These observations demonstrate that a multicomponent, multistage malaria vaccine can induce immune responses that inhibit parasite development at multiple stages. The rationale and approach used in the development of a multicomponent P. falciparum vaccine will be useful in the development of a multispecies human malaria vaccine and vaccines against other infectious diseases.

  2. Advances in the development of vaccines for dengue fever

    Directory of Open Access Journals (Sweden)

    Simmons M

    2012-05-01

    Full Text Available Monika Simmons1, Nimfa Teneza-Mora1, Robert Putnak21Viral and Rickettsial Diseases Department, Naval Medical Research Center, 2Division of Viral Diseases, Walter Reed Army Institute of Research, Silver Spring, MD, USAAbstract: Dengue fever is caused by the mosquito-borne dengue virus (DENV serotypes 1–4, and is the most common arboviral infection of humans in subtropical and tropical regions of the world. There are currently no prophylaxis or treatment options in the form of vaccines or antivirals, leaving vector control the only method of prevention. A particular challenge with DENV is that a successful vaccine has to be effective against all four serotypes without predisposing for antibody-mediated enhanced disease. In this review, we discuss the current lead vaccine candidates in clinical trials, as well as some second-generation vaccine candidates undergoing preclinical evaluation. In addition, we discuss DENV epidemiology, clinical disease and strategies used for Flavivirus antivirals in the past, the development of new DENV therapeutics, and their potential usefulness for prophylaxis and treatment.Keywords: tetravalent dengue vaccine, live attenuated vaccine, purified inactivated vaccine, DNA vaccine, antibody-dependent enhancement, antivirals

  3. PolyTB: A genomic variation map for Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc

    2014-02-15

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest. 2014 Elsevier Ltd. All rights reserved.

  4. The effects of Tb substitution for La on the magnetic properties of LaFe11.5Si1.5 compound

    Science.gov (United States)

    Imam, H.; Zhang, H. G.; Xu, L.; Zhao, J. L.; Gao, X. X.; Yue, M.

    2018-05-01

    The structural and magnetic properties of La1-yTbyFe11.5Si1.5 compounds have been investigated. The substituted 5 percent of Tb has remarkably increased the maximum entropy change (-ΔSM) to a value of 25.2 J/kg·K. However, a further increase of Tb leads to a monotonous decrease in the entropy change, mainly due to phase separation. The Tb substitution also can lower the thermal and magnetic hysteresis loss of the system. Another feature of this replacement is that, with Tb content higher than 10 percent, the Curie temperature (TC) starts to increase and reaches 197 K when 30 percent of La is substituted. These results indicate that La1-yTbyFe11.5Si1.5 may be a promising candidate for magnetic refrigeration material in certain temperature range.

  5. Hendra and Nipah viruses: pathogenesis, animal models and recent breakthroughs in vaccination

    Directory of Open Access Journals (Sweden)

    Weingartl HM

    2015-09-01

    Full Text Available Hana M Weingartl National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada Abstract: Hendra and Nipah viruses are two highly pathogenic zoonotic members of the genus Henipavirus, family Paramyxoviridae, requiring work under biosafety level 4 conditions due to a lack of effective therapy and human vaccines. Several vaccine candidates were protective in animal models: recombinant vaccinia virus expressing Nipah virus (NiV F and G proteins in hamsters against NiV; recombinant ALVAC–NiV F and G in swine against NiV; recombinant Hendra virus (HeV soluble G protein (sGHeV against HeV and NiV in cats, ferrets, horses, and African green monkeys (AGM; recombinant vesicular stomatitis virus-based vectors expressing NiV F or G against NiV in hamsters and ferrets; measles virus-based NiV G vaccine candidate in hamsters and AGMs against NiV; and adenoassociated virus expressing NiG protein, which protected hamsters against NiV. The sGHeV was licensed for use in horses (Equivac HeV® in 2012. It is the first vaccine candidate licensed against a biosafety level 4 agent. With the development of suitable animal models (ferret, hamster and, importantly, AGM, progress can be made toward development of a human vaccine.Keywords: henipavirus, equine, swine, human infection, animal models, vaccine candidates

  6. New vaccines against otitis media: projected benefits and cost-effectiveness.

    Science.gov (United States)

    O'Brien, Megan A; Prosser, Lisa A; Paradise, Jack L; Ray, G Thomas; Kulldorff, Martin; Kurs-Lasky, Marcia; Hinrichsen, Virginia L; Mehta, Jyotsna; Colborn, D Kathleen; Lieu, Tracy A

    2009-06-01

    New vaccines that offer protection against otitis media caused by nontypeable Haemophilus influenzae and by Moraxella catarrhalis are under development. However, the potential health benefits and economic effects of such candidate vaccines have not been systematically assessed. We created a computerized model to compare the projected benefits and costs of (1) the currently available 7-valent pneumococcal conjugate vaccine, (2) a candidate pneumococcal-nontypeable H influenzae vaccine that has been tested in Europe, (3) a hypothetical pneumococcal-nontypeable H influenzae-Moraxella vaccine, and (4) no vaccination. The clinical probabilities of acute otitis media and of otitis media with effusion were generated from multivariate analyses of data from 2 large health maintenance organizations and from the Pittsburgh Child Development/Otitis Media Study cohort. Other probabilities, costs, and quality-of-life values were derived from published and unpublished sources. The base-case analysis assumed vaccine dose costs of $65 for the 7-valent pneumococcal conjugate vaccine, $100 for the pneumococcal-nontypeable H influenzae vaccine, and $125 for the pneumococcal-nontypeable H influenzae-Moraxella vaccine. With no vaccination, we projected that 13.7 million episodes of acute otitis media would occur annually in US children aged 0 to 4 years, at an annual cost of $3.8 billion. The 7-valent pneumococcal conjugate vaccine was projected to prevent 878,000 acute otitis media episodes, or 6.4% of those that would occur with no vaccination; the corresponding value for the pneumococcal-nontypeable H influenzae vaccine was 3.7 million (27%) and for the pneumococcal-nontypeable H influenzae-Moraxella vaccine was 4.2 million (31%). Using the base-case vaccine costs, pneumococcal-nontypeable H influenzae vaccine use would result in net savings compared with nontypeable 7-valent pneumococcal conjugate use. Conversely, pneumococcal-nontypeable H influenzae-Moraxella vaccine use would not

  7. Comparative evaluation of the protective efficacy of two formulations of a recombinant Chlamydia abortus subunit candidate vaccine in a mouse model.

    Science.gov (United States)

    Pan, Qing; Pais, Roshan; Ohandjo, Adaugo; He, Cheng; He, Qing; Omosun, Yusuf; Igietseme, J U; Eko, F O

    2015-04-08

    Chlamydia abortus (C. abortus) is the causative agent of ovine enzootic abortion (OEA) and poses a zoonotic risk to pregnant women. Current live attenuated 1B vaccines are efficacious but cause disease in vaccinated animals and inactivated vaccines are only marginally protective. We tested the ability of a new C. abortus subunit vaccine candidate based on the conserved and immunogenic polymorphic membrane protein D (Pmp18D) formulated in CpG1826+FL (Fms-like tyrosine kinase 3 Ligand; Flt3L) or Vibrio cholerae ghosts (VCG) to induce innate and cross protective immunity against genital C. abortus infection. We found that delivery of rPmp18D with VCG was more effective than with CpG+FL in up-regulating the expression of molecules critically involved in T cell activation and differentiation, including MHC II, CD40, CD80, and CD86, activation of TLRs and NLRP3 inflammasome engagement, and secretion of IL-1β and TNF-α but not IL-10 and IL-4. rVCG-Pmp18D-immunized mice elicited more robust antigen-specific IFN-γ, IgA and IgG2c antibody responses compared to CpG+FL-delivered rPmp18D. Based on the number of mice with positive vaginal cultures, length of vaginal shedding, and number of inclusion forming units recovered following challenge with the heterologous C. abortus strain B577, vaccine delivery with VCG induced superior protective immunity than delivery with a combination of CpG1826 and FL, a nasal DC-targeting adjuvant. These results demonstrate that the ability of VCG to enhance protective immunity against genital C. abortus infection is superior to that of CpG+FL adjuvants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The role of antiretroviral therapy in reducing TB incidence and mortality in high HIV-TB burden countries

    Directory of Open Access Journals (Sweden)

    Anthony D Harries

    2016-03-01

    Full Text Available With the adoption of the new Sustainable Development Goals in 2016, all countries have committed to end the tuberculosis (TB epidemic by 2030, defined as dramatic reductions in TB incidence and mortality combined with zero TB-induced catastrophic costs for families. This paper explores how antiretroviral therapy (ART in high HIV-TB burden countries may help in reducing TB incidence and mortality and thus contribute to the ambitious goal of ending TB. ART in people living with HIV has a potent TB preventive effect, with this being most apparent in those with the most advanced immunodeficiency. Early ART also significantly reduces the risk of TB, and with new World Health Organization guidance released in 2015 about initiating ART in all persons living with HIV irrespective of CD4 count, there is the potential for enormous benefit at the population level. Already, several countries with high HIVTB burdens have seen dramatic declines in TB case notification rates since ART scale up started in 2004. In patients already diagnosed with HIV-associated TB, mortality can be significantly decreased by ART, especially if started within 2–8 weeks of anti-TB treatment. The benefits of ART on TB incidence and TB mortality can be further augmented respectively by the addition of isoniazid preventive therapy and cotrimoxazole preventive therapy. These interventions must be effectively implemented and scaled up in order to end the TB epidemic by 2030.

  9. Progress in Brucella vaccine development

    Science.gov (United States)

    YANG, Xinghong; SKYBERG, Jerod A.; CAO, Ling; CLAPP, Beata; THORNBURG, Theresa; PASCUAL, David W.

    2012-01-01

    Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines. PMID:23730309

  10. Stop TB in My Lifetime: A Call for a World Free of TB - World TB Day 2013

    Centers for Disease Control (CDC) Podcasts

    2012-03-12

    In this podcast Dr. Kenneth Castro, Director of the Division of Tuberculosis Elimination, discusses World TB Day, the 2013 slogan and theme.  Created: 3/12/2012 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 3/13/2012.

  11. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors

    Science.gov (United States)

    Mishra, A. K.; Mishra, S. K.; Pandey, S. P.; Lakshmi Mishra, Kshama

    2018-02-01

    Thermoluminescence studies were performed of ZnSe:Tb and ZnSe:(Mn, Tb) phosphors. A method of preparation for ZnSe phosphors doped with Tb and (Mn, Tb) has been discussed. The thermoluminescence (TL) properties of these phosphors have been studied from 100 to 370 K temperature after exciting by UV radiation (365 nm) at three uniform heating rates 0.4, 0.6 and 0.9 K/s. The trapping parameters like trap depth, lifetime of electrons and capture cross-section have also been determined using various methods.

  12. Current status of flavivirus vaccines.

    Science.gov (United States)

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  13. Vaccines for viral and parasitic diseases produced with baculovirus vectors

    NARCIS (Netherlands)

    Oers, van M.M.

    2006-01-01

    The baculovirus¿insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this

  14. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections.

    Science.gov (United States)

    Yang, Zhenhua; Wu, Rui; Li, Robert W; Li, Ling; Xiong, Zhongliang; Zhao, Haizhong; Guo, Deyin; Pan, Zishu

    2012-04-01

    A trans-complemented chimeric CSF-JE virus replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The CSFV E2 gene was deleted, and a fragment containing the region encoding a truncated envelope protein (tE, amino acid 292-402, domain III) of JE virus (JEV) was inserted into the resultant plasmid, pA187delE2, to generate the recombinant cDNA clone pA187delE2/JEV-tE. Porcine kidney 15 (PK15) cells that constitutively express the CSFV E2p7 proteins were then transfected with in vitro-transcribed RNA from pA187delE2/JEV-tE. As a result, the chimeric CSF-JE virus replicon particle (VRP), rv187delE2/JEV-tE, was rescued. In a mouse model, immunization with the chimeric CSF-JE VRP induced strong production of JEV-specific antibody and conferred protection against a lethal JEV challenge. Pigs immunized with CSF-JE VRP displayed strong anti-CSFV and anti-JEV antibody responses and protection against CSFV and JEV challenge infections. Our evidence suggests that E2-complemented CSF-JE VRP not only has potential as a live-attenuated non-transmissible vaccine candidate against CSF and JE but also serves as a potential DIVA (Differentiating Infected from Vaccinated Animals) vaccine for CSF in pigs. Together, our data suggest that the non-transmissible chimeric VRP expressing foreign antigenic proteins may represent a promising strategy for bivalent DIVA vaccine design. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Next-Generation Dengue Vaccines: Novel Strategies Currently Under Development

    OpenAIRE

    Anna P. Durbin; Stephen S. Whitehead

    2011-01-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Past...

  16. Dengue vaccines: Challenges, development, current status and prospects

    Directory of Open Access Journals (Sweden)

    A Ghosh

    2015-01-01

    Full Text Available Infection with dengue virus (DENV is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future.

  17. Status of prophylactic and therapeutic genital herpes vaccines.

    Science.gov (United States)

    Awasthi, Sita; Friedman, Harvey M

    2014-06-01

    A half billion people have genital herpes infections worldwide. Approximately one-fifth of American women between ages 14 and 49 are HSV-2 seropositive. The development of an effective genital herpes vaccine is a global health necessity based on the mental anguish genital herpes causes for some individuals, the fact that pregnant women with genital herpes risk transmitting infection to their newborn children, and the observation that HSV-2 infection is associated with a 3-fold to 4-fold increased probability of HIV acquisition. We review the strengths and limitations of preclinical animal models used to assess genital herpes vaccine candidates and the goals of prophylactic and therapeutic vaccines. We also discuss the current pipeline of vaccine candidates and lessons learned from past clinical trials that serve as a stimulus for new strategies, study designs and endpoint determinations. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Questions and Answers about TB

    Science.gov (United States)

    ... disease. Introduction Testing and Treatment TB Disease Glossary Introduction Introduction What is TB? Why is TB still ... chest x-ray is made by exposing a film to x-rays that pass through the chest. ...

  19. Live attenuated vaccines: Historical successes and current challenges.

    Science.gov (United States)

    Minor, Philip D

    2015-05-01

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  20. Optimising and Evaluating the Characteristics of a Multiple Antigen ELISA for Detection of Mycobacterium bovis Infection in a Badger Vaccine Field Trial

    NARCIS (Netherlands)

    Aznar, I.; Frankena, K.; More, S.J.; Whelan, C.; Martin, W.; Gormley, E.; Corner, L.A.L.; Murphy, D.; Jong, de M.C.M.

    2014-01-01

    A long-term research programme has been underway in Ireland to evaluate the usefulness of badger vaccination as part of the national bTB (bovine tuberculosis) control strategy. This culminated in a field trial which commenced in county Kilkenny in 2009 to determine the effects of badger vaccination

  1. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Magnetic properties of ball-milled TbFe2 and TbFe2B

    Indian Academy of Sciences (India)

    Unknown

    1. Introduction. The RFe2 (R = rare earth) Laves phase compounds are known to possess large cubic anisotropy (Clark et al 1972) and highest Curie temperature (TC) of all RT2 compounds. (T = transition metal). RFe2 ... TbFe2 and TbFe2B were prepared by arc melting the high pure elements (Tb and B, 99⋅9% purity; Fe, ...

  3. Complex magnetic properties and large magnetocaloric effects in RCoGe (R=Tb, Dy compounds

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2018-05-01

    Full Text Available Complicated magnetic phase transitions and Large magnetocaloric effects (MCEs in RCoGe (R=Tb, Dy compounds have been reported in this paper. Results show that the TbCoGe compounds have a magnetic phase transition from antiferromagnetic to paramagnetic (AFM-PM at TN∼16 K, which is close to the value reported by neutron diffraction. The DyCoGe compound undergoes complicated phase changes from 2 K up to 300 K. The peak at 10 K displays a phase transition from antiferromagnetic to ferromagnetic (AFM-FM. In particular, a significant ferromagnetic to paramagnetic (FM-PM phase transition was found at the temperature as high as 175 K and the cusp becomes more abrupt with the magnetic field increasing from 0.01 T to 0.1 T. The maximum value of magnetic entropy change of TbCoGe and DyCoGe compounds achieve 14.5 J/kg K and 11.5 J/kg K respectively for a field change of 0-5 T. Additionally, the correspondingly considerable refrigerant capacity value of 260 J/kg and 242 J/kg are also obtained respectively, suggesting that both TbCoGe and DyCoGe compounds could be considered as good candidates for low temperature magnetic refrigerant.

  4. Structural, spectroscopic and cytotoxicity studies of TbF{sub 3}@CeF{sub 3} and TbF{sub 3}@CeF{sub 3}@SiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Grzyb, Tomasz; Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Dabrowska, Krystyna [Polish Academy of Sciences, Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy (Poland); Giersig, Michael; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2013-10-15

    Terbium fluoride nanocrystals, covered by a shell, composed of cerium fluoride were synthesized by a co-precipitation method. Their complex structure was formed spontaneously during the synthesis. The surface of these core/shell nanocrystals was additionally modified by silica. The properties of TbF{sub 3}@CeF{sub 3} and TbF{sub 3}@CeF{sub 3}@SiO{sub 2} nanocrystals, formed in this way, were investigated. Spectroscopic studies showed that the differences between these two groups of products resulted from the presence of the SiO{sub 2} shell. X-ray diffraction patterns confirmed the trigonal crystal structure of TbF{sub 3}@CeF{sub 3} nanocrystals. High resolution transmission electron microscopy in connection with energy-dispersive X-ray spectroscopy showed a complex structure of the formed nanocrystals. Crystallized as small discs, 'the products', with an average diameter around 10 nm, showed an increase in the concentration of Tb{sup 3+} ions from surface to the core of nanocrystals. In addition to photo-physical analyses, cytotoxicity studies were performed on HSkMEC (Human Skin Microvascular Endothelial Cells) and B16F0 mouse melanoma cancer cells. The cytotoxicity of the nanomaterials was neutral for the investigated cells with no toxic or antiproliferative effect in the cell cultures, either for normal or for cancer cells. This fact makes the obtained nanocrystals good candidates for biological applications and further modifications of the SiO{sub 2} shell.Graphical Abstract.

  5. Promising therapy of XDR-TB/MDR-TB with thioridazine an inhibitor of bacterial efflux pumps

    DEFF Research Database (Denmark)

    Amaral, L; Martins, M; Viveiros, M

    2008-01-01

    -TB) - a M. tuberculosis organism that is resistant to the most effective second line drugs available for the treatment of TB. This review provides detailed, significant evidence that supports the use of an old neuroleptic compound, thioridazine (TZ), for the management of MDR-TB and XDR-TB infections...... therapy predictably ineffective and death is inevitable, compassionate therapy with TZ should be contemplated. The risks are small and the rewards great....

  6. HA03 as an Iranian Candidate Concealed Antigen for Vaccination against Hyalomma anatolicum anatolicum: Comparative Structural and In silico Studies

    Directory of Open Access Journals (Sweden)

    Mohammadi, A.

    2013-12-01

    Full Text Available In the last decades researchers had focused on developing a vaccine against tick based on protective antigen. Recombinant vaccines based on concealed antigen from Boophilus microplus have been developed in Australia and Cuba by the name of TICKGARD and GAVAC (De La Fuente and Kocan, 2006. Further studies on this antigen have shown some extent of protection against other species (De Vos et al., 2001. In Iran most important species is Hyalomma anatolicum and limited information about its control are available. This paper reports structural and polymorphic analysis of HA03 as an Iranian candidate concealed antigen of H. a. anatolicum deposited in Gen-Bank .(Aghaeipour et al. GQ228820. The comparison between this antigen and other mid gut concealed antigen that their characteristics are available in GenBank showed there are high rate of similarity between them. The HA03 amino acid sequence had a homology of around 89%, 64%, 56% with HA98, BM86, BM95 respectively. Potential of MHC class I and II binding region indicated a considerable variation between BM86 antigen and its efficiency against Iranian H. a. anatolicum. In addition, predicted major of hydrophobisity and similarity in N-glycosylation besides large amount of cystein and seven EGF like regions presented in protein structure revealed that value of HA03 as a new protective antigen and the necessity of the development, BM86 homolog of H. a. anatolicum HA03 based recombinant vaccine.

  7. Status of vaccine research and development of vaccines for herpes simplex virus.

    Science.gov (United States)

    Johnston, Christine; Gottlieb, Sami L; Wald, Anna

    2016-06-03

    Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  8. Detectemos la TB. Tratemos la TB. Trabajemos juntos para eliminar la TB. (Find TB. Treat TB. Working together to eliminate TB.)

    Centers for Disease Control (CDC) Podcasts

    2014-02-26

    Este podcast trata sobre el Día Mundial de la Tuberculosis y el tema de los CDC para el año 2014.  Created: 2/26/2014 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 2/26/2014.

  9. Immunogenicity, protective efficacy, and non-replicative status of the HSV-2 vaccine candidate HSV529 in mice and guinea pigs.

    Science.gov (United States)

    Bernard, Marie-Clotilde; Barban, Véronique; Pradezynski, Fabrine; de Montfort, Aymeric; Ryall, Robert; Caillet, Catherine; Londono-Hayes, Patricia

    2015-01-01

    HSV-2 vaccine is needed to prevent genital disease, latent infection, and virus transmission. A replication-deficient mutant virus (dl5-29) has demonstrated promising efficacy in animal models of genital herpes. However, the immunogenicity, protective efficacy, and non-replicative status of the highly purified clinical vaccine candidate (HSV529) derived from dl5-29 have not been evaluated. Humoral and cellular immune responses were measured in mice and guinea pigs immunized with HSV529. Protection against acute and recurrent genital herpes, mortality, latent infection, and viral shedding after vaginal HSV-2 infection was determined in mice or in naïve and HSV-1 seropositive guinea pigs. HSV529 replication and pathogenicity were investigated in three sensitive models of virus replication: severe combined immunodeficient (SCID/Beige) mice inoculated by the intramuscular route, suckling mice inoculated by the intracranial route, and vaginally-inoculated guinea pigs. HSV529 immunization induced HSV-2-neutralizing antibody production in mice and guinea pigs. In mice, it induced production of specific HSV-2 antibodies and splenocytes secreting IFNγ or IL-5. Immunization effectively prevented HSV-2 infection in all three animal models by reducing mortality, acute genital disease severity and frequency, and viral shedding. It also reduced ganglionic viral latency and recurrent disease in naïve and HSV-1 seropositive guinea pigs. HSV529 replication/propagation was not detected in the muscles of SCID/Beige mice, in the brains of suckling mice, or in vaginal secretions of inoculated guinea pigs. These results confirm the non-replicative status, as well as its immunogenicity and efficacy in mice and guinea pigs, including HSV-1 seropositive guinea pigs. In mice, HSV529 produced Th1/Th2 characteristic immune response thought to be necessary for an effective vaccine. These results further support the clinical investigation of HSV529 in human subjects as a prophylactic vaccine.

  10. Immunogenicity, protective efficacy, and non-replicative status of the HSV-2 vaccine candidate HSV529 in mice and guinea pigs.

    Directory of Open Access Journals (Sweden)

    Marie-Clotilde Bernard

    Full Text Available HSV-2 vaccine is needed to prevent genital disease, latent infection, and virus transmission. A replication-deficient mutant virus (dl5-29 has demonstrated promising efficacy in animal models of genital herpes. However, the immunogenicity, protective efficacy, and non-replicative status of the highly purified clinical vaccine candidate (HSV529 derived from dl5-29 have not been evaluated. Humoral and cellular immune responses were measured in mice and guinea pigs immunized with HSV529. Protection against acute and recurrent genital herpes, mortality, latent infection, and viral shedding after vaginal HSV-2 infection was determined in mice or in naïve and HSV-1 seropositive guinea pigs. HSV529 replication and pathogenicity were investigated in three sensitive models of virus replication: severe combined immunodeficient (SCID/Beige mice inoculated by the intramuscular route, suckling mice inoculated by the intracranial route, and vaginally-inoculated guinea pigs. HSV529 immunization induced HSV-2-neutralizing antibody production in mice and guinea pigs. In mice, it induced production of specific HSV-2 antibodies and splenocytes secreting IFNγ or IL-5. Immunization effectively prevented HSV-2 infection in all three animal models by reducing mortality, acute genital disease severity and frequency, and viral shedding. It also reduced ganglionic viral latency and recurrent disease in naïve and HSV-1 seropositive guinea pigs. HSV529 replication/propagation was not detected in the muscles of SCID/Beige mice, in the brains of suckling mice, or in vaginal secretions of inoculated guinea pigs. These results confirm the non-replicative status, as well as its immunogenicity and efficacy in mice and guinea pigs, including HSV-1 seropositive guinea pigs. In mice, HSV529 produced Th1/Th2 characteristic immune response thought to be necessary for an effective vaccine. These results further support the clinical investigation of HSV529 in human subjects as a

  11. Development and trial of vaccines against Brucella.

    Science.gov (United States)

    Lalsiamthara, Jonathan; Lee, John Hwa

    2017-08-31

    The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella .

  12. Antigen-Specific lgA B Memory Cell Responses to Shigella Antigens Elicited in Volunteers Immunized with Live Attenuated Shigella flexneri 2a Oral Vaccine Candidates

    Science.gov (United States)

    2011-01-01

    167. [10] E.V. Oaks, T.L. Hale, S.B. Formal, Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella ...cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates J.K. Simona,b... Shigella ;. B cell memory; Immunoglobulin lgA; Mucosal immunity Abstract We studied the induction of antigen-specific lgA memory B cells (BM) in

  13. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    Science.gov (United States)

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni

    Science.gov (United States)

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral®), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096

  15. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    International Nuclear Information System (INIS)

    Gong, Maogao; Xiang, Weidong; Liang, Xiaojuan; Zhong, Jiasong; Chen, Daqin; Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run

    2015-01-01

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y 3 Al 5 O 12 single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application

  16. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Maogao [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Zhong, Jiasong; Chen, Daqin [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2015-08-05

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y{sub 3}Al{sub 5}O{sub 12} single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application.

  17. Uptake of newly introduced universal BCG vaccination in newborns.

    LENUS (Irish Health Repository)

    Braima, O

    2012-01-31

    Universal neonatal BCG vaccination was discontinued in Cork in 1972. Following an outbreak of TB in 2 creches in the HSE South, a universal BCG vaccination program was re-introduced in October 2008. The aim of this study was to determine the vaccination process (in-hospital and community) and the in-hospital uptake of the vaccine. Following informed parental consent, babies of birth weight > 2.5 Kg were eligible for in-hospital vaccination if they were not: febrile, jaundiced on phototherapy, on antibiotics and if not born to HIV- positive mothers. Parents of babies not vaccinated in-hospital were asked to book an appointment in either of the 2 Cork community clinics. The immunisation nurse collected data on BCG vaccination, prospectively. This study examined vaccination uptakes in-hospital and community over a 6 month period (October 2008 to March 2009). There were 4018 deliveries during the study period. In-hospital consent was declined in only 16 babies (<1%) while the in-hospital vaccination uptake was 80% of total liv births. Although 635 newborns were admitted to the NICU, only 46 (8%) were vaccinated while in the NICU. At least 48% of planned community vaccination has been achieved to date. In conclusion, in-hospital consent was almost universal and vaccination uptake was satisfactory. NICU exclusion criteria accounted for a significant proportion of non-vaccination in-hospital. These criteria need to be readdressed considering that all premature babies are given other routine newborn vaccines at 2 months of age, regardless of weight.

  18. Uptake of newly introduced universal BCG vaccination in newborns.

    LENUS (Irish Health Repository)

    Braima, O

    2010-06-01

    Universal neonatal BCG vaccination was discontinued in Cork in 1972. Following an outbreak of TB in 2 creches in the HSE South, a universal BCG vaccination program was re-introduced in October 2008. The aim of this study was to determine the vaccination process (in-hospital and community) and the in-hospital uptake of the vaccine. Following informed parental consent, babies of birth weight > 2.5 Kg were eligible for in-hospital vaccination if they were not: febrile, jaundiced on phototherapy, on antibiotics and if not born to HIV- positive mothers. Parents of babies not vaccinated in-hospital were asked to book an appointment in either of the 2 Cork community clinics. The immunisation nurse collected data on BCG vaccination, prospectively. This study examined vaccination uptakes in-hospital and community over a 6 month period (October 2008 to March 2009). There were 4018 deliveries during the study period. In-hospital consent was declined in only 16 babies (<1%) while the in-hospital vaccination uptake was 80% of total liv births. Although 635 newborns were admitted to the NICU, only 46 (8%) were vaccinated while in the NICU. At least 48% of planned community vaccination has been achieved to date. In conclusion, in-hospital consent was almost universal and vaccination uptake was satisfactory. NICU exclusion criteria accounted for a significant proportion of non-vaccination in-hospital. These criteria need to be readdressed considering that all premature babies are given other routine newborn vaccines at 2 months of age, regardless of weight.

  19. Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Graeme E Price

    2010-10-01

    Full Text Available The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.

  20. Vaccination against tuberculosis.

    Science.gov (United States)

    Martin, Carlos; Aguilo, Nacho; Gonzalo-Asensio, Jesús

    2018-04-04

    BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  1. Ebola hemorrhagic Fever and the current state of vaccine development.

    Science.gov (United States)

    Hong, Joo Eun; Hong, Kee-Jong; Choi, Woo Young; Lee, Won-Ja; Choi, Yeon Hwa; Jeong, Chung-Hyeon; Cho, Kwang-Il

    2014-12-01

    Current Ebola virus outbreak in West Africa already reached the total number of 1,323 including 729 deaths by July 31st. the fatality is around 55% in the southeastern area of Guinea, Sierra Leone, Liberia, and Nigeria. The number of patients with Ebola Hemorrhagic Fever (EHF) was continuously increasing even though the any effective therapeutics or vaccines has not been developed yet. The Ebola virus in Guinea showed 98% homology with Zaire Ebola Virus. Study of the pathogenesis of Ebola virus infection and assess of the various candidates of vaccine have been tried for a long time, especially in United States and some European countries. Even though the attenuated live vaccine and DNA vaccine containing Ebola viral genes were tested and showed efficacy in chimpanzees, those candidates still need clinical tests requiring much longer time than the preclinical development to be approved for the practical treatment. It can be expected to eradicate Ebola virus by a safe and efficient vaccine development similar to the case of smallpox virus which was extinguished from the world by the variola vaccine.

  2. High-sensitive and rapid detection of Mycobacterium tuberculosis infection by IFN-γ release assay among HIV-infected individuals in BCG-vaccinated area

    Directory of Open Access Journals (Sweden)

    Jiang Weimin

    2009-05-01

    Full Text Available Abstract Background An accurate test for Mycobacterium tuberculosis infection is urgently needed in immunosuppressed populations. The aim of this study was to investigate the diagnostic power of enzyme-linked immunospot (ELISPOT-based IFN-γ release assay in detecting active and latent tuberculosis in HIV-infected population in bacillus Calmette-Guerin (BCG-vaccinated area. A total of 100 HIV-infected individuals including 32 active tuberculosis patients were recruited. An ELISPOT-based IFN-γ release assay, T-SPOT.TB, was used to evaluate the M. tuberculosis ESAT-6 and CFP-10 specific IFN-γ response. Tuberculin skin test (TST was performed for all recruited subjects. Results The subjects were divided into group HIV+ATB (HIV-infected individuals with active tuberculosis, n = 32, group HIV+LTB (HIV-infected individuals with positive results of T-SPOT.TB assay, n = 46 and group HIV only (HIV-infected individuals with negative results of T-SPOT.TB assay and without evidence of tuberculosis infection, n = 22. In group HIV+ATB and HIV+LTB, T-SPOT.TB positive rate in subjects with TST P 85% in patients with TB treatment for less than 1 month and CD4+ T cells ≥200/μl, while for patients treated for more than 3 months and CD4+ T cells Conclusion ELISPOT-based IFN-γ release assay is more sensitive and rapid for the diagnosis of TB infection in Chinese HIV-infected individuals with history of BCG vaccination, and could be an effective tool for guiding preventive treatment with isoniazid in latently infected people and for TB control in China.

  3. Economic value of dengue vaccine in Thailand.

    Science.gov (United States)

    Lee, Bruce Y; Connor, Diana L; Kitchen, Sarah B; Bacon, Kristina M; Shah, Mirat; Brown, Shawn T; Bailey, Rachel R; Laosiritaworn, Yongjua; Burke, Donald S; Cummings, Derek A T

    2011-05-01

    With several candidate dengue vaccines under development, this is an important time to help stakeholders (e.g., policy makers, scientists, clinicians, and manufacturers) better understand the potential economic value (cost-effectiveness) of a dengue vaccine, especially while vaccine characteristics and strategies might be readily altered. We developed a decision analytic Markov simulation model to evaluate the potential health and economic value of administering a dengue vaccine to an individual (≤ 1 year of age) in Thailand from the societal perspective. Sensitivity analyses evaluated the effects of ranging various vaccine (e.g., cost, efficacy, side effect), epidemiological (dengue risk), and disease (treatment-seeking behavior) characteristics. A ≥ 50% efficacious vaccine was highly cost-effective [GDP) ($4,289)] up to a total vaccination cost of $60 and cost-effective [GDP ($12,868)] up to a total vaccination cost of $200. When the total vaccine series was $1.50, many scenarios were cost saving.

  4. Molecular characterization of thyroid hormone receptor beta from Schistosoma japonicum and assessment of its potential as a vaccine candidate antigen against schistosomiasis in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Qiu Chunhui

    2012-08-01

    Full Text Available Abstract Background Thyroid hormones (TH modulate growth, development and differentiation and metabolic processes by interacting with thyroid hormone receptors (THRs. The purpose of this study was to identify a novel thyroid hormone receptor beta encoding gene of Schistosoma japonicum (SjTHRβ and to investigate its potential as a vaccine candidate antigen against schistosomiasis in BALB/c mice. Methods The full-length cDNA sequence of SjTHRβ, its gene organization, and its transcript levels were characterized, and the phylogenetic relationship between THR, RAR and RXR from other organisms were analysis, the ability of this protein binding to a conserved DNA core motif, and its potential as a vaccine candidate antigen against schistosomiasis in BALB/c mice were evaluated. Results The SjTHRβ cDNA was cloned, verified by 5’ and 3’ Rapid Amplification of cDNA Ends and shown to be polyadenylated at the 3’end, suggesting the transcript is full-length. SjTHRβ is homologous to THRs from other species and has a predicted conservative DNA binding domain and ligand binding domain that normally characterizes these receptors. A comparative quantitative PCR analysis showed that SjTHRβ was the highest expressed in 21d worms and the lowest in 7 d and 13 d schistosomula. The cDNA corresponding to DNA binding domain (SjTHRβ-DBD and ligand binding domain (SjTHRβ-LBD were cloned and subsequently expressed in E coli. The expressed proteins were used to immunize mice and generate specific serum against recombinant SjTHRβ (rSjTHRβ. Western blotting revealed that anti-rSjTHRβ-LBD serum recognized two protein bands in extracts from 21 d worm with molecular sizes of approximately 95 kDa and 72 kDa. Electrophoretic mobility shift assay (EMSA analysis showed that rSjTHRβ-DBD could bind to a conserved DNA core motif. Immunization of BALB/c mice with rSjTHRβ-LBD could induce partial protective efficacy(27.52% worm reduction and 29.50% liver eggs

  5. Subunit vaccine candidates against Aeromonas salmonicida in rainbow trout Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Marana, Moonika Haahr; Jørgensen, Louise von Gersdorff; Skov, Jakob

    2017-01-01

    rainbow trout (Oncorhynchus mykiss, Walbaum) aquaculture furunculosis outbreaks still occur. In this study we tested the efficacy of experimental subunit vaccines against A. salmonicida infection in rainbow trout. We utilized in silico screening of the proteome of A. salmonicida subsp. salmonicida strain...... A449 and identified potential protective protein antigens that were tested by in vivo challenge trial. A total of 14 proteins were recombinantly expressed in Escherichia coli and prepared in 3 different subunit vaccine combinations to immunize 3 groups of rainbow trout by intraperitoneal (i...

  6. Bioinformatics in New Generation Flavivirus Vaccines

    Directory of Open Access Journals (Sweden)

    Penelope Koraka

    2010-01-01

    Full Text Available Flavivirus infections are the most prevalent arthropod-borne infections world wide, often causing severe disease especially among children, the elderly, and the immunocompromised. In the absence of effective antiviral treatment, prevention through vaccination would greatly reduce morbidity and mortality associated with flavivirus infections. Despite the success of the empirically developed vaccines against yellow fever virus, Japanese encephalitis virus and tick-borne encephalitis virus, there is an increasing need for a more rational design and development of safe and effective vaccines. Several bioinformatic tools are available to support such rational vaccine design. In doing so, several parameters have to be taken into account, such as safety for the target population, overall immunogenicity of the candidate vaccine, and efficacy and longevity of the immune responses triggered. Examples of how bio-informatics is applied to assist in the rational design and improvements of vaccines, particularly flavivirus vaccines, are presented and discussed.

  7. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging.

    Science.gov (United States)

    Boutier, Maxime; Ronsmans, Maygane; Ouyang, Ping; Fournier, Guillaume; Reschner, Anca; Rakus, Krzysztof; Wilkie, Gavin S; Farnir, Frédéric; Bayrou, Calixte; Lieffrig, François; Li, Hong; Desmecht, Daniel; Davison, Andrew J; Vanderplasschen, Alain

    2015-02-01

    Cyprinid herpesvirus 3 (CyHV 3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV 3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV 3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.

  8. U.S. College and University Student Health Screening Requirements for Tuberculosis and Vaccine-Preventable Diseases, 2012

    Science.gov (United States)

    Jewett, A.; Bell, T; Cohen, NJ.; Buckley, K.; Leino, V.; Even, S.; Beavers, S.; Brown, C.; Marano, N.

    2016-01-01

    Objective Colleges are at risk for communicable disease outbreaks because of the high degree of person-to-person interactions and relatively crowded dormitory settings. This report describes the U.S. college student health screening requirements among U.S. resident and international students for tuberculosis (TB) and vaccine-preventable diseases (VPD) as it relates to the American College Health Association (ACHA) Guidelines. Methods/Participants In April 2012, U.S. college health administrators (N=2858) were sent online surveys to assess their respective school’s TB screening and immunization requirements. Results Surveys were completed by 308 (11%) schools. Most schools were aware of the ACHA immunization (78%) and TB screening (76%) guidelines. Schools reported having policies related to immunization screening (80.4%), immunization compliance (93%), TB screening (55%), and TB compliance (87%). Conclusion Most colleges were following ACHA guidelines. However, there are opportunities for improvement to fully utilize the recommendations and prevent outbreaks of communicable diseases among students in colleges. PMID:26730492

  9. ERM immersion vaccination and adjuvants

    DEFF Research Database (Denmark)

    Skov, J.; Chettri, J. K.; Jaafar, R. M.

    2015-01-01

    Two candidate adjuvants were tested with a commercial ERM dip vaccine (AquaVac™ Relera, MSD Animal Health) for rainbow trout in an experimental design compatible with common vaccination practices at farm level, i.e. immersion of fish in vaccine (±adjuvant) for 30 s. The adjuvants were...... the commercial product Montanide™ IMS 1312 VG PR (SEPPIC), and a soluble and ≥98% pure β-glucan from yeast (Saccharomyces cerevisiae) (Sigma-Aldrich). Hence, five experimental groups in duplicate were established and exposed to vaccine and adjuvants in the following combinations: AquaVac™ Relera (alone); Aqua......Vac™ Relera + Montanide™; AquaVac™ Relera + β-glucan; Montanide™ (alone); and β-glucan (alone). Approximately 450 degree days post-vaccination, the fish were bath-challenged with live Yersinia ruckeri to produce survival curves. Blood, skin and gills were sampled at selected time points during the course...

  10. [New vaccines against group B meningococcal diseases].

    Science.gov (United States)

    Hietalahti, Jukka; Meri, Seppo

    2015-01-01

    There has been no efficient general vaccine against serogroup B meningococcus (MenB), since its polysialic acid capsule is of low immunogenicity and could potentially induce autoimmunity. Reverse vaccinology has revealed new promising protein candidates for vaccine development. One of them is factor H-binding protein (fHbp), which has the potential to curb the alternative pathway of human complement. As fHbp can elicit antibodies that promote complement-mediated lysis, a vaccine partly based on it has been introduced against MenB infections. FHbp has been the milestone protein for structural vaccinology to create optimal chimeric antigens for vaccine use.

  11. Preventive medicines: vaccination, prophylaxis of infectious diseases, disinfectants.

    Science.gov (United States)

    Heininger, Ulrich

    2011-01-01

    Immunizations belong to the most successful interventions in medicine. Like other drugs, vaccines undergo long periods of pre-clinical development, followed by careful clinical testing through study Phases I, II, and III before they receive licensure. A successful candidate vaccine will move on to be an investigational vaccine to undergo three phases of pre-licensure clinical trials in a stepwise fashion before it can be considered for approval, followed by an optional fourth phase of post-marketing assessment. The overall risk-benefit assessment of a candidate vaccine is very critical in making the licensure decision for regulatory authorities, supported by their scientific committees. It includes analyses of immunogenicity, efficacy, reactogenicity or tolerability, and safety of the vaccine. Public trust in vaccines is a key to the success of immunization programs worldwide. Maintaining this trust requires knowledge of the benefits and scientific understanding of real or perceived risks of immunizations. Under certain circumstances, pre- or post-exposure passive immunization can be achieved by administration of immunoglobulines. In terms of prevention of infectious diseases, disinfection can be applied to reduce the risk of transmission of pathogens from patient to patient, health-care workers to patients, patients to health-care workers, and objects or medical devices to patients.

  12. Non-adherence to anti-TB drugs among TB/HIV co-infected patients ...

    African Journals Online (AJOL)

    Non-adherence to anti-TB drugs among TB/HIV co-infected patients in Mbarara Hospital ... and its associated factors have not been studied in these patients in Uganda. ... Methods: A cross-sectional study with qualitative and quantitative data ...

  13. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    Science.gov (United States)

    Central memory T cells (Tcm’s) and polyfunctional CD4 T responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB); however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by ...

  14. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Science.gov (United States)

    Currier, Jeffrey R; Ngauy, Viseth; de Souza, Mark S; Ratto-Kim, Silvia; Cox, Josephine H; Polonis, Victoria R; Earl, Patricia; Moss, Bernard; Peel, Sheila; Slike, Bonnie; Sriplienchan, Somchai; Thongcharoen, Prasert; Paris, Robert M; Robb, Merlin L; Kim, Jerome; Michael, Nelson L; Marovich, Mary A

    2010-11-15

    We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand. MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7) or 10(8) pfu) or intradermally (ID; 10(6) or 10(7) pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51)Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6) PBMC at 10(8) pfu IM), but high in response rate (70% (51)Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8) pfu IM); (ii) predominantly HIV Env-specific CD4(+) T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 10(8) pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8) pfu IM). MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  15. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Currier

    2010-11-01

    Full Text Available We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand.MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7 or 10(8 pfu or intradermally (ID; 10(6 or 10(7 pfu at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2. Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6 PBMC at 10(8 pfu IM, but high in response rate (70% (51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8 pfu IM; (ii predominantly HIV Env-specific CD4(+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route; (iv dose- and route-dependent with 10(8 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8 pfu IM.MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  16. Exploring diagnostic opportunities in active and latent TB: Stratifying transmission risk using PCR, and identification of immunogenic CD8+ T-cell epitopes

    DEFF Research Database (Denmark)

    Fløe, Andreas

    2018-01-01

    : Study I: As a single sputum-sample analyzed with PCR for MTB identifies >97% of smear-positive TB patients, and as the majority of missed smear-positive TB patients have only one low-grade smear, de-isolation of patients with a single negative sputum PCR-result is safe. Study II: Six HLA A*0201......-restricted antigen-specific CD8+ T-cells. Study III: The CD8+ T-cell response to MTB is highly variable and unpredictable, targeting a wide panel of differently expressed antigens. However, the novel epitopes described here could play a role in future immunodiagnostic tools as well as in vaccine development...

  17. Establishing Correlates of Protection for Vaccine Development: Considerations for the Respiratory Syncytial Virus Vaccine Field.

    Science.gov (United States)

    Kulkarni, Prasad S; Hurwitz, Julia L; Simões, Eric A F; Piedra, Pedro A

    2018-03-01

    Correlates of protection (CoPs) can play a significant role in vaccine development by assisting the selection of vaccine candidates for clinical trials, supporting clinical trial design and implementation, and simplifying tests of vaccine modifications. Because of this important role in vaccine development, it is essential that CoPs be defined by well-designed immunogenicity and efficacy studies, with attention paid to benefits and limitations. The respiratory syncytial virus (RSV) field is unique in that a great deal of information about the humoral response is available from basic research and clinical studies. Polyclonal and monoclonal antibodies have been used routinely in the clinic to protect vulnerable infants from infection, providing a wealth of information about correlations between neutralizing antibodies and disease prevention. Considerations for the establishment of future CoPs to support RSV vaccine development in different populations are therefore discussed.

  18. The Characteristics of TB Epidemic and TB/HIV Co-Infection Epidemic: A 2007-2013 Retrospective Study in Urumqi, Xinjiang Province, China.

    Directory of Open Access Journals (Sweden)

    Wang Wei

    Full Text Available This study was aimed to find out epidemiologic characteristic of tuberculosis (TB cases, and Human Immunodeficiency Virus (HIV positive cases among TB patients (TB/HIV co-infection through demographic, temporal, and spatial study in Urumqi.Descriptive statistics and multivariate logistic regression were applied to identify the epidemiologic characteristics and risk factors of TB epidemic and TB/HIV co-infection epidemic. All addresses of each TB case, TB/HIV co-infection case, and administrative street were transformed into geographical coordinate. Subsequently, the geocoded address for 82 streets was transformed into a dot map used as the basis of spatial datasets. In addition, the paper also used quantile map and the spatial scan statistic in order to identify the spatial distribution and spatial clusters of TB epidemic and TB/HIV co-infection epidemic.There was a declining trend of the notification rates of TB epidemic from 2007 to 2009, as well as a rising trend from 2010 to 2013. However, the notification rates of TB/HIV co-infection epidemic showed a rising trend from 2007 to 2010, and a declining trend from 2011 to 2013. Moreover, a significant share of TB epidemic and TB/HIV co-infection epidemic happened between the age of 15 to 45 years old, indicating an increase in risk of TB and TB/HIV infection. It is worth noting that the risk of HIV infection for male TB patients was 2.947 times (95% CI [2.178, 3.988] than that of female patients. Han ethnicity and Uygur ethnicity in urban region accounted for a large proportion of total TB and TB/HIV co-infection cases. Most of the TB cases of minorities in Urumqi showed a statistically significant increase in risk of HIV infection than Han ethnicity in Urumqi. In addition, the spatial distribution of TB epidemic and TB/HIV co-infection epidemic was highly skewed. Most of the local clusters were located in urban area and rural-urban continuum where showed an increase in risk of TB and TB

  19. TIME Impact - a new user-friendly tuberculosis (TB) model to inform TB policy decisions.

    Science.gov (United States)

    Houben, R M G J; Lalli, M; Sumner, T; Hamilton, M; Pedrazzoli, D; Bonsu, F; Hippner, P; Pillay, Y; Kimerling, M; Ahmedov, S; Pretorius, C; White, R G

    2016-03-24

    Tuberculosis (TB) is the leading cause of death from infectious disease worldwide, predominantly affecting low- and middle-income countries (LMICs), where resources are limited. As such, countries need to be able to choose the most efficient interventions for their respective setting. Mathematical models can be valuable tools to inform rational policy decisions and improve resource allocation, but are often unavailable or inaccessible for LMICs, particularly in TB. We developed TIME Impact, a user-friendly TB model that enables local capacity building and strengthens country-specific policy discussions to inform support funding applications at the (sub-)national level (e.g. Ministry of Finance) or to international donors (e.g. the Global Fund to Fight AIDS, Tuberculosis and Malaria).TIME Impact is an epidemiological transmission model nested in TIME, a set of TB modelling tools available for free download within the widely-used Spectrum software. The TIME Impact model reflects key aspects of the natural history of TB, with additional structure for HIV/ART, drug resistance, treatment history and age. TIME Impact enables national TB programmes (NTPs) and other TB policymakers to better understand their own TB epidemic, plan their response, apply for funding and evaluate the implementation of the response.The explicit aim of TIME Impact's user-friendly interface is to enable training of local and international TB experts towards independent use. During application of TIME Impact, close involvement of the NTPs and other local partners also builds critical understanding of the modelling methods, assumptions and limitations inherent to modelling. This is essential to generate broad country-level ownership of the modelling data inputs and results. In turn, it stimulates discussions and a review of the current evidence and assumptions, strengthening the decision-making process in general.TIME Impact has been effectively applied in a variety of settings. In South Africa, it

  20. Preparation and characterization of Tb3+ and Tb(sal)3.nH2O doped PC:PMMA blend

    International Nuclear Information System (INIS)

    Dwivedi, Y.; Singh, A.K.; Prakash, Rajiv; Rai, S.B.

    2011-01-01

    Tb doped polycarbonate:poly(methyl methacrylate) (Tb-PC:PMMA) blend was prepared with varying proportions of PC and PMMA. Thermal and spectroscopic properties of the doped polymer have been investigated employing Fourier Transform Infrared (FTIR) absorption and differential scanning calorimetric (DSC) techniques. PC:PMMA blend (with 10 wt% PC and 90 wt% PMMA) shows better miscibility. Optical properties of the dopant Tb 3+ ions have been investigated using UV-vis absorption and fluorescence excited by 355 nm radiation. It is seen that luminescence intensity of Tb 3+ ion depends on PC:PMMA ratio and on Tb 3+ ion concentration. Concentration quenching is seen for TbCl 3 .6H 2 O concentration larger than 4 wt%. Addition of salicylic acid to the polymer blend increases the luminescence from Tb 3+ ions. Luminescence decay curve analysis affirms the non-radiative energy transfer from salicylic acid to Tb 3+ ions, which is identified as the reason behind this enhancement. - Highlights: → Blend formation is confirmed at PC/90PMMA, using FTIR and DSC techniques. → Absorption and bandgap studies of blend and parent components were studied. → Optical properties of Tb and Tb(sal) 3 .nH 2 O complex have been studied in PC/PMMA blend. → Luminescence decay curves confirm non-radiative energy transfer from Sal to Tb 3+ ions.

  1. Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design.

    Science.gov (United States)

    Flanagan, Katie L; Wilson, Kirsty L; Plebanski, Magdalena

    2016-01-01

    The pre-erythrocytic stage of infection by malaria parasites represents a key target for vaccines that aim to eradicate malaria. Two important broad immune evasion strategies that can interfere with vaccine efficacy include the induction of dendritic cell (DC) dysfunction and regulatory T cells (Tregs) by blood-stage malaria parasites, leading to inefficient priming of T cells targeting liver-stage infections. The parasite also uses 'surgical strike' strategies, whereby polymorphism in pre-erythrocytic antigens can interfere with host immunity. Specifically, we review how even single amino acid changes in T cell epitopes can lead to loss of binding to major histocompatibility complex (MHC), lack of cross-reactivity, or antagonism and immune interference, where simultaneous or sequential stimulation with related variants of the same T cell epitope can cause T cell anergy or the conversion of effector to immunosuppressive T cell phenotypes.

  2. Humoral immune response to Plasmodium falciparum vaccine candidate GMZ2 and its components in populations naturally exposed to seasonal malaria in Ethiopia

    DEFF Research Database (Denmark)

    Mamo, Hassen; Esen, Meral; Ajua, Anthony

    2013-01-01

    for malaria infection microscopically and by the rapid diagnostic test (RDT). Sera were tested by using enzyme-linked immunosorbent assay (ELISA) for total immunoglobulin (Ig) G against P. falciparum blood-stage vaccine candidate GMZ2 and its subunits (Glutamate-rich protein (GLURP-R0), merozoite surface...... transmission in the two localities and/or genetic differences between the two populations in their response to the antigens. In both study sites, IgG subclass levels to GLURP-R0 were significantly higher than that to MSP3 for all corresponding subclasses in most individuals, indicating the higher relative...

  3. An E2-Substituted Chimeric Pestivirus With DIVA Vaccine Properties

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Nielsen, Jens

    An advantage of the use of chimeric pestiviruses as modified live vaccines against classical swine fever (CSF) resides in their capacity to be manipulated to achieve the characteristics desired for safe and efficacious DIVA vaccines. We have recently generated a new chimeric virus, Riems26_E2gif...... vaccinated pigs were protected. This new chimeric pestivirus represents a C-strain based DIVA vaccine candidate that can be differentiated based on CSFV E2 specific antibodies....

  4. Supporting clinical management of the difficult-to-treat TB cases: the ERS-WHO TB Consilium

    Directory of Open Access Journals (Sweden)

    Lia D’Ambrosio

    2015-03-01

    The primary objective of the ERS/WHO TB Consilium is to provide clinical consultation for drug-resistant TB and other difficult-to-treat TB cases, including co-infection with HIV and paediatric cases. Through technical guidance to clinicians managing complex TB cases, the main contribution and outcome of the initiative will be a public health response aimed at achieving correct treatment of affected patients and preventing further development of drug resistance. The Consilum's secondary objective is to ensure monitoring and evaluation of clinical practices on the ground (diagnosis, treatment and prevention.

  5. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.

    Science.gov (United States)

    Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J

    2017-01-26

    The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses

  6. Safety and efficacy of the C-Tb skin test to diagnose Mycobacterium tuberculosis infection, compared with an interferon γ release assay and the tuberculin skin test: a phase 3, double-blind, randomised, controlled trial.

    Science.gov (United States)

    Ruhwald, Morten; Aggerbeck, Henrik; Gallardo, Rafael Vázquez; Hoff, Søren T; Villate, José I; Borregaard, Bettine; Martinez, José A; Kromann, Ingrid; Penas, Antón; Anibarro, Luis L; de Souza-Galvão, Maria Luiza; Sánchez, Francisca; Rodrigo-Pendás, Jose Ángel; Noguera-Julian, Antoni; Martínez-Lacasa, Xavier; Tuñez, Maria Victoria; Fernández, Virginia Leiro; Millet, Joan P; Moreno, Antonio; Cobos, Nazaret; Miró, José M; Roldan, Llanos; Orcau, Angels; Andersen, Peter; Caylá, Joan A

    2017-04-01

    Targeted screening and treatment of Mycobacterium tuberculosis infection substantially reduces the risk of developing active tuberculosis. C-Tb (Statens Serum Institute, Copenhagen, Denmark) is a novel specific skin test based on ESAT-6 and CFP10 antigens. We investigated the safety and diagnostic potential of C-Tb compared with established tests in the contact-tracing setting. Negative controls, close contacts, occasional contacts, and patients with active pulmonary tuberculosis were enrolled at 13 centres in Spain. We compared C-Tb with the QuantiFERON-TB Gold In-Tube ([QFT] Qiagen, Hilden, Germany) interferon γ release assay (IGRA) and the purified protein derivative (PPD) RT 23 tuberculin skin test ([TST] Statens Serum Institute). All participants older than 5 years were tested with QFT. Some participants in the negative control group received C-Tb without the TST to test for potential interactions between C-Tb and PPD RT 23. The rest were randomly assigned in blocks of ten and tested with both C-Tb and TST, with five in each block receiving injection of C-Tb in the right arm and the TST in the left arm and five vice versa. The primary and safety analyses were done in all participants randomly assigned to a group who received any test. This trial is registered with ClinicalTrials.gov, number NCT01631266, and with EudraCT, number 2011-005617-36. From July 24, 2012, to Oct 2, 2014, 979 participants were enrolled, of whom 263 were negative controls, 299 were occasional contacts, 316 were close contacts, and 101 were patients with tuberculosis. 970 (99%) participants completed the trial. Induration sizes were similar for C-Tb and TST, but TST positivity was affected by BCG vaccination status. We found a strong positive trend towards C-Tb test positivity with increasing risk of infection, from 3% in negative controls to 16% in occasional contacts, to 43% in close contacts. C-Tb and QFT results were concordant in 785 (94%) of 834 participants aged 5 years and older

  7. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    Science.gov (United States)

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  8. Joint effect of MCP-1 genotype GG and MMP-1 genotype 2G/2G increases the likelihood of developing pulmonary tuberculosis in BCG-vaccinated individuals.

    Directory of Open Access Journals (Sweden)

    Malathesha Ganachari

    2010-01-01

    Full Text Available We previously reported that the -2518 MCP-1 genotype GG increases the likelihood of developing tuberculosis (TB in non-BCG-vaccinated Mexicans and Koreans. Here, we tested the hypothesis that this genotype, alone or together with the -1607 MMP-1 functional polymorphism, increases the likelihood of developing TB in BCG-vaccinated individuals. We conducted population-based case-control studies of BCG-vaccinated individuals in Mexico and Peru that included 193 TB cases and 243 healthy tuberculin-positive controls from Mexico and 701 TB cases and 796 controls from Peru. We also performed immunohistochemistry (IHC analysis of lymph nodes from carriers of relevant two-locus genotypes and in vitro studies to determine how these variants may operate to increase the risk of developing active disease. We report that a joint effect between the -2518 MCP-1 genotype GG and the -1607 MMP-1 genotype 2G/2G consistently increases the odds of developing TB 3.59-fold in Mexicans and 3.9-fold in Peruvians. IHC analysis of lymph nodes indicated that carriers of the two-locus genotype MCP-1 GG MMP-1 2G/2G express the highest levels of both MCP-1 and MMP-1. Carriers of these susceptibility genotypes might be at increased risk of developing TB because they produce high levels of MCP-1, which enhances the induction of MMP-1 production by M. tuberculosis-sonicate antigens to higher levels than in carriers of the other two-locus MCP-1 MMP-1 genotypes studied. This notion was supported by in vitro experiments and luciferase based promoter activity assay. MMP-1 may destabilize granuloma formation and promote tissue damage and disease progression early in the infection. Our findings may foster the development of new and personalized therapeutic approaches targeting MCP-1 and/or MMP-1.

  9. Joint effect of MCP-1 genotype GG and MMP-1 genotype 2G/2G increases the likelihood of developing pulmonary tuberculosis in BCG-vaccinated individuals.

    Science.gov (United States)

    Ganachari, Malathesha; Ruiz-Morales, Jorge A; Gomez de la Torre Pretell, Juan C; Dinh, Jeffrey; Granados, Julio; Flores-Villanueva, Pedro O

    2010-01-25

    We previously reported that the -2518 MCP-1 genotype GG increases the likelihood of developing tuberculosis (TB) in non-BCG-vaccinated Mexicans and Koreans. Here, we tested the hypothesis that this genotype, alone or together with the -1607 MMP-1 functional polymorphism, increases the likelihood of developing TB in BCG-vaccinated individuals. We conducted population-based case-control studies of BCG-vaccinated individuals in Mexico and Peru that included 193 TB cases and 243 healthy tuberculin-positive controls from Mexico and 701 TB cases and 796 controls from Peru. We also performed immunohistochemistry (IHC) analysis of lymph nodes from carriers of relevant two-locus genotypes and in vitro studies to determine how these variants may operate to increase the risk of developing active disease. We report that a joint effect between the -2518 MCP-1 genotype GG and the -1607 MMP-1 genotype 2G/2G consistently increases the odds of developing TB 3.59-fold in Mexicans and 3.9-fold in Peruvians. IHC analysis of lymph nodes indicated that carriers of the two-locus genotype MCP-1 GG MMP-1 2G/2G express the highest levels of both MCP-1 and MMP-1. Carriers of these susceptibility genotypes might be at increased risk of developing TB because they produce high levels of MCP-1, which enhances the induction of MMP-1 production by M. tuberculosis-sonicate antigens to higher levels than in carriers of the other two-locus MCP-1 MMP-1 genotypes studied. This notion was supported by in vitro experiments and luciferase based promoter activity assay. MMP-1 may destabilize granuloma formation and promote tissue damage and disease progression early in the infection. Our findings may foster the development of new and personalized therapeutic approaches targeting MCP-1 and/or MMP-1.

  10. Molecular confirmation of Bacillus Calmette Guerin vaccine related adverse events among Saudi Arabian children.

    Directory of Open Access Journals (Sweden)

    Sahal Al-Hajoj

    Full Text Available Bacillus Calmette Guerin (BCG is the only available vaccine for tuberculosis (TB. Low grade complications in healthy recipients and disseminated vaccine associated complications among immuno-suppressed individuals were noticed globally after administration. Recently a series of clinically suspected BCG associated suppurative and non-suppurative lymphadenitis cases were reported from different regions of Saudi Arabia. However a molecular confirmative analysis was lacking to prove these claims.During 2009-2010, 42 Mycobacterium bovis BCG suspected clinical isolates from children diagnosed with suppurative lymphadenitis from different provinces of the country were collected and subjected to 24 loci based MIRU-VNTR typing, spoligotyping and first line anti-TB drugs susceptibility testing.Of the total 42 cases, 41 (97.6% were Saudi nationals and particularly male (64.3%. Majority of the cases were aged below 6 months (83.3% with a median of age 4 months. All the enrolled subjects showed left axillary mass which suppurated in a median of 4 months after vaccination. Among the study subjects, 1 (2.4% case was reactive to HIV antigen and 2 (4.8% case had severe combined immunodeficiency. Genotyping results showed that, 41 (97.6% isolates were identical to the vaccine strain Danish 1331 and one to Tokyo 172-1. Phylogenetic analysis revealed all the Danish 1331 isolates in a single cluster.Elevated proportion of suppurative lymphadenitis caused by M. bovis BCG reported in the country recently is majorly related to the vaccine strain Danish 1331. However lack of nationwide data on real magnitude of BCG related adverse events warrants population centric, long term future studies.

  11. Evaluation of vaccine candidate potential of deltaaroA, deltahtrA and deltaaroAdeltahtrA mutants of Salmonella enterica subspecies enterica serovar Abortusequi in guinea pigs.

    Science.gov (United States)

    Singh, Bhoj Raj; Chandra, Mudit; Hansda, Dhananjoy; Alam, Javed; Babu, Narayanan; Siddiqui, Mehtab Z; Agrawal, Ravi K; Sharma, Gautam

    2013-04-01

    Salmonella enterica subspecies enterica serovar Abortusequi (S. Abortusequi), a host adapted Salmonella causes abortions, still births and foal mortality in equids. Though known since more than 100 years, it is still a problem in many of the developing countries including India. There is dearth of really good vaccine affording immunity lasting at least for one full gestation. In search of a potential vaccine candidate, three defined deletion mutants (deltaaroA, deltahtrA and deltaaroAdeltahtrA) of S. Abortusequi were tested in guinea pig model for attenuation, safety, immunogenicity, humoral immune response, protective efficacy and persistence in host. The deltahtrA and deltaaroAdeltahtrA mutants were found to be safe on oral inoculation in doses as high as 4.2 x 10(9) cfu/animal. Also through subcutaneous inoculation deltaaroAdeltahtrA mutant did not induce any abortion in pregnant guinea pigs. All the three mutants did not induce any illness or death in 1-2 week-old baby guinea pigs except deltahtrA mutant which caused mortality on intraperitoneal inoculation. Inoculation with mutants protected against challenge and increased breeding efficiency of guinea pigs. After >4.5 months of mutant inoculation, guinea pigs were protected against abortifacient dose of wild type S. Abortusequi and mother guinea pigs also conferred resistance to their babies to the similar challenge. Early humoral immune response of S. Abortusequi mutants was characteristic. Faecal excretion of deltaaroA and htrA mutants was detected up to 45 days of inoculation in guinea pigs while deltaaroAdeltahtrA mutant could not be detected after 21 days of inoculation. The results indicated that the double deletion mutant (deltaaroAdeltahtrA) was the most effective and safe candidate for vaccination against S. Abortusequi through mucosal route of inoculation.

  12. Understanding social context on TB cases

    Science.gov (United States)

    Ariyanto, Y.; Wati, D. M.

    2017-01-01

    Tuberculosis (TB) nowadays still becomes one of the world’s deadliest communicable disease. More than half were in South-East Asia and Western Pacific Regions, including Indonesia. As developing country, Indonesia remains classic problems in overcoming TB, that is discontinuation on treatment. Most of discontinuation on treatment among TB patients are affected by diagnostic delay that caused by patient delay. These phenomena occur in many areas, rural to suburb, coastal to plantation, and so on, and they are related with social context among community that could be social capital for each community to deal with TB. Jember as one of county in East Java is known as plantation area. It also has a high prevalence of TB. This study focused on understanding about social context among community, especially on plantation area. This cross-sectional study involved in three districts of Jember, those are Tanggul, Pakusari, and Kalisat. The data were obtained directly from the TB patients, local community, and Primary Health Care (PHC) where the patients recorded. Spatial analysis and social network analysis (SNA) were applied to obtain health seeking behavior pattern among the TB patients coincide the community. Most of TB patients had already chosen health professionals to lead the treatment, although some of them remained to choose self-medication. Meanwhile, SNA showed that religious leader was considered as main part of countermeasures of TB. But they didn’t ever become central figures. So it can be concluded that there are other parts among community who can contribute due to combatting on TB.

  13. tb diagnostics challenges of tb diagnosis and treatment in south africa

    African Journals Online (AJOL)

    2007-06-01

    Jun 1, 2007 ... 45 currently provides treatment to 3 000 patients. Eighty-nine per cent of those accessing ART have symptomatic HIV disease. (WHO clinical stage 3 and 4) with a median CD4 cell count of. 95 cells/µl. More than 50% have a history of prior completed. TB treatment, 15% are on current TB treatment, 11% are.

  14. Integration of TB and ART services fails to improve TB treatment ...

    African Journals Online (AJOL)

    The median CD4+ count of HIV-positive patients was 152 cells/μl (interquartile range (IQR) 71 - 277) for integrated facilities and 148 cells/μl (IQR 67 - 260) for single-service facilities. There was no statistical difference in the TB treatment outcome profile between integrated and single-service facilities for all TB patients (p=0.

  15. Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax.

    Directory of Open Access Journals (Sweden)

    Claire Y-H Huang

    Full Text Available We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax viruses. These viruses, containing the pre-membrane (prM and envelope (E genes of dengue serotypes 1-4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP.After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai Aedes aegypti mosquito vectors.All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia.

  16. Prospective use of soluble urokinase plasminogen activator receptor to screen TB co-infected with HIV patient among TB patient

    Directory of Open Access Journals (Sweden)

    Tri Yudani Mardining Raras

    2017-10-01

    Conclusion: Plasma suPAR level of TB patients co-infected with HIV showed significantly difference from that of TB-AFB(+ patients suggested its potential to screen the TB/HIV among pulmonary TB-AFB(+ patients.

  17. TB control programmes: the challenges for Africa.

    Science.gov (United States)

    Harries, T

    1996-11-01

    Governmental neglect of tuberculosis (TB), inadequately managed and inaccurately designed TB control programs, population growth, and the HIV epidemic account for the resurgence of TB in sub-Saharan Africa. The World Health Organization and the International Union against TB and Lung Disease have developed a TB control strategy that aims to reduce mortality, morbidity, and transmission of TB. It aims for an 85% cure rate among detected new cases of smear-positive TB and a 70% rate of detecting existing smear-positive TB cases. The strategy involves the provision of short-course chemotherapy (SCC) to all identified smear-positive TB cases through directly observed treatment (DOTS). SCC treatment regimens for smear-positive pulmonary TB recommended for sub-Saharan African countries are: initial phase = daily administration over 2 months of streptomycin, rifampicin, isoniazid, and pyrazinamide; continuation phase = 3 doses over 4 months of isoniazid and rifampicin or daily administration of thiacetazone and isoniazid or of ethambutol and isoniazid. A TB control policy must be implemented to bring about effective TB control. The essential elements of this policy include political commitment, case detection through passive case-finding, SCC, a regular supply of essential drugs, and a monitoring and evaluation system. Political commitment involves establishing a National TB Control Program to be integrated into the existing health structure. Increased awareness of TB in the community and among health workers and a reference laboratory are needed to make case finding successful. A distribution and logistics system is needed to ensure uninterrupted intake of drugs throughout treatment. These regimens have been very successful and cost-effective but pose several disadvantages (e.g., heavy workload of recommended 3 sputum smear tests). A simplified approach involves 1 initial sputum smear for 6 months; 6-months, intermittent rifampicin-based therapy, 100% DOTS throughout

  18. Certification of biological candidates reference materials by neutron activation analysis

    Science.gov (United States)

    Kabanov, Denis V.; Nesterova, Yulia V.; Merkulov, Viktor G.

    2018-03-01

    The paper gives the results of interlaboratory certification of new biological candidate reference materials by neutron activation analysis recommended by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland). The correctness and accuracy of the applied method was statistically estimated for the determination of trace elements in candidate reference materials. The procedure of irradiation in the reactor thermal fuel assembly without formation of fast neutrons was carried out. It excluded formation of interfering isotopes leading to false results. The concentration of more than 20 elements (e.g., Ba, Br, Ca, Co, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Ta, Th, Tb, Yb, U, Zn) in candidate references of tobacco leaves and bottom sediment compared to certified reference materials were determined. It was shown that the average error of the applied method did not exceed 10%.

  19. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  20. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  1. Alzheimer's disease: is a vaccine possible?

    International Nuclear Information System (INIS)

    Alves, R.P.S.; Yang, M.J.; Batista, M.T.; Ferreira, L.C.S.

    2014-01-01

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility

  2. Live attenuated vaccines: Historical successes and current challenges

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Philip D., E-mail: Philip.Minor@nibsc.org

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  3. Live attenuated vaccines: Historical successes and current challenges

    International Nuclear Information System (INIS)

    Minor, Philip D.

    2015-01-01

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues

  4. Alzheimer's disease: is a vaccine possible?

    Energy Technology Data Exchange (ETDEWEB)

    Alves, R.P.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil); Yang, M.J. [Instituto Butantan, Laboratório de Genética, São Paulo, SP, Brasil, Laboratório de Genética, Instituto Butantan, São Paulo, SP (Brazil); Batista, M.T.; Ferreira, L.C.S. [Universidade de São Paulo, Instituto de Ciências Biomédicas II, Departamento de Microbiologia, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil, Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    The cause of Alzheimer's disease is still unknown, but the disease is distinctively characterized by the accumulation of β-amyloid plaques and neurofibrillary tangles in the brain. These features have become the primary focus of much of the research looking for new treatments for the disease, including immunotherapy and vaccines targeting β-amyloid in the brain. Adverse effects observed in a clinical trial based on the β-amyloid protein were attributed to the presence of the target antigen and emphasized the relevance of finding safer antigen candidates for active immunization. For this kind of approach, different vaccine formulations using DNA, peptide, and heterologous prime-boost immunization regimens have been proposed. Promising results are expected from different vaccine candidates encompassing B-cell epitopes of the β-amyloid protein. In addition, recent results indicate that targeting another protein involved in the etiology of the disease has opened new perspectives for the effective prevention of the illness. Collectively, the evidence indicates that the idea of finding an effective vaccine for the control of Alzheimer's disease, although not without challenges, is a possibility.

  5. Simulation of the magnetocaloric effect in Tb nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, Dory Hélio A. L., E-mail: doryh@dfte.ufrn.br [Departamento de Física Teórica e Experimental (DFTE), Universidade Federal do Rio Grande do Norte (UFRN), Natal-RN (Brazil); Mello, Vamberto D. [Departamento de Física,Universidade do Estado do Rio Grande do Norte (UERN), Mossoró-RN (Brazil); Vasconcelos, Manoel S. [Escola de Ciência e Tecnologia (ECT), Universidade Federal do Rio Grande do Norte (UFRN), Natal-RN (Brazil)

    2014-03-31

    Rare-earth (RE) metals have different magnetic structures resulting from the competition between the crystal-field and exchange interactions. When a magnetic field is applied it creates a third interaction and the magnetic structures are more complicated. In thin films, it is expected that even the magnetic arrangement itself can be strongly modified. Rare-earth helimagnets such as Terbium (Tb), Holmium (Ho) and Dysprosium (Dy) represent the best candidates to evidence such finite-size effects. This finite-size effect is caused by the reduced number of atoms in the direction perpendicular to the film plane that leads to a decrease of the total magnetic exchange energy. We report this contribution to the investigation of magnetocaloric effect (MCE) of thin Terbium films in the helimagnetic temperature range, from T{sub C} = 219 K to T{sub N} = 231 K, for external fields of the order of 1 kOe. We find that for strong fields, H = 50 kOe, the adiabatic temperature change ΔT near the Néel temperature is around 15 K for any thickness of Tb films. However large thickness effects are found for small values of the magnetic field. For field strength of the order of a few kOe, the thermocaloric efficiency increases significantly for ultrathin (nanomagnetic) films.

  6. Enzymatic shaving of the tegument surface of live schistosomes for proteomic analysis: a rational approach to select vaccine candidates.

    Directory of Open Access Journals (Sweden)

    William Castro-Borges

    2011-03-01

    Full Text Available The membrane-associated and membrane-spanning constituents of the Schistosoma mansoni tegument surface, the parasite's principal interface with the host bloodstream, have recently been characterized using proteomic techniques. Biotinylation of live worms using membrane-impermeant probes revealed that only a small subset of the proteins was accessible to the reagents. Their position within the multilayered architecture of the surface has not been ascertained.An enzymatic shaving approach on live worms has now been used to release the most accessible components, for analysis by MS/MS. Treatment with trypsin, or phosphatidylinositol-specific phospholipase C (PiPLC, only minimally impaired membrane integrity. PiPLC-enriched proteins were distinguished from those released in parasite vomitus or by handling damage, using isobaric tagging. Trypsin released five membrane proteins, Sm200, Sm25 and three annexins, plus host CD44 and the complement factors C3 and C4. Nutrient transporters and ion channels were absent from the trypsin fraction, suggesting a deeper location in the surface complex; surprisingly, two BAR-domain containing proteins were released. Seven parasite and two host proteins were enriched by PiPLC treatment, the vaccine candidate Sm29 being the most prominent along with two orthologues of human CD59, potentially inhibitors of complement fixation. The enzymes carbonic anhydrase and APD-ribosyl cyclase were also enriched, plus Sm200 and alkaline phosphatase. Host GPI-anchored proteins CD48 and CD90, suggest 'surface painting' during worm peregrination in the portal system.Our findings suggest that the membranocalyx secreted over the tegument surface is not the inert barrier previously proposed, some tegument proteins being externally accessible to enzymes and thus potentially located within it. Furthermore, the detection of C3 and C4 indicates that the complement cascade is initiated, while two CD59 orthologues suggest a potential

  7. Dengue vaccine: come let's fight the menace.

    Science.gov (United States)

    Chawla, Sumit; Sahoo, Soumya Swaroop; Singh, Inderjeet; Verma, Madhur; Gupta, Vikas; Kumari, Sneh

    2015-01-01

    Although dengue has a global distribution, the World Health Organization (WHO) South-East Asia region together with Western Pacific region bears nearly 75% of the current global disease burden. Globally, the societal burden has been estimated to be approximately 528 to 1300 disability-adjusted life years (DALY) per million to populations in endemic regions Dengue is believed to infect 50 to 100 million people worldwide a year with half a million life-threatening infections requiring hospitalization, resulting in approximately 12,500 to 25,000 deaths. Despite being known for decades and nearly half the world's population is at risk for infection with as many as 100 million cases occurring annually, the pitiable state is that we still have no antiviral drugs to treat it and no vaccines to prevent it. In recent years, however, the development of dengue vaccines has accelerated dramatically in tandem with the burgeoning dengue problem with a rejuvenated vigour. However, recent progress in molecular-based vaccine strategies, as well as a renewed commitment by the World Health Organization (WHO) to co-ordinate global efforts on vaccine development, finally provides hope that control of this serious disease may be at hand. Today, several vaccines are in various stages of advanced development, with clinical trials currently underway on 5 candidate vaccines. Trials in the most advanced stages are showing encouraging preliminary data, and the leading candidate could be licensed as early as 2015.

  8. Color-tunable and highly thermal stable Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu; Deng, Jiankun; Liu, Wei-Ren; Zeng, Yuan; Zheng, Lingling; Zhao, Minyi

    2017-01-01

    Tb"3"+ activated Sr_2MgAl_2_2O_3_6 phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic "5D_3-"7F_J and "5D_4-"7F_J transitions of the Tb"3"+ ion, respectively. The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb"3"+ doping concentration. Furthermore, the thermal quenching temperature (T_1_/_2) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr_2MgAl_2_2O_3_6:Tb"3"+ was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr_2MgAl_2_2O_3_6:Tb"3"+ shows highly thermal stable. • The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed.

  9. Thermostable cross-protective subunit vaccine against Brucella species.

    Science.gov (United States)

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Catalase epitopes vaccine design for Helicobacter pylori : A ...

    African Journals Online (AJOL)

    Catalase, an important enzyme in the virulence of H. pylori, could be a suitable candidate for vaccine design because it is highly conserved, which is important for the survival of H. pylori; it is expressed in high level and it is exposed on the surface of the bacteria. In this study, we designed epitope-based vaccine for catalase ...

  11. Malaria vaccines and their potential role in the elimination of malaria

    Directory of Open Access Journals (Sweden)

    Greenwood Brian M

    2008-12-01

    Full Text Available Abstract Research on malaria vaccines is currently directed primarily towards the development of vaccines that prevent clinical malaria. Malaria elimination, now being considered seriously in some epidemiological situations, requires a different vaccine strategy, since success will depend on killing all parasites in the community in order to stop transmission completely. The feature of the life-cycles of human malarias that presents the greatest challenge to an elimination programme is the persistence of parasites as asymptomatic infections. These are an important source from which transmission to mosquitoes can occur. Consequently, an elimination strategy requires a community-based approach covering all individuals and not just those who are susceptible to clinical malaria. The progress that has been made in development of candidate malaria vaccines is reviewed. It is unlikely that many of these will have the efficacy required for complete elimination of parasites, though they may have an important role to play as part of future integrated control programmes. Vaccines for elimination must have a high level of efficacy in order to stop transmission to mosquitoes. This might be achieved with some pre-erythrocytic stage candidate vaccines or by targeting the sexual stages directly with transmission-blocking vaccines. An expanded malaria vaccine programme with such objectives is now a priority.

  12. HIV screening among TB patients and co-trimoxazole preventive therapy for TB/HIV patients in Addis Ababa: facility based descriptive study.

    Science.gov (United States)

    Denegetu, Amenu Wesen; Dolamo, Bethabile Lovely

    2014-01-01

    Collaborative TB/HIV management is essential to ensure that HIV positive TB patients are identified and treated appropriately, and to prevent tuberculosis (TB) in HIV positive patients. The purpose of this study was to assess HIV case finding among TB patients and Co-trimoxazole Preventive Therapy (CPT) for HIV/TB patients in Addis Ababa. A descriptive cross-sectional, facility-based survey was conducted between June and July 2011. Data was collected by interviewing 834 TB patients from ten health facilities in Addis Ababa. Both descriptive and inferential statistics were used to summarize and analyze findings. The proportion of TB patients who (self reported) were offered for HIV test, tested for HIV and tested HIV positive during their anti-TB treatment follow-up were; 87.4%, 69.4% and 20.2%; respectively. Eighty seven HIV positive patients were identified, who knew their status before diagnosed for the current TB disease, bringing the cumulative prevalence of HIV among TB patients to 24.5%. Hence, the proportion of TB patients who knew their HIV status becomes 79.9%. The study revealed that 43.6% of those newly identified HIV positives during anti-TB treatment follow-up were actually treated with CPT. However, the commutative proportion of HIV positive TB patients who were ever treated with CPT was 54.4%; both those treated before the current TB disease and during anti-TB treatment follow-up. HIV case finding among TB patients and provision of CPT for TB/HIV co-infected patients needs boosting. Hence, routine offering of HIV test and provision of CPT for PLHIV should be strengthened in-line with the national guidelines.

  13. The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement

    DEFF Research Database (Denmark)

    Solovic, I; Sester, M; Gomez-Reino, J J

    2010-01-01

    risk of reactivating latent infections, especially tuberculosis (TB). Following TNF antagonist therapy, the relative risk for TB is increased up to 25 times, depending on the clinical setting and the TNF antagonist used. Interferon-¿ release assays or, as an alternative in individuals without a history...... of bacille Calmette-Guérin vaccination, tuberculin skin testing is recommended to screen all adult candidates for TNF antagonist treatment for the presence of latent infection with Mycobacterium tuberculosis. Moreover, paediatric practice suggests concomitant use of both the tuberculin skin test...

  14. Status of vaccine research and development of vaccines for leishmaniasis.

    Science.gov (United States)

    Gillespie, Portia M; Beaumier, Coreen M; Strych, Ulrich; Hayward, Tara; Hotez, Peter J; Bottazzi, Maria Elena

    2016-06-03

    A number of leishmaniasis vaccine candidates are at various stages of pre-clinical and clinical development. Leishmaniasis is a vector-borne neglected tropical disease (NTD) caused by a protozoan parasite of the genus Leishmania and transmitted to humans by the bite of a sand fly. Visceral leishmaniasis (VL, kala-azar) is a high mortality NTD found mostly in South Asia and East Africa, while cutaneous leishmaniasis (CL) is a disfiguring NTD highly endemic in the Middle East, Central Asia, North Africa, and the Americas. Estimates attribute 50,000 annual deaths and 3.3 million disability-adjusted life years to leishmaniasis. There are only a few approved drug treatments, no prophylactic drug and no vaccine. Ideally, an effective vaccine against leishmaniasis will elicit long-lasting immunity and protect broadly against VL and CL. Vaccines such as Leish-F1, F2 and F3, developed at IDRI and designed based on selected Leishmania antigen epitopes, have been in clinical trials. Other groups, including the Sabin Vaccine Institute in collaboration with the National Institutes of Health are investigating recombinant Leishmania antigens in combination with selected sand fly salivary gland antigens in order to augment host immunity. To date, both VL and CL vaccines have been shown to be cost-effective in economic modeling studies. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  15. US College and University Student Health Screening Requirements for Tuberculosis and Vaccine-Preventable Diseases, 2012

    Science.gov (United States)

    Jewett, Amy; Bell, Teal; Cohen, Nicole J.; Buckley, Kirsten; Leino, E. Victor; Even, Susan; Beavers, Suzanne; Brown, Clive; Marano, Nina

    2016-01-01

    Objective: Colleges are at risk for communicable disease outbreaks because of the high degree of person-to-person interactions and relatively crowded dormitory settings. This report describes the US college student health screening requirements among US resident and international students for tuberculosis (TB) and vaccine-preventable diseases…

  16. Virus-like particles as nanovaccine candidates

    International Nuclear Information System (INIS)

    Guillen, G; Aguilar, J C; Dueñas, S; Hermida, L; Iglesias, E; Penton, E; Lobaina, Y; Lopez, M; Mussachio, A; Falcon, V; Alvarez, L; Martinez, G; Gil, L; Valdes, I; Izquierdo, A; Lazo, L; Marcos, E; Guzman, G; Muzio, V; Herrera, L

    2013-01-01

    The existing vaccines are mainly limited to the microorganisms we are able to culture and produce and/or to those whose killing is mediated by humoral response (antibody mediated). It has been more difficult to develop vaccines capable of inducing a functional cellular response needed to prevent or cure chronic diseases. New strategies should be taken into account in the improvement of cell-based immune responses in order to prevent and control the infections and eventually clear the virus. Preclinical and clinical results with vaccine candidates developed as a vaccine platform based on virus-like particles (VLPs) evidenced their ability to stimulate mucosal as well as systemic immunity. Particles based on envelope, membrane or nucleocapsid microbial proteins induce a strong immune response after nasal or parenteral administration in mice, non-human primates and humans. In addition, the immune response obtained was modulated in a Th1 sense. The VLPs were also able to immunoenhance the humoral and cellular immune responses against several viral pathogens. Studies in animals and humans with nasal and systemic formulations evidenced that it is possible to induce functional immune response against HBV, HCV, HIV and dengue virus. (paper)

  17. Development of standardized laboratory methods and quality processes for a phase III study of the RTS, S/AS01 candidate malaria vaccine

    Directory of Open Access Journals (Sweden)

    Carter Terrell

    2011-08-01

    Full Text Available Abstract Background A pivotal phase III study of the RTS,S/AS01 malaria candidate vaccine is ongoing in several research centres across Africa. The development and establishment of quality systems was a requirement for trial conduct to meet international regulatory standards, as well as providing an important capacity strengthening opportunity for study centres. Methods Standardized laboratory methods and quality assurance processes were implemented at each of the study centres, facilitated by funding partners. Results A robust protocol for determination of parasite density based on actual blood cell counts was set up in accordance with World Health Organization recommendations. Automated equipment including haematology and biochemistry analyzers were put in place with standard methods for bedside testing of glycaemia, base excess and lactacidaemia. Facilities for X-rays and basic microbiology testing were also provided or upgraded alongside health care infrastructure in some centres. External quality assurance assessment of all major laboratory methods was established and method qualification by each laboratory demonstrated. The resulting capacity strengthening has ensured laboratory evaluations are conducted locally to the high standards required in clinical trials. Conclusion Major efforts by study centres, together with support from collaborating parties, have allowed standardized methods and robust quality assurance processes to be put in place for the phase III evaluation of the RTS, S/AS01 malaria candidate vaccine. Extensive training programmes, coupled with continuous commitment from research centre staff, have been the key elements behind the successful implementation of quality processes. It is expected these activities will culminate in healthcare benefits for the subjects and communities participating in these trials. Trial registration Clinicaltrials.gov NCT00866619

  18. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children

    DEFF Research Database (Denmark)

    Agnandji, Selidji Todagbe; Lell, Bertrand; Soulanoudjingar, Solange Solmeheim

    2011-01-01

    An ongoing phase 3 study of the efficacy, safety, and immunogenicity of candidate malaria vaccine RTS,S/AS01 is being conducted in seven African countries.......An ongoing phase 3 study of the efficacy, safety, and immunogenicity of candidate malaria vaccine RTS,S/AS01 is being conducted in seven African countries....

  19. Patient reported delays in seeking treatment for Tuberculosis (TB among adult and pediatric TB patients and TB patients co-infected with HIV in Lima, Peru: a qualitative study

    Directory of Open Access Journals (Sweden)

    Valerie A Paz-Soldan

    2014-12-01

    Full Text Available Abstract: Tuberculosis (TB remains a significant public health challenge worldwide, and particularly in Peru with one of the highest incidence rates in Latin America. TB patient behavior has a direct influence on whether a patient will receive timely diagnosis and successful treatment of their illness. Objectives: The objective was to understand the complex factors that can impact TB patient health seeking behavior. Methods: In-depth interviews were conducted with adult and parents of pediatric patients receiving TB treatment (n=43, within that group a sub-group was also co-infected with HIV (n=11. Results: Almost all of the study participants recognized delays in seeking either their child’s or their own diagnosis of their TB symptoms. The principal reasons for treatment-seeking delays were lack of knowledge and confusion of tuberculosis symptoms, fear and embarrassment of receiving a TB diagnosis, and a patient tendency to self-medicate prior to seeking formal medical attention.Conclusions: Health promotion activities that target patient delays have the potential to improve individual patient outcomes and mitigate the spread of TB at a community level.

  20. TB in Captive Elephants

    Centers for Disease Control (CDC) Podcasts

    2017-04-27

    Dr. Barry Kreiswirth, founding director of the Public Health Research Institute, TB Center, at Rutgers University, discusses TB in three captive elephants.  Created: 4/27/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/27/2017.

  1. Malaria vaccines: lessons from field trials

    Directory of Open Access Journals (Sweden)

    Claudio J. Struchiner

    1994-07-01

    Full Text Available Malaria vaccine candidates have already been tested and new trials are being carried out. We present a brief description of specific issues of validity that are relevant when assessing vaccine efficacy in the field and illustrate how the application of these principles might improve our interpretation of the data being gathered in actual malaria vaccine field trials. Our discussion assumes that vaccine evaluation shares the same general principles of validity with epidemiologic causal inference, i.e., the process of drawing inferences from epidemiologic data aiming at the identification of causes of diseases. Judicious exercise of these principles indicates that, for meaningful interpretation, measures of vaccine efficacy require definitions based upon arguments conditional on the amount of exposure to infection, and specification of the initial and final states in which one believes the effect of interest takes place.

  2. Immunogenicity of a Psoralen-Inactivated Dengue Virus Type 1 Vaccine Candidate in Mice

    Science.gov (United States)

    2010-02-01

    United States Naval Medical Research Center Detachment, Lima, Peru , 1 and United States Naval Medical Research Center, Silver Spring, Maryland2 R...and 28. The mice in group B mice received 10-ng vaccine doses on study clays 0, 14, and 28. The mice in group C received 10-ng vaccine doses on

  3. Why healthcare workers are sick of TB

    Directory of Open Access Journals (Sweden)

    Arne von Delft

    2015-03-01

    Full Text Available Dr Thato Mosidi never expected to be diagnosed with tuberculosis (TB, despite widely prevalent exposure and very limited infection control measures. The life-threatening diagnosis of primary extensively drug-resistant TB (XDR-TB came as an even greater shock. The inconvenient truth is that, rather than being protected, Dr Mosidi and thousands of her healthcare colleagues are at an increased risk of TB and especially drug-resistant TB. In this viewpoint paper we debunk the widely held false belief that healthcare workers are somehow immune to TB disease (TB-proof and explore some of the key factors contributing to the pervasive stigmatization and subsequent non-disclosure of occupational TB. Our front-line workers are some of the first to suffer the consequences of a progressively more resistant and fatal TB epidemic, and urgent interventions are needed to ensure the safety and continued availability of these precious healthcare resources. These include the rapid development and scale-up of improved diagnostic and treatment options, strengthened infection control measures, and focused interventions to tackle stigma and discrimination in all its forms. We call our colleagues to action to protect themselves and those they care for.

  4. The Human Hookworm Vaccine.

    Science.gov (United States)

    Hotez, Peter J; Diemert, David; Bacon, Kristina M; Beaumier, Coreen; Bethony, Jeffrey M; Bottazzi, Maria Elena; Brooker, Simon; Couto, Artur Roberto; Freire, Marcos da Silva; Homma, Akira; Lee, Bruce Y; Loukas, Alex; Loblack, Marva; Morel, Carlos Medicis; Oliveira, Rodrigo Correa; Russell, Philip K

    2013-04-18

    Hookworm infection is one of the world's most common neglected tropical diseases and a leading cause of iron deficiency anemia in low- and middle-income countries. A Human Hookworm Vaccine is currently being developed by the Sabin Vaccine Institute and is in phase 1 clinical testing. The candidate vaccine is comprised of two recombinant antigens known as Na-GST-1 and Na-APR-1, each of which is an important parasite enzyme required for hookworms to successfully utilize host blood as a source of energy. The recombinant proteins are formulated on Alhydrogel(®) and are being tested in combination with a synthetic Toll-like receptor 4 agonist. The aim of the vaccine is to induce anti-enzyme antibodies that will reduce both host blood loss and the number of hookworms attached to the gut. Transfer of the manufacturing technology to the Oswaldo Cruz Foundation (FIOCRUZ)/Bio-Manguinhos (a Brazilian public sector developing country vaccine manufacturer) is planned, with a clinical development plan that could lead to registration of the vaccine in Brazil. The vaccine would also need to be introduced in the poorest regions of Africa and Asia, where hookworm infection is highly endemic. Ultimately, the vaccine could become an essential tool for achieving hookworm control and elimination, a key target in the 2012 London Declaration on Neglected Tropical Diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Color tunable emission in Ce3+ and Tb3+ co-doped Ba2Ln(BO3)2Cl (Ln=Gd and Y) phosphors for white light-emitting diodes.

    Science.gov (United States)

    Zhang, Niumiao; Guo, Chongfeng; Jing, Heng; Jeong, Jung Hyun

    2013-12-01

    Ce(3+) and Tb(3+) co-doped Ba2Ln(BO3)2Cl (Ln=Y and Gd) green emitting phosphors were prepared by solid state reaction in reductive atmosphere. The emission and excitation spectra as well as luminescence decays were investigated, showing the occurrence of efficient energy transfer from Ce(3+) to Tb(3+) in this system. The phosphors exhibit both a blue emission from Ce(3+) and a green emission from Tb(3+) under near ultraviolet light excitation with 325-375 nm wavelength. Emission colors of phosphors could be tuned from deep blue through cyan to green by adjusting the Tb(3+) concentrations. The energy transfer efficiency and emission intensity of Ba2Y(BO3)2Cl:Ce(3+), Tb(3+) precede those of Ba2Gd(BO3)2Cl:Ce(3+), Tb(3+), and the sample Ba2Y(BO3)2Cl:0.03Ce(3+), 0.10Tb(3+) is the best candidate for n-UV LEDs. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Luminescent properties and energy transfer studies of color-tunable LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinguo, E-mail: sysuzxg@gmail.com [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Fu, Xionghui [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Song, Jiahui [Shenzhou High School, Hengshui 053800 (China); Gong, Menglian [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2016-08-15

    Highlights: • A series of color-tunable LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors were synthesized. • Phosphors exhibit strong blue/green/red emission under UV excitation. • The reason of high Tb{sup 3+} content required for Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer is unveiled. • Green and red LED prototypes were fabricated and characterized. - Abstract: A series of LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors were synthesized via solid state reaction. The Ce{sup 3+}/Tb{sup 3+} co-doped and Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} tri-doped phosphors absorb near UV light through 4f-5d transitions of Ce{sup 3+}, followed by sensitized Tb{sup 3+} green and Eu{sup 3+} red emission. Decay curves investigations for samples with various Tb{sup 3+} and Eu{sup 3+} contents reveal the occurrence of Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer. It is found that due to relative low Tb{sup 3+} → Eu{sup 3+} energy transfer rate, a high Tb{sup 3+} content (>40%) is required for efficient Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer. Emission color of LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+}, Eu{sup 3+} varies from blue through green to red with Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} ratio. The quantum efficiency of LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+} green phosphor and LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+}, Eu{sup 3+} red phosphor is 50% and 30%, respectively. Green and red LED prototypes were fabricated. The results show that the obtained phosphors are potential candidates as down-converted phosphors for NUV LEDs.

  7. Dynamic colour and utilizable white fluorescence from Eu/Tb ions codoped lithium-yttrium-aluminium-silicate glasses

    International Nuclear Information System (INIS)

    Shen Lifan; Liu Xiao; Chen Baojie; Lin Hai; Pun, Edwin Yue Bun

    2012-01-01

    A group of dynamic-colour white fluorescences with various colour temperatures that can be applied to circadian lighting are achieved in Eu/Tb-codoped lithium-yttrium-aluminium-silicate (LYAS) glasses, which can be attributed to the simultaneous generation of three primary colours emitting from Eu 3+ (red), Eu 2+ (blue) and Tb 3+ (green) by varying the ultraviolet (UV) radiation wavelength. Fluorescence colour coordinates pass through the whole white region of the CIE x, y chromaticity diagram when the UV excitation wavelength is increased from 300 to 370 nm. A favourable white light with colour coordinates (0.338, 0.298) close to the equal energy white is obtained under 360 nm excitation. These results indicate that the Eu/Tb-codoped LYAS glasses are a promising candidate to develop white lighting devices under the excitation of commercial UV light-emitting diodes, and a smart lighting system based on rare-earth doped glasses will be a potential illumination source offering controllability of the colour temperature that can adjust to specific environments and requirements, and benefit human health, well-being and productivity. (paper)

  8. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy.

    Directory of Open Access Journals (Sweden)

    Deanna M Schmitt

    Full Text Available Vaccination is a proven strategy to mitigate morbidity and mortality of infectious diseases. The methodology of identifying and testing new vaccine candidates could be improved with rational design and in vitro testing prior to animal experimentation. The tularemia vaccine, Francisella tularensis live vaccine strain (LVS, does not elicit complete protection against lethal challenge with a virulent type A Francisella strain. One factor that may contribute to this poor performance is limited stimulation of antigen-presenting cells. In this study, we examined whether the interaction of genetically modified LVS strains with human antigen-presenting cells correlated with effectiveness as tularemia vaccine candidates. Human dendritic cells infected with wild-type LVS secrete low levels of proinflammatory cytokines, fail to upregulate costimulatory molecules, and activate human T cells poorly in vitro. One LVS mutant, strain 13B47, stimulated higher levels of proinflammatory cytokines from dendritic cells and macrophages and increased costimulatory molecule expression on dendritic cells compared to wild type. Additionally, 13B47-infected dendritic cells activated T cells more efficiently than LVS-infected cells. A deletion allele of the same gene in LVS displayed similar in vitro characteristics, but vaccination with this strain did not improve survival after challenge with a virulent Francisella strain. In vivo, this mutant was attenuated for growth and did not stimulate T cell responses in the lung comparable to wild type. Therefore, stimulation of antigen-presenting cells in vitro was improved by genetic modification of LVS, but did not correlate with efficacy against challenge in vivo within this model system.

  9. [Overview of the Ebola vaccines in pre-clinical and clinical development].

    Science.gov (United States)

    Buchy, P

    2016-10-01

    The Ebola epidemic that occurred in West Africa between 2013-2016 significantly accelerated the research and development of Ebola vaccines. Few dozens of clinical trials have been recently conducted leading to opportunities to test several new vaccine candidates. Other vaccines are still in early development phases (table 1). This paper provides an overview of the new developments in that area.

  10. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity.

    Science.gov (United States)

    Smaill, Fiona; Jeyanathan, Mangalakumari; Smieja, Marek; Medina, Maria Fe; Thanthrige-Don, Niroshan; Zganiacz, Anna; Yin, Cindy; Heriazon, Armando; Damjanovic, Daniela; Puri, Laura; Hamid, Jemila; Xie, Feng; Foley, Ronan; Bramson, Jonathan; Gauldie, Jack; Xing, Zhou

    2013-10-02

    There is an urgent need to develop new tuberculosis (TB) vaccines to safely and effectively boost Bacille Calmette-Guérin (BCG)-triggered T cell immunity in humans. AdHu5Ag85A is a recombinant human type 5 adenovirus (AdHu5)-based TB vaccine with demonstrated efficacy in a number of animal species, yet it remains to be translated to human applications. In this phase 1 study, we evaluated the safety and immunogenicity of AdHu5Ag85A in both BCG-naïve and previously BCG-immunized healthy adults. Intramuscular immunization of AdHu5Ag85A was safe and well tolerated in both trial volunteer groups. Moreover, although AdHu5Ag85A was immunogenic in both trial volunteer groups, it much more potently boosted polyfunctional CD4(+) and CD8(+) T cell immunity in previously BCG-vaccinated volunteers. Furthermore, despite prevalent preexisting anti-AdHu5 humoral immunity in most of the trial volunteers, we found little evidence that such preexisting anti-AdHu5 immunity significantly dampened the potency of AdHu5Ag85A vaccine. This study supports further clinical investigations of the AdHu5Ag85A vaccine for human applications. It also suggests that the widely perceived negative effect of preexisting anti-AdHu5 immunity may not be universally applied to all AdHu5-based vaccines against different types of human pathogens.

  11. Vaccine Platforms to Control Arenaviral Hemorrhagic Fevers.

    Science.gov (United States)

    Carrion, Ricardo; Bredenbeek, Peter; Jiang, Xiaohong; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2012-11-20

    Arenaviruses are rodent-borne emerging human pathogens. Diseases caused by these viruses, e.g., Lassa fever (LF) in West Africa and South American hemorrhagic fevers (HFs), are serious public health problems in endemic areas. We have employed replication-competent and replication-deficient strategies to design vaccine candidates potentially targeting different groups "at risk". Our leader LF vaccine candidate, the live reassortant vaccine ML29, is safe and efficacious in all tested animal models including non-human primates. In this study we showed that treatment of fatally infected animals with ML29 two days after Lassa virus (LASV) challenge protected 80% of the treated animals. In endemic areas, where most of the target population is poor and many live far from health care facilities, a single-dose vaccination with ML29 would be ideal solution. Once there is an outbreak, a fast-acting vaccine or post-exposure prophylaxis would be best. The 2(nd) vaccine technology is based on Yellow Fever (YF) 17D vaccine. We designed YF17D-based recombinant viruses expressing LASV glycoproteins (GP) and showed protective efficacy of these recombinants. In the current study we developed a novel technology to clone LASV nucleocapsid within YF17D C gene. Low immunogenicity and stability of foreign inserts must be addressed to design successful LASV/YFV bivalent vaccines to control LF and YF in overlapping endemic areas of West Africa. The 3(rd) platform is based on the new generation of alphavirus replicon virus-like-particle vectors (VLPV). Using this technology we designed VLPV expressing LASV GP with enhanced immunogenicity and bivalent VLPV expressing cross-reactive GP of Junin virus (JUNV) and Machupo virus (MACV), causative agents of Argentinian and Bolivian HF, respectively. A prime-boost regimen required for VLPV immunization might be practical for medical providers, military, lab personnel, and visitors in endemic areas.

  12. ASSESSMENT OF EFFECT OF MDR - TB/TB ON SOCIAL, FUNCTIONAL AND ECONOMIC WELL BEING OF PATIENTS – A CROSS SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Shiv Kumar

    2015-06-01

    Full Text Available CONTEXT : Tuberculosis is a contagious disease with social stigma attached to it. Various problems which are social and economic in nature are faced by TB patient. Therefore , it is essential to explore the overall effect of MDR - TB/TB on health and patients perception of Well - being. AIMS : To Document the effect of MDR - TB/TB on social , functional and economic well - being of patients. SETTINGS AND DESIGN : A Cross - sectional study , Conveniently Recruited 68 MDR - TB Patients and 136 non - MDR - TB Patients (from Rural as well as urban Area of Surat District diagnosed by CBNAAT were interviewed for investigating the effect of Tuberculosis. METHODS AND MATERIAL : A pre - tested standardized semi - structured questionnaire was used. Data was collected about socio - demographic profile of patients and interpreted in table. Data about effect of MDR - TB/TB was collected on Likert Scale and Frequency was calculated and Data wa s plotted on multiple bar charts. RESULTS : As compared to healthy status in the past , 93% MDR - TB and 82% TB patients have decreased ability to do work , about half of MDR - TB Patients and TB Patients have detiorated relations with family members , 67% of stud y participants have developed disharmonious relations with neighbor’s , 55% of Study participants have decreased income , 88% of study participants have decreased performance in day to day activities and 78% of study participants have faced discordial and di srespectful behavior from co - workers. CONCLUSION : Working ability more detiorated in MDR - TB patients while rest of the effect on social , functional and economic well - being is same in both TB and Multi Drug Resistant TB patients. This study emphasizes very clearly that social stigma still persist in community about Tuberculosis which needs to be eliminated in community by behavior change communication by health workers at all levels of health care.

  13. Molecular detection of multi drug resistant tuberculosis (mdr-tb) in mdr-tb patients' attendant in north western pakistan

    International Nuclear Information System (INIS)

    Shah, T.; Hayat, A.; Shah, Z.; Hayat, A.; Khan, S.B.

    2017-01-01

    Objective: To determine the drugs susceptibility pattern of mycobacterium tuberculosis (M.TB) in multi-drug resistant tuberculosis (MDR-TB) patients' attendants in North Western, Pakistan. Study Design: Cross sectional study. Place and Duration of Study: This study was conducted at Peshawar Tuberculosis Research Laboratory (PTRL), Provincial TB Control Program Hayatabad Medical Complex Peshawar, (KP) from August 2013 to March 2014. Material and Methods: A cross sectional study in which four hundred and eighty sputum samples from MDR-TB patients' attendants were processed for the detection of M.TB through Ziehl-Neelsen staining, Lowenstein-Jensen, BACTEC MGIT-960 culture and line probe assay. Results: Out of 480 samples, 06 (2.1%) were found positive for M.TB through Ziehl-Neelsen staining while 10 (2.8%) were positive through LJ and BACTEC MGIT-960 culture. The 10 positive samples were further subjected to drugs susceptibility testing and line probes assay test to find out rifampicin, isoniazid, streptomycin and ethambutol resistant and it was found that 6 M.TB isolates were resistant while 4 were sensitive to rifampicin and isoniazid. Among the 6 resistant M.TB strains, 4 showed mutation in rpoB gene at 531, 516 and 526 codons. Conclusion: Majority of MDR-TB patients' attendants had drug-resistant tuberculosis and the rate of drug susceptible TB was low. (author)

  14. Identifying protective Streptococcus pyogenes vaccine antigens recognized by both B and T cells in human adults and children

    DEFF Research Database (Denmark)

    Mortensen, Rasmus; Nissen, Thomas Nørrelykke; Fredslund, Sine

    2016-01-01

    No commercial vaccine exists against Group A streptococci (GAS; Streptococcus pyogenes) and only little is known about anti-GAS protective immunity. In our effort to discover new protective vaccine candidates, we selected 21 antigens based on an in silico evaluation. These were all well-conserved......No commercial vaccine exists against Group A streptococci (GAS; Streptococcus pyogenes) and only little is known about anti-GAS protective immunity. In our effort to discover new protective vaccine candidates, we selected 21 antigens based on an in silico evaluation. These were all well...

  15. Histomorphometric characteristics of immune cells in small intestine of pigs perorally immunized with vaccine candidate F18ac+ nonenterotoxigenic E. coli strain

    Directory of Open Access Journals (Sweden)

    I. Valpotic

    2009-12-01

    Full Text Available Colidiarrhea and colienterotoxemia caused by F4+ and/or F18+ enterotoxigenic E. coli (ETEC strains are the most prevalent infections of suckling and weaned pigs. Here we tested the immunogenicity and protective effectiveness of attenuated F18ac+ non-ETEC vaccine candidate strain against challenge infection with F4ac+ ETEC strain by quantitative phenotypic analysis of small intestinal leukocyte subsets in weaned pigs. We also evaluated levamisole as an immune response modifier (IRM and its adjuvanticity when given in the combination with the experimental vaccine. The pigs were parenterally immunized with either levamisole (at days -2, -1 and 0 or with levamisole and perorally given F18ac+ non-ETEC strain (at day 0, and challenged with F4ac+ ETEC strain 7 days later. At day 13 the pigs were euthanatized and sampled for immunohistological/histomorphometrical analyses. Lymphoid CD3+, CD45RA+, CD45RC+, CD21+, IgA+ and myeloid SWC3+ cell subsets were identified in jejunal and ileal epithelium, lamina propria and Peyer’s patches using the avidin-biotin complex method, and their numbers were determined by computer-assisted histomorphometry. Quantitative immunophenotypic analyses showed that levamisole treated pigs had highly increased numbers of jejunal CD3+, CD45RC+ and SWC3+ cells (p<0.05 as compared to those recorded in nontreated control pigs. In the ileum of these pigs we have recorded that only CD21+ cells were significantly increased (p<0.01. The pigs that were treated with levamisole adjuvanted experimental vaccine had significantly increased numbers of all tested cell subsets in both segments of the small intestine. It was concluded that levamisole adjuvanted F18ac+ non-ETEC vaccine was a requirement for the elicitation of protective gut immunity in this model; nonspecific immunization with levamisole was less effective, but confirmed its potential as an IRM.

  16. Economics and financing of vaccines for diarrheal diseases.

    Science.gov (United States)

    Bartsch, Sarah M; Lee, Bruce Y

    2014-01-01

    The considerable burden of infectious disease-caused diarrhea around the world has motivated the continuing development of a number of vaccine candidates over the past several decades with some reaching the market. As with all major public health interventions, understanding the economics and financing of vaccines against diarrheal diseases is essential to their development and implementation. This review focuses on each of the major infectious pathogens that commonly cause diarrhea, the current understanding of their economic burden, the status of vaccine development, and existing economic evaluations of the vaccines. While the literature on the economics and financing of vaccines against diarrhea diseases is growing, there is considerable room for more inquiry. Substantial gaps exist for many pathogens, circumstances, and effects. Economics and financing studies are integral to vaccine development and implementation.

  17. One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III).

    Science.gov (United States)

    Guo, Shaofen; Cao, Rui; Lu, Aihua; Zhou, Qing; Lu, Tianhong; Ding, Xiaolan; Li, Chaojun; Huang, Xiaohua

    2008-05-01

    One of the possible mechanisms for the inhibition effect of Tb(III) on peroxidase activity in horseradish (Armoracia rusticana) treated with Tb(III) was investigated using some biophysical and biochemical methods. Firstly, it was found that a large amount of Tb(III) can be distributed on the cell wall, that some Tb(III) can enter into the horseradish cell, indicating that peroxidase was mainly distributed on cell wall, and thus that Tb(III) would interact with horseradish peroxidase (HRP) in the plant. In addition, peroxidase bioactivity was decreased in the presence of Tb(III). Secondly, a new peroxidase-containing Tb(III) complex (Tb-HRP) was obtained from horseradish after treatment with Tb(III); the molecular mass of Tb-HRP is near 44 kDa and the pI is about 8.80. Thirdly, the electrocatalytic activity of Tb-HRP is much lower than that of HRP obtained from horseradish without treatment with Tb(III). The decrease in the activity of Tb-HRP is due to the destruction (unfolding) of the conformation in Tb-HRP. The planarity of the heme active center in the Tb-HRP molecule was increased and the extent of exposure of Fe(III) in heme was decreased, leading to inhibition of the electron transfer. The microstructure change in Tb-HRP might be the result of the inhibition effect of Tb(III) on peroxidase activity in horseradish.

  18. Challenges to developing effective streptococcal vaccines to prevent rheumatic fever and rheumatic heart disease

    Directory of Open Access Journals (Sweden)

    Sharma A

    2014-05-01

    Full Text Available Abhinay Sharma, D Patric Nitsche-SchmitzDepartment of Medical Microbiology, Helmholtz Center for Infection Research, Braunschweig, GermanyAbstract: Acute rheumatic fever is a sequela of Streptococcus pyogenes and potentially of Streptococcus dysgalactiae subsp. equisimilis infections. Acute rheumatic fever is caused by destructive autoimmunity and inflammation in the extracellular matrix and can lead to rheumatic heart disease, which is the most frequent cardiologic disease that is acquired in youth. Although effective treatments are available, acute rheumatic fever and rheumatic heart disease remain serious threats to human health, which affect millions and cause high economic losses. This has motivated the search for a vaccine that prevents the causative streptococcal infections. A variety of potential vaccine candidates have been identified and investigated in the past. Today, new approaches are applied to find alternative candidates. Nevertheless, several obstacles lie in the way of an approved S. pyogenes vaccine for use in humans. Herein, a subjective selection of promising vaccine candidates with respect to the prevention of acute rheumatic fever/rheumatic heart disease and safety regarding immunological side effects is discussed.Keywords: autoimmune disease, side effects, M protein vaccine, molecular mimicry, coiled-coil, collagen binding, PARF

  19. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles.

    Science.gov (United States)

    Sahu, Rajnish; Verma, Richa; Dixit, Saurabh; Igietseme, Joseph U; Black, Carolyn M; Duncan, Skyla; Singh, Shree R; Dennis, Vida A

    2018-03-01

    There is a persisting global burden and considerable public health challenge by the plethora of ocular, genital and respiratory diseases caused by members of the Gram-negative bacteria of the genus Chlamydia. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility, and interstitial pneumonia. The failures in screening and other prevention programs led to the current medical opinion that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, there is no human Chlamydia vaccine despite successful veterinary vaccines. A major challenge has been the effective delivery of vaccine antigens to induce safe and effective immune effectors to confer long-term protective immunity. The dawn of the era of biodegradable polymeric nanoparticles and the adjuvanted derivatives may accelerate the realization of the dream of human vaccine in the foreseeable future. Areas covered: This review focuses on the current status of human chlamydial vaccine research, specifically the potential of biodegradable polymeric nanovaccines to provide efficacious Chlamydia vaccines in the near future. Expert commentary: The safety of biodegradable polymeric nanoparticles-based experimental vaccines with or without adjuvants and the array of available chlamydial vaccine candidates would suggest that clinical trials in humans may be imminent. Also, the promising results from vaccine testing in animal models could lead to human vaccines against trachoma and reproductive diseases simultaneously.

  20. Fabrication and luminescence properties of Al{sub 2}O{sub 3}:Tb{sup 3+} microspheres via a microwave solvothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhenfeng, E-mail: zhuzf@sust.edu.cn [School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021 (China); Liu Dianguang; Liu Hui; Li Guangjun; Du Juan; He Zuoli [School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021 (China)

    2012-02-15

    Al{sub 2}O{sub 3}:Tb{sup 3+} green phosphors were synthesized via a microwave solvothermal and thermal decomposition route, and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) spectra, and decay curves. XRD results indicate that Tb{sup 3+} doped samples are {gamma}-Al{sub 2}O{sub 3} after being calcined at 773 K. SEM results show that the particles of Al{sub 2}O{sub 3}:Tb{sup 3+} are hierarchically nanostructured microspheres assembled from nanosheets. The PL spectra indicate that the {sup 5}D{sub 4}{yields}{sup 7}F{sub 5} (545 nm) electric dipole transition is the most intensive when excited at 235 nm. It is shown that 0.7 mol% of doping concentration of Tb{sup 3+} ions in {gamma}-Al{sub 2}O{sub 3}:Tb{sup 3+} is optimum. According to Dexter's theory, the critical distance between Tb{sup 3+} ions for energy transfer was determined to be 18.4 A. It is found that the curve followed the single-exponential decay. The excellent chromaticity coordinates of Al{sub 2}O{sub 3}:Tb{sup 3+} phosphors, as defined by the International Commission on Illumination (CIE), indicate that it is a good candidate for use in light display systems and optoelectronic devices. - Highlights: Black-Right-Pointing-Pointer Al{sub 2}O{sub 3}:Tb{sup 3+} phosphors prepared via a microwave solvothermal route. Black-Right-Pointing-Pointer The particles were hierarchically nanostructured microspheres packaged by nanosheets. Black-Right-Pointing-Pointer {sup 5}D{sub 4}{yields}{sup 7}F{sub 5} electric dipole transition is the most intensive when excited at 235 nm. Black-Right-Pointing-Pointer 0.7 mol% of doping concentration of Tb{sup 3+} ions in {gamma}-Al{sub 2}O{sub 3}:Tb{sup 3+} is optimum. Black-Right-Pointing-Pointer Critical distance between Tb{sup 3+} ions for energy transfer is 18.4 A.

  1. Enhancing TB case detection: experience in offering upfront Xpert MTB/RIF testing to pediatric presumptive TB and DR TB cases for early rapid diagnosis of drug sensitive and drug resistant TB.

    Directory of Open Access Journals (Sweden)

    Neeraj Raizada

    Full Text Available Diagnosis of pulmonary tuberculosis (PTB in children is challenging due to difficulties in obtaining good quality sputum specimens as well as the paucibacillary nature of disease. Globally a large proportion of pediatric tuberculosis (TB cases are diagnosed based only on clinical findings. Xpert MTB/RIF, a highly sensitive and specific rapid tool, offers a promising solution in addressing these challenges. This study presents the results from pediatric groups taking part in a large demonstration study wherein Xpert MTB/RIF testing replaced smear microscopy for all presumptive PTB cases in public health facilities across India.The study covered a population of 8.8 million across 18 programmatic sub-district level tuberculosis units (TU, with one Xpert MTB/RIF platform established at each study TU. Pediatric presumptive PTB cases (both TB and Drug Resistant TB (DR-TB accessing any public health facilities in study area were prospectively enrolled and tested on Xpert MTB/RIF following a standardized diagnostic algorithm.4,600 pediatric presumptive pulmonary TB cases were enrolled. 590 (12.8%, CI 11.8-13.8 pediatric PTB were diagnosed. Overall 10.4% (CI 9.5-11.2 of presumptive PTB cases had positive results by Xpert MTB/RIF, compared with 4.8% (CI 4.2-5.4 who had smear-positive results. Upfront Xpert MTB/RIF testing of presumptive PTB and presumptive DR-TB cases resulted in diagnosis of 79 and 12 rifampicin resistance cases, respectively. Positive predictive value (PPV for rifampicin resistance detection was high (98%, CI 90.1-99.9, with no statistically significant variation with respect to past history of treatment.Upfront access to Xpert MTB/RIF testing in pediatric presumptive PTB cases was associated with a two-fold increase in bacteriologically-confirmed PTB, and increased detection of rifampicin-resistant TB cases under routine operational conditions across India. These results suggest that routine Xpert MTB/RIF testing is a promising

  2. DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif

    DEFF Research Database (Denmark)

    von Rosen, Tanya; Rangelova, Desislava Yordanova; Nielsen, Jens

    2014-01-01

    Live modified vaccines to protect against classical swine fever virus (CSFV), based on chimeric pestiviruses, have been developed to enable serological Differentiation of Infected from Vaccinated Animals (DIVA). In this context, the chimeric virus CP7_E2gif vaccine candidate is unique as it does...

  3. Modern Vaccines/Adjuvants Formulation—Session 2 (Plenary II)

    Science.gov (United States)

    Collin, Nicolas

    2013-01-01

    On the 15–17th May 2013, the Fourth International Conference on Modern Vaccines/Adjuvants Formulation was organized in Lausanne, Switzerland, and gathered stakeholders from academics and from the industry to discuss several challenges, advances and promises in the field of vaccine adjuvants. Plenary session 2 of the meeting was composed of four different presentations covering: (1) the recent set-up of an adjuvant technology transfer and training platform in Switzerland, (2) the proposition to revisit existing paradigms of modern vaccinology, (3) the properties of polyethyleneimine as potential new vaccine adjuvant, and (4) the progresses in the design of HIV vaccine candidates able to induce broadly neutralizing antibodies. PMID:23966098

  4. Muc1 based breast cancer vaccines: role of post translational modifications

    International Nuclear Information System (INIS)

    Begum, M.; Khurshid, R.; Nagra, S.A.

    2008-01-01

    Vaccine development is one of the most promising fields in cancer research. After autologous transplantation, due to low tumour burden, patients are more likely to respond immunologically to a cancer vaccine. MUC1 with its adhesive and anti adhesive functions, immunostimulatory and immunosuppressive activities, is therefore a good candidate for breast cancer vaccine. A structure-based insight into the immunogenicity of natural MUC1 glyco forms, of its sub-domains, motifs and post translational modification like glycosylation and myriostoylation may aid the design of tumour vaccines. Primary sequences of human MUC1 were retrieved from the SWISSPROT data bank. Protein pattern search: The primary sequence of Human MUC1 was searched at PROSITE (a dictionary of protein sites and patterns) database. Our study observes that post-translational modifications play an important role in presenting MUC1 as a candidate for breast cancer vaccine. It is found that the phosphorylation and glycosylation of important functional motifs of MUC1 may take part in the production of cytokines that may provide immunization. (author)

  5. Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging.

    Science.gov (United States)

    Ma, Zhi-Ya; Liu, Yu-Ping; Bai, Ling-Yu; An, Jie; Zhang, Lin; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di

    2015-10-07

    Magnetic fluorescent nanoparticles (NPs) have great potential applications for diagnostics, imaging and therapy. We developed a facile polyol method to synthesize multifunctional Fe3O4@CeF3:Tb@CeF3 NPs with small size (CA) to obtain carboxyl-functionalized NPs (Fe3O4@CeF3:Tb@CeF3-COOH). Folic acid (FA) as an affinity ligand was then covalently conjugated onto NPs to yield Fe3O4@CeF3:Tb@CeF3-FA NPs. They were then applied as multimodal imaging agents for simultaneous in vitro targeted fluorescence imaging and magnetic resonance imaging (MRI) of HeLa cells with overexpressed folate receptors (FR). The results indicated that these NPs had strong luminescence and enhanced T2-weighted MR contrast and would be promising candidates as multimodal probes for both fluorescence and MRI imaging.

  6. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Tb:YAlO3.

    Science.gov (United States)

    Liu, Bin; Shi, Jiaojiao; Wang, Qingguo; Tang, Huili; Liu, Junfang; Zhao, Hengyu; Li, Dongzhen; Liu, Jian; Xu, Xiaodong; Wang, Zhanshan; Xu, Jun

    2018-07-05

    Tb 3+ -doped YAlO 3 (YAP) single crystal was grown by Czochralski (Cz) method. Based on the polarized absorption spectra, the spectroscopic parameters were calculated to be Ω 2 =3.49×10 -20 cm 2 , Ω 4 =5.87×10 -20 cm 2 and Ω 6 =2.55×10 -20 cm 2 , and then the spontaneous transition rate, fluorescent branching ratio and radiative lifetime of 5 D 4 multiplet were obtained. The yellow emission cross sections of 5 D 4 → 7 F 4 transition were calculated to be 1.72×10 -22 cm 2 , 2.73×10 -22 cm 2 and 2.65×10 -22 cm 2 for a, b and c polarization, respectively. The fluorescence lifetime of the 5 D 4 multiplet was fitted to be 1.72ms. All the data indicate that Tb:YAP crystal is a promising candidate for yellow laser operation. Copyright © 2018. Published by Elsevier B.V.

  7. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation

    Directory of Open Access Journals (Sweden)

    Fresno Manuel

    2011-07-01

    Full Text Available Abstract Background Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. Results In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II, to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus, infected with mutant parasites did not develop any sign of pathology. Conclusions The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.

  8. Blue to bluish-green tunable phosphor Sr2LiSiO4F:Ce3+,Tb3+ and efficient energy transfer for near-ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Xie, Mubiao; Zeng, Lihua; Ye, TingLi; Yang, Xi; Zhu, Xianmei; Peng, Siyun; Lei, Lei

    2014-01-01

    Ce 3+ and Tb 3+ activated Sr 2 LiSiO 4 F phosphors were prepared by a solid state reaction technique at high temperature, and their ultraviolet (UV)-visible spectroscopic properties were investigated. Under ultraviolet light excitation, Ce 3+ -doped Sr 2 LiSiO 4 F phosphors emit blue light (420 nm), while Tb 3+ -doped phosphors show yellowish green emission. Efficient energy transfer from Ce 3+ to Tb 3+ ions in co-doped samples was confirmed in terms of corresponding excitation and emission spectra. The energy transfer mechanism between Ce 3+ and Tb 3+ was discussed and demonstrated to be dipole–dipole interaction in Sr 2 LiSiO 4 F:Ce 3+ ,Tb 3+ phosphors. Due to energy transfer from Ce 3+ to Tb 3+ , Ce 3+ and Tb 3+ co-doped Sr 2 LiSiO 4 F phosphors show intense absorption in near-UV region, and present tunable emission from blue to bluish green under 360 nm light excitation. The results indicate that these phosphors can be considered as candidates for white LEDs pumped by n-UV chips. (paper)

  9. Tb{sup 3+}/Eu{sup 3+}: YF{sub 3} nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Wang, Zhongyi; Zhou, Yang [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on The Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China)

    2015-10-15

    Tb{sup 3+}/Eu{sup 3+} co-doped transparent bulk glass ceramics containing orthorhombic β-YF{sub 3} nanocrystals were successfully synthesized by melt-quenching and subsequent heating. The partition of the active centers into the YF{sub 3} crystalline lattice was confirmed by elemental mapping in the scanning transmission electron microscope, emission spectra and decay curves. As a consequence, Tb{sup 3+} → Eu{sup 3+} energy transfer was demonstrated to be more efficient in the glass ceramic than in the precursor glass, which resulted in color tunable luminescence by simply modifying Eu{sup 3+} content and induced the linearly temperature-dependent fluorescence intensity ratio between the Tb{sup 3+}: {sup 5}D{sub 4} → {sup 7}F{sub 5} transition and the Eu{sup 3+}: {sup 5}D{sub 0} → {sup 7}F{sub 4} one in the Tb{sup 3+}/Eu{sup 3+} co-doped glass ceramic. It is expected that the investigated glass ceramic might be a promising candidate for solid-state lighting as well as optical temperature sensor. - Highlights: • Lanthanide doped glass ceramics containing YF{sub 3} nanocrystals were fabricated. • Tb{sup 3+} and Eu{sup 3+} dopants were confirmed to incorporate into YF{sub 3} lattice. • Tunable luminescence was realized via Tb{sup 3+} → Eu{sup 3+} energy transfer. • Linearly temperature-dependent fluorescence intensity ratio was detected.

  10. Force Spectroscopy of the Plasmodium falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region.

    Science.gov (United States)

    Patra, Aditya Prasad; Sharma, Shobhona; Ainavarapu, Sri Rama Koti

    2017-02-10

    The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSP rep ), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSP ΔHP ). Our results show that the CSP rep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSP ΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 3 - Vaccines.

    Science.gov (United States)

    Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W

    2016-06-01

    This study assessed research knowledge gaps in the field of FMDV (foot-and-mouth disease virus) vaccines. The study took the form of a literature review (2011-15) combined with research updates collected in 2014 from 33 institutes from across the world. Findings were used to identify priority areas for future FMD vaccine research. Vaccines play a vital role in FMD control, used both to limit the spread of the virus during epidemics in FMD-free countries and as the mainstay of disease management in endemic regions, particularly where sanitary controls are difficult to apply. Improvements in the performance or cost-effectiveness of FMD vaccines will allow more widespread and efficient disease control. FMD vaccines have changed little in recent decades, typically produced by inactivation of whole virus, the quantity and stability of the intact viral capsids in the final preparation being key for immunogenicity. However, these are exciting times and several promising novel FMD vaccine candidates have recently been developed. This includes the first FMD vaccine licensed for manufacture and use in the USA; this adenovirus-vectored FMD vaccine causes in vivo expression of viral capsids in vaccinated animals. Another promising vaccine candidate comprises stabilized empty FMDV capsids produced in vitro in a baculovirus expression system. Recombinant technologies are also being developed to improve otherwise conventionally produced inactivated vaccines, for example, by creating a chimeric vaccine virus to increase capsid stability and by inserting sequences into the vaccine virus for desired antigen expression. Other important areas of ongoing research include enhanced adjuvants, vaccine quality control procedures and predicting vaccine protection from immune correlates, thus reducing dependency on animal challenge studies. Globally, the degree of independent vaccine evaluation is highly variable, and this is essential for vaccine quality. Previously neglected, the

  12. Engineering Enhanced Vaccine Cell Lines To Eradicate Vaccine-Preventable Diseases: the Polio End Game.

    Science.gov (United States)

    van der Sanden, Sabine M G; Wu, Weilin; Dybdahl-Sissoko, Naomi; Weldon, William C; Brooks, Paula; O'Donnell, Jason; Jones, Les P; Brown, Cedric; Tompkins, S Mark; Oberste, M Steven; Karpilow, Jon; Tripp, Ralph A

    2016-02-15

    Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work

  13. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.

    Science.gov (United States)

    Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon

    2018-03-01

    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

  14. Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2010-10-01

    virion, electron microscopy analysis demonstrated that LASV VLP appeared structurally similar to native virions, with pleiomorphic distribution in size and shape. LASV VLP that displayed GPC or GPC+NP were immunogenic in mice, and generated a significant IgG response to individual viral proteins over the course of three immunizations, in the absence of adjuvants. Furthermore, sera from convalescent Lassa fever patients recognized VLP in ELISA format, thus affirming the presence of native epitopes displayed by the recombinant pseudoparticles. Conclusions These results established that modular LASV VLP can be generated displaying high levels of immunogenic viral proteins, and that small laboratory scale mammalian expression systems are capable of producing multi-milligram quantities of pseudoparticles. These VLP are structurally and morphologically similar to native LASV virions, but lack replicative functions, and thus can be safely generated in low biosafety level settings. LASV VLP were immunogenic in mice in the absence of adjuvants, with mature IgG responses developing within a few weeks after the first immunization. These studies highlight the relevance of a VLP platform for designing an optimal vaccine candidate against Lassa hemorrhagic fever, and warrant further investigation in lethal challenge animal models to establish their protective potential.

  15. Radiation and Anti-Cancer Vaccines: A Winning Combination.

    Science.gov (United States)

    Cadena, Alexandra; Cushman, Taylor R; Anderson, Clark; Barsoumian, Hampartsoum B; Welsh, James W; Cortez, Maria Angelica

    2018-01-30

    The emerging combination of radiation therapy with vaccines is a promising new treatment plan in the fight against cancer. While many cancer vaccines such as MUC1, p53 CpG oligodeoxynucleotide, and SOX2 may be great candidates for antitumor vaccination, there still remain many investigations to be done into possible vaccine combinations. One fruitful partnership that has emerged are anti-tumor vaccines in combination with radiation. Radiation therapy was previously thought to be only a tool for directly or indirectly damaging DNA and therefore causing cancer cell death. Now, with much preclinical and clinical data, radiation has taken on the role of an in situ vaccine. With both cancer vaccines and radiation at our disposal, more and more studies are looking to combining vaccine types such as toll-like receptors, viral components, dendritic-cell-based, and subunit vaccines with radiation. While the outcomes of these combinatory efforts are promising, there is still much work to be covered. This review sheds light on the current state of affairs in cancer vaccines and how radiation will bring its story into the future.

  16. Potency assay design for adjuvanted recombinant proteins as malaria vaccines.

    Science.gov (United States)

    Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce

    2006-05-15

    Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.

  17. A potent Brucella abortus 2308 Δery live vaccine allows for the differentiation between natural and vaccinated infection.

    Science.gov (United States)

    Zhang, Junbo; Yin, Shuanghong; Guo, Fei; Meng, Ren; Chen, Chuangfu; Zhang, Hui; Li, Zhiqiang; Fu, Qiang; Shi, Huijun; Hu, Shengwei; Ni, Wei; Li, Tiansen; Zhang, Ke

    2014-08-01

    Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. However, the current Brucella abortus vaccines (S19 and RB51) are deficient; they can cause abortion in pregnant animals. Moreover, when the vaccine S19 is used, tests cannot differentiate natural from vaccinated infection. Therefore, a safer and more potent vaccine is needed. A Brucella abortus 2308 ery promoter mutant (Δery) was constructed to overcome these drawbacks. The growth of the Δery mutant was significantly attenuated in macrophages and mice and induced high protective immunity in mice. Moreover, Δery induced an anti-Brucella-specific IgG (immunoglobulin G) response and stimulated the expression of interferon-gamma (INF-γ) and interleukin-4 (IL-4). Furthermore, the expression of EryA antigen allowed for the serological differentiation between natural and vaccinated infection in mice. These results indicate that the Δery mutant is a potential attenuated live vaccine candidate against virulent Brucella abortus 2308 (S2308) infection.

  18. CD4 cell count recovery in HIV/TB co-infected patients versus TB uninfected HIV patients

    Directory of Open Access Journals (Sweden)

    Wanchu A

    2010-10-01

    Full Text Available Background: There is lack of data comparing the improvement in CD4 count following antitubercular (ATT and antiretroviral therapy (ART in patients presenting with Human Immunodeficiency Virus/Tuberculosis (HIV/TB dual infection compared with CD4 matched cohort of TB uninfected HIV patients initiated on ART. We sought to test the hypothesis; TB additionally contributes to reduction in CD4 count in HIV/TB co-infected patients and this would result in greater improvement in count following treatment compared with CD4 matched TB uninfected individuals. Materials and Methods: In a retrospective cohort study design we studied the change in CD4 cell counts in two groups of patients - those with CD4 cell count >100 cells / mm 3 (Group 1 and <100/mm 3 (Group 2 at presentation. In each group the change in CD4 cell count in dually infected patients following six-month ATT and ART was compared to cohorts of CD4 matched TB uninfected patients initiated on ART. Results: In Group 1 (52 patients dually infected subjects′ CD4 count improved from 150 cells/ mm 3 to 345 cells/mm 3 (P=0.001. In the control TB uninfected patients, the change was from 159 cells/mm 3 to 317 cells/mm 3 (P=0.001. Additional improvement in dually infected patients compared to the control group was not statistically significant (P=0.24. In Group 2 (65 patients dually infected subjects count improved from 49 cells/mm3 to 249 cells/mm 3 (P=0.001 where as in control TB uninfected patients improvement was from 50 cells/ mm 3 to 205 cells/mm 3 (P=0.001, there being statistically significant additional improvement in dually infected subjects (P=0.01. Conclusion: Greater increment in CD4 counts with ATT and ART in dually infected patients suggests that TB additionally influences the reduction of CD4 counts in HIV patients.

  19. Optimization of TB/HIV co-treatment in Ethiopian patients

    OpenAIRE

    Degu, Wondwossen Amogne

    2015-01-01

    Tuberculosis (TB) and HIV infection act with deadly synergy. HIV is the most important risk factor for latent TB reactivation and active TB progression following exposure or reinfection while TB accelerates HIV progression. TB is the most frequent cause of morbidity and mortality in HIV infection. Anti-TB therapy (ATT) must precede initiation of combination Antiretroviral Therapy (cART), TB being the most immediate threat. Undoubtedly cART benefits; however, important clinical ...

  20. Preclinical Development and Production of Virus-Like Particles As Vaccine Candidates for Hepatitis C

    Directory of Open Access Journals (Sweden)

    Makutiro Ghislain Masavuli

    2017-12-01

    Full Text Available Hepatitis C Virus (HCV infects 2% of the world’s population and is the leading cause of liver disease and liver transplantation. It poses a serious and growing worldwide public health problem that will only be partially addressed with the introduction of new antiviral therapies. However, these treatments will not prevent re-infection particularly in high risk populations. The introduction of a HCV vaccine has been predicted, using simulation models in a high risk population, to have a significant effect on reducing the incidence of HCV. A vaccine with 50 to 80% efficacy targeted to high-risk intravenous drug users could dramatically reduce HCV incidence in this population. Virus like particles (VLPs are composed of viral structural proteins which self-assemble into non-infectious particles that lack genetic material and resemble native viruses. Thus, VLPs represent a safe and highly immunogenic vaccine delivery platform able to induce potent adaptive immune responses. Currently, many VLP-based vaccines have entered clinical trials, while licensed VLP vaccines for hepatitis B virus (HBV and human papilloma virus (HPV have been in use for many years. The HCV core, E1 and E2 proteins can self-assemble into immunogenic VLPs while inclusion of HCV antigens into heterogenous (chimeric VLPs is also a promising approach. These VLPs are produced using different expression systems such as bacterial, yeast, mammalian, plant, or insect cells. Here, this paper will review HCV VLP-based vaccines and their immunogenicity in animal models as well as the different expression systems used in their production.