WorldWideScience

Sample records for tax-expressing rat fibroblast

  1. Effects of basic fibroblast growth factor on rat vocal fold fibroblasts.

    Science.gov (United States)

    Suehiro, Atsushi; Hirano, Shigeru; Kishimoto, Yo; Tateya, Ichiro; Rousseau, Bernard; Ito, Juichi

    2010-10-01

    The overarching goal of this line of research is to translate basic fibroblast growth factor (bFGF) treatment for vocal fold scarring into practical clinical use. In a previous canine investigation, we demonstrated that bFGF improves phonation threshold pressure, mucosal wave amplitude, and histologic measures in vocal folds treated after injury. In the present study, we studied the effects of bFGF on gene expression of the extracellular matrix and growth factors in rat vocal fold fibroblasts. Fibroblasts harvested from the vocal folds of 5 rats were treated with 3 concentrations of bFGF (0, 10, and 100 ng/mL). The fibroblasts were collected at 24 hours and 72 hours after bFGF administration. Quantitative polymerase chain reaction was then used to investigate the gene expression of the investigated growth factors and extracellular matrices. The results revealed significantly down-regulated expression of procollagen I and significantly up-regulated expression of hyaluronic acid synthase (HAS) 2 and fibronectin in fibroblasts treated with bFGF. The administration of bFGF also resulted in the up-regulation of bFGF and hepatocyte growth factor (HGF). No changes in the expression of HAS-1, tropoelastin, or procollagen III were observed between the treatment and control conditions. Treatment with bFGF induces the down-regulation of procollagen I and the up-regulation of HAS-2 in vocal fold fibroblast cell cultures. These gene expression alterations to key mediators of the wound healing process may translate into potential benefits in the remediation of vocal fold injury. The up-regulation of HGF, an antifibrotic effector molecule, may demonstrate additional benefits by optimizing the wound healing environment and by accelerating the wound repair cascade. These findings may provide fuel for additional discoveries into the development of growth factor therapy for the treatment of vocal fold scar.

  2. Isolation of cardiac myocytes and fibroblasts from neonatal rat pups.

    Science.gov (United States)

    Golden, Honey B; Gollapudi, Deepika; Gerilechaogetu, Fnu; Li, Jieli; Cristales, Ricardo J; Peng, Xu; Dostal, David E

    2012-01-01

    Neonatal rat ventricular myocytes (NRVM) and fibroblasts (FBs) serve as in vitro models for studying fundamental mechanisms underlying cardiac pathologies, as well as identifying potential therapeutic targets. Both cell types are relatively easy to culture as monolayers and can be manipulated using molecular and pharmacological tools. Because NRVM cease to proliferate after birth, and FBs undergo phenotypic changes and senescence after a few passages in tissue culture, primary cultures of both cell types are required for experiments. Below we describe methods that provide good cell yield and viability of primary cultures of NRVM and FBs from 0 to 3-day-old neonatal rat pups.

  3. Caspase 3 activity in isolated fetal rat lung fibroblasts and rat periodontal ligament fibroblasts: cigarette smoke-induced alterations

    Directory of Open Access Journals (Sweden)

    James Elliot Scott

    2016-03-01

    Full Text Available Background Cigarette smoking is the leading cause of preventable death in the world. It has been implicated in the pathogenesis of pulmonary, oral and systemic diseases. Smoking during pregnancy is clearly a risk factor for the developing fetus and may be a major cause of infant mortality. Moreover, the oral cavity is the first site of exposure to cigarette smoke and may be a possible source for the spread of toxins to other organs of the body. Fibroblasts in general are morphologically heterogeneous connective tissue cells with diverse functions. Apoptosis or programmed cell death is a crucial process during embryogenesis and for the maintenance of homeostasis throughout life. Deregulation of apoptosis has been implicated in abnormal lung development in the fetus and disease progression in adults. Caspases, are proteases which belong to the family of cysteine aspartic acid proteases and are the key components for the downstream amplification of intra-cellular apoptotic signals. Of the 14 caspases known, caspase-3 is the key executioner of apoptosis. Fetal rat lung fibroblasts but not PDL viability is reduced by exposure to CSE. In addition Caspase 3 activity is elevated after CSE exposure in fetal lung fibroblasts but not in PDLs. Expression of caspase 3 is induced in CSE exposed lung fibroblasts but not in PDLs. Caspase 3 was localized to the cytoplasm in both cell types.

  4. Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats.

    Science.gov (United States)

    Ge, Zhengxing; Li, Bo; Zhou, Xun; Yang, Yi; Zhang, Jun

    2016-12-01

    Chronic obstructive pulmonary disease (COPD) is featured by aberrant extracellular matrix (ECM) deposition. Trigger of the β-catenin/RhoA pathway has been involved in aberrant ECM deposition in several diseases. We investigated WNT signaling activation in primary pulmonary fibroblasts of rats with and without COPD and the function of WNT signaling in pulmonary fibroblast. We evaluated the expression of WNT signaling and the role of β-catenin, using MRC-5 fibroblasts and primary lung fibroblasts of rats with and without COPD. Lung fibroblasts highly expressed mRNA of genes associated with WNT signaling. Treatment of MRC-5 fibroblasts using basic fibroblast growth factor (bFGF), a composition of the mucus in COPD patients, enhanced β-catenin, Wnt5a and RhoA expression. The expression in β-catenin, Wnt5a and RhoA induced by bFGF was higher in fibroblasts of rats with COPD than without COPD, whereas the basal expression was similar. bFGF also activated transcriptionally active and increased total β-catenin protein expression. Moreover, bFGF enhanced the expression of α-sm-actin and fibronectin, which was abrogated by β-catenin, Wnt5a and RhoA-specific adenovirus siRNA. The induction of active β-catenin and then fibronectin turnover in response to bFGF were markedly increased in pulmonary fibroblasts from rat with COPD. β-Catenin/RhoA pathway results in ECM deposition in lung fibroblasts and myofibroblasts differentiation. β-catenin/RhoA signaling induced by bFGF is promoted in lung fibroblasts from rats with COPD. The study indicated a crucial role of the WNT signaling in mediating fibroblast morphology and function in COPD.

  5. Effect of simvastatin on the proliferation of rat cardiac fibroblasts.

    Science.gov (United States)

    Xu, Lin; Zhao, Lian-You; Zheng, Qiang-Sun; Fan, Yan-Hong; Tian, Jian-Wei; Yang, Xue-Dong

    2001-01-01

    OBJECTIVE: To investigate the effects of simvastatin on the proliferation of rat cardiac fibroblasts (CFs) induced by arginine vasopressin (AVP). METHODS: CFs of neonatal Sprague-Dawley (SD) rats were isolated by trypsin digestion method and growth-arrested CFs were stimulated with 1x10-7 mol/L AVP in the presence of simvastatin (Sim) with varied concentrations. MTT assay was employed to measure CFs proliferation and determine the cell number, and the cell cycle distribution was determined with flow cytometer (FCM). RESULTS: With the increase of Sim concentration, D490 of CFs as shown by MTT assay gradually decreased, and for the cells treated with 1x10-6 mol/L Sim or 1x10-5 mol/L Sim, D490 (0.215+/-0.041and 0.163+/-0.018, respectively) was significantly lower than that of the control (0.939+/-0.048, P<0.01). In a dose-dependent manner, Sim decreased the cell percentage at S stage and the proliferation index (PI) as its concentration increased, but acted to the contrary effect with the percentage of cells at G0/G1 stage, and in CFs treated with 1x10-5 mol/L or 1x10-6 mol/l Sim, the 3 parameters were significantly different from those measured in the CFs with 1x10-7 mol/L AVP treatment (P<0.01). CONCLUSION: The results indicate that Sim can inhibit the proliferation of CFs induced by AVP, possibly through the mechanism of regulating the cell cycle distribution.

  6. Thermoreversible gelation polymer as an embolic material for aneurysm treatment: a delivery device for dermal fibroblasts and basic fibroblast growing factor into experimental aneurysms in rats.

    Science.gov (United States)

    Dobashi, Hisashi; Akasaki, Yasuharu; Yuki, Ichiro; Arai, Takao; Ohashi, Hiroki; Murayama, Yuichi; Takao, Hiroyuki; Abe, Toshiaki

    2013-11-01

    This study evaluates whether thermoreversible gelation polymer (TGP) can be used as a delivery device to deploy dermal fibroblasts and cytokines into experimental aneurysms in rats. The right common iliac artery of rats was surgically ligated and an experimental aneurysm was created by applying exogenous elastase. Seven days later, two aneurysms were harvested and used as controls (Group A), two were embolized with pure TGP (Group B), two were embolized with TGP and basic fibroblast growth factor (bFGF) (Group C) and two were embolized with TGP loaded with rat dermal fibroblasts (Group D). The aneurysms were also embolized with TGP mixed with dermal fibroblasts and bFGF at different concentrations (10 ng/ml: Group E (n=2), 100 ng/ml: Group F (n=2), 1000 ng/ml: Group G (n=2)). Each aneurysm sample was harvested after 7 days and histologic analyses were performed. The most advanced thrombus organization in the aneurysm, such as prominent fibroblast proliferation and collagen deposition, was observed in Groups E, F and G, although there was no noticeable difference between the groups. Moderate thrombus organization was seen in Group D and minimal thrombus organization was seen in Groups B and C. TGP mixed with both dermal fibroblasts and bFGF induced the most advanced thrombus organization in the experimental aneurysms followed by TGP mixed only with dermal fibroblasts. TGP may be useful as a delivery device to deploy fibroblasts and cytokines into aneurysms.

  7. A cell culture model using rat coronary artery adventitial fibroblasts to measure collagen production

    Directory of Open Access Journals (Sweden)

    Meszaros Gary

    2007-05-01

    Full Text Available Abstract Background We have developed a rat cell model for studying collagen type I production in coronary artery adventitial fibroblasts. Increased deposition of adventitial collagen type I leads to stiffening of the blood vessel, increased blood pressure, arteriosclerosis and coronary heart disease. Although the source and mechanism of collagen deposition is yet unknown, the adventitia appears to play a significant role. To demonstrate the application of our cell model, cultured adventitial fibroblasts were treated with sex hormones and the effect on collagen production measured. Methods Hearts (10–12 weeks were harvested and the left anterior descending coronary artery (LAD was isolated and removed. Tissue explants were cultured and cells (passages 2–4 were confirmed as fibroblasts using immunohistochemistry. Optimal conditions were determined for cell tissue harvest, timing, proliferation and culture conditions. Fibroblasts were exposed to 10-7 M testosterone or 10-7 M estrogen for 24 hours and either immunostained for collagen type I or subjected to ELISA. Results Results showed increased collagen staining in fibroblasts treated with testosterone compared to control and decreased staining with estrogen. ELISA results showed that testosterone increased collagen I by 20% whereas estrogen decreased collagen I by 15%. Conclusion Data demonstrates the usefulness of our cell model in studying the specific role of the adventitia apart from other blood vessel tissue in rat coronary arteries. Results suggest opposite effects of testosterone and estrogen on collagen synthesis in the rat coronary artery adventitial fibroblasts.

  8. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease

    International Nuclear Information System (INIS)

    Wolff, J.A.; Fisher, L.J.; Xu, L.; Jinnah, H.A.; Rosenberg, M.B.; Shimohama, S.; Gage, F.H.; Langlais, P.J.; Iuvone, P.M.; O'Malley, K.L.

    1989-01-01

    Rat fibroblasts were infected with a retroviral vector containing the cDNA for rat tyrosine hydroxylase. A TH-positive clone was identified by biochemical assay and immunohistochemical staining. When supplemented in vitro with pterin cofactors required for TH activity, these cells produced L-dopa and released it into the cell cultured medium. Uninfected control cells and fibroblasts infected with the TH vector were grafted separately to the caudate of rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. Only grafts containing TH-expressing fibroblasts were found to reduce rotational asymmetry. These results have general implications for the application of gene therapy to human neurological disease and specific implications for Parkinson disease

  9. Structure of rat acidic fibroblast growth factor at 1.4 A resolution

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Kiselyov, Vladislav; Kochoyan, Artur

    2007-01-01

    Fibroblast growth factors (FGFs) constitute a family of 22 structurally related heparin-binding polypeptides that are involved in the regulation of cell growth, survival, differentiation and migration. Here, a 1.4 A resolution X-ray structure of rat FGF1 is presented. Two molecules are present...

  10. Entrainment of Spontaneously Hypertensive Rat Fibroblasts by Temperature Cycles

    Czech Academy of Sciences Publication Activity Database

    Sládek, Martin; Sumová, Alena

    2013-01-01

    Roč. 8, č. 10 (2013), e77010 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GPP305/10/P244; GA ČR(CZ) GAP303/11/0668 Institutional support: RVO:67985823 Keywords : circadian rhythms * temperature * entrainment * SHR * fibroblasts * phase response curve Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  11. Expression dynamics of caveolin-1 in fibroblasts of newborn rats with chronic lung disease and its impact on lung fibroblast proliferation.

    Science.gov (United States)

    Wang, Xin; Fu, Jian-Hua; Xue, Xin-Dong

    2017-05-01

    To evaluate the changes of caveolin-1 in lung fibroblasts in newborn Wistar rats when exposed to hyperoxic conditions, as well as lung fibroblasts cell cycle. One hundred newborn Wistar rats were randomly divided (50 rats/group) into experimental and control groups, exposed to hyperoxic conditions or normal air, respectively. The fraction of inspired oxygen (FiO2) in the experimental group was 90%, whereas this value was 21% in the control group. Lung fibroblasts were collected on days 3, 7, and 14 of the experiment. Caveolin-1 expression dynamics in lung fibroblasts was assayed in each group by immunofluorescence and Western blot analyses. Flow cytometry (FCM) was used to assess the proportions of lung fibroblasts at different stages of the cell cycle. On day 3, no significant difference in caveolin-1 expression was observed between the hyperoxic and control groups; however, on days 7 and 14, caveolin-1 expression was significantly lower in the hyperoxic group than in the control (Pfibroblasts in G0/G1 phase in the hyperoxic group decreased compared to that of the control group on day 7, while the proportion of S-phase cells increased (Pfibroblasts proliferated and caveolin-1 expression decreased.

  12. Mitochondrial ribosomal protein S18-2 evokes chromosomal instability and transforms primary rat skin fibroblasts

    KAUST Repository

    Kashuba, Elena

    2015-05-12

    We have shown earlier that overexpression of the human mitochondrial ribosomal protein MRPS18-2 (S18-2) led to immortalization of primary rat embryonic fibroblasts. The derived cells expressed the embryonic stem cell markers, and cellular pathways that control cell proliferation, oxidative phosphorylation, cellular respiration, and other redox reactions were activated in the immortalized cells. Here we report that, upon overexpression of S18-2 protein, primary rat skin fibroblasts underwent cell transformation. Cells passed more than 300 population doublings, and two out of three tested clones gave rise to tumors in experimental animals. Transformed cells showed anchorage-independent growth and loss of contact inhibition; they expressed epithelial markers, such as E-cadherin and β-catenin. Transformed cells showed increased telomerase activity, disturbance of the cell cycle, and chromosomal instability. Taken together, our data suggest that S18-2 is a newly identified oncoprotein that may be involved in cancerogenesis.

  13. Radioprotective effect of c-ski on rat skin fibroblast in vitro

    International Nuclear Information System (INIS)

    Liu Xia; Li Ping; Zhang En; Liu Ping; Zhou Ping; Zhou Yuanguo

    2006-01-01

    Objective: To examine radioprotective effect of c-ski on rat skin fibroblast in vitro and explore its possible mechanism. Methods: The effect of soft X-ray irradiation at dose varied from 2 to 8 Gy on cell apoptosis in rat skin fibroblast were determined by flow cytometry with Annexin-V-FITC-PI labelling. The effect of c-ski gene transfection on cell apoptosis was evaluated after soft X-ray irradiation of 4 Gy. The protein expressions of Bax and Bcl-2 after c-ski gene transfection were measured with the Western blot method. Results: Soft X-ray irradiation increases cell apoptosis, and the increase is proportional to the irradiation dose. Apoptosis ratio increases with time since the irradiation, and reaches its peak at 36h after the irradiation, c-ski gene was observed to markedly decrease apoptosis index at 24 h after soft X-ray irradiation of 4 Gy compared to the control group, significant increase of the protein expression of Bcl-2 was observed. C-ski gene was found no significant effect on the protein expression of Bax. Conclusion: c-ski gene can decrease radiation sensitivity of skin fibroblast, promoting Bcl-2 protein expression is one of its possible mechanism for this radioprotective effects. (authors)

  14. Euphorbia hirta accelerates fibroblast proliferation and Smad-mediated collagen production in rat excision wound.

    Science.gov (United States)

    Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Goyary, Danswrang; Mazumder, Papiya M; Veer, Vijay

    2014-08-01

    Euphorbia hirta L. (Euphorbiaceae) is a traditional herbal medicine used for treatment of various diseases. E. hirta was investigated for in vitro/in vivo wound healing activity using human dermal fibroblast cell line and Wistar rats. Petroleum ether, chloroform, methanol and water successive extracts of E. hirta leaves were evaluated for antioxidant, antimicrobial and fibroblast proliferation activities. Among different extracts, the promising methanol extract was screened for wound healing activity in Wistar rats, using gentamicin sulfate (0.01% w/w) as a reference. Wound contraction, hydroxyproline content and the protein expression of COL3A1, bFGF, Smad-2,-3,-4 and -7 were measured. The E. hirta methanol extract showed a potent antimicrobial (MIC 0.250 mg/ml against Escherichia coli and Klebsiella pneumoniae, both), antioxidant activities (IC50 = 10.57 μg/ml, 2,2-diphenyl-1-picrylhydrazyl; 850.23 μg/ml, superoxide-anion radical scavenging activity and 23.63 mg gallic acid equivalent per gram extract) with significant fibroblast proliferating activity (112% at 12.5 μg/ml) as compared to other extracts. In vivo study also supported the wound healing potential of methanol extract, as evidenced by faster wound contraction, higher hydroxyproline (4.240 mg/100 mg tissue) and improved histopathology of granulation tissue as compared to control groups and gentamicin sulfate-treated ones. Western blot also revealed a significantly altered expression of Smad-mediated proteins resulting in collagen production. The study suggested that E. hirta accelerates the wound healing by augmenting the fibroblast proliferation and Smad-mediated collagen production in wound tissue.

  15. Psychological Stress Delays Periodontitis Healing in Rats: The Involvement of Basic Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    Ya-Juan Zhao

    2012-01-01

    Full Text Available Objective. To evaluate the effects of psychological stress on periodontitis healing in rats and the contribution of basic fibroblast growth factor (bFGF expression to the healing process. Methods. Ninety-six rats were randomly distributed into control group, periodontitis group, and periodontitis plus stress group. Then, the rats were sacrificed at baseline and week(s 1, 2, and 4. The periodontitis healing condition was assessed, and the expression of interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, and bFGF were tested by immunohistochemistry. Results. The stressed rats showed reduced body weight gain, behavioral changes, and increased serum corticosterone and ACTH levels (. The surface of inflammatory infiltrate, alveolar bone loss, attachment loss, and expression of IL-1β and TNF-α in the stress group were higher than those in the periodontitis group at weeks 2 and 4 (. Rats with experimental periodontitis showed decreased bFGF expression (, and the recovery of bFGF expression in the stress group was slower than that in the periodontitis group (. Negative correlations between inflammatory cytokines and bFGF were detected. Conclusion. Psychological stress could delay periodontitis healing in rats, which may be partly mediated by downregulation of the expression of bFGF in the periodontal ligament.

  16. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    International Nuclear Information System (INIS)

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho; Park, Young-Guk

    2009-01-01

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1β (IL-1β) stimulation with increasing in vitro age. Tumor necrosis factor-α (TNF-α)-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-κB and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  17. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Science.gov (United States)

    Prata, Cecilia; Zambonin, Laura; Rizzo, Benedetta; Vieceli Dalla Sega, Francesco

    2017-01-01

    Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance. PMID:28947927

  18. Glycosides from Stevia rebaudiana Bertoni Possess Insulin-Mimetic and Antioxidant Activities in Rat Cardiac Fibroblasts

    Directory of Open Access Journals (Sweden)

    Cecilia Prata

    2017-01-01

    Full Text Available Stevia rebaudiana Bertoni is a shrub having a high content of sweet diterpenoid glycosides in its leaves, mainly stevioside and rebaudioside A, which are used as noncaloric, natural sweeteners. The aim of this study was to deepen the knowledge about the insulin-mimetic effect exerted by four different mixtures of steviol glycosides, rich in stevioside and rebaudioside A, in neonatal rat cardiac fibroblasts. The potential antioxidant activity of these steviol glycosides was also assessed, as oxidative stress is associated with diabetes. Likewise the insulin effect, steviol glycosides caused an increase in glucose uptake into rat fibroblasts by activating the PI3K/Akt pathway, thus inducing Glut4 translocation to the plasma membrane. The presence of S961, an insulin antagonist, completely abolished these effects, allowing to hypothesize that steviol glycosides could act as ligands of the same receptor engaged by insulin. Moreover, steviol glycosides counteracted oxidative stress by increasing reduced glutathione intracellular levels and upregulating expression and activity of the two antioxidant enzymes superoxide dismutase and catalase. The present work unravels the insulin-mimetic effect and the antioxidant property exerted by steviol glycosides, suggesting their potential beneficial role in the cotreatment of diabetes and in health maintenance.

  19. Expression of calmodulin and calmodulin binding proteins in rat fibroblasts stably transfected with protein kinase C and oncogenes

    DEFF Research Database (Denmark)

    Ye, Q; Wei, Y; Fischer, R

    1997-01-01

    Molecular mechanisms leading to elevated calmodulin (CaM) expression in cancer have not yet been discovered. We have quantitated the levels of transcripts derived from all three CaM genes in a variety of the same origin rat fibroblasts transformed with oncogenes in combination with gene for prote...

  20. Expression of calmodulin and calmodulin binding proteins in rat fibroblasts stably transfected with protein kinase C and oncogenes

    DEFF Research Database (Denmark)

    Ye, Q; Wei, Y; Fischer, R

    1997-01-01

    Molecular mechanisms leading to elevated calmodulin (CaM) expression in cancer have not yet been discovered. We have quantitated the levels of transcripts derived from all three CaM genes in a variety of the same origin rat fibroblasts transformed with oncogenes in combination with gene for protein...

  1. Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells.

    Science.gov (United States)

    Linta, Leonhard; Stockmann, Marianne; Kleinhans, Karin N; Böckers, Anja; Storch, Alexander; Zaehres, Holm; Lin, Qiong; Barbi, Gotthold; Böckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2012-04-10

    Patient-specific human induced pluripotent stem (hiPS) cells not only provide a promising tool for cellular disease models in general, but also open up the opportunity to establish cell-type-specific systems for personalized medicine. One of the crucial prerequisites for these strategies, however, is a fast and efficient reprogramming strategy from easy accessible somatic cell populations. Keratinocytes from plucked human hair had been introduced as a superior cell source for reprogramming purposes compared with the widely used skin fibroblasts. The starting cell population is, however, limited and thereby further optimization in terms of time, efficiency, and quality is inevitable. Here we show that rat embryonic fibroblasts (REFs) should replace mouse embryonic fibroblasts as feeder cells in the reprogramming process. REFs enable a significantly more efficient reprogramming procedure as shown by colony number and total amount of SSEA4-positive cells. We successfully produced keratinocyte-derived hiPS (k-hiPS) cells from various donors. The arising k-hiPS cells display the hallmarks of pluripotency such as expression of stem cell markers and differentiation into all 3 germ layers. The increased reprogramming efficiency using REFs as a feeder layer occurred independent of the proliferation rate in the parental keratinocytes and acts, at least in part, in a non-cell autonomous way by secreting factors known to facilitate pluripotency such as Tgfb1, Inhba and Grem1. Hence, we provide an easy to use and highly efficient reprogramming system that could be very useful for a broad application to generate human iPS cells. © Mary Ann Liebert, Inc.

  2. In Vivo Remodeling of Fibroblast-Derived Vascular Scaffolds Implanted for 6 Months in Rats

    Directory of Open Access Journals (Sweden)

    Maxime Y. Tondreau

    2016-01-01

    Full Text Available There is a clinical need for tissue-engineered small-diameter (<6 mm vascular grafts since clinical applications are halted by the limited suitability of autologous or synthetic grafts. This study uses the self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold (FDVS that can be available off-the-shelf. Briefly, extracellular matrix scaffolds were produced using human dermal fibroblasts sheets rolled around a mandrel, maintained in culture to allow for the formation of cohesive and three-dimensional tubular constructs, and decellularized by immersion in deionized water. The FDVSs were implanted as an aortic interpositional graft in six Sprague-Dawley rats for 6 months. Five out of the six implants were still patent 6 months after the surgery. Histological analysis showed the infiltration of cells on both abluminal and luminal sides, and immunofluorescence analysis suggested the formation of neomedia comprised of smooth muscle cells and lined underneath with an endothelium. Furthermore, to verify the feasibility of producing tissue-engineered blood vessels of clinically relevant length and diameter, scaffolds with a 4.6 mm inner diameter and 17 cm in length were fabricated with success and stored for an extended period of time, while maintaining suitable properties following the storage period. This novel demonstration of the potential of the FDVS could accelerate the clinical availability of tissue-engineered blood vessels and warrants further preclinical studies.

  3. Effects of hydroxysafflor yellow A on proliferation and collagen synthesis of rat vascular adventitial fibroblasts induced by angiotensin II.

    Science.gov (United States)

    Yuan, Wendan; Yang, Dongxia; Sun, Xuhong; Liu, Wei; Wang, Liang; Li, Xiaoyan; Man, Xuejing; Fu, Qiang

    2014-01-01

    1) examine the effects of hydroxysafflor yellow A (HSYA) on the proliferation, collagen and cytokine synthesis of vascular adventitial fibroblasts as induced by angiotensin II (Ang II) in normal Sprague-Dawley (SD) rats in vitro, and 2) to assess the effects of HSYA on morphological changes and collagen accumulation of vascular adventitia in spontaneously hypertensive rats (SHR) in vivo. In vitro experiment, vascular adventitial fibroblasts from SD rats were isolated, cultured, and divided into control groups, model groups and HSYA groups. Cell morphology of adventitial fibroblasts was assessed using laser confocal microscopy, while cell proliferation with the MTT assay, and collagen synthesis was determined using hydroxyproline chromatometry. Immunocytochemistry and reverse transcription PCR were used for detecting the expression of TGF-β1, MMP-1, α-SMA and NF-κB in adventitial fibroblasts. In vivo experiment, vascular adventitia proliferation and collagen synthesis were analyzed using hematoxylin-eosin and Sirius staining. Our results showed that: 1) in vitro experiment of SD rats, HSYA inhibited proliferative activity and collagen synthesis of adventitial fibroblasts as induced by Ang II, and the inhibitory effects of HSYA on the increased expression of MMP-1, TGF-β1, α-SMA and NF-κB p65 as induced by Ang II were assessed, and 2) in vivo experiment of SHR, histological analysis displayed fewer pathological changes of vascular adventitia in HSYA treatment groups as compared with no HSYA treatment groups, and MMP-1, TGF-β1, α-SMA and NF-κB p65 expression significantly reduced after HSYA treatment (P adventitia components. This study provides experimental evidence demonstrating that HSYA has the capacity to decrease vascular adventitia proliferation and hyperplasia during vascular remodeling.

  4. [Effect of AP-1 decoy oligodeoxynucleotides on neonatal rat cardiac fibroblast proliferation and collagen synthesis].

    Science.gov (United States)

    Xie, Shuang-lun; Wang, Jing-feng; Nie, Ru-qiong; Yuan, Wo-liang; Li, Fei; Lin, Mao-huan

    2008-05-01

    To investigate the inhibitory effects of AP-1 decoy oligodeoxynucleotides (ODNs) on angiotensin II (AngII)-induced proliferation and collagen synthesis in neonatal rat cardiac fibroblasts (CFs). The CFs of neonatal SD rats were cultured in serum-free medium for 24 h and stimulated with 10(-7) mol/L AngII in the presence of AP-1 decoy ODNs or mutational AP-1 decoy ODNs at varied concentrations. MTT assay was employed for quantitative evaluation of the CF proliferation. Collagen synthesis in the CFs was assessed with hydroxyproline, and the cell cycle distribution determined with flow cytometry (FCM). With the increase of the concentration of AP-1 decoy ODNs, the absorbance at 490 nm (OD490) of the CFs decreased gradually as shown by MTT assay. Treatment with 100 or 200 nmol/L AP-1 decoy ODNs resulted in significantly lowered OD490 of the CFs as compared with that of AngII group. The concentration of hydroxyproline increased significantly after treatment with 10(-7) mol/L AngII in comparison with the control group (P<0.05). Hydroxyproline concentration in cells treated with 100 or 200 nmol/L AP-1 decoy ODNs was significantly lower than that in the 10(-7) mol/L AngII-treated cells. AP-1 decoy ODNs decreased the cell percentage in S phase and increased hydroxyproline concentration, but increased the percentage of cells in G0/G1 phase. AP-1 decoy ODNs at 100 and 200 nmol/L did not obviously affect AngII-induced CF proliferation and collagen synthesis (P<0.01). AP-1 decoy can inhibit AngII-induced rat CF proliferation and collagen synthesis possibly by affecting the cell cycle distribution.

  5. Evaluation of Polycaprolactone Scaffold with Basic Fibroblast Growth Factor and Fibroblasts in an Athymic Rat Model for Anterior Cruciate Ligament Reconstruction

    Science.gov (United States)

    Kabir, Nima; Arshi, Armin; Nazemi, Azadeh; Wu, Ben; Petrigliano, Frank A.; McAllister, David R.

    2015-01-01

    Anterior cruciate ligament (ACL) rupture is a common ligamentous injury often necessitating surgery. Current surgical treatment options include ligament reconstruction with autograft or allograft, which have their inherent limitations. Thus, there is interest in a tissue-engineered substitute for use in ACL regeneration. However, there have been relatively few in vivo studies to date. In this study, an athymic rat model of ACL reconstruction was used to evaluate electrospun polycaprolactone (PCL) grafts, with and without the addition of basic fibroblast growth factor (bFGF) and human foreskin fibroblasts. We examined the regenerative potential of tissue-engineered ACL grafts using histology, immunohistochemistry, and mechanical testing up to 16 weeks postoperatively. Histology showed infiltration of the grafts with cells, and immunohistochemistry demonstrated aligned collagen deposition with minimal inflammatory reaction. Mechanical testing of the grafts demonstrated significantly higher mechanical properties than immediately postimplantation. Acellular grafts loaded with bFGF achieved 58.8% of the stiffness and 40.7% of the peak load of healthy native ACL. Grafts without bFGF achieved 31.3% of the stiffness and 28.2% of the peak load of healthy native ACL. In this in vivo rodent model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regenerative potential of our electrospun PCL ligament graft. PMID:25744933

  6. Evaluation of polycaprolactone scaffold with basic fibroblast growth factor and fibroblasts in an athymic rat model for anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Leong, Natalie Luanne; Kabir, Nima; Arshi, Armin; Nazemi, Azadeh; Wu, Ben; Petrigliano, Frank A; McAllister, David R

    2015-06-01

    Anterior cruciate ligament (ACL) rupture is a common ligamentous injury often necessitating surgery. Current surgical treatment options include ligament reconstruction with autograft or allograft, which have their inherent limitations. Thus, there is interest in a tissue-engineered substitute for use in ACL regeneration. However, there have been relatively few in vivo studies to date. In this study, an athymic rat model of ACL reconstruction was used to evaluate electrospun polycaprolactone (PCL) grafts, with and without the addition of basic fibroblast growth factor (bFGF) and human foreskin fibroblasts. We examined the regenerative potential of tissue-engineered ACL grafts using histology, immunohistochemistry, and mechanical testing up to 16 weeks postoperatively. Histology showed infiltration of the grafts with cells, and immunohistochemistry demonstrated aligned collagen deposition with minimal inflammatory reaction. Mechanical testing of the grafts demonstrated significantly higher mechanical properties than immediately postimplantation. Acellular grafts loaded with bFGF achieved 58.8% of the stiffness and 40.7% of the peak load of healthy native ACL. Grafts without bFGF achieved 31.3% of the stiffness and 28.2% of the peak load of healthy native ACL. In this in vivo rodent model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regenerative potential of our electrospun PCL ligament graft.

  7. Cooperation by Fibroblasts and Bone Marrow-Mesenchymal Stem Cells to Improve Pancreatic Rat-to-Mouse Islet Xenotransplantation

    Science.gov (United States)

    Meana, Alvaro; Otero, Jesus; Esteban, Manuel M.

    2013-01-01

    Experimental and clinical experiences highlight the need to review some aspects of islet transplantation, especially with regard to site of grafting and control of the immune response. The subcutaneous space could be a good alternative to liver but its sparse vasculature is its main limitation. Induction of graft tolerance by using cells with immunoregulatory properties is a promising approach to avoid graft rejection. Both Fibroblasts and Mesenchymal Stem Cells (MSCs) have shown pro-angiogenic and immunomodulatory properties. Transplantation of islets into the subcutaneous space using plasma as scaffold and supplemented with fibroblasts and/or Bone Marrow-MSCs could be a promising strategy to achieve a functional extra-hepatic islet graft, without using immunosuppressive drugs. Xenogenic rat islets, autologous fibroblasts and/or allogenic BM-MSCs, were mixed with plasma, and coagulation was induced to constitute a Plasma-based Scaffold containing Islets (PSI), which was transplanted subcutaneously both in immunodeficient and immunocompetent diabetic mice. In immunodeficient diabetic mice, PSI itself allowed hyperglycemia reversion temporarily, but the presence of pro-angiogenic cells (fibroblasts or BM-MSCs) within PSI was necessary to improve graft re-vascularization and, thus, consistently maintain normoglycemia. In immunocompetent diabetic mice, only PSI containing BM-MSCs, but not those containing fibroblasts, normalized glycemia lasting up to one week after transplantation. Interestingly, when PSI contained both fibroblasts and BM-MSCs, the normoglycemia period showed an increase of 4-times with a physiological-like response in functional tests. Histology of immunocompetent mice showed an attenuation of the immune response in those grafts with BM-MSCs, which was improved by co-transplantation with fibroblasts, since they increased BM-MSC survival. In summary, fibroblasts and BM-MSCs showed similar pro-angiogenic properties in this model of islet

  8. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  9. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  10. Application of Allogeneic Fibroblast Cultured on Acellular Amniotic Membrane for Full-thickness Wound Healing in Rats.

    Science.gov (United States)

    Mahmoudi Rad, Mahnaz; Talebpour Amiri, Fereshteh; Mirhoseini, Mehri; Ghasemi, Maryam; Mirzaei, Mansooreh; Mosaffa, Nariman

    2016-01-01

    Utilization of the autologous and allogeneic skin substitutes seems to be a promising treatment option. In this study, the authors used amniotic membrane covered with cultured allogenic fibroblast as a skin substitute in the treatment of acute wounds. Full-thickness wounds were created on rats' dorsum regions and treated with cultured allogenic fibroblast on an acellular amniotic membrane (AAM+F), an acellular amniotic membrane (AAM) alone, an allogenic fibroblast suspension (AFS), or normal saline as a control (C). Specimen biopsies were obtained 7 days after wounding. Quantitative wound healing parameters including the epidermal thickness, the mean number of keratinocytes, fibroblasts, and lymphocytes were assessed. All transplanted wounds exhibited significantly further contraction compared with the nontransplanted wounds. Wounds transplanted with AAM+F and AAM showed a significant increase in epidermal thickness compared to nontransplanted wounds. Wounds transplanted with AAM+F or AAM showed improved epidermal healing compared to nongrafted wounds. Furthermore, granulation of tissue formation in the AAM+F group was more organized when compared to AFS and the normal saline groups. Quantitative assessment of the full-thickness wounds showed transplantation of AAM+F and AAM better improve wound healing parameters when compared to treatment with AFS and the normal saline groups.

  11. Cross-talk between the calcium-sensing receptor and the epidermal growth factor receptor in Rat-1 fibroblasts

    International Nuclear Information System (INIS)

    Tomlins, Scott A.; Bolllinger, Nikki; Creim, Jeffrey; Rodland, Karin D.

    2005-01-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that is activated by extracellular calcium (Ca o 2+ ). Rat-1 fibroblasts have been shown to proliferate and increase ERK activity in response to elevation of [Ca 2+ ] o , and these responses are dependent on functional CaR expression. In this report, we examined the role of cross-talk between the CaR and the epidermal growth factor receptor (EGFR) in mediating these responses in Rat-1 cells. This report shows that AG1478, a specific inhibitor of the EGFR kinase, significantly inhibits the increase in proliferation induced by elevated Ca o 2+ . Furthermore, we show that AG1478 acts downstream or separately from G protein subunit activation of phospholipase C. AG1478 significantly inhibits Ca o 2+ -stimulated ERK phosphorylation and in vitro kinase activity. A similar inhibition of ERK phosphorylation was observed in response to the inhibitor AG494. In addition, treatment with inhibitors of metalloproteases involved in shedding of membrane anchored EGF family ligands substantially inhibited the increase in ERK activation in response to elevated Ca o 2+ . This is consistent with the known expression of TGFα by Rat-1 cells. These results indicate that EGFR transactivation is an important component of the CaR-mediated response to increased Ca o 2+ in Rat-1 fibroblasts and most likely involves CaR-mediated induction of regulated proteolysis and ligand shedding

  12. Effects of tanshinone IIA on transforming growth factor beta1-Smads signal pathway in renal interstitial fibroblasts of rats.

    Science.gov (United States)

    Tang, Jinhui; Zhan, Chengye; Zhou, Jianhua

    2008-10-01

    The effects of tanshinone IIA (TSN) on transforming growth factor beta1 (TGFbeta1) signal transduction in renal interstitial fibroblasts of rats were studied in order to investigate its mechanism in prevention of renal interstitial fibrosis. Rat renal fibroblasts of the line NRK/49F were cultured in vitro, stimulated with 5 ng/mL TGFbeta1 and pretreated with 10(-6), 10(-5), 10(-4) mol/L TSN respectively. The mRNA levels of fibronectin (FN) were examined by RT-PCR. The protein expression of FN and Smads was detected by Western blot. TGFbeta1 induced the expression of FN mRNA and Smads in a time-dependent manner in a certain range. Compared with pre-stimulation, the FN mRNA and protein levels were increased by 1.1 times and 1.5 times respectively (PTSN pretreatment may down-regulate the FN and p-Smad2/3 expression in a dose-dependent manner. 10(-6) mol/L TSN pretreatment had no effect on the FN and p-Smad2/3 expression (both P>0.05). After pretreatment with 10(-5) and 10(-4) mol/L TSN, the FN mRNA levels were decreased by 28.1% and 43.8% respectively (PTSN on renal interstitial fibrosis may be related to its blocking effect on TGFbeta1-Smads signal pathway in renal interstitial fibroblasts.

  13. Migration of labeled bone marrow MSCs and skin fibroblasts after systemic and local transplantation in rat burn wound model

    Directory of Open Access Journals (Sweden)

    Shchegelskaya E. A.

    2015-10-01

    Full Text Available Aim. To study migration of syngeneic bone marrow MSCs and skin fibroblasts (FB, labeled by fluorochromes, after intravenous (IV and local transplantation in a rat burn wound model (BWM. Methods. Rats were divided into 3 groups: C – without burn + IV injection of labeled MSCs and FBs mixture; O1 – BWM + IV injection of labeled MSCs and FBs mixture; O2 – BWM + fibrin matrix filled with labeled cell mixture. MSCs were labeled by green fluorochrome, and fibroblasts – by red one. The presence of labeled cells in cryocuts of the skin, liver, kidney and bone marrow was assessed on the 3 and 7 days after transplantation. Results. Skin FBs selective migration to the regenerating burn wound and MSCs accumulation in the kidneys were found in rats of group O1 on day 7 after the IV injection. The labeled cells proliferated in the transplanted fibrin matrix and participated in the wound regeneration. MSCs partly migrated to the bone marrow after the IV injections. Conclusions. IV transplanted syngeneic bone marrow MSCs and skin FBs (passage 0 migrate to the burn wound and participate in the healing. Migration of bone marrow MSCs in the kidneys can prevent kidney failure after burn.

  14. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  15. Immunocytochemical Localization of Glia-Derived Nexin, Laminin and Fibronectin on the Surface or Extracellular Matrix of C6 Rat Glioma Cells, Astrocytes and Fibroblasts.

    Science.gov (United States)

    Halfter, W.; Reinhard, E.; Liverani, D.; Ortman, R.; Monard, D.

    1989-07-01

    The expression and cellular distribution of glia-derived nexin (GDN), laminin and fibronectin on C6 rat glioma cells, rat brain astrocytes and rat fibroblasts were investigated by immunoblotting and immunocytochemistry. Western blot analysis of C6 cell homogenates confirmed the specificities of the antibodies. Immunocytochemical staining of C6 cells, astrocytes and fibroblasts showed that laminin, fibronectin and GDN were abundant on the surface of glioma cells and astrocytes whereas on fibroblasts fibronectin was abundant though only traces of GDN and laminin could be detected. The light microscopy data were confirmed by ultrastructural studies showing that each antigen was present on the surface of the C6 rat glioma cells as numerous spots with slightly different distribution patterns for each of the antigens. In fibroblast cultures, the antigens were also localized in the extracellular matrix in the vicinity of the cells. Migrating fibroblasts but not migrating glioma cells or astrocytes deposit the matrix-proteins onto the substratum leaving behind a track of GDN, laminin and fibronectin. When the cells were treated with heparin prior to antibody incubation, the GDN immunoreactivity completely disappeared, whereas the distribution and abundance of laminin and fibronectin was not affected. Our data show that GDN binds, possibly by a heparin-like molecule, to the outer surface of cells or to the extracellular matrix and may protect cells and matrix proteins against proteolytic degradation.

  16. Genotoxicity determinations of coriander drop and extract of Coriander Sativum cultured fibroblast of rat embryo by comet assay

    International Nuclear Information System (INIS)

    Heibatullah, K.; Marzieh, P.; Arefeh, I.; Ebrahim, M.

    2008-01-01

    The single cell gel electrophoresis (SCGE) or comet assay is a quick, simple and sensitive technique for measuring DNA damage in cell nucleus. It is well known that medicinal herbs play an important role in the life of human beings, thus it is essential to determine their safety as public health is concerned. In this study the genotoxicity of Coriander drop, herbal pharmaceutical product, and the extract of Coriander sativum were examined in cultured fibroblast of rat embryo using comet assay. The thirteen to fifteen days old rat embryos were lysed with tripsin and after certain steps it was centrifuged and then cultured. After three to five passages, different concentrations of each product were applied to the fibroblasts. Lysing, electrophoresis, neutralization and staining were carried out. Finally the slides were analyzed with fluorescence microscope. In the test groups the results indicated that coriander drop at different doses showed some fragmentation of DNA but this damage as a result was deemed to be not significant. However, in the case of Coriander sativum extract the results showed no mutagenic effects in comparison with the positive control group (p<0.05). In conclusion, these herbal products did not show any magnetic effect according to our test, but further genotoxicity assays are recommended. (author)

  17. Graft of autologous fibroblasts in gingival tissue in vivo after culture in vitro. Preliminary study on rats.

    Science.gov (United States)

    Simain-Sato, F; Lahmouzi, J; Heinen, E; Defresne, M P; De Pauw-Gillet, M C; Grisar, T; Legros, J J; Legrand, R

    1999-08-01

    Several grafting techniques and guided tissue regeneration techniques (GTR) have been well-developed in periodontal surgery. However, these techniques could induce pain and side effects, such as a gingival recession during the healing period following the therapy. The graft of a small autologous connective tissue, using non-invasive surgical techniques could yield several benefits for the patients. Our preliminary study explores the feasibility of collecting healthy gingival tissues, culturing them in vitro to amplify rat gingival fibroblasts (RGF) and inoculating the obtained cells into autologous rat gingival tissues in vivo. Gingival tissues samples were cultured as explants as described by Freshney et al. and Adolphe. Confluent cells surrounding explants were detached after 7 d of culture from Petri dishes using 0.05% trypsin and designated "first transferred cells" (T1). At the third passage (T3), cells cultured as monolayer were either examined under microscopy--phase contrast, scanning, or transmission electron--or numerated after trypan blue exclusion test. Autologous RGF labelled with fluorochrome were inoculated at the vestibular and palatine site of gingival tissue close to the superior incisors. In this preliminary study, 12 Wistar rats were used; for each, 2 biopsies were dissected and fixed for phase contrast or fluorescence microscopy. On d 1, 3 and 7 after injection in rat gingival tissues, fluorochrome-labelled cells could be detected in all these.

  18. Polypropylene mesh seeded with fibroblasts: A new approach for the repair of abdominal wall defects in rats.

    Science.gov (United States)

    Mohsina, A; Kumar, Naveen; Sharma, A K; Shrivastava, Sameer; Mathew, Dayamon D; Remya, V; Sonal; Maiti, S K; Singh, Kiranjeet; Singh, K P

    2017-06-01

    The purpose of study was to develop bioengineered scaffolds by seeding primary mouse embryo fibroblast cells (p-MEF) on polypropylene mesh and to test its efficacy for the repair of abdominal wall defects in rats. The study was conducted on 18 clinically healthy adult Wistar rats of either sex. The animals were randomly divided into two equal groups having nine animals in each group. In both the groups a 20mm×20mm size full thickness muscle defect was created under xylazine and ketamine anesthesia in the mid-ventral abdominal wall. In group I the defect was repaired with polypropylene mesh alone and in group II it was repaired with p-MEF seeded polypropylene mesh. Matrices were implanted by synthetic absorbable suture material (polyglycolic acid) in continuous suture pattern. The efficacy of the bio-engineered matrices in the reconstruction of full thickness abdominal wall defects was evaluated on the basis of macro and histopathological observations. Macroscopic observations revealed that adhesions with skin and abdominal viscera were minimum in group II as compared to group I. Histopathological observations confirmed better fibroplasia and collagen fiber arrangement in group II. No recurrence of hernia was found in both the groups. Hernias are effectively repaired by implanting polypropylene mesh. However, this work demonstrates that in vitro seeding of mesh with fibroblasts resulted in earlier subsidization of pain, angiogenesis and deposition of collagen, increased thickness of matrices with lesser adhesions with underlying viscera. On the basis of the results p-MEF seeded mesh was better than non-seeded mesh for repair of abdominal wall defects in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Biological Behaviors of Rat Dermal Fibroblasts Can Be Inhibited by High Levels of MMP9

    Directory of Open Access Journals (Sweden)

    Sheng-Neng Xue

    2012-01-01

    Full Text Available Aims. To explore the effects of the high expression of MMP9 on biological behaviors of fibroblasts. Methods. High glucose and hyperhomocysteine were used to induce MMP9 expression in skin fibroblasts. Cell proliferation was detected by flow cytometry and cell viability by CCK-8. ELISA assay was used to detect collagen (hydroxyproline secretion. Scratch test was employed to evaluate horizontal migration of cells and transwell method to evaluate vertical migration of cells. Results. The mRNA and protein expressions of MMP9 and its protease activity were significantly higher in cells treated with high glucose and hyperhomocysteine than those in control group. At the same time, the S-phase cell ratio, proliferation index, cell viability, collagen (hydroxyproline secretion, horizontal migration rate, and the number of vertical migration cells decreased in high-glucose and hyperhomocysteine-treated group. Tissue inhibitor of metalloproteinase 1 (TIMP1, which inhibits the activity of MMP9, recovered the above biological behaviors. Conclusions. High expression of MMP9 in skin fibroblasts could be induced by cultureing in high glucose and hyperhomocysteine medium, which inhibited cell biological behaviors. Inhibitions could be reversed by TIMP1. The findings suggested that MMP9 deters the healing of diabetic foot ulcers by inhibiting the biological behaviors of fibroblasts.

  20. MAP KINASE SIGNALING IN PULMONARY FIBROBLASTS EXPOSED TO PARTICULATE MATTER (PM) AND BRONCHOAL VEOLAR LAVAGE FLUID (BALF) FROM HEALTHY AND HYPERTENSIVE RATS

    Science.gov (United States)

    MAP KINASE SIGNALING IN PULMONARY FIBROBLASTS EXPOSED TO PARTICULATE MATTER (PM) AND BRONCHOALVEOLAR LAVAGE FLUID (BALF) FROM HEALTHY AND HYPERTENSIVE RATS. 1P Zhang, UP Kodavanti. NHEERL, US EPA, Research Triangle Park, 1School of Vet Med, NCSU, Raleigh, NCExposure to PM ma...

  1. Basic fibroblast growth factor enhances cell proliferation in the dentate gyrus of neonatal rats following hypoxic-ischemic brain damage.

    Science.gov (United States)

    Zhu, Huan; Qiao, Lixing; Sun, Yao; Yin, Liping; Huang, Li; Jiang, Li; Li, Jiaqing

    2018-04-23

    Perinatal hypoxic-ischemic insult is considered a major contributor to child mortality and morbidity and leads to neurological deficits in newborn infants. There has been a lack of promising neurotherapeutic interventions for hypoxic-ischemic brain damage (HIBD) for clinical application in infants. The present study aimed to investigate the correlation between neurogenesis and basic fibroblast growth factor (bFGF) in the hippocampal dentate gyrus (DG) region in neonatal rats following HIBD. Cell proliferation was examined by detecting BrdU signals, and the role of bFGF in cell proliferation in the DG region following neonatal HIBD was investigated. Cell proliferation was induced by HIBD in the hippocampal DG of neonatal rats. Furthermore, bFGF gene expression was upregulated in the hippocampus in neonatal rats, particularly between 7 and 14 days after HIBD. Moreover, intraperitoneal injection of exogenous bFGF enhanced cell proliferation in the hippocampal DG following neonatal HIBD. Taken together, these data indicate that cell proliferation in the DG could be induced by neonatal HIBD, and bFGF promotes proliferation following neonatal HIBD. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats.

    Science.gov (United States)

    Wang, YanRui; Yue, ShaoJie; Luo, ZiQiang; Cao, ChuanDing; Yu, XiaoHe; Liao, ZhengChang; Wang, MingJie

    2016-10-21

    Previous studies have suggested that endogenous glutamate and its N-methyl-D-aspartate receptors (NMDARs) play important roles in hyperoxia-induced acute lung injury in newborn rats. We hypothesized that NMDAR activation also participates in the development of chronic lung injury after withdrawal of hyperoxic conditions. In order to rule out the anti-inflammatory effects of NMDAR inhibitor on acute lung injury, the efficacy of MK-801 was evaluated in vivo using newborn Sprague-Dawley rats treated starting 4 days after cessation of hyperoxia exposure (on postnatal day 8). The role of NMDAR activation in hyperoxia-induced lung fibroblast proliferation and differentiation was examined in vitro using primary cells derived from the lungs of 8-day-old Sprague-Dawley rats exposed to hyperoxic conditions. Hyperoxia for 3 days induced acute lung injury in newborn rats. The acute injury almost completely disappeared 4 days after cessation of hyperoxia exposure. However, pulmonary fibrosis, impaired alveolarization, and decreased pulmonary compliance were observed on postnatal days 15 and 22. MK-801 treatment during the recovery period was found to alleviate the chronic damage induced by hyperoxia. Four NMDAR 2 s were found to be upregulated in the lung fibroblasts of newborn rats exposed to hyperoxia. In addition, the proliferation and upregulation of alpha-smooth muscle actin and (pro) collagen I in lung fibroblasts were detected in hyperoxia-exposed rats. MK-801 inhibited these changes. NMDAR activation mediated lung fibroblast proliferation and differentiation and played a role in the development of hyperoxia-induced chronic lung damage in newborn rats.

  3. Sequential treatment with basic fibroblast growth factor and parathyroid hormone restores lost cancellous bone mass and strength in the proximal tibia of aged ovariectomized rats

    DEFF Research Database (Denmark)

    Wronski, T.J.; Ratkus, A.M.; Thomsen, Jesper Skovhus

    2001-01-01

    This study was designed to determine whether sequential treatment with basic fibroblast growth factor (bFGF) and parathyroid hormone (PTH) can restore lost cancellous bone mass and strength at a severely osteopenic skeletal site in aged ovariectomized (OVX) rats. Female Sprague-Dawley rats were...... for quantitative bone histomorphometry and the left proximal tibia was subjected to biomechanical testing. Baseline and vehicle-treated OVX rats were severely osteopenic because their tibial cancellous bone volumes were less than 5% compared with mean values of 20.3% and 15.0% in baseline and vehicle......-treated control rats, respectively. Treatment of OVX rats for 2 weeks with bFGF alone did not significantly increase tibial cancellous bone volume but induced marked increases in osteoid volume, osteoblast surface, and osteoid surface. Sequential treatment of aged OVX rats with bFGF and PTH increased tibial...

  4. Effects of tanshinone IIA on the transforming growth factor β1/Smad signaling pathway in rat cardiac fibroblasts.

    Science.gov (United States)

    Zhan, Cheng-Ye; Tang, Jin-Hui; Zhou, Dai-Xing; Li, Zhi-Hui

    2014-01-01

    This study explores the mechanism of tanshinone IIA (TSN)-mediated inhibition of myocardial fibrosis by investigating the effect of TSN on transforming growth factor β1 (TGFβ1) signal transduction in rat cardiac fibroblasts (CFs). CFs were isolated from neonatal Sprague-Dawley rats by trypsin digestion and differential adhesion and stimulated with 5 ng/mL TGFβ1 and TSN (10(-6), 10(-5), or 10(-4) mol/L). The expression of fibronectin (FN) mRNA in the CFs was determined using reverse transcriptase-polymerase chain reaction and the protein expression of FN and Smads in CFs was detected using Western blot. The intracellular expression and localization of Smads in the CFs were analyzed using immunocytochemistry. TGFβ1 induced the expression of FN and Smads in a time-dependent manner. At the end of the culture treatment, the mRNA expression of FN and the expression of phosphorylated Smad2/3 (p-Smad2/3) increased significantly (P TSN pretreatment (10(-5) and 10(-4) mol/L) reduced the expression of FN and p-Smad2/3 (P TSN on myocardial fibrosis may be associated with its inhibition of TGFβ1-induced Smad2/3 phosphorylation and p-Smad2/3 nuclear translocation, which blocks the TGFβ1/Smad signaling pathway in CFs.

  5. FGF-2 expression and the amount of fibroblast in the incised wounds of Rattus norvegicus rats induced with Mauli banana (Musa acuminata stem extract

    Directory of Open Access Journals (Sweden)

    Didit Aspriyanto

    2017-09-01

    Full Text Available Background: Traditional wound treatment using herbal medicine is thought to maintain the health of families and society in general economically, effectively, and efficiently without inducing side effects. One genus of plant that can be used as a traditional medicine is the Mauli banana, indigenous to South Borneo. Mauli banana stem contains bioactive compounds, most of which are tannins along with ascorbic acid, saponin, β-carotene, flavonoids, lycopene, alkaloids, and flavonoids. Tanin has antibacterial and antioxidant effects at low concentrations, as wells as antifungal ones at high concentrations. Purpose: This study aimed to analyze the effects of Mauli banana stem extract at concentrations of 25%, 37.5%, and 50% on the quality of incised wound healing in male Rattus norvegicus rats by assessing FGF-2 expression and fibroblast concentration on days 3 and 7. Methods: This research represented an experimental laboratory-based investigation involving 32 rats of the Rattus norvegicus strain aged 2-2.5 months old. Sampling was performed using a simple random sampling technique since the research population was considered homogeneous and divided into 8 treatment groups (C3, M3-25, M3-37.5, M3-50, C7, M7-25, M7-37.5, M7-50. The rats in each group were anesthetized before their back was incised with length and width of 15x15mm with a depth of 2mm. Gel hydroxy propyl cellulose medium (HPMC was applied to the incised wound of each rat in the control group, while stem Mauli banana extract was applied to that of each rat in the treatment groups three times a day at an interval of 6-8 hours. On day 3, four rats from each group were sacrificed, while, in the remaining groups, the same procedure was performed until day 7, at which point they (8 groups were sacrificed for HE examination in order to assess the amount of fibroblast and for IHC examination to examine FGF-2 expression. Data regarding FGF-2 expression and the amount of fibroblast were analysed

  6. Sequential treatment with basic fibroblast growth factor and PTH is more efficacious than treatment with PTH alone for increasing vertebral bone mass and strength in osteopenic ovariectomized rats

    DEFF Research Database (Denmark)

    Iwaniec, U.T.; Mosekilde, Li.; Mitova-Caneva, N.G.

    2002-01-01

    The study was designed 1) to determine whether treatment with basic fibroblast growth factor (bFGF) and PTH is more efficacious than treatment with PTH alone for increasing bone mass and strength and improving trabecular microarchitecture in osteopenic ovariectomized rats, and 2) to assess whether...... prior and concurrent administration of the antiresorptive agents estrogen and risedronate suppresses the bone anabolic response to treatment with bFGF alone and sequential treatment with bFGF and PTH. Three-month-old female Sprague Dawley rats were ovariectomized (OVX) or sham-operated (sham...... into the jugular veins of all rats, and vehicle or bFGF at a dose of 250 microg/kg was injected daily for 14 d. Three groups of rats were killed at the end of bFGF treatment. The remaining rats were continued on their respective antiresorptive therapy and injected sc with vehicle or synthetic human PTH-(1...

  7. The role of histamine in the regulation of the viability, proliferation and transforming growth factor β1 secretion of rat wound fibroblasts.

    Science.gov (United States)

    Wolak, Monika; Bojanowska, Ewa; Staszewska, Teresa; Ciosek, Joanna; Juszczak, Marlena; Drobnik, Jacek

    2017-04-01

    Inflammation mediators play a regulatory role in repair processes. The study will examine the influence of histamine on wound fibroblast metabolic activity, viability, proliferation, and TGFβ1 secretion. The study also will identify the histamine receptor involved in regulation of the tested repair processes. Fibroblasts were obtained from the granulation tissue of wounds or intact dermis of rats. The MTT and BrdU assays were used to examine the effect of histamine (10 -8 M-10 -4 M) on the viability and metabolic activity of fibroblasts, and on their proliferative capacity. The influence of histamine receptor antagonists (i.e., ketotifen, ranitidine, ciproxifan and JNJ7777120) and agonists (2-pyridylethlamine dihydrochloride, amthamine dihydrobromide) was also investigated. The TGFβ1 and histamine receptors H1 were evaluated by enzyme-linked immunosorbent assay. Histamine significantly increased granulation tissue fibroblast viability and metabolic activity at 10 -8 and 10 -6 M but did not change their proliferative activity. Only the blockade of the H1 receptor removed this effect of histamine. H1 receptor agonist (2-pyridylethlamine dihydrochloride) increased cell viability, thereby mimicking histamine action. Both Histamine (10 -4 M) and 2-pyridylethlamine dihydrochloride increased TGFβ1 concentration in cell culture medium. However, ketotifen blocked histamine-induced augmentation of TGFβ1. H1 receptor expression on wound fibroblasts was confirmed. The regulatory influence of histamine on wound fibroblast function (viability/metabolic activity or secretion of TGFβ1) is dependent on H1 receptor stimulation. Contrary to wound fibroblasts, these cells express a very low level of H1 receptors when isolated from intact dermis and histamine is unable to modify their metabolic activity. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  8. Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats.

    Science.gov (United States)

    Tripathi, Richa B; McTigue, Dana M

    2008-09-10

    Demyelination and oligodendrocyte loss following spinal cord injury (SCI) are well documented. Recently, we showed oligodendrocyte progenitor cell (OPC) accumulation and robust oligodendrocyte genesis occurring along SCI lesion borders. We have since begun investigating potential mechanisms for this endogenous repair response. Here, we examined ciliary neurotrophic factor (CNTF) and fibroblast growth factor-2 (FGF-2) expression, because both factors alter progenitor proliferation and differentiation and are increased in several CNS disorders. We hypothesized that CNTF and FGF-2 would increase after SCI, especially in regions of enhanced oligogenesis. First, CNTF protein was quantified using Western blots, which revealed that CNTF protein continually rose through 28 days post injury (dpi). Next, by using immunohistochemistry, we examined the spatiotemporal expression of CNTF in cross-sections spanning the injury site. CNTF immunoreactivity was observed on astrocytes and oligodendrocytes in naïve and contused spinal cords. Significantly increased CNTF was detected in spared white and gray matter between 5 and 28 dpi compared with uninjured controls. By 28 dpi, CNTF expression was significantly higher along lesion borders compared with outlying spared tissue; a similar distribution of phosphorylated STAT3, a transcription factor up-regulated by CNTF and to a lesser extent FGF-2, was also detected. Because CNTF can potentiate FGF-2 expression, we examined the distribution of FGF-2+ cells. Significantly more FGF-2+ cells were noted along lesion borders at 7 and 28 dpi. Thus, both CNTF and FGF-2 are present in regions of elevated OPC proliferation and oligodendrocyte generation after SCI and therefore may play a role in injury-induced gliogenesis. (c) 2008 Wiley-Liss, Inc.

  9. The expression change of β-arrestins in fibroblast-like synoviocytes from rats with collagen-induced arthritis and the effect of total glucosides of paeony.

    Science.gov (United States)

    Wang, Qing-Tong; Zhang, Ling-Ling; Wu, Hua-Xun; Wei, Wei

    2011-01-27

    To investigate the expression of β-arrestins in fibroblast-like synoviocytes (FLS) from collagen-induced arthritis (CIA) rats and the effect of total glucosides of paeony (TGP). TGP and glucosides of tripterygium wilfordii (GTW) were intragastriclly administrated to collagen-induced arthritis (CIA) rats after immunization. The secondary inflammatory reaction was evaluated by hind paw swelling, polyarthritis index and histopathological changes. Antibodies to type II collagen (CII) were determined by enzyme-linked immunosorbent assay (ELISA). Synoviocyte proliferations were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay. The expression of β-arrestins in synoviocytes from CIA rats was measured by western blot. The administration of TGP (25, 50, 100 mg/kg) depressed hind paw swelling and decreased the arthritis scores of CIA rats. TGP improved the pathologic manifestations of CIA. Serum anti-CII antibodies level increased significantly in CIA rats, while TGP had no effect on it. Fibroblast-like synoviocytes (FLS) proliferation was inhibited by TGP (50, 100 mg/kg). On d14, d28 after immunization, β-arrestins expression greatly up-regulated in synoviocytes from CIA rats and then returned to baseline levels on d42 after immunization. TGP (50, 100 mg/kg) significantly reduced the expression of β-arrestins. An inflammatory process in vivo induces an up-regulation of β-arrestins in synoviocytes from CIA rats while TGP can inhibit this change, which might be one of the important mechanisms for TGP to produce a marked therapeutic effect on RA. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Evaluation of the effect of laser radiation on fibroblast proliferation in repair of skin wounds of rats with iron deficiency anemia

    Science.gov (United States)

    DeCastro, Isabele C. V.; Oliveira-Sampaio, Susana C. P.; Monteiro, Juliana S. de C.; Ferreira, Maria de Fátima L.; Cangussu, Maria T.; N. dos Santos, Jean; Pinheiro, Antonio Luiz B.

    2011-03-01

    The aim of this study was to assess the effect of low- level laser therapy (LLLT) on fibroblast proliferation on wound repair of rats with Iron deficiency anemia since there is no reports on literature about this subject. Iron deficiency anemia was induced on 36 newborn rats then an excisional wound was created on the dorsum of the animals which were divided into four groups: (I) - non-anemic, (II) - Anemic, (III) - non-anemic + LLLT, (IV) Anemic+ LLLT. The animals in each group were sacrificed at 7, 14 and 21 days. Laser irradiation was performed on each group (λ660nm,40Mw,CW) by contact mode with a dose of 2,5J/ cm2 in four points on the area of the wound and total of 10J/cm2 per session. Data were evaluated by analysis of variance (ANOVA) followed by Paired t-test. The results showed LLLT was able to stimulate fibroblastic proliferation in rats with iron deficiency anemia at the 21st day while at control group (III) no statistically significant differences was found.

  11. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line

    International Nuclear Information System (INIS)

    Hirata, Akira; Higuchi, Masaya; Niinuma, Akiko; Ohashi, Minako; Fukushi, Masaya; Oie, Masayasu; Akiyama, Tetsu; Tanaka, Yuetsu; Gejyo, Fumitake; Fujii, Masahiro

    2004-01-01

    While human T-cell leukemia virus type 1 (HTLV-1) is associated with the development of adult T-cell leukemia (ATL), HTLV-2 has not been reported to be associated with such malignant leukemias. HTLV-1 Tax1 oncoprotein transforms a rat fibroblast cell line (Rat-1) to form multiple large colonies in soft agar, and this activity is much greater than that of HTLV-2 Tax2. We have demonstrated here that the increased number of transformed colonies induced by Tax1 relative to Tax2 was mediated by a PDZ domain-binding motif (PBM) in Tax1, which is absent in Tax2. Tax1 PBM mediated the interaction of Tax1 with the discs large (Dlg) tumor suppressor containing PDZ domains, and the interaction correlated well with the transforming activities of Tax1 and the mutants. Through this interaction, Tax1 altered the subcellular localization of Dlg from the detergent-soluble to the detergent-insoluble fraction in a fibroblast cell line as well as in HTLV-1-infected T-cell lines. These results suggest that the interaction of Tax1 with PDZ domain protein(s) is critically involved in the transforming activity of Tax1, the activity of which may be a crucial factor in malignant transformation of HTLV-1-infected cells in vivo

  12. INTERACTION BETWEEN CHOLECYSTOKININ AND THE FIBROBLAST GROWTH FACTOR SYSTEM IN THE VENTRAL TEGMENTAL AREA OF SELECTIVELY BRED HIGH- AND LOW-RESPONDER RATS

    Science.gov (United States)

    Ballaz, Santiago J; Perez, Javier; Waselus, Maria; Akil, Huda; Watson, Stanley J

    2013-01-01

    Individual differences in the locomotor response to novelty have been linked to basal differences in dopaminergic neurotransmission. Mesolimbic dopaminergic outputs are regulated by cholecystokinin (CCK), a neuropeptide implicated in anxiety. In turn, CCK expression is regulated by fibroblast growth factor-2 (FGF2), which has recently been identified as an endogenous regulator of anxiety. FGF2 binds to the high-affinity fibroblast growth factor receptor-1 (FGF-R1) to regulate the development and maintenance of dopamine neurons in the ventral tegmental area (VTA). However, the relationship between the FGF and CCK systems in the VTA is not well understood. Therefore, we utilized the selectively-bred low-responder (bLR; high-anxiety) and high-responder (bHR; low-anxiety) rats to examine the effects of repeated (21-day) FGF2 treatment on CCK and FGF-R1 mRNA in the rostral VTA (VTAr). In vehicle-treated controls, both CCK and FGF-R1 mRNA levels were increased in the VTAr of bLR rats relative to bHR rats. Following FGF2 treatment, however, bHR-bLR differences in CCK and FGF-R1 mRNA expression were eliminated, due to decreased CCK mRNA levels in the VTAr of bLR rats and increased FGF-R1 expression in bHR rats. Differences after FGF2 treatment may denote distinct interactions between the CCK and FGF systems in the VTAr of bHR vs. bLR rats. Indeed, significant correlations between CCK and FGF-R1 mRNA expression were found in bHR, but not bLR rats. Colocalization studies suggest that CCK and FGF-R1 are coexpressed in some VTAr neurons. Taken together, our findings suggest that the FGF system is poised to modulate both CCK and FGF-R1 expression in the VTAr, which may be associated with individual differences in mesolimbic pathways associated with anxietylike behavior. PMID:24121132

  13. Co-localization and regulation of basic fibroblast growth factor and arginine vasopressin in neuroendocrine cells of the rat and human brain

    Directory of Open Access Journals (Sweden)

    Gonzalez Ana M

    2010-08-01

    Full Text Available Abstract Background Adult rat hypothalamo-pituitary axis and choroid plexus are rich in basic fibroblast growth factor (FGF2 which likely has a role in fluid homeostasis. Towards this end, we characterized the distribution and modulation of FGF2 in the human and rat central nervous system. To ascertain a functional link between arginine vasopressin (AVP and FGF2, a rat model of chronic dehydration was used to test the hypothesis that FGF2 expression, like that of AVP, is altered by perturbed fluid balance. Methods Immunohistochemistry and confocal microscopy were used to examine the distribution of FGF2 and AVP neuropeptides in the normal human brain. In order to assess effects of chronic dehydration, Sprague-Dawley rats were water deprived for 3 days. AVP neuropeptide expression and changes in FGF2 distribution in the brain, neural lobe of the pituitary and kidney were assessed by immunohistochemistry, and western blotting (FGF2 isoforms. Results In human hypothalamus, FGF2 and AVP were co-localized in the cytoplasm of supraoptic and paraventricular magnocellular neurons and axonal processes. Immunoreactive FGF2 was associated with small granular structures distributed throughout neuronal cytoplasm. Neurohypophysial FGF2 immunostaining was found in axonal processes, pituicytes and Herring bodies. Following chronic dehydration in rats, there was substantially-enhanced FGF2 staining in basement membranes underlying blood vessels, pituicytes and other glia. This accompanied remodeling of extracellular matrix. Western blot data revealed that dehydration increased expression of the hypothalamic FGF2 isoforms of ca. 18, 23 and 24 kDa. In lateral ventricle choroid plexus of dehydrated rats, FGF2 expression was augmented in the epithelium (Ab773 as immunomarker but reduced interstitially (Ab106 immunostaining. Conclusions Dehydration altered FGF2 expression patterns in AVP-containing magnocellular neurons and neurohypophysis, as well as in choroid

  14. Relationship between Fibroblast Growth Factor 23 and Biochemical and Bone Histomorphometric Alterations in a Chronic Kidney Disease Rat Model Undergoing Parathyroidectomy.

    Directory of Open Access Journals (Sweden)

    Hung-Wei Liao

    Full Text Available Phosphate burden in chronic kidney disease (CKD leads to elevated serum fibroblast factor-23 (FGF-23 levels, secondary hyperparathyroidism and chronic kidney disease-mineral bone disorder (CKD-MBD. However dissociated hyperphosphatemia and low serum FGF-23 concentrations have been observed in experimentally parathyoridectomized rats. The relationships between serum mineral, hormone, and bone metabolism may be altered in the presence of CKD. The aim of our study was to investigate whether a consistent relationship existed between serum FGF-23 levels, specific serum biochemical markers, and histomorphometric parameters of bone metabolism in a parathyroidectomized CKD animal model.Sprague Dawley rats were divided into 3 groups: parathyroidectomy (PTX and CKD (PTX+CKD, 9 rats, CKD without PTX (CKD, 9 rats, and neither PTX nor CKD (sham-operated control, 8 rats; CKD was induced by partial nephrectomy. At 8 weeks after partial nephrectomy, serum biomarkers were measured. Bone histomorphometries of the distal femoral metaphyseal bone were analyzed. The mean serum FGF-23 levels and mean bone formation rate were the highest in the CKD group and the lowest in the PTX+CKD group. Bone volume parameters increased significantly in the PTX+CKD group. Pearson's correlation revealed that serum FGF-23 levels associated with those of intact parathyroid hormone, phosphate, collagen type I C-telopeptide, and calcium. Univariate linear regression showed that serum FGF-23 values correlated with bone formation rate, bone volume, and osteoid parameters. Stepwise multivariate regression analysis revealed that circulating FGF-23 values were independently associated with bone volume and thickness (β = -0.737; p < 0.001 and β = -0.526; p = 0.006, respectively. Serum parathyroid hormone levels independently correlated with bone formation rate (β = 0.714; p < 0.001 while collagen type I C-telopeptide levels correlated with osteoid parameter.Serum FGF-23 levels

  15. Cyclosporin A inhibits HTLV-I tax expression and shows anti-tumor effects in combination with VP-16.

    Science.gov (United States)

    Ozaki, Atsuo; Arima, Naomichi; Matsushita, Kakushi; Uozumi, Kimiharu; Akimoto, Masaki; Hamada, Heiichiro; Kawada, Hideaki; Horai, Sawako; Tanaka, Yuetsu; Tei, Chuwa

    2007-12-01

    Adult T cell leukemia (ATL) is one of the most refractory malignant hematological diseases. Our previous studies demonstrated HTLV-1Tax protein involvement in clinical manifestation of the aggressive type of ATL and suggested the potential application of agents to inhibit Tax expression for ATL treatment. In the present study, we first examined Tax involvement in the resistance to VP-16-induced apoptosis using four HTLV-1 infected T cell clones and cTax DNA-transfected cells. Next, we examined whether cyclosporin A reduced expression of Tax and its related transfer factors on Western blot and CAT assay. We further investigated whether cyclosporin A in combination with VP-16 can induce apoptosis in HTLV-1 infected T cells. Tax-producing T cells, K3T and F6T, were resistant to VP-16 induced growth inhibition compared with that of the nonproducing cells, S1T and Su9T01. Experiments using S1T and Tax-expressing cDNA-transfected S1T demonstrated Tax-induced resistance to VP-16 induction of apoptosis by DNA ladder formation. Cyclosporin A reduced Tax expression in K3T by Western blot analysis and on CAT assay, showing maximal reduction of 61% and 60% compared to control culture using LTR CAT transfected Jurkat cells and K3T cells, respectively. Cyclosporin A also reduced the nuclear expression of two Tax-related transfer factors, ATF-1 and ATF-2 on Western blot. Cyclosporin A alone did not show any cytotoxicity by itself, but sensitized cells to VP-16 when combined with VP-16. Cyclosporin A may be a useful anti-ATL agent when combined with other anti-cancer agents possibly related to Tax inhibition. (c) 2007 Wiley-Liss, Inc.

  16. Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats.

    Science.gov (United States)

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Dai, Jianwu; Xu, Ruxiang

    2014-04-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.

  17. [Antiapoptotic gene bcl-2 prevents cellular senescence program reactivation induced by histone deacetylase inhibitor sodium butyrate in E1A and cHa-ras transformed rat fibroblasts].

    Science.gov (United States)

    Gordeev, S A; Bykova, T V; Zubova, S G; Aksenov, N D; Pospelova, T V

    2015-01-01

    We have investigated the role of apoptosis resistance gene bcl-2 in the activation of cellular senescence program induced by histone deacetylase inhibitor (HDACi) sodium butyrate (NaBut) in transformed rat fibroblasts. This study was conducted in a resistant to apoptosis induction cell line of rat embryo fibroblasts transfor- med by oncogenes E1A, cHa-ras and bcl-2 (ERasBcl). The parent cell line transformed with only EJA and cHa-ras (ERas) was used as a control. It has been found that NaBut reduces proliferation rate of ERasBcl cells significantly weaker than of ERas transformed cells, despite the fact that the G1 cell cycle arrest was observed in both cell lines. After NaBut treatment, hypertrophy of the apoptosis resistant transformants ERasBcl also was reduced compared to parent cell line ERas, due to less activation of mTORC1, which is known to control the synthesis of protein and ribosome biogenesis. The degree of mTORC1 activation was as.sessed by its target proteins phosphorylation: the ribosomal S6 protein and 4E-BP1--inhibitor of translation initiation factor eIF4E. Since cell senescence process may be associated with changes in autophagy regulation, we analyzed the dynamics of one of the main autophagosome formation markers--protein LC3. The accumulation of lipid-bound form LC3-II changes significantly in ERasBcl cells after NaBut treatment and has transient nature. The set of analyzed cellular senescence markers suggests that a high level of apoptosis resistance gene bcl-2 expression prevents the realization of tumor-suppressor senescence program induced by HDACi sodium butyrate treatment.

  18. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model.

    Directory of Open Access Journals (Sweden)

    Hirofumi Yurie

    Full Text Available Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit.We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6 and silicone tube (silicone group, n = 6. Several assessments were conducted to examine nerve regeneration eight weeks post-surgery.Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01. Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01. Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01.We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model.

  19. Total glucosides of paeony inhibit the proliferation of fibroblast-like synoviocytes through the regulation of G proteins in rats with collagen-induced arthritis.

    Science.gov (United States)

    Jia, Xiao-Yi; Chang, Yan; Sun, Xiao-Jing; Wu, Hua-Xun; Wang, Chun; Xu, Hong-Mei; Zhang, Lei; Zhang, Ling-Ling; Zheng, Yong-Qiu; Song, Li-Hua; Wei, Wei

    2014-01-01

    The aim of this study was to investigate the expression of G proteins in fibroblast-like synoviocytes (FLSs) from rats with collagen-induced arthritis (CIA) and to determine the effect of total glucosides of paeony (TGP). CIA rats were induced with chicken type II collagen (CCII) in Freund's complete adjuvant. The rats with experimental arthritis were randomly separated into five groups and then treated with TGP (25, 50, and 100mg/kg) from days 14 to 35 after immunization. The secondary inflammatory reactions were evaluated through the polyarthritis index and histopathological changes. The level of cyclic adenosine monophosphate (cAMP) was measured by radioimmunoassay. The FLS proliferation response was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The toxin-catalyzed ADP-ribosylation of G proteins was performed through autoradiography. The results show that TGP (25, 50, and 100mg/kg) significantly decreased the arthritis scores of CIA rats and improved the histopathological changes. TGP inhibited the proliferation of FLSs and increased the level of cAMP. Moreover, the FLS proliferation and the level of Gαi expression were significantly increased, but the level of Gαs expression was decreased after stimulation with IL-1β (10ng/ml) in vitro. TGP (12.5 and 62.5μg/ml) significantly inhibited the FLS proliferation and regulated the balance between Gαi and Gαs. These results demonstrate that TGP may exert its anti-inflammatory effects through the suppression of FLS proliferation, which may be associated with its ability to regulate the balance of G proteins. Thus, TGP may have potential as a therapeutic agent for the treatment of rheumatoid arthritis. © 2013.

  20. A comparison of the effect of epidermal growth factor, platelet-derived growth factor, and fibroblast growth factor on rat periodontal ligament fibroblast-like cells' DNA synthesis and morphology

    DEFF Research Database (Denmark)

    Blom, S; Holmstrup, P; Dabelsteen, Erik

    1994-01-01

    in the wound-healing process. We have therefore investigated the mitogenic and morphogenic effects of recombinant epidermal growth factor (rEGF), natural platelet-derived growth factor (nPDGF), and natural fibroblast growth factor (nFGF) on periodontal ligament fibroblast-like cells. A cell line...

  1. Biocompatibility Assessment of Poly(lactic acid Films after Sterilization with Ethylene Oxide in Histological Study In Vivo with Wistar Rats and Cellular Adhesion of Fibroblasts In Vitro

    Directory of Open Access Journals (Sweden)

    Michele Savaris

    2017-01-01

    Full Text Available Biomaterials must meet certain fundamental requirements for their usage in living beings, such as biocompatibility, bifunctionality, and sterilizability, without having chemical and structural changes. The biocompatibility of poly(lactic acid (PLA films, shaped by compression, was evaluated after sterilization by ethylene oxide by a histological in vivo test with Wistar rats and cytotoxicity in cell adhesion in vitro. The cytotoxicity test was performed by the reduction of tetrazolium salt (MTT. Thermal and chemical changes in PLA films concerning the proposed sterilization process and characteristics were not observed to evidence polymer degradation due to sterilization. The analysis of the cytotoxicity by the MTT method has shown that the sterilized PLA films are not cytotoxic. The adhesion and proliferation of fibroblasts on PLA films were homogeneously distributed over the evaluation period, showing an elongated appearance with unnumbered cytoplasmic extensions and cell-cell interactions. By examining the biocompatibility in a histological study, a mild tissue inflammation was observed with the presence of fibrosis in the samples that had been exposed for 21 days in the rats’ bodies. PLA films sterilized with ethylene oxide did not exhibit cell adhesion in vitro and toxicity to the surrounding tissue in vivo and they may be used in future in vivo testing, according to histological findings in Wistar rats in the present study.

  2. In Vitro Study of Mutagenesis Induced by Crocidolite-Exposed Alveolar Macrophages NR8383 in Cocultured Big Blue Rat2 Embryonic Fibroblasts

    International Nuclear Information System (INIS)

    Guichard, Y.; Gate, L.; Darne, C.; Bottin, M.C.; Langlais, C.

    2010-01-01

    Asbestos-induced mutagenicity in the lung may involve reactive oxygen/nitrogen species (ROS/RNS) released by alveolar macrophages. With the aim of proposing an alternative in vitro mutagenesis test, a co culture system of rat alveolar macrophages (NR8383) and transgenic Big Blue Rat 2 embryonic fibroblasts was developed and tested with a crocidolite sample. Crocidolite exposure induced no detectable increase in ROS production from NR8383, contrasting with the oxidative burst that occurred following a brief exposure (1 hour) to zymosan, a known macrophage activator. In separated co cultures, crocidolite and zymosan induced different changes in the gene expressions involved in cellular inflammation in NR8383 and Big Blue. In particular, both particles induced up-regulation of iNOS expression in Big Blue, suggesting the formation of potentially genotoxic nitrogen species. However, crocidolite exposure in separated or mixed co cultures induced no mutagenic effects whereas an increase in Big Blue mutants was detected after exposure to zymosan in mixed co cultures. NR8383 activation by crocidolite is probably insufficient to induce in vitro mutagenic events. The mutagenesis assay based on the co culture of NR8383 and Big Blue cannot be used as an alternative in vitro method to assess the mutagenic properties of asbestos fibres.

  3. A mutein of human basic fibroblast growth factor TGP-580 accelerates colonic ulcer healing by stimulating angiogenesis in the ulcer bed in rats.

    Science.gov (United States)

    Satoh, H; Szabo, S

    2015-10-01

    Previously, we reported that TGP-580, a mutein of human basic fibroblast growth factor (bFGF), accelerated the healing of gastric and duodenal ulcers in rats. In the present study, we examined the effect of TGP-580 on the healing of colonic ulcers. In male Sprague Dawley rats, ulcers were induced in the colon 6 cm from the anus by enema of 50 μl of 3% N-ethylmaleimide, a sulfhydryl alkylator. The lesions were examined under a dissecting microscope (x10). The concentration of bFGF in the ulcerated colon was measured by enzyme immunoassay, and both the distribution of bFGF and the density of microvessels in the ulcer bed were examined by immunohistochemical staining. The content of bFGF in the ulcerated colon was markedly increased associated with ulcer healing, and ulcer healing was significantly delayed by intravenous administration of a monoclonal antibody for bFGF (MAb 3H3) once daily for 10 days. In the ulcer bed, many cells such as fibroblasts, vascular endothelial cells and macrophages were positively stained with bFGF antiserum. TGP-580, human bFGF or dexamethasone was given intracolonally twice daily for 10 days, starting the day after ulcer induction. TGP-580 (0.2 - 20 μg/ml, 200 μl/rat) dose-dependently accelerated ulcer healing, and its effect was more than 10 times stronger than that of human bFGF. Density (μm/0.01 mm(2)) of microvessels in the ulcer bed was significantly increased by treatment with TGP-580, and there was a good correlation between the density of microvessels and the decrease of ulcerated area (R(2) = 0.633). On the other hand dexamethasone (20 μg/ml) inhibited angiogenesis in the ulcer bed and delayed ulcer healing. These results suggest that angiogenesis in the ulcer bed plays an important role in ulcer healing, and that bFGF mutein TGP-580 accelerated colonic ulcer healing, at least in part, by stimulating angiogenesis, whereas glucocorticoids may delay the healing by inhibiting angiogenesis.

  4. Fibroblastic rheumatism

    Directory of Open Access Journals (Sweden)

    Jyoti Ranjan Parida

    2017-01-01

    Full Text Available Fibroblastic rheumatism (FR is a rare dermoarthopathy reported from different parts of the world since 1980. Although the exact cause is unknown, few reports implicate infection may be a triggering event. Patients usually present with multiple skin nodules and polyarthropathy with progressive skin contractures. Laboratory parameters including acute phase reactants are usually normal. The confirmatory diagnosis is based on histopathologic study of skin nodules, which demonstrate fibroblastic proliferation, thickened collagen fibers, dermal fibrosis, and decreased number of elastic fibers. Immunoreactivity for b-catenin, smooth muscle actin, and the monoclonal antibody HHF35 show myofibroblastic differentiation. Treatments with oral prednisolone and other disease-modifying drugs such as methotrexate, infliximab, and interferon have been tried with variable success. In general, skin lesions respond more aptly than joint symptoms indicating that skin fibroblast is more amenable to treatment than synovial fibroblasts. Awareness regarding this orphan disease among clinicians and pathologists will help in more reporting of such cases and finding out optimal treatment regimen.

  5. MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro.

    Science.gov (United States)

    Zhang, Chengliang; Zhang, Yanfeng; Zhu, Hong; Hu, Jiajia; Xie, Zhongshang

    2018-06-01

    Cardiac fibrosis is associated with diverse heart diseases. In response to different pathological irritants, cardiac fibroblasts may be induced to proliferate and differentiate into cardiac myofibroblasts, thus contributing to cardiac fibrosis. TGF-β signaling is implicated in the development of heart failure through the induction of cardiac fibrosis. C-Ski, an inhibitory regulator of TGF-β signaling, has been reported to suppress TGF-β1-induced human cardiac fibroblasts' proliferation and ECM protein increase; however, the underlying molecular mechanism needs further investigation. In the present study, we demonstrated that c-Ski could ameliorate isoproterenol (ISO)-induced rat myocardial fibrosis model and TGF-β1-induced primary rat cardiac fibroblasts' proliferation, as well as extracellular matrix (ECM) deposition. The protein level of c-Ski was dramatically decreased in cardiac fibrosis and TGF-β1-stimulated primary rat cardiac fibroblasts. In recent decades, a family of small non-coding RNA, namely miRNAs, has been reported to regulate gene expression by interacting with diverse mRNAs and inducing either translational suppression or mRNA degradation. Herein, we selected miR-34a and miR-93 as candidate miRNAs that might target to regulate c-Ski expression. After confirming that miR-34a/miR-93 targeted c-Ski to inhibit its expression, we also revealed that miR-34a/miR-93 affected TGF-β1-induced fibroblasts' proliferation and ECM deposition through c-Ski. Taken together, we demonstrated a miR-34a/miR-93-c-Ski axis which modulates TGF-β1- and ISO-induced cardiac fibrosis in vitro and in vivo; targeting the inhibitory factors of c-Ski to rescue its expression may be a promising strategy for the treatment of cardiac fibrosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    International Nuclear Information System (INIS)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li; Li, Xiao-Dong; Hong, Mo-Na; Chen, Qi-Zhi; Han, Wei-Qing; Gao, Ping-Jin

    2016-01-01

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  7. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Li, Xiao-Dong [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Hong, Mo-Na [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Chen, Qi-Zhi [Shanghai Institute of Hypertension, Shanghai (China); Han, Wei-Qing, E-mail: whan020@gmail.com [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Gao, Ping-Jin, E-mail: gaopingjin@sibs.ac.cn [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China)

    2016-04-29

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  8. Dose response of angiogenesis to basic fibroblast growth factor in rat corneal pocket assay: II. Numerical simulations.

    Science.gov (United States)

    Tong, Sheng; Yuan, Fan

    2008-01-01

    Angiogenesis involves interactions among various molecules and cells. To understand the complexity of interactions, we developed a mathematical model to numerically simulate angiogenesis induced by basic fibroblast growth factor (bFGF) in the corneal pocket assay. The model considered interstitial transport of bFGF, cellular uptake of bFGF, and dynamics of vessel growth. The model was validated by comparing simulated vascular networks, induced by bFGF at three different doses: 5 ng, 15 ng, and 50 ng, with experimental data obtained in the first part of the study, in terms of migration distance of vascular network, total vessel length, and number of vessels. The model was also used to simulate growth dynamics of vascular networks as well as spatial and temporal distribution of bFGF, which could not be measured experimentally. Taken together, results of the study suggested that the coupling between diffusion and cellular uptake of bFGF was critical for determining structures of vascular networks and that the mathematical model was appropriate for simulation of angiogenesis in the cornea.

  9. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells.

    Science.gov (United States)

    Nakano, Shin-ichi; Nakamura, Katsuyuki; Teramoto, Naomi; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-01-01

    Intramuscular adipose tissue (IMAT) formation is a hallmark of marbling in cattle. IMAT is considered to originate from skeletal muscle progenitor cells with adipogenic potential. However, the mechanism involved in IMAT formation from these progenitor cells in vivo remains unclear. In the present study, among the growth factors tested, which were known to be expressed in skeletal muscle, we found only basic fibroblast growth factor (bFGF) has a pro-adipogenic effect on skeletal muscle derived adipogenic progenitor clone, 2G11 cells. Pre-exposure of 2G11 cells to bFGF did not affect initial gene expressions of CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ, while resulting in an enhancement of subsequent expressions of C/EBPα and proliferator-activated receptor gamma (PPARγ) during adipogenesis, indicating that bFGF is acting on the transcriptional regulation of C/EBPα and PPARγ. In addition, the effect of bFGF is mediated via two types of FGF receptor (FGFR) isoforms: FGFR1 and FGFR2 IIIc, and both receptors are prerequisite for bFGF to express its pro-adipogenic effect. These results suggest that bFGF plays an important role as a key trigger of IMAT formation in vivo. © 2015 Japanese Society of Animal Science.

  10. Dietary Manipulations That Induce Ketosis Activate the HPA Axis in Male Rats and Mice: A Potential Role for Fibroblast Growth Factor-21.

    Science.gov (United States)

    Ryan, Karen K; Packard, Amy E B; Larson, Karlton R; Stout, Jayna; Fourman, Sarah M; Thompson, Abigail M K; Ludwick, Kristen; Habegger, Kirk M; Stemmer, Kerstin; Itoh, Nobuyuki; Perez-Tilve, Diego; Tschöp, Matthias H; Seeley, Randy J; Ulrich-Lai, Yvonne M

    2018-01-01

    In response to an acute threat to homeostasis or well-being, the hypothalamic-pituitary-adrenocortical (HPA) axis is engaged. A major outcome of this HPA axis activation is the mobilization of stored energy, to fuel an appropriate behavioral and/or physiological response to the perceived threat. Importantly, the extent of HPA axis activity is thought to be modulated by an individual's nutritional environment. In this study, we report that nutritional manipulations signaling a relative depletion of dietary carbohydrates, thereby inducing nutritional ketosis, acutely and chronically activate the HPA axis. Male rats and mice maintained on a low-carbohydrate high-fat ketogenic diet (KD) exhibited canonical markers of chronic stress, including increased basal and stress-evoked plasma corticosterone, increased adrenal sensitivity to adrenocorticotropin hormone, increased stress-evoked c-Fos immunolabeling in the paraventricular nucleus of the hypothalamus, and thymic atrophy, an indicator of chronic glucocorticoid exposure. Moreover, acutely feeding medium-chain triglycerides (MCTs) to rapidly induce ketosis among chow-fed male rats and mice also acutely increased HPA axis activity. Lastly, and consistent with a growing literature that characterizes the hepatokine fibroblast growth factor-21 (FGF21) as both a marker of the ketotic state and as a key metabolic stress hormone, the HPA response to both KD and MCTs was significantly blunted among mice lacking FGF21. We conclude that dietary manipulations that induce ketosis lead to increased HPA axis tone, and that the hepatokine FGF21 may play an important role to facilitate this effect. Copyright © 2018 Endocrine Society.

  11. Anti-arthritic effects of magnolol in human interleukin 1β-stimulated fibroblast-like synoviocytes and in a rat arthritis model.

    Directory of Open Access Journals (Sweden)

    Jyh-Horng Wang

    Full Text Available Fibroblast-like synoviocytes (FLS play an important role in the pathologic processes of destructive arthritis by producing a number of catabolic cytokines and metalloproteinases (MMPs. The expression of these mediators is controlled at the transcriptional level. The purposes of this study were to evaluate the anti-arthritic effects of magnolol (5,5'-Diallyl-biphenyl-2,2'-diol, the major bioactive component of the bark of Magnolia officinalis, by examining its inhibitory effects on inflammatory mediator secretion and the NF-κB and AP-1 activation pathways and to investigate its therapeutic effects on the development of arthritis in a rat model. The in vitro anti-arthritic activity of magnolol was tested on interleukin (IL-1β-stimulated FLS by measuring levels of IL-6, cyclooxygenase-2, prostaglandin E(2, and matrix metalloproteinases (MMPs by ELISA and RT-PCR. Further studies on how magnolol inhibits IL-1β-stimulated cytokine expression were performed using Western blots, reporter gene assay, electrophoretic mobility shift assay, and confocal microscope analysis. The in vivo anti-arthritic effects of magnolol were evaluated in a Mycobacterium butyricum-induced arthritis model in rats. Magnolol markedly inhibited IL-1β (10 ng/mL-induced cytokine expression in a concentration-dependent manner (2.5-25 µg/mL. In clarifying the mechanisms involved, magnolol was found to inhibit the IL-1β-induced activation of the IKK/IκB/NF-κB and MAPKs pathways by suppressing the nuclear translocation and DNA binding activity of both transcription factors. In the animal model, magnolol (100 mg/kg significantly inhibited paw swelling and reduced serum cytokine levels. Our results demonstrate that magnolol inhibits the development of arthritis, suggesting that it might provide a new therapeutic approach to inflammatory arthritis diseases.

  12. H2O2 treatment or serum deprivation induces autophagy and apoptosis in naked mole-rat skin fibroblasts by inhibiting the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Zhao, Shanmin; Li, Li; Wang, Shiyong; Yu, Chenlin; Xiao, Bang; Lin, Lifang; Cong, Wei; Cheng, Jishuai; Yang, Wenjing; Sun, Wei; Cui, Shufang

    2016-12-20

    Naked mole-rats (NMR; Heterocephalus glaber) display extreme longevity and resistance to cancer. Here, we examined whether autophagy contributes to the longevity of NMRs by assessing the effects of the PI3K/Akt pathway inhibitor LY294002 and the autophagy inhibitor chloroquine (CQ) on autophagy and apoptosis in NMR skin fibroblasts. Serum starvation, H2O2 treatment, and LY294002 treatment all increased the LC3-II/LC3-I ratio and numbers of double-membraned autophagosomes and autophagic vacuoles, and decreased levels of p70S6K, p-AktSer473, and p-AktThr308. By contrast, CQ treatment decreased p70S6K, AktSer473, and AktThr308 levels. The Bax/Bcl-2 ratio increased after 12 h of exposure to LY294002 or CQ. These data show that inhibiting the Akt pathway promotes autophagy and apoptosis in NMR skin fibroblasts. Furthermore, LY294002 or CQ treatment decreased caspase-3, p53, and HIF1-α levels, suggesting that serum starvation or H2O2 treatment increase autophagy and apoptosis in NMR skin fibroblasts by inhibiting the PI3K/Akt pathway. CQ-induced inhibition of late autophagy stages also prevented Akt activation and induced apoptosis. Finally, the HIF-1α and p53 pathways were involved in serum starvation- or H2O2-induced autophagy in NMR skin fibroblasts.

  13. Fibroblast Growth Factor Type 1 (FGF1)-Overexpressed Adipose-Derived Mesenchaymal Stem Cells (AD-MSCFGF1) Induce Neuroprotection and Functional Recovery in a Rat Stroke Model.

    Science.gov (United States)

    Ghazavi, Hamed; Hoseini, Seyed Javad; Ebrahimzadeh-Bideskan, Alireza; Mashkani, Baratali; Mehri, Soghra; Ghorbani, Ahmad; Sadri, Kayvan; Mahdipour, Elahe; Ghasemi, Faezeh; Forouzanfar, Fatemeh; Hoseini, Azar; Pasdar, Ali Reza; Sadeghnia, Hamid Reza; Ghayour-Mobarhan, Majid

    2017-10-01

    Stroke, as the second most common cause of death, imposes a great financial burden on both the individual and society. Mesenchymal stem cells from rodents have demonstrated efficacy in experimental animal models of stroke due to enhanced neurological recovery. Since FGF1 (fibroblast growth factor 1) displays neuroprotective properties, for the first time, we investigated the effect of acute intravenous administration of FGF1 gene transfected adipose-derived mesenchymal stem cell (AD-MSC FGF1 ) on transient experimental ischemic stroke in rats. Stroke induction was made by transient middle cerebral artery occlusion (tMCAO). 2 × 10 6  AD-MSC FGF1 was administrated intravenously 30 min after carotid reperfusion. The ability of technetium 99m -hexamethyl propylene amine oxime ( 99m Tc-HMPAO)-labeled AD-MSC FGF1 to enter into ischemic brain was evaluated 2 h post injection. 24 h post operation, the neurological recovery (rotarod and Roger's tests), the infarct volume (2, 3, 5-triphenyltetrazolium chloride, TTC assay), apoptosis rate (TUNEL assay), and the expression of FGF1 protein (western blotting) in the ischemic hemisphere were assessed. The 99m Tc-HMPAO-labeled AD-MSC FGF1 could enter into the ischemic brain. Ischemic hemisphere activity was significantly higher than that observed in the contralateral hemisphere (p = 0.002). The administration of AD-MSC FGF1 resulted in significant improvement of neurological function tests and increased density of FGF1 protein in the peri-infarct area, while the infarct volume and the apoptotic index were significantly decreased, in comparison to the other treated groups. In conclusion, acute intravenous administration of AD-MSC FGF1 can be a novel and promising candidate approach for the treatment of ischemic stroke.

  14. A comparison of the effect of epidermal growth factor, platelet-derived growth factor, and fibroblast growth factor on rat periodontal ligament fibroblast-like cells' DNA synthesis and morphology

    DEFF Research Database (Denmark)

    Blom, S; Holmstrup, P; Dabelsteen, Erik

    1994-01-01

    of observations were assessed by the Student t-test. The morphogenic effects of growth factors were described with respect to growth pattern, cell orientation, and cell and nucleus form after a random photographic recording. The fibroblast-like cell type and the non-transformed phenotype of the cell line have...... nuclei. Incorporation of [3H]-thymidine was increased in a dose-dependent manner by all growth factors. Maximal effect on the DNA synthesis was: rEGF, 131%; nPDGF, 274%; and nFGF, 182%.(ABSTRACT TRUNCATED AT 250 WORDS)...

  15. Myogenic conversion of bladder fibroblasts by construction and ...

    African Journals Online (AJOL)

    Gene therapy of detrusor underactivity, by autologous cells transplantation, is limited by the number of primary myogenic. The purpose of this study was to investigate whether Myod1 could induce primary bladder fibroblasts to undergo myogenic conversion. Primary bladder fibroblasts from Sprague-Daley rats were cultured ...

  16. Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells.

    Science.gov (United States)

    Mahgoub, Mohamed; Yasunaga, Jun-Ichirou; Iwami, Shingo; Nakaoka, Shinji; Koizumi, Yoshiki; Shimura, Kazuya; Matsuoka, Masao

    2018-02-06

    Viruses causing chronic infection artfully manipulate infected cells to enable viral persistence in vivo under the pressure of immunity. Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection mainly in CD4+ T cells in vivo and induces leukemia in this subset. HTLV-1-encoded Tax is a critical transactivator of viral replication and a potent oncoprotein, but its significance in pathogenesis remains obscure due to its very low level of expression in vivo. Here, we show that Tax is expressed in a minor fraction of leukemic cells at any given time, and importantly, its expression spontaneously switches between on and off states. Live cell imaging revealed that the average duration of one episode of Tax expression is ∼19 hours. Knockdown of Tax rapidly induced apoptosis in most cells, indicating that Tax is critical for maintaining the population, even if its short-term expression is limited to a small subpopulation. Single-cell analysis and computational simulation suggest that transient Tax expression triggers antiapoptotic machinery, and this effect continues even after Tax expression is diminished; this activation of the antiapoptotic machinery is the critical event for maintaining the population. In addition, Tax is induced by various cytotoxic stresses and also promotes HTLV-1 replication. Thus, it seems that Tax protects infected cells from apoptosis and increases the chance of viral transmission at a critical moment. Keeping the expression of Tax minimal but inducible on demand is, therefore, a fundamental strategy of HTLV-1 to promote persistent infection and leukemogenesis. Copyright © 2018 the Author(s). Published by PNAS.

  17. Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction.

    Science.gov (United States)

    Tillmanns, Jochen; Hoffmann, Daniel; Habbaba, Yasmin; Schmitto, Jan D; Sedding, Daniel; Fraccarollo, Daniela; Galuppo, Paolo; Bauersachs, Johann

    2015-10-01

    Fibroblast activation protein α (FAP) is a membrane-bound serine protease expressed by activated fibroblasts during wound healing in the skin. Expression of FAP after myocardial infarction (MI) and potential effects on cardiac wound healing are largely unknown. MI was induced in rats and FAP expression was analyzed at 3, 7 and 28 days post-MI by microarray, Western blot and immunohistochemistry. In human hearts after MI, a FAP(+) fibroblast population was identified, and characterized by immunohistochemistry for prolyl-4-hydroxylase β, α-smooth muscle actin, Thy-1 and vimentin. Signaling pathways leading to FAP expression were studied in human cardiac fibroblasts by Western blot and ELISA using TGFβ1, TGF-beta type I-receptor (TGFbR1)-inhibitor SB431542 or the MAPK-inhibitor U0126 as well as siRNA targeting SMAD2 and SMAD3. Finally, fibroblasts were assayed for FAP-dependent migration (modified Boyden-chamber), proliferation (BrdU-assay) and gelatinolytic activity by gelatin zymography. In rats, FAP expression was increased after MI especially in the peri-infarct area peaking at 7 days post-MI. Co-localization analysis identified the majority of FAP(+) cells as activated proto-myofibroblasts and myofibroblasts. Concordantly, FAP(+) fibroblasts were abundant in ischemic tissue of human hearts after MI, but not in healthy control hearts. In vitro, FAP was induced by TGFβ1 via the canonical SMAD2/SMAD3 pathway. Depletion of FAP in fibroblasts reduced migratory capacity, while proliferation was not affected. Gelatin zymography revealed gelatinase activity by fibroblast-derived FAP. In this study, we show for the first time the expression of FAP in activated fibroblasts after MI and its activation by TGFβ1. Effects of FAP on fibroblast migration and gelatinolytic activity indicate a potential role in cardiac wound healing and remodeling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Defining the Cardiac Fibroblast

    Science.gov (United States)

    Ivey, Malina J.; Tallquist, Michelle D.

    2017-01-01

    Cardiac fibrosis remains an important health concern, but the study of fibroblast biology has been hindered by a lack of effective means for identifying and tracking fibroblasts. Recent advances in fibroblast-specific lineage tags and reporters have permitted a better understanding of these cells. After injury multiple cell types have been implicated as the source for extracellular matrix producing cells, but emerging studies suggest that resident cardiac fibroblasts contribute substantially to the remodeling process. In this review, we discuss recent findings regarding cardiac fibroblast origin and identity. Our understanding of cardiac fibroblast biology and fibrosis is still developing and will expand profoundly in the next few years, with many of the recent findings regarding fibroblast gene expression and behavior laying down the groundwork for interpreting the purpose and utility of these cells before and after injury. PMID:27746422

  19. ER-α agonist induces conversion of fibroblasts into myofibroblasts, while ER-β agonist increases ECM production and wound tensile strength of healing skin wounds in ovariectomised rats.

    Science.gov (United States)

    Novotný, Martin; Vasilenko, Tomáš; Varinská, Lenka; Smetana, Karel; Szabo, Pavol; Sarišský, Marek; Dvořánková, Barbora; Mojžiš, Ján; Bobrov, Nikita; Toporcerová, Silvia; Sabol, Franitšek; Matthews, Bryan J O; Gál, Peter

    2011-09-01

    Oestrogen deprivation is one of the major factors responsible for many age-related processes, including poor wound healing in women. Previously, it has been shown that oestrogens have a modulatory effect in different wound-healing models. Therefore, in this study, the effect of selective oestrogen receptor (ER) agonists (PPT - ER-α agonist, DPN - ER-β agonist) on excisional and incisional wound-healing models was compared in ovariectomised rats in vivo as well as on human dermal fibroblasts (HDF) and human umbilical endothelial cells (HUVEC) in vitro. In the in vivo study, 4 months after either ovariectomy or sham ovariectomy, Sprague-Dawley rats were randomly divided into four groups and subjected to two incisional and excisional wounds: (i) control - sham operated, vehicle-treated; (ii) ovariectomised, vehicle-treated; (iii) ovariectomised, PPT treated; (iv) ovariectomised, DPN treated. In the in vitro study, HDFs and HUVECs were used. After treatment with ER agonists, cells were processed for immunocytochemistry and gelatin zymography. Our study shows that stimulation of ER-α leads to the differentiation of fibroblasts into myofibroblasts both in vivo and in vitro. On the other hand, the formation of extracellular matrix was more prominent, and wound tensile strength (TS) was increased when ER-β was stimulated. In contrast, stimulation of ER-α led to a more prominent increase in the expression of MMP-2 and decrease in wound TS. New information is presented in this investigation concerning oestrogen replacement therapy (ERT) in different wound-healing models. This study demonstrates that the ERT should be both wound and receptor-type specific. © 2011 John Wiley & Sons A/S.

  20. I. Lipid metabolism stimulated by altered intracellular calcium in cultured fibroblasts. II. Regulation of the activity of rat adipose tissue lipoprotein lipase

    International Nuclear Information System (INIS)

    Chang Wang, Huei-Hsiang Lisa.

    1988-01-01

    The cell killing process of 3T3 Swiss mouse fibroblasts stimulated by Ca 2+ plus A23187, a Ca 2+ ionophore has been studied. The aim of this research is to understand the biochemical mechanism of this process, i.e, to elucidate the step involved and to characterize the enzymes involved with each steps in the lipid metabolism stimulated in cultured fibroblasts undergoing a toxic death response. Parallel 3T3 cultures biosynthetically labeled with lipid precursors were examined under Ca 2+ -mediated killing conditions. Labeled lipids were extracted and analyzed by thin-layer chromatography and autoradiography. Evidence for activation of a phosphatidylinositol-specific phospholipase C has been obtained in injured 3T3 cells labeled with [ 3 H]glycerol and [ 3 H]inositol. To simplify the system for studying the lipoprotein lipase reaction, our laboratory prepared the chromophore containing a substrate: 1,2-dipalmitoyl-3-β-2-furylacryloyltriacylglycerol (DPFATG). By using this artificial lipid we could readily investigate the lipoprotein lipase reactions, since the absorbance change directly represents the hydrolysis of the chromophoric side chain of the substrate

  1. Through gap junction communications, co-cultured mast cells and fibroblasts generate fibroblast activities allied with hypertrophic scarring.

    Science.gov (United States)

    Foley, Theodore T; Ehrlich, H Paul

    2013-05-01

    The prominent inflammatory cell identified in excessive scarring is the mast cell. Hypertrophic scar exhibits myofibroblasts derived from the transformation of fibroblasts, increased collagen synthesis, and stationary nonmigratory resident cells. The co-culture of fibroblasts with an established rat mast cell line (RMC-1) was used to explore the hypothesis of whether mast cells through gap junctional intercellular communications guide fibroblasts in promoting excessive scarring. Human dermal fibroblasts were cultured alone or co-cultured with RMC-1 cells as is or with either blocked gap junctional intercellular communications or devoid of cytoplasmic granules. Collagen synthesis was analyzed by dot blot analysis; immunohistology identified myofibroblasts, and a cell migration assay measured fibroblast locomotion. Fibroblasts co-cultured with RMC-1 cells transformed into myofibroblasts, had increased collagen synthesis, and showed retarded cell migration. In contrast, RMC-1 cells unable to form gap junctional intercellular communications were similar to fibroblasts alone, failing to promote these activities. Degranulated RMC-1 cells were as effective as intact RMC-1 cells. Mast cells induce fibroblast activities associated with hypertrophic scarring through gap junctional intercellular communications. Eliminating the mast cell or its gap junctional intercellular communications with fibroblasts may be a possible approach in preventing hypertrophic scarring or reducing fibrotic conditions.

  2. Igf1r+/CD34+ immature ICC are putative adult progenitor cells, identified ultrastructurally as fibroblast-like ICC in Ws/Ws rat colon

    DEFF Research Database (Denmark)

    Wang, X Y; Albertí, E; White, E J

    2009-01-01

    by ICC in the wild-type rat colon, suggesting them to be immature ICC. In addition, a marked increase in immunoreactivity for insulin-like growth factor 1 receptor (Igf1r) occurred, co-localized with CD34 but not with c-Kit. A significantly higher number of Igf1r(+)/CD34(+) cells were found in Ws...

  3. Effect of 1,25-(OH2D3 on Proliferation of Fibroblast-Like Synoviocytes and Expressions of Pro-Inflammatory Cytokines through Regulating MicroRNA-22 in a Rat Model of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Ping Fan

    2017-05-01

    Full Text Available Objective: This study aims to investigate the regulatory mechanism of 1,25-(OH2D3 on the proliferation of fibroblast-like synoviocytes (FLS and expressions of pro-inflammatory cytokines in rheumatoid arthritis (RA rats via microRNA-22 (miR-22. Methods: A rat model of RA was established with a subcutaneous injection of type II collagen. After treated with different concentrations of 1,25-(OH2D3 the proliferation of FLS was estimated by the MTT method, and the optimal concentration of 1,25-(OH2D3 was selected for further experiments. Cell proliferation was detected by MTT. Cell cycle and apoptosis were analyzed by FCM. The IL-1β, IL-6, IL-8, and PGE2 protein expressions were determined by ELISA, and MMP-3, INOS, and Cox-2 mRNA expressions were measured by qRT-PCR. Results: The rat model of RA was successfully established. Compared with the blank group, the 1,25-(OH2D3 and miR-22 inhibitors groups exhibited higher proliferation inhibition and apoptosis rates, lower levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and PGE2, and decreased mRNA expressions of MMP-3, INOS, and Cox-2. The miR-22 mimics group had lower proliferation inhibition and apoptosis rates, elevated expressions of pro-inflammatory cytokines and MMP-3, INOS, and Cox-2 than the blank group. In contrast to the 1,25-(OH2D3 group, the proliferation inhibition and apoptosis rates were down-regulated, and the expressions of pro-inflammatory cytokines and MMP-3, INOS, and Cox-2 were up-regulated in the 1,25-(OH2D3 + miR-22 mimics group. Conclusion: Our study demonstrated that 1,25-(OH2D3 inhibits the proliferation of FLS and alleviates inflammatory response in RA rats by down-regulating miR-22.

  4. Effects of daphnetin combined with Bcl2‑siRNA on antiapoptotic genes in synovial fibroblasts of rats with collagen‑induced arthritis.

    Science.gov (United States)

    Chen, Xiaoying; Kuang, Nanzhen; Zeng, Xiaoping; Zhang, Zhiqin; Li, Yanyan; Liu, Wei; Fu, Yingyuan

    2018-01-01

    The aim of the present study was to investigate the effects of daphnetin combined with B cell lymphoma 2 (Bcl2)‑targeted small interfering (si)RNA (si‑Bcl2) on antiapoptotic genes in fibroblast‑like synoviocytes (FLS) in rats with collagen II‑induced arthritis (CIA). The roles of si‑Bcl2 and daphnetin were determined by measuring the expression levels of Bcl2. Protein and mRNA expression levels of Bcl2 in FLS were determined by flow cytometry and reverse transcription‑quantitative polymerase chain reaction. Apoptosis of FLS was also determined by flow cytometry. It was revealed that treatment with si‑Bcl2 or daphnetin alone resulted in downregulation of Bcl2 mRNA and protein expression. In addition, the mRNA expression levels of the signal transducer and activator of transcription 3 (STAT3), which transcriptionally regulates the activity of mitochondria, were reduced. The combination of si‑Bcl2 and daphnetin exhibited an enhanced effect on rheumatoid arthritis FLS (RAFLS), in which the apoptotic rate was significantly higher than either treatment alone. The results suggested that si‑Bcl combined with daphnetin may have an enhanced effect in promoting apoptosis of RAFLS derived from CIA rats, and a possible underlying molecular mechanism may function through the downregulation of Bcl2 expression and STAT3, which is located upstream of Bcl2 in the mitochondrial apoptotic pathway. The results of the present study are expected to provide theoretical and experimental basis for the treatment of RA and the medicinal development of daphnetin combined siRNA.

  5. Pharmacological Activation Gi/o Protein Increases Glial Cell Line-Derived Neurotrophic Factor Production through Fibroblast Growth Factor Receptor and Extracellular Signal-Regulated Kinase Pathway in Primary Cultured Rat Cortical Astrocytes.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Matsumoto, Chie; Azuma, Honami; Taki, Sayaka; Takebayashi, Minoru; Nakata, Yoshihiro; Morioka, Norimitsu

    2017-01-01

    A significant reduction of glial cell line-derived neurotrophic factor (GDNF) has been identified in the pathophysiology of neurodegenerative and neuropsychiatric disorders. Thus, clarification of the mechanism of GDNF production, and modulating brain GDNF levels could be a novel therapeutic approach. A previous study demonstrated that antidepressant amitriptyline-induced GDNF production was significantly inhibited by pertussis toxin (PTX), a Gi/o protein inhibitor in astrocytes, the main source of GDNF in the brain. However, it is not known whether direct activation of Gi/o protein might induce GDNF expression, and what mechanisms might be involved after Gi/o protein activation. The current study investigated Gi/o protein-initiated GDNF production in rat cortical astrocytes using activators that directly activate Gi/o protein, mastoparan and compound48/80. Treatment of astrocytes with either mastoparan or compound48/80 increased GDNF mRNA expression at 3 and 6 h, and GDNF protein release at 24 h. Treatment of astrocyte with either mastoparan or compound48/80 increased brain-derived neurotrophic factor (BDNF) mRNA expression as well as GDNF. Mastoparan and compound48/80-induced GDNF mRNA expression were significantly inhibited by not only PTX, but also fibroblast growth factor receptor (FGFR) inhibitors, and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor. In fact, both FGFR substrate2α (FRS2α) and ERK phosphorylation were increased by treatment with either mastoparan or compound48/80, and these were significantly blocked by PTX. Thus, direct, receptor-independent Gi/o protein activation increases GDNF production through FGFR/ERK signaling pathway. The current results indicate a critical role of Gi/o signaling in the regulation of GDNF expression in astrocytes.

  6. The influence of fibroblast on the arachnoid leptomeningeal cells in vitro.

    Science.gov (United States)

    Lam, Cornelius H; Romanova, Liudmila; Hubel, Allison; Janson, Christopher; Hansen, Eric A

    2017-02-15

    Fibroblast is pervasive in the setting of injury. Its invasion into the arachnoid tissue causes scarring, cortical adhesion of the brain, and obstruction of cerebrospinal fluid outflow. The purpose of this study is to determine the phenotypic and physiologic effects of fibroblasts on arachnoid in culture. We studied the effects of fibroblast on the arachnoid cell growth, motility, phenotypic changes, and transport properties. Immortalized rat (Rattus norvegicus, Sprague Dawley breed) arachnoid cells were grown with fibroblast on opposite sides of polyethylene membranes or co-cultured in plastic wells. Arachnoid cell growth rate and DNA content, morphology, transport physiology, and extracellular matriceal content were determined in the presence of normal and irradiated fibroblast cells. When arachnoid cells were grown in the presence of fibroblasts, mannitol permeability increased and transepithelial electrical resistance (TEER) decreased. Arachnoid cell growth rate also significantly decreased. When arachnoid cells were grown in close proximity (i.e. on the same monolayer) with fibroblasts, the arachnoid cells were overrun by day 2, yet when physically separated, no significant change was seen in growth. Apoptosis increased markedly in arachnoid cultures in the presence of fibroblast. Fibroblast caused arachnoid cell to exhibit avoidance behavior, and irradiated fibroblast induced arachnoidal cells to move faster and exhibited greater directional changes. Subcellular glycosaminoglycan (GAG) content was significantly altered by fibroblast. Fibroblasts influence arachnoid cell's mannitol transport likely via soluble factors. While the arachnoid cells did not change morphologically, cell growth was influenced. Over time, the cells had profound changes in transport and motility. The immortalized arachnoid cell/fibroblast culture system provides a unique model mimicking the pathologic event of leptomeningeal scarring. Published by Elsevier B.V.

  7. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    Science.gov (United States)

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  8. Cell proliferation in vitro modulates fibroblast collagenase activity

    International Nuclear Information System (INIS)

    Lindblad, W.J.; Flood, L.

    1986-01-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a 14 C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/μg DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of 3 H-thymidine and 3 H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion

  9. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sana Bahri

    Full Text Available Pulmonary fibrosis is characterized by over-population and excessive activation of fibroblasts and myofibroblasts disrupting normal lung structure and functioning. Rosemary extract rich in carnosic acid (CA and rosmarinic acid (RA was reported to cure bleomycin-(BLM-induced pulmonary fibrosis. We demonstrate that CA decreased human lung fibroblast (HLF viability with IC50 value of 17.13±1.06 μM, while RA had no cytotoxic effect. In the presence of 50 μM of RA, dose-response for CA shifted to IC50 value of 11.70±1.46 μM, indicating synergic action. TGFβ-transformed HLF, rat lung fibroblasts and L929 cells presented similar sensitivity to CA and CA+RA (20μM+100μM, respectively treatment. Rat alveolar epithelial cells died only under CA+RA treatment, while A549 cells were not affected. Annexin V staining and DNA quantification suggested that HLF are arrested in G0/G1 cell cycle phase and undergo apoptosis. CA caused sustained activation of phospho-Akt and phospho-p38 expression and inhibition of p21 protein.Addition of RA potentiated these effects, while RA added alone had no action.Only triple combination of inhibitors (MAPK-p38, pan-caspase, PI3K/Akt/autophagy partially attenuated apoptosis; this suggests that cytotoxicity of CA+RA treatment has a complex mechanism involving several parallel signaling pathways. The in vivo antifibrotic effect of CA and RA was compared with that of Vitamine-E in BLM-induced fibrosis model in rats. We found comparable reduction in fibrosis score by CA, RA and CA+RA, attenuation of collagen deposition and normalization of oxidative stress markers. In conclusion, antifibrotic effect of CA+RA is due to synergistic pro-apoptotic action on lung fibroblasts and myofibroblasts.

  10. Effects of sodium hyaluronate and carboxymethylcellulose membrane on collagen and fibroblast formation in bowel suture healing: experimental study in rats Efeitos da membrana de hialuronato de sódio e carboximetilcelulose na formação de colágeno e fibroblastos no processo de cicatrização de colorrafias: estudo experimental em ratos

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Perez

    2005-02-01

    Full Text Available PURPOSE: To analyze the effects of sodium hyaluronate and carboxymethylcellulose membrane on collagen and fibroblast formation in bowel suture healing in rats. METHODS: 48 male Wistar rats, weighing 250 to 343g, were randomized into two groups: group I - bowel suture without applying a biologically absorbable membrane and group II - bowel suture with application of an absorbable membrane. The two groups were divided into subgroups of 3, 14 and 30 days of observation, with 8 rats in each subgroup. All were sacrificed after the end of the observation period. RESULTS: No morbidity or mortality was observed during the experiment. The amounts of collagen in group I were 23.4%, 72.1% and 67.6% and in group II were 22.5%, 52.5% and 51.6%, for the subgroups of 3, 14 and 30 days, respectively. Comparison between groups showed that the 14-day (p=0.0013 and 30-day (p=0.0587 subgroups had significant variance, with larger collagen zones in animals in which the membrane was not applied. However, with regard to fibroblasts, group I had 2%, 13% and 8% and group II had 2%, 10% and 8%, for the 3-day (p=1.0, 14-day (p=0.3184 and 30-day (p=0.5995 subgroups, respectively, showing no significant variance. CONCLUSION: The use of the biologically absorbable membrane cause a decrease in collagen formation, while not altering the number of fibroblasts, in bowel suture healing in rats, without increased morbidity and mortality.OBJETIVO: Analisar os efeitos da membrana de hialuronato de sódio e carboximetilcelulose, na formação de colágeno e fibroblastos na colorrafia de ratos. MÉTODOS: Foram utilizados 48 ratos machos da linhagem Wistar, com peso entre 250 e 343g, distribuídos em dois grupos: grupo I colorrafia sem aplicação de membrana bioabsorvível e grupo II colorrafia com aplicação de membrana bioabsorvível; tendo sido divididos em subgrupos de 3, 14 e 30 dias de observação, com 8 animais em cada um dos subgrupos, todos submetidos à eutanásia após o

  11. Biocompatibility and efficacy of collagen/gelatin sponge scaffold with sustained release of basic fibroblast growth factor on vocal fold fibroblasts in 3-dimensional culture.

    Science.gov (United States)

    Hiwatashi, Nao; Hirano, Shigeru; Mizuta, Masanobu; Tateya, Ichiro; Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Ito, Juichi; Kawai, Katsuya; Suzuki, Shigehiko

    2015-02-01

    Treatment of vocal fold scarring remains challenging. We have previously reported the therapeutic effects of local injection of basic fibroblast growth factor (bFGF) in animal models and humans. A novel collagen/gelatin sponge (CGS) is capable of sustained release of bFGF, which compensates for its quick absorption in vivo, avoiding multiple injections. This study aimed to evaluate the biocompatibility and efficacy of the CGS in rat vocal fold fibroblasts prior to human trials. Fibroblasts extracted from Sprague-Dawley rat vocal folds were seeded onto a CGS and then cultivated with bFGF at concentrations of 0, 10, and 100 ng/mL. Vocal fold fibroblast morphology, adhesion, proliferation, and gene expression were measured under these 3-dimensional conditions. Cells adhered to the CGS from day 1. Although no significant differences in cell morphology were detected, cell proliferation was accelerated by bFGF administration. Expression of endogenous bFGF and hepatocyte growth factor was significantly up-regulated at 10 ng/mL bFGF. The expression of procollagen I and procollagen III was significantly suppressed, whereas HAS-1 and HAS-2 were up-regulated at 10 and 100 ng/mL bFGF. The collagen/gelatin sponge is biocompatible with vocal fold fibroblasts and may be useful as a bFGF drug delivery system for the treatment of scarred vocal folds. © The Author(s) 2014.

  12. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  13. miR-29a-3p attenuates hypoxic pulmonary hypertension by inhibiting pulmonary adventitial fibroblast activation.

    Science.gov (United States)

    Luo, Ying; Dong, Hai-Ying; Zhang, Bo; Feng, Zhao; Liu, Yi; Gao, Yu-Qi; Dong, Ming-Qing; Li, Zhi-Chao

    2015-02-01

    Activation of pulmonary adventitial fibroblasts plays a key role in the pulmonary vascular remodeling in hypoxic pulmonary hypertension. Previous studies showed that miRNAs participated in the regulation of fibroblast activation. This study explored the role of miR-29 in the activation of pulmonary adventitial fibroblasts and the therapeutic potential in hypoxic pulmonary hypertension. We found that hypoxia-induced pulmonary adventitial fibroblasts activation was accompanied with a drastic decrease of miR-29a-3p expression. Knockdown of hypoxia-inducible factor-1 α or Smad3 reversed the hypoxia-induced decrease of miR-29-3p in cultured pulmonary adventitial fibroblasts. In vitro, miR-29a-3p mimic inhibited the hypoxia-induced proliferation, migration, and secretion of pulmonary adventitial fibroblasts, suppressed the hypoxia-induced expression of α-smooth muscle actin and extracellular matrix collagen in pulmonary adventitial fibroblasts; however, miR-29a-3p inhibitor mimicked the effect of hypoxia on the activation of pulmonary adventitial fibroblasts. Further studies revealed that preventative or therapeutic administration of miR-29a-3p significantly decreased pulmonary artery pressure and right ventricle hypertrophy index and ameliorated pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. These findings suggest that miR-29a-3p regulates the activation and phenotype of pulmonary adventitial fibroblasts in hypoxia and has preventative and therapeutic potential in hypoxic pulmonary hypertension. © 2014 American Heart Association, Inc.

  14. Case report 511: Fibroblastic rheumatism

    International Nuclear Information System (INIS)

    Hernandez, R.J.; Martel, W.; Headington, J.T.; Kaufman, R.A.; Cincinnati Univ., OH

    1989-01-01

    We report a ten-year-old child with the newly described entity of fibroblastic rheumatism. This child developed rapid, progressive, symmetrical polyarthritis, similar to the radiographic appearance of juvenile rheumatoid arthritis, except for the rapidity of progression. The polyarthritis was preceded by the development of skin nodules with characteristic histological changes. (orig./GDG)

  15. Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts

    Directory of Open Access Journals (Sweden)

    McLarty JL

    2013-08-01

    Full Text Available Jennifer L McLarty,1 Jianping Li,2 Scott P Levick,3 Joseph S Janicki2 1Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA; 3Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA Background: Inflammatory cells play a major role in the pathology of heart failure by stimulating cardiac fibroblasts to regulate the extracellular matrix in an adverse way. In view of the fact that inflammatory cells have estrogen receptors, we hypothesized that estrogen provides cardioprotection by decreasing the ability of cardiac inflammatory cells to influence fibroblast function. Methods: Male rats were assigned to either an untreated or estrogen-treated group. In the treated group, estrogen was delivered for 2 weeks via a subcutaneous implanted pellet containing 17β-estradiol. A mixed population of cardiac inflammatory cells, including T-lymphocytes (about 70%, macrophages (about 12%, and mast cells (about 12%, was isolated from each rat and cultured in a Boyden chamber with cardiac fibroblasts from untreated adult male rats for 24 hours. To examine if tumor necrosis factor-alpha (TNF-α produced by inflammatory cells represents a mechanism contributing to the stimulatory effects of inflammatory cells on cardiac fibroblasts, inflammatory cells from the untreated group were incubated with cardiac fibroblasts in a Boyden chamber system for 24 hours in the presence of a TNF-α -neutralizing antibody. Cardiac fibroblasts were also incubated with 5 ng/mL of TNF-α for 24 hours. Fibroblast proliferation, collagen synthesis, matrix metalloproteinase activity, β1 integrin protein levels, and the ability of fibroblasts to contract collagen gels were determined in all groups and statistically compared via one-way analysis of variance. Results: Inflammatory cells from the

  16. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

    Directory of Open Access Journals (Sweden)

    Paul P Bonvallet

    Full Text Available Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone electrospun scaffold (70:30 col/PCL containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM, and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344 rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14% over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold. Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration

  17. Specific antibody against a protein (p27) present in nonestablished fibroblasts. A putative microfilament-associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Santaren, J.F.; MacDonald-Bravo, H.; Bravo, R. (European Molecular Biology Lab., Heidelberg (West Germany)); Bluethmann, H. (Hoffman-La Roche, Basel (Switzerland))

    1987-12-01

    A specific polyclonal antibody has been raised against a basic cytoplasmic protein (p27) which is induced by serum in growth-arrested NIH 3T3 cells but is constitutively expressed in nonestablished fibroblasts. Immunoblotting analysis and ({sup 35}S)methionine labeling show that p27 is absent in tissues and established cell lines of different types. However, it is present in fibroblasts from human, rat, mouse, and chicken origin and is highly conserved as determined by two-dimensional gel electrophoresis. Double immunofluorescence shows that p27 colocalizes with actin filaments. These observations would suggest that p27 is an actin-associated protein expressed in nonestablished fibroblasts.

  18. AGE AND MULTIPLICATION OF FIBROBLASTS.

    Science.gov (United States)

    Carrel, A; Ebeling, A H

    1921-11-30

    Pure cultures of fibroblasts displayed marked differences in their activity in the plasma of young, middle aged, and old chickens. The rate of cell multiplication varied in inverse ratio to the age of the animal from which the plasma was taken. There was a definite relation between the age of the animal and the amount of new tissue produced in its plasma in a given time (Text-figs. 1 to 10). The chart obtained by plotting the rate of cell proliferation in ordinates, and the age of the animal in abscissae, showed that the rate of growth decreased more quickly than the age increased (Text-fig. 12). The decrease in the rate of growth was 50 per cent during the first 3 years of life, while in the following 6 years it was only 30 per cent. When the duration of the life of the cultures in the four plasmas was compared, a curve was obtained which showed about the same characteristics (Text-fig. 11). The duration of life of the fibroblasts in vitro varied in inverse ratio to the age of the animal, and decreased more quickly than the age increased. As the differences in the amount of new tissue produced in the plasma of young, middle aged, and old chickens were large, the growth of a pure culture of fibroblasts could be employed as a reagent for detecting certain changes occurring in the plasma under the influence of age. But the method possesses the necessary accuracy only when it is used as has already been described, and by technicians thoroughly trained in the details of its application. A comparative study of the growth of fibroblasts in media containing no serum, and serum under low and high concentrations, was made in order to ascertain whether the decreasing rate of cell multiplication was due to the loss of an accelerating factor, or to the increase See PDF for Structure of an inhibiting one. In high and low concentrations of the serum of young animals, no difference in the rate of multiplication of fibroblasts was observed. This showed that the serum of an

  19. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  20. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Karhemo, Piia-Riitta [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Räsänen, Kati [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Laakkonen, Pirjo [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Vaheri, Antti [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland)

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.

  1. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Youichi Higuchi

    Full Text Available Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body.Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs and the subperitoneal layer (subperitoneal fibroblasts: SPFs. Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup.In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling.GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract.

  2. Antifibrotic response of cardiac fibroblasts in hypertensive hearts through enhanced TIMP-1 expression by basic fibroblast growth factor.

    Science.gov (United States)

    Kinoshita, Toshio; Ishikawa, Yukio; Arita, Michitsune; Akishima-Fukasawa, Yuri; Fujita, Kazuko; Inomata, Naomi; Suzuki, Takeya; Namiki, Atsushi; Mikami, Tetuo; Ikeda, Takanori; Yamazaki, Junichi; Ishii, Toshiharu; Akasaka, Yoshikiyo

    2014-01-01

    Cardiac fibroblasts (CFs) play a pivotal role in the development of myocardial fibrosis. We previously demonstrated that direct injection of basic fibroblast growth factor (bFGF) into the hypertensive Dahl salt-sensitive (DS) rat heart prevented systolic dysfunction and left ventricular dilation effectively. However, the precise role played by bFGF in fibrotic response of CFs remains unclear. We suggested potential effects of bFGF on the fibrotic response of CFs in vitro. Histopathologic assessment of cardiac fibrosis demonstrated a marked decline in the extent of perivascular and interstitial fibrosis in bFGF-injected hypertensive DS rat hearts. CFs harvested from the hearts of noninjected DS rats demonstrated a significantly increased messenger RNA (mRNA) expression of matrix metalloproteinase (MMP)-2, MMP-9, and both collagen I and III. In contrast, bFGF treatment in the CFs induced a marked increase in tissue inhibitor of MMP (TIMP)-1 expression and a marked decline in MMP-9 activation. bFGF also induced a decline in α-smooth muscle actin and collagen I and III mRNA expression in the CFs accompanied by inhibited differentiation of CFs into myofibroblasts. Small interfering RNA targeting FGF receptor 1 confirmed a specific interference of the mRNA expression changes elicited by bFGF. In vivo examination confirmed many TIMP-1-positive CFs in perivascular spaces of bFGF-injected hearts. Up-regulated TIMP-1 expression and down-regulated MMP-9 activation by bFGF in CFs could prevent excessive ECM degradation and collagen deposition in perivascular spaces effectively, leading to prevention of cardiac fibrosis during hypertensive heart failure. Cardiac fibroblasts (CFs) play a pivotal role in myocardial fibrosis. The precise role of CFs in fibrotic response played by growth factors remains unclear. Our results indicates that basic fibroblast growth factor could up-regulate TIMP-1 expression and down-regulate MMP-9 activation in CFs in perivascular spaces, leading to

  3. Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance.

    Science.gov (United States)

    Hetzl, A C; Montico, F; Lorencini, R M; Kido, L A; Cândido, E M; Cagnon, V H A

    2014-05-01

    The aim was to characterize and correlate steroid hormone receptors with the FGF2, FGF7 and FGF8 reactivities in the prostatic epithelium and stroma in senile rats. Fifty male senile rats and 10 young male rats were divided into the young (YNG), the senile groups (SE), the castrated group (CAS), the estrogen-deficient group (ED), the castrated + estrogen group (CASE), and the estrogen-deficient + androgen group (EDTEST). The ventral prostate was submitted to immunohistochemical and Western blotting analyses. The results showed decreased AR and ERβ levels and increased ERα in the senile animals in relation to YNG group. Increased ERα and ERβ reactivities presenting differential localization were characterized in the CASE group compared to the CAS group. Increased FGF2 level was observed in the stroma of the CAS and ED groups in relation to the SE group and in the epithelium of the ED group in relation to the other groups. Increased and differential immunolocalization of FGF7 levels were observed in the CAS, ED and CASE groups. The FGF8 levels showed differential localization in the CAS and ED groups compared to the senile group. The intense hormone ablation was favorable to the autocrine signaling of FGF2 and FGF8. FGF7 could be activated in the androgen-independent via considering the increased FGF7 in the castrated rats. We concluded that hormone ablation in senescence was favorable to activation or/and to fibroblast signaling in the prostatic microenvironment.

  4. Tacrolimus induces fibroblasts apoptosis and reduces epidural fibrosis by regulating miR-429 and its target of RhoE.

    Science.gov (United States)

    Li, Xiaolei; Chen, Hui; Wang, Shuguang; Dai, Jihang; Yan, Lianqi; Wang, Jingcheng; Sun, Yu

    2017-09-02

    Tacrolimus (FK506) has been demonstrated to reduce epidural fibrosis. However, the detailed mechanism of action has not been elucidated. Aberrant miR-429 is involved in many diseases. The aim of this study was to describe the exact mechanism of FK506 induced apoptosis in fibroblasts and the prevention of epidural fibrosis. FK506 induced fibroblast apoptosis was evaluated using CCK-8 assays, flow cytometry, and western blotting. The expression of miR-429 in fibroblasts treated with FK506 was determined by RT-qPCR. Additionally, luciferase activity assays were used to determine the target relationship between miR-429 and RhoE. Flow cytometry and western blot analysis were used to determine the effects of FK506 and miR-429 on fibroblast apoptosis. The effects of FK506 and RhoE on fibroblast apoptosis were determined by CCK-8 assay, flow cytometry, and western blotting. We also evaluate the effects of FK506 and miR-429 on epidural fibrosis in rats by using histological analysis and TUNEL-staining. The results revealed FK506 induces fibroblast apoptosis and significantly downregulates miR-429 expression in fibroblasts. Additionally, miR-429 downregulation caused the apoptosis of fibroblasts. The luciferase activity assay confirmed that RhoE is a direct target of miR-429 and RhoE promotes fibroblast apoptosis. The rat model demonstrated miR-429 inhibition promotes fibroblast apoptosis and epidural fibrosis, which is consistent with the results of FK506 treatment. Our study demonstrates that FK506 induces fibroblast apoptosis and reduces epidural fibrosis by regulating miR-429 expression and its target of RhoE. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Upregulation of ski in fibroblast is implicated in the peroxisome proliferator--activated receptor δ-mediated wound healing.

    Science.gov (United States)

    Li, Jun; Li, Ping; Zhang, Yan; Li, Gong-Bo; He, Feng-Tian; Zhou, Yuan-Guo; Yang, Kang; Dai, Shuang-Shuang

    2012-01-01

    Both peroxisome proliferator-activated receptor (PPAR) δ and Ski are investigate the interaction of PPARδ and Ski and this interaction-associated effect in wound healing. Effect of PPARδ activation on Ski expression was detected in rat skin fibroblasts by real-time PCR and western blot. Luciferase assay, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay were performed to identify the binding site of PPARδ in the promoter region of rat Ski gene. And the functional activity of PPARδ regulation to Ski was detected in fibroblast proliferation and rat skin wound healing model. PPARδ agonist GW501516 upregulated Ski expression in a dose-dependent manner. Direct repeat-1 (DR1) response element locating at -865∼-853 in Ski promoter region was identified to mediate PPARδ binding to Ski and associated induction of Ski. Furthermore, PPARδ upregulated Ski to promote fibroblasts proliferation and rat skin wound repair, which could be largely blocked by pre-treated with Ski RNA interference. This study demonstrates that Ski is a novel target gene for PPARδ and upregulation of Ski to promote fibroblast proliferation is implicated in the PPARδ-mediated wound healing. Copyright © 2012 S. Karger AG, Basel.

  6. Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts

    DEFF Research Database (Denmark)

    Lepekhin, Eugene; Grøn, Birgitte; Berezin, Vladimir

    2002-01-01

    -assisted microscope work-station. For evaluation of cell morphology, cell contours were recognized semiautomatically and used for determination of cell area, cell spreading and number and length of processes. We found that the cellular displacement of the buccal fibroblasts was only approximately 50% of the cellular...... and motility pattern amongst the three fibroblast types could not be explained by differences in secretion of extracellular matrix components and are therefore believed to reflect phenotypic differences amongst fibroblast subpopulations....

  7. Immunotherapy of tumor with vaccine based on basic fibroblast growth factor-activated fibroblasts.

    Science.gov (United States)

    Li, Xiuying; Wang, Yongsheng; Zhao, Yuwei; Yang, Hengxiu; Tong, Aiping; Zhao, Chengjian; Shi, Huashan; Li, Yang; Wang, Zhenlin; Wei, Yuquan

    2014-02-01

    Cancer-associated fibroblasts play a key role in tumor progression. It is conceivable that the breaking of immune tolerance of "self-antigens" associated with tumor cells and tumor stromal is an attractive approach for tumor immunotherapy. To test this concept, we used basic fibroblast growth factor (bFGF) to activate normal fibroblasts and used these activated fibroblasts as one vaccine against tumor. Normal fibroblasts were treated with bFGF; their expressions of a-SMA and FAP were assessed by Western blot. We immunized mice with bFGF-activated fibroblasts. Auto-antibodies were assessed by flow cytometric and Western blot analysis. The deposition of auto-antibodies within the tumor tissues was assessed. The inhibition of proliferation of tumor cells and fibroblasts by purified immunoglobulins was investigated. The anti-tumor effects of purified immunoglobulins and lymphocytes of immunized mice were assessed. The bFGF-activated fibroblasts were effective in affording protection from tumor onset, growth, and prolonging survival of tumor-bearing mice. The immunized sera exhibited positive staining for fibroblasts and tumor cells in FCAS and Western blot analysis. The purified immunoglobulins of immunized serum could inhibit the proliferation of tumor cells and fibroblasts in vitro and had the anti-tumor activity in vivo. There was the deposition of auto-antibodies within the tumor tissues. Adoptive transfer of lymphocytes of immunized mice revealed that cellular immune response is also involved. The anti-tumor activity could be abrogated by the depletion of CD4(+), CD8(+) T lymphocytes and NK cells. In summary, bFGF-activated fibroblasts could induce an autoimmune response which was simultaneously against both cancer-associated fibroblasts and tumor cells in a cross-reaction.

  8. Fascia implantation with fibroblast growth factor on vocal fold paralysis.

    Science.gov (United States)

    Nagai, Hiromi; Nishiyama, Koichiro; Seino, Yutomo; Kimura, Yu; Tabata, Yasuhiko; Okamoto, Makito

    2013-01-01

    The purpose of this prospective study was to determine the effect of autologous transplantation of fascia into the vocal fold (ATFV) with controlled release of basic fibroblast growth factor (bFGF) on unilateral vocal fold paralysis (UVFP) in a rat model. Unilateral recurrent laryngeal nerve (RLN) section was performed on 15 rats. Ten rats received an autologous fascia implant and gelatin hydrogel with or without bFGF (1 μg) to their larynxes (fascia only, "fascia group"; bFGF + fascia, "fascia + bFGF group"), while the rest underwent RLN transection ("RLN section group"). Four months later, evaluation of the laryngeal glottal gap and histological analysis were performed. The glottal gap was significantly reduced in the fascia + bFGF group, and fat volume increased significantly relative to the RLN section. The volume of the remaining fascia in the bFGF + fascia group was significantly greater than that of the fascia group. ATFV with controlled release of bFGF may compensate for diminished laryngeal volume in UVFP by reducing resorption of the implanted fascia and increasing fat volume. Our findings suggest that this modality may represent an attractive option for treating UVFP. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Fibroblast cultures in duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Ionasescu, V.; Lara-Braud, C.; Zellweger, H.; Ionasescu, R.; Burmeister, L.

    1977-01-01

    Primary skin fibroblast cultures were grown from forearm pinch skin biopsies obtained from 24 patients with Duchenne muscular dystrophy (DMD) and ten normal controls matched for sex and age. The first subcultures were grown for 7 days and incubated with L-( 3 H)-proline for 24 hours. Intracellular collagen incoption was significantly decreased (2.2 X) and extracellular collagen incorporation significantly increased (1.8 X) in fibroblast cultures from patients with DMD by both collagenase assay and polyacrylamide gel electrophoresis. The synthesis of noncollagen proteins showed low values from the DMD fibroblast cultures. The alterations in synthesis and secretion of collagen and noncollagen proteins were characteristic only for the log phase of DMD fibroblasts. (author)

  10. Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts

    DEFF Research Database (Denmark)

    Lepekhin, Eugene; Grøn, Birgitte; Berezin, Vladimir

    2002-01-01

    Migration of fibroblasts from surrounding normal tissue into the wound bed is an important requirement for successful wound healing. This study investigated the motility pattern of buccal, periodontal and skin fibroblasts to determine whether differences in the wound healing efficiency at these s......Migration of fibroblasts from surrounding normal tissue into the wound bed is an important requirement for successful wound healing. This study investigated the motility pattern of buccal, periodontal and skin fibroblasts to determine whether differences in the wound healing efficiency...

  11. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells.

    Science.gov (United States)

    Salmenperä, Pertteli; Karhemo, Piia-Riitta; Räsänen, Kati; Laakkonen, Pirjo; Vaheri, Antti

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Coupling of cytoskeleton functions for fibroblast locomotion

    DEFF Research Database (Denmark)

    Couchman, J R; Lenn, M; Rees, D A

    1985-01-01

    Using a chick cell phenotype specialised for locomotion with morphometric measurements made possible by modern instrumentation technology, we have reinvestigated motile functions in fibroblast locomotion. Quantitative analysis of rapid fluctuations in cell form and organelle distribution during l...... function of microtubules to direct the flow towards multiple foci on the leading edge, and so determine cell polarity. Such a mechanism of locomotion for fibroblasts has many features consistent with evidence for other cell types, especially amoebae and leukocytes....

  13. Fibroblasts in fibrosis: novel roles and mediators

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Kendall

    2014-05-01

    Full Text Available Fibroblasts are the most common cell type of the connective tissues found throughout the body and the principal source of the extensive extracellular matrix (ECM characteristic of these tissues. They are also the central mediators of the pathological fibrotic accumulation of ECM and the cellular proliferation and differentiation that occurs in response to prolonged tissue injury and chronic inflammation. The transformation of the fibroblast cell lineage involves classical developmental signaling programs and includes a surprisingly diverse range of precursor cell types—most notably, myofibroblasts that are the apex of the fibrotic phenotype. Myofibroblasts display exaggerated ECM production; constitutively secrete and are hypersensitive to chemical signals such as cytokines, chemokines, and growth factors; and are endowed with a contractile apparatus allowing them to manipulate the ECM fibers physically to close open wounds. In addition to ECM production, fibroblasts have multiple concomitant biological roles, such as in wound healing, inflammation, and angiogenesis, which are each interwoven with the process of fibrosis. We now recognize many common fibroblast-related features across various physiological and pathological protracted processes. Indeed, a new appreciation has emerged for the role of noncancerous fibroblast interactions with tumors in cancer progression. Although the predominant current clinical treatments of fibrosis involve nonspecific immunosuppressive and anti-proliferative drugs, a variety of potential therapies under investigation specifically target fibroblast biology.

  14. The common properties and the heterogeneity of dermal fibroblast subpopulations.

    OpenAIRE

    Makarchuk O.I.

    2007-01-01

    Dermal fibroblasts are a dynamic and diverse population of cells whose functions in skin in many respects remain unknown. Normal adult human skin contains at least three distinct subpopulations of fibroblasts, which occupy unique niches in the dermis. Fibroblasts from each of these niches exhibit distinctive differences when cultured separately. Specific differences in fibroblast histophysiology are evident in papillary dermal fibroblasts, which reside in the superficial dermis, and reticular...

  15. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    International Nuclear Information System (INIS)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy; Catalán, Mabel; Vivar, Raúl; Ayala, Pedro; Humeres, Claudio; Aránguiz, Pablo; García, Lorena; Velarde, Victoria; Díaz-Araya, Guillermo

    2013-01-01

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  16. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy; Catalán, Mabel; Vivar, Raúl; Ayala, Pedro; Humeres, Claudio; Aránguiz, Pablo [Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); García, Lorena [Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Velarde, Victoria [Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (Chile); Díaz-Araya, Guillermo, E-mail: gadiaz@ciq.uchile.cl [Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile)

    2013-10-15

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  17. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy

    Science.gov (United States)

    Datta, Ritwik; Bansal, Trisha; Rana, Santanu; Datta, Kaberi; Datta Chaudhuri, Ratul; Chawla-Sarkar, Mamta

    2016-01-01

    ABSTRACT Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy. PMID:28031326

  18. Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model.

    Science.gov (United States)

    de Sousa, Ana Paula Cavalcanti; Santos, Jean N; Dos Reis, João A; Ramos, Taís A; de Souza, José; Cangussú, Maria Cristina T; Pinheiro, Antônio L B

    2010-08-01

    The aim of the present investigation was to evaluate histologically fibroblastic proliferation on dorsal cutaneous wounds in a rodent model treated or not with light-emitting diodes (LEDs) of three wavelengths. Fibroblasts secrete substances essential for wound healing. There are few reports of LED phototherapy on fibroblast proliferation, mainly in vivo. Following approval by the Animal Experimentation Committee of the School of Dentistry of the Federal University of Bahia, we obtained 16 young adult male Wistar rats weighing between 200 and 250 g. Under general anesthesia, one excisional wound was created on the dorsum of each animal; they were then randomly distributed into four groups of four animals each: G0, untreated control; G1, red LED (700 +/- 20 nm, 15 mW, 10 J/cm(2)); G2, green LED (530 +/- 20 nm, 8 mW, 10 J/cm(2)); and G3, blue LED (460 +/- 20 nm, 22 mW, 10 J/cm(2)). The irradiation started immediately after surgery and was repeated every other day for 7 days. Animals were killed 8 days after surgery. The specimens were removed, routinely processed to wax, cut, and stained with hematoxylin/eosin (HE). Fibroblasts were scored by measuring the percentage of these cells occupying the area corresponding to wound healing on stained sections. The quantitative results showed that red LED (700 +/- 20 nm) and green LED (530 +/- 20 nm) showed a significant increase in fibroblast numbers (p LED light is effective in increasing fibroblastic proliferation on rodents.

  19. Excitable fibroblasts! : ion channels, gap junctions, action potentials and calcium oscillations in normal rat kidney fibroblasts

    NARCIS (Netherlands)

    Harks, Erik Godefridus Antonius

    2003-01-01

    During development and also in the adult organism cellular growth is strictly regulated by various control mechanisms that ensure cells to start and stop dividing at the proper time and place. Dysfunction of these intricate regulatory mechanisms may result in uncontrolled proliferation of cells and

  20. A fibroblast-associated antigen: Characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Celis, Julio E.; van Deurs, Bo

    1992-01-01

    Fibroblasts with smooth muscle differentiation are frequently derived from human breast tissue. Immunofluorescence cytochemistry of a fibroblast-associated antigen recognized by a monoclonal antibody (MAb), 1B10, was analyzed with a view to discriminating smooth muscle differentiated fibroblasts...... major brands migrating at apparent Mr of 38,000, 45,000, and 80,000, in addition to many minor bands between Mr 45,000 and 97,000, including Mr 52,000. The Mr 45,000 and 38,000 were associated with the cell membrane and Mr 52,000 as well as Mr 38,000 were associated with the lysosomes. The 1B10...... immunoreactivity was specific to fibroblasts and smooth muscle differentiated fibroblasts within the context of vascular smooth muscle cells....

  1. Stimulatory effects of histamine on migration of nasal fibroblasts.

    Science.gov (United States)

    Hong, Sung-Moon; Park, Il-Ho; Um, Ji-Young; Shin, Jae-Min; Lee, Heung-Man

    2015-10-01

    Fibroblast migration is crucial for normal wound repair after sinonasal surgery. Histamine is known to be involved in wound healing by its effects on cell proliferation and migration. This study aimed to determine whether histamine affects the migration of nasal fibroblasts and to investigate the mechanism of action of histamine on nasal fibroblasts. Primary cultures of nasal fibroblasts were established from inferior turbinate samples. Fibroblast migration was evaluated with scratch assays. Cells were treated with histamine and/or histamine receptor-selective antagonists. U-73122 and pertussis toxin, which are selective inhibitors of the lower signaling pathway of H1R and H4R, were used to confirm the modulation of nasal fibroblast migration by histamine. Fibroblast cytoskeletal structures were visualized with immunocytochemistry. Histamine significantly stimulated the migration of nasal fibroblasts. Antagonists selective for HR1 and HR4 significantly reduced nasal fibroblast migration. In immunocytochemical staining, histamine treatment increased membrane ruffling and pyrilamine, diphenhydramine, fexofenadine, and JNJ7777120 decreased histamine-induced membrane ruffling. U-73122 and pertussis toxin also decreased histamine-induced migration of fibroblasts. Histamine maintains its stimulatory effects on fibroblast migration in the presence of mitomycin C, which blocks proliferation of cells. We showed that histamine stimulates fibroblast migration in nasal fibroblasts. This effect appeared to be mediated by HR1 and HR4. However, because fibroblast migration also can be involved in scaring and fibrosis, more research is necessary to determine the effects of antihistamine on wound healing after sinus surgery. © 2015 ARS-AAOA, LLC.

  2. N-cadherin is overexpressed in Crohn's stricture fibroblasts and promotes intestinal fibroblast migration.

    LENUS (Irish Health Repository)

    Burke, John P

    2012-02-01

    BACKGROUND: Intestinal fibroblasts mediate stricture formation in Crohn\\'s disease (CD). Transforming growth factor-beta (TGF-beta) is important in fibroblast activation, while cell attachment and migration is regulated by the adhesion molecule N-cadherin. The aim of this study was to investigate the expression and function of N-cadherin in intestinal fibroblasts in patients with fibrostenosing CD. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies from patients undergoing resection for terminal ileal fibrostenosing CD (n = 14) or controls patients (n = 8). N-cadherin expression was assessed using Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fibroblasts were stimulated with TGF-beta and selective pathway inhibitors Y27632, PD98050, and LY294002 were used to examine the Rho\\/ROCK, ERK-1\\/2, and Akt signaling pathways, respectively. Cell migration was assessed using a scratch wound assay. N-cadherin was selectively overexpressed using a plasmid. RESULTS: Fibroblasts from fibrostenosing CD express increased constitutive N-cadherin mRNA and protein and exhibit enhanced basal cell migration relative to those from directly adjacent normal bowel. Control fibroblasts treated with TGF-beta induced N-cadherin in a dose-dependent manner which was inhibited by Rho\\/ROCK and Akt pathway modulation. Control fibroblasts exhibited enhanced cell migration in response to treatment with TGF-beta or transfection with an N-cadherin plasmid. CONCLUSIONS: Fibroblasts from strictures in CD express increased constitutive N-cadherin and exhibit enhanced basal cell migration. TGF-beta is a potent inducer of N-cadherin in intestinal fibroblasts resulting in enhanced cell migration. The TGF-beta-mediated induction of N-cadherin may potentiate Crohn\\'s stricture formation.

  3. N-cadherin is overexpressed in Crohn's stricture fibroblasts and promotes intestinal fibroblast migration.

    Science.gov (United States)

    Burke, John P; Cunningham, Michael F; Sweeney, Catherine; Docherty, Neil G; O'Connell, P Ronan

    2011-08-01

    Intestinal fibroblasts mediate stricture formation in Crohn's disease (CD). Transforming growth factor-β₁ (TGF-β₁) is important in fibroblast activation, while cell attachment and migration is regulated by the adhesion molecule N-cadherin. The aim of this study was to investigate the expression and function of N-cadherin in intestinal fibroblasts in patients with fibrostenosing CD. Intestinal fibroblasts were cultured from seromuscular biopsies from patients undergoing resection for terminal ileal fibrostenosing CD (n = 14) or controls patients (n = 8). N-cadherin expression was assessed using Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fibroblasts were stimulated with TGF-β₁ and selective pathway inhibitors Y27632, PD98050, and LY294002 were used to examine the Rho/ROCK, ERK-1/2, and Akt signaling pathways, respectively. Cell migration was assessed using a scratch wound assay. N-cadherin was selectively overexpressed using a plasmid. Fibroblasts from fibrostenosing CD express increased constitutive N-cadherin mRNA and protein and exhibit enhanced basal cell migration relative to those from directly adjacent normal bowel. Control fibroblasts treated with TGF-β₁ induced N-cadherin in a dose-dependent manner which was inhibited by Rho/ROCK and Akt pathway modulation. Control fibroblasts exhibited enhanced cell migration in response to treatment with TGF-β₁ or transfection with an N-cadherin plasmid. Fibroblasts from strictures in CD express increased constitutive N-cadherin and exhibit enhanced basal cell migration. TGF-β₁ is a potent inducer of N-cadherin in intestinal fibroblasts resulting in enhanced cell migration. The TGF-β₁-mediated induction of N-cadherin may potentiate Crohn's stricture formation. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  4. Persistent phenotypic shift in cardiac fibroblasts: impact of transient renin angiotensin system inhibition.

    Science.gov (United States)

    Hale, Taben M

    2016-04-01

    Fibrotic cardiac remodeling ultimately leads to heart failure - a debilitating and costly condition. Select antihypertensive agents have been effective in reducing or slowing the development of cardiac fibrosis. Moreover, some experimental studies have shown that the reduction in fibrosis induced by these agents persists long after stopping treatment. What has not been as well investigated is whether this transient treatment results in a protection against future fibrotic cardiac remodeling. In the present review, previously published studies are re-examined to assess whether the relative percent increase in collagen deposition over an off-treatment period is attenuated, relative to control, following transient antihypertensive treatment in young or adult rats. Present findings suggest that transient inhibition of the renin angiotensin system (RAS) not only produces a sustained reduction in cardiac fibrosis, but also results in a degree of protection against future collagen deposition. In addition, prior transient RAS inhibition appears to alter the cardiac fibroblast phenotype such that these cells show a muted response to myocardial injury - namely reduced proliferation, chemokine release, and collagen deposition. This review puts forth several potential mechanisms underlying this long-term cardiac protection that is afforded by transient RAS inhibition. Specifically, fibroblast phenotypic change, cardiac fibroblast apoptosis, sustained suppression of the RAS, persistent reduction in left ventricular hypertrophy, and persistent reduction in arterial pressure are each discussed. Identifying the mechanisms ultimately responsible for this change in cardiac fibroblast response to injury, hypertension, and aging may reveal novel targets for therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Myocardial fibroblast-matrix interactions and potential therapeutic targets.

    Science.gov (United States)

    Goldsmith, Edie C; Bradshaw, Amy D; Zile, Michael R; Spinale, Francis G

    2014-05-01

    The cardiac extracellular matrix (ECM) is a dynamic structure, adapting to physiological and pathological stresses placed on the myocardium. Deposition and organization of the matrix fall under the purview of cardiac fibroblasts. While often overlooked compared to myocytes, fibroblasts play a critical role in maintaining ECM homeostasis under normal conditions and in response to pathological stimuli assume an activated, myofibroblast phenotype associated with excessive collagen accumulation contributing to impaired cardiac function. Complete appreciation of fibroblast function is hampered by the lack of fibroblast-specific reagents and the heterogeneity of fibroblast precursors. This is further complicated by our ability to dissect the role of myofibroblasts versus fibroblasts in myocardial in remodeling. This review highlights critical points in the regulation of collagen deposition by fibroblasts, the current panel of molecular tools used to identify fibroblasts and the role of fibroblast-matrix interactions in fibroblast function and differentiation into the myofibroblast phenotype. The clinical potential of exploiting differences between fibroblasts and myofibroblasts and using them to target specific fibroblast populations is also discussed. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium." Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  7. Fibroblast activation protein-α-expressing fibroblasts promote the progression of pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Kawase, Tomoya; Yasui, Yumiko; Nishina, Sohji; Hara, Yuichi; Yanatori, Izumi; Tomiyama, Yasuyuki; Nakashima, Yoshihiro; Yoshida, Koji; Kishi, Fumio; Nakamura, Masafumi; Hino, Keisuke

    2015-09-02

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extensive desmoplastic stromal response. Fibroblast activation protein-α (FAP) is best known for its presence in stromal cancer-associated fibroblasts (CAFs). Our aim was to assess whether FAP expression was associated with the prognosis of patients with PDAC and to investigate how FAP expressing CAFs contribute to the progression of PDAC. FAP expression was immunohistochemically assessed in 48 PDAC specimens. We also generated a fibroblastic cell line stably expressing FAP, and examined the effect of FAP-expressing fibroblasts on invasiveness and the cell cycle in MiaPaCa-2 cells (a pancreatic cancer cell line). Stromal FAP expression was detected in 98% (47/48) of the specimens of PDAC, with the intensity being weak in 16, moderate in 19, and strong in 12 specimens, but was not detected in the 3 control noncancerous pancreatic specimens. Patients with moderate or strong FAP expression had significantly lower cumulative survival rates than those with negative or weak FAP expression (mean survival time; 352 vs. 497 days, P = 0.006). Multivariate analysis identified moderate to strong expression of FAP as one of the factors associated with the prognosis in patients with PDAC. The intensity of stromal FAP expression was also positively correlated to the histological differentiation of PDAC (P fibroblasts promoted the invasiveness of MiaPaCa-2 cells more intensively than fibroblasts not expressing FAP. Coculture with FAP-expressing fibroblasts significantly activated cell cycle shift in MiaPaCa-2 cells compared to coculture with fibroblasts not expressing FAP. Furthermore, coculture with FAP expressing fibroblasts inactivated retinoblastoma (Rb) protein, an inhibitor of cell cycle progression, in MiaPaCa-2 cells by promoting phosphorylation of Rb. The present in vitro results and the association of FAP expression with clinical outcomes provide us with a better understanding of the effect of FAP

  8. Divergent fibroblast growth factor signaling pathways in lung fibroblast subsets: where do we go from here?

    Science.gov (United States)

    Ruiz-Camp, Jordi; Morty, Rory E

    2015-10-15

    Lung fibroblasts play a key role in postnatal lung development, namely, the formation of the alveolar gas exchange units, through the process of secondary septation. Although evidence initially highlighted roles for fibroblasts in the production and remodeling of the lung extracellular matrix, more recent studies have described the presence of different fibroblast subsets in the developing lung. These subsets include myofibroblasts and lipofibroblasts and their precursors. These cells are believed to play different roles in alveologenesis and are localized to different regions of the developing septa. The precise roles played by these different fibroblast subsets remain unclear. Understanding the signaling pathways that control the discrete functions of these fibroblast subsets would help to clarify the roles and the regulation of lung fibroblasts during lung development. Here, we critically evaluate a recent report that described divergent fibroblast growth factor (FGF) signaling pathways in two different subsets of lung fibroblasts that express different levels of green fluorescent protein (GFP) driven by the platelet-derived growth factor receptor-α promoter. The GFP expression was used as a surrogate for lipofibroblasts (GFP(low)) and myofibroblasts (GFP(high)). It was suggested that Fgf10/Fgf1 and Fgf18/Fgfr3 autocrine pathways may be operative in GFP(low) and GFP(high) cells, respectively, and that these pathways might regulate the proliferation and migration of different fibroblast subsets during alveologenesis. These observations lay important groundwork for the further exploration of FGF function during normal lung development, as well as in aberrant lung development associated with bronchopulmonary dysplasia. Copyright © 2015 the American Physiological Society.

  9. Upregulation of NOXA by 10-Hydroxycamptothecin plays a key role in inducing fibroblasts apoptosis and reducing epidural fibrosis

    Directory of Open Access Journals (Sweden)

    Jihang Dai

    2017-01-01

    Full Text Available The fibrosis that develops following laminectomy or discectomy often causes serious complications, and the proliferation of fibroblasts is thought to be the major cause of epidural fibrosis. 10-Hydroxycamptothecin (HCPT has been proven to be efficient in preventing epidural fibrosis, but the exact mechanism is still unclear. NOXA is a significant regulator of cell apoptosis, which has been reported to be beneficial in the treatment of fibrosis. We performed a series of experiments, both in vitro and in vivo, to explore the intrinsic mechanism of HCPT that underlies the induction of apoptosis in fibroblasts, and also to investigate whether HCPT has positive effects on epidural fibrosis following laminectomy in rats. Fibroblasts were cultured in vitro and stimulated by varying concentrations of HCPT (0, 1, 2, 4 µg/ml for various durations (0, 24, 48, 72 h; the effect of HCPT in inducing the apoptosis of fibroblasts was investigated via Western blots and TUNEL assay. Our results showed that HCPT could induce apoptosis in fibroblasts and up-regulate the expression of NOXA. Following the knockdown of NOXA in fibroblasts, the results of Western blot analysis showed that the level of apoptotic markers, such as cleaved-PARP and Bax, was decreased. The results from the TUNEL assay also showed a decreased rate of apoptosis in NOXA-knocked down fibroblasts. For the in vivo studies, we performed a laminectomy at the L1-L2 levels in rats and applied HCPT of different concentrations (0.2, 0.1, 0.05 mg/ml and saline locally; the macroscopic histological assessment, hydroxyproline content analysis and histological staining were performed to evaluate the effect of HCPT on reducing epidural fibrosis. The TUNEL assay in epidural tissues showed that HCPT could obviously induce apoptosis in fibroblasts in a dose-dependent manner. Also, immunohistochemical staining showed that the expression of NOXA increased as the concentrations of HCPT increased. Our findings are

  10. Nicotinic acetylcholine receptors are sensors for ethanol in lung fibroblasts.

    Science.gov (United States)

    Ritzenthaler, Jeffrey D; Roser-Page, Susanne; Guidot, David M; Roman, Jesse

    2013-06-01

    rats exposed to EtOH suggesting a role for these receptors in vivo. Altogether, our observations suggest that α4 nAChRs serve as sensors for EtOH-induced oxidant stress in lung fibroblasts, thereby revealing a new mechanism by which EtOH may affect lung cells and tissue remodeling and pointing to nAChRs as potential targets for intervention. Copyright © 2013 by the Research Society on Alcoholism.

  11. Method of analysis of recombinant acidic fibroblast growth factor by capillary electrophoresis.

    Science.gov (United States)

    Roddy, T P; Molnar, T E; McKean, R E; Foley, J P

    1997-07-18

    Fibroblast growth factors are a series of well characterized proteins that have intriguing pharmacological properties. Acidic fibroblast growth factor (aFGF) recently appeared in the literature for its efficacy in spinal cord repair in rats. The protein has proven difficult to analyze by capillary electrophoresis, because it has a tendency to unfold, aggregate and precipitate, especially near and above physiological temperatures. By studying the turbidity of capillary electrophoresis running buffers and aFGF at 50 degrees C, conditions were found that stabilize the aFGF solution, thereby allowing the capillary electrophoretic separation of the protein from its recombinant production impurities. The buffer system employs 50 mM phosphate buffer at pH 2.5 with 0.25% hydroxypropylmethylcellulose (HPMC) additive. This system provided the best efficiency and selectivity of the systems studied and was developed for pharmaceutical purity analysis.

  12. Cryopreservation of canine ovarian and testicular fibroblasts.

    Science.gov (United States)

    Yu, Il-Jeoung; Leibo, S P; Songsasen, Nucharin; Dresser, Betsy L; Kim, In-Shik

    2009-01-01

    To derive a practical procedure to store canine somatic cells, fibroblasts isolated from testicular or ovarian tissues were cryopreserved in 1.2 M ethylene glycol or in 1.2 M dimethylsulfoxide prepared in Dulbecco's Modified Eagle Medium as cryoprotectants, and were frozen either in plastic straws or vials. Thawed cells were cultured for 24 hr at 38.5 degree C in a humidified atmosphere of 5 percent CO2 95 percent air, and then their membrane integrity was assayed with a double fluorescent stain, Fertilight. In addition, frozen-thawed fibroblasts were cultured for 4 days, and then their functional survival was measured after staining small colonies with trypan blue. After freezing and thawing, membrane integrity of testicular fibroblasts was 55-70 percent and functional survival ranged from 20-40 percent. With frozen-thawed ovarian cells, the average membrane integrity was 55-75 percent and the average functional survival was 35-40 percent. When frozen in ethylene glycol, functional survival of ovarian fibroblasts was significantly higher than that of testicular cells (P less than 0.05). These methods should prove useful to preserve cells collected from canids in the wild.

  13. Fibroblast growth factor 23 - et fosfatregulerende hormon

    DEFF Research Database (Denmark)

    Beck-Nielsen, Signe; Pedersen, Susanne Møller; Kassem, Moustapha

    2010-01-01

    Fibroblast growth factor 23 (FGF23) er et nyligt identificeret fosfatonin. FGF23's fysiologiske hovedfunktion er at opretholde normalt serumfosfat og at virke som et D-vitaminmodregulatorisk hormon. Sygdomme, der er koblet til forhøjet serum FGF23, er hypofosfatæmisk rakitis, fibrøs dysplasi og...

  14. Tracking Adventitial Fibroblast Contribution to Disease: A Review of Current Methods to Identify Resident Fibroblasts.

    Science.gov (United States)

    Kuwabara, Jill T; Tallquist, Michelle D

    2017-09-01

    Cells present in the adventitia, or outermost layer of the blood vessel, contribute to the progression of vascular diseases, such as atherosclerosis, hypertension, and aortic dissection. The adventitial fibroblast of the aorta is the prototypic perivascular fibroblast, but the adventitia is composed of multiple distinct cell populations. Therefore, methods for uniquely identifying the fibroblast are critical for a better understanding of how these cells contribute to disease processes. A popular method for distinguishing adventitial cell types relies on the use of genetic tools in the mouse to trace and manipulate these cells. Because lineage tracing relying on Cre-recombinase expressing mice is used more frequently in studies of vascular disease, it is important to outline the advantages and limitations of these genetic tools. The purpose of this article is to provide an overview of the various genetic tools available in the mouse for the study of resident adventitial fibroblasts. © 2017 American Heart Association, Inc.

  15. HETEROGENIC SERUM, AGE, AND MULTIPLICATION OF FIBROBLASTS.

    Science.gov (United States)

    Carrel, A; Ebeling, A H

    1922-01-01

    The presence in a culture medium of heterogenic serum of various concentrations exerts a definite influence on the rate of multiplication of fibroblasts. Dog serum does not inhibit the growth of See PDF for Structure chicken fibroblasts markedly until its concentration reaches 15 per cent. Beyond this figure, each increase of the concentration brings about a rapid decrease in the rate of cell multiplication. When the concentration reaches from 30 to 45 per cent, no growth takes place. The inhibiting action of cat serum begins to manifest itself at a concentration of 25 per cent and prevents cell proliferation completely at a concentration of 55 and 60 per cent. The ratio, See PDF for Equation can be taken as expressing the action of the serum on fibroblast multiplication; that is, as the growth index of the serum. See PDF for Structure The inhibiting influence of heterogenic serum was found to vary in direct ratio to the age of the animal from which it was obtained. The rate of proliferation of chicken fibroblasts was studied comparatively in media containing varied concentrations of serum from young and old animals. For each concentration of serum, the rate of growth in the serum of the old animal was expressed in relation to the rate of growth in the serum of the young animal. When cat serum was used, the curve obtained in plotting this ratio in ordinates and the serum concentration in abscissae showed a rapid increase in the inhibiting action of the old serum as soon as the concentration reached 30 per cent. The same tests were repeated with the serum from young and old dogs. The general results were identical, although See PDF for Structure the quantitative inhibiting action of both sera was greater than that of cat serum. It may be concluded that under the conditions of the experiments: 1. Heterogenicsera inhibit and prevent the growth of chicken fibroblasts when their concentration is made to vary within certain limits. 2. A relation exists between the rate

  16. Fibroblast α11β1 Integrin Regulates Tensional Homeostasis in Fibroblast/A549 Carcinoma Heterospheroids

    Science.gov (United States)

    Lu, Ning; Karlsen, Tine V.; Reed, Rolf K.; Kusche-Gullberg, Marion; Gullberg, Donald

    2014-01-01

    We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy. PMID:25076207

  17. Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor.

    Science.gov (United States)

    Sweeny, Larissa; Liu, Zhiyong; Lancaster, William; Hart, Justin; Hartman, Yolanda E; Rosenthal, Eben L

    2012-07-01

    Head and neck squamous cell carcinoma (HNSCC) is a complex disease process involving interactions with carcinoma-associated fibroblasts and endothelial cells. We further investigated these relationships by suppressing stromal cell growth through the inhibition of fibroblast growth factor receptor (FGFR). Preclinical investigation. HNSCC cell lines (FADU, OSC19, Cal27, SCC1, SCC5, SCC22A), fibroblast (HS27), and endothelial cells (human umbilical vascular endothelial cell) were cultured individually or in coculture. Proliferation was assessed following treatment with a range of physiologic concentrations of FGFR inhibitor PD173074. Mice bearing established HNSCC xenografts were treated with PD173074 (12 mg/kg), and tumor histology was analyzed for stromal composition, proliferation (Ki67 staining), and apoptosis (TUNEL [terminal deoxynucleotidyl transferase dUTP nick end labeling] staining). In vitro, inhibition of FGFR with PD173074 dramatically reduced proliferation of fibroblasts and endothelial cells compared to untreated controls. However, HNSCC cell proliferation was not affected by inhibition of FGFR. When cocultured with fibroblasts, HNSCC cells proliferation increased by 15% to 80% (P fibroblast-enhanced tumor cell growth was suppressed by FGFR inhibition. Additionally, treatment of mice bearing HNSCC xenografts with PD173074 resulted in significant growth inhibition (P < .001). Additionally, those tumors from mice treated with PD173074 had a smaller stromal component, decreased proliferation, and increased apoptosis. Targeting the FGFR pathway in head and neck cancer acts through the stromal components to decrease HNSCC growth in vivo and in vitro. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  18. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...

  19. A neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention

    DEFF Research Database (Denmark)

    Secher, Thomas; Novitskaia, V; Berezin, Vladimir

    2006-01-01

    with the fibroblast growth factor receptor (FGFR). A 15-amino-acid long peptide, the FG loop (FGL) peptide, that is derived from the second F3 module of NCAM has been found to activate FGFR1. We here report that the FGL peptide, when administered intranasally to newborn rats, accelerated early postnatal development...

  20. Key role of the kidney in the regulation of fibroblast growth factor 23

    DEFF Research Database (Denmark)

    Mace, Maria L; Gravesen, Eva; Hofman-Bang, Jacob

    2015-01-01

    was significantly increased in BNX rats. The rapid rise in FGF23 after BNX was independent of parathyroid hormone or FGF receptor signaling. No evidence of early stimulation of FGF23 gene expression in the bone was found. Furthermore, acute severe hyperphosphatemia or hypercalcemia had no impact on intact FGF23......High circulating levels of fibroblast growth factor 23 (FGF23) have been demonstrated in kidney failure, but mechanisms of this are not well understood. Here we examined the impact of the kidney on the early regulation of intact FGF23 in acute uremia as induced by bilateral or unilateral...

  1. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rajesh L. Thangapazham

    2014-05-01

    Full Text Available Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices.

  2. Willin, an upstream component of the hippo signaling pathway, orchestrates mammalian peripheral nerve fibroblasts.

    Directory of Open Access Journals (Sweden)

    Susana Moleirinho

    Full Text Available Willin/FRMD6 was first identified in the rat sciatic nerve, which is composed of neurons, Schwann cells, and fibroblasts. Willin is an upstream component of the Hippo signaling pathway, which results in the inactivation of the transcriptional co-activator YAP through Ser127 phosphorylation. This in turn suppresses the expression of genes involved in cell growth, proliferation and cancer development ensuring the control of organ size, cell contact inhibition and apoptosis. Here we show that in the mammalian sciatic nerve, Willin is predominantly expressed in fibroblasts and that Willin expression activates the Hippo signaling cascade and induces YAP translocation from the nucleus to the cytoplasm. In addition within these cells, although it inhibits cellular proliferation, Willin expression induces a quicker directional migration towards scratch closure and an increased expression of factors linked to nerve regeneration. These results show that Willin modulates sciatic nerve fibroblast activity indicating that Willin may have a potential role in the regeneration of the peripheral nervous system.

  3. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  4. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fengfeng, E-mail: fengmale@yahoo.com.cn [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Fan, Cunyi, E-mail: fancunyi@smmail.cn [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Cheng, Tao, E-mail: goal981003@yahoo.com.cn [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Jiang, Chaoyin, E-mail: limale@163.com [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Zeng, Bingfang, E-mail: zengbingfang@yahoo.com.cn [Department of Orthopaedics, The Sixth Affiliated People' s Hospital, Shanghai Jiaotong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China)

    2009-05-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  5. MiR-590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Toward a Cardiomyocyte-Like Fate by Directly Repressing Specificity Protein 1.

    Science.gov (United States)

    Singh, Vivek P; Mathison, Megumi; Patel, Vivekkumar; Sanagasetti, Deepthi; Gibson, Brian W; Yang, Jianchang; Rosengart, Todd K

    2016-11-10

    Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells represents a promising potential new therapy for treating heart disease, inducing significant improvements in postinfarct ventricular function in rodent models. Because reprogramming factors effective in transdifferentiating rodent cells are not sufficient to reprogram human cells, we sought to identify reprogramming factors potentially applicable to human studies. Lentivirus vectors expressing Gata4, Mef2c, and Tbx5 (GMT); Hand2 (H), Myocardin (My), or microRNA (miR)-590 were administered to rat, porcine, and human cardiac fibroblasts in vitro. induced cardiomyocyte-like cell production was then evaluated by assessing expression of the cardiomyocyte marker, cardiac troponin T (cTnT), whereas signaling pathway studies were performed to identify reprogramming factor targets. GMT administration induced cTnT expression in ≈6% of rat fibroblasts, but failed to induce cTnT expression in porcine or human cardiac fibroblasts. Addition of H/My and/or miR-590 to GMT administration resulted in cTNT expression in ≈5% of porcine and human fibroblasts and also upregulated the expression of the cardiac genes, MYH6 and TNNT2. When cocultured with murine cardiomyocytes, cTnT-expressing porcine cardiac fibroblasts exhibited spontaneous contractions. Administration of GMT plus either H/My or miR-590 alone also downregulated fibroblast genes COL1A1 and COL3A1. miR-590 was shown to directly suppress the zinc finger protein, specificity protein 1 (Sp1), which was able to substitute for miR-590 in inducing cellular reprogramming. These data support porcine studies as a surrogate for testing human cardiac reprogramming, and suggest that miR-590-mediated repression of Sp1 represents an alternative pathway for enhancing human cardiac cellular reprogramming. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  6. Effect of titanium surface characteristics on the behavior and function of oral fibroblasts.

    Science.gov (United States)

    Att, Wael; Yamada, Masahiro; Ogawa, Takahiro

    2009-01-01

    The purpose of this study was to evaluate the effect of different titanium surface characteristics on the behavior and function of oral fibroblasts as well as the deposition pattern of collagen within the extracellular matrix. Titanium surfaces created by machining, acid etching with sulfuric acid (AE1), or acid etching with hydrofluoric acid (AE2) were analyzed using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy. Rat oral fibroblasts were cultured on different surfaces. Cell spread and morphology of extracellular matrix were evaluated using SEM. Attachment and proliferation of cells were examined by comparing the numbers of attached to detached cells and cell count, respectively. Gene expression was analyzed via reverse transcriptase polymerase chain reaction. Collagen production and deposition were examined via a Sirius red-based stain assay and confocal laser scanning microscopy. The machined surface showed a flat profile with isotropic grooves, the AE1 surface showed a uniformly microscale roughened surface, and the AE2 surface had a grooved profile with intermediate surface roughness. The AE2 surface contained fluoride atoms (2.45%+/-0.44% as F/Ti atomic ratio). Cell attachment was significantly weaker on the machined surface than on the AE1 and AE2 surfaces, whereas no differences were observed between the AE1 and AE2 surfaces. The cell counts on the machined and AE2 surfaces were higher, with a parallel orientation, whereas the cell count was lower and randomly distributed on the AE1 surface. The expression level of fibroblastic genes was similar among surfaces for all time points tested. Collagen production was highest on the machined surface, followed by AE2 and AE1 surfaces. Collagen deposition displayed a parallel pattern on the machined surface, while it was multidirectional on the AE1 and AE2 surfaces. The surface characteristics of titanium affect attachment, spread, and proliferative activity of oral fibroblasts as well

  7. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-β1-induced activation of kidney fibroblasts.

    Science.gov (United States)

    Zhu, Rong; Zheng, Rong; Deng, Yueyi; Chen, Yiping; Zhang, Shuwei

    2014-02-15

    Chronic kidney disease is a growing public health problem with an urgent need for new pharmacological agents. Ergosterol peroxide (EP) is the major sterol produced by Cordyceps cicadae Shing (C. cicadae), a widely used traditional Chinese medicine. C. cicadae has been used to treat many kinds of diseases and has a potential benefit on renoprotection. This study aimed to investigate the anti-fibrotic effects of EP as well as the underlying mechanisms. A normal rat kidney fibroblast cell line (NRK-49F) was stimulated to undergo fibroblast activation by transforming growth factor-β1 (TGF-β1) and EP treatment was applied to explore its potential anti-fibrotic effects. Cell proliferation was investigated using MTT analysis. Fibrosis-associated protein expression was analyzed using immunohistochemistry and/or Western blotting. EP treatment attenuated TGF-β1-induced renal fibroblast proliferation, expression of cytoskeleton protein and CTGF, as well as ECM production. Additionally, EP blocked TGF-β1-stimulated phosphorylation of ERK1/2, p38 and JNK pathway. Moreover, the TGF-β1-induced expression of fibronectin was attenuated by either inhibition of MAPKs or by EP treatment. In conclusion, our findings demonstrate that EP is able to suppress TGF-β1-induced fibroblasts activation in NRK-49F. This new information provides a line of theoretical evidence supporting the use of C. cicadae in the intervention of kidney disease and suggests that EP has the potential to be developed as a therapeutic agent to prevent renal fibrosis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  8. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    Science.gov (United States)

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  9. Fibrogenic Lung Injury Induces Non–Cell-Autonomous Fibroblast Invasion

    Science.gov (United States)

    Grasberger, Paula E.; Mugo, Brian M.; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David

    2016-01-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non–cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non–cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non–cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases. PMID:26600305

  10. Hsp90 regulation of fibroblast activation in pulmonary fibrosis

    Science.gov (United States)

    Sontake, Vishwaraj; Wang, Yunguan; Kasam, Rajesh K.; Sinner, Debora; Reddy, Geereddy B.; Naren, Anjaparavanda P.; McCormack, Francis X.; Jegga, Anil G.; Madala, Satish K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β–driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease. PMID:28239659

  11. Oral fibroblasts produce more HGF and KGF than skin fibroblasts in response to co-culture with keratinocytes

    DEFF Research Database (Denmark)

    Grøn, Birgitte; Stoltze, Kaj; Andersson, Anders

    2002-01-01

    The production of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) in subepithelial fibroblasts from buccal mucosa, periodontal ligament, and skin was determined after co-culture with keratinocytes. The purpose was to detect differences between the fibroblast subpopulations...... that could explain regional variation in epithelial growth and wound healing. Normal human fibroblasts were cultured on polystyrene or maintained in collagen matrix and stimulated with keratinocytes cultured on membranes. The amount of HGF and KGF protein in the culture medium was determined every 24 h for 5...... days by ELISA. When cultured on polystyrene, the constitutive level of KGF and HGF in periodontal fibroblasts was higher than the level in buccal and skin fibroblasts. In the presence of keratinocytes, all three types of fibroblasts in general increased their HGF and KGF production 2-3 times. When...

  12. Immortalization of Werner syndrome and progeria fibroblasts

    International Nuclear Information System (INIS)

    Saito, H.; Moses, R.E.

    1991-01-01

    Human fibroblast cells from two different progeroid syndromes, Werner syndrome (WS) and progeria, were established as immortalized cell lines by transfection with plasmid DNA containing the SV40 early region. The lineage of each immortalized cell line was confirmed by VNTR analysis. Each of the immortalized cell lines maintained its original phenotype of slow growth. DNA repair ability of these cells was also studied by measuring sensitivity to killing by uv or the DNA-damaging drugs methyl methansulfonate, bleomycin, and cis-dichlorodiamine platinum. The results showed that both WS and progeria cells have normal sensitivity to these agents

  13. Myxoinflammatory fibroblastic sarcoma in the chest wall.

    Science.gov (United States)

    Narm, Kyoung Shik; Park, In Kyu; Bae, Mi Kyung; Kim, Gi Jeong

    2012-02-01

    Myxoinflammatory fibroblastic sarcoma (MIFS) is a recently defined rare tumor. It is mainly found in the upper and lower extremities of adults. Due to its high local recurrence rate and low metastatic rate, it is classified as a low grade-malignancy. Accurate diagnosis and early, wide excision are important for prognosis. Herein, we report a case of MIFS in a 35-year-old male patient that presented in an unusual location, the left chest wall. To our knowledge, this is the first reported case of MIFS in Korea and the second case to be reported within the global scientific literature involving the chest wall.

  14. Myxoinflammatory fibroblastic sarcoma of the chest wall

    Directory of Open Access Journals (Sweden)

    Yang-Fan Liu

    2017-01-01

    Full Text Available This study presents the case of an 87-year-old male who developed a huge tumor at the chest wall that limited the range of motion of the upper limb. We performed a wide excision of the tumor with chest wall reconstruction. The tumor exhibited lobulated pattern with myxoid fluid and fibrous tissue, which was accumulated by a thin capsule. The final diagnosis was myxoinflammatory fibroblastic sarcoma (MIFS, a kind of uncommon low-grade malignant tumor that extremely develops rarely in the chest wall. At this moment, we review the epidemiology, histopathologic characteristics, similar cases, and the current treatment for MIFS.

  15. Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells.

    Science.gov (United States)

    Lai, Dongmei; Ma, Li; Wang, Fangyuan

    2012-08-01

    The fibroblast activation protein (FAP) is a cell surface serine protease which has emerged as a specific marker of tumor-associated fibroblasts (TAFs). FAP has been shown to have both in vitro dipeptidyl peptidase and collagenase activity. However, the biological function of FAP in the tumor microenvironment is largely unknown. In this study, we first show that TAFs isolated from ovarian cancer samples have the characteristics of stem cells. To explore the functional role of FAP, the protein was silenced by siRNA lentiviral vector transfection. FAP silencing inhibited the growth of TAFs in vitro, accompanied with cell cycle arrest at the G2 and S phase in TAFs. FAP silencing also reduced the stem cell marker gene expression in TAFs. SKOV3 cells do not express FAP. Although FAP-silenced SKOV3 cells induced ovarian tumors, the rate of tumor growth was significantly decreased, as shown in the xenograft mouse model. TAF phenotypes in the xenograft tumor tissues were further assayed by immunohistochemistry. The expression of TAF markers, including fibroblast-specific protein, FAP, smooth muscle actin, desmin, vascular endothelial growth factor and fibroblast growth factor was decreased in the tumor stroma induced by FAP-silenced SKOV3 cells. In conclusion, FAP is an important regulator of the microenvironment in tumor formation and targeting FAP is a potential therapeutic strategy to combat ovarian cancer.

  16. Cultured allogeneic fibroblast injection versus fibroblasts cultured on amniotic membrane scaffold for dystrophic epidermolysis bullosa treatment.

    Science.gov (United States)

    Moravvej, H; Abdollahimajd, F; Naseh, M-H; Piravar, Z; Abolhasani, E; Mozafari, N; Niknejad, H

    2018-01-12

    Different methods of fibroblast application have been examined to treat recessive dystrophic epidermolysis bullosa (RDEB). To compare the effects of intradermal injection of cultured allogeneic fibroblasts in healing RDEB wounds with that of fibroblasts seeded on amniotic membrane scaffolds (FAMS) or standard wound care (SWC) with Vaseline gauze as controls. Seven patients were recruited, and seven wounds were assessed in each patient: three wounds were treated with injection of intradermal fibroblasts, three were treated with FAMS, and one was dressed with SWC. Changes in wound size were assessed after 2 and 12 weeks of treatment. Qualitative wound scores (QWS) were used to assess wound severity. Additionally, biopsies and antigen mapping were performed to detect type-VII collagen in the dermoepidermal junction. In both treated areas, the QWS and wound size were significantly decreased (Pfibroblast injection compared with those treated with FAMS (PFibroblast injection has been shown to promote healing of RDEB wounds and is superior to FAMS or the control treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Increased expression of fibroblast activation protein-alpha in keloid fibroblasts: implications for development of a novel treatment option.

    Science.gov (United States)

    Dienus, Kirstin; Bayat, Ardeshir; Gilmore, Brendan F; Seifert, Oliver

    2010-12-01

    Keloid scars are common benign fibroproliferative reticular dermal lesions with unknown etiology and ill-defined management with high rate of recurrence post surgery. The progression of keloids is characterized by increased deposition of extracellular matrix proteins, invasion into the surrounding healthy skin and inflammation. Fibroblasts are considered to be the key cellular mediators of fibrogenesis in keloid scars. Fibroblast activation protein alpha (FAP-α) and dipeptidyl peptidase IV (DPPIV) are proteases located at the plasma membrane promoting cell invasiveness and tumor growth and have been previously associated with keloid scars. Therefore, in this study we analyzed in further detail the expression of FAP-α in keloid fibroblasts compared to control skin fibroblasts. Dermal fibroblasts were obtained from punch-biopsies from the active margin of four keloids and four control skin samples. Flow cytometry was used to analyze FAP-α expression and the CytoSelect 24-Well Collagen I Cell Invasion Assay was applied to study fibroblast invasion. Secretion of extracellular matrix (ECM) proteins was investigated by multiplexed particle-based flow cytometric assay and enzyme-linked immunosorbent assay. We found an increased expression of FAP-α in keloid fibroblasts compared to control skin fibroblasts (p fibroblasts (p fibroblast growth factor or vascular endothelial growth factor, (c) on the expression of the proinflammatory cytokines interleukin-6 (IL-6), interleukin 8 (IL-8) or monocyte chemotactic protein-1. These results suggest a potential role for FAP-α and DPPIV in the invasive behavior of keloids. FAP-α and DPPIV may increase the invasive capacity of keloid fibroblasts rather than by modulating inflammation or ECM production. Since FAP-α expression is restricted to reactive fibroblasts in wound healing and normal adult tissues are generally FAP-α negative, inhibiting FAP-α/DPPIV activity may be a novel treatment option to prevent keloid progression.

  18. Ultraviolet exposure of melanoma cells induces fibroblast activation protein-α in fibroblasts: Implications for melanoma invasion.

    Science.gov (United States)

    Wäster, Petra; Rosdahl, Inger; Gilmore, Brendan F; Seifert, Oliver

    2011-07-01

    Fibroblast activation protein-α (FAP-α) promotes tumor growth and cell invasiveness through extracellular matrix degradation. How ultraviolet radiation (UVR), the major risk factor for malignant melanoma, influences the expression of FAP-α is unknown. We examined the effect of UVR on FAP-α expression in melanocytes, keratinocytes and fibroblasts from the skin and in melanoma cells. UVR induces upregulation of FAP-α in fibroblasts, melanocytes and primary melanoma cells (PM) whereas keratinocytes and metastatic melanoma cells remained FAP-α negative. UVA and UVB stimulated FAP-α-driven migration and invasion in fibroblasts, melanocytes and PM. In co-culture systems UVR of melanocytes, PM and cells from regional metastases upregulated FAP-α in fibroblasts but only supernatants from non-irradiated PM were able to induce FAP-α in fibroblasts. Further, UV-radiated melanocytes and PM significantly increased FAP-α expression in fibroblasts through secretory crosstalk via Wnt5a, PDGF-BB and TGF-β1. Moreover, UV radiated melanocytes and PM increased collagen I invasion and migration of fibroblasts. The FAP-α/DPPIV inhibitor Gly-ProP(OPh)2 significantly decreased this response implicating FAP-α/DPPIV as an important protein complex in cell migration and invasion. These experiments suggest a functional association between UVR and FAP-α expression in fibroblasts, melanocytes and melanoma cells implicating that UVR of malignant melanoma converts fibroblasts into FAP-α expressing and ECM degrading fibroblasts thus facilitating invasion and migration. The secretory crosstalk between melanoma and tumor surrounding fibroblasts is mediated via PDGF-BB, TGF-β1 and Wnt5a and these factors should be evaluated as targets to reduce FAP-α activity and prevent early melanoma dissemination.

  19. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models.

    Science.gov (United States)

    Lattanzi, W; Parrilla, C; Fetoni, A; Logroscino, G; Straface, G; Pecorini, G; Stigliano, E; Tampieri, A; Bedini, R; Pecci, R; Michetti, F; Gambotto, A; Robbins, P D; Pola, E

    2008-10-01

    Local gene transfer of the human Lim mineralization protein (LMP), a novel intracellular positive regulator of the osteoblast differentiation program, can induce efficient bone formation in rodents. To develop a clinically relevant gene therapy approach to facilitate bone healing, we have used primary dermal fibroblasts transduced ex vivo with Ad.LMP-3 and seeded on a hydroxyapatite/collagen matrix prior to autologous implantation. Here, we demonstrate that genetically modified autologous dermal fibroblasts expressing Ad.LMP-3 are able to induce ectopic bone formation following implantation of the matrix into mouse triceps and paravertebral muscles. Moreover, implantation of the Ad.LMP-3-modified dermal fibroblasts into a rat mandibular bone critical size defect model results in efficient healing, as determined by X-rays, histology and three-dimensional microcomputed tomography (3DmuCT). These results demonstrate the effectiveness of the non-secreted intracellular osteogenic factor LMP-3 in inducing bone formation in vivo. Moreover, the utilization of autologous dermal fibroblasts implanted on a biomaterial represents a promising approach for possible future clinical applications aimed at inducing new bone formation.

  20. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    Science.gov (United States)

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  1. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Altran, Silvana C.; Isaac, Cesar [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Lab. de Microcirurgia Plastica; Esteves-Pedro, Natalia M. [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Ciencias Farmaceuticas. Lab. de Controle Biologico; Herson, Marisa R. [DonorTissue Bank of Victoria (Australia)

    2011-07-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  2. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    International Nuclear Information System (INIS)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B.; Altran, Silvana C.; Isaac, Cesar

    2011-01-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  3. Effects of Methanolic Jatropha multifida L. Extract in Wound Healing Assessed by the Total Number of PMN Leukocytes and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Juniarti

    2012-12-01

    Full Text Available Objective: The aim of this study was to evaluate the effects of methanol extract of Jatropha multifida leaves on the wound healing process and to investigate the wound healing activity based on reduced numbers of PMN (polymorpho nuclear leukocytes and increased numbers of fibroblasts. Method: methanol extract of dried leaves of Jatropha multifida was used in the wound healing activity studies. The study subjects were 36 white male Sprague Dawlay rats aged 2 months with 150-200 gram body weight. The subjects were divided into 4 groups and experimentally injured: Group I (negative control underwent injury without subsequent treatment; group II (positive control received topical treatment with Bethasone-N after injury; group III (solvent control was treated with 70% methanol; group IV (treatment group was treated with 10 mg methanol extract of Jatropha multifida Each group consisted of 3 rats, which were decapitated on days 3, 6, and 13 after the start of treatment. Histological preparation was stained with hematoxyline-eosin (HE and was continuously examined by counting the numbers of PMN leukocytes and fibroblasts as indicators of wound healing on days 3, 6, and 13 of treatment. The study showed lower numbers of PMN leukocytes in subjects treated with the extract of Jatropha multifida as compared to the other groups. The numbers of fibroblasts were significantly higher on days 6 and 13 of treatment. In conclusion, the treatment of injuries with methanol extract of leaves from Jatropha multifida provided better results compared to the other groups in our study.

  4. Direct Conversion of Fibroblasts to Megakaryocyte Progenitors

    Directory of Open Access Journals (Sweden)

    Julian Pulecio

    2016-10-01

    Full Text Available Current sources of platelets for transfusion are insufficient and associated with risk of alloimmunization and blood-borne infection. These limitations could be addressed by the generation of autologous megakaryocytes (MKs derived in vitro from somatic cells with the ability to engraft and differentiate in vivo. Here, we show that overexpression of a defined set of six transcription factors efficiently converts mouse and human fibroblasts into MK-like progenitors. The transdifferentiated cells are CD41+, display polylobulated nuclei, have ploidies higher than 4N, form MK colonies, and give rise to platelets in vitro. Moreover, transplantation of MK-like murine progenitor cells into NSG mice results in successful engraftment and further maturation in vivo. Similar results are obtained using disease-corrected fibroblasts from Fanconi anemia patients. Our results combined demonstrate that functional MK progenitors with clinical potential can be obtained in vitro, circumventing the use of hematopoietic progenitors or pluripotent stem cells.

  5. The redox status of cystinotic fibroblasts.

    Science.gov (United States)

    Vitvitsky, Victor; Witcher, Marc; Banerjee, Ruma; Thoene, Jess

    2010-04-01

    A key unresolved question in the pathogenesis of phenotype development in nephropathic cystinosis is whether intralysosomal cystine, the hallmark of this lethal inborn error of metabolism, alters cytoplasmic redox potential. Variable findings on this issue have been reported. This study of fetal and non-fetal skin and lung-derived cystinotic fibroblasts compared to origin and age-matched normal control fibroblasts reveals that cystinotic cells do not exhibit redox perturbations. We find that the steady-state redox status as assessed by the [GSH]/[GSSG] ratio, an indicator of the intracellular redox poise, is unchanged in cystinotic cells. Furthermore, the dependence of the intracellular GSH and cysteine pool sizes and the [GSH]/[GSSG] ratio are similarly dependent on the two major sources of cysteine, i.e. the transsulfuration pathway and the plasma membrane cystine transporter, xc(-), in both cystinotic and control cells, and the presence of lysosomal cystine has no measurable effect on the redox status of these cells. Hence, mechanisms other than cytosolic redox perturbations are involved in the etiology of nephropathic cystinosis. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Growth modulation of fibroblasts by chitosan-polyvinyl pyrrolidone ...

    Indian Academy of Sciences (India)

    The fibroblast is a cell type, which synthesizes and deposits a collagen-rich extracellular matrix. Early migration of fibroblasts and their proliferation in the wound area is implicated in wound scarring (Jobson et al 1998). Tissue fibrosis also manifests itself in the form of post-surgical adhesions which have been identified as a ...

  7. Rac inhibition reverses the phenotype of fibrotic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shi-wen Xu

    Full Text Available BACKGROUND: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA, type I collagen and CCN2 (connective tissue growth factor, CTGF. The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies. METHODS AND FINDINGS: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766. CONCLUSION: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc.

  8. Mesenchymal stem cells induce dermal fibroblast responses to injury

    International Nuclear Information System (INIS)

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  9. Fibroblasts in myocardial infarction: a role in inflammation and repair

    Science.gov (United States)

    Shinde, Arti V.; Frangogiannis, Nikolaos G.

    2014-01-01

    Fibroblasts do not only serve as matrix-producing reparative cells, but exhibit a wide range of functions in inflammatory and immune responses, angiogenesis and neoplasia. The adult mammalian myocardium contains abundant fibroblasts enmeshed within the interstitial and perivascular extracellular matrix. The current review manuscript discusses the dynamic phenotypic and functional alterations of cardiac fibroblasts following myocardial infarction. Extensive necrosis of cardiomyocytes in the infarcted heart triggers an intense inflammatory reaction. In the early stages of infarct healing, fibroblasts become pro-inflammatory cells, activating the inflammasome and producing cytokines, chemokines and proteases. Pro-inflammatory cytokines (such as Interleukin-1) delay myofibroblast transformation, until the wound is cleared from dead cells and matrix debris. Resolution of the inflammatory infiltrate is associated with fibroblast migration, proliferation, matrix protein synthesis and myofibroblast conversion. Growth factors and matricellular proteins play an important role in myofibroblast activation during the proliferative phase of healing. Formation of a mature cross-linked scar is associated with clearance of fibroblasts, as poorly-understood inhibitory signals restrain the fibrotic response. However, in the non-infarcted remodeling myocardium, local fibroblasts may remain activated in response to volume and pressure overload and may promote interstitial fibrosis. Considering their abundance, their crucial role in cardiac inflammation and repair, and their involvement in myocardial dysfunction and arrhythmogenesis, cardiac fibroblasts may be key therapeutic targets in cardiac remodeling. PMID:24321195

  10. Differential Effects of Planktonic and Biofilm MRSA on Human Fibroblasts

    Science.gov (United States)

    Kirker, Kelly R.; James, Garth A.; Fleckman, Philip; Olerud, John E.; Stewart, Philip S.

    2012-01-01

    Bacteria colonizing chronic wounds often exist as biofilms, yet their role in chronic wound pathogenesis remains unclear. Staphylococcus aureus biofilms induce apoptosis in dermal keratinocytes, and given that chronic wound biofilms also colonize dermal tissue, it is important to investigate the effects of bacterial biofilms on dermal fibroblasts. The effects of a predominant wound pathogen, methicillin-resistant S. aureus, on normal, human, dermal fibroblasts were examined in vitro. Cell culture medium was conditioned with equivalent numbers of either planktonic or biofilm methicillin-resistant S. aureus, and then fed to fibroblast cultures. Fibroblast response was evaluated using scratch, viability, and apoptosis assays. The results suggested that fibroblasts experience the same fate when exposed to the soluble products of either planktonic or biofilm methicillin-resistant S. aureus, namely limited migration followed by death. Enzyme-linked immunosorbent assays demonstrated that fibroblast production of cytokines, growth factors, and proteases were differentially affected by planktonic and biofilm-conditioned medium. Planktonic-conditioned medium induced more interleukin-6, interleukin-8, vascular endothelial growth factor, transforming growth factor-β1, heparin-bound epidermal growth factor, matrix metalloproteinase-1, and metalloproteinase-3 production in fibroblasts than the biofilm-conditioned medium. Biofilm-conditioned medium induced more tumor-necrosis factor-α production in fibroblasts compared to planktonic-conditioned medium, and suppressed metalloproteinase-3 production compared to controls. PMID:22332802

  11. Fibroblastic rheumatism: Scientific Letter | Kawtar | African Journal of ...

    African Journals Online (AJOL)

    Fibroblastic Rheumatism (FR) is a rare rheumatologic entity of unknown etiology. The pathophysiological mechanism involving fibroblast proliferation is characterized by symmetrical polyarthritis associated with sudden onset of cutaneous nodules, flexion contractures. Bone erosion can occur as the disease progresses and ...

  12. Rho A and the Rho kinase pathway regulate fibroblast contraction: Enhanced contraction in constitutively active Rho A fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobe, Koji, E-mail: kojinobe@pharm.showa-u.ac.jp [Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo (Japan); Nobe, Hiromi [Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo (Japan); Department of Physical Therapy, Bunkyo-Gakuin University (Japan); Yoshida, Hiroko [Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo (Japan); Kolodney, Michael S. [Dermatology Division, Department of Medicine, UCLA, Los Angeles, CA (United States); Paul, Richard J. [Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH (United States); Honda, Kazuo [Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo (Japan)

    2010-08-20

    Research highlights: {yields} Mechanisms of fibroblast cell contraction in collagen matrix. {yields} Assessed an isometric force development using 3D-reconstituted-fibroblast fiber. {yields} Constitutively active Rho A induced the over-contraction of fibroblast cells. {yields} Rho A and Rho kinase pathway has a central role in fibroblast cell contraction. -- Abstract: Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor ( (Y27632)) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.

  13. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing

    Science.gov (United States)

    Schmidt, Barbara A.; Horsley, Valerie

    2013-01-01

    Acute wound healing in the skin involves the communication of multiple cell types to coordinate keratinocyte and fibroblast proliferation and migration for epidermal and dermal repair. Many studies have focused on the interplay between hematopoietic cells, keratinocytes and fibroblasts during skin wound healing, yet the possible roles for other cell types within the skin, such as intradermal adipocytes, have not been investigated during this process. Here, we identify that adipocyte lineage cells are activated and function during acute skin wound healing. We find that adipocyte precursor cells proliferate and mature adipocytes repopulate skin wounds following inflammation and in parallel with fibroblast migration. Functional analysis of mice with defects in adipogenesis demonstrates that adipocytes are necessary for fibroblast recruitment and dermal reconstruction. These data implicate adipocytes as a key component of the intercellular communication that mediates fibroblast function during skin wound healing. PMID:23482487

  14. Proteomic analysis of protein components in periodontal ligament fibroblasts.

    Science.gov (United States)

    Reichenberg, E; Redlich, M; Cancemi, P; Zaks, B; Pitaru, S; Fontana, S; Pucci-Minafra, I; Palmon, A

    2005-10-01

    Characterization of periodontal ligament (PDL) fibroblast proteome is an important tool for understanding PDL physiology and regulation and for identifying disease-related protein markers. PDL fibroblast protein expression has been studied using immunological methods, although limited to previously identified proteins for which specific antibodies are available. We applied proteomic analysis coupled with mass spectrometry and database knowledge to human PDL fibroblasts. We detected 900 spots and identified 117 protein spots originating in 74 different genes. In addition to scaffold cytoskeletal proteins, e.g., actin, tubulin, and vimentin, we identified proteins implicated with cellular motility and membrane trafficking, chaparonine, stress and folding proteins, metabolic enzymes, proteins associated with detoxification and membrane activity, biodegradative metabolism, translation and transduction, extracellular proteins, and cell cycle regulation proteins. Most of these identified proteins are closely related to the extensive PDL fibroblasts' functions and homeostasis. Our PDL fibroblast proteome map can serve as a reference map for future clinical studies as well as basic research.

  15. Effect of Paris polyphylla extract on second-degree burns in rats | Ma ...

    African Journals Online (AJOL)

    Histological results indicate that inflammatory cells disappeared and were replaced by new granulation tissue in the group treated with 120 mg·mL-1 PPE by day 14. Compared with SSD group rats, the inflammatory cells and fibroblast and granulation tissues of burnt rats with burns and treated with 120 mg·mL-1 PPE ...

  16. Early localization of NPA58, a rat nuclear pore-associated protein

    Indian Academy of Sciences (India)

    We have studied the mitotic reassembly of the nuclear envelope, using antibodies to nuclear marker proteins and NPA58 in F-111 rat fibroblast cells. In earlier studies we have proposed that NPA58, a 58 kDa rat nuclear protein, is involved in nuclear protein import. In this report, NPA58 is shown to be localized on the ...

  17. Gene Expression Profile Changes due to Bleomycin-Induced DNA Damage in Human Fibroblasts in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — To understand gene expression responses in confluent human fibroblast in microgravity conditions to bleomycin treatment. Confluent human fibroblasts AG01522 were...

  18. Doubling potential of fibroblasts from different species after ionising radiation

    International Nuclear Information System (INIS)

    Macieira-Coelho, A.; Diatloff, C.; Malaise, E.

    1976-01-01

    It is stated that whereas chicken fibroblasts invariably die after a certain number of doublings in vitro, and this fact is never altered by chemical or physical agents, mouse fibroblasts invariably acquire spontaneously an infinite growth potential. In the human species fibroblasts never acquire spontaneously the capacity to divide for ever, although they can become permanent cell lines after treatment with certain viruses. This behaviour of fibroblasts in vitro has been attributed to different nutritional requirements. Experiments are described with human and mouse fibroblasts in which it was found that the response to ionising radiation matches the relative tendencies of the fibroblasts to yield permanent cell lines. Irradiation was commenced during the phase of active proliferation. Human fibroblast cultures irradiated with 100 R stopped dividing earlier than the controls, whereas cultures irradiated with 200, 300 and 500 R had the same lifespan as the control cultures. Cultures irradiated with 400 R showed the longest survival. With mouse fibroblasts the growth curves of the irradiated cells were of the same type as in the controls, but recovery occurred earlier. The results indicated that ionising radiation accelerates a natural phenomenon; in cells with a limited growth potential (chicken) it shortens the lifespan, whereas in cells that can acquire an unlimited growth potential (mouse) it accelerates acquisition of this potential; human fibroblasts showed an intermediate response, since ionising radiation neither established the cultures as with mouse cells nor reduced the number of cells produced as with chicken fibroblasts. Possible explanations for the different behaviour of the species are offered. (U.K.)

  19. The impact of vascular endothelial growth factor and basic fibroblast growth factor on cardiac fibroblasts grown under altered gravity conditions

    DEFF Research Database (Denmark)

    Ulbrich, Claudia; Leder, Annekatrin; Pietsch, Jessica

    2010-01-01

    Myocardium is very sensitive to gravitational changes. During a spaceflight cardiovascular atrophy paired with rhythm problems and orthostatic intolerance can occur. The aim of this study was to investigate the impact of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor...... (VEGF) on cardiac fibroblasts (CF) grown under altered gravity conditions....

  20. Apoptosis of Rattus novergicus gingival fibroblasts caused by silver nano-particles gel exposure

    Directory of Open Access Journals (Sweden)

    Kharinna Widowati

    2015-09-01

    Full Text Available Background: The use of silver nanoparticle are growing, especially in medical science. It’s used in many concentration. In dentistry, it’s used to decrease halitosis, periodontal diseases, and wound healing. It can affect the viability of the cells, give bad effects to the human’s health and environment if used in a long duration and in certain concentration. Purpose: The purpose of this study was to learn the apoptosis of gingival fibroblasts in Rattus novergicus which is exposed with 15 µg/ml silver nano-particle gel by the expression of caspase-3. Method: This study used 9 male wistar rats and were divided into 3 groups. Sample in group A were cut (hurt in the oral gingiva and exposed to Ag-Np gel 15 µg/ml for 3 days. After 3 days, they were sacrificed and cut the gingival fibroblasts off 3x4 cm size with scalpel. Samples in group B were cut in the oral gingiva and exposed to Ag-Np Gel 15 µg/ml for 5 days. After 5 days they were sacrificed and the gingival fibroblasts off 3 x 4 cm with a scalpel. Samples in group C were cut in the oral gingiva and exposed to none for 3 days then cut the gingival fibroblasts off 3 x 4 cm size with scalpel. The expressions of caspase-3 in the apoptotic and wound healing process were analyzed by Immunohistochemical test. This data was analyzed by using the t-test method. Result: Mean expression numbers of caspase-3 in the group A=5.67; group B=11.33; and group C (control=18.67. T-test sign.number of group A and C=0.009; group B & C=0.000. Conclusion: The exposure of 15 µg/ml silver gel nanoparticle to gingival fibroblasts of Rattus novergicus reduces the expressions of caspase-3 in the day-3 and day-5 post exposure. The amounts of cell death through the apoptotic pathway which were analyzed by the expressions of caspase-3 will decrease too.

  1. Actin dynamics in mouse fibroblasts in microgravity

    Science.gov (United States)

    Moes, Maarten J. A.; Bijvelt, Jose J.; Boonstra, Johannes

    2007-09-01

    After stimulating with the growth factor PDGF, cells exhibit abundant membrane ruffling and other morphological changes under normal gravity conditions. These morphological changes are largely determined by the actin microfilament system. Now these actin dynamics were studied under microgravity conditions in mouse fibroblasts during the DELTA mission. The aim of the present study was to describe the actin morphology in detail, to establish the effect of PDGF on actin morphology and to study the role of several actin-interacting proteins involved in introduced actin dynamics in microgravity. Identical experiments were conducted at 1G on earth as a reference. No results in microgravity were obtained due to a combination of malfunctioning hardware and unfulfilled temperature requirements.

  2. Coupling of cytoskeleton functions for fibroblast locomotion

    DEFF Research Database (Denmark)

    Couchman, J R; Lenn, M; Rees, D A

    1985-01-01

    the cells to lose control of shape and organelle distribution even though forward protrusion continued unaffected. Cytoplasmic displacements shown by marker mitochondria correlated with adjacent fluctuations at the leading edge, and drug treatments which increased the amplitude of mitochondrial movements...... caused visible protrusions in projected positions at the leading edge. We conclude that fibroblast locomotion may be driven coordinately by a common set of motility mechanisms and that this coordination may be lost as a result of physical or pharmacological disturbance. Taking our evidence with results...... from other Laboratories, we propose the following cytoskeleton functions. (i) Protrusive activity, probably based on solation--gelation cycles of the actin based cytoskeleton and membrane recycling which provides cellular and membrane components for streaming through the cell body to the leading edge...

  3. Fibroblastic osteosarcoma in a lion (Panthera leo

    Directory of Open Access Journals (Sweden)

    L. Leonardi

    2014-01-01

    Full Text Available This report describes a case of spontaneous fibroblastic osteosarcoma in the humerus of a lion from a private park in Perugia, Italy. The tumor had an irregular, smooth, brown surface and a generally firm, rubbery consistence with gritty to hard areas interspersed. The mass was poorly vascularized with areas of necrosis at the periphery. The cut surface showed a multilobulated mass that had breached the humeral cortex, with periosteal production of reactive bone. The mass invaded the epiphysis, the synovial membrane, the joint capsule and ligaments. A mild hemorrhagic effusion appeared in the joint space. Clinical signs, gross and histopathologic findings are described in this rare case of a malignant bone tumor.

  4. Beryllium induces premature senescence in human fibroblasts.

    Science.gov (United States)

    Coates, Shannon S A; Lehnert, Bruce E; Sharma, Sunil; Kindell, Susan M; Gary, Ronald K

    2007-07-01

    After cells have completed a sufficient number of cell divisions, they exit the cell cycle and enter replicative senescence. Here, we report that beryllium causes proliferation arrest with premature expression of the principal markers of senescence. After young presenescent human fibroblasts were treated with 3 microM BeSO(4) for 24 h, p21 cyclin-dependent kinase inhibitor mRNA increased by >200%. Longer periods of exposure caused mRNA and protein levels to increase for both p21 and p16(Ink4a), a senescence regulator that prevents pRb-mediated cell cycle progression. BeSO(4) also caused dose-dependent induction of senescence-associated beta-galactosidase activity (SA-beta-gal). Untreated cells had 48 relative fluorescence units (RFU)/microg/h of SA-beta-gal, whereas 3 microM BeSO(4) caused activity to increase to 84 RFU/microg/h. In chromatin immunoprecipitation experiments, BeSO(4) caused p53 protein to associate with its DNA binding site in the promoter region of the p21 gene, indicating that p53 transcriptional activity is responsible for the large increase in p21 mRNA elicited by beryllium. Forced expression of human telomerase reverse transcriptase (hTERT) rendered HFL-1 cells incapable of normal replicative senescence. However, there was no difference in the responsiveness of normal HFL-1 fibroblasts (IC(50) = 1.9 microM) and hTERT-immortalized cells (IC(50) = 1.7 microM) to BeSO(4) in a 9-day proliferation assay. The effects of beryllium resemble those of histone deacetylase-inhibiting drugs, which also cause large increases in p21. However, beryllium produced no changes in histone acetylation, suggesting that Be(2+) acts as a novel and potent pharmacological inducer of premature senescence.

  5. LIF Mediates Proinvasive Activation of Stromal Fibroblasts in Cancer

    Directory of Open Access Journals (Sweden)

    Jean Albrengues

    2014-06-01

    Full Text Available Signaling crosstalk between tumor cells and fibroblasts confers proinvasive properties to the tumor microenvironment. Here, we identify leukemia inhibitory factor (LIF as a tumor promoter that mediates proinvasive activation of stromal fibroblasts independent of alpha-smooth muscle actin (α-SMA expression. We demonstrate that a pulse of transforming growth factor β (TGF-β establishes stable proinvasive fibroblast activation by inducing LIF production in both fibroblasts and tumor cells. In fibroblasts, LIF mediates TGF-β-dependent actomyosin contractility and extracellular matrix remodeling, which results in collective carcinoma cell invasion in vitro and in vivo. Accordingly, carcinomas from multiple origins and melanomas display strong LIF upregulation, which correlates with dense collagen fiber organization, cancer cell collective invasion, and poor clinical outcome. Blockade of JAK activity by Ruxolitinib (JAK inhibitor counteracts fibroblast-dependent carcinoma cell invasion in vitro and in vivo. These findings establish LIF as a proinvasive fibroblast producer independent of α-SMA and may open novel therapeutic perspectives for patients with aggressive primary tumors.

  6. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts play a critical role in intestinal wound healing. Lipopolysaccharide (LPS) is a cell wall component of commensal gut bacteria. The effects of LPS on intestinal fibroblast activation were characterized. METHODS: Expression of the LPS receptor, toll-like receptor (TLR) 4, was assessed in cultured primary human intestinal fibroblasts using flow cytometry and confocal microscopy. Fibroblasts were treated with LPS and\\/or transforming growth factor (TGF) beta1. Nuclear factor kappaB (NFkappaB) pathway activation was assessed by inhibitory kappaBalpha (IkappaBalpha) degradation and NFkappaB promoter activity. Fibroblast contractility was measured using a fibroblast-populated collagen lattice. Smad-7, a negative regulator of TGF-beta1 signalling, and connective tissue growth factor (CTGF) expression were assessed using reverse transcriptase-polymerase chain reaction and western blot. The NFkappaB pathway was inhibited by IkappaBalpha transfection. RESULTS: TLR-4 was present on the surface of intestinal fibroblasts. LPS treatment of fibroblasts induced IkappaBalpha degradation, enhanced NFkappaB promoter activity and increased collagen contraction. Pretreatment with LPS (before TGF-beta1) significantly increased CTGF production relative to treatment with TGF-beta1 alone. LPS reduced whereas TGF-beta1 increased smad-7 expression. Transfection with an IkappaBalpha plasmid enhanced basal smad-7 expression. CONCLUSION: Intestinal fibroblasts express TLR-4 and respond to LPS by activating NFkappaB and inducing collagen contraction. LPS acts in concert with TGF-beta1 to induce CTGF. LPS reduces the expression of the TGF-beta1 inhibitor, smad-7.

  7. Phosphorylation of CREB, a cyclic AMP responsive element binding protein, contributes partially to lysophosphatidic acid-induced fibroblast cell proliferation

    International Nuclear Information System (INIS)

    Kwon, Yong-Jun; Sun, Yuanjie; Kim, Nam-Ho; Huh, Sung-Oh

    2009-01-01

    Lysophospholipids regulate a wide array of biological processes including cell survival and proliferation. In our previous studies, we found that in addition to SRE, CRE is required for maximal c-fos promoter activation triggered by lysophosphatidic acid (LPA). c-fos is an early indicator of various cells into the cell cycle after mitogenic stimulation. However, role of CREB activation in LPA-stimulated proliferation has not been elucidated yet. Here, we investigate how LPA induces proliferation in Rat-2 fibroblast cell via CREB activation. We found that total cell number and BrdU-positive cells were increased by LPA. Moreover, levels of c-fos mRNA and cyclin D1 protein were increased via LPA-induced CREB phosphorylation. Furthermore, LPA-induced Rat-2 cell proliferation was decreased markedly by ERK inhibitor (U0126) and partially by MSK inhibitor (H89). Taken together, these results suggest that CREB activation could partially up-regulate accumulation of cyclin D1 protein level and proliferation of LPA-stimulated Rat-2 fibroblast cells.

  8. Alzheimer skin fibroblasts show increased susceptibility to free radicals.

    Science.gov (United States)

    Tesco, G; Latorraca, S; Piersanti, P; Piacentini, S; Amaducci, L; Sorbi, S

    1992-11-01

    We have studied the response to toxic oxygen metabolites of fibroblasts derived from skin biopsies of 5 patients with familial (FAD) and 4 with sporadic (AD) Alzheimer's disease compared with those derived from 4 normal controls. Fibroblasts were damaged by the generation of oxygen metabolites during the enzymatic oxidation of acetaldehyde by 50 munits of xanthine-oxidase (Xo). To quantify cell damage we measured lactate dehydrogenase (LDH) activity in the culture medium and cell viability in fibroblast cultures. We found a significant increase in LDH activity in the FAD vs. controls and also in the AD vs. controls.

  9. HGF is released from buccal fibroblasts after smokeless tobacco stimulation

    DEFF Research Database (Denmark)

    Dabelsteen, S; Christensen, S; Gron, B

    2005-01-01

    To investigate the effect of smokeless tobacco (ST) on (1) HGF, KGF and GM-CSF expression by buccal fibroblasts and (2) on keratinocyte and fibroblast proliferation. Buccal fibroblasts were stimulated with different concentrations of ST extracts in a double dilution from 0.50% w/v to 0.03% w...... on exposure time and on concentration of the tobacco extract. High concentration increased production of HGF 4-fold. KGF production was doubled when high concentration of tobacco was used, low concentration did not stimulate cells. GM-CSF production was low in both stimulated and non-stimulated cells...

  10. Interspecific variation of intracellular localization and postirradiation movement of Ku70-protein in fibroblastic cells

    International Nuclear Information System (INIS)

    Endoh, Daiji; Hayashi, Masanobu; Okui, Toyo; Kawase, Shiro; Kon, Yasushiro

    2003-01-01

    Ku (Ku70 and Ku80) Proteins are known as components of DNA-dependent protein kinase (DNA-PK) and play an important role for DNA repair. We previously reported that more than 70% of Ku proteins were located in cytoplasm of rat cells, the Ku proteins moved into nuclei of normal rat cells after X-irradiation, Ku proteins also moved into nuclei after X-irradiation but were not retained in nucleus of radiosensitive LEC rat cells. While reports have been shown about mechanisms on nuclear localization of Ku proteins, how Ku proteins export from nucleus is poorly understood. Here we show that C-terminal region of Ku70 protein is important for its cytoplasmic localization. When transfected into LEC rat cells, exogenous intact Ku70 (1-609) tagged with enhanced green fluorescent protein (EGFP-Ku70) localized mainly in the cytoplasm, whereas C-terminal-deletion mutant of Ku70 (1-593) tagged with EGFP (EGFP-Ku70D) was mainly localized in the nucleus. After X-irradiation, the endogenous intact EGFP-Ku70 once moved into nucleus, but returned into the cytoplasm. On the other hand, EGFP-Ku70D was retained in nucleus for two hours after X-irradiation. These results suggest that C-terminal region of Ku70 is included in the postirradiation nuclear export. Next, we investigated the intracellular localization of Ku70 proteins and the movement after X-irradiation of fibroblastic cells prepared from some mammalian species. Ku70 proteins were localized in nucleus and the postirradiation-extranuclear transport was not observed in human and African green monkey cells. On the other hand, Ku70 proteins were mainly localized in cytoplasm and moved into nucleus in mouse, Chinese hamster, Golden hamster, cotton rat, squirrel, cat and dog cells. These results may show that alternatively Ku70 protein is localized in the cytoplasm or nucleus depends on species and translocation of cytoplasmic Ku70 into nucleus is a response against low dose irradiation in fibroblasts of rodents, cats and dogs

  11. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  12. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation.

    Science.gov (United States)

    Newman, Andrew C; Nakatsu, Martin N; Chou, Wayne; Gershon, Paul D; Hughes, Christopher C W

    2011-10-01

    A role for fibroblasts in physiological and pathological angiogenesis is now well recognized; however, the precise mechanisms underlying their action have not been determined. Using an in vitro angiogenesis model in combination with a candidate gene approach, column chromatography, and mass spectrometry, we identify two classes of fibroblast-derived factors--one that supports vessel sprouting but not lumen formation, and one that promotes lumen formation. In the absence of fibroblasts a combination of angiopoietin-1, angiogenin, hepatocyte growth factor, transforming growth factor-α, and tumor necrosis factor drives robust endothelial cell (EC) sprouting; however, lumens fail to form. Subsequent addition of fibroblast-conditioned medium restores lumenogenesis. Using small interfering RNA-mediated knockdown, we show that five genes expressed in fibroblasts--collagen I, procollagen C endopeptidase enhancer 1, secreted protein acidic and rich in cysteine, transforming growth factor-β-induced protein ig-h3, and insulin growth factor-binding protein 7--are necessary for lumen formation. Moreover, lumen formation can be rescued by addition of purified protein to knockdown cultures. Finally, using rheology, we demonstrate that the presence of these matricellular proteins results in significantly stiffer gels, which correlates with enhanced lumen formation. These findings highlight the critical role that fibroblast-derived extracellular matrix components play in EC lumen formation and provide potential insight into the role of fibroblasts in the tumor microenvironment.

  13. Decreased tumorigenicity of c-Myc-transformed fibroblasts expressing active USF2

    International Nuclear Information System (INIS)

    Choe, Chungyoul; Chen Nanyue; Sawadogo, Michele

    2005-01-01

    USF is a small family of basic helix-loop-helix leucine zipper (bHLH-zip) transcription factors with DNA binding specificities similar to that of the c-Myc oncoprotein. Evidence for a role of USF in growth control includes inhibition of c-Myc-dependent cellular transformation in vitro and loss of USF transcriptional activity in many cancer cell lines. However, a direct effect of USF on the tumorigenicity of an established cell line has never been demonstrated. Here, cell lines derived from rat embryo fibroblasts transformed by c-Ha-Ras and either c-Myc or E1A were used as model system to investigate the tumor suppression ability of USF. Overexpression of USF2 stimulated transcription and inhibited colony formation in c-Myc-transformed, but not E1A-transformed, fibroblasts. Stable clones expressing high USF2 levels were constructed from c-Myc-transformed fibroblasts. In two of these clones, overexpressed USF2 did not activate transcription, and there was no significant change in the transformed phenotype. In contrast, a clone that expressed transcriptionally active USF2 exhibited altered morphology and a strongly decreased ability to proliferate in semisolid medium. The ability of these cells to form tumors in nude mice was also decreased by a factor of more than 30 as compared to the parental cell line or cells overexpressing transcriptionally inactive USF2. Cotransfection assays with USF- or Myc-specific dominant-negative mutants indicated that active USF2 inhibited cellular transformation by preventing transcriptional repression by c-Myc

  14. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease.

    Science.gov (United States)

    Galitzer, H; Ben-Dov, I Z; Silver, Justin; Naveh-Many, Tally

    2010-02-01

    Although fibroblast growth factor 23 (FGF23) acting through its receptor Klotho-FGFR1c decreases parathyroid hormone expression, this hormone is increased in chronic kidney disease despite an elevated serum FGF23. We measured possible factors that might contribute to the resistance of parathyroid glands to FGF23 in rats with the dietary adenine-induced model of chronic kidney disease. Quantitative immunohistochemical and reverse transcription-PCR analysis using laser capture microscopy showed that both Klotho and FGFR1 protein and mRNA levels were decreased in histological sections of the parathyroid glands. Recombinant FGF23 failed to decrease serum parathyroid hormone levels or activate the mitogen-activated protein kinase signaling pathway in the glands of rats with advanced experimental chronic kidney disease. In parathyroid gland organ culture, the addition of FGF23 decreased parathyroid hormone secretion and mRNA levels in control animals or rats with early but not advanced chronic kidney disease. Our results show that because of a downregulation of the Klotho-FGFR1c receptor complex, an increase of circulating FGF23 does not decrease parathyroid hormone levels in established chronic kidney disease. This in vivo resistance is sustained in parathyroid organ culture in vitro.

  15. Relationship among expression of basic-fibroblast growth factor ...

    African Journals Online (AJOL)

    Relationship among expression of basic-fibroblast growth factor, MTDH/Astrocyte elevated gene-1, adenomatous polyposis coli, matrix metalloproteinase 9,and COX-2 markers with prognostic factors in prostate carcinomas.

  16. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  17. Analysis of primary cilia in directional cell migration in fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Veland, Iben; Schwab, Albrecht

    2013-01-01

    summarize selected methods in analyzing ciliary function in directional cell migration, including immunofluorescence microscopy, scratch assay, and chemotaxis assay by micropipette addition of PDGFRα ligands to cultures of fibroblasts. These methods should be useful not only in studying cell migration...

  18. Fibroblast activation in cancer: when seed fertilizes soil.

    Science.gov (United States)

    Kuzet, Sanya-Eduarda; Gaggioli, Cedric

    2016-09-01

    In solid cancers, activated fibroblasts acquire the capacity to provide fertile soil for tumor progression. Specifically, cancer-associated fibroblasts (CAFs) establish a strong relationship with cancer cells. This provides advantages to both cell types: whereas cancer cells initiate and sustain CAF activation, CAFs support cancer cell growth, motility and invasion. This results in tumor progression, metastasis and chemoresistance. Numerous studies have detailed the mechanisms involved in fibroblast activation and cancer progression, some of which are reviewed in this article. Cancer cells and CAFs are "partners in crime", and their interaction is supported by inflammation. An understanding of the enemy, the cancer cell population and its "allies" should provide novel opportunities for targeted-drug development. Graphical Abstract Molecular mechanism of fibroblast activation. a Normal fibroblasts are the most common cell type in the extracellular matrix and are responsible for the synthesis of collagens and fibrilar proteins. Under normal conditions, fibroblasts maintain tissue homeostasis and contribute to proper cell communication and function. Fibroblasts can be activated by a diverse set of factors secreted from cancer or immune cells. Not only growth factors such as TGF-β, PDGF, HGF and FGF but also interleukins, metalloproteinases and reactive oxygen species can promote activation. Likewise, transcriptional factors such as NF-κB and HSF-1 play an important role, as do the gene family of metalloproteinase inhibitors, Timp and the NF-κB subunit, p62. Interestingly, fibroblasts themselves can stimulate cancer cells to support activation further. b Once activated, fibroblasts undergo a phenotype switch and become cancer-associated fibroblasts (CAFs) expressing various markers such as α-SMA, FSP1, vimentin and periostatin. c Recently, the LIF/GP130/IL6-R pathway has been identified as a signaling cascade involved in fibroblast activation. Upon LIF stimulation

  19. Le interferon mRNA from human fibroblasts.

    OpenAIRE

    Pang, R H; Hayes, T G; Vilcek, J

    1980-01-01

    Human F and Le interferon can be clearly distinguished on the basis of different antigenic properties and host range. After inoculation with Newcastle disease virus (NDV), GM-258 fibroblasts produced Le as well as F interferon; in contrast, only F interferon was detectable after stimulation with poly(I) . poly(C). Polyadenylylated mRNA isolated from fibroblasts induced with poly(I) . poly(C) or NDV was injected into Xenopus laevis oocytes and the interferon activities thus produced were analy...

  20. Persistent stromal fibroblast activation is present in chronic tendinopathy.

    Science.gov (United States)

    Dakin, Stephanie G; Buckley, Christopher D; Al-Mossawi, Mohammad Hussein; Hedley, Robert; Martinez, Fernando O; Wheway, Kim; Watkins, Bridget; Carr, Andrew J

    2017-01-25

    Growing evidence supports a key role for inflammation in the onset and progression of tendinopathy. However, the effect of the inflammatory infiltrate on tendon cells is poorly understood. We investigated stromal fibroblast activation signatures in tissues and cells from patients with tendinopathy. Diseased tendons were collected from well-phenotyped patient cohorts with supraspinatus tendinopathy before and after sub-acromial decompression treatment. Healthy tendons were collected from patients undergoing shoulder stabilisation or anterior cruciate ligament repair. Stromal fibroblast activation markers including podoplanin (PDPN), CD106 (VCAM-1) and CD248 were investigated by immunostaining, flow cytometry and RT-qPCR. PDPN, CD248 and CD106 were increased in diseased compared to healthy tendon tissues. This stromal fibroblast activation signature persisted in tendon biopsies in patients at 2-4 years post treatment. PDPN, CD248 and CD106 were increased in diseased compared to healthy tendon cells. IL-1β treatment induced PDPN and CD106 but not CD248. IL-1β treatment induced NF-κB target genes in healthy cells, which gradually declined following replacement with cytokine-free medium, whilst PDPN and CD106 remained above pre-stimulated levels. IL-1β-treated diseased cells had more profound induction of PDPN and CD106 and sustained expression of IL6 and IL8 mRNA compared to IL-1β-treated healthy cells. We conclude that stromal fibroblast activation markers are increased and persist in diseased compared to healthy tendon tissues and cells. Diseased tendon cells have distinct stromal fibroblast populations. IL-1β treatment induced persistent stromal fibroblast activation which was more profound in diseased cells. Persistent stromal fibroblast activation may be implicated in the development of chronic inflammation and recurrent tendinopathy. Targeting this stromal fibroblast activation signature is a potential therapeutic strategy.

  1. Regulating Cancer Associated Fibroblast Biology in Prostate Cancer

    Science.gov (United States)

    2016-10-01

    SUPPLEMENTARY NOTES 14. ABSTRACT There is an urgent need to develop both new approaches to the treatment of prostate cancer. Analysis of human prostate...AWARD NUMBER: W81XWH-15-1-0512 TITLE: Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer PRINCIPAL INVESTIGATOR: Andrew...CONTRACT NUMBER Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0512 5c. PROGRAM ELEMENT NUMBER 6

  2. Dissecting the Functions of Autophagy in Breast Cancer Associated Fibroblasts

    Science.gov (United States)

    2014-10-01

    any RFP expression (Fig. 3C). Combining the RFP 5 sorting strategy with an antibody against EpCAM (a marker of epithelial cells) showed that the...Cre recombinase expression is limited to the stromal cells as expected. We microsatellite sequenced these mice to determine their C57B/6 purity and...immortalized population of fibroblasts emerged, as evidence by expression of the fibroblast markers αSMA, vimentin and FSP (Fig. 7B), and lack of

  3. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  4. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  5. Kidney fibroblast growth factor 23 does not contribute to elevation of its circulating levels in uremia

    DEFF Research Database (Denmark)

    Mace, Maria L.; Gravesen, Eva; Nordholm, Anders

    2017-01-01

    to normal rats. Removal of the remnant kidney had no effect on plasma FGF23 levels. Well-known regulators of FGF23 expression in bone, such as parathyroid hormone, calcitriol, and inhibition of the FGF receptor by PD173074, had no impact on kidney expression of FGF23. Thus, the only direct contribution......Fibroblast growth factor 23 (FGF23) secreted by osteocytes is a circulating factor essential for phosphate homeostasis. High plasma FGF23 levels are associated with cardiovascular complications and mortality. Increases of plasma FGF23 in uremia antedate high levels of phosphate, suggesting...... of the injured kidney to circulating FGF23 levels in uremia appears to be reduced renal extraction of bone-derived FGF23. Kidney-derived FGF23 does not generate high plasma FGF23 levels in uremia and is regulated differently than the corresponding regulation of FGF23 gene expression in bone....

  6. Autophagy is required for IL-2-mediated fibroblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Rui [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Lotze, Michael T., E-mail: lotzemt@upcm.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States); Zeh III, Herbert J., E-mail: zehh@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 (United States)

    2013-02-15

    Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts.

  7. Dogs cloned from fetal fibroblasts by nuclear transfer.

    Science.gov (United States)

    Hong, So Gun; Jang, Goo; Kim, Min Kyu; Oh, Hyun Ju; Park, Jung Eun; Kang, Jung Taek; Koo, Ok Jae; Kim, Dae Yong; Lee, Byeong Chun

    2009-10-01

    Fetal fibroblasts have been considered as the prime candidate donor cells for the canine reproductive cloning by somatic cell nuclear transfer (SCNT) in regard to the future production of transgenic dogs, mainly due to their higher developmental competence and handling advantage in gene targeting. In this study, the cloning efficiency with canine fetal fibroblasts as donor cells was determined. A total of 50 presumptive cloned embryos were reconstructed, activated and transferred into the oviducts of naturally synchronous recipient bitches. While the fusion rate (76.9%) was similar to those of our earlier studies with adult fibroblasts as donor cells (73.9-77.1%), a high cloning efficiency (4.0%; 2 births/50 embryos transferred) was found compared to the previous success rate with adult fibroblasts (0.2-1.8%). The cloned beagles were healthy and genotypically identical to the donor fibroblast cells. This study shows that a fetal fibroblast cell would be an excellent donor for future production of transgenic dogs via gene targeting in this cell followed cloning using SCNT technology.

  8. Senescent phenotypes of skin fibroblasts from patients with Tangier disease

    International Nuclear Information System (INIS)

    Matsuura, Fumihiko; Hirano, Ken-ichi; Ikegami, Chiaki; Sandoval, Jose C.; Oku, Hiroyuki; Yuasa-Kawase, Miyako; Tsubakio-Yamamoto, Kazumi; Koseki, Masahiro; Masuda, Daisaku; Tsujii, Ken-ichi; Ishigami, Masato; Nishida, Makoto; Shimomura, Iichiro; Hori, Masatsugu; Yamashita, Shizuya

    2007-01-01

    Tangier disease (TD) is characterized by a deficiency of high density lipoprotein (HDL) in plasma and patients with TD have an increased risk for coronary artery disease (CAD). Recently, we reported that fibroblasts from TD exhibited large and flattened morphology, which is often observed in senescent cells. On the other hand, data have accumulated to show the relationship between cellular senescence and development of atherosclerotic CAD. The aim of the present study was to investigate whether TD fibroblasts exhibited cellular senescence. The proliferation of TD fibroblasts was gradually decreased at population doubling level (PDL) ∼10 compared with control cells. TD cells practically ceased proliferation at PDL ∼30. DNA synthesis was markedly decreased in TD fibroblasts. TD cells exhibited a higher positive rate for senescence-associated β-galactosidase (SA-β-gal), which is one of the biomarkers of cellular senescence in vitro. These data showed that TD cells reached cellular senescence at an earlier PDL compared with controls. Although, there was no difference in the telomere length of fibroblasts between TD and controls at the earlier passage (PDL 6), the telomere length of TD cells was shorter than that of controls at the late passage (PDL 25). Taken together, the current study demonstrates that the late-passaged TD fibroblasts showed senescent phenotype in vitro, which might be related to the increased cardiovascular manifestations in TD patients

  9. Conversion of Fibroblasts to Neural Cells by p53 Depletion

    Directory of Open Access Journals (Sweden)

    Di Zhou

    2014-12-01

    Full Text Available Conversion from fibroblasts to neurons has recently been successfully induced. However, the underlying mechanisms are poorly understood. Here, we find that depletion of p53 alone converts fibroblasts into all three major neural lineages. The induced neuronal cells express multiple neuron-specific proteins and generate action potentials and transmitter-receptor-mediated currents. Surprisingly, depletion does not affect the well-known tumorigenic p53 target, p21. Instead, knockdown of p53 upregulates neurogenic transcription factors, which in turn boosts fibroblast-neuron conversion. p53 binds the promoter of the neurogenic transcription factor Neurod2 and regulates its expression during fibroblast-neuron conversion. Furthermore, our method provides a high efficiency of conversion in late-passage fibroblasts. Genome-wide transcriptional analysis shows that the p53-deficiency-induced neurons exhibit an expression profile different from parental fibroblasts and similar to control-induced neurons. The results may help to understand and improve neural conversion mechanisms to develop robust neuron-replacement therapy strategies.

  10. Comparative analysis of the expression of surface markers on fibroblasts and fibroblast-like cells isolated from different human tissues.

    Science.gov (United States)

    Lupatov, A Yu; Vdovin, A S; Vakhrushev, I V; Poltavtseva, R A; Yarygin, K N

    2015-02-01

    Expression of 20 surface markers was analyzed in cultures of mesenchymal stromal cells of the umbilical cord, fibroblasts from adult and fetal human skin, and fibroblast-like cells of fetal liver was analyzed by fl ow cytometry. The studied cultures did not express hemopoietic cells markers, but were positive for CD73, CD90, and CD105 markers recommended by the International Society of Cell Therapy for the identification of the multipotent mesenchymal stromal cells. Fetal liver fibroblast-like cells were positive for CD54; this marker was absent in skin fibroblast cultures, but was expressed by umbilical cord mesenchymal stromal cells. Further study of these cells revealed a minor subpopulation of cells co-expressing CD24 and CD90 or CD24 and CD54. We hypothesized that these cells probably participate in epithelial mesenchymal transition.

  11. β-Aminoisobutyric acid ameliorates the renal fibrosis in mouse obstructed kidneys via inhibition of renal fibroblast activation and fibrosis

    Directory of Open Access Journals (Sweden)

    Huijuan Wang

    2017-04-01

    Full Text Available Renal fibrosis is a hallmark feature of chronic kidney disease, which is reflected by proliferation and migration of interstitial fibroblasts and extracellular matrix (ECM accumulation. β-Aminoisobutyric acid (BAIBA is recently demonstrated to exert a protective role from metabolic diseases. However, whether and how BAIBA on fibroblast activation and renal fibrosis response to angiotensin II (Ang II remains largely obscure. Herein, we showed that BAIBA significantly depressed the proliferation and migration of NRK-49F cells in vitro. Treatment with Ang II remarkably up-regulated the expressions of fibronectin (FN, collagen 1 (COL 1, α-smooth muscle actin (α-SMA, interleukin-17 (IL-17 and nicotinamide adenine dinucleotide phosphate oxidase (NOX2-derived reactive oxygen species (ROS production in cultured NRK-49F cells. Pretreatment with BAIBA almost blocked Ang II-induced ECM production and IL-17-mediated oxidative stress in NRK-49F cells. BAIBA treatment ameliorates fibroblasts activation and renal fibrosis in rat obstructed kidneys involving inhibition of Ang II/IL-17/ROS signaling transduction, which may be considered as a therapeutic candidate for fibrosis-related diseases.

  12. The influence of genistein on free radicals in normal dermal fibroblasts and keloid fibroblasts examined by EPR spectroscopy.

    Science.gov (United States)

    Jurzak, Magdalena; Ramos, Paweł; Pilawa, Barbara

    2017-01-01

    Normal and keloid fibroblasts were examined using X-band (9.3 GHz) electron paramagnetic resonance spectroscopy. The effect of genistein on the concentration of free radicals in both normal dermal and keloid fibroblasts after ultraviolet irradiation was investigated. The highest concentration of free radicals was seen in keloid fibroblasts, with normal fibroblasts containing a lower concentration. The concentration of free radicals in both normal and keloid fibroblasts was altered in a concentration-dependent manner by the presence of genistein. The change in intra-cellular free radical concentration after the ultraviolet irradiation of both normal and keloid fibroblasts is also discussed. The antioxidant properties of genistein, using its 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging activity as a model, were tested, and the effect of ultraviolet irradiation on its interaction with free radicals was examined. The electron paramagnetic resonance spectra of DPPH showed quenching by genistein. The interaction of genistein with DPPH free radicals in the absence of ultraviolet irradiation was shown to be slow, but this interaction was much faster under ultraviolet irradiation. Ultraviolet irradiation enhanced the free radical-scavenging activity of genistein.

  13. Liposome-Adenoviral hTERT-siRNA Knockdown in Fibroblasts from Keloids Reduce Telomere Length and Fibroblast Growth.

    Science.gov (United States)

    Shang, Yong; Yu, Dongmei; Hao, Lijun

    2015-06-01

    Keloids, which possess invasive tumor-like behavior, have been clinically challenging to clinicians especially surgeons. Excessive extracellular matrix secreted from fibroblasts is the main histo-pathological feature of keloids. In this study, we transfected hTERT-siRNA into scar fibroblasts by liposome-adenoviral transduction in order to disrupt telomere length homeostasis and influence the cell cycle of fibroblasts. Our results showed that liposome hTERT-siRNA was able to knock down hTERT gene expression in scar fibroblasts. Moreover, the telomerase activity in hTERT-siRNA group was significantly reduced compared with the control groups. And the telomeric length of hTERT-siRNA group was significantly shortened as well. Further, flow cytometry studies and MTT assay demonstrated that apoptosis rate of fibroblasts in liposome hTERT-siRNA group significantly increased. These results indicated that the liposome-mediated hTERT gene transduction could inhibit the growth of fibroblasts in scar tissues suggesting a promising strategy of keloids treatment in the future.

  14. Effects of cranberry components on human aggressive periodontitis gingival fibroblasts.

    Science.gov (United States)

    Tipton, D A; Babu, J P; Dabbous, M Kh

    2013-08-01

    Aggressive periodontitis (AgP) causes rapid periodontal breakdown involving AgP gingival fibroblast production of cytokines [i.e. interleukin (IL)-6, a bone metabolism regulator], and matrix metalloproteinase (MMP)-3. Lipopolysaccharide upregulates fibroblast IL-6 and MMP-3, via transcription factors (i.e. NF-κB). Cranberry (Vaccinium macrocarpon) inhibits lipopolysaccharide-stimulated macrophage and normal gingival fibroblast activities, but little is known of its effects on AgP fibroblasts. Objectives of this study are to use AgP fibroblasts, to determine cytotoxicity of cranberry components or periodontopathogen (Fusobacterium nucleatum, Porphyromonas gingivalis) lipopolysaccharide ± cranberry components, and effects of cranberry components on lipopolysaccharide-stimulated NF-κB activation and IL-6 and MMP-3 production. AgP fibroblasts were incubated ≤ 6 d with high molecular weight non-dialyzable material (NDM) (derived from cranberry juice (1-500 μg/mL) or lipopolysaccharide (1 μg/mL) ± NDM. Membrane damage and viability were assessed by enzyme activity released into cell supernatants and activity of a mitochondrial enzyme, respectively. Secreted IL-6 and MMP-3 were measured by ELISA. NF-κB p65 was measured via binding to an oligonucleotide containing the NF-κB consensus site. Data were analyzed using analysis of variance and Scheffe's F procedure for post hoc comparisons. Short-term exposure to NDM, or lipopolysaccharide ± NDM caused no membrane damage. NDM (≤ 100 μg/mL) or lipopolysaccharide ± NDM had no effect on viability ≤ 7 d exposure. NDM (50 μg/mL) inhibited lipopolysaccharide-stimulated p65 (P ≤ 0.003) and constitutive or lipopolysaccharide-stimulated MMP-3 (P ≤ 0.02). NDM increased AgP fibroblast constitutive or lipopolysaccharide-stimulated IL-6 (P ≤ 0.0001), but inhibited normal human gingival fibroblast IL-6 (P ≤ 0.01). Lack of toxicity of low NDM concentrations, and its inhibition of NF-κB and MMP-3, suggest that

  15. Normal skin and hypertrophic scar fibroblasts differentially regulate collagen and fibronectin expression as well as mitochondrial membrane potential in response to basic fibroblast growth factor.

    Science.gov (United States)

    Song, Rui; Bian, Hui-Ning; Lai, Wen; Chen, Hua-De; Zhao, Ke-Seng

    2011-05-01

    Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-induced effects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P fibroblasts (P fibroblasts following treatment with bFGF (P fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.

  16. Fatty acid effects on fibroblast cholesterol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-05-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 ..mu..mol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 ..mu..Ci (/sup 14/C)acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest (/sup 14/C)acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total /sup 14/C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1(BSA).

  17. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  18. Fibroblasts and myofibroblasts in wound healing

    Directory of Open Access Journals (Sweden)

    Darby IA

    2014-11-01

    Full Text Available Ian A Darby,1 Betty Laverdet,2 Frédéric Bonté3, Alexis Desmoulière2 1School of Medical Sciences, RMIT University, Melbourne, VIC, Australia; 2Department of Physiology and EA 6309, FR 3503, Faculties of Medicine and Pharmacy, University of Limoges, Limoges, France; 3LVMH Recherche, Saint Jean de Braye, France Abstract: (Myofibroblasts are key players for maintaining skin homeostasis and for orchestrating physiological tissue repair. (Myofibroblasts are embedded in a sophisticated extracellular matrix (ECM that they secrete, and a complex and interactive dialogue exists between (myofibroblasts and their microenvironment. In addition to the secretion of the ECM, (myofibroblasts, by secreting matrix metalloproteinases and tissue inhibitors of metalloproteinases, are able to remodel this ECM. (Myofibroblasts and their microenvironment form an evolving network during tissue repair, with reciprocal actions leading to cell differentiation, proliferation, quiescence, or apoptosis, and actions on growth factor bioavailability by binding, sequestration, and activation. In addition, the (myofibroblast phenotype is regulated by mechanical stresses to which they are subjected and thus by mechanical signaling. In pathological situations (excessive scarring or fibrosis, or during aging, this dialogue between the (myofibroblasts and their microenvironment may be altered or disrupted, leading to repair defects or to injuries with damaged and/or cosmetic skin alterations such as wrinkle development. The intimate dialogue between the (myofibroblasts and their microenvironment therefore represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment. Keywords: myofibroblast, fibroblast, α-smooth muscle actin

  19. Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts.

    Science.gov (United States)

    Blaauboer, Marjolein E; Smit, Theo H; Hanemaaijer, Roeland; Stoop, Reinout; Everts, Vincent

    2011-01-07

    In lung fibrosis tissue architecture and function is severely hampered by myofibroblasts due to excessive deposition of extracellular matrix and tissue contraction. Myofibroblasts differentiate from fibroblasts under the influence of transforming growth factor (TGF) β(1) but this process is also controlled mechanically by cytoskeletal tension. In healthy lungs, the cytoskeleton of fibroblasts is mechanically strained during breathing. In stiffer fibrotic lung tissue, this mechanical stimulus is reduced, which may influence fibroblast-to-myofibroblast differentiation. Therefore, we investigated the effect of cyclic mechanical stretch on fibroblast-to-myofibroblast differentiation. Primary normal human lung fibroblasts were grown on BioFlex culture plates and stimulated to undergo myofibroblast differentiation by 10 ng/ml TGFβ(1). Cells were either or not subjected to cyclic mechanical stretch (sinusoidal pattern, maximum elongation 10%, 0.2 Hz) for a period of 48 h on a Flexercell apparatus. mRNA expression was analyzed by real-time PCR. Cyclic mechanical loading reduced the mRNA expression of the myofibroblast marker α-smooth muscle actin and the extracellular matrix proteins type-I, type-III, and type-V collagen, and tenascin C. These outcomes indicate that fibroblast-to-myofibroblast differentiation is reduced. Cyclic mechanical loading did not change the expression of the fibronectin ED-A splice variant, but did decrease the paracrine expression of TGFβ(1), thereby suggesting a possible regulation mechanism for the observed effects. The data suggest that cyclic loading experienced by healthy lung cells during breathing may prevent fibroblasts from differentiating towards myofibroblasts. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Functional Screen of Paracrine Signals in Breast Carcinoma Fibroblasts

    Science.gov (United States)

    Su, Gui; Sung, Kyung E.; Beebe, David J.; Friedl, Andreas

    2012-01-01

    Stromal fibroblasts actively participate in normal mammary gland homeostasis and in breast carcinoma growth and progression by secreting paracrine factors; however, little is known about the identity of paracrine mediators in individual patients. The purpose of this study was to characterize paracrine signaling pathways between breast carcinoma cells and breast carcinoma-associated fibroblasts (CAF) or normal mammary fibroblasts (NF), respectively. CAF and NF were isolated from breast carcinoma tissue samples and adjacent normal mammary gland tissue of 28 patients. The fibroblasts were grown in 3D collagen gel co-culture with T47D human breast carcinoma cells and T47D cell growth was measured. CAF stimulated T47D cell growth to a significantly greater degree than NF. We detected a considerable inter-individual heterogeneity of paracrine interactions but identified FGF2, HB-EGF, heparanase-1 and SDF1 as factors that were consistently responsible for the activity of carcinoma-associated fibroblasts. CAF from low-grade but not high-grade carcinomas required insulin-like growth factor 1 and transforming growth factor beta 1 to stimulate carcinoma growth. Paradoxically, blocking of membrane-type 1 matrix metalloprotease stimulated T47D cell growth in co-culture with NF. The results were largely mirrored by treating the fibroblasts with siRNA oligonucleotides prior to co-culture, implicating the fibroblasts as principal production site for the secreted mediators. In summary, we identify a paracrine signaling network with inter-individual commonalities and differences. These findings have significant implications for the design of stroma-targeted therapies. PMID:23056402

  1. Binding, uptake, and release of nicotine by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Hanes, P.J.; Schuster, G.S.; Lubas, S.

    1991-01-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4 degree C using a mixture of 3 H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between 3 H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37 degree C after treating cells with 3 H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours

  2. Increased fibroblast functionality on CNN2-loaded titania nanotubes

    Directory of Open Access Journals (Sweden)

    Wei HB

    2012-02-01

    Full Text Available Hongbo Wei*, Shuyi Wu*, Zhihong Feng, Wei Zhou, Yan Dong, Guofeng Wu, Shizhu Bai, Yimin Zhao Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China *These authors contributed equally to this workAbstract: Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites.Keywords: anodization, titania nanotubes, adhesion, connective

  3. Effects of Therapeutic Touch on Healing of the Skin in Rats.

    Science.gov (United States)

    Thomaz de Souza, André Luiz; Carvalho Rosa, David Patrick; Blanco, Bruno Anjos; Passaglia, Patrícia; Stabile, Angelita Maria

    Therapeutic touch is a complementary treatment directed toward the balance of the energy field surrounding living beings. This study's aim was to investigate the effect of therapeutic touch on wound area contraction and fibroblast proliferation in rat skin. This study was conducted using 24 male Wistar rats with dorsal wounds of diameter 8mm. The rats were divided into the following two groups: a control group: in this, the wounds were sanitized with filtered water and neutral-pH soap and a treatment group: in this, the wounds were sanitized as in the control group but the rats also underwent to daily sessions of therapeutic touch. Wound area was measured on days 1, 4, and 7 using imagelab software, version 2.4 R.C. On days 4 and 7, six animals in each group were euthanized so that the lesioned tissue could be collected for fibroblast counts and histological evaluations. On days 1 and 4, wound areas were similar in both groups. Moreover, no significant differences in fibroblast counts were observed on day 4. On day 7, however, fibroblast counts were significantly higher in the treated group than in the control group, with a subsequent wound shrinkage. These data indicate that therapeutic touch may accelerate wound repair, possibly by increasing fibroblast activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Response to Multiple Radiation Doses of Fibroblasts Over-Expressing Dominant Negative Ku70

    International Nuclear Information System (INIS)

    Urano, Muneyasu; Huang Yunhong; He Fuqiu; Minami, Akiko; Ling, C. Clifton; Li, Gloria C.

    2008-01-01

    Purpose: To evaluate the response of cells over-expressing dominant negative (DN) Ku70 to single and multiple small radiation doses. Methods and Materials: Clones of fibroblasts over-expressing DNKu70, DNKu70-7, DNKu70-11, and parental Rat-1 cells were irradiated under oxic or hypoxic conditions with single or multiple doses. Cells were trypsinized 0 or 6 h after irradiation to determine surviving fraction (SF). Results: Oxic DNKu70-7 or -11 cells trypsinized 6 h after irradiation were 1.52 or 1.25 and 1.28 or 1.15 times more sensitive than oxic Rat-1 at SF of 0.5 and 0.1, respectively. Hypoxic DNKu70-7 or -11 cells trypsinized 6 h after irradiation were 1.44 or 1.70 and 1.33 or 1.51 times more sensitive than hypoxic Rat-1 at SF of 0.5 and 0.1, respectively. To the multiple doses, oxic and hypoxic DNKu70-7 or -11 cells were 1.35 or 1.37 and 2.23 or 4.61 times more sensitive than oxic and hypoxic Rat-1, respectively, resulting in very small oxygen enhancement ratios. Namely, enhancement caused by DNKu70 under hypoxia after multiple doses was greater than that under oxic conditions and greater than that after single dose. Conclusions: Over-expression of DNKu70 enhances cells' response to radiation given as a single dose and as multiple small doses. The enhancement after multiple doses was stronger under hypoxic than under oxic conditions. These results encourage the use of DNKu70 fragment in a gene-radiotherapy

  5. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.

  6. High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation.

    Directory of Open Access Journals (Sweden)

    Yuan Hu Xuan

    Full Text Available One of the major symptoms of diabetes mellitus (DM is delayed wound healing, which affects large populations of patients worldwide. However, the underlying mechanism behind this illness remains elusive. Skin wound healing requires a series of coordinated processes, including fibroblast cell proliferation and migration. Here, we simulate DM by application of high glucose (HG in human foreskin primary fibroblast cells to analyze the molecular mechanism of DM effects on wound healing. The results indicate that HG, at a concentration of 30 mM, delay cell migration, but not cell proliferation. bFGF is known to promote cell migration that partially rescues HG effects on cell migration. Molecular and cell biology studies demonstrated that HG enhanced ROS production and repressed JNK phosphorylation, but did not affect Rac1 activity. JNK and Rac1 activation were known to be important for bFGF regulated cell migration. To further confirm DM effects on skin repair, a type 1 diabetic rat model was established, and we observed the efficacy of bFGF on both normal and diabetic rat skin repair. Furthermore, proteomic studies identified an increase of Annexin A2 protein nitration in HG-stressed fibroblasts and the nitration was protected by activation of bFGF signaling. Treatment with FGFR1 and JNK inhibitors delayed cell migration and increased Annexin A2 nitration levels, indicating that Annexin A2 nitration is modulated by bFGF signaling via activation of JNK. Together with these results, our data suggests that the HG-mediated delay of cell migration is linked to the inhibition of bFGF signaling, specifically through JNK suppression.

  7. Endogenous Semaphorin-7A Impedes Human Lung Fibroblast Differentiation.

    Science.gov (United States)

    Esnault, Stephane; Torr, Elizabeth E; Bernau, Ksenija; Johansson, Mats W; Kelly, Elizabeth A; Sandbo, Nathan; Jarjour, Nizar N

    2017-01-01

    Semaphorin-7A is a glycosylphosphatidylinositol-anchored protein, initially characterized as an axon guidance protein. Semaphorin-7A also contributes to immune cell regulation and may be an essential pro-fibrotic factor when expressed by non-fibroblast cell types (exogenous). In mouse models, semaphorin-7A was shown to be important for TGF-ß1-induced pulmonary fibrosis characterized by myofibroblast accumulation and extracellular matrix deposition, but the cell-specific role of semaphorin-7A was not examined in fibroblasts. The purpose of this study is to determine semaphorin-7A expression by fibroblasts and to investigate the function of endogenously expressed semaphorin-7A in primary human lung fibroblasts (HLF). Herein, we show that non-fibrotic HLF expressed high levels of cell surface semaphorin-7A with little dependence on the percentage of serum or recombinant TGF-ß1. Semaphorin-7A siRNA strongly decreased semaphorin-7A mRNA expression and reduced cell surface semaphorin-7A. Reduction of semaphorin-7A induced increased proliferation and migration of non-fibrotic HLF. Also, independent of the presence of TGF-ß1, the decline of semaphorin-7A by siRNA was associated with increased α-smooth muscle actin production and gene expression of periostin, fibronectin, laminin, and serum response factor (SRF), indicating differentiation into a myofibroblast. Conversely, overexpression of semaphorin-7A in the NIH3T3 fibroblast cell line reduced the production of pro-fibrotic markers. The inverse association between semaphorin-7A and pro-fibrotic fibroblast markers was further analyzed using HLF from idiopathic pulmonary fibrosis (IPF) (n = 6) and non-fibrotic (n = 7) lungs. Using these 13 fibroblast lines, we observed that semaphorin-7A and periostin expression were inversely correlated. In conclusion, our study indicates that endogenous semaphorin-7A in HLF plays a role in maintaining fibroblast homeostasis by preventing up-regulation of pro-fibrotic genes. Therefore

  8. Effect of captopril on collagen metabolisms in keloid fibroblast cells.

    Science.gov (United States)

    Chen, Junjie; Zhao, Sha; Liu, Yong; Cen, Ying; Nicolas, Crook

    2016-12-01

    Keloid is a proliferative disease of fibrous tissues. The mechanism and consistently effective treatments of keloid remained unknown. Although there was a report about treating keloid with topical captopril, the further investigation about captopril affecting keloid has not been performed so far. The aim of this study was to analyse the effect of captopril on collagen metabolisms in keloid fibroblast cells, and to provide information for the mechanism and therapy of keloid. To investigate the effects and relative mechanism of captopril on keloid fibroblast cells, we examined the changes of collagen metabolism, expression of angiotensin, transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF)-BB and heat shock protein 47 (HSP47), and cellular proliferation in keloid fibroblast cells. We found that all collagen metabolisms, expression of TGF-β1, PDGF-BB and HSP47, and cellular proliferation decreased significantly with effective captopril concentrations in keloid fibroblast cells. With a comprehensive analysis of test results, we proposed that captopril may decrease the expression of angiotensin, PDGF-BB, TGF-β1 and HSP47, and further inhibit proliferation and collagen synthesis of keloid fibroblast cells, which were the key in keloid formation. © 2014 Royal Australasian College of Surgeons.

  9. Dysregulated proinflammatory and fibrogenic phenotype of fibroblasts in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    François Huaux

    Full Text Available Morbi-mortality in cystic fibrosis (CF is mainly related to chronic lung infection and inflammation, uncontrolled tissue rearrangements and fibrosis, and yet the underlying mechanisms remain largely unknown. We evaluated inflammatory and fibrosis responses to bleomycin in F508del homozygous and wild-type mice, and phenotype of fibroblasts explanted from mouse lungs and skin. The effect of vardenafil, a cGMP-specific phosphodiesterase type 5 inhibitor, was tested in vivo and in culture. Responses of proinflammatory and fibrotic markers to bleomycin were enhanced in lungs and skin of CF mice and were prevented by treatment with vardenafil. Purified lung and skin fibroblasts from CF mice proliferated and differentiated into myofibroblasts more prominently and displayed higher sensitivity to growth factors than those recovered from wild-type littermates. Under inflammatory stimulation, mRNA and protein expression of proinflammatory mediators were higher in CF than in wild-type fibroblasts, in which CFTR expression reached similar levels to those observed in other non-epithelial cells, such as macrophages. Increased proinflammatory responses in CF fibroblasts were reduced by half with submicromolar concentrations of vardenafil. Proinflammatory and fibrogenic functions of fibroblasts are upregulated in CF and are reduced by vardenafil. This study provides compelling new support for targeting cGMP signaling pathway in CF pharmacotherapy.

  10. Cannabinoids inhibit fibrogenesis in diffuse systemic sclerosis fibroblasts.

    Science.gov (United States)

    Garcia-Gonzalez, Estrella; Selvi, Enrico; Balistreri, Epifania; Lorenzini, Sauro; Maggio, Roberta; Natale, Maria-Rita; Capecchi, Pier-Leopoldo; Lazzerini, Pietro-Enea; Bardelli, Marco; Laghi-Pasini, Franco; Galeazzi, Mauro

    2009-09-01

    It has been demonstrated that the endocannabinoid system is up-regulated in pathologic fibrosis and that modulation of the cannabinoid receptors might limit the progression of uncontrolled fibrogenesis. The aim of this study was to investigate whether the synthetic cannabinoid receptor agonist WIN55,212-2 could modulate fibrogenesis in an in vitro model of dcSSc. The expression of cannabinoid receptors CB1 and CB2 was assessed in dcSSc fibroblasts and healthy control fibroblasts. To investigate the effect of WIN55,212-2 on dcSSc fibrogenesis, we studied type I collagen, profibrotic cytokines, fibroblast transdifferentiation into myofibroblasts, apoptotic processes and activation of the extracellular signal-related kinase 1/2 pathway prior to and after the treatment with the synthetic cannabinoid at increasing concentrations. Both CB1 and CB2 receptors were over-expressed in dcSSc fibroblasts compared with healthy controls. WIN55,212-2 caused a reduction in extracellular matrix deposition and counteracted several behavioural abnormalities of scleroderma fibroblasts including transdifferentiation into myofibroblasts and resistance to apoptosis. The anti-fibrogenic effect of WIN55,212-2 was not reverted by selective cannabinoid antagonists. Our preliminary findings suggest that cannabinoids are provided with an anti-fibrotic activity, thereby possibly representing a new class of agents targeting fibrosis diseases.

  11. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Directory of Open Access Journals (Sweden)

    Rebeca Illescas-Montes

    2017-07-01

    Full Text Available Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2 using different transmission modes (continuous or pulsed. The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing.

  12. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Science.gov (United States)

    Illescas-Montes, Rebeca; Melguizo-Rodríguez, Lucía; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción

    2017-01-01

    Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2) using different transmission modes (continuous or pulsed). The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing. PMID:28773152

  13. Cytopathic effect of Acanthamoeba on human corneal fibroblasts

    Science.gov (United States)

    Takaoka-Sugihara, Noriko; Yokoo, Seiichi; Matsubara, Masao; Yagita, Kenji

    2012-01-01

    Purpose Acanthamoeba keratitis is associated with keratocyte depletion in humans. We investigated how Acanthamoebae isolated from corneas affected by Acanthamoeba keratitis interacted with human corneal stromal cells in vitro. Methods Acanthamoebae were isolated from 6 patients with Acanthamoeba keratitis and genotyping was done. Whether the isolated Acanthamoebae could invade the corneal stroma was assessed with denuded corneal stroma ex vivo. The cytopathic effect of Acanthamoeba on cultured corneal fibroblasts from donor corneas was quantitatively evaluated by the MTT assay after culture under various conditions. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and Annexin V staining were employed to detect apoptotic cells among the corneal fibroblasts co-cultured with Acanthamoebae. Results All 6 Acanthamoebae isolated from the patients with Acanthamoeba keratitis were shown to have the T4 genotype by 18S rDNA sequence analysis. Acanthamoebae invaded the denuded corneal stroma in the ex vivo experiments and had a cytopathic effect on human corneal fibroblasts after direct adhesion, but not via chemical mediators. A cytopathic effect was detected with all 6 Acanthamoebae and corneal fibroblasts mainly died by apoptosis, as evidenced by Annexin V staining. Conclusions Acanthamoebae isolated from patients with Acanthamoeba keratitis had a cytopathic effect on human corneal fibroblasts, mainly via induction of apoptosis after direct adhesion. Our findings may provide some clues to the pathophysiology of corneal keratocyte depletion in patients with Acanthamoeba keratitis. PMID:22933834

  14. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m...

  15. Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren's Contracture

    Science.gov (United States)

    2012-01-01

    Background Dupuytren's contracture (DC) is a fibroproliferative disorder characterized by the progressive development of a scar-like collagen-rich cord that affects the palmar fascia of the hand and leads to digital flexion contractures. DC is most commonly treated by surgical resection of the diseased tissue, but has a high reported recurrence rate ranging from 27% to 80%. We sought to determine if the transcriptomic profiles of fibroblasts derived from DC-affected palmar fascia, adjacent phenotypically normal palmar fascia, and non-DC palmar fascial tissues might provide mechanistic clues to understanding the puzzle of disease predisposition and recurrence in DC. Methods To achieve this, total RNA was obtained from fibroblasts derived from primary DC-affected palmar fascia, patient-matched unaffected palmar fascia, and palmar fascia from non-DC patients undergoing carpal tunnel release (6 patients in each group). These cells were grown on a type-1 collagen substrate (to better mimic their in vivo environments). Microarray analyses were subsequently performed using Illumina BeadChip arrays to compare the transcriptomic profiles of these three cell populations. Data were analyzed using Significance Analysis of Microarrays (SAM v3.02), hierarchical clustering, concordance mapping and Venn diagram. Results We found that the transcriptomic profiles of DC-disease fibroblasts and fibroblasts from unaffected fascia of DC patients exhibited a much greater overlap than fibroblasts derived from the palmar fascia of patients undergoing carpal tunnel release. Quantitative real time RT-PCR confirmed the differential expression of select genes validating the microarray data analyses. These data are consistent with the hypothesis that predisposition and recurrence in DC may stem, at least in part, from intrinsic similarities in the basal gene expression of diseased and phenotypically unaffected palmar fascia fibroblasts. These data also demonstrate that a collagen

  16. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts.

    Science.gov (United States)

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b , Wnt3 , Wnt11 , T-cell factor 7 (TCF7) , and Frizzled 8 ( FZD8 ) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine 9 (pGSK3β Ser 9 ) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β -catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β -catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts.

  17. Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren's Contracture

    Directory of Open Access Journals (Sweden)

    Satish Latha

    2012-05-01

    Full Text Available Abstract Background Dupuytren's contracture (DC is a fibroproliferative disorder characterized by the progressive development of a scar-like collagen-rich cord that affects the palmar fascia of the hand and leads to digital flexion contractures. DC is most commonly treated by surgical resection of the diseased tissue, but has a high reported recurrence rate ranging from 27% to 80%. We sought to determine if the transcriptomic profiles of fibroblasts derived from DC-affected palmar fascia, adjacent phenotypically normal palmar fascia, and non-DC palmar fascial tissues might provide mechanistic clues to understanding the puzzle of disease predisposition and recurrence in DC. Methods To achieve this, total RNA was obtained from fibroblasts derived from primary DC-affected palmar fascia, patient-matched unaffected palmar fascia, and palmar fascia from non-DC patients undergoing carpal tunnel release (6 patients in each group. These cells were grown on a type-1 collagen substrate (to better mimic their in vivo environments. Microarray analyses were subsequently performed using Illumina BeadChip arrays to compare the transcriptomic profiles of these three cell populations. Data were analyzed using Significance Analysis of Microarrays (SAM v3.02, hierarchical clustering, concordance mapping and Venn diagram. Results We found that the transcriptomic profiles of DC-disease fibroblasts and fibroblasts from unaffected fascia of DC patients exhibited a much greater overlap than fibroblasts derived from the palmar fascia of patients undergoing carpal tunnel release. Quantitative real time RT-PCR confirmed the differential expression of select genes validating the microarray data analyses. These data are consistent with the hypothesis that predisposition and recurrence in DC may stem, at least in part, from intrinsic similarities in the basal gene expression of diseased and phenotypically unaffected palmar fascia fibroblasts. These data also demonstrate that

  18. Systems-level modeling of cancer-fibroblast interaction.

    Directory of Open Access Journals (Sweden)

    Raymond C Wadlow

    2009-09-01

    Full Text Available Cancer cells interact with surrounding stromal fibroblasts during tumorigenesis, but the complex molecular rules that govern these interactions remain poorly understood thus hindering the development of therapeutic strategies to target cancer stroma. We have taken a mathematical approach to begin defining these rules by performing the first large-scale quantitative analysis of fibroblast effects on cancer cell proliferation across more than four hundred heterotypic cell line pairings. Systems-level modeling of this complex dataset using singular value decomposition revealed that normal tissue fibroblasts variably express at least two functionally distinct activities, one which reflects transcriptional programs associated with activated mesenchymal cells, that act either coordinately or at cross-purposes to modulate cancer cell proliferation. These findings suggest that quantitative approaches may prove useful for identifying organizational principles that govern complex heterotypic cell-cell interactions in cancer and other contexts.

  19. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  20. Biosynthesis of collagen by fibroblasts kept in culture

    International Nuclear Information System (INIS)

    Machado-Santelli, G.M.

    1978-01-01

    The sinthesis of collagen is studied in fibroblasts of different origins with the purpose of obtaining an appropriate system for the study of its biosynthesis and processing. The percentage of collagen synthesis vary according to the fibroblast origin. Experiences are performed with fibroblasts kept in culture from: chicken - and guinea pig embryos, carragheenin - induced granulomas in adult guinea pig and from human skin. The collagen pattern synthesized after acetic acid - or saline extractions in the presence of inhibitors is also determined. This pattern is then assayed by poliacrilamide - 5% - SDS gel electrophoresis accompanied by fluorography. The importance of the cell culture system in the elucidation of collagen biosynthesis is pointed out. (M.A.) [pt

  1. Long-Term Quiescent Fibroblast Cells Transit into Senescence

    Science.gov (United States)

    Marthandan, Shiva; Priebe, Steffen; Hemmerich, Peter; Klement, Karolin; Diekmann, Stephan

    2014-01-01

    Cellular senescence is described to be a consequence of telomere erosion during the replicative life span of primary human cells. Quiescence should therefore not contribute to cellular aging but rather extend lifespan. Here we tested this hypothesis and demonstrate that cultured long-term quiescent human fibroblasts transit into senescence due to similar cellular mechanisms with similar dynamics and with a similar maximum life span as proliferating controls, even under physiological oxygen conditions. Both, long-term quiescent and senescent fibroblasts almost completely fail to undergo apoptosis. The transition of long-term quiescent fibroblasts into senescence is also independent of HES1 which protects short-term quiescent cells from becoming senescent. Most significantly, DNA damage accumulates during senescence as well as during long-term quiescence at physiological oxygen levels. We suggest that telomere-independent, potentially maintenance driven gradual induction of cellular senescence during quiescence is a counterbalance to tumor development. PMID:25531649

  2. The biology and function of fibroblasts in cancer.

    Science.gov (United States)

    Kalluri, Raghu

    2016-08-23

    Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.

  3. Chloride transport in human fibroblasts is activated by hypotonic shock

    Energy Technology Data Exchange (ETDEWEB)

    Rugolo, M.; Mastocola, T.; Flamigni, A.; Lenaz, G. (Universita' di Bologna (Italy))

    1989-05-15

    Incubation of human skin fibroblasts in hypotonic media induced the activation of {sup 36}Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of {sup 36}Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also {sup 36}Cl- influx was enhanced by hypotonic medium.

  4. Application of Allogeneic Fibroblast Cells in Cellular Therapy of Recessive Dystrophic Epidermolysis Bullosa

    Directory of Open Access Journals (Sweden)

    Zare

    2015-09-01

    Full Text Available Context Connective tissue cells include fibroblasts, chondrocytes, adipocyte, and osteocytes. These cells are specialized for the secretion of collagenous extracellular matrix and are responsible for the architectural framework of the human body. Evidence Acquisition Connective tissue cells play a central role in supporting as well as repairing tissues and organs. Fibroblast cell therapy could be used for the treatment of burn wounds, scars, diabetic foot ulcers, acne scars and skin aging. This review focused on biology of fibroblasts and their role in cell therapy of recessive dystrophic epidermolysis bullosa (RDEB. Results Fibroblasts are known to play a pivotal role in skin structure and integrity, and dermal fibroblasts are believed to promote skin regeneration and rejuvenation via collagen production. Conclusions Fibroblasts can be used in transplantations to ameliorate an immune system response, in order to reduce antigen production. Human fibroblasts suppress ongoing mixed lymphocyte reactions (MLRs between lymphocyte cells from two individuals, and supernatant materials from fibroblast cultures suppress MLRs.

  5. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand...

  6. Different proliferative capacity of lung fibroblasts obtained from control subjects and patients with emphysema

    NARCIS (Netherlands)

    Noordhoek, JA; Postma, DS; Chong, LL; Vos, JTWM; Kauffman, HF; Timens, W; van Straaten, JFM

    2003-01-01

    To characterize the possible role of a dysregulated proliferative capacity of pulmonary fibroblasts in insufficient tissue repair in lungs from patients with pulmonary emphysema, the authors undertook in vitro proliferative studies with pulmonary fibroblasts obtained from lung tissue of patients

  7. Liver myofibroblasts of murine origins express mesothelin: Identification of novel rat mesothelin splice variants.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrβ, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and

  8. Deletion of soluble epoxide hydrolase attenuates cardiac hypertrophy via down-regulation of cardiac fibroblasts-derived fibroblast growth factor-2.

    Science.gov (United States)

    Zhang, Huanji; Wang, Tong; Zhang, Kun; Liu, Yu; Huang, Feifei; Zhu, Xinhong; Liu, Yang; Wang, Mong-Heng; Tang, Wanchun; Wang, Jingfeng; Huang, Hui

    2014-05-01

    Inhibition of soluble epoxide hydrolase (Ephx2) has been shown to play a protective role in cardiac hypertrophy, but the mechanism is not fully understood. We tested the hypothesis that deletion of soluble epoxide hydrolase attenuates cardiac hypertrophy via down-regulation of cardiac fibroblasts-derived fibroblast growth factor-2. Prospective, controlled, and randomized animal study. University laboratory. Male wild-type C57BL/6 mice and Ephx2 (-/-) mice. Male wild-type or Ephx2 (-/-) mice were subjected to transverse aorta constriction surgery. Four weeks after transverse aorta constriction, Ephx2 (-/-) mice did not develop significant cardiac hypertrophy as that of wild-type mice, indicated by no changes in the ratio of heart weight/body weight and ventricular wall thickness after transverse aorta constriction. Cardiac fibroblast growth factor-2 increased in wild-type-transverse aorta constriction group but this did not change in Ephx2 (-/-)-transverse aorta constriction group, and the serum level of fibroblast growth factor-2 did not change in both groups. In vitro, cardiac fibroblasts were stimulated by angiotensin II to analyze the expression of fibroblast growth factor-2. The effect of increased fibroblast growth factor-2 from cardiac fibroblasts induced by angiotensin II was attenuated by soluble epoxide hydrolase deletion. ERK1/2, p38, and AKT kinase were involved in fibroblast growth factor-2 expression regulated by angiotensin II, and soluble epoxide hydrolase deletion lowered the phosphorylation of ERK1/2 not p38 or AKT to mediate fibroblast growth factor-2 expression. In addition, soluble epoxide hydrolase deletion did not attenuate cardiomyocytes hypertrophy induced by exogenous fibroblast growth factor-2. Our present data demonstrated that deletion of soluble epoxide hydrolase prevented cardiac hypertrophy not only directly to cardiomyocytes but also to cardiac fibroblasts by reducing expression of fibroblast growth factor-2.

  9. Antioxidative properties of ginsenoside Ro against UV-B-induced oxidative stress in human dermal fibroblasts.

    Science.gov (United States)

    Kang, Hyun Ji; Oh, Yuri; Lee, Sihyeong; Ryu, In Wang; Kim, Kyunghoon; Lim, Chang-Jin

    2015-01-01

    Ginsenoside Ro (Ro), an oleanolic acid-type ginsenoside, exhibited suppressive activities on reactive oxygen species (ROS) and matrix metalloproteinase-2 (MMP-2) elevation in UV-B-irradiated fibroblasts. Ro could overcome the reduction of the total glutathione (GSH) contents in UV-B-irradiated fibroblasts. Ro could not interfere with cell viabilities in UV-B-irradiated fibroblasts. Collectively, Ro possesses a potential skin anti-photoaging property against UV-B radiation in fibroblasts.

  10. Cancer-Associated Fibroblasts: Perspectives in Cancer Therapy

    NARCIS (Netherlands)

    Prakash, Jai

    2016-01-01

    The interplay between cancer cells and stromal cells is increasingly recognized as a main driver of tumor progression and metastasis. This Forum article highlights the role of cancer-associated stromal fibroblasts (CAFs) in tumorigenesis and discusses the potential for developing specific stromal

  11. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies

    NARCIS (Netherlands)

    Koster, Janet; Waterham, Hans R.

    2017-01-01

    Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral

  12. Curcumin Reduces the Noise-Exposed Cochlear Fibroblasts Apoptosis

    Directory of Open Access Journals (Sweden)

    Haryuna, Tengku Siti Hajar

    2016-03-01

    Full Text Available Introduction The structural changes underlying permanent noise-induced hearing loss (NIHL include loss of the sensory hair cells, damage to their stereocilia, and supporting tissues within the cochlear lateral wall. Objective The objective of this study is to demonstrate curcumin as a safe and effective therapeutic agent in the prevention and treatment for fibroblasts damage within the cochlear supporting tissues and lateral wall through cell death pathway. Methods We divided 24 Rattus norvegicus into 4 groups, Group 1: control; Group 2: noise (+; Group 3: noise (+, 50 mg/day curcumin (+; Group 4: noise (+, 100 mg/day curcumin (+. We provided the noise exposure dose at 100 dB SPL for two hours over two weeks and administered the curcumin orally over two weeks. We examined all samples for the expressions of calcineurin, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1, and apoptotic index of cochlear fibroblasts. Results We found significant differences for the expressions of calcineurin (p < 0.05 in all groups, significant differences for the expressions of NFATc1 (p < 0.05 in all groups, except in Groups 1 and 4, and significant differences for the apoptotic index (p < 0.05 in all groups. Conclusion Curcumin proved to be potentially effective in the prevention and treatment for fibroblasts damage within the cochlear supporting tissues and lateral wall regarding the decreased expression of calcineurin, NFATc1, and apoptotic index of cochlear fibroblasts.

  13. Primary skin fibroblasts as a model of Parkinson's disease

    NARCIS (Netherlands)

    Auburger, G.; Klinkenberg, M.; Droste, J.A.H.; Marcus, K.; Morales-Gordo, B.; Kunz, W.S.; Brandt, U.; Broccoli, V.; Reichmann, H.; Gispert, S.; Jendrach, M.

    2012-01-01

    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts

  14. Involvement of the mitochondrial compartment in human NCL fibroblasts

    International Nuclear Information System (INIS)

    Pezzini, Francesco; Gismondi, Floriana; Tessa, Alessandra; Tonin, Paola; Carrozzo, Rosalba; Mole, Sara E.; Santorelli, Filippo M.; Simonati, Alessandro

    2011-01-01

    Highlights: ► Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. ► Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. ► Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  15. Fibroblast activation protein (FAP) as a novel metabolic target

    DEFF Research Database (Denmark)

    Sánchez-Garrido, Miguel Angel; Habegger, Kirk M; Clemmensen, Christoffer

    2016-01-01

    OBJECTIVE: Fibroblast activation protein (FAP) is a serine protease belonging to a S9B prolyl oligopeptidase subfamily. This enzyme has been implicated in cancer development and recently reported to regulate degradation of FGF21, a potent metabolic hormone. Using a known FAP inhibitor, talabostat...

  16. Endocytosis and intracellular protein degradation in cystic fibrosis fibroblasts

    International Nuclear Information System (INIS)

    Jessup, W.; Dean, R.T.

    1983-01-01

    Normal rates of pinocytosis of [ 3 H]sucrose were measured in cystic fibrosis fibroblasts, and were not affected by the addition of cystic fibrosis serum. Bulk protein degradation (a significant proportion of which occurs intralysosomally following autophagy) and its regulation by growth state were apparently identical in normal and cystic fibrosis cultures. (Auth.)

  17. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    Science.gov (United States)

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  18. Adhesion, growth, and matrix production by fibroblasts on laminin substrates

    DEFF Research Database (Denmark)

    Couchman, J R; Höök, M; Rees, D A

    1983-01-01

    and laminin-coated substrates with the development of microfilament bundles and focal adhesions. Antibodies to laminin, but not fibronectin, will prevent or reverse fibroblast adhesion to laminin, whereas antibodies to fibronectin but not laminin will give similar results on fibronectin-coated substrates...

  19. Fibroblastic osteosarcoma in a lion ( Panthera leo ) | Leonardi ...

    African Journals Online (AJOL)

    This report describes a case of spontaneous fibroblastic osteosarcoma in the humerus of a lion from a private park in Perugia, Italy. The tumor had an irregular, smooth, brown surface and a generally firm, rubbery consistence with gritty to hard areas interspersed. The mass was poorly vascularized with areas of necrosis at ...

  20. Scleral fibroblast response to experimental glaucoma in mice

    Science.gov (United States)

    Tezel, Gülgün; Cone-Kimball, Elizabeth; Steinhart, Matthew R.; Jefferys, Joan; Pease, Mary E.; Quigley, Harry A.

    2016-01-01

    Purpose To study the detailed cellular and molecular changes in the mouse sclera subjected to experimental glaucoma. Methods Three strains of mice underwent experimental bead-injection glaucoma and were euthanized at 3 days and 1, 3, and 6 weeks. Scleral protein expression was analyzed with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using 16O/18O labeling for quantification in 1- and 6-week tissues. Sclera protein samples were also analyzed with immunoblotting with specific antibodies to selected proteins. The proportion of proliferating scleral fibroblasts was quantified with Ki67 and 4’,6-diamidino-2-phenylindole (DAPI) labeling, and selected proteins were studied with immunohistochemistry. Results Proteomic analysis showed increases in molecules involved in integrin-linked kinase signaling and actin cytoskeleton signaling pathways at 1 and 6 weeks after experimental glaucoma. The peripapillary scleral region had more fibroblasts than equatorial sclera (p=0.001, n=217, multivariable regression models). There was a sixfold increase in proliferating fibroblasts in the experimental glaucoma sclera at 1 week and a threefold rise at 3 and 6 weeks (p=0.0005, univariate regression). Immunoblots confirmed increases for myosin, spectrin, and actinin at 1 week after glaucoma. Thrombospondin-1 (TSP-1), HINT1, vimentin, actinin, and α-smooth muscle actin were increased according to immunohistochemistry. Conclusions Scleral fibroblasts in experimental mouse glaucoma show increases in actin cytoskeleton and integrin-related signaling, increases in cell division, and features compatible with myofibroblast transition. PMID:26900327

  1. Correlation of astrocyte elevated gene‑1, basic‑fibroblast growth ...

    African Journals Online (AJOL)

    2015-02-03

    . Hu G, Wei Y, Kang Y. The multifaceted role of MTDH/AEG‑1 in cancer progression. Clin Cancer Res 2009;15:5615‑20. 10. Dow JK, deVere White RW. Fibroblast growth factor 2: Its structure and property, paracrine function ...

  2. Scanning Electronmicroscopic Appearance of X-irradiated Human Fibroblasts

    OpenAIRE

    Z., SOMOSY; TAMARA, KUBASOVA; G.J., KOTELES; Frederic Joliot-Curie National Research Institure for Radiobiology and Radiohygiene; "Frederic Joliot-Curie" National Research Institure for Radiobiology and Radiohygiene; "Frederic Joliot-Curie" National Research Institure for Radiobiology and Radioh

    1983-01-01

    Scanning electron microscopic (SEM) analyses of cultured human embryo fibroblasts were performed 10 minutes, 1, 4 and 24 hours after X-irradiation with 2.5 Gy. Marked surface changes were observed 10 minutes and 1 hour after irradiation. These include the

  3. Transient expression of acidic fibroblast growth factor in pea (Pisum ...

    African Journals Online (AJOL)

    Yomi

    2012-03-15

    Mar 15, 2012 ... Nowadays, there are many therapeutic proteins produced in different host plants in transient easy to perform, short production cycle, efficient and inexpensive. In this study, the modified pea early browning virus (PEBV) vector containing GFP and acidic fibroblast growth factor (aFGF) was introduced into pea ...

  4. Transient expression of acidic fibroblast growth factor in pea ( Pisum ...

    African Journals Online (AJOL)

    Nowadays, there are many therapeutic proteins produced in different host plants in transient easy to perform, short production cycle, efficient and inexpensive. In this study, the modified pea early browning virus (PEBV) vector containing GFP and acidic fibroblast growth factor (aFGF) was introduced into pea plants by leave ...

  5. Protective Effect of Modified Human Acidic Fibroblast Growth Factor ...

    African Journals Online (AJOL)

    Purpose: To investigate whether modified acidic fibroblast growth factor (MaFGF) can protect NRK52E cell against apoptotic death induced by actinomycin D (Act D) and the effect of MaFGF on PI3K/Akt signaling pathway. Methods: NRK52E cell apoptotic death was measured by several methods including cell morphologic ...

  6. DETACHMENT OF HUMAN FIBROBLASTS FROM FEP-TEFLON SURFACES

    NARCIS (Netherlands)

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1991-01-01

    In this study a comparison is made between the detachment behavior of human fibroblasts adhered to hydrophobic FEP-Teflon (water contact angle 109 degrees) and to hydrophilic glass (water contact angle smaller than 15 degrees) during exposure to a laminar, incrementally loaded flow. Detachment from

  7. Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension

    Czech Academy of Sciences Publication Activity Database

    Plecitá-Hlavatá, Lydie; Tauber, Jan; Li, M.; Zhang, H.; Flockton, A. R.; Pullamsetti, S. S.; Chelladurai, P.; D'Alessandro, A.; El Kasmi, K. C.; Ježek, Petr; Stenmark, K. R.

    2016-01-01

    Roč. 55, č. 1 (2016), s. 47-57 ISSN 1044-1549 R&D Projects: GA MŠk(CZ) LH11055; GA MŠk(CZ) LH15071 Institutional support: RVO:67985823 Keywords : mitochondria * complex I * oxidative metabolism * pulmonary hypertension * adventitial fibroblasts Subject RIV: ED - Physiology Impact factor: 4.100, year: 2016

  8. High molecular weight plant heteropolysaccharides stimulate fibroblasts but inhibit keratinocytes.

    Science.gov (United States)

    Shahbuddin, Munira; Shahbuddin, Dahlia; Bullock, Anthony J; Ibrahim, Halijah; Rimmer, Stephen; MacNeil, Sheila

    2013-06-28

    Konjac glucomannan (KGM) is a natural polysaccharide of β(1-4)-D-glucomannopyranosyl backbone of D-mannose and D-glucose derived from the tuber of Amorphophallus konjac C. Koch. KGM has been reported to have a wide range of activities including wound healing. In this study we examined KGM extracts prepared from five plant species, (Amorphophallus konjac Koch, Amorphophallus oncophyllus, Amorphophallus prainii, Amorphophallus paeoniifolius and Amorphophallus elegans) for their effects on cultured human keratinocytes and fibroblasts. Extracts from A. konjac Koch, A. oncophyllus and A. prainii (but not from A. paeoniifolius or A. elegans) stimulated fibroblast proliferation both in the absence and presence of serum. However, these materials inhibited keratinocyte proliferation. The fibroblast stimulatory activity was associated with high molecular weight fractions of KGM and was lost following ethanol extraction or enzyme digestion with β-mannanase. It was also reduced by the addition of concanavalin A but not mannose suggesting that these heteropolysaccharides are acting on lectins but not via receptors specific to mannose. The most dramatic effect of KGM was seen in its ability to support fibroblasts for 3weeks under conditions of deliberate media starvation. This effect did not extend to supporting keratinocytes under conditions of media starvation but KGM did significantly help support adipose derived stem cells under media starvation conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Secretome Analysis of Human Primary Fibroblasts Undergoing Senescence

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Micutkova, Lucia; Diener, Thomas

    alpha-1(XII) chain and fibulin 3. Results obtained until now are in agreement with the suggested shift from matix - synthesizing to matrix - degrading phenotype in senescent fibroblasts except the increased secretion of metalloproteinase inhibitors. Work is going on to identify the remaining...

  10. Cytotoxicity of Cricula triphenestrata Cocoon Extract on Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Siti Sunarintyas

    2012-01-01

    Full Text Available Objectives. The aim of this paper was to evaluate the cytotoxicity of Indonesian silkworm cocoon extract of Cricula triphenestrata on human fibroblasts. Methods and Materials. The cocoon shells of the silkworm Cricula triphenestrata were degumming. The shells were mixed with an aqueous solution of 0.3% Na2CO3 at 98°C for 1 hour. The solution was then dialyzed in cellulose membranes against deionized water for 3 days. The cocoon shells extract powder was collected via rotary evaporation and dried under freeze dryer. Cell culture medium was exposed to Cricula triphenestrata cocoon extract (0.01–100 μg/mL for 24 hours. The primary human gingival fibroblasts were exposed to the treated cell culture medium for 24 hours. Cytotoxicity evaluation was done by MTT method. The data were analyzed by one-way ANOVA. Result. The result revealed no significant cytotoxicity of Cricula triphenestrata cocoon extract against human fibroblasts at a concentration up to 100 μg/mL (>0.05. Conclusion. Cricula triphenestrata cocoon extract was not cytotoxic on human gingival fibroblast cells.

  11. Cellular electrophysiological principles that modulate secretion from synovial fibroblasts.

    Science.gov (United States)

    Clark, R B; Schmidt, T A; Sachse, F B; Boyle, D; Firestein, G S; Giles, W R

    2017-02-01

    Rheumatoid arthritis (RA) is a progressive disease that affects both pediatric and adult populations. The cellular basis for RA has been investigated extensively using animal models, human tissues and isolated cells in culture. However, many aspects of its aetiology and molecular mechanisms remain unknown. Some of the electrophysiological principles that regulate secretion of essential lubricants (hyaluronan and lubricin) and cytokines from synovial fibroblasts have been identified. Data sets describing the main types of ion channels that are expressed in human synovial fibroblast preparations have begun to provide important new insights into the interplay among: (i) ion fluxes, (ii) Ca 2+ release from the endoplasmic reticulum, (iii) intercellular coupling, and (iv) both transient and longer duration changes in synovial fibroblast membrane potential. A combination of this information, knowledge of similar patterns of responses in cells that regulate the immune system, and the availability of adult human synovial fibroblasts are likely to provide new pathophysiological insights. © 2016 University of Calgary. The Journal of Physiology © 2016 The Physiological Society.

  12. Growth modulation of fibroblasts by chitosan-polyvinyl pyrrolidone ...

    Indian Academy of Sciences (India)

    Chitosan-PVP hydrogel; fibroblast growth; wound management. J. Biosci. | vol. ... healing without scar formation, clinical strategies to decrease scar ... management. 2. Materials and methods. 2.1 Materials. Chitosan (deacytylation degree > 80%) and PVP were purchased from Vishu Aquatech, Chennai, and SRL,. Mumbai ...

  13. The Living Scar – Cardiac Fibroblasts and the Injured Heart

    Science.gov (United States)

    Rog-Zielinska, Eva A; Norris, Russell A; Kohl, Peter; Markwald, Roger

    2015-01-01

    Cardiac scars, often perceived as “dead” tissue, are very much alive, with heterocellular activity ensuring the maintenance of structural and mechanical integrity following heart injury. To form a scar, non-myocytes such as fibroblasts, proliferate and are recruited from intra- and extra-cardiac sources. Fibroblasts perform important autocrine and paracrine signalling functions. They also establish mechanical and, as is increasingly evident, electrical junctions with other cells. While fibroblasts were previously thought to act simply as electrical insulators, they may be electrically connected among themselves and, under certain circumstances, to other cells, including cardiomyocytes. A better understanding of these interactions will help target scar structure and function and facilitate the development of novel therapies aimed at modifying scar properties for patient benefit. This review explores available insight and recent concepts on fibroblast integration in the heart, and highlights potential avenues for harnessing their roles to optimise scar function following heart injury such as infarction, and therapeutic interventions such as ablation. PMID:26776094

  14. High level expression of human basic fibroblast growth factor in ...

    African Journals Online (AJOL)

    High level expression of human basic fibroblast growth factor in Escherichia coli : Evaluating the effect of the GC content and rare codons within the first 13 codons. ... Nterminally modified genes were PCR amplified and cloned into the expression vector, pET-22b. Meanwhile, wild-type gene remarkably expressed in all the ...

  15. Instability restricts signaling of multiple fibroblast growth factors

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Marcela; Chaloupková, R.; Zakrzewska, M.; Veselá, I.; Celá, Petra; Barathová, J.; Gudernová, I.; Zajíčková, R.; Trantírek, L.; Martin, J.; Kostas, M.; Otlewski, J.; Damborský, J.; Kozubík, Alois; Wiedlocha, A.; Krejčí, P.

    2015-01-01

    Roč. 72, č. 12 (2015), s. 2445-2459 ISSN 1420-682X R&D Projects: GA ČR(CZ) GA14-31540S; GA ČR GBP302/12/G157 Institutional support: RVO:67985904 ; RVO:68081707 Keywords : fibroblast growth factor * FGF * unstable Subject RIV: EA - Cell Biology Impact factor: 5.694, year: 2015

  16. Anti-fibrotic effects of theophylline on lung fibroblasts

    International Nuclear Information System (INIS)

    Yano, Yukihiro; Yoshida, Mitsuhiro; Hoshino, Shigenori; Inoue, Koji; Kida, Hiroshi; Yanagita, Masahiko; Takimoto, Takayuki; Hirata, Haruhiko; Kijima, Takashi; Kumagai, Toru; Osaki, Tadashi; Tachibana, Isao; Kawase, Ichiro

    2006-01-01

    Theophylline has been used in the management of bronchial asthma and chronic obstructive pulmonary disease for over 50 years. It has not only a bronchodilating effect, but also an anti-inflammatory one conducive to the inhibition of airway remodeling, including subepithelial fibrosis. To date however, whether theophylline has a direct inhibitory effect on airway fibrosis has not been established. To clarify this question, we examined whether theophylline affected the function of lung fibroblasts. Theophylline suppressed TGF-β-induced type I collagen (COL1) mRNA expression in lung fibroblasts and also inhibited fibroblast proliferation stimulated by FBS and TGF-β-induced α-SMA protein. A cAMP analog also inhibited TGF-β-induced COL1 mRNA expression in lung fibroblasts. A PKA inhibitor reduced the inhibitory effect of theophylline on TGF-β-induced COL1 mRNA expression. These results indicate that theophylline exerts anti-fibrotic effects, at least partly, through the cAMP-PKA pathway

  17. Protective Effect of Modified Human Acidic Fibroblast Growth Factor ...

    African Journals Online (AJOL)

    HP

    Purpose: To investigate whether modified acidic fibroblast growth factor (MaFGF) can protect NRK52E cell against apoptotic death induced by actinomycin D (Act D) and the effect of MaFGF on PI3K/Akt signaling pathway. Methods: NRK52E cell apoptotic death was measured by several methods including cell morphologic.

  18. Chenodeoxycholic acid stimulated fibroblast growth factor 19 response

    DEFF Research Database (Denmark)

    Borup, C; Wildt, S; Rumessen, J J

    2017-01-01

    BACKGROUND: Bile acid diarrhoea is underdiagnosed and better diagnostic tests are needed. Fasting serum fibroblast growth factor-19 (FGF19) has insufficient diagnostic value, but this may be improved by stimulation. AIM: To explore if an impaired FGF19 response identifies primary bile acid...

  19. File list: ALL.Oth.10.AllAg.Fibroblast [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.10.AllAg.Fibroblast mm9 All antigens Others Fibroblast SRX024353,SRX191057,...SRX024355,SRX024354,SRX024352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.10.AllAg.Fibroblast.bed ...

  20. File list: His.Oth.10.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.AllAg.Fibroblasts hg19 Histone Others Fibroblasts SRX651503,SRX651504,SR...X651505,SRX651506,SRX480793,SRX480792 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.10.AllAg.Fibroblasts.bed ...

  1. File list: His.Oth.05.AllAg.Fibroblast [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Fibroblast mm9 Histone Others Fibroblast SRX024353,SRX024354,SRX02...4352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Fibroblast.bed ...

  2. File list: ALL.Oth.50.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Fibroblasts hg19 All antigens Others Fibroblasts SRX338979,SRX4814...X396257,SRX396265,SRX396258,SRX396256 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.50.AllAg.Fibroblasts.bed ...

  3. File list: Oth.Oth.05.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Fibroblasts hg19 TFs and others Others Fibroblasts SRX396266,SRX48...396251,SRX396255,SRX396257,SRX396268,SRX396260,SRX396253,SRX396256,SRX396265 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.05.AllAg.Fibroblasts.bed ...

  4. File list: DNS.Oth.10.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.10.AllAg.Fibroblasts hg19 DNase-seq Others Fibroblasts SRX100966,SRX135564,...SRX480646,SRX480648,SRX089279,SRX480647,SRX480645,SRX089280,SRX100965 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.10.AllAg.Fibroblasts.bed ...

  5. File list: ALL.Oth.20.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Fibroblasts hg19 All antigens Others Fibroblasts SRX396266,SRX3389...X396267,SRX651503,SRX396255,SRX396269 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.20.AllAg.Fibroblasts.bed ...

  6. File list: His.Oth.05.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Fibroblasts hg19 Histone Others Fibroblasts SRX651503,SRX651504,SR...X651505,SRX651506,SRX480793,SRX480792 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.05.AllAg.Fibroblasts.bed ...

  7. File list: ALL.Oth.10.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.10.AllAg.Fibroblasts hg19 All antigens Others Fibroblasts SRX396266,SRX3962...X396262,SRX396269,SRX396264,SRX396265 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.10.AllAg.Fibroblasts.bed ...

  8. File list: ALL.Oth.05.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Fibroblasts hg19 All antigens Others Fibroblasts SRX396266,SRX4814...X651506,SRX480793,SRX480792,SRX396262 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.05.AllAg.Fibroblasts.bed ...

  9. File list: DNS.Oth.50.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Fibroblasts hg19 DNase-seq Others Fibroblasts SRX135564,SRX089279,...SRX100966,SRX089280,SRX100965,SRX480645,SRX480647,SRX480646,SRX480648 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.50.AllAg.Fibroblasts.bed ...

  10. File list: His.Oth.10.AllAg.Fibroblast [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.10.AllAg.Fibroblast mm9 Histone Others Fibroblast SRX024353,SRX024354,SRX02...4352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.10.AllAg.Fibroblast.bed ...

  11. File list: Oth.Oth.50.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Fibroblasts hg19 TFs and others Others Fibroblasts SRX338979,SRX48...396255,SRX481483,SRX396260,SRX396266,SRX396257,SRX396265,SRX396258,SRX396256 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.50.AllAg.Fibroblasts.bed ...

  12. File list: ALL.Oth.50.AllAg.Fibroblast [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Fibroblast mm9 All antigens Others Fibroblast SRX024353,SRX191057,...SRX024354,SRX024355,SRX024352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Fibroblast.bed ...

  13. File list: DNS.Oth.20.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.20.AllAg.Fibroblasts hg19 DNase-seq Others Fibroblasts SRX135564,SRX089279,...SRX480648,SRX100966,SRX480645,SRX480646,SRX089280,SRX100965,SRX480647 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.20.AllAg.Fibroblasts.bed ...

  14. File list: His.Oth.50.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Fibroblasts hg19 Histone Others Fibroblasts SRX480793,SRX480792,SR...X651506,SRX651504,SRX651505,SRX651503 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.50.AllAg.Fibroblasts.bed ...

  15. File list: ALL.Oth.20.AllAg.Fibroblast [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Fibroblast mm9 All antigens Others Fibroblast SRX191057,SRX024353,...SRX024354,SRX024355,SRX024352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.20.AllAg.Fibroblast.bed ...

  16. File list: Oth.Oth.10.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Fibroblasts hg19 TFs and others Others Fibroblasts SRX396266,SRX39...396255,SRX396268,SRX396252,SRX396257,SRX396260,SRX396256,SRX396253,SRX396265 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.10.AllAg.Fibroblasts.bed ...

  17. File list: Oth.Oth.20.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.20.AllAg.Fibroblasts hg19 TFs and others Others Fibroblasts SRX396266,SRX33...396252,SRX396260,SRX396268,SRX481483,SRX396256,SRX396265,SRX396253,SRX396255 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.20.AllAg.Fibroblasts.bed ...

  18. File list: DNS.Oth.05.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Fibroblasts hg19 DNase-seq Others Fibroblasts SRX100966,SRX480646,...SRX480648,SRX135564,SRX089279,SRX480647,SRX089280,SRX480645,SRX100965 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.05.AllAg.Fibroblasts.bed ...

  19. File list: His.Oth.50.AllAg.Fibroblast [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Fibroblast mm9 Histone Others Fibroblast SRX024353,SRX024354,SRX02...4352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Fibroblast.bed ...

  20. File list: His.Oth.20.AllAg.Fibroblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Fibroblasts hg19 Histone Others Fibroblasts SRX480793,SRX480792,SR...X651506,SRX651504,SRX651505,SRX651503 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.20.AllAg.Fibroblasts.bed ...

  1. File list: His.Oth.20.AllAg.Fibroblast [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Fibroblast mm9 Histone Others Fibroblast SRX024353,SRX024354,SRX02...4352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.20.AllAg.Fibroblast.bed ...

  2. Interleukin-8 induces motile behavior and loss of focal adhesions in primary fibroblasts

    DEFF Research Database (Denmark)

    Dunlevy, J R; Couchman, J R

    1995-01-01

    Interleukin-8 (IL-8) is a proinflammatory cytokine that promotes neutrophil migration. Although fibroblasts are known to secrete IL-8, the actions of this cytokine on fibroblasts have not been previously reported. We have found that in subconfluent populations of cultured primary fibroblasts, IL-8...

  3. Primary hyperparathyroidism and osteosarcoma: examination of a large cohort identifies three cases of fibroblastic osteosarcoma.

    Science.gov (United States)

    Jimenez, Camilo; Yang, Ying; Kim, Hyung-Woo; Al-Sagier, Fozia; Berry, Donald A; El-Naggar, Adel K; Patel, Shreyaskumar; Vassilopoulou-Sellin, Rena; Gagel, Robert F

    2005-09-01

    To study a possible relationship between hyperparathyroidism and osteosarcoma, we reviewed 1234 osteosarcoma patients. In this cohort, only three patients had a diagnosis of both hyperparathyroidism and fibroblastic osteosarcoma. These results indicate that hyperparathyroidism is not more prevalent in patients with osteosarcoma than in the general population. However, the presence of hyperparathyroidism may modify the histologic and cytologic features of osteosarcoma. The finding of osteosarcoma in rats receiving human PTH(1-34) raised the question of whether hyperparathyroidism might be a risk factor for development of osteosarcoma in humans. To study a possible relationship between hyperparathyroidism and osteosarcoma, we reviewed the medical records of 1234 osteosarcoma patients seen at The M.D. Anderson Cancer Center since 1948. Our study focused on clinical, biochemical, radiologic, and histopathologic findings indicative of primary hyperparathyroidism and the features of osteosarcoma. Of the 1234 cases reviewed, 3 patients had a diagnosis of both primary hyperparathyroidism and osteosarcoma. In two cases, hyperparathyroidism preceded the osteosarcoma, and in one case, both conditions were diagnosed at the same time. In two cases with concomitant hyperparathyroidism and osteosarcoma, features of osteitis fibrocystica were identified. The third patient was treated for hyperparathyroidism 3 years before osteosarcoma was diagnosed. All three patients had histologic features of fibroblastic osteosarcoma, a type that accounts for no more than 20% of osteosarcomas. To assess whether the prevalence of hyperparathyroidism was greater than expected in the normal population, we compared the age- and sex-specific prevalence in our cohort to a population of healthy individuals in Tromso, Norway. This analysis showed no significant differences between the two populations, despite the fact that a higher prevalence of hyperparathyroidism (6.9% versus 1.6%) was noted in the

  4. Myogenic conversion of bladder fibroblasts by construction and ...

    African Journals Online (AJOL)

    use

    2011-12-21

    Dec 21, 2011 ... Gene therapy of detrusor underactivity, by autologous cells transplantation, is limited by the number of primary myogenic. ... rats were cultured. The eukaryotic expression plasmid pEGFP-Myod1 carrying both a rat Myod1 cDNA ... Total RNA was taken from normal fresh Sprague-Daley rat muscle tissues.

  5. Basic fibroblast growth factor-treated adipose tissue-derived mesenchymal stem cell infusion to ameliorate liver cirrhosis via paracrine hepatocyte growth factor.

    Science.gov (United States)

    Tang, Wei-Ping; Akahoshi, Tomohiko; Piao, Jing-Shu; Narahara, Sayoko; Murata, Masaharu; Kawano, Takahito; Hamano, Nobuhito; Ikeda, Tetsuo; Hashizume, Makoto

    2015-06-01

    Recent studies show that adipose tissue-derived mesenchymal stem cells have potential clinical applications. However, the mechanism has not been fully elucidated yet. Here, we investigated the effect of basic fibroblast growth factor-treated adipose tissue-derived mesenchymal stem cells infusion on a liver fibrosis rat model and elucidated the underlying mechanism. Adipose tissue-derived mesenchymal stem cells were infused into carbon tetrachloride-induced hepatic fibrosis rats through caudal vein. Liver functions and pathological changes were assessed. A co-culture model was used to clarify the potential mechanism. Basic fibroblast growth factor treatment markedly improved the proliferation, differentiation, and hepatocyte growth factor expression ability of adipose tissue-derived mesenchymal stem cells. Although adipose tissue-derived mesenchymal stem cells infusion alone slightly ameliorated liver functions and suppressed fibrosis progression, basic fibroblast growth factor-treatment significantly enhanced the therapeutic effect in association with elevated hepatocyte growth factor expression. Moreover, double immunofluorescence staining confirmed that the infused cells located in fibrosis area. Furthermore, co-culture with adipose tissue-derived mesenchymal stem cell led to induction of hepatic stellate cell apoptosis and enhanced hepatocyte proliferation. However, these effects were significantly weakened by knockdown of hepatocyte growth factor. Mechanism investigation revealed that co-culture with adipose tissue-derived mesenchymal stem cells activated c-jun N-terminal kinase-p53 signaling in hepatic stellate cell and promoted apoptosis. Basic fibroblast growth factor treatment enhanced the therapeutic effect of adipose tissue-derived mesenchymal stem cells, and secretion of hepatocyte growth factor from adipose tissue-derived mesenchymal stem cells plays a critical role in amelioration of liver injury and regression of fibrosis. © 2015 Journal of

  6. Construction of functional pancreatic artificial islet tissue composed of fibroblast-modified polylactic- co-glycolic acid membrane and pancreatic stem cells.

    Science.gov (United States)

    Liu, Liping; Tan, Jing; Li, Baoyuan; Xie, Qian; Sun, Junwen; Pu, Hongli; Zhang, Li

    2017-09-01

    Objective To improve the biocompatibility between polylactic- co-glycolic acid membrane and pancreatic stem cells, rat fibroblasts were used to modify the polylactic- co-glycolic acid membrane. Meanwhile, we constructed artificial islet tissue by compound culturing the pancreatic stem cells and the fibroblast-modified polylactic- co-glycolic acid membrane and explored the function of artificial islets in diabetic nude mice. Methods Pancreatic stem cells were cultured on the fibroblast-modified polylactic- co-glycolic acid membrane in dulbecco's modified eagle medium containing activin-A, β-catenin, and exendin-4. The differentiated pancreatic stem cells combined with modified polylactic- co-glycolic acid membrane were implanted subcutaneously in diabetic nude mice. The function of artificial islet tissue was explored by detecting blood levels of glucose and insulin in diabetic nude mice. Moreover, the proliferation and differentiation of pancreatic stem cells on modified polylactic- co-glycolic acid membrane as well as the changes on the tissue structure of artificial islets were investigated by immunofluorescence and haematoxylin and eosin staining. Results The pancreatic stem cells differentiated into islet-like cells and secreted insulin when cultured on fibroblast-modified polylactic- co-glycolic acid membrane. Furthermore, when the artificial islet tissues were implanted into diabetic nude mice, the pancreatic stem cells combined with polylactic- co-glycolic acid membrane modified by fibroblasts proliferated, differentiated, and secreted insulin to reduce blood glucose levels in diabetic nude mice. Conclusion Pancreatic stem cells can be induced to differentiate into islet-like cells in vitro. In vivo, the artificial islet tissue can effectively regulate the blood glucose level in nude mice within a short period. However, as time increased, the structure of the artificial islets was destroyed due to the erosion of blood cells that resulted in the gradual

  7. Bone marrow fibroblasts in patients with advanced lung cancer

    Directory of Open Access Journals (Sweden)

    N.A. Chasseing

    2001-11-01

    Full Text Available In a previous study we demonstrated that the incidence of fibroblast colony-forming units (CFU-F was very low in bone marrow primary cultures from the majority of untreated advanced non-small lung cancer patients (LCP compared to normal controls (NC. For this reason, we studied the ability of bone marrow stromal cells to achieve confluence in primary cultures and their proliferative capacity following four continuous subcultures in consecutive untreated LCP and NC. We also evaluated the production of interleukin-1ß (IL-1ß and prostaglandin E2 (PGE2 by pure fibroblasts. Bone marrow was obtained from 20 LCP and 20 NC. A CFU-F assay was used to investigate the proliferative and confluence capacity. Levels of IL-1ß and PGE2 in conditioned medium (CM of pure fibroblast cultures were measured with an ELISA kit and RIA kit, respectively. Only fibroblasts from 6/13 (46% LCP confluent primary cultures had the capacity to proliferate following four subcultures (NC = 100%. Levels of spontaneously released IL-1ß were below 10 pg/ml in the CM of LCP, while NC had a mean value of 1,217 ± 74 pg/ml. In contrast, levels of PGE2 in these CM of LCP were higher (77.5 ± 23.6 pg/ml compared to NC (18.5 ± 0.9 pg/ml. In conclusion, bone marrow fibroblasts from LCP presented a defective proliferative and confluence capacity, and this deficiency may be associated with the alteration of IL-1ß and PGE2 production.

  8. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation

    DEFF Research Database (Denmark)

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa

    2010-01-01

    Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response...

  9. Enhanced proliferation and migration of fibroblasts on the surface of fibroblast growth factor-2-loaded fibrin microthreads.

    Science.gov (United States)

    Cornwell, Kevin G; Pins, George D

    2010-12-01

    Fibrin microthreads are discrete biopolymer fibers, 50-100 μm in diameter, produced from the natural extracellular matrix protein of the provisional matrix that promotes tissue regeneration in the in vivo wound healing environment. The goals of this study were to investigate the feasibility of creating fibrin microthreads containing fibroblast growth factor-2 (FGF-2), and to study the potential of a fibrin matrix to bind signaling proteins known to promote wound healing and regulate cell function in localized cellular microenvironments on scaffold surfaces. FGF-2 was loaded into fibrin microthreads in concentrations ranging from 0 to 200 ng/mL, to investigate the effect of the material on fibroblast attachment, proliferation, cellular outgrowth, and alignment. Although FGF-2-loaded microthreads did not affect fibroblast attachment, they significantly increased cellular outgrowth and proliferation relative to unloaded microthreads. The most pronounced effects were observed at day 7 of cell culture. Further, all of the fibrin microthreads promoted the alignment of fibroblasts and their cytoskeletal components along the long axis of threads, independent of the FGF-2 concentration. Ultimately, we anticipate that these fibrin microthreads will be a promising biopolymer material to promote the regeneration of injured tissues because of their mechanical stability and their matrix signaling capabilities, particularly when loaded with matrix-bound growth factors such as FGF-2.

  10. Congestive heart failure effects on atrial fibroblast phenotype: differences between freshly-isolated and cultured cells.

    Directory of Open Access Journals (Sweden)

    Kristin Dawson

    Full Text Available Fibroblasts are important in the atrial fibrillation (AF substrate resulting from congestive heart failure (CHF. We previously noted changes in in vivo indices of fibroblast function in a CHF dog model, but could not detect changes in isolated cells. This study assessed CHF-induced changes in the phenotype of fibroblasts freshly isolated from control versus CHF dogs, and examined effects of cell culture on these differences.Left-atrial fibroblasts were isolated from control and CHF dogs (ventricular tachypacing 240 bpm × 2 weeks. Freshly-isolated fibroblasts were compared to fibroblasts in primary culture. Extracellular-matrix (ECM gene-expression was assessed by qPCR, protein by Western blot, fibroblast morphology with immunocytochemistry, and K(+-current with patch-clamp. Freshly-isolated CHF fibroblasts had increased expression-levels of collagen-1 (10-fold, collagen-3 (5-fold, and fibronectin-1 (3-fold vs. control, along with increased cell diameter (13.4 ± 0.4 µm vs control 8.4 ± 0.3 µm and cell spreading (shape factor 0.81 ± 0.02 vs. control 0.87 ± 0.02, consistent with an activated phenotype. Freshly-isolated control fibroblasts displayed robust tetraethylammonium (TEA-sensitive K(+-currents that were strongly downregulated in CHF. The TEA-sensitive K(+-current differences between control and CHF fibroblasts were attenuated after 2-day culture and eliminated after 7 days. Similarly, cell-culture eliminated the ECM protein-expression and shape differences between control and CHF fibroblasts.Freshly-isolated CHF and control atrial fibroblasts display distinct ECM-gene and morphological differences consistent with in vivo pathology. Culture for as little as 48 hours activates fibroblasts and obscures the effects of CHF. These results demonstrate potentially-important atrial-fibroblast phenotype changes in CHF and emphasize the need for caution in relating properties of cultured fibroblasts to in vivo systems.

  11. Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling.

    Directory of Open Access Journals (Sweden)

    Kevin J Ashcroft

    Full Text Available Keloid disease (KD is an abnormal cutaneous fibroproliferative disorder of unknown aetiopathogenesis. Keloid fibroblasts (KF are implicated as mediators of elevated extracellular matrix deposition. Aberrant secretory behaviour by KF relative to normal skin fibroblasts (NF may influence the disease state. To date, no previous reports exist on the ability of site-specific KF to induce fibrotic-like phenotypic changes in NF or normal scar fibroblasts (NS by paracrine mechanisms. Therefore, the aim of this study was to investigate the influence of conditioned media from site-specific KF on the cellular and molecular behaviour of both NF and NS enabled by paracrine mechanisms. Conditioned media was collected from cultured primary fibroblasts during a proliferative log phase of growth including: NF, NS, peri-lesional keloid fibroblasts (PKF and intra-lesional keloid fibroblasts (IKF. Conditioned media was used to grow NF, NS, PKF and IKF cells over 240 hrs. Cellular behavior was monitored through real time cell analysis (RTCA, proliferation rates and migration in a scratch wound assay. Fibrosis-associated marker expression was determined at both protein and gene level. PKF conditioned media treatment of both NF and NS elicited enhanced cell proliferation, spreading and viability as measured in real time over 240 hrs versus control conditioned media. Following PKF and IKF media treatments up to 240 hrs, both NF and NS showed significantly elevated proliferation rates (p<0.03 and migration in a scratch wound assay (p<0.04. Concomitant up-regulation of collagen I, fibronectin, α-SMA, PAI-1, TGF-β and CTGF (p<0.03 protein expression were also observed. Corresponding qRT-PCR analysis supported these findings (P<0.03. In all cases, conditioned media from growing marginal PKF elicited the strongest effects. In conclusion, primary NF and NS cells treated with PKF or IKF conditioned media exhibit enhanced expression of fibrosis-associated molecular markers

  12. Stress Resistance in the Naked Mole-Rat: The Bare Essentials – A Mini-Review

    Science.gov (United States)

    Lewis, Kaitlyn N.; Mele, James; Hornsby, Peter J.; Buffenstein, Rochelle

    2012-01-01

    Background Studies comparing similar-sized species with disparate longevity may elucidate novel mechanisms that abrogate aging and prolong good health. We focus on the longest living rodent, the naked mole-rat. This mouse-sized mammal lives ∼8 times longer than do mice and, despite high levels of oxidative damage evident at a young age, it is not only very resistant to spontaneous neoplasia but also shows minimal decline in age-associated physiological traits. Objectives We assess the current status of stress resistance and longevity, focusing in particular on the molecular and cellular responses to cytotoxins and other stressors between the short-lived laboratory mouse and the naked mole-rat. Results Like other experimental animal models of lifespan extension, naked mole-rat fibroblasts are extremely tolerant of a broad spectrum of cytotoxins including heat, heavy metals, DNA-damaging agents and xenobiotics, showing LD50 values between 2- and 20-fold greater than those of fibroblasts of shorter-lived mice. Our new data reveal that naked mole-rat fibroblasts stop proliferating even at low doses of toxin whereas those mouse fibroblasts that survive treatment rapidly re-enter the cell cycle and may proliferate with DNA damage. Naked mole-rat fibroblasts also show significantly higher constitutive levels of both p53 and Nrf2 protein levels and activity, and this increases even further in response to toxins. Conclusion Enhanced cell signaling via p53 and Nrf2 protects cells against proliferating with damage, augments clearance of damaged proteins and organelles and facilitates the maintenance of both genomic and protein integrity. These pathways collectively regulate a myriad of mechanisms which may contribute to the attenuated aging profile and sustained healthspan of the naked mole-rat. Understanding how these are regulated may be also integral to sustaining positive human healthspan well into old age and may elucidate novel therapeutics for delaying the onset and

  13. Stress resistance in the naked mole-rat: the bare essentials - a mini-review.

    Science.gov (United States)

    Lewis, Kaitlyn N; Mele, James; Hornsby, Peter J; Buffenstein, Rochelle

    2012-01-01

    Studies comparing similar-sized species with disparate longevity may elucidate novel mechanisms that abrogate aging and prolong good health. We focus on the longest living rodent, the naked mole-rat. This mouse-sized mammal lives ~8 times longer than do mice and, despite high levels of oxidative damage evident at a young age, it is not only very resistant to spontaneous neoplasia but also shows minimal decline in age-associated physiological traits. We assess the current status of stress resistance and longevity, focusing in particular on the molecular and cellular responses to cytotoxins and other stressors between the short-lived laboratory mouse and the naked mole-rat. Like other experimental animal models of lifespan extension, naked mole-rat fibroblasts are extremely tolerant of a broad spectrum of cytotoxins including heat, heavy metals, DNA-damaging agents and xenobiotics, showing LD(50) values between 2- and 20-fold greater than those of fibroblasts of shorter-lived mice. Our new data reveal that naked mole-rat fibroblasts stop proliferating even at low doses of toxin whereas those mouse fibroblasts that survive treatment rapidly re-enter the cell cycle and may proliferate with DNA damage. Naked mole-rat fibroblasts also show significantly higher constitutive levels of both p53 and Nrf2 protein levels and activity, and this increases even further in response to toxins. Enhanced cell signaling via p53 and Nrf2 protects cells against proliferating with damage, augments clearance of damaged proteins and organelles and facilitates the maintenance of both genomic and protein integrity. These pathways collectively regulate a myriad of mechanisms which may contribute to the attenuated aging profile and sustained healthspan of the naked mole-rat. Understanding how these are regulated may be also integral to sustaining positive human healthspan well into old age and may elucidate novel therapeutics for delaying the onset and progression of physiological declines

  14. [The effect of basic fibroblast growth factor on the mRNA expression of beta1 integrin subunit by periodontal ligament fibroblasts in culture].

    Science.gov (United States)

    Li, Hong-yan; Lin, Chong-tao; Li, Bo

    2010-10-01

    To study the effect of basic fibroblast growth factor on the mRNA expression of beta1 integrin subunit by periodontal ligament fibroblasts in culture; to discuss the effect of basic fibroblast growth factor in periodontal regeneration. Human periodontal ligament fibroblasts were cultured and stimulated by basic fibroblast growth factor (0.1, 1.0, 10.0 ng x mL(-1)) for 24, 48, 72 h respectively, and then mRNA expression of beta1 integrin subunit was assessed by fluorescent quantitative real-time reverse transcription polymerase chain reaction. Basic fibroblast growth factor enhanced the mRNA expression of beta1 integrin subunit, and there was optimal effect when the concentration of basic fibroblast growth factor was 1.0 ng x mL(-1) at 24, 48, 72 h respectively; the mRNA expression of beta1 integrin subunit at 72 h was higher than that at 24, 48 h. Basic fibroblast growth factor can strengthen human periodontal ligament fibroblasts' adhesion and may be one of important factors which participate in the periodontal regeneration.

  15. Increased cell surface Fas expression is necessary and sufficient to sensitize lung fibroblasts to Fas ligation-induced apoptosis: implications for fibroblast accumulation in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Wynes, Murry W; Edelman, Benjamin L; Kostyk, Amanda G; Edwards, Michael G; Coldren, Christopher; Groshong, Steve D; Cosgrove, Gregory P; Redente, Elizabeth F; Bamberg, Alison; Brown, Kevin K; Reisdorph, Nichole; Keith, Rebecca C; Frankel, Stephen K; Riches, David W H

    2011-07-01

    Idiopathic pulmonary fibrosis (IPF) is associated with the accumulation of collagen-secreting fibroblasts and myofibroblasts in the lung parenchyma. Many mechanisms contribute to their accumulation, including resistance to apoptosis. In previous work, we showed that exposure to the proinflammatory cytokines TNF-α and IFN-γ reverses the resistance of lung fibroblasts to apoptosis. In this study, we investigate the underlying mechanisms. Based on an interrogation of the transcriptomes of unstimulated and TNF-α- and IFN-γ-stimulated primary lung fibroblasts and the lung fibroblast cell line MRC5, we show that among Fas-signaling pathway molecules, Fas expression was increased ∼6-fold in an NF-κB- and p38(mapk)-dependent fashion. Prevention of the increase in Fas expression using Fas small interfering RNAs blocked the ability of TNF-α and IFN-γ to sensitize fibroblasts to Fas ligation-induced apoptosis, whereas enforced adenovirus-mediated Fas overexpression was sufficient to overcome basal resistance to Fas-induced apoptosis. Examination of lung tissues from IPF patients revealed low to absent staining of Fas in fibroblastic cells of fibroblast foci. Collectively, these findings suggest that increased expression of Fas is necessary and sufficient to overcome the resistance of lung fibroblasts to Fas-induced apoptosis. Our findings also suggest that approaches aimed at increasing Fas expression by lung fibroblasts and myofibroblasts may be therapeutically relevant in IPF.

  16. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways.

    Science.gov (United States)

    Makino, T; Jinnin, M; Muchemwa, F C; Fukushima, S; Kogushi-Nishi, H; Moriya, C; Igata, T; Fujisawa, A; Johno, T; Ihn, H

    2010-04-01

    Basic fibroblast growth factor (bFGF, FGF-2) has been described as a multipotent cytokine that regulates cell growth as well as differentiation, matrix composition, chemotaxis, cell adhesion and migration in numerous cell types. It is known that bFGF stimulates proliferation of cultured fibroblasts. However, the detailed mechanism of fibroblast proliferation induced by bFGF in vitro still remains to be elucidated. Objectives We investigated the precise effects of bFGF on fibroblast proliferation and the signalling pathways responsible for bFGF-induced proliferation in cultured human dermal fibroblasts (HDFs). HDFs were cultured with bFGF in the presence or absence of specific inhibitors against MAPK signalling pathways including ERK, JNK and p38. The number of cells was counted and immunoblotting findings were examined for the activation of ERK1/2 and JNK. Furthermore, the inhibitory effects of ERK1, ERK2 and JNK1 were proven by the transfection of siRNA. bFGF increased the number of HDFs in a dose- and time-dependent manner. The bFGF-induced proliferation was suppressed by the MEK inhibitors PD98059 and U0126, and the JNK inhibitor SP600125. bFGF increased the phosphorylation levels of ERK1/2 and JNK1. Treatment with ERK1, ERK2 or JNK1 siRNA significantly inhibited bFGF-induced proliferation. This study indicates that ERK1/2 and JNK pathways play an important role in the bFGF-mediated effect in HDFs. This study also suggests that controlling ERK1/2 and/or JNK signalling may therefore be a new therapeutic approach for the treatment of chronic and untreatable skin ulcers.

  17. Enhanced Contraction of a Normal Breast-Derived Fibroblast-Populated Three-Dimensional Collagen Lattice via Contracted Capsule Fibroblast-Derived Paracrine Factors: Functional Significance in Capsular Contracture Formation.

    Science.gov (United States)

    Kyle, Daniel J T; Bayat, Ardeshir

    2015-05-01

    The authors' aim was to identify morphological, genotypic, and cytokine profiles of normal breast-derived fibroblasts, noncontracted breast implant capsule (Baker grades 1 and 2) fibroblasts, and contracted breast implant capsule (Baker grades 3 and 4) fibroblasts, and to investigate the paracrine effects of contracted breast capsule fibroblast--conditioned media on a breast-derived fibroblast-populated three-dimensional collagen lattice. Primary breast-derived fibroblasts (n = 5), noncontracted breast capsule fibroblasts (n = 5), and contracted breast capsule fibroblasts (n = 5) were cultured, and conditioned media were obtained from passage 1 cells. Cells were immunostained for alpha smooth muscle actin to identify myofibroblasts. A panel of 16 inflammatory, fibrosis, extracellular matrix, and tissue remodeling-related genes were investigated using quantitative reverse transcriptase polymerase chain reaction and cytokine arrays. Fibroblast-populated collagen lattices were fabricated and treated with conditioned media, and lattice contracture was measured over 5 days. Several inflammatory and fibrotic genes were significantly dysregulated in contracted breast capsule fibroblasts compared with noncontracted breast capsule fibroblasts and breast-derived fibroblasts (p fibroblast-populated collagen lattices treated with contracted breast capsule fibroblast-conditioned media demonstrated increased lattice contraction compared with treatment with normal 10% serum media (control), breast-derived fibroblasts, or noncontracted breast capsule fibroblast-conditioned media (p fibroblasts supplemented with contracted breast capsule fibroblast-conditioned media transformed into a contracted breast capsule fibroblast-like cell (p fibroblasts induce normal breast fibroblast transformation and contraction via paracrine signaling, which may contribute to capsular contracture formation.

  18. Prevention of injury by resveratrol in a rat model of adenine-induced ...

    African Journals Online (AJOL)

    The effect of 10, 15, and 20 mg/kg doses of resveratrol on the levels of parathyroid hormone, phosphorous, and fibroblast growth factor-23 (FGF-23) in rat urine samples after 2 months of adenine administration were analyzed using an auto-analyzer. Results: Resveratrol treatment significantly inhibited the adenine-mediated ...

  19. Age-related disruption of autophagy in dermal fibroblasts modulates extracellular matrix components

    International Nuclear Information System (INIS)

    Tashiro, Kanae; Shishido, Mayumi; Fujimoto, Keiko; Hirota, Yuko; Yo, Kazuyuki; Gomi, Takamasa; Tanaka, Yoshitaka

    2014-01-01

    Highlights: •Autophagosomes accumulate in aged dermal fibroblasts. •Autophagic degradation is impaired in aged dermal fibroblasts. •Autophagy disruption affects extracellular matrix components in dermal fibroblasts. -- Abstract: Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility

  20. ShcA regulates neurite outgrowth stimulated by neural cell adhesion molecule but not by fibroblast growth factor 2: evidence for a distinct fibroblast growth factor receptor response to neural cell adhesion molecule activation

    DEFF Research Database (Denmark)

    Hinsby, Anders M; Lundfald, Line; Ditlevsen, Dorte K

    2004-01-01

    Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells....... Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein...... ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM...

  1. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor

    Directory of Open Access Journals (Sweden)

    Ebrahim Shahbazi

    2016-04-01

    Full Text Available Direct conversion of somatic cells into neural stem cells (NSCs by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. In addition, the single-seeded induced NSCs were able to form NSC colonies with efficiency comparable with control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating, and attaining neural phenotypes after transplantation into neonatal mouse and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts.

  2. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis.

    Science.gov (United States)

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-10-12

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.

  3. Effect of macrophage and matrix metalloproteinase-9 on proliferation of pulmonary fibroblast and synthesis of collagen IV

    International Nuclear Information System (INIS)

    Song Liangwen; Sun Li; Diao Ruiying; Li Yang; Zhang Yong; Yin Jiye

    2006-01-01

    Objective: To explore pathogenetic mechanism in initiation of radiation-induced pulmonary fibrosis. Methods: Alveolar macrophages in Wistar rats irradiated by 60 Co γ-ray were collected by alveolar lavage; condition medium was prepared for stimulating human lung fibroblast (HLF) proliferation; HLF proliferation activity was determined by MTT method; collagen IV (Col IV) in HLF was determined by Western blot; the activity of matrix metalloproteinase-9 (MMP-9) was determined by zymography. Results: HLF proliferation activity was significantly increased after stimulation of condition medium, and the increase was most evident within 48-72 hs. Col IV synthesis in HLF was increased and reached a peak at 12 h after stimulation and then began to decrease. MMP-9 activity began to increase at 12 h and reached a peak at 48 h and then decreased after 72 h. Conclusions: Cobalt-60 gamma ray irradiation of 20 Gy can stimulate secretion of some cytokines in alveolar macrophage to promote pulmonary interstitial fibroblast proliferation and synthesis of Col IV . Col IV can stimulate MMP-9 increase; MMP-9 can degrade excess Col IV. Such changes are involved in remodeling process of early pulmonary injury. (authors)

  4. Constructing a blood vessel on the porous scaffold modified with vascular endothelial growth factor and basic fibroblast growth factor

    Science.gov (United States)

    Sevostyanova, V. V.; Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Shabaev, A. R.; Senokosova, E. A.; Krivkina, E. O.; Vasyukov, G. Yu.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2016-11-01

    Incorporation of the growth factors into biodegradable polymers is a promising approach for the fabrication of tissue-engineered vascular grafts. Here we blended poly(ɛ-caprolactone) (PCL) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) following incorporation of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) and then fabricated electrospun 2 mm diameter vascular grafts. Grafts without the growth factors were used as a control group. Structure of the grafts was assessed utilizing scanning electron microscopy. We further implanted our grafts into rat abdominal aorta for 1 and 3 months with the aim to test endothelialization, cell infiltration, and patency in vivo. Histological and immunofluorescence examination demonstrated enhanced endothelialization and cell infiltration of the grafts with either VEGF or bFGF compared to those without the growth factors. Grafts with VEGF showed higher patency compared to those with bFGF; however, bFGF promoted migration of smooth muscle cells and fibroblasts into the graft. Therefore, we conclude that incorporation of VEGF and bFGF into the inner and medial/outer layer, respectively, can be a promising option for the fabrication of tissue-engineered vascular grafts.

  5. Estradiol stimulation of inositolphospholipid metabolism in human endometrial fibroblasts

    International Nuclear Information System (INIS)

    Iida, K.; Imai, A.; Tamaya, T.

    1989-01-01

    Stimulated inositolphospholipid turnover has been proposed to constitute a signal-transducing mechanism in many cell types. To determine the inositolphospholipid turnover during stimulation by 17 beta-estradiol, the turnover kinetics of phospholipids was investigated in human endometrial fibroblasts. In cells incubated with [ 32 P] phosphate for 1 h, estradiol rapidly and persisitently (for at least 30 min) enhanced the rate of 32 P-labeling of phosphatidic acid (PA). On the other hand, after a lag time of 5 min, 32 P-labeling of phosphatidylinositol (PI) was also increased also. These sequential 32 P-labeling of PA and PI demonstrated that inositolphospholipid turnover was stimulated in fibroblasts exposed to estradiol. The rapid estrogen-stimulated inositolphospholipid turnover may not be through the mechanism associated with classical action of estrogen

  6. Fibroblast motility on substrates with different rigidities: modeling approach

    Science.gov (United States)

    Gracheva, Maria; Dokukina, Irina

    2009-03-01

    We develop a discrete model for cell locomotion on substrates with different rigidities and simulate experiments described in Lo, Wang, Dembo, Wang (2000) ``Cell movement is guided by the rigidity of the substrate'', Biophys. J. 79: 144-152. In these experiments fibroblasts were planted on a substrate with a step rigidity and showed preference for locomotion over stiffer side of the substrate when approaches the boundary between the soft and the stiff sides of the substrate. The model reproduces experimentally observed behavior of fibroblasts. In particular, we are able to show with our model how cell characteristics (such as cell length, shape, area and speed) change during cell crawling through the ``soft-stiff'' substrate boundary. Also, our model suggests the temporary increase of both cell speed and area in that very moment when cell leaves soft side of substrate.

  7. Bio-artificial pleura using an autologous dermal fibroblast sheet

    Science.gov (United States)

    Kanzaki, Masato; Takagi, Ryo; Washio, Kaoru; Kokubo, Mami; Yamato, Masayuki

    2017-10-01

    Air leaks (ALs) are observed after pulmonary resections, and without proper treatment, can produce severe complications. AL prevention is a critical objective for managing patients after pulmonary resection. This study applied autologous dermal fibroblast sheets (DFS) to close ALs. For sealing ALs in a 44-year-old male human patient with multiple bullae, a 5 × 15-mm section of skin was surgically excised. From this skin specimen, primary dermal fibroblasts were isolated and cultured for 4 weeks to produce DFSs that were harvested after a 10-day culture. ALs were completely sealed using surgical placement of these autologous DFSs. DFS were found to be a durable long-term AL sealant, exhibiting requisite flexibility, elasticity, durability, biocompatibility, and usability, resulting reliable AL closure. DFS should prove to be an extremely useful tissue-engineered pleura substitute.

  8. The in vitro photosensitivity of systemic lupus erythematosus skin fibroblasts.

    Science.gov (United States)

    Zamansky, G B; Minka, D F; Deal, C L; Hendricks, K

    1985-03-01

    To investigate the role of DNA damage in the pathogenesis of systemic lupus erythematosus (SLE), we studied the ability of skin fibroblasts derived from SLE patients to recover from ultraviolet (UV) light radiation of varying wavelengths. Four of five SLE cell strains were more sensitive to UV-C (254 nm), sun lamp, and UV-A (320 to 400 nm) light than were normal cells. SLE cellular recovery was most sensitive to broad spectrum, long wavelength light. This hypersensitivity did not appear to result from the UV light activation of a clastogenic factor. Experiments which examined the DNA repair capacity of irradiated cells indicated that SLE fibroblasts may be able to excise certain DNA lesions as well as normal cells. The mechanisms responsible for the hypersensitivity of SLE cells remain under investigation.

  9. Periodontal fibroblasts modulate proliferation and osteogenic differentiation of embryonic stem cells through production of fibroblast growth factors.

    Science.gov (United States)

    Kook, Sung-Ho; Jeon, Young-Mi; Park, Song-Soo; Lee, Jeong-Chae

    2014-04-01

    Periodontal ligament fibroblasts (PLFs) maintain homeostasis of periodontal ligaments by producing paracrine factors that affect various functions of stem-like cells. It is hypothesized that PLFs induce proliferation and differentiation of stem cells more effectively than gingival fibroblasts (GFs) and skin fibroblasts (SFs). PLFs and GFs were isolated from extracted teeth and cultured in the presence and absence of osteogenesis-inducing factors. Mouse embryonic stem (mES) cells and SFs were purchased commercially. mES cells were incubated with culture supernatants of these fibroblasts or cocultured directly with the cells. Proliferation and mineralization in mES cells were determined at various times of incubation. Immunostaining and polymerase chain reaction were performed. The activity of mitogen-activated protein kinase and alkaline phosphatase (ALP) was also measured. In cocultures, PLFs stimulated proliferation of mES cells more effectively than GFs or SFs. Similarly, the addition of culture supernatant of PLFs induced the most prominent proliferation of mES cells, and this was significantly inhibited by treatment with antibody against fibroblast growth factor (FGF)4 or the c-Jun N-terminal kinase inhibitor SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one). Supplementation with culture supernatant from the fibroblasts induced osteogenic differentiation of mES cells in the order PLFs > GFs > SFs. These activities of PLFs were related to their potential to produce osteogenic markers, such as ALP and runt-related transcription factor-2 (Runx2), and to secrete FGF7. Pretreatment of mES cells with the extracellular signal-regulated kinase inhibitor PD98059 [2-(2-amino-3-methyoxyphenyl)-4H-1-benzopyran-4-one] or SP600125 clearly attenuated mineralization induced by culture supernatant of PLF with attendant decreases in mRNA levels of Runx2, bone sialoprotein, osteocalcin, and osteopontin. PLFs regulate the proliferation and osteogenic differentiation of mES cells more

  10. Fibroblast TGF-Beta Signaling in Breast Development and Cancer

    Science.gov (United States)

    2012-09-01

    Tomato and activates expression of membrane-targeted EGFP. The fluorescent reporter molecules are visualized in frozen sections of tissue. Our...stroma within the tumors (Figure 3). Tomato expression remains in epithelial cells, showing cell-specific recombination within fibroblasts...between ECM and cells by means of their integrin-dependent cell–matrix adhesions, eliciting changes in stromal dynamics and composition . Changes in

  11. Myxoinflammatory fibroblastic sarcoma: An uncommon tumour at an unusual site

    Directory of Open Access Journals (Sweden)

    Varuna Mallya

    2014-01-01

    Full Text Available Myxoinflammatory fibroblastic sarcoma is a low grade sarcoma that is composed of a mixed inflammatory infiltrate along with spindled, epithelioid and bizarre appearing cells in a background of hyaline and myxoid zones. Seen affecting the distal extremities commonly, with an equal sex predilection, these tumors are rare and require an extensive immunohistochemical work up for proper diagnosis. They have a tendency to recur.

  12. Inhibition of normal human lung fibroblast growth by beryllium.

    Science.gov (United States)

    Lehnert, N M; Gary, R K; Marrone, B L; Lehnert, B E

    2001-03-07

    Inhalation of particulate beryllium (Be) and its compounds causes chronic Be disease (CBD) in a relatively small subset ( approximately 1-6%) of exposed individuals. Hallmarks of this pulmonary disease include increases in several cell types, including lung fibroblasts, that contribute to the fibrotic component of the disorder. In this regard, enhancements in cell proliferation appear to play a fundamental role in CBD development and progression. Paradoxically, however, some existing evidence suggests that Be actually has antiproliferative effects. In order to gain further information about the effects of Be on cell growth, we: (1) assessed cell proliferation and cell cycle effects of low concentrations of Be in normal human diploid fibroblasts, and (2) investigated the molecular pathway(s) by which the cell cycle disturbing effects of Be may be mediated. Treatment of human lung and skin fibroblasts with Be added in the soluble form of BeSO(4) (0.1-100 microM) caused inhibitions of their growth in culture in a concentration-dependent manner. Such growth inhibition was found to persist, even after cells were further cultured in Be(2+)-free medium. Flow cytometric analyses of cellular DNA labeled with the DNA-binding fluorochrome DAPI revealed that Be causes a G(0)-G(1)/pre-S phase arrest. Western blot analyses indicated that the Be-induced G(0)-G(1)/pre-S phase arrest involves elevations in TP53 (p53) and the cyclin-dependent kinase inhibitor CDKN1A (p21(Waf-1,Cip1)). That Be at low concentrations inhibits the growth of normal human fibroblasts suggests the possibility of the existence of abnormal cell cycle inhibitory responses to Be in individuals who are sensitive to the metal and ultimately develop CBD.

  13. Fibroblasts and the extracellular matrix in right ventricular disease.

    Science.gov (United States)

    Frangogiannis, Nikolaos G

    2017-10-01

    Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of

  14. Fibroblast growth factor signaling in embryonic and cancer stem cells

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Petr; Dvořáková, D.; Hampl, Aleš

    2006-01-01

    Roč. 580, - (2006), s. 2869-2874 ISSN 0014-5793 R&D Projects: GA MŠk 1M0538; GA ČR GA301/03/1122 Institutional research plan: CEZ:AV0Z50390512 Keywords : Fibroblast growth factor 2 * Embryonic stem cell * Hematopoietic progenitor cell Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.372, year: 2006

  15. Tryptophan Transport in Human Fibroblast Cells—A Functional Characterization

    Directory of Open Access Journals (Sweden)

    Ravi Vumma

    2011-01-01

    Full Text Available There are indications that serotonergic neurotransmission is disturbed in several psychiatric disorders. One explanation may be disturbed transport of tryptophan (precursor for serotonin synthesis across cell membranes. Human fibroblast cells offer an advantageous model to study the transport of amino acids across cell membranes, since they are easy to propagate and the environmental factors can be controlled. The aim of this study was to functionally characterize tryptophan transport and to identify the main transporters of tryptophan in fibroblast cell lines from healthy controls. Tryptophan kinetic parameters ( V max and K m at low and high concentrations were measured in fibroblasts using the cluster tray method. Uptake of 3 H (5-L-tryptophan at different concentrations in the presence and absence of excess concentrations of inhibitors or combinations of inhibitors of amino acid transporters were also measured. Tryptophan transport at high concentration (0.5 mM had low affinity and high V max and the LAT1 isoform of system-L was responsible for approximately 40% of the total uptake of tryptophan. In comparison, tryptophan transport at low concentration (50 nM had higher affinity, lower V max and approximately 80% of tryptophan uptake was transported by system-L with LAT1 as the major isoform. The uptake of tryptophan at the low concentration was mainly sodium (Na + dependent, while uptake at high substrate concentration was mainly Na + independent. A series of different transporter inhibitors had varying inhibitory effects on tryptophan uptake. This study indicates that tryptophan is transported by multiple transporters that are active at different substrate concentrations in human fibroblast cells. The tryptophan transport trough system-L was mainly facilitated by the LAT1 isoform, at both low and high substrate concentrations of tryptophan.

  16. [Construction of chicken embryo fibroblasts cDNA expression library].

    Science.gov (United States)

    Liu, Wei; Gao, Yu-long; Gao, Hong-lei; Wang, Xiao-mei; Xu, Xiu-hong

    2007-06-01

    Chicken embryo fibroblast (CEF) is a primary cellular material to research the infectious bursal disease virus (IBDV). Constructing the cDNA expression library of CEF is the foundation to research cell tropism and find cell receptors of IBDV from CEF. In order to achieve that purpose, a high-quality cDNA expression library of CEF was constructed by Gateway technology, which could avoid using the restriction enzyme for cloning to solve technical limitation of roution method. The mRNA was extracted from chicken embryonic fibroblast. Moreover, single-strand cDNA and double-strand cDNA were synthesized by using biotin-conjugated Oligo (dT) primer in turn. The double-strand cDNA was ligated Adapter and then purified by the cDNA Size Fractionation Columns. After BP recombination reaction, a cDNA entry library was constructed with a titer of 1 x 10(6) cfu/mL, total clones of 1.2 x 10(7) cfu and an average insertion size of about 2243 bp. After LR recombination reaction, the cDNA entry library was transformed into expression library which took on a titer of 5 x 10(5) cfu/mL, total clones of 5.5 x 10(6) cfu and an average insertion size of about 2411bp. The results indicate that the constructed cDNA expression library performs a remarkable high value in both recombination rate and library coverage. As a result, the cDNA expression library, with its good quality, may facilitate to identify the receptors associated with the resistance against IBDV in chicken embryonic fibroblast and to cast new light on the mechanism of cellular tropism. Moreover, it may also provide data of chicken embryonic fibroblast in transcription level and may be helpful to study its biological functions.

  17. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    -associated protein 9 (dCas9)-VP64 (CRISPRa) alone, or a combination of dCas9-VP64 and MS2-P65-HSF1 [synergistic activation mediator (SAM) system] mediated activation of five pluripotency genes: KLF4 (K), LIN28 (L), MYC (M), OCT4 (O), and SOX2 (S) in human cells (HEK293T, HeLa, HepG2, and primary fibroblasts...

  18. Radioprotective effect of catecholamines on the cultured Chinese hamster fibroblasts

    International Nuclear Information System (INIS)

    Chirkov, Yu.Yu.; Malatsidze, M.A.; Sobolev, A.S.

    1985-01-01

    On cultivated in vitro Chinese hamster fibroblasts radioprotective properties of adrenaline, noradrenaline and isoproterenol in different concentrations are studied. Isoproterenol radiopreventive effect is clearly manifested with its concentration being 1x10 -8 M; adrenaline and noradrenaline are efficient in higher concentrations. Propranolol, blocking β-adrenergic receptors, completely presents radioprotective effect of catecholamines on the cells. β-adrenergic mechanism of catecholamine radioprotective effect on Mammalia cells is discussed

  19. EB1 is required for primary cilia assembly in fibroblasts

    DEFF Research Database (Denmark)

    Schrøder, Jacob M; Schneider, Linda; Christensen, Søren T

    2007-01-01

    EB1 is a small microtubule (MT)-binding protein that associates preferentially with MT plus ends and plays a role in regulating MT dynamics. EB1 also targets other MT-associated proteins to the plus end and thereby regulates interactions of MTs with the cell cortex, mitotic kinetochores, and diff...... that localization of EB1 at the centriole/basal body is required for primary cilia assembly in fibroblasts....

  20. Low power laser stimulation of the bone consolidation in tibial fractures of rats: a radiologic and histopathological analysis.

    Science.gov (United States)

    Briteño-Vázquez, M; Santillán-Díaz, G; González-Pérez, M; Gallego-Izquierdo, T; Pecos-Martín, D; Plaza-Manzano, G; Romero-Franco, N

    2015-01-01

    The objective of this study is to analyze the effectiveness of low power laser irradiation in the bone consolidation of tibial fractures in rats. An experimental, comparative, prospective study with control group was designed. Twenty Wistar rats were grouped into control (n = 10) and experimental groups (n = 10). A tibial fracture, with a mechanical drill, was inflicted in all rats. The experimental group received ten days of low power arsenide-gallium laser irradiation of 850 nm (KLD, Sao Paulo, Brasil)-100 mW, 8 J/cm(2), 64 s. Before and after the laser treatment, a radiologic analysis was carried out in both groups, in which the rats were graded from 0 to IV according the Montoya scale of bone consolidation. Also, we histopathologically analyzed the bone to estimate the proliferation of fibroblasts, bone matrix, and angiogénesis with a microscopy, which were graded as I (thin layer of fibroblasts and osteoid matrix), II (thick layer of fibroblasts and osteoid matrix), or III (thick layer of fibroblasts and osteoid matrix and new blood vessels). Radiologic data showed that the experimental group had a higher bone consolidation of Montoya scale after ten days of laser irradiation compared to control group (P fractures in rats, according to radiologic and histopathologic analysis.

  1. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, C P; Sevcencu, C; Yoshida, K [Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg (Denmark); Dolatshahi-Pirouz, A; Foss, M; Larsen, A Nylandsted; Besenbacher, F [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus (Denmark); Hansen, J Lundsgaard [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark); Zachar, V, E-mail: cpennisi@hst.aau.d [Laboratory for Stem Cell Research, Aalborg University (Denmark)

    2009-09-23

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  2. Effect of phenytoin and age on gingival fibroblast enzymes.

    Directory of Open Access Journals (Sweden)

    Surena Vahabi

    2014-06-01

    Full Text Available The alteration of cytokine balance is stated to exert greater influence on gingival overgrowth compared to the direct effect of the drug on the regulation of extracellular matrix metabolism. The current study evaluated the effect of phenytoin on the regulation of collagen, lysyl oxidase and elastin in gingival fibroblasts.Normal human gingival fibroblasts (HGFs were obtained from 4 healthy children and 4 adults. Samples were cultured with phenytoin. MTT test was used to evaluate the proliferation and ELISA was performed to determine the level of IL1β and PGE2 production by HGFs. Total RNA of gingival fibroblasts was extracted and RT-PCR was performed on samples. Mann-Whitney U test was used to analyze the data with an alpha error level less than 0.05.There was a significant difference in the expression of elastin between the controls and treated samples in both adult and pediatric groups and also in the lysyl oxidase expression of adult controls and treated adults. No significant difference was found between collagen expression in adults.The significant difference in elastin and lysyl oxidase expression between adult and pediatric samples indicates the significant effect of age on their production.

  3. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Science.gov (United States)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  4. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts.

    Science.gov (United States)

    Gallego-Villar, Lorena; Pérez, Belén; Ugarte, Magdalena; Desviat, Lourdes R; Richard, Eva

    2014-09-26

    Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. Most PA patients present in the neonatal period with metabolic acidosis and hyperammonemia, developing different neurological symptoms, movement disorders and cardiac complications. There is strong evidence indicating that oxidative damage could be a pathogenic factor in neurodegenerative, mitochondrial and metabolic diseases. Recently, we identified an increase in ROS levels in PA patients-derived fibroblasts. Here, we analyze the capability of seven antioxidants to scavenge ROS production in PA patients' cells. Tiron, trolox, resveratrol and MitoQ significantly reduced ROS content in patients and controls' fibroblasts. In addition, changes in the expression of two antioxidant enzymes, superoxide dismutase and glutathione peroxidase, were observed in PA patients-derived fibroblasts after tiron and resveratrol treatment. Our results in PA cellular models establish the proof of concept of the potential of antioxidants as an adjuvant therapy for PA and pave the way for future assessment of antioxidant strategies in the murine model of PA. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. HCMV Induces Macropinocytosis for Host Cell Entry in Fibroblasts.

    Science.gov (United States)

    Hetzenecker, Stefanie; Helenius, Ari; Krzyzaniak, Magdalena Anna

    2016-04-01

    Human cytomegalovirus (HCMV) is an important and widespread pathogen in the human population. While infection by this β-herpesvirus in endothelial, epithelial and dendritic cells depends on endocytosis, its entry into fibroblasts is thought to occur by direct fusion of the viral envelope with the plasma membrane. To characterize individual steps during entry in primary human fibroblasts, we employed quantitative assays as well as electron, fluorescence and live cell microscopy in combination with a variety of inhibitory compounds. Our results showed that while infectious entry was pH- and clathrin-independent, it required multiple, endocytosis-related factors and processes. The virions were found to undergo rapid internalization into large vacuoles containing internalized fluid and endosome markers. The characteristics of the internalization process fulfilled major criteria for macropinocytosis. Moreover, we found that soon after addition to fibroblasts the virus rapidly triggered the formation of circular dorsal ruffles in the host cell followed by the generation of large macropinocytic vacuoles. This distinctive form of macropinocytosis has been observed especially in primary cells but has not previously been reported in response to virus stimulation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Fibroblast screening for chaperone therapy in beta-galactosidosis.

    Science.gov (United States)

    Iwasaki, Hiroyuki; Watanabe, Hiroshi; Iida, Masami; Ogawa, Seiichiro; Tabe, Miho; Higaki, Katsumi; Nanba, Eiji; Suzuki, Yoshiyuki

    2006-09-01

    We performed screening of beta-galactosidase-deficient fibroblasts for possible chemical chaperone therapy using N-octyl-4-epi-beta-valienamine (NOEV) in patients with GM1-gangliosidosis and Morquio B disease (beta-galactosidosis). Fibroblasts were cultured with NOEV for 4 days and beta-galactosidase activity was measured. Mutation analysis was performed simultaneously. Two separate criteria were set for evaluation of the chaperone effect: a relative increase of enzyme activity (more than 3-fold), and an increase up to more than 10% normal enzyme activity. Among the 50 fibroblast strains tested, more than 3-fold increase was achieved in 17 cell strains (34%), and more than 10% normal activity in 10 (20%). Both criteria were satisfied in 6 (12%), and either of them in 21 (42%). Juvenile GM1-gangliosidosis was most responsive, and then infantile GM1-gangliosidosis. This enhancement was mutation-specific. We estimate that the NOEV chaperone therapy will be effective in 20-40% of the patients, mainly in juvenile and infantile GM1-gangliosidosis patients. A molecular design may produce mutation-specific chaperone compounds for the other disease phenotypes. This cellular screening will be useful for identification of human patients with beta-galactosidase deficiency for chaperone therapy to be started in the near future.

  7. Radiation-Induced Differentiation in Human Lung Fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-10-15

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of {alpha}-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-{beta}), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-{beta} with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-{beta} but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90.

  8. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    International Nuclear Information System (INIS)

    Eber, R.M.; Shuler, C.F.; Buchanan, W.; Beck, F.M.; Horton, J.E.

    1989-01-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings

  9. Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts

    Directory of Open Access Journals (Sweden)

    Sara E. Howden

    2015-12-01

    Full Text Available The derivation of genetically modified induced pluripotent stem (iPS cells typically involves multiple steps, requiring lengthy cell culture periods, drug selection, and several clonal events. We report the generation of gene-targeted iPS cell lines following a single electroporation of patient-specific fibroblasts using episomal-based reprogramming vectors and the Cas9/CRISPR system. Simultaneous reprogramming and gene targeting was tested and achieved in two independent fibroblast lines with targeting efficiencies of up to 8% of the total iPS cell population. We have successfully targeted the DNMT3B and OCT4 genes with a fluorescent reporter and corrected the disease-causing mutation in both patient fibroblast lines: one derived from an adult with retinitis pigmentosa, the other from an infant with severe combined immunodeficiency. This procedure allows the generation of gene-targeted iPS cell lines with only a single clonal event in as little as 2 weeks and without the need for drug selection, thereby facilitating “seamless” single base-pair changes.

  10. Conditioned medium from MCF-7 cell line induces myofibroblast differentiation, decreased cell proliferation, and increased apoptosis in cultured normal fibroblasts but not in fibroblasts from malignant breast tissue.

    Science.gov (United States)

    Valenti, M T; Azzarello, G; Balducci, E; Sartore, S; Sandri, M; Manconi, R; Sicari, U; Bari, M; Vinante, O

    2001-01-01

    We studied the effect of conditioned medium (CM) obtained from cultures of oestrogen-receptor positive breast cancer MCF7 cell line on the differentiation, proliferation and apoptosis patterns of cultured breast fibroblasts from normal interstitial and malignant stromal tissue. Fibroblasts were grown in the presence or absence of CM and examined for the differentiation pattern by immunofluorescence and Western blotting procedures, for proliferation profile by Ki67 expression, and for apoptosis by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling technique. Monoclonal antibodies specific for non-muscle (NM), smooth muscle (SM) lineage and differentiation markers were applied to these cultures. CM is able to induce a SM-like differentiation in interstitial fibroblasts, i.e., essentially myofibroblast formation. Fibroblasts from tumour stroma showed the presence of a small number of smooth muscle cells (SMC) along with a large number of myofibroblasts. Treatment of these cultures with CM was unable to change this pattern. Only normal fibroblasts were responsive to the proliferation/apoptotic-inhibitory effect of the CM. These data suggest that structural and functional differences exist between stromal fibroblasts from normal breast and breast cancer with respect to the responsiveness to soluble factors present in the CM. We hypothesize that the lack of in vitro sensitivity to CM shown by 'tumour' fibroblasts is the result of an in vivo inherent and stable phenotypic change on the fibroblasts surrounding breast tumour cells occurring via a paracrine mechanism.

  11. Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation.

    Science.gov (United States)

    Doldi, Valentina; Callari, Maurizio; Giannoni, Elisa; D'Aiuto, Francesca; Maffezzini, Massimo; Valdagni, Riccardo; Chiarugi, Paola; Gandellini, Paolo; Zaffaroni, Nadia

    2015-10-13

    Tumor microenvironment coevolves with and simultaneously sustains cancer progression. In prostate carcinoma (PCa), cancer associated fibroblasts (CAF) have been shown to fuel tumor development and metastasis by mutually interacting with tumor cells. Molecular mechanisms leading to activation of CAFs from tissue-resident fibroblasts, circulating bone marrow-derived fibroblast progenitors or mesenchymal stem cells are largely unknown. Through integrated gene and microRNA expression profiling, we showed that PCa-derived CAF transcriptome strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus proving evidence, for the first time, that the cytokine is able per se to induce most of the transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGFβ-related signatures, indicating that either signal, depending on the context, may concur to fibroblast activation. Our analyses also highlighted novel pathways potentially relevant for induction of a reactive stroma. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression.Overall, we provided insights into the molecular mechanisms driving fibroblast activation in PCa, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment.

  12. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.

    Science.gov (United States)

    Yoshida, T; Miyaji, H; Otani, K; Inoue, K; Nakane, K; Nishimura, H; Ibara, A; Shimada, A; Ogawa, K; Nishida, E; Sugaya, T; Sun, L; Fugetsu, B; Kawanami, M

    2015-04-01

    Beta-tricalcium phosphate (β-TCP), a bio-absorbable ceramic, facilitates bone conductivity. We constructed a highly porous three-dimensional scaffold, using β-TCP, for bone tissue engineering and coated it with co-poly lactic acid/glycolic acid (PLGA) to improve the mechanical strength and biological performance. The aim of this study was to examine the effect of implantation of the PLGA/β-TCP scaffold loaded with fibroblast growth factor-2 (FGF-2) on bone augmentation. The β-TCP scaffold was fabricated by the replica method using polyurethane foam, then coated with PLGA. The PLGA/β-TCP scaffold was characterized by scanning electron miscroscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, compressive testing, cell culture and a subcutaneous implant test. Subsequently, a bone-forming test was performed using 52 rats. The β-TCP scaffold, PLGA-coated scaffold, and β-TCP and PLGA-coated scaffolds loaded with FGF-2, were implanted into rat cranial bone. Histological observations were made at 10 and 35 d postsurgery. SEM and TEM observations showed a thin PLGA layer on the β-TCP particles after coating. High porosity (> 90%) of the scaffold was exhibited after PLGA coating, and the compressive strength of the PLGA/β-TCP scaffold was six-fold greater than that of the noncoated scaffold. Good biocompatibility of the PLGA/β-TCP scaffold was found in the culture and implant tests. Histological samples obtained following implantation of PLGA/β-TCP scaffold loaded with FGF-2 showed significant bone augmentation. The PLGA coating improved the mechanical strength of β-TCP scaffolds while maintaining high porosity and tissue compatibility. PLGA/β-TCP scaffolds, in combination with FGF-2, are bioeffective for bone augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis.

    Science.gov (United States)

    Zhang, Guannan; Li, Xiaodong; Sheng, Chengyu; Chen, Xiaohui; Chen, Yu; Zhu, Dingliang; Gao, Pingjin

    2016-12-30

    A large amount of NO is generated through the inducible nitric oxide synthase (iNOS) pathway from the vascular adventitia in various vascular diseases. However, it is currently not fully understood how the iNOS signaling pathway is activated. In the present study, this question was addressed in the context of adventitial cellular interactions. A rat model of acute hypertension in the contralateral carotid arteries was established through transverse aortic constriction (TAC) surgery. In this model, activated macrophages were found surrounded by a large quantity of iNOS-expressing adventitial fibroblasts (AFs), suggesting a possible causal relationship between macrophages and iNOS activation of the neighboring AFs. In an in vitro model, a macrophage-like cell line RAW 264.7 was first activated by LPS treatment. The supernatant was then harvested and applied to treat primary rat AFs. iNOS in AFs was activated robustly by the supernatant treatment but not by LPS itself. Treating AFs with interleukin-1β (IL-1β) also activated iNOS signaling, suggesting that the IL-1β pathway might be a possible mediator. As a consequence of the iNOS activation, total protein nitration and S-nitrosylation significantly increased in those AFs. Additionally, increased deposition of type I and type III collagens was observed in both in vitro and in vivo models. The collagen deposition was partially restored by an iNOS inhibitor, 1400 W. These findings highlight the importance of iNOS signaling during vascular inflammation, and advance our understanding of its activation through a cellular interaction perspective. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Saroj Kumar

    Full Text Available It is well known that the microenvironment plays a major role in breast cancer progression. Yet, the mechanism explaining the transition from normal fibroblasts to cancer-stimulated fibroblasts remains to be elucidated. Here we report a FTIR imaging study of the effects of three different breast cancer cell lines on normal fibroblasts in culture. Fibroblast activation process was monitored by FTIR imaging and spectra compared by multivariate statistical analyses. Principal component analysis evidenced that the fibroblasts stimulated by these cancer cell lines grouped together and remained distinctly separated from normal fibroblasts indicating a modified different chemical composition in the cancer-stimulated fibroblasts. Similar changes in fibroblasts were induced by the various breast cancer cell lines belonging to different sub-types. Most significant changes were observed in the region of 2950 and 1230 cm(-1, possibly related to changes in lipids and in the 1230 cm(-1 area assigned to phosphate vibrations (nucleotides. Interestingly, the cancer-cell induced changes in the fibroblasts also occurred when there was no possible direct contact between the two cell lines in the co-culture. When contact was possible, the spectral changes were similar, suggesting that soluble factors but not direct cell-cell interactions were responsible for fibroblast activation. Overall, the results indicate that IR imaging could be used in the future for analyzing the microenvironment of breast tumors.

  15. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    Energy Technology Data Exchange (ETDEWEB)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo [Nano-optoelectronics Research and Technology Laboratory (NOR.), School of Physics, Universiti Sains Malaysia, 11800, USM, Pulau Pinang (Malaysia); Mohamed, Azman Seeni; Saifuddin, Siti Nazmin [Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang (Malaysia); Masudi, Sam’an Malik; Mohamad, Dasmawati [Craniofacial Science Laboratory, School of Dentistry, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  16. Studies of the in vivo radiosensitivity of human skin fibroblasts

    International Nuclear Information System (INIS)

    Hill, Richard P.; Kaspler, Pavel; Griffin, Anthony M.; O'Sullivan, Brian; Catton, Charles; Alasti, Hamideh; Abbas, Ahmar; Heydarian, Moustafa; Ferguson, Peter; Wunder, Jay S.; Bell, Robert S.

    2007-01-01

    Background and purpose: To examine the radiosensitivity of skin cells obtained directly from the irradiated skin of patients undergoing fractionated radiation treatment prior to surgery for treatment of soft tissue sarcoma (STS) and to determine if there was a relationship with the development of wound healing complications associated with the surgery post-radiotherapy. Methods: Micronucleus (MN) formation was measured in cells (primarily dermal fibroblasts) obtained from human skin at their first division after being removed from STS patients during post-radiotherapy surgery (2-9 weeks after the end of the radiotherapy). At the time of radiotherapy (planned tumor dose - 50 Gy in 25 daily fractions) measurements were made of surface skin dose at predetermined marked sites. Skin from these sites was obtained at surgery and cell suspensions were prepared directly for the cytokinesis-blocked MN assay. Cultured strains of the fibroblasts were also established from skin nominally outside the edge of the radiation beam and DNA damage (MN formation) was examined following irradiation in vitro for comparison with the results from the in situ irradiations. Results: Extensive DNA damage (MN) was detectable in fibroblasts from human skin at extended periods after irradiation (2-9 weeks after the end of the 5-week fractionated radiotherapy). Analysis of skin receiving a range of doses demonstrated that the level of damage observed was dose dependent. There was no clear correlation between the level of damage observed after irradiation in situ and irradiation of cell strains in culture. Similarly, there was no correlation between the extent of MN formation following in situ irradiation and the propensity for the patient to develop wound healing complications post-surgery. Conclusions: Despite the presence of DNA damage in dermal fibroblasts weeks after the end of the radiation treatment, there was no relationship between this damage and wound healing complications following

  17. Fibroblast adhesion and activation onto micro-machined titanium surfaces.

    Science.gov (United States)

    Guillem-Marti, J; Delgado, L; Godoy-Gallardo, M; Pegueroles, M; Herrero, M; Gil, F J

    2013-07-01

    Surface modifications performed at the neck of dental implants, in the manner of micro-grooved surfaces, can reduce fibrous tissue encapsulation and prevent bacterial colonization, thereby improving fibrointegration and the formation of a biological seal. However, the applied procedures are technically complex and/or time consuming methods. The aim of this study was to analyse the fibroblast behaviour on modified titanium surfaces obtained, applying a simple and low-cost method. An array of titanium surfaces was obtained using a commercial computerized numerical control lathe, modifying the feed rate and the cutting depth. To elucidate the potential ability of the generated surfaces to activate connective tissue cells, a thorough gene (by real time - qPCR) and protein (by western blot or zymography) expression and cellular response characterization (cell morphology, cell adhesion and cell activation by secreting extracellular matrix (ECM) components and their enzyme regulators) was performed. Micro-grooved surfaces have statistically significant differences in the groove's width (approximately 10, 50 and 100 μm) depending on the applied advancing fixed speed. Field emission scanning electron microscopy images showed that fibroblasts oriented along the generated grooves, but they were only entirely accommodated on the wider grooves (≥50 μm). Micro-grooved surfaces exhibited an earlier cell attachment and activation, as seen by collagen Iα1 and fibronectin deposition and activation of ECM remodelling enzymes, compared with the other surfaces. However, fibroblasts could remain in an activated state on narrower surfaces (micro-grooved surfaces could improve implant integration at the gingival site with respect to polished surfaces. Micro-grooved surfaces enhance early fibroblast adhesion and activation, which could be critical for the formation of a biological seal and finally promote tissue integration. Surfaces with wider grooves (≥50 μm) seem to be more

  18. NGF Accelerates Cutaneous Wound Healing by Promoting the Migration of Dermal Fibroblasts via the PI3K/Akt-Rac1-JNK and ERK Pathways

    Directory of Open Access Journals (Sweden)

    Ji-Cai Chen

    2014-01-01

    Full Text Available As a well-known neurotrophic factor, nerve growth factor (NGF has also been extensively recognized for its acceleration of healing in cutaneous wounds in both animal models and randomized clinical trials. However, the underlying mechanisms accounting for the therapeutic effect of NGF on skin wounds are not fully understood. NGF treatment significantly accelerated the rate of wound healing by promoting wound reepithelialization, the formation of granulation tissue, and collagen production. To explore the possible mechanisms of this process, the expression levels of CD68, VEGF, PCNA, and TGF-β1 in wounds were detected by immunohistochemical staining. The levels of these proteins were all significantly raised in NGF-treated wounds compared to untreated controls. NGF also significantly promoted the migration, but not the proliferation, of dermal fibroblasts. NGF induced a remarkable increase in the activity of PI3K/Akt, JNK, ERK, and Rac1, and blockade with their specific inhibitors significantly impaired the NGF-induced migration. In conclusion, NGF significantly accelerated the healing of skin excisional wounds in rats and the fibroblast migration induced by NGF may contribute to this healing process. The activation of PI3K/Akt, Rac1, JNK, and ERK were all involved in the regulation of NGF-induced fibroblast migration.

  19. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy.

    Science.gov (United States)

    Brennen, W Nathaniel; Isaacs, John T; Denmeade, Samuel R

    2012-02-01

    The tumor microenvironment has emerged as a novel chemotherapeutic strategy in the treatment of cancer. This is most clearly exemplified by the antiangiogenesis class of compounds. Therapeutic strategies that target fibroblasts within the tumor stroma offer another treatment option. However, despite promising data obtained in preclinical models, such strategies have not been widely used in the clinical setting, largely due to a lack of effective treatments that specifically target this population of cells. The identification of fibroblast activation protein α (FAP) as a target selectively expressed on fibroblasts within the tumor stroma or on carcinoma-associated fibroblasts led to intensive efforts to exploit this novel cellular target for clinical benefit. FAP is a membrane-bound serine protease of the prolyl oligopeptidase family with unique post-prolyl endopeptidase activity. Until recently, the majority of FAP-based therapeutic approaches focused on the development of small-molecule inhibitors of enzymatic activity. Evidence suggests, however, that FAP's pathophysiological role in carcinogenesis may be highly contextual, depending on both the exact nature of the tumor microenvironment present and the cancer type in question to determine its tumor-promoting or tumor-suppressing phenotype. As an alternative strategy, we are taking advantage of FAP's restricted expression and unique substrate preferences to develop a FAP-activated prodrug to target the activation of a cytotoxic compound within the tumor stroma. Of note, this strategy would be effective independently of FAP's role in tumor progression because its therapeutic benefit would rely on FAP's localization and activity within the tumor microenvironment rather than strictly on inhibition of its function.

  20. Lithium Attenuates TGF-β 1-Induced Fibroblasts to Myofibroblasts Transition in Bronchial Fibroblasts Derived from Asthmatic Patients

    Science.gov (United States)

    Michalik, Marta; Wójcik, Katarzyna Anna; Jakieła, Bogdan; Szpak, Katarzyna; Pierzchalska, Małgorzata; Sanak, Marek; Madeja, Zbigniew; Czyż, Jarosław

    2012-01-01

    Bronchial asthma is a chronic disorder accompanied by phenotypic transitions of bronchial epithelial cells, smooth muscle cells, and fibroblasts. Human bronchial fibroblasts (HBFs) derived from patients with diagnosed asthma display predestination towards TGF-β-induced phenotypic switches. Since the interference between TGF-β and GSK-3β signaling contributes to pathophysiology of chronic lung diseases, we investigated the effect of lithium, a nonspecific GSK-3β inhibitor, on TGF-β 1-induced fibroblast to myofibroblast transition (FMT) in HBF and found that the inhibition of GSK-3β attenuates TGF-β 1-induced FMT in HBF populations derived from asthmatic but not healthy donors. Cytoplasmically sequestrated β-catenin, abundant in TGF-β 1/LiCl-stimulated asthmatic HBFs, most likely interacts with and inhibits the nuclear accumulation and signal transduction of Smad proteins. These data indicate that the specific cellular context determines FMT-related responses of HBFs to factors interfering with the TGF-β signaling pathway. They may also provide a mechanistic explanation for epidemiological data revealing coincidental remission of asthmatic syndromes and their recurrence upon the discontinuation of lithium therapy in certain psychiatric diseases. PMID:22988467

  1. Lithium Attenuates TGF-β1-Induced Fibroblasts to Myofibroblasts Transition in Bronchial Fibroblasts Derived from Asthmatic Patients

    Directory of Open Access Journals (Sweden)

    Marta Michalik

    2012-01-01

    Full Text Available Bronchial asthma is a chronic disorder accompanied by phenotypic transitions of bronchial epithelial cells, smooth muscle cells, and fibroblasts. Human bronchial fibroblasts (HBFs derived from patients with diagnosed asthma display predestination towards TGF-β-induced phenotypic switches. Since the interference between TGF-β and GSK-3β signaling contributes to pathophysiology of chronic lung diseases, we investigated the effect of lithium, a nonspecific GSK-3β inhibitor, on TGF-β1-induced fibroblast to myofibroblast transition (FMT in HBF and found that the inhibition of GSK-3β attenuates TGF-β1-induced FMT in HBF populations derived from asthmatic but not healthy donors. Cytoplasmically sequestrated β-catenin, abundant in TGF-β1/LiCl-stimulated asthmatic HBFs, most likely interacts with and inhibits the nuclear accumulation and signal transduction of Smad proteins. These data indicate that the specific cellular context determines FMT-related responses of HBFs to factors interfering with the TGF-β signaling pathway. They may also provide a mechanistic explanation for epidemiological data revealing coincidental remission of asthmatic syndromes and their recurrence upon the discontinuation of lithium therapy in certain psychiatric diseases.

  2. Lithium Attenuates TGF-β(1)-Induced Fibroblasts to Myofibroblasts Transition in Bronchial Fibroblasts Derived from Asthmatic Patients.

    Science.gov (United States)

    Michalik, Marta; Wójcik, Katarzyna Anna; Jakieła, Bogdan; Szpak, Katarzyna; Pierzchalska, Małgorzata; Sanak, Marek; Madeja, Zbigniew; Czyż, Jarosław

    2012-01-01

    Bronchial asthma is a chronic disorder accompanied by phenotypic transitions of bronchial epithelial cells, smooth muscle cells, and fibroblasts. Human bronchial fibroblasts (HBFs) derived from patients with diagnosed asthma display predestination towards TGF-β-induced phenotypic switches. Since the interference between TGF-β and GSK-3β signaling contributes to pathophysiology of chronic lung diseases, we investigated the effect of lithium, a nonspecific GSK-3β inhibitor, on TGF-β(1)-induced fibroblast to myofibroblast transition (FMT) in HBF and found that the inhibition of GSK-3β attenuates TGF-β(1)-induced FMT in HBF populations derived from asthmatic but not healthy donors. Cytoplasmically sequestrated β-catenin, abundant in TGF-β(1)/LiCl-stimulated asthmatic HBFs, most likely interacts with and inhibits the nuclear accumulation and signal transduction of Smad proteins. These data indicate that the specific cellular context determines FMT-related responses of HBFs to factors interfering with the TGF-β signaling pathway. They may also provide a mechanistic explanation for epidemiological data revealing coincidental remission of asthmatic syndromes and their recurrence upon the discontinuation of lithium therapy in certain psychiatric diseases.

  3. An electron microscopic radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: I. Normal fibroblasts

    International Nuclear Information System (INIS)

    Cho, M.I.; Garant, P.R.

    1981-01-01

    Analysis of electron microscopic radioautographs revealed a maximum labeling with 3 H-proline of rough endoplasmic reticulum (RER) at 3 minutes, Golgi saccules 1 and 2 at 10 minutes, Golgi saccules type 3 at 20 minutes, and presecretory and secretory granules at 30 minutes. Labeling of the extra-cellular collagen matrix occurred at 30 minutes and increased with time. These observations suggest that pro-a-chains of collagen in periodontal ligament fibroblasts are synthesized in the RER and transported to the Golgi apparatus within 10 minutes. These chains then undergo parallel alignment in Golgi saccules type 2 and form segment-long-spacing-like crystallites in Golgi saccules type 3 between 10 and 20 minutes. The peak labeling of presecretory granules and mature secretory granules in small amounts at 30 minutes and the rapid increase in labeling of extracellular collagen matrix which begins at 30 minutes, indicates that the formation of secretory granules requires approximately 30 minutes and that a rapid system of secretory granule translocation exists in periodontal ligament fibroblasts. This evidence further supports the previously published morphologic evidence for a microtubule-dependent system of collagen secretion in periodontal ligament fibroblasts

  4. The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts.

    Science.gov (United States)

    Feng, Zhonggang; Wagatsuma, Yusuke; Kikuchi, Masato; Kosawada, Tadashi; Nakamura, Takao; Sato, Daisuke; Shirasawa, Nobuyuki; Kitajima, Tatsuo; Umezu, Mitsuo

    2014-09-01

    Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical picture of the compaction process, quantitatively elucidate the panorama of the micro mechanical niche and reveal an intrinsic biphasic relationship between cellular traction force and matrix elasticity. Our results also infer the underlying mechanism of tensional homoeostasis and stress shielding of fibroblasts. With this study, and sequel investigations on the putative principle proposed herein, we anticipate a refocus of the research on cellular mechanobiology, in vitro and in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. S100A4 expression is increased in stricture fibroblasts from patients with fibrostenosing Crohn's disease and promotes intestinal fibroblast migration.

    Science.gov (United States)

    Cunningham, Michael F; Docherty, Neil G; Burke, John P; O'Connell, P Ronan

    2010-08-01

    Fibroblasts represent the key cell type in fibrostenosing Crohn's disease (FCD) pathogenesis. S100A4 is an EF-hand calcium-binding protein family member, implicated in epithelial-mesenchymal transition and as a marker of activated T lymphocytes and fibroblasts in chronic tissue remodeling. The aim of this study was to examine the expression profile of S100A4 in the resected ileum of patients with FCD. Mucosa, seromuscular explants, and transmural biopsies were harvested from diseased and proximal, macroscopically normal margins of ileocecal resections from patients with FCD. Samples were processed for histochemistry, immunohistochemistry, real-time RT-PCR, Western blotting, and transmission electron microscopy. Primary explant cultures of seromuscular fibroblasts were exposed to transforming growth factor (TGF)-beta1 (1 ng/ml), and S100A4 expression and scratch wound-healing activity were assessed at 24 h. CCD-18Co fibroblasts were transfected with S100A4 small interfering RNA, treated with TGF-beta1 (1 ng/ml) for 30 min or 24 h, and then assessed for S100A4 and Smad3 expression and scratch wound-healing activity. S100A4 expression was increased in stricture mucosa, in the lamina propria, and in CD3-positive intraepithelial CD3-positive T lymphocytes. Fibroblastic S100A4 staining was observed in seromuscular scar tissue. Stricture fibroblast explant culture showed significant upregulation of S100A4 expression. TGF-beta1 increased S100A4 expression in cultured ileal fibroblasts. In CCD-18Co fibroblasts, S100A4 small interfering RNA inhibited scratch wound healing and modestly inhibited Smad3 activation. S100A4 expression is increased in fibroblasts, as well as immune cells, in Crohn's disease stricture and induced by TGF-beta1. Results from knockdown experiments indicate a potential role for S100A4 in mediating intestinal fibroblast migration.

  6. Effect of storage media on the proliferation of periodontal ligament fibroblasts

    International Nuclear Information System (INIS)

    Lauer, H.C.; Mueller, J.G.; Gross, J.; Horster, M.F.

    1987-01-01

    The effect of storage media, which are routinely used in replantation, upon the proliferative capacity of periodontal ligament fibroblasts, was compared with the effect of a tissue culture medium. The periodontal tissue was obtained from mandibular central incisors of White New Zealand rabbits. The experiments were performed in fibroblasts derived during second subculture. The storage media were physiologic salt solution, Ringer's solution and Rivanol; the tissue culture medium was alpha-minimum essential medium without nucleosides. The incubation period was 1 hour. [ 3 H]-thymidine incorporation and cell counts were taken to indicate changes in the proliferative capacity of the fibroblasts. The tissue culture experiments showed that the proliferative ability of the periodontal ligament fibroblasts was dependent upon the composition of the storage medium. Physiologic salt solution, Ringer's solution and Rivanol were unable to maintain the metabolism of the fibroblasts. alpha-MEM medium, however, was capable of stimulating proliferation of the periodontal ligament fibroblasts

  7. Growth properties and growth factor responsiveness in skin fibroblasts from centenarians.

    Science.gov (United States)

    Tesco, G; Vergelli, M; Grassilli, E; Salomoni, P; Bellesia, E; Sikora, E; Radziszewska, E; Barbieri, D; Latorraca, S; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Franceschi, C; Sorbi, S

    1998-03-27

    Human fibroblast cultures, which have a finite replicative lifespan in vitro, are the most widely used model for the study of senescence at the cellular level. An inverse relationship between replicative capability and donor age has been reported in human fibroblast strains. We studied the growth capacity of fibroblast primary cultures derived from people whose lifespan was as closer as possible to the expected maximum human lifespan, i.e. people over one hundred. Our data suggest that outgrowth of fibroblasts from biopsies, growth kinetics at different population doubling levels, capability to respond to a classical mitogenic stimulus (such as 20% serum) and a variety of growth factors, were remarkably similar in fibroblasts from centenarians and young controls. On the whole, our data challenge the tenet of a simple and strict relationship between in vivo aging and in vitro proliferative capability of human fibroblasts, at least at the individual level.

  8. Controlled induction of focal adhesion disassembly and migration in primary fibroblasts

    DEFF Research Database (Denmark)

    Dunlevy, J R; Couchman, J R

    1993-01-01

    with HCM; conversely, removal of HCM promoted reformation of focal adhesions within 12-24 h. HCM-stimulated fibroblasts which lacked focal adhesions concomitantly lacked F-actin stress fibers and focal concentrations of vinculin and talin. Therefore, fibroblast migration can be readily controlled in an on......Fibroblast migration is an integral component of biological processes such as wound healing and embryogenesis. Previous experiments examining fibroblast locomotion from tissue explants have shown that migrating fibroblasts lack, or contain only transient, focal adhesions (focal contacts). Focal...... adhesions are specialized regions of tight cell-matrix interaction, assembled by a complex process of transmembrane signalling. Although the explant model has been used for studying several aspects of fibroblast locomotion, it is limited by the lack of control over migration, and only a small percentage...

  9. Fibroblast-mediated contraction in actinically exposed and actinically protected aging skin

    International Nuclear Information System (INIS)

    Marks, M.W.; Morykwas, M.J.; Wheatley, M.J.

    1990-01-01

    The changes in skin morphology over time are a consequence of both chronologic aging and the accumulation of environmental exposure. Through observation, we know that actinic radiation intensifies the apparent aging of skin. We have investigated the effects of aging and actinic radiation on the ability of fibroblasts to contract collagen-fibroblast lattices. Preauricular and postauricular skin samples were obtained from eight patients aged 49 to 74 undergoing rhytidectomy. The samples were kept separate, and the fibroblasts were grown in culture. Lattices constructed with preauricular fibroblasts consistently contracted more than lattices containing postauricular fibroblasts. The difference in amount of contraction in 7 days between sites was greatest for the younger patients and decreased linearly as donor age increased (r = -0.96). This difference may be due to preauricular fibroblasts losing their ability to contract a lattice as aging skin is exposed to more actinic radiation

  10. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Jaroslaw Suchanski

    Full Text Available In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first

  11. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Science.gov (United States)

    Suchanski, Jaroslaw; Tejchman, Anna; Zacharski, Maciej; Piotrowska, Aleksandra; Grzegrzolka, Jedrzej; Chodaczek, Grzegorz; Nowinska, Katarzyna; Rys, Janusz; Dziegiel, Piotr; Kieda, Claudine; Ugorski, Maciej

    2017-01-01

    In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst) overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first time, that such

  12. Dynamic protein expression patterns during intraoral wound healing in the rat.

    Science.gov (United States)

    van Beurden, Hugo E; Snoek, Patricia A M; Von den Hoff, Johannes W; Torensma, Ruurd; Maltha, Jaap C; Kuijpers-Jagtman, Anne M

    2005-04-01

    Wound healing after cleft palate surgery is often associated with impairment of maxillary growth and dento-alveolar development. Wound contraction and scar tissue formation contribute strongly to these effects. In vitro studies have revealed that fibroblasts isolated during different phases of palatal wound healing show phenotypical differences. They change from a quiescent to an activated state and then partly back to a quiescent state. In this study, we evaluated the existence of fibroblast phenotypes at several time-points during palatal wound healing in the rat. Based on cytoskeletal changes (alpha-sma, vimentin, vinculin), integrin expression (alpha1, alpha2, alpha(v) and beta1) and changes in cellularity, we conclude that phenotypically different fibroblast populations are also present during in vivo wound healing. Alpha-sma and the integrin subunits alpha1 and alpha(v) were significantly up-regulated, and vinculin was significantly down-regulated, at early time-points compared to late time-points in wound healing. These changes point to an activated fibroblast state early in wound healing. Later in wound healing, these activated fibroblasts return only partially to the unwounded situation. These results strongly support the idea that different fibroblast populations with specific phenotypes occur in the course of palatal wound healing.

  13. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2015-12-01

    Full Text Available BACKGROUND Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. METHODS In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. RESULTS Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1- fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity CONCLUSIONS Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  14. Rapamycin inhibits human laryngotracheal stenosis-derived fibroblast proliferation, metabolism, and function in vitro.

    Science.gov (United States)

    Namba, Daryan R; Ma, Garret; Samad, Idris; Ding, Dacheng; Pandian, Vinciya; Powell, Jonathan D; Horton, Maureen R; Hillel, Alexander T

    2015-05-01

    To determine if rapamycin inhibits the growth, function, and metabolism of human laryngotracheal stenosis (LTS)-derived fibroblasts. Controlled in vitro study. Tertiary care hospital in a research university. Fibroblasts isolated from biopsies of 5 patients with laryngotracheal stenosis were cultured. Cell proliferation, histology, gene expression, and cellular metabolism of LTS-derived fibroblasts were assessed in 4 conditions: (1) fibroblast growth medium, (2) fibroblast growth medium with dimethylsulfoxide (DMSO), (3) fibroblast growth medium with 10(-10) M (low-dose) rapamycin dissolved in DMSO, and (4) fibroblast growth medium with 10(-9) M (high-dose) rapamycin dissolved in DMSO. The LTS fibroblast count and DNA concentration were reduced after treatment with high-dose rapamycin compared to DMSO (P = .0007) and normal (P = .0007) controls. Collagen I expression decreased after treatment with high-dose rapamycin versus control (P = .0051) and DMSO (P = .0093) controls. Maximal respiration decreased to 68.6 pMoles of oxygen/min/10 mg/protein from 96.9 for DMSO (P = .0002) and 97.0 for normal (P = .0022) controls. Adenosine triphosphate (ATP) production decreased to 66.8 pMoles from 88.1 for DMSO (P = .0006) and 83.3 for normal (P = .0003) controls. Basal respiration decreased to 78.6 pMoles from 108 for DMSO (P = .0002) and 101 for normal (P = .0014) controls. Rapamycin demonstrated an anti-fibroblast effect by significantly reducing the proliferation, metabolism, and collagen deposition of human LTS fibroblast in vitro. Rapamycin significantly decreased oxidative phosphorylation of LTS fibroblasts, suggesting at a potential mechanism for the reduced proliferation and differentiation. Furthermore, rapamycin's anti-fibroblast effects indicate a promising adjuvant therapy for the treatment of laryngotracheal stenosis. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.

  15. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2014-08-01

    Full Text Available Background Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. Methods In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. Results Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1-fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity Conclusions Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  16. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.

    Science.gov (United States)

    Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris

    2015-06-01

    Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Design of Substrates to Study the Interactions of Tumor Cells and Fibroblasts

    National Research Council Canada - National Science Library

    Mrksich, Milan

    2001-01-01

    .... These methods were developed for use in patterning carcinoma cells and stromal fibroblasts in distinct, non-overlapping patterns for mechanistic studies of the inducible expression of stromelysin...

  18. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    Science.gov (United States)

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  19. Actomyosin organisation for adhesion, spreading, growth and movement in chick fibroblasts

    DEFF Research Database (Denmark)

    Couchman, J R; Rees, D A

    1979-01-01

    Examination of the actomyosin structures and their relation to adhesion, movement and growth in the first fibroblasts migrating from chick heart explants shows striking differences with fibroblasts adapted to grow in culture. The latter have focal adhesions which seem to immobilize them for ancho......Examination of the actomyosin structures and their relation to adhesion, movement and growth in the first fibroblasts migrating from chick heart explants shows striking differences with fibroblasts adapted to grow in culture. The latter have focal adhesions which seem to immobilize them...

  20. Pearl extract enhances the migratory ability of fibroblasts in a wound healing model.

    Science.gov (United States)

    Li, Yi-Chen; Chen, Chi-Ruei; Young, Tai-Horng

    2013-03-01

    For 2000 years, traditional Chinese medicine has been used as a remedy for general health improvement, including the fight against aging. Pearl powder has recently been used as a health food that has antioxidant, antiaging, antiradioactive, and tonic activities for cells; it is also applied to cure aphthous ulcer, gastric ulcer, and duodenal ulcer on clinical therapy. In addition, the mother of pearl, nacre, could enhance the cell adhesion and tissue regeneration of skin fibroblasts. Fibroblast is regarded as indispensable in the processes of wound healing. Therefore, the effect of pearl extract (PL) on fibroblasts is investigated in this study. PL is produced by a room temperature super extraction system (Taiwan patent no. I271 220). DMEM medium containing PL (300 μg/mL) was used to examine the effect of migration-promoting potential on human fibroblast cell line or human primary fibroblast cells in a wound healing model in vitro. Medium containing PL (300 μg/mL) demonstrated that the migratory cell numbers of fibroblasts were three times more than that without PL, and mRNA expression of collagen type III was higher than in collagen type I in fibroblasts. It revealed a migration-promoting potential of human fibroblasts in a wound healing model in vitro. The present study found that the migration-promoting effect in PL, which could be a supplement in cell culture. These data suggest PL could be useful for enhancing the wound healing of fibroblasts.

  1. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Croco, Eleonora; Westendorp, Rudi G J

    2016-01-01

    and presence of cardiovascular diseases. Therefore, numbers of 53BP1 foci, telomere-associated foci (TAF) and micronuclei were measured in cultured dermal fibroblasts obtained from three age groups of donors (mean age 22, 63 and 90 years). Fibroblasts were cultured without a stressor and with 0.6 μM rotenone...... markers and long-lived family membership or cardiovascular disease. Results were comparable when fibroblasts were stressed in vitro with rotenone. In conclusion, we found that DNA damage foci of cultured fibroblasts are significantly associated with the chronological age, but not biological age...

  2. Platelets stimulate fibroblast-mediated contraction of collagen gels

    Directory of Open Access Journals (Sweden)

    Lundahl Joachim

    2003-10-01

    Full Text Available Abstract Background Platelets are thought to play a role in a variety of inflammatory conditions in the lung, some of which may lead to fibrosis. In the current study we tested the hypothesis that whole platelets and platelet lysate can mediate remodelling of extracellular matrix in vitro by affecting fibroblast-mediated contraction of a collagen gel. We also sought to determine to what extent platelet-derived growth factor (PDGF and transforming growth factor-β (TGF-β contribute to this effect. Methods Washed platelets, isolated from healthy blood donors, and platelet lysate (freezing and thawing, were cast together with human lung fibroblasts in three-dimensional collagen gels. The gels were then released and cultured for four days. PDGF and TGF-β1 concentrations were measured in culture supernatants by ELISA. Results Both platelets and platelet lysate augmented fibroblast-mediated gel contraction in a time and concentration dependent manner (19.9% ± 0.1 (mean ± SEM of initial area vs. 48.0% ± 0.4 at 48 hours; P 1 and PDGF-AA/AB were released in co-culture. PDGF-AA/AB had a maximum release at 24 hours whereas TGF-β1 release increased with longer culture periods. Neutralising antibodies to these mediators partially inhibited platelet-induced gel contraction. Conclusion We conclude that platelets may promote remodelling of extracellular matrix in vitro and that PDGF and TGF-β partially mediate this effect, also indicating a role for other mediators. The findings may be an important mechanism in regulating repair processes after injury.

  3. Smac/DIABLO regulates the apoptosis of hypertrophic scar fibroblasts.

    Science.gov (United States)

    Liu, Bao-Heng; Chen, Liang; Li, Shi-Rong; Wang, Zhen-Xiang; Cheng, Wen-Guang

    2013-09-01

    In abnormal skin wound healing, hypertrophic scars (HS) are characterized by excessive fibroblast hypercellularity and an overproduction of collagen, leading to atypical extracellular matrix (ECM) remodeling. Although the exact mechanisms of HS remain unclear, decreased HS fibroblast (HSFB) apoptosis and increased proliferation are evident in the development of HS. In this study, the contribution of the second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein (IAP)-binding protein with a low isoelectric point (pI) (Smac/DIABLO), an apoptosis-promoting protein released from the mitochondria, was investigated in human normal skin and HSFB cultures. The expression of Smac/DIABLO is usually decreased in many malignant tumors compared with normal tissues. Immunohistochemical analysis of skin tissues and the western blot analyses of fibroblasts revealed that the expression of Smac/DIABLO was lower in HS tissues compared with normal skin tissues. Of note, adenovirus-mediated Smac/DIABLO overexpression in the cultured HSFBs significantly reduced cell proliferation, as detected by the cell counting kit-8, and increased caspase-3 and -9 activity, as detected by spectrofluorimetry. In addition, it increased apoptosis, as detected by fluorescence-activated cell sorting (FACS). Furthermore, we found that the silencing of Smac with siRNA in the HSFBs induced a noticeable decrease in caspase-3 and -9 activity, leading to a significant reduction in apoptosis. In addition, the mRNA expression of type I and III pro-collagen detected in the HSFBs was significantly increased following the silencing of Smac with siRNA and was inhibited following Smac/DIABLO overexpression, as shown by real-time RT-PCR. In conclusion, Smac/DIABLO decreases the proliferation and increases the apoptosis of HSFBs. To our knowledge, the data from our study suggest for the first time that Smac/DIABLO is a novel therapeutic target for HS.

  4. Magnitude and duration of stretch modulate fibroblast remodeling.

    Science.gov (United States)

    Balestrini, Jenna L; Billiar, Kristen L

    2009-05-01

    Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2-16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

  5. DNA synthesis in vitro in human fibroblast preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.K.

    1983-01-01

    When confluent cultures of human fibroblasts were ultraviolet irradiated and either permeabilized or lysed, three types of DNA synthesis were subsequently observed during incubation in vitro: (A) a low level of DNA replication, which ceased after 15-30 min incubation at 37/sup 0/C; (B) radiation-dependent reparative gap-filling, which also ceased after 15 min at 37/sup 0/C; and (C) radiation-independent DNA synthesis, which was not semiconservative and proceeded at a linear rate for 1 hr at 37/sup 0/C. Normal and xeroderma pigmentosum fibroblasts displayed different rates of radiation-dependent reparative gap-filling after lysis but similar rates of radiation-independent DNA synthesis. The rates of DNA replication and radiation-independent DNA synthesis were less in the permeable cell system than in the lysed cell system, whereas radiation-dependent reparative gap-filling was the same in both. Preparations of permeable and lysed cells activated radiation-dependent reparative gap-filling at about 15% of the rate estimated for intact cells. No radiation-dependent DNA strand breaks, as assayed by alkaline elution, were observed in the lysed cell preparation. Some radiation-dependent breaks were observed in the permeable cell preparation, but radiation-dependent DNA breakage was less than that seen in intact cells. This inability to incise DNA at damaged sites could account for the low rate of activation of reparative gap-filling in vitro. DNA strand breaks were produced in fibroblast preparations nonspecifically during lysis or permeabilization and incubation in vitro, and this breakage of DNA probably was responsible for the radiation-independent DNA synthesis.

  6. Lung fibroblasts from patients with idiopathic pulmonary fibrosis exhibit genome-wide differences in DNA methylation compared to fibroblasts from nonfibrotic lung.

    Directory of Open Access Journals (Sweden)

    Steven K Huang

    Full Text Available Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF, a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6 with those of nonfibrotic patient controls (n = 3 and commercially available normal lung fibroblast cell lines (n = 3. We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2 in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels. We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT; these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF

  7. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    De Veirman, Kim, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Rao, Luigia [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Van Riet, Ivan [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels 1090 (Belgium); Frassanito, Maria Antonia [Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Medical School, Bari I-70124 (Italy); Di Marzo, Lucia; Vacca, Angelo [Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); Vanderkerken, Karin, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium)

    2014-06-27

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.

  8. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    International Nuclear Information System (INIS)

    De Veirman, Kim; Rao, Luigia; De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els; Van Riet, Ivan; Frassanito, Maria Antonia; Di Marzo, Lucia; Vacca, Angelo; Vanderkerken, Karin

    2014-01-01

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease

  9. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

    OpenAIRE

    Qian, L; Huang, Y; Spencer, CI; Foley, A; Vedantham, V; Liu, L; Conway, SJ; Fu, JD; Srivastava, D

    2012-01-01

    The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardio...

  10. Signaling by fibroblast growth factors: the inside story.

    Science.gov (United States)

    Goldfarb, M

    2001-10-30

    Polypeptide growth factors bind to the extracellular domains of cell surface receptors, triggering activation of receptor-intrinsic or receptor-associated protein kinases. Although this central thesis is widely accepted, one family of proteins, the fibroblast growth factors (FGFs), have for more than a decade attracted a research "counterculture" looking for direct FGF actions inside cells. Goldfarb discusses how the search for alternative signaling pathways is moving mainstream with the help of two recent publications reporting specific intracellular targets for FGF and FGF-like proteins.

  11. Experimental data for insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) in prevention of radiation myelopathy

    International Nuclear Information System (INIS)

    Nieder, C.; Price, R.E.; Rivera, B.; Andratschke, N.; Kian Ang, K.

    2002-01-01

    Background: Current models of radiation myelopathy provide a rationale for growth factor-based prevention strategies. Thus, we tested whether insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) alone or in combination modulate radiation tolerance of the rat cervical spinal cord. Materials and Methods: The cervical spinal cord of 68 adult Fisher F344 rats received a total dose of 30-36 Gy, given as a single fraction of 16 Gy followed by a second radiation dose of 14-20 Gy. Continuous intrathecal infusion of bFGF (44 rats) or saline (24 rats) into the cisterna magna was given concomitantly. A further experiment included 14 additional rats which were treated with subcutaneous injection of IGF-1 parallel to irradiation with a total dose of 34 Gy or 36 Gy. 20 rats received combined treatment, i.e. intrathecal infusion of bFGF plus subcutaneous injection of IGF-1, starting 24 hours before irradiation (total dose 33 Gy or 36 Gy) for a total of 4 days. Animals were followed until myelopathy developed or for a maximum of 12 months. Histopathologic examinations were performed post mortem. Results: Treatment with bFGF alone or IGF-1 alone increased the median time to myelopathy significantly. In the 36-Gy group, after combination treatment a comparable prolongation of latency was seen. Moreover, rats treated with 33 Gy and combined bFGF plus IGF-1 showed a significantly reduced risk of myelopathy, too (p = 0.0015). (orig.) [de

  12. Congestive Heart Failure Effects on Atrial Fibroblast Phenotype: Differences between Freshly-Isolated and Cultured Cells

    Science.gov (United States)

    Qi, Xiao Yan; Nattel, Stanley

    2012-01-01

    Introduction Fibroblasts are important in the atrial fibrillation (AF) substrate resulting from congestive heart failure (CHF). We previously noted changes in in vivo indices of fibroblast function in a CHF dog model, but could not detect changes in isolated cells. This study assessed CHF-induced changes in the phenotype of fibroblasts freshly isolated from control versus CHF dogs, and examined effects of cell culture on these differences. Methods/Results Left-atrial fibroblasts were isolated from control and CHF dogs (ventricular tachypacing 240 bpm×2 weeks). Freshly-isolated fibroblasts were compared to fibroblasts in primary culture. Extracellular-matrix (ECM) gene-expression was assessed by qPCR, protein by Western blot, fibroblast morphology with immunocytochemistry, and K+-current with patch-clamp. Freshly-isolated CHF fibroblasts had increased expression-levels of collagen-1 (10-fold), collagen-3 (5-fold), and fibronectin-1 (3-fold) vs. control, along with increased cell diameter (13.4±0.4 µm vs control 8.4±0.3 µm) and cell spreading (shape factor 0.81±0.02 vs. control 0.87±0.02), consistent with an activated phenotype. Freshly-isolated control fibroblasts displayed robust tetraethylammonium (TEA)-sensitive K+-currents that were strongly downregulated in CHF. The TEA-sensitive K+-current differences between control and CHF fibroblasts were attenuated after 2-day culture and eliminated after 7 days. Similarly, cell-culture eliminated the ECM protein-expression and shape differences between control and CHF fibroblasts. Conclusions Freshly-isolated CHF and control atrial fibroblasts display distinct ECM-gene and morphological differences consistent with in vivo pathology. Culture for as little as 48 hours activates fibroblasts and obscures the effects of CHF. These results demonstrate potentially-important atrial-fibroblast phenotype changes in CHF and emphasize the need for caution in relating properties of cultured fibroblasts to in vivo systems. PMID

  13. Eosinophilic Esophagitis-Associated Chemical and Mechanical Microenvironment Shapes Esophageal Fibroblast Behavior.

    Science.gov (United States)

    Muir, Amanda B; Dods, Kara; Henry, Steven J; Benitez, Alain J; Lee, Dale; Whelan, Kelly A; DeMarshall, Maureen; Hammer, Daniel A; Falk, Gary; Wells, Rebecca G; Spergel, Jonathan; Nakagawa, Hiroshi; Wang, Mei-Lun

    2016-08-01

    Eosinophilic esophagitis (EoE) is an immune-mediated allergic disease characterized by progressive esophageal dysmotility and fibrotic stricture associated with chronic esophageal fibroblast activation. It remains unknown how esophageal fibroblasts respond to EoE-relevant matrix stiffness or inflammatory cytokines. Immunofluorescence was used to evaluate α-smooth muscle actin (α-SMA) expression in endoscopic esophageal biopsies. Primary esophageal fibroblasts from adult and pediatric patients with or without EoE were exposed to transforming growth factor (TGF)β to determine gene expression, collagen-matrix contractility, and cytoskeletal organization. The influence of matrix stiffness upon fibroblast behavior was assessed on the engineered surface of polyacrylamide gels with varying stiffness. Fibroblast traction forces were measured using microfabricated-post-array-detectors. EoE esophageal fibroblasts had enhanced α-SMA expression. TGFβ not only stimulated enhanced fibroblast-specific gene expression but also promoted fibroblast-mediated collagen-matrix contraction, despite disease state or age of patients as the origin of cells. Unlike conventional monolayer cell, culture conditions using plastic surface (1 GPa) that activates fibroblasts constitutively, our engineered platforms recapitulating physiologically relevant stiffness (1-20 kPa) revealed that matrix stiffness defines the extent of α-SMA expression, intracellular collagen fibril organization, SMAD3 phosphorylation, and fibroblast traction force. Matrix stiffness may critically influence TGFβ-mediated gene expression and functions of esophageal fibroblasts ex vivo independent of age and disease conditions. These findings provide a novel insight into the pathogenesis of fibrostenotic disease in EoE.

  14. Effects of nerve and fibroblast growth factors on the production of nitric oxide in experimental model of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Maksimović Ivana D.

    2002-01-01

    Full Text Available The role of nitric oxide (NO in neurological diseases represents one of the most studied, yet controversial subjects in physiology. The aim was to examine the effects of intrastriatal injection neurotrophins (nerve growth factors-NGF, fibroblast growth factors-FGF in order to investigate the possible involvement of NO in quinolinic acid (QA induced striatum toxicity in the rat model of Huntington's disease (HD. QA was administered unilaterally into the striatum of adult Wistar rats in a single dose of 150 nM. The other two groups of animals were pretreated immediately before QA application with NGF and FGF, respectively. Control group was treated with 0.9% saline solution in the same manner. Animals were decapitated 7 days after the treatment. Nitrite levels were significantly decreased both in the ipsi- and contra lateral striatum and forebrain cortex of NGF- and FGF-treated animals compared with QA treatment. These results indicated a temporal and spatial propagation of oxidative stress and spread protective effects of NGF and FGF on the forebrain cortex, the distant structure, but tightly connected with striatum, the place of direct neurotoxin damage. Neurotrophins could be the potential neuroprotective agents in HD.

  15. Effect of Arctium lappa (burdock) extract on canine dermal fibroblasts.

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2013-12-15

    Although the biological activities of Arctium lappa (burdock) have been already investigated in human and other species, data evaluating the molecular mechanisms have not been reported in the dog. In this study we analyzed for the first time the effect of a root extract of burdock on molecular responses in canine dermal fibroblasts with H2O2 stimulation (H group), with burdock treatment (B group) and with H2O2 stimulation and burdock treatment (BH group), using RNAseq technology. Differentially expressed genes (P<0.05) of H, B and BH groups in comparison to the untreated sample (negative control, C group) were identified with MeV software and were functional annotated and monitored for signaling pathways and candidate biomarkers using the Ingenuity Pathways Analysis (IPA). The expression profile of canine dermal fibroblasts treated with burdock extract with or without H2O2 stimulation, showed an up-regulation of mitochondrial superoxide dismutase (SOD2), disheveled 3 (DVL3) and chondroitin sulfate N-acetylgalactosaminyltransferase 2 (CSGALNACT2). The data suggested that burdock has implications in cell adhesion and gene expression with the modulation of Wnt/β catenin signaling and Chondroitin Sulphate Biosynthesis that are particularly important for the wound healing process. © 2013 Elsevier B.V. All rights reserved.

  16. An Expandable, Inducible Hemangioblast State Regulated by Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    David T. Vereide

    2014-12-01

    Full Text Available During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that “trap” murine cells in a proliferative state and endow them with a hemangioblast potential. These “expandable” hemangioblasts (eHBs are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines.

  17. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continued presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.

  18. CD14-negative isolation enhances chondrogenesis in synovial fibroblasts.

    Science.gov (United States)

    Bilgen, Bahar; Ren, Yuexin; Pei, Ming; Aaron, Roy K; Ciombor, Deborah McK

    2009-11-01

    Synovial membrane has been shown to contain mesenchymal stem cells. We hypothesized that an enriched population of synovial fibroblasts would undergo chondrogenic differentiation and secrete cartilage extracellular matrix to a greater extent than would a mixed synovial cell population (MSCP). The optimum doses of transforming growth factor beta 1 (TGF-beta1) and insulin-like growth factor 1 (IGF-1) for chondrogenesis were investigated. CD14-negative isolation was used to obtain a porcine cell population enriched in type-B synovial fibroblasts (SFB) from an MSCP. The positive cell surface markers in SFB were CD90, CD44, and cadherin-11. SFB and MSCP were cultured in the presence of 20 ng/mL TGF-beta1 for 7 days, and SFB were demonstrated to have higher chondrogenic potential. Further dose-response studies were carried out using the SFB cells and several doses of TGF-beta1 (2, 10, 20, and 40 ng/mL) and/or IGF-1 (1, 10, 100, and 500 ng/mL) for 14 days. TGF-beta1 supplementation was essential for chondrogenesis and prevention of cell death, whereas IGF-1 did not have a significant effect on the SFB cell number or glycosaminoglycan production. This study demonstrates that the CD14-negative isolation yields an enhanced cell population SFB that is more potent than MSCP as a cell source for cartilage tissue engineering.

  19. Age related changes in steroid receptors on cultured lung fibroblasts

    International Nuclear Information System (INIS)

    Barile, F.A.; Bienkowski, R.S.

    1986-01-01

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with ( 3 H)-dexamethasone (( 3 H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol ( 3 H)Dex/10 6 cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms

  20. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  1. Pericyte–fibroblast transition promotes tumor growth and metastasis

    Science.gov (United States)

    Hosaka, Kayoko; Yang, Yunlong; Seki, Takahiro; Fischer, Carina; Dubey, Olivier; Fredlund, Erik; Hartman, Johan; Religa, Piotr; Ishii, Yoko; Sasahara, Masakiyo; Larsson, Ola; Cossu, Giulio; Cao, Renhai; Lim, Sharon; Cao, Yihai

    2016-01-01

    Vascular pericytes, an important cellular component in the tumor microenvironment, are often associated with tumor vasculatures, and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte–fibroblast transition (PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that PDGF-BB-PDGFRβ signaling promotes PFT both in vitro and in in vivo tumors. Genome-wide expression analysis indicates that PDGF-BB–activated pericytes acquire mesenchymal progenitor features. Pharmacological inhibition and genetic deletion of PDGFRβ ablate the PDGF-BB–induced PFT. Genetic tracing of pericytes with two independent mouse strains, TN-AP-CreERT2:R26R-tdTomato and NG2-CreERT2:R26R-tdTomato, shows that PFT cells gain stromal fibroblast and myofibroblast markers in tumors. Importantly, coimplantation of PFT cells with less-invasive tumor cells in mice markedly promotes tumor dissemination and invasion, leading to an increased number of circulating tumor cells and metastasis. Our findings reveal a mechanism of vascular pericytes in PDGF-BB–promoted cancer invasion and metastasis by inducing PFT, and thus targeting PFT may offer a new treatment option of cancer metastasis. PMID:27608497

  2. Differential Gene Expression of Fibroblasts: Keloid versus Normal

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2002-11-01

    Full Text Available Abstract: This study investigated gene regulation and unique gene products in both keloid (KDF and normal (NDF dermal fibroblasts in established cell lines. For gene regulation, NDF versus KDF were compared using Clontech's Atlas™ Human cDNA Expression Array while unique gene products were studied using RNA Fingerprinting Kit. RNA from each sample was converted to cDNA using oligo-dT primers. Down-regulated genes using Atlas Array in KDF were 1 60 S ribosomal protein, 2 Thioredoxin dependent peroxidase, 3 Nuclease sensitive element DNA binding protein, 4 c-myc purine-binding transcription factor, 5 c-AMP dependent protein kinase, and, 6 Heat Shock Protein 90 kDa. Genes that are up regulated in KDF were 1 Tubulin and 2 Heat Shock Protein 27 kDa. With the differential display, we found 17 bands unique to both KDF and NDF. The specific gene and the manner in which they were differentially regulated have direct implications to understanding keloid fibroblast proliferation.

  3. Fibroblast growth factor-10 is a mitogen for urothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bagai, Shelly; Rubio, Eric; Cheng, Jang-Fang; Sweet, Robert; Thomas, Regi; Fuchs, Elaine; Grady, Richard; Mitchell, Michael; Bassuk, James A.

    2002-02-01

    Fibroblast Growth Factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.

  4. Proliferative Effects of Histamine on Primary Human Pterygium Fibroblasts.

    Science.gov (United States)

    Qin, Zhenwei; Fu, Qiuli; Zhang, Lifang; Yin, Houfa; Jin, Xiuming; Tang, Qiaomei; Lyu, Danni; Yao, Ke

    2016-01-01

    Purpose . It has been confirmed that inflammatory cytokines are involved in the progression of pterygium. Histamine can enhance proliferation and migration of many cells. Therefore, we intend to investigate the proliferative and migratory effects of histamine on primary culture of human pterygium fibroblasts (HPFs). Methods . Pterygium and conjunctiva samples were obtained from surgery, and toluidine blue staining was used to identify mast cells. 3-[4, 5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was performed to evaluate the proliferative rate of HPFs and human conjunctival fibroblasts (HCFs); ki67 expression was also measured by immunofluorescence analysis. Histamine receptor-1 (H1R) antagonist (Diphenhydramine Hydrochloride) and histamine receptor-2 (H2R) antagonist (Nizatidine) were added to figure out which receptor was involved. Wound healing model was used to evaluate the migratory ability of HPFs. Results . The numbers of total mast cells and degranulated mast cells were both higher in pterygium than in conjunctiva. Histamine had a proliferative effect on both HPFs and HCFs, the effective concentration (10  μ mol/L) on HPFs was lower than on HCFs (100  μ mol/L), and the effect could be blocked by H1R antagonist. Histamine showed no migratory effect on HPFs. Conclusion . Histamine may play an important role in the proliferation of HPFs and act through H1R.

  5. Capturing the Regenerative Potential of Periodontal Ligament Fibroblasts

    Directory of Open Access Journals (Sweden)

    Christina Springstead Scanlon

    2011-01-01

    Full Text Available The cell population within the periodontal ligament (PDL tissue is remarkably heterogeneous1. Fibroblasts, a mixed population of cells, are the main cellular component of the PDL and the cell type most often studied for periodontal regeneration. Osteoblasts and osteoclasts are found on the bone side, while fibroblasts, macrophages, undifferentiated adult/mesenchymal stem cells, neural elements, and endothelial cells are found throughout the PDL. Epithelial rests of Malassez cells and cementoblasts are focused near the root surface. PDL tissue also includes loose connective tissue between dense fiber bundles that contain branches of the periodontal blood vessels and nerves2. The complexity of the PDL tissue, with its various cell types and cell progenitor components, explains the challenges involved in therapies to restore tissue following periodontal disease. Cementoblasts, osteoblasts, and endothelial cells must migrate, differentiate, and coordinately interact with a variety of soluble mediators to regenerate the periodontium3. Stem cells located in the PDL tissue are key contributors to this process4. Stem cells in the PDL are important not only for formation and maintenance of the tissue but also for repair, remodeling, and regeneration of adjacent alveolar bone and cementum5. Our laboratory has shown that progenitor cells isolated from PDL tissue by selection with cell surface markers STRO-1+ and CD146+ are capable of differentiating into chondrogenic, osteogenic, and adipogenic phenotypes under appropriate culture conditions6.

  6. Protein Adsorption and Subsequent Fibroblasts Adhesion on Hydroxyapatite Nanocrystals

    International Nuclear Information System (INIS)

    Tagaya, Motohiro; Ikoma, Toshiyuki; Yoshioka, Tomohiko; Tanaka, Junzo; Takemura, Taro; Hanagata, Nobutaka

    2011-01-01

    Quartz crystal microbalance with dissipation (QCM-D) technique was employed for protein adsorption and subsequent fibroblast adhesion on hydroxyapatite (HAp) nanocrystals. The pre-adsorption of three proteins (albumin (BSA) or fibronectin (Fn) or collagen (Col)) and subsequent adsorption of fetal bovine serum (FBS), and the adhesion of fibroblasts on the surface were in situ monitored, and evaluated with the frequency shift (Δf) and dissipation energy shift (ΔD), and the viscoelastic change as ΔD-Δf plot. The Col adsorption showed larger Δf and ΔD values compared with BSA or Fn adsorption, and the subsequent FBS adsorption depended on the pre-adsorbed proteins. The ΔD-Δf plot of the cell adhesion also showed the different behaviour on the surfaces, indicating the process affected by cell-protein interactions. The confocal laser scanning microscope images of adherent cells showed the different morphology and pseudopod on the surfaces. The cells adhered on the surfaces modified with Fn and Col had the uniaxially expanded shape with fibrous pseudopods, while those modified with BSA had round shape. The different cell-protein interaction would cause the arrangement of extracellular matrix and cytoskeleton changes at the interfaces.

  7. Protein Adsorption and Subsequent Fibroblasts Adhesion on Hydroxyapatite Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tagaya, Motohiro; Ikoma, Toshiyuki; Yoshioka, Tomohiko; Tanaka, Junzo [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo, Tokyo 152-8550 (Japan); Takemura, Taro; Hanagata, Nobutaka, E-mail: tagaya.m.aa@m.titech.ac.jp [Biomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-10-29

    Quartz crystal microbalance with dissipation (QCM-D) technique was employed for protein adsorption and subsequent fibroblast adhesion on hydroxyapatite (HAp) nanocrystals. The pre-adsorption of three proteins (albumin (BSA) or fibronectin (Fn) or collagen (Col)) and subsequent adsorption of fetal bovine serum (FBS), and the adhesion of fibroblasts on the surface were in situ monitored, and evaluated with the frequency shift ({Delta}f) and dissipation energy shift ({Delta}D), and the viscoelastic change as {Delta}D-{Delta}f plot. The Col adsorption showed larger {Delta}f and {Delta}D values compared with BSA or Fn adsorption, and the subsequent FBS adsorption depended on the pre-adsorbed proteins. The {Delta}D-{Delta}f plot of the cell adhesion also showed the different behaviour on the surfaces, indicating the process affected by cell-protein interactions. The confocal laser scanning microscope images of adherent cells showed the different morphology and pseudopod on the surfaces. The cells adhered on the surfaces modified with Fn and Col had the uniaxially expanded shape with fibrous pseudopods, while those modified with BSA had round shape. The different cell-protein interaction would cause the arrangement of extracellular matrix and cytoskeleton changes at the interfaces.

  8. Cytotoxic effects of nickel nanowires in human fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2016-03-09

    The increasing interest in the use of magnetic nanostructures for biomedical applications necessitates rigorous studies to be carried out in order to determine their potential toxicity. This work attempts to elucidate the cytotoxic effects of nickel nanowires (NWs) in human fibroblasts WI-38 by a colorimetric assay (MTT) under two different parameters: NW concentration and exposure time. This was complemented with TEM and confocal images to assess the NWs internalization and to identify any changes in the cell morphology. Ni NWs were fabricated by electrodeposition using porous alumina templates. Energy dispersive X-Ray analysis, scanning electron microscopy and transmission electron microscopy imaging were used for NW characterization. The results showed decreased cell metabolic activity for incubation times longer than 24 hours and no negative effects for exposure times shorter than that. The cytotoxicity effects for human fibroblasts were then compared with those reported for HCT 116 cells, and the findings point out that it is relevant to consider the cellular size. In addition, the present study compares the toxic effects of equivalent amounts of nickel in the form of its salt to those of NWs and shows that the NWs are more toxic than the salts. Internalized NWs were found in vesicles inside of the cells where their presence induced inflammation of the endoplasmic reticulum.

  9. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat.

    Science.gov (United States)

    Seluanov, Andrei; Hine, Christopher; Azpurua, Jorge; Feigenson, Marina; Bozzella, Michael; Mao, Zhiyong; Catania, Kenneth C; Gorbunova, Vera

    2009-11-17

    The naked mole-rat is the longest living rodent with a maximum lifespan exceeding 28 years. In addition to its longevity, naked mole-rats have an extraordinary resistance to cancer as tumors have never been observed in these rodents. Furthermore, we show that a combination of activated Ras and SV40 LT fails to induce robust anchorage-independent growth in naked mole-rat cells, while it readily transforms mouse fibroblasts. The mechanisms responsible for the cancer resistance of naked mole-rats were unknown. Here we show that naked mole-rat fibroblasts display hypersensitivity to contact inhibition, a phenomenon we termed "early contact inhibition." Contact inhibition is a key anticancer mechanism that arrests cell division when cells reach a high density. In cell culture, naked mole-rat fibroblasts arrest at a much lower density than those from a mouse. We demonstrate that early contact inhibition requires the activity of p53 and pRb tumor suppressor pathways. Inactivation of both p53 and pRb attenuates early contact inhibition. Contact inhibition in human and mouse is triggered by the induction of p27(Kip1). In contrast, early contact inhibition in naked mole-rat is associated with the induction of p16(Ink4a). Furthermore, we show that the roles of p16(Ink4a) and p27(Kip1) in the control of contact inhibition became temporally separated in this species: the early contact inhibition is controlled by p16(Ink4a), and regular contact inhibition is controlled by p27(Kip1). We propose that the additional layer of protection conferred by two-tiered contact inhibition contributes to the remarkable tumor resistance of the naked mole-rat.

  10. Heparan sulfate proteoglycans of rat embryo fibroblasts. A hydrophobic form may link cytoskeleton and matrix components

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R; Höök, M

    1985-01-01

    oligosaccharides. Treatment of living cells with 0.2% Triton X-100, which retained stress fibers and extracellular matrix but solubilized cell membranes, released a proportion of the smaller HSPG together with the heparan sulfate oligosaccharides. The cytoskeleton-matrix residue remaining after detergent...

  11. Heparan sulfate proteoglycans of rat embryo fibroblasts. A hydrophobic form may link cytoskeleton and matrix components

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R; Höök, M

    1985-01-01

    oligosaccharides. Treatment of living cells with 0.2% Triton X-100, which retained stress fibers and extracellular matrix but solubilized cell membranes, released a proportion of the smaller HSPG together with the heparan sulfate oligosaccharides. The cytoskeleton-matrix residue remaining after detergent...... extraction of the cell contained the larger species of HSPG in addition to the smaller HSPG. The presence of the smaller hydrophobic HSPG in the detergent-treated cytoskeleton-matrix preparations suggests that it may form part of a transmembrane cytoskeleton-matrix linkage....

  12. Mitochondrial Bioenergetics Is Altered in Fibroblasts from Patients with Sporadic Alzheimer's Disease

    Science.gov (United States)

    Pérez, María J.; Ponce, Daniela P.; Osorio-Fuentealba, Cesar; Behrens, Maria I.; Quintanilla, Rodrigo A.

    2017-01-01

    The identification of an early biomarker to diagnose Alzheimer's disease (AD) remains a challenge. Neuropathological studies in animal and AD patients have shown that mitochondrial dysfunction is a hallmark of the development of the disease. Current studies suggest the use of peripheral tissues, like skin fibroblasts as a possibility to detect the early pathological alterations present in the AD brain. In this context, we studied mitochondrial function properties (bioenergetics and morphology) in cultured fibroblasts obtained from AD, aged-match and young healthy patients. We observed that AD fibroblasts presented a significant reduction in mitochondrial length with important changes in the expression of proteins that control mitochondrial fusion. Moreover, AD fibroblasts showed a distinct alteration in proteolytic processing of OPA1, a master regulator of mitochondrial fusion, compared to control fibroblasts. Complementary to these changes AD fibroblasts showed a dysfunctional mitochondrial bioenergetics profile that differentiates these cells from aged-matched and young patient fibroblasts. Our findings suggest that the human skin fibroblasts obtained from AD patients could replicate mitochondrial impairment observed in the AD brain. These promising observations suggest that the analysis of mitochondrial bioenergetics could represent a promising strategy to develop new diagnostic methods in peripheral tissues of AD patients. PMID:29056898

  13. TRIF promotes angiotensin II-induced cross-talk between fibroblasts and macrophages in atrial fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao-Qing; Zhang, Dao-Liang [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai (China); Zhang, Ming-Jian; Guo, Meng; Zhan, Yang-Yang; Liu, Fang [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Jiang, Wei-Feng; Zhou, Li [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai (China); Zhao, Liang, E-mail: zhaol_zg@163.com [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai (China); Wang, Quan-Xing, E-mail: wqxejd@126.com [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Liu, Xu, E-mail: liuxu_xk@163.com [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai (China)

    2015-08-14

    Aims: Atrial fibroblasts and macrophages have long been thought to participate in atrial fibrillation (AF). However, which specific mediator may regulate the interaction between them remains unclear. Methods and results: We provided the evidence for the involvement of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF), an important inflammation-related molecule, in the pathophysiology of AF. Patients with AF showed higher levels of angiotensin II (AngII) and TRIF expression and larger number of macrophages infiltration in left atria appendage than individuals with sinus rhythm (SR). In the cell study, AngII induced chemokines expressions in mouse atrial fibroblasts and AngII-stimulated atrial fibroblasts induced the chemotaxis of macrophages, which were reduced by losartan and TRIF siRNA. Meanwhile, AngII-stimulated atrial fibroblasts proliferation was enhanced by macrophages. Conclusions: Our data demonstrated that TRIF may be a crucial factor promoting the interaction between atrial fibroblasts and macrophages, leading to atrial fibrosis. - Highlights: • Compared with SR, AF showed higher TRIF expression in left atrial appendage. • TRIF siRNA reversed macrophage chemotaxis induced by AngII-treated fibroblast. • TRIF siRNA reversed chemokines expressions induced by AngII in fibroblast. • AngII-stimulated atrial fibroblast proliferation was enhanced by macrophage.

  14. Stimulation of skin repair is dependent on fibroblast source and presence of extracellular matrix.

    NARCIS (Netherlands)

    Wang, H.; Pieper, J.S.; Schotel, R.; Blitterswijk, C.A. van; Lamme, E.N.

    2004-01-01

    In this study in vitro and in vivo functions were compared between cultured dermal equivalents produced with human fibroblasts isolated either from papillary dermis or adipose tissue of the same donors. Papillary dermal fibroblasts had a normal spindle cell shape; in contrast, adipose tissue

  15. Stimulation of skin repair is dependent on fibroblast source and presence of extracellular matrix

    NARCIS (Netherlands)

    Wang, Hongjun; Pieper, Jeroen; Schotel, Roka; van Blitterswijk, Clemens; Lamme, Evert N.

    2004-01-01

    In this study in vitro and in vivo functions were compared between cultured dermal equivalents produced with human fibroblasts isolated either from papillary dermis or adipose tissue of the same donors. Papillary dermal fibroblasts had a normal spindle cell shape; in contrast, adipose tissue

  16. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  17. Versican V1 Overexpression Induces a Myofibroblast-Like Phenotype in Cultured Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jon M Carthy

    Full Text Available Versican, a chondroitin sulphate proteoglycan, is one of the key components of the provisional extracellular matrix expressed after injury. The current study evaluated the hypothesis that a versican-rich matrix alters the phenotype of cultured fibroblasts.The full-length cDNA for the V1 isoform of human versican was cloned and the recombinant proteoglycan was expressed in murine fibroblasts. Versican expression induced a marked change in fibroblast phenotype. Functionally, the versican-expressing fibroblasts proliferated faster and displayed enhanced cell adhesion, but migrated slower than control cells. These changes in cell function were associated with greater N-cadherin and integrin β1 expression, along with increased FAK phosphorylation. The versican-expressing fibroblasts also displayed expression of smooth muscle α-actin, a marker of myofibroblast differentiation. Consistent with this observation, the versican fibroblasts displayed increased synthetic activity, as measured by collagen III mRNA expression, as well as a greater capacity to contract a collagen lattice. These changes appear to be mediated, at least in part, by an increase in active TGF-β signaling in the versican expressing fibroblasts, and this was measured by phosphorylation and nuclear accumulation of SMAD2.Collectively, these data indicate versican expression induces a myofibroblast-like phenotype in cultured fibroblasts.

  18. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoying [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Xu, Xingbo [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Zeisberg, Elisabeth M. [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany); Zeisberg, Michael, E-mail: mzeisberg@med.uni-goettingen.de [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany)

    2016-04-08

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that high inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.

  19. Myocyte-Fibroblast Communication in Cardiac Fibrosis and Arrhythmias: Mechanisms and Model Systems

    Science.gov (United States)

    Pellman, Jason; Zhang, Jing; Sheikh, Farah

    2016-01-01

    Development of cardiac fibrosis and arrhythmias is controlled by the activity of and communication between cardiomyocytes and fibroblasts in the heart. Myocyte-fibroblast interactions occur via both direct and indirect means including paracrine mediators, extracellular matrix interactions, electrical modulators, mechanical junctions, and membrane nanotubes. In the diseased heart, cardiomyocyte and fibroblast ratios and activity, and thus myocyte-fibroblast interactions, change and are thought to contribute to the course of disease including development of fibrosis and arrhythmogenic activity. Fibroblasts have a developing role in modulating cardiomyocyte electrical and hypertrophic activity, however gaps in knowledge regarding these interactions still exist. Research in this field has necessitated the development of unique approaches to isolate and control myocyte-fibroblast interactions. Numerous methods for 2D and 3D co-culture systems have been developed, while a growing part of this field is in the use of better tools for in vivo systems including cardiomyocyte and fibroblast specific Cre mouse lines for cell type specific genetic ablation. This review will focus on (i) mechanisms of myocyte-fibroblast communication and their effects on disease features such as cardiac fibrosis and arrhythmias as well as (ii) methods being used and currently developed in this field. PMID:26996756

  20. [Acidic fibroblast growth factor for preventing motor endplate degeneration and muscular atrophy after motor nerve injury: a morphological and electrophysiological study].

    Science.gov (United States)

    Yang, Shao-an; Jin, An-min; Zou, Xiao-ying; Xiao, Xiao-tao; Xiao, Sha

    2006-03-01

    To explore measures to prevent motor endplate degeneration and muscular atrophy after motor nerve injury. Thirty Sprague-Dawley rats were randomized into 3 equal groups. In two of the groups, the right common peroneal nerves of the rats were transected and immediately sutured with implantation of collagen gel carrier of acidic fibroblast growth factor (aFGF) or the empty carrier into the denervated tibialis anterior muscles. In the control group, the transected nerves were sutured without implantation. Six weeks after the operation, morphological and electrophysiological examinations were performed. In the control rats and those with empty collagen gel carrier implantation, obvious motor endplate degeneration and muscular atrophy occurred, which were not obvious in rats receiving aFGF carrier implantation. The decrement of repetitive nerve stimulation was significantly greater in the former two groups than in the latter. Implantation of collagen gel carrier of aFGF may prevent motor endplate degeneration and facilitate functional recovery of the neuromuscular junction after motor nerve injury.

  1. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes.

    Science.gov (United States)

    Strunz, Célia Maria Cássaro; Roggerio, Alessandra; Cruz, Paula Lázara; Pacanaro, Ana Paula; Salemi, Vera Maria Cury; Benvenuti, Luiz Alberto; Mansur, Antonio de Pádua; Irigoyen, Maria Cláudia

    2017-02-01

    Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Maintenance of multipotency in human dermal fibroblasts treated with Xenopus laevis egg extract requires exogenous fibroblast growth factor-2.

    Science.gov (United States)

    Kole, Denis; Ambady, Sakthikumar; Page, Raymond L; Dominko, Tanja

    2014-02-01

    Direct reprogramming of a differentiated somatic cell into a developmentally more plastic cell would offer an alternative to applications in regenerative medicine that currently depend on either embryonic stem cells (ESCs), adult stem cells, or induced pluripotent stem cells (iPSCs). Here we report the potential of select Xenopus laevis egg extract fractions, in combination with exogenous fibroblast growth factor-2 (FGF2), to affect life span, morphology, gene expression, protein translation, and cellular localization of OCT4 and NANOG transcription factors, and the developmental potential of human dermal fibroblasts in vitro. A gradual change in morphology is accompanied by translation of embryonic transcription factors and their nuclear localization and a life span exceeding 60 population doublings. Cells acquire the ability to follow adipogenic, neuronal, and osteogenic differentiation under appropriate induction conditions in vitro. Analysis of active extract fractions reveals that Xenopus egg protein and RNAs as well as exogenously supplemented FGF2 are required and sufficient for induction and maintenance of this phenotypic change. Factors so far identified in the active fractions include FGF2 itself, transforming growth factor-β, maskin, and nucleoplasmin. Identification of critical factors needed for reprogramming may allow for nonviral, chemically defined derivation of human-induced multipotent cells that can be maintained by exogenous FGF2.

  3. Disease and region-related cardiac fibroblast potassium current variations and potential functional significance.

    Science.gov (United States)

    Wu, Chia-Tung; Qi, Xiao-Yan; Huang, Hai; Naud, Patrice; Dawson, Kristin; Yeh, Yung-Hsin; Harada, Masahide; Kuo, Chi-Tai; Nattel, Stanley

    2014-06-01

    Fibroblasts, which play an important role in cardiac function/dysfunction, including arrhythmogenesis, have voltage-dependent (Kv) currents of unknown importance. Here, we assessed the differential expression of Kv currents between atrial and ventricular fibroblasts from control dogs and dogs with an atrial arrhythmogenic substrate caused by congestive heart failure (CHF). Left atrial (LA) and ventricular (LV) fibroblasts were freshly isolated from control and CHF dogs (2-week ventricular tachypacing, 240 bpm). Kv currents were measured with whole-cell voltage-clamp, mRNA by quantitative polymerase chain reaction (qPCR) and fibroblast proliferation by (3)H-thymidine incorporation. Robust voltage-dependent tetraethylammonium (TEA)-sensitive K(+) currents (IC50 ∼1 mM) were recorded. The morphologies and TEA responses of LA and LV fibroblast Kv currents were similar. LV fibroblast Kv-current densities were significantly greater than LA, and Kv-current densities were significantly less in CHF than control. The mRNA expression of Kv-channel subunits Kv1.5 and Kv4.3 was less in LA vs. LV fibroblasts and was down-regulated in CHF, consistent with K(+)-current recordings. Ca(2+)-dependent K(+)-channel subunit (KCa1.1) mRNA and currents were less expressed in LV vs. LA fibroblasts. Inhibiting LA fibroblast K(+) current with 1 mmol/L of TEA or KCa1.1 current with paxilline increased proliferation. Fibroblast Kv-current expression is smaller in CHF vs. control, as well as LA vs. LV. KCa1.1 current is greater in LA vs. LV. Suppressing Kv current with TEA enhances fibroblast proliferation, suggesting that Kv current might act to check fibroblast proliferation and that reduced Kv current in CHF may contribute to fibrosis. Fibroblast Kv-current remodelling may play a role in the atrial fibrillation (AF) substrate; modulating fibroblast K(+) channels may present a novel strategy to prevent fibrosis and AF. Published on behalf of the European Society of Cardiology. All rights

  4. Fibroblast inward-rectifier potassium current upregulation in profibrillatory atrial remodeling.

    Science.gov (United States)

    Qi, Xiao-Yan; Huang, Hai; Ordog, Balazs; Luo, Xiaobin; Naud, Patrice; Sun, Yiguo; Wu, Chia-Tung; Dawson, Kristin; Tadevosyan, Artavazd; Chen, Yu; Harada, Masahide; Dobrev, Dobromir; Nattel, Stanley

    2015-02-27

    Fibroblasts are involved in cardiac arrhythmogenesis and contribute to the atrial fibrillation substrate in congestive heart failure (CHF) by generating tissue fibrosis. Fibroblasts display robust ion currents, but their functional importance is poorly understood. To characterize atrial fibroblast inward-rectifier K(+) current (IK1) remodeling in CHF and its effects on fibroblast properties. Freshly isolated left atrial fibroblasts were obtained from controls and dogs with CHF (ventricular tachypacing). Patch clamp was used to record resting membrane potential (RMP) and IK1. RMP was significantly increased by CHF (from -43.2±0.8 mV, control, to -55.5±0.9 mV). CHF upregulated IK1 (eg, at -90 mV from -1.1±0.2 to -2.7±0.5 pA/pF) and increased the expression of KCNJ2 mRNA (by 52%) and protein (by 80%). Ba(2+) (300 μmol/L) decreased the RMP and suppressed the RMP difference between controls and dogs with CHF. Store-operated Ca(2+) entry (Fura-2-acetoxymethyl ester) and fibroblast proliferation (flow cytometry) were enhanced by CHF. Lentivirus-mediated overexpression of KCNJ2 enhanced IK1 and hyperpolarized fibroblasts. Functional KCNJ2 suppression by lentivirus-mediated expression of a dominant negative KCNJ2 construct suppressed IK1 and depolarized RMP. Overexpression of KCNJ2 increased Ca(2+) entry and fibroblast proliferation, whereas the dominant negative KCNJ2 construct had opposite effects. Fibroblast hyperpolarization to mimic CHF effects on RMP enhanced the Ca(2+) entry. MicroRNA-26a, which targets KCNJ2, was downregulated in CHF fibroblasts. Knockdown of endogenous microRNA-26 to mimic CHF effects unregulated IK1. CHF upregulates fibroblast KCNJ2 expression and currents, thereby hyperpolarizing RMP, increasing Ca(2+) entry, and enhancing atrial fibroblast proliferation. These effects are likely mediated by microRNA-26a downregulation. Remodeling-induced fibroblast KCNJ2 expression changes may play a role in atrial fibrillation promoting fibroblast

  5. Instability of spiral and scroll waves in the presence of a gradient in the fibroblast density: the effects of fibroblast-myocyte coupling

    Science.gov (United States)

    Zimik, Soling; Pandit, Rahul

    2016-12-01

    Fibroblast-myocyte coupling can modulate electrical-wave dynamics in cardiac tissue. In diseased hearts, the distribution of fibroblasts is heterogeneous, so there can be gradients in the fibroblast density (henceforth we call this GFD) especially from highly injured regions, like infarcted or ischemic zones, to less-wounded regions of the tissue. Fibrotic hearts are known to be prone to arrhythmias, so it is important to understand the effects of GFD in the formation and sustenance of arrhythmic re-entrant waves, like spiral or scroll waves. Therefore, we investigate the effects of GFD on the stability of spiral and scroll waves of electrical activation in a state-of-the-art mathematical model for cardiac tissue in which we also include fibroblasts. By introducing GFD in controlled ways, we show that spiral and scroll waves can be unstable in the presence of GFDs because of regions with varying spiral- or scroll-wave frequency ω, induced by the GFD. We examine the effects of the resting membrane potential of the fibroblast and the number of fibroblasts attached to the myocytes on the stability of these waves. Finally, we show that the presence of GFDs can lead to the formation of spiral waves at high-frequency pacing.

  6. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat.

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-07-18

    The naked mole rat (Heterocephalus glaber) displays exceptional longevity, with a maximum lifespan exceeding 30 years. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years. In addition to their longevity, naked mole rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer. Here we identify a mechanism responsible for the naked mole rat's cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high-molecular-mass hyaluronan (HA), which is over five times larger than human or mouse HA. This high-molecular-mass HA accumulates abundantly in naked mole-rat tissues owing to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signalling, as they have a higher affinity to HA compared with mouse or human cells. Perturbation of the signalling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high-molecular-mass HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, HYAL2, naked mole-rat cells become susceptible to malignant transformation and readily form tumours in mice. We speculate that naked mole rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species.

  7. High molecular weight hyaluronan mediates the cancer resistance of the naked mole-rat

    Science.gov (United States)

    Tian, Xiao; Azpurua, Jorge; Hine, Christopher; Vaidya, Amita; Myakishev-Rempel, Max; Ablaeva, Julia; Mao, Zhiyong; Nevo, Eviatar; Gorbunova, Vera; Seluanov, Andrei

    2013-01-01

    The naked mole-rat displays exceptional longevity, with a maximum lifespan exceeding 30 years1–3. This is the longest reported lifespan for a rodent species and is especially striking considering the small body mass of the naked mole-rat. In comparison, a similarly sized house mouse has a maximum lifespan of 4 years4,5. In addition to their longevity, naked mole-rats show an unusual resistance to cancer. Multi-year observations of large naked mole-rat colonies did not detect a single incidence of cancer2,6. Here we identify a mechanism responsible for the naked mole-rat’s cancer resistance. We found that naked mole-rat fibroblasts secrete extremely high molecular weight hyaluronan (HA), which is over five times larger than human or mouse HA. This high molecular weight HA accumulates abundantly in naked mole rat tissues due to the decreased activity of HA-degrading enzymes and a unique sequence of hyaluronan synthase 2 (HAS2). Furthermore, the naked mole-rat cells are more sensitive to HA signaling, as the naked mole rat cells have a higher affinity to HA than the mouse or human cells. Perturbation of the signaling pathways sufficient for malignant transformation of mouse fibroblasts fails to transform naked mole-rat cells. However, once high molecular weight HA is removed by either knocking down HAS2 or overexpressing the HA-degrading enzyme, Hyal2, naked mole-rat cells become susceptible to malignant transformation and readily form tumors in mice. We speculate that naked mole-rats have evolved a higher concentration of HA in the skin to provide skin elasticity needed for life in underground tunnels. This trait may have then been co-opted to provide cancer resistance and longevity to this species. PMID:23783513

  8. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma

    DEFF Research Database (Denmark)

    Morsing, Mikkel; Klitgaard, Marie Christine; Jafari Kermani, Abbas

    2016-01-01

    breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. Methods The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS......) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating...... conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation...

  9. Distribution pattern of lysosomal granules in fibroblasts of the Chediak-Higashi syndrome.

    Science.gov (United States)

    Abe, K; Arashima, S; Honma, M

    1982-01-01

    Cultured fibroblasts from a patient with the Chediak-Higashi syndrome, the mother of the patient, and a normal control were studied by light and electron microscopy. The distribution pattern of PAS-positive and acid phosphatase-containing granules in the cytoplasm differed significantly in the fibroblasts from the patient when compared with those from the mother and control. The granules in the fibroblasts from the patient were clustered in the perinuclear area, whereas the granules in the fibroblasts from the mother and control were dispersed throughout the cytoplasm. After incubation with ascorbic acid, the clustered granules in the fibroblasts of the Chediak-Higashi syndrome showed a tendency to spread throughout the cytoplasm. The distribution pattern of the granules was studied by quantitative morphology. Images PMID:7085893

  10. Panx1 regulates cellular properties of keratinocytes and dermal fibroblasts in skin development and wound healing.

    Science.gov (United States)

    Penuela, Silvia; Kelly, John J; Churko, Jared M; Barr, Kevin J; Berger, Amy C; Laird, Dale W

    2014-07-01

    Pannexin1 (Panx1), a channel-forming glycoprotein is expressed in neonatal but not in aged mouse skin. Histological staining of Panx1 knockout (KO) mouse skin revealed a reduction in epidermal and dermal thickness and an increase in hypodermal adipose tissue. Following dorsal skin punch biopsies, mutant mice exhibited a significant delay in wound healing. Scratch wound and proliferation assays revealed that cultured keratinocytes from KO mice were more migratory, whereas dermal fibroblasts were more proliferative compared with controls. In addition, collagen gels populated with fibroblasts from KO mice exhibited significantly reduced contraction, comparable to WT fibroblasts treated with the Panx1 blocker, probenecid. KO fibroblasts did not increase α-smooth muscle actin expression in response to TGF-β, as is the case for differentiating WT myofibroblasts during wound contraction. We conclude that Panx1 controls cellular properties of keratinocytes and dermal fibroblasts during early stages of skin development and modulates wound repair upon injury.

  11. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  12. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    International Nuclear Information System (INIS)

    Fan, Rong-hui; Zhu, Xiu-mei; Sun, Yao-wen; Peng, Hui-zi; Wu, Hang-li; Gao, Wen-jie

    2016-01-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  13. Desensitization of idiopathic pulmonary fibrosis fibroblasts to Alternaria alternata extract-mediated necrotic cell death.

    Science.gov (United States)

    Im, Jintaek; Kim, Kyutae; Yhee, Ji Young; O'Grady, Scott M; Nho, Richard S

    2016-11-01

    Alternaria alternata is an allergenic fungus and known to cause an upper respiratory tract infection and asthma in humans with compromised immunity. Although A. alternata's effect on airway epithelial cells has previously been examined, the potential role of A. alternata on lung fibroblast viability is not understood. Since lung fibroblasts derived from patients with idiopathic pulmonary fibrosis (IPF) display a distinct phenotype that is resistant to stress and cell death inducing conditions, the investigation of the role of Alternaria on pathological IPF fibroblasts provides a better understanding of the fibrotic process induced by an allergenic fungus. Therefore, we examined cell viability of control and IPF fibroblasts (n = 8 each) in response to A. alternata extract. Control fibroblast cell death was increased while IPF fibroblasts were resistant when exposed to 50-100 μg/mL of A. alternata extract. However, there was no significant difference in kinetics or magnitude of Ca 2+ responses from control lung and IPF fibroblasts. In contrast, unlike control fibroblasts, intracellular reactive oxygen species (ROS) levels remained low when IPF cells were treated with A. alternata extracts as a function of time. Caspase 3/7 and TUNEL assay revealed that enhanced cell death caused by A. alternata extract was likely due to necrosis, and 7-AAD assay and the use of sodium pyruvate for ATP generation further supported our findings that IPF fibroblasts become resistant to A. alternata extract-induced necrotic cell death. Our results suggest that exposure to A. alternata potentially worsens the fibrotic process by promoting normal lung fibroblast cell death in patients with IPF. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Kyle J Hewitt

    2011-02-01

    Full Text Available Human induced pluripotent stem (hiPS cells offer a novel source of patient-specific cells for regenerative medicine. However, the biological potential of iPS-derived cells and their similarities to cells differentiated from human embryonic stem (hES cells remain unclear. We derived fibroblast-like cells from two hiPS cell lines and show that their phenotypic properties and patterns of DNA methylation were similar to that of mature fibroblasts and to fibroblasts derived from hES cells. iPS-derived fibroblasts (iPDK and their hES-derived counterparts (EDK showed similar cell morphology throughout differentiation, and patterns of gene expression and cell surface markers were characteristic of mature fibroblasts. Array-based methylation analysis was performed for EDK, iPDK and their parental hES and iPS cell lines, and hierarchical clustering revealed that EDK and iPDK had closely-related methylation profiles. DNA methylation analysis of promoter regions associated with extracellular matrix (ECM-production (COL1A1 by iPS- and hESC-derived fibroblasts and fibroblast lineage commitment (PDGFRβ, revealed promoter demethylation linked to their expression, and patterns of transcription and methylation of genes related to the functional properties of mature stromal cells were seen in both hiPS- and hES-derived fibroblasts. iPDK cells also showed functional properties analogous to those of hES-derived and mature fibroblasts, as seen by their capacity to direct the morphogenesis of engineered human skin equivalents. Characterization of the functional behavior of ES- and iPS-derived fibroblasts in engineered 3D tissues demonstrates the utility of this tissue platform to predict the capacity of iPS-derived cells before their therapeutic application.

  15. Modulation of the effects of alveolar macrophages on lung fibroblast collagen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.G.; Greenberg, J.

    1987-01-01

    Alveolar macrophages (AM) may function as effector cells that can either stimulate or inhibit lung fibroblast collagen production. However, conditions that determine the predominant effect of AM on fibroblasts are not well understood. To delineate factors that modulate the effects of AM on lung fibroblasts, we studied the interaction of AM products and fibroblasts in vitro. The AM were obtained by bronchoalveolar lavage of hamsters with bleomycin-induced pulmonary fibrosis. Conditioned medium (CM) from the AM cultures was incubated in varying amounts with lung fibroblast (IMR-90) cultures. After metabolic labeling with (/sup 3/H)proline, fibroblast collagen production based on procollagen-specific radioactivity was determined. Macrophage CM in concentrations greater than 5% suppressed collagen production, an event attributed to the macrophage-derived suppressive factor that we have previously characterized. Macrophages were also determined to produce PGE2 in culture. Authentic PGE2 at concentrations found in CM was found to suppress fibroblast collagen production, indicating that AM-derived PGE2 contributes to the suppressive activity in CM. To examine possible stimulatory factors in CM, the fibroblasts were preincubated with indomethacin. This approach was based on our previous observation that AM-derived suppressive factor increases endogenous fibroblast PGE2 and that its activity can be blocked by indomethacin. Macrophage CM in a concentration of 20% did not suppress the collagen production of indomethacin-treated fibroblasts. However, CM concentrations of 5 and 10% increased collagen production (173 and 143% of control values, respectively), indicating the presence of stimulatory factor(s) in macrophage-conditioned medium.

  16. System-Wide Analysis Reveals a Complex Network of Tumor-Fibroblast Interactions Involved in Tumorigenicity

    Science.gov (United States)

    Rajaram, Megha; Li, Jinyu; Egeblad, Mikala; Powers, R. Scott

    2013-01-01

    Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five) played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8) or minimally (STC1) significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti-stromal therapeutic strategies

  17. Identification of a transitional fibroblast function in very early rheumatoid arthritis.

    Science.gov (United States)

    Filer, Andrew; Ward, Lewis S C; Kemble, Samuel; Davies, Christopher S; Munir, Hafsa; Rogers, Rebekah; Raza, Karim; Buckley, Christopher Dominic; Nash, Gerard B; McGettrick, Helen M

    2017-12-01

    Synovial fibroblasts actively regulate the inflammatory infiltrate by communicating with neighbouring endothelial cells (EC). Surprisingly, little is known about how the development of rheumatoid arthritis (RA) alters these immunomodulatory properties. We examined the effects of phase of RA and disease outcome (resolving vs persistence) on fibroblast crosstalk with EC and regulation of lymphocyte recruitment. Fibroblasts were isolated from patients without synovitis, with resolving arthritis, very early RA (VeRA; symptom ≤12 weeks) and established RA undergoing joint replacement (JRep) surgery. Endothelial-fibroblast cocultures were formed on opposite sides of porous filters. Lymphocyte adhesion from flow, secretion of soluble mediators and interleukin 6 (IL-6) signalling were assessed. Fibroblasts from non-inflamed and resolving arthritis were immunosuppressive, inhibiting lymphocyte recruitment to cytokine-treated endothelium. This effect was lost very early in the development of RA, such that fibroblasts no longer suppressed recruitment. Changes in IL-6 and transforming growth factor beta 1 (TGF-β 1 ) signalling appeared critical for the loss of the immunosuppressive phenotype. In the absence of exogenous cytokines, JRep, but not VeRA, fibroblasts activated endothelium to support lymphocyte. In RA, fibroblasts undergo two distinct changes in function: first a loss of immunosuppressive responses early in disease development, followed by the later acquisition of a stimulatory phenotype. Fibroblasts exhibit a transitional functional phenotype during the first 3 months of symptoms that contributes to the accumulation of persistent infiltrates. Finally, the role of IL-6 and TGF-β 1 changes from immunosuppressive in resolving arthritis to stimulatory very early in the development of RA. Early interventions targeting 'pathogenic' fibroblasts may be required in order to restore protective regulatory processes. © Article author(s) (or their employer(s) unless

  18. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  19. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Anne Grünewald

    Full Text Available BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD. The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7, as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and

  20. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2.

    Science.gov (United States)

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro

    2016-04-22

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2.

  1. The Transcriptomic Evolution of Mammalian Pregnancy: Gene Expression Innovations in Endometrial Stromal Fibroblasts

    Science.gov (United States)

    Kin, Koryu; Maziarz, Jamie; Chavan, Arun R.; Kamat, Manasi; Vasudevan, Sreelakshmi; Birt, Alyssa; Emera, Deena; Lynch, Vincent J.; Ott, Troy L.; Pavlicev, Mihaela; Wagner, Günter P.

    2016-01-01

    The endometrial stromal fibroblast (ESF) is a cell type present in the uterine lining of therian mammals. In the stem lineage of eutherian mammals, ESF acquired the ability to differentiate into decidual cells in order to allow embryo implantation. We call the latter cell type “neo-ESF” in contrast to “paleo-ESF” which is homologous to eutherian ESF but is not able to decidualize. In this study, we compare the transcriptomes of ESF from six therian species: Opossum (Monodelphis domestica; paleo-ESF), mink, rat, rabbit, human (all neo-ESF), and cow (secondarily nondecidualizing neo-ESF). We find evidence for strong stabilizing selection on transcriptome composition suggesting that the expression of approximately 5,600 genes is maintained by natural selection. The evolution of neo-ESF from paleo-ESF involved the following gene expression changes: Loss of expression of genes related to inflammation and immune response, lower expression of genes opposing tissue invasion, increased markers for proliferation as well as the recruitment of FOXM1, a key gene transiently expressed during decidualization. Signaling pathways also evolve rapidly and continue to evolve within eutherian lineages. In the bovine lineage, where invasiveness and decidualization were secondarily lost, we see a re-expression of genes found in opossum, most prominently WISP2, and a loss of gene expression related to angiogenesis. The data from this and previous studies support a scenario, where the proinflammatory paleo-ESF was reprogrammed to express anti-inflammatory genes in response to the inflammatory stimulus coming from the implanting conceptus and thus paving the way for extended, trans-cyclic gestation. PMID:27401177

  2. Genome Stability Maintenance in Naked Mole-Rat.

    Science.gov (United States)

    Petruseva, I O; Evdokimov, A N; Lavrik, O I

    2017-01-01

    The naked mole-rat ( Heterocephalus glaber ) is one of the most promising models used to study genome maintenance systems, including the effective repair of damage to DNA. The naked mole-rat is the longest lived rodent species, which is extraordinarily resistant to cancer and has a number of other unique phenotypic traits. For at least 80% of its lifespan, this animal shows no signs of aging or any increased likelihood of death and retains the ability to reproduce. The naked mole-rat draws the heightened attention of researchers who study the molecular basis of lengthy lifespan and cancer resistance. Despite the fact that the naked mole-rat lives under genotoxic stress conditions (oxidative, etc.), the main characteristics of its genome and proteome are a high stability and effective functioning. Replicative senescence in the somatic cells of naked mole-rats is missing, while an additional p53/pRb-dependent mechanism of early contact inhibition has been revealed in its fibroblasts, which controls cell proliferation and its mechanism of arf- dependent aging. The unique traits of phenotypic and molecular adaptations found in the naked mole-rat speak to a high stability and effective functioning of the molecular machinery that counteract damage accumulation in its genome. This review analyzes existing results in the study of the molecular basis of longevity and high cancer resistance in naked mole-rats.

  3. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  4. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  5. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  6. Tattoo ink nanoparticles in skin tissue and fibroblasts

    Science.gov (United States)

    Twigg, Peter C; Baker, Richard; Tobin, Desmond J

    2015-01-01

    Summary Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells. PMID:26171294

  7. Tattoo ink nanoparticles in skin tissue and fibroblasts.

    Science.gov (United States)

    Grant, Colin A; Twigg, Peter C; Baker, Richard; Tobin, Desmond J

    2015-01-01

    Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells.

  8. Collagen matrix as a tool in studying fibroblastic cell behavior

    Science.gov (United States)

    Kanta, Jiří

    2015-01-01

    Type I collagen is a fibrillar protein, a member of a large family of collagen proteins. It is present in most body tissues, usually in combination with other collagens and other components of extracellular matrix. Its synthesis is increased in various pathological situations, in healing wounds, in fibrotic tissues and in many tumors. After extraction from collagen-rich tissues it is widely used in studies of cell behavior, especially those of fibroblasts and myofibroblasts. Cells cultured in a classical way, on planar plastic dishes, lack the third dimension that is characteristic of body tissues. Collagen I forms gel at neutral pH and may become a basis of a 3D matrix that better mimics conditions in tissue than plastic dishes. PMID:25734486

  9. Quantitative analysis of chromatin accessibility in mouse embryonic fibroblasts.

    Science.gov (United States)

    Zhuo, Baowen; Yu, Juan; Chang, Luyuan; Lei, Jiafan; Wen, Zengqi; Liu, Cuifang; Mao, Guankun; Wang, Kehui; Shen, Jie; Xu, Xueqing

    2017-11-04

    Genomic DNA of eukaryotic cells is hierarchically packaged into chromatin by histones. The dynamic organization of chromatin fibers plays a critical role in the regulation of gene transcription and other DNA-associated biological processes. Recently, numerous approaches have been developed to map the chromatin organization by characterizing chromatin accessibilities in genome-wide. However, reliable methods to quantitatively map chromatin accessibility are not well-established, especially not on a genome-wide scale. Here, we developed a modified MNase-seq for mouse embryonic fibroblasts, wherein chromatin was partially digested at multiple digestion times using micrococcal nuclease (MNase), allowing quantitative analysis of local yet genome-wide chromatin compaction. Our results provide strong evidence that the chromatin accessibility at promoter regions are positively correlated with gene activity. In conclusion, our assay is an ideal tool for the quantitative study of gene regulation in the perspective of chromatin accessibility. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Form and function in cell motility: from fibroblasts to keratocytes.

    Science.gov (United States)

    Herant, Marc; Dembo, Micah

    2010-04-21

    It is plain enough that a horse is made for running, but similar statements about motile cells are not so obvious. Here the basis for structure-function relations in cell motility is explored by application of a new computational technique that allows realistic three-dimensional simulations of cells migrating on flat substrata. With this approach, some cyber cells spontaneously display the classic irregular protrusion cycles and handmirror morphology of a crawling fibroblast, and others the steady gliding motility and crescent morphology of a fish keratocyte. The keratocyte motif is caused by optimal recycling of the cytoskeleton from the back to the front so that more of the periphery can be devoted to protrusion. These calculations are a step toward bridging the gap between the integrated mechanics and biophysics of whole cells and the microscopic molecular biology of cytoskeletal components. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Acetylome in Human Fibroblasts From Parkinson's Disease Patients

    Directory of Open Access Journals (Sweden)

    Sokhna M. S. Yakhine-Diop

    2018-04-01

    Full Text Available Parkinson's disease (PD is a multifactorial neurodegenerative disorder. The pathogenesis of this disease is associated with gene and environmental factors. Mutations in leucine-rich repeat kinase 2 (LRRK2 are the most frequent genetic cause of familial and sporadic PD. Moreover, posttranslational modifications, including protein acetylation, are involved in the molecular mechanism of PD. Acetylation of lysine proteins is a dynamic process that is modulated in PD. In this descriptive study, we characterized the acetylated proteins and peptides in primary fibroblasts from idiopathic PD (IPD and genetic PD harboring G2019S or R1441G LRRK2 mutations. Identified acetylated peptides are modulated between individuals' groups. Although acetylated nuclear proteins are the most represented in cells, they are hypoacetylated in IPD. Results display that the level of hyperacetylated and hypoacetylated peptides are, respectively, enhanced in genetic PD and in IPD cells.

  12. Tattoo ink nanoparticles in skin tissue and fibroblasts

    Directory of Open Access Journals (Sweden)

    Colin A. Grant

    2015-05-01

    Full Text Available Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells.

  13. Fibroblast growth factors: key players in regeneration and tissue repair.

    Science.gov (United States)

    Maddaluno, Luigi; Urwyler, Corinne; Werner, Sabine

    2017-11-15

    Tissue injury initiates a complex repair process, which in some organisms can lead to the complete regeneration of a tissue. In mammals, however, the repair of most organs is imperfect and results in scar formation. Both regeneration and repair are orchestrated by a highly coordinated interplay of different growth factors and cytokines. Among the key players are the fibroblast growth factors (FGFs), which control the migration, proliferation, differentiation and survival of different cell types. In addition, FGFs influence the expression of other factors involved in the regenerative response. Here, we summarize current knowledge on the roles of endogenous FGFs in regeneration and repair in different organisms and in different tissues and organs. Gaining a better understanding of these FGF activities is important for appropriate modulation of FGF signaling after injury to prevent impaired healing and to promote organ regeneration in humans. © 2017. Published by The Company of Biologists Ltd.

  14. Fibroblast Growth Factor 23 in Long-Duration Spaceflight

    Science.gov (United States)

    Bokhari, R.; Zwart, S. R.; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2015-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight.

  15. Fibroblastic reticular cells and their role in viral hemorrhagic fevers.

    Science.gov (United States)

    Steele, Keith E; Anderson, Arthur O; Mohamadzadeh, Mansour

    2009-05-01

    Viral hemorrhagic fevers (VHFs) caused by Ebola, Marburg and Lassa viruses often manifest as multiple organ dysfunction and hemorrhagic shock with high mortality. These viruses target numerous cell types, including monocytes and dendritic cells, which are primary early targets that mediate critical pathogenetic processes. This review focuses on fibroblastic reticular cells (FRCs), another prevalent infected cell type that is known as a key regulator of circulatory and immune functions. Viral infection of FRCs could have debilitating effects in secondary lymphoid organs and various other tissues. FRCs may also contribute to the spread of these deadly viruses throughout the body. Here, we review the salient features of these VHFs and the biology of FRCs, emphasizing the potential role of these cells in VHFs and the rapid deterioration of immune and hemovascular sytems that are characteristic of such acute infections.

  16. Iron status and fibroblast growth factor-23 in Gambian children

    Science.gov (United States)

    Braithwaite, Vickie; Jarjou, Landing M.A.; Goldberg, Gail R.; Prentice, Ann

    2012-01-01

    A relationship between iron and fibroblast growth factor-23 (FGF23) metabolic pathways has been proposed. Iron deficiency anaemia is prevalent in The Gambia and concentrations of fibroblast growth factor-23 FGF23 are elevated in a large percentage of Gambian children with rickets-like bone deformity. We speculate that low iron status may be involved in the aetiology of Gambian rickets. The aim of this study was to determine if there was a relationship between haemoglobin, as a marker of iron status, and FGF23 in samples from children with and without a history of rickets-like bone deformities in The Gambia. We conducted a retrospective analysis of studies carried out from 2006 to 2008 in children from a rural community in The Gambia where iron deficiency anaemia is endemic and where elevated circulating concentrations of FGF23 have been found. To investigate the relationship between circulating FGF23 and haemoglobin concentrations we used an age-adjusted linear regression model on data from children rickets-like bone deformity (BD) (n = 108) and from the local community (LC) (n = 382). We found that circulating concentration of FGF23 was inversely correlated with haemoglobin concentration. This effect was more pronounced in BD children compared with LC children (interaction: P ≤ 0.0001). Anaemia and elevated FGF23 were more prevalent in BD children compared to LC children (P = 0.0003 and P = 0.0001 respectively). In conclusion, there is a stronger relationship between FGF23 and haemoglobin in Gambian children with a history of rickets compared to local community children. This study provides support for the contention that iron may be involved in FGF23 metabolic pathways. PMID:22465847

  17. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  18. Effects of plant lectins on in vitro fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Ana Maria Sell

    2003-06-01

    Full Text Available Lectins are carbohydrate-binding proteins that have been isolated from various sources and presented a wide spectrum of biological activities. The effects of four lectins, namely, Phaseolus vulgaris phytohemagglutinin, PHA, wheat germ agglutinin, WGA, Artocarpus integrifolia seed lectins, jacalin and artocarpin, on in vitro fibroblasts proliferation were investigated. The lectins did not influence the initial cell adhesion to the plate. PHA and WGA at 10-20 µg/mL concentrations significantly decreased fibroblasts proliferation. At these concentrations, they caused morphological alterations on cells and over 80 µg/mL, promoted cell death. Neither jacalin nor artocarpin significantly affected cell proliferation.O objetivo deste trabalho foi avaliar a influência das lectinas PHA, WGA, jacalina e artocarpina sobre a proliferação de fibroblastos in vitro. Para tanto, fibroblastos gengivais de voluntários saudáveis foram cultivados, por cinco dias, em DMEM suplementado com soro bovino fetal (10% v/v e na presença das lectinas nas concentrações finais de 0.1 a 300 µg/mL. A adesão, o crescimento e a morfologia celular foram acompanhados por microscopia de inversão e contraste de fase. O índice de proliferação foi avaliado pelo método calorimétrico usando MTT. As lectinas não alteraram a adesão inicial dos fibroblastos à placa de poliestireno. PHA e WGA, nas concentrações de 10 a 20 µg/mL, diminuíram significativamente a proliferação celular. Nestas concentrações a morfologia celular é alterada e acima de 80 µg/mL, houve100% de morte celular. As lectinas jacalina e artocarpina não influenciaram a proliferação celular.

  19. SWAP-70 contributes to spontaneous transformation of mouse embryo fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Tzu; Shu, Chung-Li; Lai, Jing-Yang; Lin, Ching-Yu; Chuu, Chih-Pin [Institute of Cellular and System Medicine National Health Research Institute, Zhunan Town 35053, Miaoli County, Taiwan, ROC (China); Morishita, Kazuhiro; Ichikawa, Tomonaga [Division of Tumor and Cellular Biochemistry Department of Medical Sciences Faculty of Medicine University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-shi, Miyazaki 889-1692 Japan (Japan); Jessberger, Rolf [Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany); Fukui, Yasuhisa, E-mail: 990412@nhri.org.tw [Institute of Cellular and System Medicine National Health Research Institute, Zhunan Town 35053, Miaoli County, Taiwan, ROC (China)

    2016-07-15

    Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, a putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs. - Highlights: • Mouse embryo fibroblasts (MEFs) lacking SWAP-70 do not cause spontaneous transform. • Adding back of SWAP-70 to SWAP-70-deficient MEFs induces spontaneous transformation. • SWAP-70 is required for spontaneous transformation of MEFs.

  20. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  2. LXA{sub 4} actions direct fibroblast function and wound closure

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Bruno S. [Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA (United States); Microbiology Branch, US Army Dental and Trauma Research Detachment, Institute of Surgical Research, JBSA Fort Sam Houston, TX (United States); Kantarci, Alpdogan; Zarrough, Ahmed; Hasturk, Hatice [Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA (United States); Leung, Kai P., E-mail: kai.p.leung.civ@mail.mil [Microbiology Branch, US Army Dental and Trauma Research Detachment, Institute of Surgical Research, JBSA Fort Sam Houston, TX (United States); Van Dyke, Thomas E., E-mail: tvandyke@forsyth.org [Department of Applied Oral Sciences, Center for Periodontology, The Forsyth Institute, Cambridge, MA (United States)

    2015-09-04

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A{sub 4} (LXA{sub 4}), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA{sub 4} on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation. The impact of exogenous TGF-β1 (1 ng/mL) on LXA{sub 4} receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA{sub 4} receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA{sub 4} slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA{sub 4} tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA{sub 4} in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights: • TGF

  3. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice.

    Science.gov (United States)

    Kimura, Toru; Nojiri, Takashi; Hino, Jun; Hosoda, Hiroshi; Miura, Koichi; Shintani, Yasushi; Inoue, Masayoshi; Zenitani, Masahiro; Takabatake, Hiroyuki; Miyazato, Mikiya; Okumura, Meinoshin; Kangawa, Kenji

    2016-02-19

    Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β-induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22

  4. Histamine induces human lung fibroblast-mediated collagen gel contraction via histamine H1 receptor.

    Science.gov (United States)

    Horie, Masafumi; Saito, Akira; Yamauchi, Yasuhiro; Mikami, Yu; Sakamoto, Makiko; Jo, Taisuke; Nakajima, Jun; Takizawa, Hajime; Nagase, Takahide; Kohyama, Tadashi

    2014-06-01

    Airway remodeling is implicated in irreversible airflow limitation of refractory asthma, which includes increased smooth muscle mass and subepithelial fibrosis. Activated fibroblasts acquire contractile phenotype to participate in tissue contraction and structural alteration of extracellular matrices. Histamine is a potent mediator of allergic inflammation, substantially involved in asthmatic pathophysiology. We hypothesized that histamine might play a role in airway remodeling, and investigated its effect on fibroblast-mediated collagen gel contraction. Fibroblast-mediated collagen gel contraction was studied. Histamine's regulation of collagen gel contraction was characterized by using specific histamine-receptor antagonists, an IP3 receptor antagonist and a PKC inhibitor. Histamine induced contraction of collagen gels embedded with human lung fibroblasts, in a time-dependent manner, and at the concentration more than 10(-6) M, both in four primary cultured adult lung fibroblasts and three fetal lung fibroblast cell lines. This effect was attenuated by H1 receptor antagonist, whereas those for H2 to H4 receptors failed to show an inhibitory effect. Furthermore, IP3 receptor-mediated Ca(2+) mobilization was implicated in histamine's action on collagen gel contraction. Our results suggest that histamine is involved in airway remodeling through its action on lung fibroblasts, and antihistamine drugs, especially H1 receptor antagonists, might be potentially beneficial for a subset of asthmatic patients.

  5. Ear fibroblasts derived from Taiwan yellow cattle are more heat resistant than those from Holstein cattle.

    Science.gov (United States)

    Wu, Hung-Yi; Peng, Shao-Yu; Li, Hung; Lee, Jai-Wei; Kesorn, Piyawit; Wu, Hsi-Hsun; Ju, Jyh-Cherng; Shen, Perng-Chih

    2017-05-01

    The objective of this study was to compare the thermotolerances of ear fibroblasts derived from Holstein (H) and Taiwan yellow cattle (Y) and their apoptosis-related protein expressions with (1, 3, 6, 12, and 24h) or without heat shock treatment. The results showed that the vaginal temperatures of Y (38.4-38.5°C) were (Pderived from Y (6h: 1.1%; 12h: 1.6%; 24h: 2.6%) were lower (Pderived from H (6h: 1.8%; 12h: 4.0%; 24h: 6.9%), respectively, after heat shock (42°C). The expression level of apoptosis inducing factor (AIF) in ear fibroblasts derived from H was higher (Pderived from Y after the heat shock treatment for 6h and 12h, respectively. The level of cytochrome c of ear fibroblasts derived from H was higher (Pderived from Y after the heat shock treatment for 1-12h, respectively. The abundances of Caspase-3, Caspase-8 and Caspase-9 of ear fibroblasts derived from H were higher (Pderived from Y after 12h and 24h of heat shock, respectively; the Bcl-2/Bax ratios of ear fibroblasts derived from H were lower (Pderived fibroblasts after heated for 1-24h. The expression level of HSP-70 of Y-derived ear fibroblasts was also higher (Pderived from Taiwan yellow cattle was better than that of cells derived from Holstein cattle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis.

    Science.gov (United States)

    Kong, Ping; Christia, Panagiota; Saxena, Amit; Su, Ya; Frangogiannis, Nikolaos G

    2013-11-01

    Understanding the role of fibroblasts in pathologic conditions is hampered by the absence of specific markers. Fibroblast-specific protein (FSP)1 has been suggested as a fibroblast-specific marker in normal and fibrotic tissues; FSP1 reporter mice and FSP1-Cre-driven gene deletion are considered reliable strategies to investigate fibroblast biology. Because fibroblasts are abundant in normal and injured mammalian hearts, we studied the identity of FSP1(+) cells in the infarcted and remodeling myocardium using mice with green fluorescent protein (GFP) expression driven by the FSP1 promoter. Neonatal and adult mouse hearts had low numbers of FSP1(+) cells. Myocardial infarction induced marked infiltration with FSP1-expressing cells that peaked after 72 h of reperfusion. Using flow cytometry, we identified 50% of FSP1(+) cells as hematopoietic cells; many endothelial cells were also FSP1(+). Increased infiltration with FSP1(+) cells was also noted in the pressure-overloaded myocardium. Although some FSP1(+) cells had fibroblast morphology, >30% were identified as hematopoietic cells, endothelial cells, or vascular smooth muscle cells. In contrast, periostin did not stain leukocytes or vascular cells but labeled spindle-shaped interstitial cells and, as a typical matricellular protein, was deposited in the matrix. CD11b(+) myeloid cells sorted from the infarcted heart had higher FSP1 expression than corresponding CD11b-negative cells, highlighting the predominant expression by hematopoietic cells. FSP1 is not a specific marker for fibroblasts in cardiac remodeling and fibrosis.

  7. Apoptosis-Like Cell Death Induction and Aberrant Fibroblast Properties in Human Incisional Hernia Fascia

    Science.gov (United States)

    Diaz, Ramon; Quiles, Maria T.; Guillem-Marti, Jordi; Lopez-Cano, Manuel; Huguet, Pere; Ramon-y-Cajal, Santiago; Reventos, Jaume; Armengol, Manel; Arbos, Maria A.

    2011-01-01

    Incisional hernia often occurs following laparotomy and can be a source of serious problems. Although there is evidence that a biological cause may underlie its development, the mechanistic link between the local tissue microenvironment and tissue rupture is lacking. In this study, we used matched tissue-based and in vitro primary cell culture systems to examine the possible involvement of fascia fibroblasts in incisional hernia pathogenesis. Fascia biopsies were collected at surgery from incisional hernia patients and non-incisional hernia controls. Tissue samples were analyzed by histology and immunoblotting methods. Fascia primary fibroblast cultures were assessed at morphological, ultrastructural, and functional levels. We document tissue and fibroblast loss coupled to caspase-3 activation and induction of apoptosis-like cell-death mechanisms in incisional hernia fascia. Alterations in cytoskeleton organization and solubility were also observed. Incisional hernia fibroblasts showed a consistent phenotype throughout early passages in vitro, which was characterized by significantly enhanced cell proliferation and migration, reduced adhesion, and altered cytoskeleton properties, as compared to non-incisional hernia fibroblasts. Moreover, incisional hernia fibroblasts displayed morphological and ultrastructural alterations compatible with autophagic processes or lysosomal dysfunction, together with enhanced sensitivity to proapoptotic challenges. Overall, these data suggest an ongoing complex interplay of cell death induction, aberrant fibroblast function, and tissue loss in incisional hernia fascia, which may significantly contribute to altered matrix maintenance and tissue rupture in vivo. PMID:21641387

  8. Race Does Not Predict Melanocyte Heterogeneous Responses to Dermal Fibroblast-Derived Mediators.

    Directory of Open Access Journals (Sweden)

    Pornthep Sirimahachaiyakul

    Full Text Available Abnormal pigmentation following cutaneous injury causes significant patient distress and represents a barrier to recovery. Wound depth and patient characteristics influence scar pigmentation. However, we know little about the pathophysiology leading to hyperpigmentation in healed shallow wounds and hypopigmentation in deep dermal wound scars. We sought to determine whether dermal fibroblast signaling influences melanocyte responses.Epidermal melanocytes from three Caucasians and three African-Americans were genotyped for single nucleotide polymorphisms (SNPs across the entire genome. Melanocyte genetic profiles were determined using principal component analysis. We assessed melanocyte phenotype and gene expression in response to dermal fibroblast-conditioned medium and determined potential mesenchymal mediators by proteome profiling the fibroblast-conditioned medium.Six melanocyte samples demonstrated significant variability in phenotype and gene expression at baseline and in response to fibroblast-conditioned medium. Genetic profiling for SNPs in receptors for 13 identified soluble fibroblast-secreted mediators demonstrated considerable heterogeneity, potentially explaining the variable melanocyte responses to fibroblast-conditioned medium.Our data suggest that melanocytes respond to dermal fibroblast-derived mediators independent of keratinocytes and raise the possibility that mesenchymal-epidermal interactions influence skin pigmentation during cutaneous scarring.

  9. Differential effect of extracellular matrix derived from papillary and reticular fibroblasts on epidermal development in vitro.

    Science.gov (United States)

    Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb

    2017-06-01

    Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.

  10. [An observation of antiproliferative effect of germanium-132 on cultured pterygium fibroblasts].

    Science.gov (United States)

    Liu, Y; Sun, X; Li, B; Wang, J

    2000-07-01

    To detect the antiproliferation of carboxyethyl germanium sesquioxide (Ge-132) on fibroblasts of pterygium in vitro and try to find a potentially effective agent for treatment of primary pterygium and prevention of its postoperative recurrence. Primary culture and subculture of pterygium fibroblasts were established in vitro. Different concentrations of Ge-132 (39 - 5,000 mg/L) or mitomycin-C (3.13 - 4.00 mg/L, the control) were added to the fibroblast culture of the third or forth passage respectively. The inhibitory effect was determined by MTT (tetrazolium bromide) method. The influence of addition of Ge-132 on the growth curve of fibroblasts was observed, and the changing expression of proliferating cell nuclear antigen (PCNA) in fibroblasts was studied by immunohistochemical method. The addition of Ge-132 in the culture caused significant inhibition of the fibroblast proliferation in dose dependent manner (625 - 50,000 mg/L) without cytotoxicity (IC(50) = 3,000 mg/L), the marked descent of growth curve and suppression of the expression of PCNA in cultured cells (P < 0.01). Ge-132 can inhibit the proliferation of pterygium fibroblast in vitro significantly.

  11. Effect of eosinophils activated with Alternaria on the production of extracellular matrix from nasal fibroblasts.

    Science.gov (United States)

    Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk

    2016-06-01

    Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. The Cardiac Fibroblast: Functional and Electrophysiological Considerations in Healthy and Diseased Hearts

    Science.gov (United States)

    Vasquez, Carolina; Benamer, Najate; Morley, Gregory E.

    2011-01-01

    Cardiac fibrosis occurs in a number of cardiovascular diseases associated with a high incidence of arrhythmias. A critical event in the development of fibrosis is the transformation of fibroblasts into an active phenotype or myofibroblast. This transformation results in functional changes including increased proliferation and changes in the release of signaling molecules and extracellular matrix deposition. Traditionally fibroblasts have been considered to affect cardiac electrophysiology indirectly by physically isolating myocytes and creating conduction barriers. There is now increasing evidence that cardiac fibroblasts may play a direct role in modulating the electrophysiological substrate in diseased hearts. The purpose of this review is to summarize the functional changes associated with fibroblast activation, the membrane currents that have been identified in adult cardiac fibroblasts and describe recent studies of fibroblast-myocyte electrical interactions with emphasis on the changes that occur with cardiac injury. Further analysis of fibroblast membrane electrophysiology and their interactions with myocytes will lead to a more complete understanding of the arrhythmic substrate. These studies have the potential to generate new therapeutic approaches for the prevention of arrhythmias associated with cardiac fibrosis. PMID:21242811

  13. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells.

    Science.gov (United States)

    Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong

    2015-10-08

    Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45(-)FSP1(+) cells represent a unique Fibroblast specific protein 1 (FSP1)(-)fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCII(high), CD80(+) and Aire(+)). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45(-)FSP1(+) fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1(+) fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1(-) counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45(-)FSP1(+) cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1.

  14. Agarose overlay selectively improves macrocolony formation and radiosensitivity assessment in primary fibroblasts.

    Science.gov (United States)

    Chandna, Sudhir; Dagur, Raghubendra Singh; Mathur, Ankit; Natarajan, Adayapalam Tyagarajan; Harms-Ringdahl, Mats; Haghdoost, Siamak

    2014-05-01

    Primary fibroblasts are not suitable for in vitro macrocolony assay due to their inability to form distinct colonies. Here we present a modification of agarose overlay that yielded extensive improvement in their colony formation and assessment of radiosensitivity. Macrocolony formation was assessed in primary human fibroblasts VH10 and HDFn with or without overlay using 0.5% agarose in growth medium at 24 h post-seeding. Malignant human cell lines (A549, U87) and transformed non-malignant fibroblasts (AA8 hamster, MRC5 human) were used for comparison. Agarose overlay caused significant improvement marked by early appearance (one week) of distinct colonies with high cell density and multifold higher plating efficiency than conventional macrocolony assay in VH10 and HDFn human fibroblasts. Compared to conventional assay or feeder cell supplementation, agarose overlay resulted in broader cell morphology due to improved adherence, and yielded more compact colonies. Gamma-radiation dose-response survival curves could be successfully generated for both fibroblast cell lines using this method, which yielded no such effects in the transformed/malignant cell lines tested. This easy and inexpensive 'agarose overlay technique' significantly and selectively improves the fibroblast plating efficiency, thus considerably reducing time and effort to greatly benefit the survival studies on primary fibroblasts.

  15. Curcumin inhibits transforming growth factor β induced differentiation of mouselung fibroblasts to myofibroblasts

    Directory of Open Access Journals (Sweden)

    Daishun Liu

    2016-11-01

    Full Text Available Transforming growth factor β (TGFβ induced differentiation of lung fibroblasts to myofibroblasts is a key event in the pathogenesis of pulmonary fibrosis. This study aimed to evaluate the effect of curcumin on TGFβ induced differentiation of lung fibroblasts to myofibroblasts and explore the underlying mechanism. Mouse lung fibroblasts were cultured and treated with TGFβ2 and curcumin or rosiglitazone. Cell vitality was examined by MTT assay. The secretion of collagen-1 was assessed by ELISA. α smooth muscle actin (αSMA was visualized by immunofluorescence technique. The expression of peroxisome proliferator activated receptor γ (PPARγ and platelet derived growth factor R β (PDGFRβ was detected by PCR and Western blot analysis. We found that curcumin and rosiglitazone inhibited the proliferation and TGFβ induced differentiation of mouse lung fibroblasts. In addition, curcumin and rosiglitazone inhibited collagen-1 secretion and αSMA expression in mouse lung fibroblasts. Furthermore, curcumin and rosiglitazone upregulated PPARγ and downregulated PDGFRβ expression in mouse lung fibroblasts. In conclusion, our study reveals novel mechanism by which curcumin inhibits TGFβ2 driven differentiation of lung fibroblasts to myofibroblasts. Curcumin could potentially be used for effective treatment of pulmonary fibrosis.

  16. The role of STAT1 for crosstalk between fibroblasts and colon cancer cells

    Directory of Open Access Journals (Sweden)

    Pawan eKaler

    2014-04-01

    Full Text Available Signaling between tumor cells and the associated stroma has an important impact on cancer initiation and progression. The tumor microenvironment has a paradoxical role in tumor progression and fibroblasts, a major component of the tumor stroma, have been shown to either inhibit or promote cancer development. In this study we established that normal intestinal fibroblasts activate STAT1 signaling in colon cancer cells and, in contrast to cancer- associated fibroblasts, inhibit growth of tumor cells. Treatment of 18Co fibroblasts with the proinflammatory cytokine TNF interfered with their ability to trigger STAT1 signaling in cancer cells. Accordingly, intestinal myofibroblasts isolated from patients with Ulcerative colitis (UC or Crohn’s disease (CD, which are activated and produce high levels of TNF, failed to stimulate STAT1 signaling in tumor cells, demonstrating that activated myofibroblasts lose the ability to trigger growth-inhibitory STAT1 signaling in tumor cells. Finally, we confirmed that silencing of STAT1 in tumor cells alters the crosstalk between tumor cells and fibroblasts, suggesting STAT1 as a novel link between intestinal inflammation and colon cancer. We demonstrated that normal fibroblasts restrain the growth of carcinoma cells, at least in part, through the induction of STAT1 signaling in cancer cells. We showed that changes in the microenvironment, as they occur in inflammatory bowel disease, alter the crosstalk between carcinoma cells and fibroblasts, perturb the homeostasis of intestinal tissue and thereby contribute to tumor progression.

  17. The Effect of Resveratrol on Surgery-Induced Epidural Fibrosis in Laminectomy Rats

    Directory of Open Access Journals (Sweden)

    Peifeng Sun

    2014-01-01

    Full Text Available Epidural fibrosis (EF is a common complication for the patients who underwent laminectomy. Recently, EF is thought to cause recurrent postoperative pain after laminectomy. Resveratrol has been shown to exert its anti-inflammatory, antifibrotic, and antiproliferative multifaceted properties. The object of this study was to investigate the effects of resveratrol on the prevention of postlaminectomy EF formation in laminectomy rats. A controlled double-blinded study was performed on 60 healthy adult Sprague-Dawley rats that underwent lumbar laminectomy at the L1-L2 levels. They were divided randomly into 3 groups (1, 2, and 3 of 20 rats each—group 1: resveratrol treatment group; group 2: resveratrol dilution saline treatment group; group 3: sham group (rats underwent laminectomy without treatment. All rats were killed 4 weeks after operation. The Rydell score, hydroxyproline content, vimentin cells density, fibroblasts density, and inflammatory factors expressional levels all suggested better results in resveratrol group than the other two groups. Resveratrol is able to inhibit fibroblasts proliferation, and TGF-β1 and IL-6 expressions and prevent epidural fibrosis in postlaminectomy rat.

  18. Fibroblast Growth Factor 10-Fibroblast Growth Factor Receptor 2b Mediated Signaling Is Not Required for Adult Glandular Stomach Homeostasis

    Science.gov (United States)

    Sala, Frederic G.; Ford, Henri R.; Bellusci, Saverio; Grikscheit, Tracy C.

    2012-01-01

    The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or diffe