WorldWideScience

Sample records for taurodeoxycholate activates potassium

  1. Slack, Slick, and Sodium-Activated Potassium Channels

    Science.gov (United States)

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  2. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    Science.gov (United States)

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  3. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    Science.gov (United States)

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Integrated process using non-stoichiometric sulfides or oxides of potassium for making less active metals and hydrocarbons

    International Nuclear Information System (INIS)

    Swanson, R.

    1984-01-01

    Disclosed is a combinative integrated chemical process using inorganic reactants and yielding, if desired, organic products. The process involves first the production of elemental potassium by the thermal or thermal-reduced pressure decomposition of potassium oxide or potassium sulfide and distillation of the potassium. This elemental potassium is then used to reduce ores or ore concentrates of copper, zinc, lead, magnesium, cadmium, iron, arsenic, antimony or silver to yield one or more of these less active metals in elemental form. Process potassium can also be used to produce hydrogen by reaction with water or potassium hydroxide. This hydrogen is reacted with potassium to produce potassium hydride. Heating the latter with carbon produces potassium acetylide which forms acetylene when treated with water. Acetylene is hydrogenated to ethene or ethane with process hydrogen. Using Wurtz-Fittig reaction conditions, the ethane can be upgraded to a mixture of hydrocarbons boiling in the fuel range

  5. Milrinone-Induced Postconditioning Requires Activation of Mitochondrial Ca2+-sensitive Potassium (mBKCa) Channels

    NARCIS (Netherlands)

    Behmenburg, Friederike; Trefz, Lara; Dorsch, Marianne; Ströthoff, Martin; Mathes, Alexander; Raupach, Annika; Heinen, André; Hollmann, Markus W.; Berger, Marc M.; Huhn, Ragnar

    2017-01-01

    Cardioprotection by postconditioning requires activation of mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa) channels. The involvement of these channels in milrinone-induced postconditioning is unknown. The authors determined whether cardioprotection by milrinone-induced

  6. Catalytic activity of supported silver and potassium salts of tungstophosphoric acid in dehydration of ethanol

    International Nuclear Information System (INIS)

    Haber, J.; Matachowski, L.; Pamin, K.; Napruszewska, B.

    2002-01-01

    Potassium and silver salts of tungstophosphoric acid (HPW) have been supported on silica. Two series of potassium and silver salts of tungstophosphoric acid K x H 3-x PW 12 O 40 and Ag x H 3-x PW 12 O 40 where x = 1;2;3 supported on silica were prepared using incipient wetness method. In a typical synthesis, the heteropolyacid which after deposition on silica was washed with water to remove the part of heteropolyacid not bound to the support was reacted with silver or potassium salt. The vapor-phase dehydration of ethanol was employed as a test reaction. All the catalytic tests were carried out in a conventional flow type reactor, under atmospheric pressure, in the temperature range 125-500 o C. The results of these studies were used to explain the differences between the catalytic activities of heteropolysalts of potassium and silver supported on silica. (author)

  7. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    Energy Technology Data Exchange (ETDEWEB)

    van Rensburg, C.E.J.; Naude, P.J. [University of Pretoria, Pretoria (South Africa)

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  8. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  9. Accumulation of slowly activating delayed rectifier potassium current (IKs) in canine ventricular myocytes

    DEFF Research Database (Denmark)

    Stengl, Milan; Volders, Paul G A; Thomsen, Morten Bækgaard

    2003-01-01

    In guinea-pig ventricular myocytes, in which the deactivation of slowly activating delayed rectifier potassium current (IKs) is slow, IKs can be increased by rapid pacing as a result of incomplete deactivation and subsequent current accumulation. Whether accumulation of IKs occurs in dogs, in which...

  10. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    Science.gov (United States)

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  11. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation.

    Science.gov (United States)

    Lin, C S; Boltz, R C; Blake, J T; Nguyen, M; Talento, A; Fischer, P A; Springer, M S; Sigal, N H; Slaughter, R S; Garcia, M L

    1993-03-01

    The role that potassium channels play in human T lymphocyte activation has been investigated by using specific potassium channel probes. Charybdotoxin (ChTX), a blocker of small conductance Ca(2+)-activated potassium channels (PK,Ca) and voltage-gated potassium channels (PK,V) that are present in human T cells, inhibits the activation of these cells. ChTX blocks T cell activation induced by signals (e.g., anti-CD2, anti-CD3, ionomycin) that elicit a rise in intracellular calcium ([Ca2+]i) by preventing the elevation of [Ca2+]i in a dose-dependent manner. However, ChTX has no effect on the activation pathways (e.g., anti-CD28, interleukin 2 [IL-2]) that are independent of a rise in [Ca2+]i. In the former case, both proliferative response and lymphokine production (IL-2 and interferon gamma) are inhibited by ChTX. The inhibitory effect of ChTX can be demonstrated when added simultaneously, or up to 4 h after the addition of the stimulants. Since ChTX inhibits both PK,Ca and PK,V, we investigated which channel is responsible for these immunosuppressive effects with the use of two other peptides, noxiustoxin (NxTX) and margatoxin (MgTX), which are specific for PK,V. These studies demonstrate that, similar to ChTX, both NxTX and MgTX inhibit lymphokine production and the rise in [Ca2+]i. Taken together, these data provide evidence that blockade of PK,V affects the Ca(2+)-dependent pathways involved in T lymphocyte proliferation and lymphokine production by diminishing the rise in [Ca2+]i that occurs upon T cell activation.

  12. Change of heavy metal speciation, mobility, bioavailability, and ecological risk during potassium ferrate treatment of waste-activated sludge.

    Science.gov (United States)

    Yu, Ming; Zhang, Jian; Tian, Yu

    2018-05-01

    The effects of potassium ferrate treatment on the heavy metal concentrations, speciation, mobility, bioavailability, and environmental risk in waste-activated sludge (WAS) at various dosages of potassium ferrate and different treatment times were investigated. Results showed that the total concentrations of all metals (except Cd) were decreased slightly after treatment and the order of metal concentrations in WAS and treated waste-activated sludge (TWAS) was Mg > Zn > Cu > Cr > Pb > Ni > Cd. Most heavy metals in WAS remained in TWAS after potassium ferrate treatment with metal residual rates over 67.8% in TWAS. The distribution of metal speciation in WAS was affected by potassium ferrate treatment. The bioavailability and the mobility of heavy metals (except Mg) in TWAS were mitigated, compared to those in WAS. Meanwhile, the environmental risk of heavy metals (except Pb and Cu) was alleviated after potassium ferrate treatment.

  13. Alkali activated fly ash binders. A comparative study between sodium and potassium activators

    Directory of Open Access Journals (Sweden)

    Criado, M.

    2006-03-01

    Full Text Available This paper shows the effect of the nature of some alkaline activators in the microstructural development of thermal-alkali activated f/y ash systems. The alkaline compounds employed in this investigation were: NaOH, KOH, Na2C03, K2C03, sodium silicate and potassium silicate. Results confirm that the main reaction product of the activation process (throughout the studied systems is the amorphous alkaline aluminosilicate gel with a three-dimensional structure already observed in earlier research. It has been proved that the type of anion and cation involved in the activation reaction of the ashes not only affects the microstructural development of the systems but the Si/Al ratio of that prezeolitic gel too. For example, in the presence of soluble silicate ions the content of Si in the final structure is notably increased (Si/Al =2.7-3.0, however carbonate ions play a different role since the formation of Sodium or Potassium carbonate/bicarbonate acidifies the system and consequently the reaction rate is considerably slowed. Finally it is evident that; when all experimental conditions are equal, sodium has a greater capacity than potassium to accelerate the setting and hardening reactions of fly ash and also to stimulate the growth of certain zeolitic crystals (reaction by-products. In general it can be affirmed that OH- ion acts as a reaction catalyst; and the alkaline metal (M+ acts as a structure-forming element.Este trabajo muestra el efecto de la naturaleza del activador alcalino en el desarrollo microestructural de sistemas de ceniza volante, activados térmica y alcalinamente. Los componentes alcalinos empleados en esta investigación fueron: NaOH, KOH, Na2C03, K2C03, silicato sódico y silicato potásico. Los resultados obtenidos confirman que el principal producto de reacción del proceso de activación (a través de los sistemas estudiados es un gel de aluminosilicato alcalino amorfo con estructura tridimensional ya observada en trabajos

  14. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

    DEFF Research Database (Denmark)

    Rosenbaum, Sofia T; Svalø, Julie; Nielsen, Karsten

    2012-01-01

    Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 m....... This is the first report to provide evidence for a possible role of SK3 channels in human uterine telocytes....

  15. Pharmacological activation of rapid delayed rectifier potassium current suppresses bradycardia-induced triggered activity in the isolated guinea pig heart

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    arrhythmias. We present here data that support that NS3623 affects native I(Kr) and report the effects that activating this potassium current have in the intact guinea pig heart. In Langendorff-perfused hearts, the compound showed a concentration-dependent shortening of action potential duration, which...

  16. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning.

    Science.gov (United States)

    Peigneur, Steve; Yamaguchi, Yoko; Kawano, Chihiro; Nose, Takeru; Nirthanan, Selvanayagam; Gopalakrishnakone, Ponnampalam; Tytgat, Jan; Sato, Kazuki

    2016-05-31

    Peptide toxins from scorpion venoms constitute the largest group of toxins that target the voltage-gated potassium channel (Kv). Spinoxin (SPX) isolated from the venom of scorpion Heterometrus spinifer is a 34-residue peptide neurotoxin cross-linked by four disulfide bridges. SPX is a potent inhibitor of Kv1.3 potassium channels (IC50 = 63 nM), which are considered to be valid molecular targets in the diagnostics and therapy of various autoimmune disorders and cancers. Here we synthesized 25 analogues of SPX and analyzed the role of each amino acid in SPX using alanine scanning to study its structure-function relationships. All synthetic analogues showed similar disulfide bond pairings and secondary structures as native SPX. Alanine replacements at Lys(23), Asn(26), and Lys(30) resulted in loss of activity against Kv1.3 potassium channels, whereas replacements at Arg(7), Met(14), Lys(27), and Tyr(32) also largely reduced inhibitory activity. These results suggest that the side chains of these amino acids in SPX play an important role in its interaction with Kv1.3 channels. In particular, Lys(23) appears to be a key residue that underpins Kv1.3 channel inhibition. Of these seven amino acid residues, four are basic amino acids, suggesting that the positive electrostatic potential on the surface of SPX is likely required for high affinity interaction with Kv1.3 channels. This study provides insight into the structure-function relationships of SPX with implications for the rational design of new lead compounds targeting potassium channels with high potency.

  17. Electrolyte Balance of the Inner Ear Investigated by Neutron Activation Analysis of the Sodium and Potassium Content

    International Nuclear Information System (INIS)

    Ördögh, Mary; Miriszlai, E.

    1967-01-01

    Even the few experimental data that have been obtained from investigations of the inner ear are an important contribution to our biochemical knowledge of the sense organs. The apparent discrepancies between some experimental results have prompted comparative studies on the sodium and potassium concentrations in the inner-ear fluids, the liquor cerebrospinalis, the mammalian and human serum. The results of these studies are expected to give a good approximation of the intracellular and extracellular electrolyte concentrations and to yield important information on the physiological and pathological conditions of the inner ear as well as on the mechanism of hearing. The experimental material is obtained from guinea pigs by penetration through the round window (fenestra rotunda). The sodium and potassium content is determined by neutron activation analysis. Potassium is precipitated from the irradiated samples by sodium tetraphenyl borate reagent, so that the sodium activity retained by the filtrate can be directly counted. Since a single precipitation of potassium does not yield end products free from sodium contamination, the precipitate is dissolved in acetone and precipitated again with sodium tetraphenyl borate. The product of the second precipitation is radiochemically pure. In simultaneous experiments, potassium was separated from the much higher sodium activity by isotopic exchange. The irradiated sample is added to an experimentally determined inactive potassium tetraphenyl borate precipitate that adsorbs the total potassium activity present without adsorbing any sodium. The separation of potassium by isotopic exchange has the advantage of yielding in a single step a sufficiently pure product without any sodium contamination. For comparison, sodium and potassium were also determined by flame photometry. (author)

  18. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  19. 40K activities and potassium concentrations in tobacco samples of Mexican cigarettes

    International Nuclear Information System (INIS)

    Martinez, T.; Navarrete, M.; Cabrera, L.; Ramos, A.; Vazquez, K.; Juarez, F.

    2007-01-01

    Nine brands of tobacco cigarettes manufactured and distributed in the Mexican market were analyzed by γ-spectrometry to certify their nonartificial radioactive contamination. Since natural occurring radioactive materials (NORM) 40 K, 232 Th, 235 U, and 239 U (and decay products from the latter three nuclides) are the main sources for human radiation exposure, the aim of this work was to determine the activity of 40 K and potassium concentration. Averages of 40 K and potassium concentration were of 1.29 ± 0.18 Bq x g -1 , and 4.0 ± 0.57%. The annual dose equivalents to the whole body from ingestion and inhalation of 26 Bq 40 K were 0.23 μSv and 15.8 μSv, respectively. The corresponding 50 years committed dose equivalents was 0.23 μSv. The total committed dose to the lungs due to inhalation of 40 K in tobacco was 16 μSv. Potassium concentrations obtained in this work were in the same range of those obtained by INAA, so showing that the used technique is acute, reproducible, and accessible to laboratories equipped with low background scintillation detectors. (author)

  20. Urinary potassium is a potential biomarker of disease activity in Ulcerative colitis and displays in vitro immunotolerant role.

    Science.gov (United States)

    Goyal, Sandeep; Rampal, Ritika; Kedia, Saurabh; Mahajan, Sandeep; Bopanna, Sawan; Yadav, Devesh P; Jain, Saransh; Singh, Amit Kumar; Wari, Md Nahidul; Makharia, Govind; Awasthi, Amit; Ahuja, Vineet

    2017-12-22

    We evaluated the in-vitro effect of potassium on CD4 + T cells and the role of urinary potassium as a potential biomarker of disease activity in patients with ulcerative colitis (UC). This prospective observational cohort study included healthy controls (n = 18) and UC patients [n = 30, median age: 40 (IQR: 28-46) years, 17 males)] with active disease(assessed by Mayo score) from September 2015-May 2016. Twenty-four hours urinary potassium along with fecal calprotectin (FCP) were estimated in UC patients (at baseline and follow-up after 3-6 months) and controls. In healthy volunteers, we also assessed the effect of potassium on CD4 + T cells differentiated in the presence of Th17 polarizing condition. UC patients had significantly higher FCP (368.2 ± 443.04 vs 12.44 ± 27.51, p < 0.001) and significantly lower urinary potassium (26.6 ± 16.9 vs 46.89 ± 35.91, p = 0.01) levels than controls. At follow-up, a significant increase in urinary potassium among patients who had clinical response [n = 22, 21.4 (14.4-39.7) to 36.5 (20.5-61.6), p = 0.04] and remission [n = 12, 18.7 (9.1-34.3) to 36.5 (23.4-70.5), p = 0.05] was accompanied with a parallel decline in FCP. On in-vitro analysis, potassium under Th17 polarizing conditions significantly inhibited IL-17 and interferon-[Formula: see text] expression while favoring the induction of FoxP3 + T cells. Therefore, urinary potassium levels are inversely associated with disease activity in UC with in-vitro data supporting an immune-tolerant role of potassium.

  1. Inward rectifier potassium current IKir promotes intrinsic pacemaker activity of thalamocortical neurons.

    Science.gov (United States)

    Amarillo, Yimy; Tissone, Angela I; Mato, Germán; Nadal, Marcela S

    2018-06-01

    Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (rectifier potassium current I Kir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of I Kir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of I Kir and hyperpolarization-activated cationic current I h that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that I Kir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with I h and increases the robustness of low threshold-activated calcium current I T -mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current I Kir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that I Kir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current I h ; and increases the robustness of oscillations mediated by the low threshold-activated calcium current I T . Upregulation of I Kir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).

  2. 23Na and 35/37Cl as NMR probes of growth and shape of sodium taurodeoxycholate micellar aggregates in the presence of NaCl.

    Science.gov (United States)

    Asaro, Fioretta; Feruglio, Luigi; Galantini, Luciano; Nardelli, Alessia

    2013-02-15

    The growth of the aggregates of the dihydroxylated bile salt sodium taurodeoxycholate (NaTDC) upon NaCl addition and the involvement of the counterion were investigated by NMR spectroscopy of monoatomic ionic species. (23)Na T(1) values from 0.015, 0.100, and 0.200 mol kg(-1) NaTDC solutions in D(2)O, at variable NaCl content, proved to be sensitive to the transition from primary to secondary aggregates, which occurs in the former sample, and to intermicellar interaction. Some (79)Br NMR measurements were performed on a 0.100 mol kg(-1) NaTDC sample added by NaBr in place of NaCl for comparison purposes. The (23)Na, (35)Cl, and (37)Cl double quantum filtered (DQF) patterns, from the 0.100 mol kg(-1) NaTDC sample, and (23)Na ones also from the 0.200 mol kg(-1) NaTDC one, in the presence of 0.750 mol kg(-1) NaCl, are a clear manifestation of motional anisotropy. Moreover, the DQF spectra of (23)Na and (37)Cl, which possess close quadrupole moments, display a striking similarity. The DQF lineshapes were simulated exploiting the Scilab environment to obtain an estimate of the residual quadrupole splitting magnitude. These results support the description of NaTDC micelles as cylindrical aggregates, strongly interacting at high ionic strengths, and capable of association with added electrolytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Activation of ERG2 potassium channels by the diphenylurea NS1643

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear....... The lack of functional information is at least partly due to the lack of specific pharmacological tools. The compound NS1643 has earlier been reported as an ERG1 channel activator. We found that NS1643 also activates the ERG2 channel; however, the molecular mechanism of the activation differs between...... the ERG1 and ERG2 channels. This is surprising since ERG1 and ERG2 channels have very similar biophysical and structural characteristics. For ERG2, NS1643 causes a left-ward shift of the activation curve, a faster time-constant of activation and a slower time-constant of inactivation as well...

  4. Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material

    Science.gov (United States)

    Aprilliani, F.; Warsiki, E.; Iskandar, A.

    2018-03-01

    Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.

  5. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice.

    Science.gov (United States)

    Bausch, Anne E; Ehinger, Rebekka; Straubinger, Julia; Zerfass, Patrick; Nann, Yvette; Lukowski, Robert

    2018-05-31

    The sodium-activated potassium channel Slack (Slo2.2) is widely expressed in central and peripheral neurons where it is supposed to shape firing properties important for neuronal excitability. Slack activity is enhanced by interaction with the Fragile-X-Mental-Retardation-Protein (FMRP) and loss of FMRP leads to decreased sodium-activated potassium currents in medial nucleus of the trapezoid body neurons of the Fmr1-knockout (KO) mouse representing a mouse model of the human Fragile-X-Syndrome (FXS) and autism. Autism is a frequent comorbidity of FXS, but it is unclear whether Slack is involved in autistic or related conditions of FXS in vivo. By applying a wide range of behavioral tests, we compared social and autism-related behaviors in Slack- and FMRP-deficient mice. In our hands, as expected, FMRP-deficiency causes autism-related behavioral changes in nesting and in a marble-burying test. In contrast, Slack-deficient males exhibited specific abnormalities in sociability in direct and indirect social interaction tests. Hence, we show for the first time that a proper Slack channel function is mandatory for normal social behavior in mice. Nevertheless, as deficits in social behaviors seem to occur independently from each other in FMRP and Slack null mutants, we conclude that Slack is not involved in the autistic phenotype of FMRP KO mice. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of 40K in vegetables collected Malaysia by determination total potassium using neutron activation analysis

    International Nuclear Information System (INIS)

    Shafaei, M.A.; Saion, E.; Naghavi, K.; Wood, K.; Rezaee, Kh.

    2011-01-01

    Some vegetables of important nutritive requirements have been collected from Kuala Lumpur region capital of Malaysia. The vegetables were analyzed in order to determine activity concentration level of potassium using neutron activation analysis (NAA). The NAA results obtained showed the activity concentration of 40 K varied from 379 Bq/kg (Egg-plant) to 1585 Bq/kg (Spinach Red). These results are compared to other researches and are clear that the concentrations of K are relatively high in the Malaysia in compared to rather than vegetables of Pakistan and Jamaican. However, they are seen not to pose any serious internal health burden due to ingestion given the realities of vegetables choice by individuals in the study area. (author)

  7. [G-protein potentiates the activation of TNF-alpha on calcium-activated potassium channel in ECV304].

    Science.gov (United States)

    Lin, L; Zheng, Y; Qu, J; Bao, G

    2000-06-01

    Observe the effect of tumor necrosis factor-alpha (TNF-alpha) on calcium-activated potassium channel in ECV304 and the possible involvement of G-protein mediation in the action of TNF-alpha. Using the cell-attached configuration of patch clamp technique. (1) the activity of high-conductance calcium-activated potassium channel (BKca) was recorded. Its conductance is (202.54 +/- 16.62) pS; (2) the activity of BKca was potentiated by 200 U/ml TNF-alpha; (3) G-protein would intensify this TNF-alpha activation. TNF-alpha acted on vascular endothelial cell ECV304 could rapidly activate the activity of BKca. Opening of BKca resulted in membrane hyper-polarization which could increase electro-chemical gradient for the resting Ca2+ influx and open leakage calcium channel, thus resting cytoplasmic free Ca2+ concentration could be elevated. G-protein may exert an important regulation in this process.

  8. Slick (Kcnt2 Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia

    Directory of Open Access Journals (Sweden)

    Danielle L Tomasello

    2017-09-01

    Full Text Available The Slick (Kcnt2 sodium-activated potassium (K Na channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs, we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs, and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  9. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    Science.gov (United States)

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  10. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  11. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier.

    Science.gov (United States)

    Abramochkin, Denis V; Karimova, Viktoria M; Filatova, Tatiana S; Kamkin, Andre

    2017-07-01

    Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10 -4  M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10 -7  M) or selective GIRK channels blocker tertiapin (10 -6  M) completely abolished all Ap5A effects, while P2 blocker PPADS (10 -4  M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh ). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.

  12. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  13. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke

    2009-01-01

    PURPOSE: Endothelial dysfunction and impaired vasodilation may be involved in the pathogenesis of retinal vascular diseases. In the present study, the mechanisms underlying bradykinin vasodilation were examined and whether calcium-activated potassium channels of small (SK(Ca)) and intermediate (IK...

  14. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    Science.gov (United States)

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Effect of potassium sources on the antioxidant activity of eggplant¹

    Directory of Open Access Journals (Sweden)

    Douglas José Marques

    2014-12-01

    Full Text Available Potassium participates in the essential processes in plant physiology, however, the effects of K sources on plant metabolism have been little studied. Also, in certain cases, K sources and concentrations may cause undesirable effects, e.g., soil salinization. The objective was to evaluate the effect of K sources and levels on the enzyme activity of the antioxidant system and protein content in eggplant (Solanum melongena L. leaves and to determine the most suitable K sources for these physiological characteristics. The experiment was conducted in randomized blocks, in a 2 × 4 factorial design, consisting of two K sources (KCl and K2SO4 and rates (250, 500, 750, and 1000 kg ha-1 K2O, with four replications. The following variables were evaluated: plant height, number of leaves per plant, superoxide dismutase (SOD, catalase (CAT, and leaf protein content. There was an increase in CAT activity with increasing K levels until 30 days after transplanting (DAT, when K2SO4 was applied and until 60 DAT, when KCl was used; after this period, the enzyme activity decreased under both sources. The activity of SOD increased in the presence of KCl, but was reduced with the application of K2SO4. For both K sources, increasing rates reduced the protein content and number of leaves per plant, and this reduction was greater under KCl application. Thus it was concluded that KCl tends more strongly to salinize the soil than K2SO4. Both for KCl and for K2SO4, the increasing rates adversely affected the activities of CAT and SOD and the levels of leaf protein in eggplant. The potential of KCl to reduce the enzyme activity of SOD and CAT, leaf protein content and plant growth of eggplant was stronger than that of K2SO4.

  16. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3.

    Science.gov (United States)

    Wright, Paul D; Veale, Emma L; McCoull, David; Tickle, David C; Large, Jonathan M; Ococks, Emma; Gothard, Gemma; Kettleborough, Catherine; Mathie, Alistair; Jerman, Jeffrey

    2017-11-04

    Two-pore domain potassium channels (K2Ps) are characterized by their four transmembrane domain and two-pore topology. They carry background (or leak) potassium current in a variety of cell types. Despite a number of important roles there is currently a lack of pharmacological tools with which to further probe K2P function. We have developed a cell-based thallium flux assay, using baculovirus delivered TASK3 (TWIK-related acid-sensitive K + channel 3, KCNK9, K2P9.1) with the aim of identifying novel, selective TASK3 activators. After screening a library of 1000 compounds, including drug-like and FDA approved molecules, we identified Terbinafine as an activator of TASK3. In a thallium flux assay a pEC50 of 6.2 ( ±0.12) was observed. When Terbinafine was screened against TASK2, TREK2, THIK1, TWIK1 and TRESK no activation was observed in thallium flux assays. Several analogues of Terbinafine were also purchased and structure activity relationships examined. To confirm Terbinafine's activation of TASK3 whole cell patch clamp electrophysiology was carried out and clear potentiation observed in both the wild type channel and the pathophysiological, Birk-Barel syndrome associated, G236R TASK3 mutant. No activity at TASK1 was observed in electrophysiology studies. In conclusion, we have identified the first selective activator of the two-pore domain potassium channel TASK3. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae.

    Science.gov (United States)

    Valente, Rita S; Xavier, Karina B

    2016-01-15

    Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae. Crop losses from bacterial diseases caused by pectolytic bacteria are a major problem in agriculture. By studying the regulatory pathways involved in controlling the expression of plant cell wall-degrading enzymes in Pectobacterium wasabiae, we showed that the Trk potassium transport system plays an important role in the regulation of these pathways. The data presented further identify potassium as an important environmental factor in the regulation of virulence in this plant pathogen. We showed that a reduction in virulence can be achieved by increasing the extracellular concentration of potassium. Therefore, this work highlights how elucidation of the

  18. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    International Nuclear Information System (INIS)

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-01-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition

  19. Effect of potassium hydroxide activation in the desulfurization process of activated carbon prepared by sewage sludge and corn straw.

    Science.gov (United States)

    Zeng, Fan; Liao, Xiaofeng; Hu, Hui; Liao, Li

    2018-03-01

    Series sludge straw-based activated carbons were prepared by sewage sludge and corn straw with potassium hydroxide (KOH) activation, and the desulfurization performance of activated carbons was studied. To obtain the best desulfurization performance, the optimum ratio between the raw materials and the activator was investigated. The results showed that when the mass ratio of sewage sludge, corn straw, and KOH was 3:7:2, the activated carbon obtained the best breakthrough and saturation sulfur sorption capacities, which were 12.38 and 5.74 times, respectively, those of samples prepared by the nonactivated raw materials. The appropriate KOH could improve the microporosity and alkaline groups, meanwhile reducing the lactone groups, which were all beneficial to desulfurization performance. The chemical adsorption process of desulfurization can be simplified to four main steps, and the main desulfurization products are elemental sulfur and sulfate. Sewage sludge (SS) and corn straw (CS) both have great production and wide distribution and are readily available in China. Much attention has been paid on how to deal with them effectively. Based on the environment protection idea of waste treatment with waste and resource recycling, low-cost adsorbents were prepared by these processes. The proposed method can be expanded to the municipal solid waste recycling programs and renewable energy plan. Thus, proceeding with the study of preparing activated carbon by SS and straw as a carbon-based dry desulfurization agent could obtain huge social, economic, and environmental benefits.

  20. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life

    Science.gov (United States)

    Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.

    2013-01-01

    Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663

  1. Kidney in potassium depletion. I. Na+-K+-ATPase activity and [3H]ouabain binding in MCT

    International Nuclear Information System (INIS)

    Hayashi, M.; Katz, A.I.

    1987-01-01

    The effect of potassium depletion on renal Na + K + -ATPase was studied in rats. K depletion produced a striking, time-dependent increase in Na + -K + -ATPase activity of the outer medullary collecting tubules (inner stripe; MCT/sub is/). After 3 wk on the K-free diet, when the urine was almost potassium-free, Na + -K + -ATPase activity in MCT/sub is/ was over fourfold higher than in control animals. Repletion of potassium restored enzyme activity to base line within 7 days which corresponds to the catabolic rate of the renal enzyme, suggesting the cessation of enhanced synthesis that took place during K deprivation. Changes in Na + -K + -ATPase activity and aldosterone levels during both K depletion and repletion occurred in opposite directions and were therefore independent of each other. [ 3 H]Ouabain binding to intact MCT/sub is/, reflecting the number of pump sites on the basolateral membrane, was similar in K-depleted and control animals; in contrast, tubule permeabilization that exposes additional pump units to the ligand, unmasked a nearly fourfold increase in [ 3 H]ouabain binding in K-depleted rats, comparable to the increment in Na + -K + -ATPase activity. These results show that K depletion leads to a marked increase in Na + -K + -ATPase activity of MCT/sub is/, and suggest that the new enzyme units are located at a ouabain-inaccessible site in the intact tubule, i.e., either in an intracellular compartment or at the luminal membrane, where they may be involved in potassium reabsorption

  2. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.

    Science.gov (United States)

    Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike

    2017-01-01

    A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Sodium, potassium and chloride status in Australian foods and diets using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fardy, J J; McOrist, G D; Farrar, Y J; Bowles, C J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    A study of the status of essential, toxic and trace elements in the foods and diets of Australian has been in progress for six years. Results for sodium, potassium and chloride levels are reported here. The average daily dietary intake of sodium and chloride exceeded the range of values recommended by the National Health and Medical Research Council for most population groups with grain and dairy products the main contributor to these high intakes. In contrast, the average daily intakes of potassium fell well within the recommended values for all age groups with intakes for adult females close to the recommended minimum figure. 9 refs., 1 tab., 2 figs.

  4. Sodium, potassium and chloride status in Australian foods and diets using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.; Bowles, C.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    A study of the status of essential, toxic and trace elements in the foods and diets of Australian has been in progress for six years. Results for sodium, potassium and chloride levels are reported here. The average daily dietary intake of sodium and chloride exceeded the range of values recommended by the National Health and Medical Research Council for most population groups with grain and dairy products the main contributor to these high intakes. In contrast, the average daily intakes of potassium fell well within the recommended values for all age groups with intakes for adult females close to the recommended minimum figure. 9 refs., 1 tab., 2 figs.

  5. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    Science.gov (United States)

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  6. Effects of water activity on the performance of potassium sorbate and natamycin as preservatives against cheese spoilage moulds

    Directory of Open Access Journals (Sweden)

    Marín P.

    2017-10-01

    Full Text Available This work investigated the effects of the food preservatives potassium sorbate and natamycin, combined with different levels of ionic (sodium chloride and non-ioinic (glycerol water activity (aw, on growth of fungi involved in cheese spoilage. In general, the combined effect of water stress and presence of preservatives enhanced fungal inhibition. However, some doses of potassium sorbate (0.02% and natamycin (1, 5 and 10 ppm were able to stimulate growth of Aspergillus varians, Mucor racemosus, Penicillium chrysogenum and P. roqueforti at aw values in the range of 0.93–0.97. P. solitum was the only species whose growth was consistently reduced by any doses of preservative. The results also showed that sodium chloride and glycerol differentially affected the efficacy of preservatives. This study indicates that aw of cheese is a critical parameter to be considered in the formulation of preservative coatings used against fungal spoilage.

  7. Antimicrobial activity of potassium hydroxide and lauric acid against microorganisms associated with poultry processing.

    Science.gov (United States)

    Hinton, Arthur; Ingram, Kimberly D

    2006-07-01

    The antimicrobial activity of solutions of potassium hydroxide (KOH) and mixtures of KOH and lauric acid against microorganisms associated with poultry processing was determined. In vitro tests were performed by enumerating viable microorganisms recovered from bacterial cultures suspended in peptone water (control) and in solutions of 0.1% KOH or mixtures of 0.1% KOH and 0.25 or 0.50% lauric acid. Additional studies were conducted to identify changes in the native microbial flora of poultry skin washed in distilled water, KOH, or KOH-lauric acid. Although results of in vitro studies indicated that significantly fewer bacteria (P < or = 0.05) were recovered from cultures suspended in KOH than from cultures suspended in peptone water, there were also significantly fewer bacteria recovered from cultures suspended in KOH-lauric acid than from cultures suspended in KOH. Results of experiments with broiler skin indicated that although rinsates of skin washed in 1.0% KOH solutions contained significantly fewer total aerobic bacteria and enterococci than did skin washed in water, significantly fewer of these microorganisms were generally recovered from rinsates of skin washed in mixtures of 1.0% KOH and 0.5, 1.0, 1.5, or 2.0% lauric acid than from skin washed in KOH alone. Washing of broiler skin in solutions of 0.25 to 1.00% KOH or mixtures containing these concentrations of KOH and two parts lauric acid (wt/vol) also significantly reduced the populations of bacteria and yeasts in the native flora of broiler skin. Enterococci, lactic acid bacteria, and staphylococci in the native flora of the skin had the highest level of resistance to the bactericidal activity of KOH-lauric acid. These findings indicate that the antimicrobial activity of KOH-lauric acid is significantly greater than that of KOH alone in vitro and on poultry skin. Thus, KOH-lauric acid may be useful for reducing the level of microbial contamination associated with poultry processing.

  8. T-dependent B-cell activation is signalled by an early increase in potassium influx

    DEFF Research Database (Denmark)

    Owens, T; Kaplan, J G

    1982-01-01

    both by incorporation of 3H-thymidine after 48 h of culture and by uptake of potassium (measured as 86Rb) after 15 h. Analysis of metaphase chromosomes stained with Hoechst dye 33258 from co-cultured T-enriched and nude lymphocytes (from female and male donors, respectively) mixed in the proportion 1...

  9. The inhibitor of volume-regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes

    Czech Academy of Sciences Publication Activity Database

    Minieri, L.; Pivoňková, Helena; Caprini, M.; Harantová, Lenka; Anděrová, Miroslava; Ferroni, S.

    2013-01-01

    Roč. 168, č. 5 (2013), s. 1240-1254 ISSN 0007-1188 R&D Projects: GA ČR GAP303/10/1338 Institutional support: RVO:68378041 Keywords : two-pore-domain potassium channels * patch clamp * neuroprotection Subject RIV: FH - Neurology Impact factor: 4.990, year: 2013

  10. MiRNA-135a regulates the expression of small conductance calcium-activated potassium (SK3) channels in epilepsy-like conditions

    NARCIS (Netherlands)

    Honrath, Birgit; Norwood, Braxton; Tanrioever, Gaye; Kuter, Katarzyna; Henshall, David C; Aksel-Aksoy, Ayla; Schratt, Gerhard; Pasterkamp, Jeroen; Dencher, Norbert A.; Nieweg, Katja; Culmsee, Carsten; Dolga, Amalia Mihalea

    2017-01-01

    Background Excessive and hypersynchronous neuronal discharges are key characteristics in the pathophysiology of neurological disorders such as epilepsy. Owing to their ability of regulating neuronal excitability, small conductance calcium-activated potassium (SK) channels have been implicated in

  11. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, Naoto, E-mail: tsubon@eng.hokudai.ac.jp; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-15

    Highlights: • Activated carbon prepared from a lignin/urea/K{sub 2}CO{sub 3} mixture provides a high specific surface area and a large pore volume. • Part of the urea nitrogen present in the mixture is retained as heterocyclic nitrogen in the solid phase after activation/carbonization. • Pore development is thought to proceed through interactions between K-species and C–N forms. - Abstract: The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K{sub 2}CO{sub 3} activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500–900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m{sup 2}/g and 0.13 cm{sup 3}/g at 800 °C, and 540 m{sup 2}/g and 0.31 cm{sup 3}/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300–3400 m{sup 2}/g and 2.0–2.3 cm{sup 3}/g after holding at 800–900 °C for 1 h. Heating a lignin/urea/K{sub 2}CO{sub 3} mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K{sub 2}CO{sub 3} and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  12. Activation of endothelial and epithelial K(Ca) 2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Nielsen, Gorm

    2012-01-01

    BACKGROUND AND PURPOSE: Small (K(Ca) 2) and intermediate (K(Ca) 3.1) conductance calcium-activated potassium channels (K(Ca) ) may contribute to both epithelium- and endothelium-dependent relaxations, but this has not been established in human pulmonary arteries and bronchioles. Therefore, we inv...... targets for treatment of pulmonary hypertension and chronic obstructive pulmonary disease....

  13. Solid state green synthesis and catalytic activity of CuO nanorods in thermal decomposition of potassium periodate

    Science.gov (United States)

    Patel, Vinay Kumar; Bhattacharya, Shantanu

    2017-09-01

    The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15-20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.

  14. Inhibitory Effect of Vascular Endothelial Growth Factor on the Slowly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes.

    Science.gov (United States)

    Lin, Zhenhao; Xing, Wenlu; Gao, Chuanyu; Wang, Xianpei; Qi, Datun; Dai, Guoyou; Zhao, Wen; Yan, Ganxin

    2018-01-26

    Vascular endothelial growth factor (VEGF) exerts a number of beneficial effects on ischemic myocardium via its angiogenic properties. However, little is known about whether VEGF has a direct effect on the electrical properties of cardiomyocytes. In the present study, we investigated the effects of different concentrations of VEGF on delayed rectifier potassium currents (I K ) in guinea pig ventricular myocytes and their effects on action potential (AP) parameters. I K and AP were recorded by the whole-cell patch clamp method in ventricular myocytes. Cells were superfused with control solution or solution containing VEGF at different concentrations for 10 minutes before recording. Some ventricular myocytes were pretreated with a phosphatidylinositol 3-kinase inhibitor for 1 hour before the addition of VEGF. We found that VEGF inhibited the slowly activating delayed rectifier potassium current (I K s ) in a concentration-dependent manner (18.13±1.04 versus 12.73±0.34, n=5, P =0.001; 12.73±0.34 versus 9.05±1.20, n=5, P =0.036) and prolonged AP duration (894.5±36.92 versus 746.3±33.71, n=5, P =0.021). Wortmannin, a phosphatidylinositol 3-kinase inhibitor, eliminated these VEGF-induced effects. VEGF had no significant effect on the rapidly activating delayed rectifier potassium current (I K r ), resting membrane potential, AP amplitude, or maximal velocity of depolarization. VEGF inhibited I K s in a concentration-dependent manner through a phosphatidylinositol 3-kinase-mediated signaling pathway, leading to AP prolongation. The results indicate a promising therapeutic potential of VEGF in prevention of ventricular tachyarrhythmias under conditions of high sympathetic activity and ischemia. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. Dioxin-induced acute cardiac mitochondrial oxidative damage and increased activity of ATP-sensitive potassium channels in Wistar rats

    International Nuclear Information System (INIS)

    Pereira, Susana P.; Pereira, Gonçalo C.; Pereira, Cláudia V.; Carvalho, Filipa S.; Cordeiro, Marília H.; Mota, Paula C.; Ramalho-Santos, João; Moreno, António J.; Oliveira, Paulo J.

    2013-01-01

    The environmental dioxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a Group 1 human carcinogen and teratogenic agent. We hypothesize that TCDD-induced oxidative stress may also interfere with mitochondrial ATP-sensitive potassium channels (mitoKATP), which are known to regulate and to be regulated by mitochondrial redox state. We investigated the effects of an acute treatment of male Wistar rats with TCDD (50 μg/kg i.p.) and measured the regulation of cardiac mitoKATP. While the function of cardiac mitochondria was slightly depressed, mitoKATP activity was 52% higher in animals treated with TCDD. The same effects were not observed in liver mitochondria isolated from the same animals. Our data also shows that regulation of mitochondrial ROS production by mitoKATP activity is different in both groups. To our knowledge, this is the first report to show that TCDD increases mitoKATP activity in the heart, which may counteract the increased oxidative stress caused by the dioxin during acute exposure. -- Highlights: •Acute TCDD treatment of Wistar rats causes cardiac oxidative stress. •Acute TCDD treatment causes cardiac mitochondrial alterations. •Mitochondrial liver vs. heart alterations are distinct. •TCDD treatment resulted in altered activity of cardiac mitochondrial K-ATP channels. -- Dioxin alters the regulation of cardiac mitochondrial ATP-sensitive potassium channels and disturbs mitochondrial physiology

  16. Alteration of sodium, potassium-adenosine triphosphatase activity in rabbit ciliary processes by cyclic adenosine monophosphate-dependent protein kinase

    International Nuclear Information System (INIS)

    Delamere, N.A.; Socci, R.R.; King, K.L.

    1990-01-01

    The response of sodium, potassium-adenosine triphosphatase (Na,K-ATPase) to cyclic adenosine monophosphate (cAMP)-dependent protein kinase was examined in membranes obtained from rabbit iris-ciliary body. In the presence of the protein kinase together with 10(-5) M cAMP, Na,K-ATPase activity was reduced. No change in Na,K-ATPase activity was detected in response to the protein kinase without added cAMP. Likewise cAMP alone did not alter Na,K-ATPase activity. Reduction of Na,K-ATPase activity was also observed in the presence of the cAMP-dependent protein kinase catalytic subunit. The response of the enzyme to the kinase catalytic subunit was also examined in membranes obtained from rabbit ciliary processes. In the presence of 8 micrograms/ml of the catalytic subunit, ciliary process Na,K-ATPase activity was reduced by more than 50%. To examine whether other ATPases were suppressed by the protein kinase, calcium-stimulated ATPase activity was examined; its activity was stimulated by the catalytic subunit. To test whether the response of the ciliary process Na,K-ATPase is unique, experiments were also performed using membrane preparations from rabbit lens epithelium or rabbit kidney; the catalytic subunit significantly reduced the activity of Na,K-ATPase from the kidney but not the lens. These Na,K-ATPase studies suggest that in the iris-ciliary body, cAMP may alter sodium pump activity. In parallel 86Rb uptake studies, we observed that ouabain-inhibitable potassium uptake by intact pieces of iris-ciliary body was reduced by exogenous dibutryl cAMP or by forskolin

  17. Fruit-body production and 137Cs-activity of Cantharellus cibarius after nitrogen and potassium fertilization

    International Nuclear Information System (INIS)

    Nohrstedt, H.Oe.

    1994-01-01

    A study of the possible effect of fertilization with nitrogen and potassium on fruit-body production and 137 Cs-activity concentration of Cantharellus cibarius was carried out in a pine forest in the eastern part of central Sweden. Nitrogen, in the form of ammonium nitrate, was added twice, in 1984 and 1990, at a dose of 150 kg N ha -1 . Fruit-body production was measured during 1985-1991, and the 137 Cs-activity concentration during 1988-1991. Fruit-body production showed a pronounced variation between years. The ratio between the highest annual production and the lowest was about 20. No statistically significant effects of either the fertilization treatments on production were observed. However, nitrogen fertilization showed a tendency towards a decrease in production by about 30%. The field site is situated in an area substantially affected by the fallout from the Chernobyl accident in 1986. The fruit-bodies on the site had a clearly elevated activity concentration of 137 Cs, which averaged 15 Bq q -1 d.m. for all plots and years. On the 4.5 ha study site, the 137 Cs-activity concentration varied by a factor of 10 between individual plots. The year with the highest fruit-body production had the lowest 137 Cs-activity concentration. The fertilizations lacked statistically significant effect in 137 Cs-activity concentration, but a 50% reduction was indicated for potassium fertilization causing the concentration to fall below the Swedish health limit for human food. 31 refs, 3 figs

  18. Firing patterns and synchronization in nonsynaptic epileptiform activity: the effect of gap junctions modulated by potassium accumulation

    International Nuclear Information System (INIS)

    Santos, D O C; Dickman, R; Rodrigues, A M; De Almeida, A C G

    2009-01-01

    Several lines of evidence point to the modification of firing patterns and of synchronization due to gap junctions (GJs) as having a role in the establishment of epileptiform activity (EA). However, previous studies consider GJs as ohmic resistors, ignoring the effects of intense variations in ionic concentration known to occur during seizures. In addition to GJs, extracellular potassium is regarded as a further important factor involved in seizure initiation and sustainment. To analyze how these two mechanisms act together to shape firing and synchronization, we use a detailed computational model for in vitro high-K + and low-Ca 2+ nonsynaptic EA. The model permits us to explore the modulation of electrotonic interactions under ionic concentration changes caused by electrodiffusion in the extracellular space, altered by tortuosity. In addition, we investigate the special case of null GJ current. Increased electrotonic interaction alters bursts and action potential frequencies, favoring synchronization. The particularities of pattern changes depend on the tortuosity and array size. Extracellular potassium accumulation alone modifies firing and synchronization when the GJ coupling is null

  19. Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther

    2015-12-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.

  20. Potassium test

    Science.gov (United States)

    ... hyperkalemia ) may be due to: Addison disease (rare) Blood transfusion Certain medicines Crushed tissue injury Hyperkalemic periodic paralysis ... released. This may cause a falsely high result. Alternative Names Hypokalemia test; K+ Images Blood test References Mount DB. Disorders of potassium balance. ...

  1. Potassium Iodide

    Science.gov (United States)

    ... certain other liquids including low-fat white or chocolate milk, flat soda, orange juice, raspberry syrup, or ... Potassium iodide may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away: swollen glands metallic taste in the ...

  2. Low Potassium (Hypokalemia)

    Science.gov (United States)

    Symptoms Low potassium (hypokalemia) By Mayo Clinic Staff Low potassium (hypokalemia) refers to a lower than normal potassium level ... 2 millimoles per liter (mmol/L). A very low potassium level (less than 2.5 mmol/L) ...

  3. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  4. Study of Activated Carbons by Pyrolysis of Mangifera Indica Seed (Mango in Presence of Sodium and Potassium Hydroxide

    Directory of Open Access Journals (Sweden)

    J. C. Moreno-Piraján

    2012-01-01

    Full Text Available Activated carbons (ACs were prepared by pyrolysis of seeds mango in presence of sodium and potassium hydroxide (chemical activities. Seeds mango from Colombian Mango cultives were impregnated with aqueous solutions of NaOH and KOH following a variant of the incipient wetness method. Different concentrations were used to produce impregnation ratios of 3:1 (weight terms. Activation was carried out under argon flow by heating to 823 K with 1 h soaking time. The porous texture of the obtained ACs was characterized by physical adsorptions of N2 at 77 K and CO2 at 273 K. The impregnation ration and hydroxide type had a strong influence on the pore structure of these ACs, which could be easily controlled by simply varying the proportion of the hydroxides used in the activation. Thus, the development of porosity for precursors with low structural order (high reactivity is better with NaOH than KOH, whereas the opposite is observed for the highly ordered ones. Variable adsorption capacities and porosity distributions can be achieved depending on the activating agent selected. In general, KOH produces activated carbons with narrower micropore distributions than those prepared by NaOH.

  5. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P 2 ) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial K ACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P 2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P 2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P 2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P 2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evidences of the ultrarapid delayed rectifier potassium current (IKur on pacemaker activity in sinoatrial and atrioventricular nodes of Rat

    Directory of Open Access Journals (Sweden)

    Mohammad reza Nikmaram

    2008-09-01

    Full Text Available Background: Sinoatrial node (SAN is the primary pacemaker of the heart. If the SAN activity fails in any way, then the atrioventricular node (AVN immediately starts to regulate the activities of the heart. The aim of this study was to assess the existence or non existence of ultrarapid delayed rectifier potassium current (Ikur and its role on pacemaker activity of two intact SAN and AVN of rat. Methods: The pacemaker activities of distinct intact SAN and AVN by two separate metal microelectrodes that contact the endothelial surface of nodes were recorded and cycle length (CL of action potential was measured. The recording was done before and during 50µM 4-Aminopyridine (4-AP as an Ikur blocker. Results: Compared to control condition, CL of action potentials of SAN and VAN preparations had increased by 17.60 +/-2.9% and 35.90 +/-2.9%, respectively (P<0.05. Conclusion: It is possible to conclude that the Ikur was present in AVN and SAN and the effect of 4-AP on CL of action potential nodes was significantly different.

  7. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migrai...

  8. Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity.

    Science.gov (United States)

    Feng, Zhouyan; Durand, Dominique M

    2006-04-01

    It has been shown that a low-calcium high-potassium solution can generate ictal-like epileptiform activity in vitro and in vivo. Moreover, during status epileptiform activity, the concentration of [K+]o increases, and the concentration of [Ca2+]o decreases in brain tissue. Therefore we tested the hypothesis that long-lasting persistent spike activity, similar to one of the patterns of status epilepticus, could be generated by a high-potassium, low-calcium solution in the hippocampus in vivo. Artificial cerebrospinal fluid was perfused over the surface of the exposed left dorsal hippocampus of anesthetized rats. A stimulating electrode and a recording probe were placed in the CA1 region. By elevating K+ concentration from 6 to 12 mM in the perfusate solution, the typical firing pattern of low-calcium ictal bursts was transformed into persistent spike activity in the CA1 region with synaptic transmission being suppressed by calcium chelator EGTA. The activity was characterized by double spikes repeated at a frequency approximately 4 Hz that could last for >1 h. The analysis of multiple unit activity showed that both elevating [K+]o and lowering [Ca2+]o decreased the inhibition period after the response of paired-pulse stimulation, indicating a suppression of the after-hyperpolarization (AHP) activity. These results suggest that persistent status epilepticus-like spike activity can be induced by nonsynaptic mechanisms when synaptic transmission is blocked. The unique double-spike pattern of this activity is presumably caused by higher K+ concentration augmenting the frequency of typical low-calcium nonsynaptic burst activity.

  9. Extrarenal potassium adaptation: role of skeletal muscle

    International Nuclear Information System (INIS)

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-01-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using 86 Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of 86 Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium

  10. Foliar nitrogen and potassium applications improve photosynthetic activities and water relations in sunflower under moisture deficit condition

    International Nuclear Information System (INIS)

    Hussain, R.A.; Ahmad, R.

    2016-01-01

    This study investigated the influence of foliar supplementation of nitrogen (N) potassium (K) and their combination on photosynthetic activities, physiological indices and water relations of two sunflower (Helianthus annuus L.) hybrids Hysen-33 and LG-5551 under water deficit condition. Studies were conducted in a wire-house at Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan. Treatments were two water stress levels [100 (control) and 60% field capacity (water deficit)], six levels of foliar spray (no spray, water spray, 1% N, 1% K, 0.5% N + 0.5% K and 1% N + 1% K) and each treatment was replicated three times. Results showed that water stress reduced the photosynthetic activities: Pn (photosynthetic rate), E (rate of tanspiration) and gs (stomatal conductance) and water relations i.e., pie w (water potential), pie s (osmotic potential) and pie p (turgor potential) . Soil moisture deficit also significantly reduced the plant height, root length, fresh and dry matter which consequently affected the plant height stress tolerance index (PHSI), root length stress tolerance index (RLSI) and dry matter stress tolerance index (DMSI) in both sunflower hybrids. However, foliar supplementation with N and K or N+K improved the photosynthetic activities, water relations and physiological indices of both the sunflower hybrids. The findings of present study suggest that application of N+K is necessary to have high plant productivity. (author)

  11. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  12. Identification of the functional binding pocket for compounds targeting small-conductance Ca²⁺-activated potassium channels.

    Science.gov (United States)

    Zhang, Miao; Pascal, John M; Schumann, Marcel; Armen, Roger S; Zhang, Ji-Fang

    2012-01-01

    Small- and intermediate-conductance Ca(2+)-activated potassium channels, activated by Ca(2+)-bound calmodulin, have an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potential for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-ethyl-2-benzimidazolinone (1-EBIO) class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class.

  13. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels

    Science.gov (United States)

    Zhang, Miao; Pascal, John M.; Schumann, Marcel; Armen, Roger S.; Zhang, Ji-fang

    2012-01-01

    Small- and intermediate-conductance Ca2+-activated potassium channels, activated by Ca2+-bound calmodulin, play an important role in regulating membrane excitability. These channels are also linked to clinical abnormalities. A tremendous amount of effort has been devoted to developing small molecule compounds targeting these channels. However, these compounds often suffer from low potency and lack of selectivity, hindering their potentials for clinical use. A key contributing factor is the lack of knowledge of the binding site(s) for these compounds. Here we demonstrate by X-ray crystallography that the binding pocket for the compounds of the 1-EBIO class is located at the calmodulin-channel interface. We show that, based on structure data and molecular docking, mutations of the channel can effectively change the potency of these compounds. Our results provide insight into the molecular nature of the binding pocket and its contribution to the potency and selectivity of the compounds of the 1-EBIO class. PMID:22929778

  14. Active biodegradable films produced with blends of rice flour and poly(butylene adipate co-terephthalate): effect of potassium sorbate on film characteristics.

    Science.gov (United States)

    Sousa, G M; Soares Júnior, M S; Yamashita, F

    2013-08-01

    The objective of work was to produce and characterize biodegradable films from rice flour, poly(butylene adipate co-terephthalate) (PBAT), glycerol and potassium sorbate, for application as active packaging for fresh lasagna pasta. The films were evaluated with respect to their optical, water vapor barrier, mechanical and microstructural properties. The mechanical properties and microstructure were evaluated after use as packaging material for fresh pasta for 45 days at 7°C. The blends of rice flour, PBAT, glycerol and potassium sorbate showed good processability and allowed for the pilot scale production of films by blow extrusion process. The addition of 1 to 5% potassium sorbate as plasticizer agent of films in place of glycerol did not alter the film mechanical properties and a sorbate concentration greater or equal than 3% reduced the opacity, although increasing the water vapor permeability. The films could be used as active packaging for fresh food pasta, since they remained integral and easy to handle after application. The rice flour was shown to be an excellent material for the formulation of biodegradable films, since it is a low-cost raw material from a renewable source. The addition of potassium sorbate did not affect the extrusion process, and could be used in the production of packaging for use with foods. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A dual potassium channel activator improves repolarization reserve and normalizes ventricular action potentials

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Di Diego, José M; Hansen, Rie Schultz

    2016-01-01

    in cultured canine cardiac myocytes and determined whether a dual K(+) current activator can normalize K(+) currents and restore action potential (AP) configuration. METHODS AND RESULTS: Ventricular myocytes were isolated and cultured for up to 48h. Current and voltage clamp recordings were made using patch...... of EADs. Our results suggest a potential benefit of K(+) current activators under conditions of reduced repolarization reserve including heart failure....

  16. Gonadotropin stimulates oocyte translation by increasing magnesium activity through intracellular potassium-magnesium exchange

    International Nuclear Information System (INIS)

    Horowitz, S.B.; Tluczek, L.J.

    1989-01-01

    We previously showed that gonadotropin increases the K + activity in Xenopus oocytes and that this is a signal for increased translation. However, K + need not act to control synthesis directly but may act through an unidentified downstream effector. Using microinjection to vary the salt content of oocytes and concomitantly measuring [ 3 H]leucine incorporation, we found that small changes in Mg 2+ greatly affect translation rates. (Ca 2+ had little influence.) By measuring intracellular ion activities, we found that oocyte cations existed in a buffer-like (ion-exchange) equilibrium in which K + and Mg 2+ are the preponderant monovalent and divalent cations. Hence, increasing cellular K + activity might increase translation by causing Mg 2+ activity to rise. If so, the increased translation rates produced by hormone treatment or K + injection would be prevented by EDTA, a Mg 2+ chelating agent. This prediction was tested and confirmed. We conclude that, when gonadotropin increases K + activity, the cell's internal ion-exchange equilibrium is altered thereby increasing Mg 2+ activity and this up-regulates translation

  17. Effect of low potassium concentration on cadmium induced epileptiform activity of leech retzius neurons

    Directory of Open Access Journals (Sweden)

    Milićević Nebojša

    2016-01-01

    Full Text Available Epilepsies have a large significance and require detailed investigation of cellular mechanisms that lead to this disorder. Environmental, especially industrial, toxins are having increasingly more prominent role in these investigations. The aim of our research was to investigate the significance of Cd2+ in generation of epileptiform electrical activity of neurons, and the role of Na+/K+ pump in mechanisms that lead to cessation of this activity. Experiments were performed on Retzius nerve cells of the leech Haemopis sanguisuga. Intracellularly placed microelectrodes were used to measure membrane potential changes upon administration of Cd2+ (100 µmol/l, and the same concentration of Cd2+ in low K+ (1 mmol/l solution. In our experiments Cd2+ led to generation of rhythmic repetitive oscillatory activity. This activity closely resembles paroxysmal depolarizing shifts (PDS which represent the cellular basis of epilepsy. Cd2+ induced epileptiform activity had the following characteristics: frequency of 3.9±0.8 PDS/minute, PDS duration of 4.0±0.3 s, and PDS amplitude of 8.1±0.7 mV. Cd2+ induces effects similar to those of Ni2+ and Co2+, but in 30 times smaller concentration. Application of Cd2+ in low K+ solution led to a significant reduction of PDS frequency (by 2.34±0.55 PDS/minute, p<0.05, Student's t-test, highly significant increase in PDS duration (by 2.84±0.23 s, p<0.01, Student's t-test and highly significant reduction in PDS amplitude (by 1.91±0.33 mV, p=0.01, Student's t-test. Our results show that Cd2+ is a potent initiator of epileptiform activity, and that Na+/K+ pump significantly affects this activity and has a potentially important role in mechanisms that lead to its cessation.

  18. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    Full Text Available In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about fifteen years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP. Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous and tissues/organs (etiolated and green have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane towards the matrix, so collapsing membrane potential (ΔΨ, the main component of the protonmotive force (Δp in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate

  19. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    Science.gov (United States)

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2.2).

    Science.gov (United States)

    Biton, B; Sethuramanujam, S; Picchione, Kelly E; Bhattacharjee, A; Khessibi, N; Chesney, F; Lanneau, C; Curet, O; Avenet, P

    2012-03-01

    Sodium-activated potassium (K(Na)) channels have been suggested to set the resting potential, to modulate slow after-hyperpolarizations, and to control bursting behavior or spike frequency adaptation (Trends Neurosci 28:422-428, 2005). One of the genes that encodes K(Na) channels is called Slack (Kcnt1, Slo2.2). Studies found that Slack channels were highly expressed in nociceptive dorsal root ganglion neurons and modulated their firing frequency (J Neurosci 30:14165-14172, 2010). Therefore, Slack channel openers are of significant interest as putative analgesic drugs. We screened the library of pharmacologically active compounds with recombinant human Slack channels expressed in Chinese hamster ovary cells, by using rubidium efflux measurements with atomic absorption spectrometry. Riluzole at 500 μM was used as a reference agonist. The antipsychotic drug loxapine and the anthelmintic drug niclosamide were both found to activate Slack channels, which was confirmed by using manual patch-clamp analyses (EC(50) = 4.4 μM and EC(50) = 2.9 μM, respectively). Psychotropic drugs structurally related to loxapine were also evaluated in patch-clamp experiments, but none was found to be as active as loxapine. Loxapine properties were confirmed at the single-channel level with recombinant rat Slack channels. In dorsal root ganglion neurons, loxapine was found to behave as an opener of native K(Na) channels and to increase the rheobase of action potential. This study identifies new K(Na) channel pharmacological tools, which will be useful for further Slack channel investigations.

  1. Influence of physical activity on the metabolism and the total body content of sodium and potassium in the rat

    International Nuclear Information System (INIS)

    Yeh, J.K.; Yasumura, A.; Aloia, J.F.

    1986-01-01

    The purpose of this study was to investigate the effect of exercise (EX) and immobilization (IMB) on the absorption, excretion and total body content of sodium (TBNa) and potassium (TBK). Female Sprague Dawley rats 5 weeks old were divided into four groups: EX; Control (CON); EX with pair feeding to the level equal to the CON (EX-P); IMB by sciatica denervation. The nutritional balance study data was taken 5 weeks into the experimental period and the animals were sacrificed after 5 additional weeks of experimentation. The carcasses were kept frozen and used for total body composition by neutron activation. The results of the total body composition show that EX resulted in an increase, IMB resulted in a decrease, of the TBNa and TBK. There was no significant difference in TBNa of TBK, between the EX and the EX-P groups even though, the food intake was higher in the EX group. The results of the nutritional balance study confirmed the results of the total body composition

  2. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    Science.gov (United States)

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  3. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.

    Science.gov (United States)

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2009-09-01

    The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.

  4. Contribution of delayed rectifier potassium currents to the electrical activity of murine colonic smooth muscle

    Science.gov (United States)

    Koh, S D; Ward, S M; Dick, G M; Epperson, A; Bonner, H P; Sanders, K M; Horowitz, B; Kenyon, J L

    1999-01-01

    We used intracellular microelectrodes to record the membrane potential (Vm) of intact murine colonic smooth muscle. Electrical activity consisted of spike complexes separated by quiescent periods (Vm≈−60 mV). The spike complexes consisted of about a dozen action potentials of approximately 30 mV amplitude. Tetraethylammonium (TEA, 1–10 mM) had little effect on the quiescent periods but increased the amplitude of the action potential spikes. 4-Aminopyridine (4-AP, ⋧ 5 mM) caused continuous spiking.Voltage clamp of isolated myocytes identified delayed rectifier K+ currents that activated rapidly (time to half-maximum current, 11.5 ms at 0 mV) and inactivated in two phases (τf = 96 ms, τs = 1.5 s at 0 mV). The half-activation voltage of the permeability was −27 mV, with significant activation at −50 mV.TEA (10 mM) reduced the outward current at potentials positive to 0 mV. 4-AP (5 mM) reduced the early current but increased outward current at later times (100–500 ms) consistent with block of resting channels relieved by depolarization. 4-AP inhibited outward current at potentials negative to −20 mV, potentials where TEA had no effect.Qualitative PCR amplification of mRNA identified transcripts encoding delayed rectifier K+ channel subunits Kv1.6, Kv4.1, Kv4.2, Kv4.3 and the Kvβ1.1 subunit in murine colon myocytes. mRNA encoding Kv 1.4 was not detected.We find that TEA-sensitive delayed rectifier currents are important determinants of action potential amplitude but not rhythmicity. Delayed rectifier currents sensitive to 4-AP are important determinants of rhythmicity but not action potential amplitude. PMID:10050014

  5. Kidney in potassium depletion. I. Na/sup +/-K/sup +/-ATPase activity and (/sup 3/H)ouabain binding in MCT

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, M.; Katz, A.I.

    1987-03-01

    The effect of potassium depletion on renal Na/sup +/K/sup +/-ATPase was studied in rats. K depletion produced a striking, time-dependent increase in Na/sup +/-K/sup +/-ATPase activity of the outer medullary collecting tubules (inner stripe; MCT/sub is/). After 3 wk on the K-free diet, when the urine was almost potassium-free, Na/sup +/-K/sup +/-ATPase activity in MCT/sub is/ was over fourfold higher than in control animals. Repletion of potassium restored enzyme activity to base line within 7 days which corresponds to the catabolic rate of the renal enzyme, suggesting the cessation of enhanced synthesis that took place during K deprivation. Changes in Na/sup +/-K/sup +/-ATPase activity and aldosterone levels during both K depletion and repletion occurred in opposite directions and were therefore independent of each other. (/sup 3/H)Ouabain binding to intact MCT/sub is/, reflecting the number of pump sites on the basolateral membrane, was similar in K-depleted and control animals; in contrast, tubule permeabilization that exposes additional pump units to the ligand, unmasked a nearly fourfold increase in (/sup 3/H)ouabain binding in K-depleted rats, comparable to the increment in Na/sup +/-K/sup +/-ATPase activity. These results show that K depletion leads to a marked increase in Na/sup +/-K/sup +/-ATPase activity of MCT/sub is/, and suggest that the new enzyme units are located at a ouabain-inaccessible site in the intact tubule, i.e., either in an intracellular compartment or at the luminal membrane, where they may be involved in potassium reabsorption.

  6. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Matthew T Dickerson

    Full Text Available Glucose-stimulated insulin secretion (GSIS relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN. Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased

  7. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels.

    Science.gov (United States)

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.

  8. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability.

    Directory of Open Access Journals (Sweden)

    Kejie Chen

    Full Text Available Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß. Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3 inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis.

  9. SENSITIVE EFFECTS OF POTASSIUM AND CALCIUM CHANNEL BLOCKING AND ATP-SENSITIVE POTASSIUM CHANNEL ACTIVATORS ON SEMINAL VESICLE SMOOTH MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    H SADRAEI

    2000-12-01

    Full Text Available Background. Seminal vesicle smooth muscle contraction is mediated through sympathetic and parasympathetic neurons activity. Although seminal vesicle plays an important role in male fertility, but little attention is given to mechanism involved in contraction of this organ.
    Methods. In this study effects of drugs which activate ATP - sensitive K channels and blockers of K and Ca channels were examined on contraction of guinea - pig isolated seminal vesicle due to electrical filled stimulation (EFS, noradrenaline, carbachol and KCI.
    Results. The K channel blocker tetraethyl ammonium potentate the EFS responses at all frequencies, while, the ATP - sensitive K channel inhibitor glibenclamide and the K channel opener levcromakalim, diazoxide, minoxidil and Ca channel blocker nifedipine all had relaxant effect on guinea - pig seminal vesicle.
    Discussion. This study indicate that activities of K and Ca channels is important in regulation of seminal vesicle contraction due to nerve stimulation, noradrenaline or carbachol.

  10. Effects of Potassium Sulfate [K2SO4] on The Element Contents, Polyphenol Content, Antioxidant and Antimicrobial Activities of Milk Thistle [Silybum Marianum].

    Science.gov (United States)

    Yaldiz, Gulsum

    2017-01-01

    Silybum marianum L. (Milk thistle) is native to the Mediterranean basin and is now widespread throughout the world. It's sprout is used as a herbal medicine for the treatment of liver disease for centuries. The seeds of milk thistle contain silymarin, an isomeric mixture of flavonolignans [silybin, silychristin, and silydianin]. Silymarin acts as a strong anti-hepatotoxic. The objective of this study was to evaluate the influences of potassium sulfate [K 2 SO 4 ] fertilizer doses on polyphenol content, some nutrient elements, antioxidant and antimicrobial activities of milk thistle at experimental fields of Ordu University in Turkey. The antimicrobial activities of seed ethanol extracts and seed oil were tested in vitro against Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli, (E. coli) Staphylococcus aureus (S. aureus), Aspergillus niger (A. niger) and Candida albicans (C. albicans) using the disc diffusion method. Free radical scavenging activity of the ethanolic extracts of milk thistle was determined spectrophotometrically by monitoring the disappearance of 2, 2-diphenyl-1-picrylhydrazil (DPPH•) at 517 nm according to the method described by Brand-Williams et al .[17] The phenolic contents in the ethanolic extracts of milk thistle were determined according to the procedure described by Slinkard and Singleton[19] with a slight modification of using a Folin-Ciocalteu phenolic reagent. The amount of total flavonoid in the ethanolic extracts was measured by aluminum chloride [AlCl 3 ] colorimetric assay. The ions in aerosol samples were determined by using Dionex ICS 1100 Series ion chromatography. Seed and seed oils obtained from obvious doses of potassium sulfate [0, 30, 60, 90 and 120 kg ha -1 fertilizer applications showed antimicrobial activities against E. coli , A. niger and P. aeruginosa . The application of 90 kg ha -1 of K 2 SO 4 on seed oil resulted in the highest antimicrobial activities. At 100 µg mL -1 and 200 µg mL -1 , except the highest

  11. The secretory response of parathyroid hormone to acute hypocalcemia in vivo is independent of parathyroid glandular sodium/potassium-ATPase activity

    DEFF Research Database (Denmark)

    Martuseviciene, Giedre; Hofman-Bang, Jacob; Clausen, Torben

    2011-01-01

    increased in response to ethylene glycol tetraacetic acid-induced acute hypocalcemia and to the same extent in both vehicle and ouabain groups. The glands were removed, and inhibition of the ATPase was measured by (86)rubidium uptake, which was found to be significantly decreased in ouabain......-treated parathyroid glands, indicating inhibition of the ATPase. As ouabain induced systemic hyperkalemia, the effect of high potassium on hormone secretion was also examined but was found to have no effect. Thus, inhibition of the parathyroid gland sodium/potassium-ATPase activity in vivo had no effect...... on the secretory response to acute hypocalcemia. Hence, the suggested importance of this ATPase in the regulation of PTH secretion could not be confirmed in this in vivo model....

  12. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643)

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Diness, Thomas Goldin; Christ, Torsten

    2005-01-01

    The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolari......The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased......M. Application of NS1643 also resulted in a prolonged postrepolarization refractory time. Finally, cardiomyocytes exposed to NS1643 resisted reactivation by small depolarizing currents mimicking early afterdepolarizations. In conclusion, HERG channel activation by small molecules such as NS1643 increases...

  13. Physical properties of activated carbon from fibers of oil palm empty fruit bunches by microwave assisted potassium hydroxide activation

    Science.gov (United States)

    Farma, Rakhmawati; Fatjrin, Delika; Awitdrus, Deraman, Mohamad

    2017-01-01

    The activated carbon adsorption was influenced by the quality of activated carbon. The activated carbon quality can be improved by chemical activation and microwave irradiation. In this study, activated carbon has been made using biomass from fibers of oil palm empty fruit bunches. The microwave irradiation was applied at various irradiation times of 5, 10, 15 and 20 minutes, and at output power of 630 Watt. The physical properties of activated carbon were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and methylene blue adsorption. Analysis of microstructure showed that the activated carbon was semicrystalline with two peaks of 002 and 100 at 2θ around of 22° and 44°, respectively. The values of stack height (Lc) before and after irradiation increased from 2,799 nm to 3,860 nm, which indicated increasing surface area. Characteristics of surface morphology of activated carbon showed the pores number increased after microwave irradiation. Microwave irradiation time of 15 minutes resulted the highest pores number justified in the activated carbon with their surface area of 319,60 m2/g and adsorption of methylene blue of 86,07 mg/g.

  14. [Effects of vitamin K3 on the contractile activity of the colonic smooth muscles of guinea pig through the calcium activated potassium channel].

    Science.gov (United States)

    Li, Jun; Luo, He-sheng; He, Xiao-gu

    2006-07-25

    To study the mechanism of relaxation of gastrointestinal smooth muscles by vitamin K(3). Stripes of proximal colon were collected from guinea pigs. Suspension of single cells was created from these stripes. TD-112S transducer was used to measure the contraction of the stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L respectively. The Ca(2+)-activated K(+) current [IK(Ca)] of the cytomembrane of the colon smooth muscle was recorded with an EPC 10 amplifier under conventional whole cell patterns. The contraction frequencies of the muscle stripes stimulated by vitamin K(3) of the concentrations of 40, 100, 400, and 800 micromol/L were 79% +/- 4%, 58% +/- 5%, 33% +/- 4%, and 12% +/- 3% respectively of that of the control group (all P Vitamin K(3) inhibits the contractile activity of the colonic muscle stripes and increases the IK(Ca) of single myocytes concentration-dependently. The mechanism is activation of the Ca(2+)-activated K(+) channel, thus promoting the potassium efflux.

  15. Penicillin V Potassium

    Science.gov (United States)

    Penicillin V potassium is used to treat certain infections caused by bacteria such as pneumonia and other ... heart valves and other symptoms) from coming back. Penicillin V potassium is in a class of medications ...

  16. Potassium maldistribution revisited

    African Journals Online (AJOL)

    Background:This study investigated maldistribution of concentrated 15% potassium chloride after injection into .... and latter experiments referred to for example as “Control 1” ..... be further investigated as a reliable, simple method of potassium.

  17. Influence of antihypertensive therapy, sodium intake and the concentration of potassium in plasma on concentration of aldosterone and plasma renin activity

    Directory of Open Access Journals (Sweden)

    Lalić Tijana

    2013-01-01

    Full Text Available Introduction: Primary aldosteronism (PA is a group of disorders which are characterized by inadequate and non-suppressible production of aldosterone. The prevalence of PA is increasing in hypertensive population. The golden standard of screening for primary aldosteronism, determination of aldosterone/plasma renin activity (ARR, is influenced by numerous exogenous and endogenous factors. Testing cannot always be conducted under optimal conditions. Objective: To determine influence of antihypertensive drugs and concentrations of potassium and sodium in blood and urine on values of aldosterone and plasma renin activity. Methods: In this retrospective study, we analyzed medical reports of patients admitted to Department of thyroid gland disease in the period from 2009 to 2011, with increased risk for primary aldosteronism. Body weight and height, sodium and potassium in serum and urine, plasma aldosterone concentrations and plasma renin activity, data on medicines and comorbidity were analyzed in all patients. In processing data, statistical methods descriptive analysis, Student T test and univariate linear regression were applied. Result: Of 137 patients, there were more patients with resistant hypertension (53,28% than with adrenal tumors (46,72%. Most patients used calcium channel blockers. Treatment with alpha blockers and calcium channel blockers does not influence ARR. Beta blockers and ACE inhibitors can influence ARR and diuretics and vasodilatators have definite influence. Diabetes mellitus can have higher risk of false negative results. Urine sodium excretion is significantly correlated with plasma aldosteron and serum potassium. Plasma aldosteron and PRA are significantly correlated with concentrations of electrolites in urine. Conclusion: Increased prevalence of primary aldosteronism necessitates need for accurate and better diagnostics.

  18. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    Science.gov (United States)

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Potassium fluorotitanate preparation

    International Nuclear Information System (INIS)

    Perillo, Patricia; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    In order to determine the best conditions for potassium fluotitanate preparation as intermediate step in the electrolytic production of metalic titanium, the effects of a number of experimental variables have been studied. This method is a process of sintering titanium dioxide with potassium fluosilicate and potassium chloride, followed by leaching with boiling water and further crystallization by cooling the solution. An overall yield of 90% has been attained under the following conditions: working temperature: 750 deg C; heating time for sintering: 3 hours; molar ratio: titanium dioxide: potassium fluosilicate: potassium chloride: 1 : 2 : 0.4; number of leachings: 6. (Author) [es

  20. Resveratrol Protects Against Ultraviolet A-Mediated Inhibition of the Phagocytic Function of Human Retinal Pigment Epithelial Cells Via Large-Conductance Calcium-Activated Potassium Channels

    Directory of Open Access Journals (Sweden)

    Shwu-Jiuan Sheu

    2009-07-01

    Full Text Available This study was undertaken to examine the protective effect of resveratrol on human retinal pigment epithelial (RPE cell phagocytosis against ultraviolet irradiation damage. Cultured RPE cells were exposed to ultraviolet A (UVA, 20 minutes irradiation, and treated with meclofenamic acid (30μM, 20 minutes, paxilline (100 μM, 20 minutes or resveratrol (10μM, 20 minutes. Meclofenamic acid and resveratrol were given after exposure to UVA. Pretreatment with meclofenamic acid, resveratrol or paxilline before UVA irradiation was also performed. Fluorescent latex beads were then fed for 4 hours and the phagocytotic function was assessed by flow cytometry. UVA irradiation inhibited the phagocytic function of human RPE cells. The large-conductance calcium-activated potassium channel activator meclofenamic acid ameliorated the damage caused by UVA irradiation. Pretreatment with resveratrol acid also provided protection against damage caused by UVA. Posttreatment with meclofenamic acid offered mild protection, whereas resveratrol did not. In conclusion, the red wine flavonoid resveratrol ameliorated UVA-mediated inhibition of human RPE phagocytosis. The underlying mechanism might involve the large-conductance calcium-activated potassium channels.

  1. Preparation of High specific activity of ''51 Cr by the Szilard-Chalmers effect on potassium chromate

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina Gomez, M; Villar Castejon, M A

    1965-07-01

    The {sup 5}1 Cr enriched Cr{sup 3}+ ions, which appear on putting into solution the potassium chromate irradiated with neutrons, are separated as chromium hydroxide. The CrO{sub 4}{sup 2}- ions occluded by the precipitate are eliminated on re precipitating the hydroxide. The more convenient irradiation time to for the production of {sup 5}1 Cr has been determined as the position of the maximum in the experimental curve P=f(t), where the time-dependent index P used is defined as the product of the number. (Author) 13 refs.

  2. Expression of K2P5.1 potassium channels on CD4+ T lymphocytes correlates with disease activity in rheumatoid arthritis patients.

    Science.gov (United States)

    Bittner, Stefan; Bobak, Nicole; Feuchtenberger, Martin; Herrmann, Alexander M; Göbel, Kerstin; Kinne, Raimund W; Hansen, Anker J; Budde, Thomas; Kleinschnitz, Christoph; Frey, Oliver; Tony, Hans-Peter; Wiendl, Heinz; Meuth, Sven G

    2011-02-11

    CD4+ T cells express K(2P)5.1 (TWIK-related acid-sensitive potassium channel 2 (TASK2); KCNK5), a member of the two-pore domain potassium channel family, which has been shown to influence T cell effector functions. Recently, it was shown that K(2P)5.1 is upregulated upon (autoimmune) T cell stimulation. The aim of this study was to correlate expression levels of K(2P)5.1 on T cells from patients with rheumatoid arthritis (RA) to disease activity in these patients. Expression levels of K(2P)5.1 were measured by RT-PCR in the peripheral blood of 58 patients with RA and correlated with disease activity parameters (C-reactive protein levels, erythrocyte sedimentation rates, disease activity score (DAS28) scores). Twenty patients undergoing therapy change were followed-up for six months. Additionally, synovial fluid and synovial biopsies were investigated for T lymphocytes expressing K(2P)5.1. K(2P)5.1 expression levels in CD4+ T cells show a strong correlation to DAS28 scores in RA patients. Similar correlations were found for serological inflammatory parameters (erythrocyte sedimentation rate, C-reactive protein). In addition, K(2P)5.1 expression levels of synovial fluid-derived T cells are higher compared to peripheral blood T cells. Prospective data in individual patients show a parallel behaviour of K(2P)5.1 expression to disease activity parameters during a longitudinal follow-up for six months. Disease activity in RA patients correlates strongly with K(2P)5.1 expression levels in CD4+ T lymphocytes in the peripheral blood in cross-sectional as well as in longitudinal observations. Further studies are needed to investigate the exact pathophysiological mechanisms and to evaluate the possible use of K(2P)5.1 as a potential biomarker for disease activity and differential diagnosis.

  3. The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels.

    Science.gov (United States)

    Chen, Haijun; Kronengold, Jack; Yan, Yangyang; Gazula, Valeswara-Rao; Brown, Maile R; Ma, Liqun; Ferreira, Gonzalo; Yang, Youshan; Bhattacharjee, Arin; Sigworth, Fred J; Salkoff, Larry; Kaczmarek, Leonard K

    2009-04-29

    Potassium channels activated by intracellular Na(+) ions (K(Na)) play several distinct roles in regulating the firing patterns of neurons, and, at the single channel level, their properties are quite diverse. Two known genes, Slick and Slack, encode K(Na) channels. We have now found that Slick and Slack subunits coassemble to form heteromeric channels that differ from the homomers in their unitary conductance, kinetic behavior, subcellular localization, and response to activation of protein kinase C. Heteromer formation requires the N-terminal domain of Slack-B, one of the alternative splice variants of the Slack channel. This cytoplasmic N-terminal domain of Slack-B also facilitates the localization of heteromeric K(Na) channels to the plasma membrane. Immunocytochemical studies indicate that Slick and Slack-B subunits are coexpressed in many central neurons. Our findings provide a molecular explanation for some of the diversity in reported properties of neuronal K(Na) channels.

  4. Handling of potassium

    International Nuclear Information System (INIS)

    Schwarz, N.; Komurka, M.

    1983-03-01

    As a result for the Fast Breeder Development extensive experience is available worldwide with respect to Sodium technology. Due to the extension of the research program to topping cycles with Potassium as the working medium, test facilities with Potassium have been designed and operated in the Institute of Reactor Safety. The different chemical properties of Sodium and Potassium give rise in new safety concepts and operating procedures. The handling problems of Potassium are described in the light of theoretical properties and own experiences. Selected literature on main safety and operating problems complete this report. (Author) [de

  5. Crystal structure transformation in potassium acrylate

    Science.gov (United States)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  6. [Role of ATP-sensitive potassium channel activators in liver mitochondrial function in rats with different resistance to hypoxia].

    Science.gov (United States)

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2003-01-01

    Effects of ATP-sensitive potassium (KATP) channels opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) in rats with different resistance to hypoxia on indices of ADP-stimulation of mitochondrial respiration by Chance, calcium capacity and processes of lipid peroxidation in liver has been investigated. We used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate. Additional analyses contain the next inhibitors: mitochondrial fermentative complex I-10 mkM rotenone, succinate dehydrogenase 2 mM malonic acid. It was shown that effects of pinacidil induced the increasing of oxidative phosporylation efficacy and ATP synthesis together with lowering of calcium capacity in rats with low resistance to hypoxia. Effects of pinacidil were leveled by glibenclamide. These changes are connected with the increasing of respiratory rate, calcium overload and intensification of lipid peroxidation processes. A conclusion was made about protective effect of pinacidil on mitochondrial functioning by economization of oxygen-dependent processes, adaptive potentialities of organisms with low resistance to hypoxia being increased.

  7. Potassium and Your CKD Diet

    Science.gov (United States)

    ... vegetable in your diet, leach them before using. Leaching is a process by which some potassium can be pulled out ... out of my favorite high-potassium vegetables? The process of leaching will help pull potassium out of some high- ...

  8. Multistability in a neuron model with extracellular potassium dynamics

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, J. W.

    2012-06-01

    Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by interstitial space in which potassium ions are able to accumulate. Potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence of the complex behavior of multistability due to the dynamical [K+]o modulation on neuronal activities.

  9. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  10. Trichomonas vaginalis induces IL-1β production in a human prostate epithelial cell line by activating the NLRP3 inflammasome via reactive oxygen species and potassium ion efflux.

    Science.gov (United States)

    Gu, Na-Yeong; Kim, Jung-Hyun; Han, Ik-Hwan; Im, Su-Jeong; Seo, Min-Young; Chung, Yong-Hoon; Ryu, Jae-Sook

    2016-07-01

    Trichomonas vaginalis is a sexually transmitted protozoan parasite that causes vaginitis in women, and urethritis and prostatitis in men. IL-1β is synthesized as immature pro-IL-1β, which is cleaved by activated caspase-1. Caspase-1 is, in turn, activated by a multi-protein complex known as an inflammasome. In this study, we investigated the inflammatory response of a prostate epithelial cell line (RWPE-1) to T. vaginalis and, specifically, the capacity of T. vaginalis to activate the NLRP3 inflammasome. RWPE-1 cells were stimulated by live T. vaginalis, and subsequent expression of pro-IL-1β, IL-1β, NLRP3, ASC and caspase-1 was determined by real-time PCR and Western blotting. IL-1β and caspase-1 production was also measured by ELISA. To evaluate the effects of NLRP3 and caspase-1 on IL-1β production, the activated RWPE-1 cells were transfected with small interfering RNAs to silence the NLRP3 and caspase-1 genes. Activation of the NLRP3 inflammasome was observed by fluorescence microscopy. Intracellular reactive oxygen species (ROS) were evaluated by spectrofluorometry. When RWPE-1 cells were stimulated with live T. vaginalis, the mRNA and protein expression of IL-1β, NLRP3, ASC, and caspase-1 increased. Moreover, silencing of NLRP3 and caspase-1 attenuated T. vaginalis-induced IL-1β secretion. The NADPH oxidase inhibitor DPI and high extracellular potassium ion suppressed the production of IL-1β, caspase-1, and the expression of NLRP3 and ASC proteins. The specific NF-κB inhibitor, Bay 11-7082, inhibited IL-1β production, and also inhibited the production of caspase-1, ASC and NLRP3 proteins. T. vaginalis induces the formation of the NLRP3 inflammasome in human prostate epithelial cells via ROS and potassium ion efflux, and this results in IL-1β production. This is the first evidence for activation of the NLRP3 inflammasome in the inflammatory response by prostate epithelial cells infected with T. vaginalis. Prostate 76:885-896, 2016. © 2016 Wiley

  11. Interaction between the cardiac rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels revealed by low K+-induced hERG endocytic degradation.

    Science.gov (United States)

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D; Fisher, John T; Zhang, Shetuan

    2011-10-07

    Cardiac repolarization is controlled by the rapidly (I(Kr)) and slowly (I(Ks)) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes I(Kr), whereas KCNQ1 and KCNE1 together encode I(Ks). Decreases in I(Kr) or I(Ks) cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K(+) concentration ([K(+)](o)) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether I(Ks) compensates for the reduced I(Kr) under low K(+) conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mM K(+) for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mM K(+)-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mM K(+) conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS.

  12. Differential Activity of Voltage- and Ca2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case

    Directory of Open Access Journals (Sweden)

    Salvador Valle-Reyes

    2018-05-01

    Full Text Available Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.

  13. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1986-05-06

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-(/sup 3/H)ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate.

  14. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1986-01-01

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-[ 3 H]ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate

  15. Potassium Blood Test

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Potassium, Serum; 426–27 p. Lab ...

  16. High potassium level

    Science.gov (United States)

    ... level is very high, or if you have danger signs, such as changes in an ECG . Emergency ... Seifter JL. Potassium disorders. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  17. Low potassium level

    Science.gov (United States)

    ... treat and prevent low level of potassium. These foods include: Avocados Baked potato Bananas Bran Carrots Cooked lean beef Milk Oranges Peanut butter Peas and beans Salmon Seaweed Spinach Tomatoes Wheat germ

  18. Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge.

    Science.gov (United States)

    Li, Zhengjia; Deng, Hui; Yang, Le; Zhang, Genlin; Li, Yuqi; Ren, Yansen

    2018-05-01

    To investigate the influence of KOH activation on characteristics and environmental risk of heavy metals in chars, sludge was pyrolyzed with varying amount of KOH. The analyzation of characteristics and potential ecological risk evaluation of heavy metals were conducted by surface area analyzer, FTIR, XRD and BCR sequential extraction. The activated chars have higher surface area and lower content of silica compared to those without being activated. The activation of KOH promoted residual fraction of Cd, meanwhile, Zinc, Cr, Ni and Mn were converted to relatively unstable fractions (F2 and F3). The results of risk assessment indicated that the potential ecological risk level of Cd was reduced in activated chars, while risk level of Zn, Cr, Ni and Mn were increased after pyrolysis with KOH activation. The potential ecological risk of heavy metals in activated chars was further declined, and the risk level transformed from moderate to low. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Purification of the labeled cyanogen bromide peptides of the α polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the α-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate

  20. Nucleophilic behavior of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase consistent with a role in binding adenosine triphosphate

    International Nuclear Information System (INIS)

    Xu, K.Y.; Kyte, J.

    1989-01-01

    An immunoadsorbent specific for the carboxy-terminal sequence -GAPER, which comprises residues 502-506 of the alpha-polypeptide of ovine sodium and potassium ion activated adenosinetriphosphatase [(Na+ + K+)-ATPase], was used to isolate the products of the reaction between the lysine immediately preceding this sequence in the intact protein and either [3H]acetic anhydride or fluorescein 5'-isothiocyanate. Changes in the apparent nucleophilicity of this lysine, Lys501, were observed with both reagents when ATP was bound by the intact, native enzyme poised in the E1 conformation or when the structure of the enzyme was changed from the E1 conformation into the E2-P conformation. With both reagents, a decrease of more than 4-fold in the yield of incorporation occurred during the former change, but a decrease of only 2-fold occurred during the latter. Because a much larger decrease occurred when ATP was bound in the absence of a conformational change than occurred when a major conformational change took place in the absence of the occupation of the active site, these changes in the incorporation of [3H]acetyl suggest that Lys501 from the alpha polypeptide is directly involved in binding ATP within the active site of (Na+ + K+)-ATPase. The immunochemical reactions between the specific polyclonal antibodies raised against the sequence-GAPER and denatured or enzymically active (Na+ + K+)-ATPase were also investigated. Western blots and the inhibition of enzymic activity caused by the antibody have shown that it can bind to both the denatured and the native form of the alpha-polypeptide, respectively

  1. Argon activation analysis, application to dating by the potassium-argon method; Analyse par activation de l'argon. Application a la datation par la methode potassium-argon

    Energy Technology Data Exchange (ETDEWEB)

    Dumesnil, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Activation analysis using radiogenic argon-40 has been applied to rock-dating by the K-Ar method. The argon is extracted from the sample, purified, activated to saturation in a flux of 2 X 10{sup 13} neutrons/cm{sup 2} sec{sup -1} and measured by gamma spectroscopy. The sensitivity obtained is such that it is possible to measure amounts of argon corresponding to age of a few thousand years only. However since it has not been possible to measure the amount of pollution of radiogenic argon by atmospheric argon with any accuracy, the measurable age limit is in fact of the order of MY. The method has been applied to basalts from the Mont-Dore region. The results obtained are in fairly good agreement with geological, stratigraphic and paleomagnetic data. (author) [French] L'analyse par activation de l'argon 40 radiogenique a ete appliquee a la datation des roches par la methode K-Ar. L'argon est extrait de l'echantillon, purifie, active a saturation dans un flux de 2.10{sup 13} neutrons.cm{sup -2}.s{sup -1} et mesure en spectrometrie gamma. La sensibilite obtenue est telle qu'il est possible de mesurer des quantites d'argon correspondant a des ages de quelques milliers d'annees seulement. Cependant la correction de pollution de l'argon radiogenique par l'argon atmospherique n'ayant pu etre etablie avec precision, la limite d'age mesurable pratique est de l'ordre de 1 Ma. La methode a ete appliquee aux basaltes de la region du Mont-Dore. Les ages obtenus sont en assez bon accord avec les donnees geologiques, stratigraphiques et paleomagnetiques. (auteur)

  2. Argon activation analysis, application to dating by the potassium-argon method; Analyse par activation de l'argon. Application a la datation par la methode potassium-argon

    Energy Technology Data Exchange (ETDEWEB)

    Dumesnil, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Activation analysis using radiogenic argon-40 has been applied to rock-dating by the K-Ar method. The argon is extracted from the sample, purified, activated to saturation in a flux of 2 X 10{sup 13} neutrons/cm{sup 2} sec{sup -1} and measured by gamma spectroscopy. The sensitivity obtained is such that it is possible to measure amounts of argon corresponding to age of a few thousand years only. However since it has not been possible to measure the amount of pollution of radiogenic argon by atmospheric argon with any accuracy, the measurable age limit is in fact of the order of MY. The method has been applied to basalts from the Mont-Dore region. The results obtained are in fairly good agreement with geological, stratigraphic and paleomagnetic data. (author) [French] L'analyse par activation de l'argon 40 radiogenique a ete appliquee a la datation des roches par la methode K-Ar. L'argon est extrait de l'echantillon, purifie, active a saturation dans un flux de 2.10{sup 13} neutrons.cm{sup -2}.s{sup -1} et mesure en spectrometrie gamma. La sensibilite obtenue est telle qu'il est possible de mesurer des quantites d'argon correspondant a des ages de quelques milliers d'annees seulement. Cependant la correction de pollution de l'argon radiogenique par l'argon atmospherique n'ayant pu etre etablie avec precision, la limite d'age mesurable pratique est de l'ordre de 1 Ma. La methode a ete appliquee aux basaltes de la region du Mont-Dore. Les ages obtenus sont en assez bon accord avec les donnees geologiques, stratigraphiques et paleomagnetiques. (auteur)

  3. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  4. The use of thallium diethyldithiocarbamate for mapping CNS potassium metabolism and neuronal activity: Tl+ -redistribution, Tl+ -kinetics and Tl+ -equilibrium distribution.

    Science.gov (United States)

    Wanger, Tim; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2012-07-01

    The potassium (K(+)) analogue thallium (Tl(+)) can be used as a tracer for mapping neuronal activity. However, because of the poor blood-brain barrier (BBB) K(+) -permeability, only minute amounts of Tl(+) enter the brain after systemic injection of Tl(+) -salts like thallium acetate (TlAc). We have recently shown that it is possible to overcome this limitation by injecting animals with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC), that crosses the BBB and releases Tl(+) prior to neuronal or glial uptake. TlDDC can thus be used for mapping CNS K(+) metabolism and neuronal activity. Here, we analyze Tl(+) -kinetics in the rodent brain both experimentally and using simple mathematical models. We systemically injected animals either with TlAc or with TlDDC. Using an autometallographic method we mapped the brain Tl(+) -distribution at various time points after injection. We show that the patterns and kinetics of Tl(+) -redistribution in the brain are essentially the same irrespective of whether animals have been injected with TlAc or TlDDC. Data from modeling and experiments indicate that transmembrane Tl(+) -fluxes in cells within the CNS in vivo equilibrate at similar rates as K(+) -fluxes in vitro. This equilibration is much faster than and largely independent of the equilibration of Tl(+) -fluxes across the BBB. The study provides further proof-of-concept for the use of TlDDC for mapping neuronal activity and CNS K(+) -metabolism. A theoretical guideline is given for the use of K(+) -analogues for imaging neuronal activity with general implications for the use of metal ions in neuroimaging. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  5. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae

    OpenAIRE

    Valente, Rita S.; Xavier, Karina B.

    2015-01-01

    Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify reg...

  6. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion*

    OpenAIRE

    Thurlow, John S.; Little, Dustin J.; Baker, Thomas P.; Yuan, Christina M.

    2013-01-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ?5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose ...

  7. Expression of adenosine triphosphate-sensitive potassium channels in rats with cirrhosis: correlationship with sympathetic activity and renal function

    Directory of Open Access Journals (Sweden)

    Julio Cesar Martins Monte

    2006-12-01

    Full Text Available Objective: The aim of this study was to perform a direct analysis ofKATP mRNA expression by RT-PCR in kidney and isolated aorta fromrats with cirrhosis (induced by carbon tetrachloride and controls.The present study also analyses the relation between induced cirrhosisand urinary excretion of sodium and sympathetic activity in cirrhoticrats. Methods: Rats were placed in metabolic cages and allowedfree access to food and water. Cirrhosis was induced by repeateddoses of carbon tetrachloride by gastric gavage. After some weeks,the kidney and aorta were dissected and utilized for RNA extraction.Blood and urine were analyzed for electrolytes. Renal function wasestimated by creatinine clearance and sodium urinary excretion.Serum catecholamines were measured by HPLC analysis. Results:First, RT-PCR analysis showed that KATP mRNA is expressed in liverwith cirrhosis and intense fibrosis, but not with moderate fibrosis.Second, RT-PCR analysis revealed that KATP mRNA was detectedonly in aorta dissected from rats with cirrhosis. Finally, an enhancedreabsorption of sodium without renal failure suggests a potentialmediator would increase the activity of the sympathetic system.Conclusion: These results suggest that KATP mRNA is expressed incirrhotic rats with sympathetic activation and renal dysfunction. Thischannel might be involved in another route where the vascular tonecan be modulated in cirrhosis.

  8. Thermodynamic coupling between activation and inactivation gating in potassium channels revealed by free energy molecular dynamics simulations.

    Science.gov (United States)

    Pan, Albert C; Cuello, Luis G; Perozo, Eduardo; Roux, Benoît

    2011-12-01

    The amount of ionic current flowing through K(+) channels is determined by the interplay between two separate time-dependent processes: activation and inactivation gating. Activation is concerned with the stimulus-dependent opening of the main intracellular gate, whereas inactivation is a spontaneous conformational transition of the selectivity filter toward a nonconductive state occurring on a variety of timescales. A recent analysis of multiple x-ray structures of open and partially open KcsA channels revealed the mechanism by which movements of the inner activation gate, formed by the inner helices from the four subunits of the pore domain, bias the conformational changes at the selectivity filter toward a nonconductive inactivated state. This analysis highlighted the important role of Phe103, a residue located along the inner helix, near the hinge position associated with the opening of the intracellular gate. In the present study, we use free energy perturbation molecular dynamics simulations (FEP/MD) to quantitatively elucidate the thermodynamic basis for the coupling between the intracellular gate and the selectivity filter. The results of the FEP/MD calculations are in good agreement with experiments, and further analysis of the repulsive, van der Waals dispersive, and electrostatic free energy contributions reveals that the energetic basis underlying the absence of inactivation in the F103A mutation in KcsA is the absence of the unfavorable steric interaction occurring with the large Ile100 side chain in a neighboring subunit when the intracellular gate is open and the selectivity filter is in a conductive conformation. Macroscopic current analysis shows that the I100A mutant indeed relieves inactivation in KcsA, but to a lesser extent than the F103A mutant.

  9. Errors in potassium balance

    International Nuclear Information System (INIS)

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by 40 K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies

  10. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    Science.gov (United States)

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  11. Importance of large conductance calcium-activated potassium channels (BKCa) in interleukin-1b-induced adhesion of monocytes to endothelial cells.

    Science.gov (United States)

    Burgazli, K M; Venker, C J; Mericliler, M; Atmaca, N; Parahuleva, M; Erdogan, A

    2014-01-01

    The present study investigated the role of the large conductance calcium-activated potassium channels (BKCa) in interleukin-1b (IL-1b) induced inflammation. Human umbilical vein endothelial cells (HUVECs) were isolated and cultured. Endothelial cell membrane potential measurements were accomplished using the fluorescent dye DiBAC4(3). The role of BKCa was assessed using iberiotoxin, a highly selective BKCa inhibitor. Changes in the calcium intracellular calcium were investigated using Fura-2-AM imaging. Fluorescent dyes DCF-AM and DAF-AM were further used in order to measure the formation of reactive oxygen species (ROS) and nitric oxide (NO) synthesis, respectively. Endothelial cell adhesion tests were conducted with BCECF-AM adhesion assay and tritium thymidine uptake using human monocytic cells (U937). Expression of cellular adhesion molecules (ICAM-1, VCAM-1) was determined by flow cytometer. Interleukin-1b induced a BKCa dependent hyperpolarization of HUVECs. This was followed by an increase in the intracellular calcium concentration. Furthermore, IL-1b significantly increased the synthesis of NO and ROS. The increase of intracellular calcium, radicals and NO resulted in a BKCa dependent adhesion of monocytes to HUVECs. Endothelial cells treated with IL-1b expressed both ICAM-1 and VCAM-1 in significantly higher amounts as when compared to controls. It was further shown that the cellular adhesion molecules ICAM-1 and VCAM-1 were responsible for the BKCa-dependent increase in cellular adhesion. Additionally, inhibition of the NADPH oxidase with DPI led to a significant downregulation of IL-1b-induced expression of ICAM and VCAM, as well as inhibition of eNOS by L-NMMA, and intracellular calcium by BAPTA. Activation of the endothelial BKCa plays an important role in the IL-1b-induced monocyte adhesion to endothelial cells.

  12. Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation.

    Science.gov (United States)

    Gundlach, Jan; Herzberg, Christina; Hertel, Dietrich; Thürmer, Andrea; Daniel, Rolf; Link, Hannes; Stülke, Jörg

    2017-07-05

    Potassium is the most abundant metal ion in every living cell. This ion is essential due to its requirement for the activity of the ribosome and many enzymes but also because of its role in buffering the negative charge of nucleic acids. As the external concentrations of potassium are usually low, efficient uptake and intracellular enrichment of the ion is necessary. The Gram-positive bacterium Bacillus subtilis possesses three transporters for potassium, KtrAB, KtrCD, and the recently discovered KimA. In the absence of the high-affinity transporters KtrAB and KimA, the bacteria were unable to grow at low potassium concentrations. However, we observed the appearance of suppressor mutants that were able to overcome the potassium limitation. All these suppressor mutations affected amino acid metabolism, particularly arginine biosynthesis. In the mutants, the intracellular levels of ornithine, citrulline, and arginine were strongly increased, suggesting that these amino acids can partially substitute for potassium. This was confirmed by the observation that the supplementation with positively charged amino acids allows growth of B. subtilis even at the extreme potassium limitation that the bacteria experience if no potassium is added to the medium. In addition, a second class of suppressor mutations allowed growth at extreme potassium limitation. These mutations result in increased expression of KtrAB, the potassium transporter with the highest affinity and therefore allow the acquisition and accumulation of the smallest amounts of potassium ions from the environment. IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow

  13. A New Negative Allosteric Modulator AP14145 for the Study of Small Conductance Calcium-Activated Potassium Channels

    DEFF Research Database (Denmark)

    Simo Vicens, Rafel; Kirchhoff, Jeppe Egedal; Dolce, Bernardo

    2017-01-01

    ) prolongation in anaesthetised rats and a beam walk test was performed in mice to determine acute CNS related effects of the drug. Key results: AP14145 was found to be an equipotent negative allosteric modulator of KCa2.2 and KCa2.3 channels (IC50 = 1.1 ± 0.3 μM L-1). The presence of AP14145 (10 μM L-1......) increased the EC50 of Ca2+ on KCa2.3 from 0.36 ± 0.02 μM L-1 to 1.2 ± 0.1 μM L-1. The inhibitory effect strongly depended on two amino acids, S508 and A533. AP14145 concentration-dependently prolonged AERP in rats. Moreover, AP14145 (10 mg kg-1) did not trigger any apparent CNS effects in mice. Conclusion...... and implications: AP14145 is a negative allosteric modulator of KCa2.2 and KCa2.3 that shifts the calcium dependence of channel activation, an effect strongly dependent on two identified amino acids. AP14145 prolongs AERP in rats and does not trigger any acute CNS effects in mice. The understanding of how KCa2...

  14. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion.

    Science.gov (United States)

    Thurlow, John S; Little, Dustin J; Baker, Thomas P; Yuan, Christina M

    2013-06-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ∼5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose chronic exposure. This case represents possible sequelae of chronic potassium chlorate ingestion.

  15. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion*

    Science.gov (United States)

    Thurlow, John S.; Little, Dustin J.; Baker, Thomas P.; Yuan, Christina M.

    2013-01-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ∼5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose chronic exposure. This case represents possible sequelae of chronic potassium chlorate ingestion. PMID:26064493

  16. Potassium Chloride Versus Voltage Clamp Contractures in Ventricular Muscle

    Science.gov (United States)

    Morad, M.; Reeck, S.; Rao, M.

    1981-01-01

    In frog ventricle, developed tension was markedly larger in response to depolarization caused by a voltage clamp step than to depolarization induced by high concentrations of potassium chloride. Measurement of extracellular potassium activity at the surface and at the depth of muscle during the development of contractures showed that the diffusion of potassium is much slower than the spread of depolarization through the cross section of muscle. These two observations suggest that competition between the depolarizing and the negative inotropic effects of an increase in the extracellular potassium ion concentration may determine the time course and magnitude of contractile tension in heart muscle.

  17. Small-conductance Ca2+-activated potassium type 2 channels regulate the formation of contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Saravana R K Murthy

    Full Text Available Small-conductance, Ca2+ activated K+ channels (SK channels are expressed at high levels in brain regions responsible for learning and memory. In the current study we characterized the contribution of SK2 channels to synaptic plasticity and to different phases of hippocampal memory formation. Selective SK2 antisense-treatment facilitated basal synaptic transmission and theta-burst induced LTP in hippocampal brain slices. Using the selective SK2 antagonist Lei-Dab7 or SK2 antisense probes, we found that hippocampal SK2 channels are critical during two different time windows: 1 blockade of SK2 channels before the training impaired fear memory, whereas, 2 blockade of SK2 channels immediately after the training enhanced contextual fear memory. We provided the evidence that the post-training cleavage of the SK2 channels was responsible for the observed bidirectional effect of SK2 channel blockade on memory consolidation. Thus, Lei-Dab7-injection before training impaired the C-terminal cleavage of SK2 channels, while Lei-Dab7 given immediately after training facilitated the C-terminal cleavage. Application of the synthetic peptide comprising a leucine-zipper domain of the C-terminal fragment to Jurkat cells impaired SK2 channel-mediated currents, indicating that the endogenously cleaved fragment might exert its effects on memory formation by blocking SK2 channel-mediated currents. Our present findings suggest that SK2 channel proteins contribute to synaptic plasticity and memory not only as ion channels but also by additionally generating a SK2 C-terminal fragment, involved in both processes. The modulation of fear memory by down-regulating SK2 C-terminal cleavage might have applicability in the treatment of anxiety disorders in which fear conditioning is enhanced.

  18. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Rheological properties of potassium barium borate glasses

    NARCIS (Netherlands)

    Szwejda, K.A.; Vogel, D.L.; Stevels, J.M.

    1973-01-01

    Several series of potassium barium borate glasses have been investigated as to their rheological properties. It has been found, that all these glasses show deviations from ‘Newtonian’ behaviour below temperatures corresponding to viscosities of 1010 poises. The activation energies of viscous flow

  20. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    Science.gov (United States)

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Loss of Female Sex Hormones Exacerbates Cerebrovascular and Cognitive Dysfunction in Aortic Banded Miniswine Through a Neuropeptide Y-Ca2+-Activated Potassium Channel-Nitric Oxide Mediated Mechanism.

    Science.gov (United States)

    Olver, T Dylan; Hiemstra, Jessica A; Edwards, Jenna C; Schachtman, Todd R; Heesch, Cheryl M; Fadel, Paul J; Laughlin, M Harold; Emter, Craig A

    2017-10-31

    Postmenopausal women represent the largest cohort of patients with heart failure with preserved ejection fraction, and vascular dementia represents the most common form of dementia in patients with heart failure with preserved ejection fraction. Therefore, we tested the hypotheses that the combination of cardiac pressure overload (aortic banding [AB]) and the loss of female sex hormones (ovariectomy [OVX]) impairs cerebrovascular control and spatial memory. Female Yucatan miniswine were separated into 4 groups (n=7 per group): (1) control, (2) AB, (3) OVX, and (4) AB-OVX. Pigs underwent OVX and AB at 7 and 8 months of age, respectively. At 14 months, cerebral blood flow velocity and spatial memory (spatial hole-board task) were lower in the OVX groups ( P <0.05), with significant impairments in the AB-OVX group ( P <0.05). Resting carotid artery β stiffness and vascular resistance during central hypovolemia were increased in the AB-OVX group ( P <0.05), and blood flow recovery after central hypovolemia was reduced in both OVX groups ( P <0.05). Isolated pial artery (pressure myography) vasoconstriction to neuropeptide Y was greatest in the AB-OVX group ( P <0.05), and vasodilation to the Ca 2+ -activated potassium channel α-subunit agonist NS-1619 was impaired in both AB groups ( P <0.05). The ratio of phosphorylated endothelial nitric oxide synthase:total endothelial nitric oxide synthase was depressed and Ca 2+ -activated potassium channel α-subunit protein was increased in AB groups ( P <0.05). Mechanistically, impaired cerebral blood flow control in experimental heart failure may be the result of heightened neuropeptide Y-induced vasoconstriction along with reduced vasodilation associated with decreased Ca 2+ -activated potassium channel function and impaired nitric oxide signaling, the effects of which are exacerbated in the absence of female sex hormones. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat

    DEFF Research Database (Denmark)

    Stankevicius, Edgaras; Dalsgaard, Thomas; Kroigaard, Christel

    2011-01-01

    This study was designed to investigate whether calcium-activated potassium channels of small (SK(Ca) or K(Ca)2) and intermediate (IK(Ca) or K(Ca)3.1) conductance activated by 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) are involved in both nitric oxide (NO) and endothelium-derived hyperpolar......This study was designed to investigate whether calcium-activated potassium channels of small (SK(Ca) or K(Ca)2) and intermediate (IK(Ca) or K(Ca)3.1) conductance activated by 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309) are involved in both nitric oxide (NO) and endothelium...... in human umbilical vein endothelial cells (HUVECs), and calcium concentrations were investigated in both HUVECs and mesenteric arterial endothelial cells. In both superior (∼1093 μm) and small mesenteric (∼300 μm) arteries, NS309 evoked endothelium- and concentration-dependent relaxations. In superior....... In small mesenteric arteries, NS309 relaxations were reduced slightly by ADMA, whereas apamin plus an IK(Ca) channel blocker almost abolished relaxation. Iberiotoxin did not change NS309 relaxation. HUVECs expressed mRNA for SK(Ca) and IK(Ca) channels, and NS309 induced increases in calcium, outward...

  3. 21 CFR 184.1619 - Potassium carbonate.

    Science.gov (United States)

    2010-04-01

    ... solution of potassium hydroxide with excess carbon dioxide to produce potassium carbonate; (3) By treating a solution of potassium hydroxide with carbon dioxide to produce potassium bicarbonate, which is... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food...

  4. Potassium in milk and milk products

    International Nuclear Information System (INIS)

    Sombrito, E.Z.; Nuguid, Z.F.S.; Tangonan, M.C.

    1989-01-01

    The amount of potassium in imported processed milk was determined by gamma spectral analysis. The results show that the potassium content of diluted infant formula milk is closest to the reported mean concentration of potassium in human milk while other milk types have potassium values similar to the potassium content of cow milk. (Auth.). 2 figs., 5 refs

  5. Altered potassium homeostasis in Crohn's disease

    International Nuclear Information System (INIS)

    Schober, O.; Hundeshagen, H.; Bosaller, C.; Lehr, L.

    1983-01-01

    The total body potassium (TBK), serum potassium, and the number of red blood cell ouabain-binding sites was studied in 94 patients with Crohn's diease. TBK was measured by counting the endogenous 40 K in a whole body counter. TBK was 87%+-13% in 94 patients was Crohn's disease, while in control subjects, it was 97%+-12% (n=24). This significant reduction in TBK was accompanied by normal serum potassium levels (4.4+-0.5 mM). TBK was significantly correlated with the Crohn's disease activity index (r=0.79, n=113, P 3 H-ouabain showed a significant increse in the number of Na-K pumps in Crohn's disease (396+-65, n=27) compared with the control group. 290+-45 (n=24). These results support the suggestion that changes in TBK may regulate the synthesis of Na-K pump molecules. The total body potassium depletion and the need for a preoperative nutritional support in Crohn's disease are discussed. (orig.)

  6. Modifications induced by potassium addition on chromia/alumina catalysts and their influence on the catalytic activity for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Rombi, E.; Gazzoli, D.; Cutrufello, M.G.; De Rossi, S.; Ferino, I.

    2010-01-01

    The oxidative dehydrogenation of propane was investigated on K-containing chromia/alumina catalysts, with nominal Cr and K loadings of 10 and 0-2 wt%, respectively. Their chemical composition, structure, texture, nature of surface species, redox features and surface acidity were determined. Catalytic behaviour was investigated in a continuous-flow micro-reactor under different conditions. Besides the nature and concentration of the chromium species, potassium addition was found to affect the reducibility of the catalysts as well as their acid surface features. Such modifications were found to condition the catalytic behaviour, which appeared somewhat peculiar in comparison with that of the catalytic systems reported in literature.

  7. Dietary reference values for potassium

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derives dietary reference values (DRVs) for potassium. The Panel decides to set DRVs on the basis of the relationships between potassium intake and blood pressure and stroke...

  8. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  9. Can Diuretics Decrease Your Potassium Level?

    Science.gov (United States)

    ... of low potassium? Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, M.D. Yes, ... your urine. This can lead to low potassium levels in your blood (hypokalemia). Signs and symptoms of ...

  10. Potassium iodide stockpiling

    International Nuclear Information System (INIS)

    Krimm, R.W.

    1983-01-01

    After examination by the Federal Emergency Management Agency (FEMA) and other federal agencies of federal policy on the use and distribution of potassium iodide (KI) as a thyroid-blocking agent for use in off-site preparedness around commercial nuclear powerplants, FEMA believes the present shelf life of KI is too short, that the minimum ordering quantities are an obstacle to efficient procurement, and that the packaging format offered by the drug industry does not meet the wishes of state and local government officials. FEMA has asked assistance from the Food and Drug Administration in making it possible for those states wishing to satisfy appropriate requirements to do so at the minimum cost to the public. Given an appropriate packaging and drug form, there appears to be no reason for the federal government to have further involvement in the stockpiling of KI

  11. Potassium-argon technology

    International Nuclear Information System (INIS)

    Cassignol, Charles; Cornette, Yves; David, Benjamin; Gillot, P.-Y.

    1978-04-01

    The main features of the method of processing rocks and minerals and measuring the extracted argon, for the purpose of potassium-argon dating are described. It differs in several respects from the conventional one, as described, f.i., in Dalrymple and Lanphere's monography. Principally it was established that the continual purification of the gases in the mass spectrometer cell during the measurement, stops the peaks of current drift, and renders them representative of the introduced argon. This allows on the one hand to improve the reliability and accuracy of measurements, on the other hand to get rid of the isotopic dilution method, with 38 A as a spike. Moreover the reliability of the radiogenic argon is improved by taking into account the mislinearness of the M.S. response. All this results in a higher performance of the K/Ar dating method, especially in the recent ages range. The technological side of the problem was only dealt with [fr

  12. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  13. Use of potassium-42 in the study of kidney functioning

    International Nuclear Information System (INIS)

    Morel, F.; Guinnebault, M.

    1959-01-01

    Following an intravenous injection of potassium-42 as indicator, an analysis of the specific activity vs. time curve in arterial plasma, in venous plasma efferent from the kidney, in urine and in various regions of the kidney of rabbits reveals that: 1) The turnover rate of potassium in the cortex cells (proximal and distal convoluted tubes) is very large, being limited only by renal blood flow. 2) The turnover rate of potassium in deep regions (Henle loops and collector tubules) is much smaller. 3) Potassium in the urine comes from cells of the convoluted tubes and not from cells of Henle loops, collector ducts, or glomerular filtrate. 4) Any potassium filtered at the level of the glomerules would be entirely reabsorbed at the level of the proximal tube, while total potassium in the urine results from a process of excretion by cells of the distal tube. These results are comparable with the assumption that the movement of potassium between interstitial medium and convoluted tube cells results from entirely passive processes. (author) [fr

  14. Potassium sensing histidine kinase in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Gontang, Erin A; Kolter, Roberto

    2010-01-01

    The soil-dwelling organism Bacillus subtilis is able to form multicellular aggregates known as biofilms. It was recently reported that the process of biofilm formation is activated in response to the presence of various, structurally diverse small-molecule natural products. All of these small-molecule natural products made pores in the membrane of the bacterium, causing the leakage of potassium cations from the cytoplasm of the cell. The potassium cation leakage was sensed by the membrane histidine kinase KinC, triggering the genetic pathway to the production of the extracellular matrix that holds cells within the biofilm. This chapter presents the methodology used to characterize the leakage of cytoplasmic potassium as the signal that induces biofilm formation in B. subtilis via activation of KinC. Development of novel techniques to monitor activation of gene expression in microbial populations led us to discover the differentiation of a subpopulation of cells specialized to produce the matrix that holds all cells together within the biofilm. This phenomenon of cell differentiation was previously missed by conventional techniques used to monitor transcriptional gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  16. Oral potassium supplementation in surgical patients.

    Science.gov (United States)

    Hainsworth, Alison J; Gatenby, Piers A

    2008-08-01

    Hospital inpatients are frequently hypokalaemic. Low plasma potassium levels may cause life threatening complications, such as cardiac arrhythmias. Potassium supplementation may be administered parenterally or enterally. Oral potassium supplements have been associated with oesophageal ulceration, strictures and gastritis. An alternative to potassium salt tablets or solution is dietary modification with potassium rich food stuffs, which has been proven to be a safe and effective method for potassium supplementation. The potassium content of one medium banana is equivalent to a 12 mmol potassium salt tablet. Potassium supplementation by dietary modification has been shown to be equally efficacious to oral potassium salt supplementation and is preferred by the majority of patients. Subsequently, it is our practice to replace potassium using dietary modification, particularly in surgical patients having undergone oesophagogastrectomy or in those with peptic ulcer disease.

  17. Determination of the sodium, aluminium, potassium, manganese, magnesium, bromine, cadmium and chlorine concentration values in the whole blood samples of human cancer using neutron activation analysis facility of the second Egyptian research reactor

    Directory of Open Access Journals (Sweden)

    N. F. Soliman

    2010-06-01

    Full Text Available Neutron activation analysis (NAA using the Second Egyptian Research Reactor (ETRR-2 has been utilized to analyze whole blood samples. The National Cancer Institute of Egypt provided us with 18 blood samples (11 breast, 2 prostate, 2 colon, 1 pancreatic, 1 ovarian and a random sample of normal person to estimate the concentration values of Sodium, Aluminium, Potassium, Manganese, Magnesium, Bromine, Chlorine. The pneumatic irradiation rabbit system (PIRS built in the vertical thermal column of the ETRR-2 reactor is used for short time irradiation at constant power. Elemental concentrations were estimated from measurements of the gamma-ray spectra of the product short lived isotopes in the samples. The calculated thermal to epithermal neutron flux ratio was found to be 196 at irradiation position. The tabulated concentrations were calculated by using k0-neutron activation analysis (k0NAA standardization method.

  18. 21 CFR 184.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  19. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  20. 21 CFR 184.1622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  1. Potassium distribution in sugar cane

    International Nuclear Information System (INIS)

    Medina, N.H.

    2014-01-01

    In this work the distribution of potassium in sugarcane has been studied during its growth in two different conditions. In the first one the sugarcane soil was prepared with natural fertilizers, using sugarcane bagasse and, in another plantation the soil was prepared with commercial fertilizer NPK with a proportion of 10-10-10. For the measurement of potassium concentration in each part of the plant, gamma ray spectrometry techniques have been used to measure gamma-rays emitted from the radioisotope 40 K present in the sugarcane samples. The concentration of potassium in roots, stems and leaves were measured periodically. The results for sugarcane cultivated in soil with natural fertilizer show a higher concentration of potassium at the beginning of plant development and over time there is an oscillatory behavior in this concentration in each part of the plant, reaching a lower concentration in the adult plant. The results for the plant grown in soil with NPK fertilizer, indicate that the potassium concentration is higher in the stem at the beginning of cultivation and remained practically constant over time in various parts of the plant, with higher values in the leaves and stem than at the root. On the other hand, the results obtained using fertilizer NPK shows a lower potassium concentration, since the fertilizer provoked a much higher growth rate. (author)

  2. Potassium supplements for oral diarrhoea regimens.

    Science.gov (United States)

    Clements, M L; Levine, M M; Black, R E; Hughes, T P; Rust, J; Tome, F C

    1980-10-18

    A study is proposed for supplementing potassium loss from diarrhea in rehydration therapies with fresh fruit and other naturally potassium-rich foods. Bananas contain .1 mol of potassium per gm. Freshly squeezed lemon or orange juices were tested for potassium and sodium content and found to have very low potassium concentration. Therefore, the banana was chosen for an upcoming study that will determine if infants and children suffering from diarrhea can ingest the amounts of the fruit necessary to elevate the potassium level sufficiently. Bananas as the potassium source are thought to be well-accepted in developing areas.

  3. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... acid with potassium hydroxide or potassium carbonate. It occurs as transparent crystals or a white... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS...

  4. Blueberry juice causes potent relaxation of rat aortic rings via the activation of potassium channels and the H₂S pathway.

    Science.gov (United States)

    Horrigan, Louise A; Holohan, Catherine A; Lawless, Gráinne A; Murtagh, Melissa A; Williams, Carmel T; Webster, Christina M

    2013-02-26

    The objective of this study was to investigate the in vitro effects of blueberry juice on healthy rat aortic rings, and to explore the roles of potassium channels and of the hydrogen sulphide (H(2)S) pathway in mediating the effects of blueberry juice. Firstly, the antioxidant capacity of blueberry juice was compared to other popular juice drinks using the Folin-Ciocalteu and the DPPH assays. Blueberry juice had significantly higher total polyphenol content than any of the other drinks studied (p blueberry juice on noradrenaline-contracted aortic rings was then observed, and the juice caused significant inhibition of noradrenaline-induced contractions (p blueberry juice (p blueberry juice (p blueberry juice has potent vasorelaxing properties, and thus may be a useful dietary agent for the prevention and treatment of hypertension. This study also provides strong evidence that Kv channels and the CSE/H(2)S pathway may be responsible, at least in part, for mediating the effects of blueberry juice.

  5. Determination of potassium concentration in salt water for residual beta radioactivity measurements

    International Nuclear Information System (INIS)

    Suarez-Navarro, J.A.; Pujol, Ll.

    2004-01-01

    High interferences may arise in the determination of potassium concentration in salt water. Several analytical methods were studied to determine which method provided the most accurate measurements of potassium concentration. This study is relevant for radiation protection because the exact amount of potassium in water samples must be known for determinations of residual beta activity concentration. The fitting algorithm of the calibration curve and estimation of uncertainty in potassium determinations were also studied. The reproducibility of the proposed analytical method was tested by internal and external validation. Furthermore, the residual beta activity concentration of several Spanish seawater and brackish river water samples was determined using the proposed method

  6. The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2007-08-15

    Vapour pressures of water over saturated solutions of sodium acetate, potassium acetate, sodium perchlorate, and potassium perchlorate were determined over the (278 to 318) K temperature range and compared with available in the literature data. The cases of saturated solutions of sodium chlorate and potassium chlorate are also considered. The determined vapour pressures were used to obtain the water activities, the osmotic coefficients, and the molar enthalpies of vaporization in considered systems.

  7. Genetics Home Reference: potassium-aggravated myotonia

    Science.gov (United States)

    ... aggravated by eating potassium-rich foods such as bananas and potatoes. Stiffness occurs in skeletal muscles throughout the body. Potassium-aggravated myotonia ranges in severity from mild episodes ...

  8. The heart and potassium: a banana republic.

    Science.gov (United States)

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.

  9. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    IAS Admin

    CLASSROOM. 285. RESONANCE | March 2016. Qualitative Carbohydrate Analysis using Alkaline. Potassium Ferricyanide. Keywords. Alkaline potassium ferricyanide, qualitative ... Carbohydrates form a distinct class of organic compounds often .... Laboratory Techniques: A contemporary Approach, W B Saunders Com-.

  10. Status of potassium permanganate - 2008

    Science.gov (United States)

    This is a brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for potassium permanganate will be presented. Initial Label Claim (Columnaris on catfish/HSB): 1) Human Food Safety - Complete for all fin fish (June 1999). A hazard charac...

  11. Urinary potassium to urinary potassium plus sodium ratio can accurately identify hypovolemia in nephrotic syndrome: a provisional study.

    Science.gov (United States)

    Keenswijk, Werner; Ilias, Mohamad Ikram; Raes, Ann; Donckerwolcke, Raymond; Walle, Johan Vande

    2018-01-01

    There is evidence pointing to a decrease of the glomerular filtration rate (GFR) in a subgroup of nephrotic children, likely secondary to hypovolemia. The aim of this study is to validate the use of urinary potassium to the sum of potassium plus sodium ratio (UK/UK+UNa) as an indicator of hypovolemia in nephrotic syndrome, enabling detection of those patients who will benefit from albumin infusion. We prospectively studied 44 nephrotic children and compared different parameters to a control group (36 children). Renal perfusion and glomerular permeability were assessed by measuring clearance of para-aminohippurate and inulin. Vaso-active hormones and urinary sodium and potassium were also measured. Subjects were grouped into low, normal, and high GFR groups. In the low GFR group, significantly lower renal plasma flow (p = 0.01), filtration fraction (p = 0.01), and higher UK/UK+UNa (p = 0.03) ratio were noted. In addition, non-significant higher plasma renin activity (p = 0.11) and aldosteron (p = 0.09) were also seen in the low GFR group. A subgroup of patients in nephrotic syndrome has a decrease in glomerular filtration, apparently related to hypovolemia which likely can be detected by a urinary potassium to potassium plus sodium ratio > 0.5-0.6 suggesting benefit of albumin infusion in this subgroup. What is Known: • Volume status can be difficult to assess based on clinical parameters in nephrotic syndrome, and albumin infusion can be associated with development of pulmonary edema and fluid overload in these patients. What is New: • Urinary potassium to the sum of urinary potassium plus sodium ratio can accurately detect hypovolemia in nephrotic syndrome and thus identify those children who would probably respond to albumin infusion.

  12. Clofilium inhibits Slick and Slack potassium channels.

    Science.gov (United States)

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  13. Increased serum potassium affects renal outcomes

    DEFF Research Database (Denmark)

    Miao, Y; Dobre, D; Heerspink, H J Lambers

    2011-01-01

    To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy.......To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy....

  14. Obtaining of potassium dicyan-argentate

    International Nuclear Information System (INIS)

    Sattarova, M.A.; Solojenkin, P.M.

    1997-01-01

    This work is devoted to obtaining of potassium dicyan-argentate. By means of exchange reaction between silver nitrate and potassium cyanide the potassium dicyan-argentate was synthesized. The analysis of obtained samples was carried out by means of titration and potentiometry.

  15. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing...

  16. 21 CFR 582.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  17. 21 CFR 582.5622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  18. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics

    International Nuclear Information System (INIS)

    Trendewicz, Anna; Evans, Robert; Dutta, Abhijit; Sykes, Robert; Carpenter, Daniel; Braun, Robert

    2015-01-01

    This paper proposes modifications to an existing cellulose pyrolysis mechanism in order to include the effect of potassium on product yields and composition. The changes in activation energies and pre-exponential factors due to potassium were evaluated based on the experimental data collected from pyrolysis of cellulose samples treated with different levels of potassium (0–1% mass fraction). The experiments were performed in a pyrolysis reactor coupled to a molecular beam mass spectrometer (MBMS). Principal component analysis (PCA) performed on the collected data revealed that cellulose pyrolysis products could be divided into two groups: anhydrosugars and other fragmentation products (hydroxyacetaldehyde, 5-hydroxymethylfurfural, acetyl compounds). Multivariate curve resolution (MCR) was used to extract the time resolved concentration score profiles of principal components. Kinetic tests revealed that potassium apparently inhibits the formation of anhydrosugars and catalyzes char formation. Therefore, the oil yield predicted at 500 ° C decreased from 87.9% from cellulose to 54.0% from cellulose with 0.5% mass fraction potassium treatment. The decrease in oil yield was accompanied by increased yield of char and gases produced via a catalyzed dehydration reaction. The predicted char and gas yield from cellulose were 3.7% and 8.4%, respectively. Introducing 0.5% mass fraction potassium treatment resulted in an increase of char yield to 12.1% and gas yield to 33.9%. The validation of the cellulose pyrolysis mechanism with experimental data from a fluidized-bed reactor, after this correction for potassium, showed good agreement with our results, with differences in product yields of up to 5%

  19. Purification of the labeled cyanogen bromide peptides of the. cap alpha. polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the ..cap alpha..-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate.

  20. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel

    DEFF Research Database (Denmark)

    Lundby, Alicia; Olesen, Søren-Peter

    2006-01-01

    The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance in the ...

  2. The inhibitory effects of potassium chloride versus potassium silicate application on 137Cs uptake by rice

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-01-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of 137 Cs by rice plants in two pot experiments. The 137 Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K + ) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K + concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K + for rice plants in the soil, which led to a greater uptake of 137 Cs after the potassium silicate application than after the application of potassium chloride. The 137 Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. - Highlights: • Potassium application reduced 137 Cs uptake by rice grown in pot experiments. • Readily available K fertilizer more effectively decreased brown rice 137 Cs concentration. • Potassium should be applied before heading to reduce brown rice 137 Cs concentration.

  3. Preparation of potassium-reduced tantalum powders

    International Nuclear Information System (INIS)

    Kolosov, V.N.; Miroshnichenko, M.N.; Orlov, V.M.; Prokhorova, T.Yu.

    2005-01-01

    Characteristics of tantalum powders prepared by reduction of molten potassium heptafluorotantalate with liquid potassium are studied in a temperature range of 750 - 850 deg C using potassium chloride as a flux at a ratio of K 2 TaF 7 : KCl = 1, 2, and 3. The use of potassium as a reducing agent facilitates washing of tantalum powders for impurity salt removal, reduces sodium content and leakage currents in the anodes. As compared to sodium process, the potassium reduction results in a high yield of sponge material, a decrease in the specific surface area and yield of tantalum powder suitable for manufacture of capacitor anodes [ru

  4. Potassium channels as drugs targets in therapy of cardiovascular diseases: 25 years later

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-03-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  5. POTASSIUM CHANNELS AS DRUGS TARGETS IN THERAPY OF CARDIOVASCULAR DESEASES: 25 YEARS LATER

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-01-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/ openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  6. Colonic potassium handling

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby; Matos, Joana E.; Prætorius, Helle

    2010-01-01

    , intestinal K+ losses caused by activated ion secretion may become life threatening. This topical review provides an update of the molecular mechanisms and the regulation of mammalian colonic K+ absorption and secretion. It is motivated by recent results, which have identified the K+ secretory ion channel...... regulated by hormones and adapts readily to changes in dietary K+ intake, aldosterone and multiple local paracrine agonists. In chronic renal insufficiency, colonic K+ secretion is greatly enhanced and becomes an important accessory K+ excretory pathway. During severe diarrheal diseases of different causes...

  7. Microporous-mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them

    Science.gov (United States)

    Härmas, M.; Thomberg, T.; Kurig, H.; Romann, T.; Jänes, A.; Lust, E.

    2016-09-01

    Various electrochemical methods have been applied to establish the electrochemical characteristics of the electrical double layer capacitor (EDLC) consisting of the 1 M triethylmethylammonium tetrafluoroborate solution in acetonitrile and activated carbon based electrodes. Activated microporous carbon materials used for the preparation of electrodes have been synthesized from the hydrothermal carbonization product (HTC) prepared via hydrothermal carbonization process of D-(+)-glucose solution in H2O, followed by activation with ZnCl2, KOH or their mixture. Highest porosity and Brunauer-Emmett-Teller specific surface area (SBET = 2150 m2 g-1), micropore surface area (Smicro = 2140 m2 g-1) and total pore volume (Vtot = 1.01 cm3 g-1) have been achieved for HTC activated using KOH with a mass ratio of 1:4 at 700 °C. The correlations between SBET, Smicro, Vtot and electrochemical characteristics have been studied to investigate the reasons for strong dependence of electrochemical characteristics on the synthesis conditions of carbon materials studied. Wide region of ideal polarizability (ΔV ≤ 3.0 V), very short characteristic relaxation time (0.66 s), and high specific series capacitance (134 F g-1) have been calculated for the mentioned activated carbon material, demonstrating that this system can be used for completing the EDLC with high energy- and power densities.

  8. Regulation of renal Na+-K-ATPase in the rat: role of increased potassium transport

    International Nuclear Information System (INIS)

    Mujais, S.K.; Chekal, M.A.; Hayslett, J.P.; Katz, A.I.

    1986-01-01

    The purpose of this study was to characterize the alterations in collecting tubule Na + -K + -ATPase activity produced by sustained increments in dietary potassium in the rat and to evaluate the role of aldosterone in their generation. In adrenal-intact animals, feeding a high-potassium diet or administration of a high physiological dose of aldosterone, which simulates the delivery rate of this hormone during potassium loading, caused marked increments in Na + -K + -ATPase activity in the cortical collecting tubule (CCT) but had no effect on the enzyme in the inner stripe of the medullary collecting tubule (MCT). A significant increase in enzyme activity was also observed after smaller dietary potassium increments and after 4 days of dietary potassium load. In adrenalectomized rats provided with physiological replacement doses of corticosterone and aldosterone, Na + -K + -ATPase activity in both CCT and MCT was similar to that of adrenal-intact controls but remained unchanged after 7 days on the potassium-enriched (10-fold) diet. In contrast, adrenalectomized animals receiving the high physiological dose of aldosterone displayed an increase in Na + -K + -ATPase activity of CCT comparable with that of adrenal-intact animals, whereas the enzyme activity in the MCT was unaffected. In conclusion, 1) following chronic potassium loading Na + -K + -ATPase activity increases significantly in the CCT with no change in its activity in the inner stripe of the MCT; 2) this increase in enzyme activity occurs in a time-dependent fashion and in proportion to the potassium load; and 3) the stimulation of Na + -K + -ATPase activity in adrenal-replaced rats is facilitated by augmented levels of aldosterone, such as those actually observed in adrenal-intact rats subjected to chronic potassium loading

  9. Regulation of renal Na -K-ATPase in the rat: role of increased potassium transport

    Energy Technology Data Exchange (ETDEWEB)

    Mujais, S.K.; Chekal, M.A.; Hayslett, J.P.; Katz, A.I.

    1986-08-01

    The purpose of this study was to characterize the alterations in collecting tubule Na -K -ATPase activity produced by sustained increments in dietary potassium in the rat and to evaluate the role of aldosterone in their generation. In adrenal-intact animals, feeding a high-potassium diet or administration of a high physiological dose of aldosterone, which simulates the delivery rate of this hormone during potassium loading, caused marked increments in Na -K -ATPase activity in the cortical collecting tubule (CCT) but had no effect on the enzyme in the inner stripe of the medullary collecting tubule (MCT). A significant increase in enzyme activity was also observed after smaller dietary potassium increments and after 4 days of dietary potassium load. In adrenalectomized rats provided with physiological replacement doses of corticosterone and aldosterone, Na -K -ATPase activity in both CCT and MCT was similar to that of adrenal-intact controls but remained unchanged after 7 days on the potassium-enriched (10-fold) diet. In contrast, adrenalectomized animals receiving the high physiological dose of aldosterone displayed an increase in Na -K -ATPase activity of CCT comparable with that of adrenal-intact animals, whereas the enzyme activity in the MCT was unaffected. In conclusion, 1) following chronic potassium loading Na -K -ATPase activity increases significantly in the CCT with no change in its activity in the inner stripe of the MCT; 2) this increase in enzyme activity occurs in a time-dependent fashion and in proportion to the potassium load; and 3) the stimulation of Na -K -ATPase activity in adrenal-replaced rats is facilitated by augmented levels of aldosterone, such as those actually observed in adrenal-intact rats subjected to chronic potassium loading.

  10. Catalytic Fast Pyrolysis of Biomass Impregnated with Potassium Phosphate in a Hydrogen Atmosphere for the Production of Phenol and Activated Carbon

    Science.gov (United States)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-01-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1,605 m2/g. PMID:29515994

  11. Catalytic fast pyrolysis of biomass impregnated with potassium phosphate in a hydrogen atmosphere for the production of phenol and activated carbon

    Science.gov (United States)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-02-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550 oC in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1605 m2/g.

  12. Activation of an essential calcium signaling pathway in Saccharomyces cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters.

    Science.gov (United States)

    Stefan, Christopher P; Zhang, Nannan; Sokabe, Takaaki; Rivetta, Alberto; Slayman, Clifford L; Montell, Craig; Cunningham, Kyle W

    2013-02-01

    In the budding yeast Saccharomyces cerevisiae, mating pheromones activate a high-affinity Ca(2+) influx system (HACS) that activates calcineurin and is essential for cell survival. Here we identify extracellular K(+) and a homologous pair of transmembrane proteins, Kch1 and Kch2 (Prm6), as necessary components of the HACS activation mechanism. Expression of Kch1 and especially Kch2 was strongly induced during the response to mating pheromones. When forcibly overexpressed, Kch1 and Kch2 localized to the plasma membrane and activated HACS in a fashion that depended on extracellular K(+) but not pheromones. They also promoted growth of trk1 trk2 mutant cells in low K(+) environments, suggesting they promote K(+) uptake. Voltage-clamp recordings of protoplasts revealed diminished inward K(+) currents in kch1 kch2 double-mutant cells relative to the wild type. Conversely, heterologous expression of Kch1 in HEK293T cells caused the appearance of inwardly rectifying K(+) currents. Collectively, these findings suggest that Kch1 and Kch2 directly promote K(+) influx and that HACS may electrochemically respond to K(+) influx in much the same way as the homologous voltage-gated Ca(2+) channels in most animal cell types.

  13. Sodium-potassium pump activity in white blood cells from children with an increased risk of developing hypertension--The Odense Schoolchild Study

    DEFF Research Database (Denmark)

    Hansen, H S; Nielsen, J R; Pedersen, K E

    1993-01-01

    . A significant increase in 86rubidium uptake was present in boys as compared to girls. After adjustment for differences in sexual maturation the observed significant difference disappeared. Important correlates of pump activity were height, plasma glucose, and physical fitness. In the training study 10 boys from...

  14. Effects of potassium behaviour in soils on crop absorption | Lin ...

    African Journals Online (AJOL)

    Potassium (K) is one of the three major elements that play important roles in plants, such as maintaining turgor of cells, promoting activation of enzymes, and improving efficiency of photosynthesis. The types of K in soil may affect the plant absorption of K. K in soils includes K minerals, K in layered silicates (clay minerals), ...

  15. Inhibitory actions by ibandronate sodium, a nitrogen-containing bisphosphonate, on calcium-activated potassium channels in Madin–Darby canine kidney cells

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2015-01-01

    Full Text Available The nitrogen-containing bisphosphonates used for management of the patients with osteoporosis were reported to influence the function of renal tubular cells. However, how nitrogen-containing bisphosphates exert any effects on ion currents remains controversial. The effects of ibandronate (Iban, a nitrogen-containing bisphosphonate, on ionic channels, including two types of Ca2+-activated K+ (KCa channels, namely, large-conductance KCa (BKCa and intermediate-conductance KCa (IKCa channels, were investigated in Madin–Darby canine kidney (MDCK cells. In whole-cell current recordings, Iban suppressed the amplitude of voltage-gated K+ current elicited by long ramp pulse. Addition of Iban caused a reduction of BKCa channels accompanied by a right shift in the activation curve of BKCa channels, despite no change in single-channel conductance. Ca2+ sensitivity of these channels was modified in the presence of this compound; however, the magnitude of Iban-mediated decrease in BKCa-channel activity under membrane stretch with different negative pressure remained unchanged. Iban suppressed the probability of BKCa-channel openings linked primarily to a shortening in the slow component of mean open time in these channels. The dissociation constant needed for Iban-mediated suppression of mean open time in MDCK cells was 12.2 μM. Additionally, cell exposure to Iban suppressed the activity of IKCa channels, and DC-EBIO or 9-phenanthrol effectively reversed its suppression. Under current-clamp configuration, Iban depolarized the cells and DC-EBIO or PF573228 reversed its depolarizing effect. Taken together, the inhibitory action of Iban on KCa-channel activity may contribute to the underlying mechanism of pharmacological or toxicological actions of Iban and its structurally similar bisphosphonates on renal tubular cells occurring in vivo.

  16. Potassium carbonate mediated one-pot synthesis and antimicrobial activities of 2-alkoxy-4-(aryl-5H-indeno[1,2-b]pyridine-3-carbonitriles

    Directory of Open Access Journals (Sweden)

    Şahin Öztürk

    2016-12-01

    Full Text Available 2-Alkoxy-4-(aryl-5H-indeno[1,2-b]pyridine-3-carbonitriles (3a-e and 4a-e were synthesized via multicomponent reaction from 2-aryl-methylidineindan-1-ones (1a-e, malononitrile and K 2CO 3 in ethanol and/or methanol. The structures of obtained compounds (3a-e and 4a-e were characterized using the spectroscopic methods (NMR, IR and elemental analysis. Addition, the in vitro antimicrobial activities of compounds (3a-e were tested against the five human pathogenic bacteria. Penicillin G and Ceftriaxone antibiotics were used as positive control. The results were given as MIC values (minimum inhibition concentration, and compounds 3b-d showed very high activity against Escherichia coli 111.

  17. Studies on the mechanisms of activation of potassium efflux and receptor-cytoskeleton association by aggregated immunoglobulin E-receptor complexes on rat basophilic leukemia cells

    International Nuclear Information System (INIS)

    Labrecque, G.F.

    1989-01-01

    Evidence for the activation of an outwardly-directed K + permeability pathway was obtained by studying changes in plasma membrane potential that result from the aggregation of immunoglobulin E-complexes on rat basophilic leukemia cells. With the potential-sensitive dye, bisoxonol, we observe that activation by multivalent antigen causes membrane depolarization that is followed by a return towards the resting potential that we term repolarization. The depolarization response may reflect a Ca 2+ influx pathway, and it exhibits the same antigen-dose dependence and temperature dependence as the degranulation response. The polarization phase of the membrane potential response is selectively inhibited by the K + channel blockers quinidine and Ba 2+ in parallel with their inhibition of the degranulation response, suggesting an important role for a K + efflux pathway in antigen-stimulated degranulation. 86 Rb + efflux measurements were used to characterize the K + permeability pathways responsible for the repolarization response

  18. Essential oil of Artemisia vestita exhibits potent in vitro and in vivo antibacterial activity: Investigation of the effect of oil on biofilm formation, leakage of potassium ions and survival curve measurement.

    Science.gov (United States)

    Yang, Chang; Hu, Dong-Hui; Feng, Yan

    2015-10-01

    The aim of the present study was to investigate the chemical composition of the essential oil of Artemisia vestita and to determine the antibacterial activity of the essential oil and its two major components, grandisol and 1,8‑cineole, against certain respiratory infection‑causing bacterial strains, in vitro and in vivo. The chemical composition of the essential oil was analyzed using gas chromatography‑mass spectrometry. A micro‑well dilution method was used to determine the minimum inhibition concentration (MIC) values of the essential oil and its major constituents. A model of Streptococcus pyogenes infection in mice was used to determine its in vivo activities. Lung and blood samples were obtained to assess bacterial cell counts. Toxicity evaluation of the essential oil and its components was completed by performing biochemical analysis of the serum, particularly monitoring aspartate transaminase, alanine transaminase, urea and creatinine. The essential oil exhibited potent antibacterial activity, whereas the two major constituents were less potent. The essential oil exhibited MIC values between 20 and 80 µg/ml, while the values of the two constituents were between 130 and 200 µg/ml. Scanning electron microscopy results demonstrated that the essential oil inhibited biofilm formation and altered its architecture. Survival curves indicated that the essential oil led to a reduction in the viability of different bacteria. The essential oil also induced significant leakage of potassium ions from S. pyogenes. The essential oil (100 µg/mouse) and grandisol (135 µg/mouse) significantly reduced the number of viable bacterial cells in the lungs (Pessential oil or grandisol 135 µg/mouse once or twice each day for 9 days did not produce any toxic effects in the mice. In conclusion, the in vitro and in vivo results suggested that the essential oil of A. vestita and one of its major constituents, grandisol, can significantly inhibit the growth of different

  19. Essential oil of Artemisia vestita exhibits potent in vitro and in vivo antibacterial activity: Investigation of the effect of oil on biofilm formation, leakage of potassium ions and survival curve measurement

    Science.gov (United States)

    YANG, CHANG; HU, DONG-HUI; FENG, YAN

    2015-01-01

    The aim of the present study was to investigate the chemical composition of the essential oil of Artemisia vestita and to determine the antibacterial activity of the essential oil and its two major components, grandisol and 1,8-cineole, against certain respiratory infection-causing bacterial strains, in vitro and in vivo. The chemical composition of the essential oil was analyzed using gas chromatography-mass spectrometry. A micro-well dilution method was used to determine the minimum inhibition concentration (MIC) values of the essential oil and its major constituents. A model of Streptococcus pyogenes infection in mice was used to determine its in vivo activities. Lung and blood samples were obtained to assess bacterial cell counts. Toxicity evaluation of the essential oil and its components was completed by performing biochemical analysis of the serum, particularly monitoring aspartate transaminase, alanine transaminase, urea and creatinine. The essential oil exhibited potent antibacterial activity, whereas the two major constituents were less potent. The essential oil exhibited MIC values between 20 and 80 μg/ml, while the values of the two constituents were between 130 and 200 μg/ml. Scanning electron microscopy results demonstrated that the essential oil inhibited biofilm formation and altered its architecture. Survival curves indicated that the essential oil led to a reduction in the viability of different bacteria. The essential oil also induced significant leakage of potassium ions from S. pyogenes. The essential oil (100 μg/mouse) and grandisol (135 μg/mouse) significantly reduced the number of viable bacterial cells in the lungs (Pessential oil or grandisol 135 μg/mouse once or twice each day for 9 days did not produce any toxic effects in the mice. In conclusion, the in vitro and in vivo results suggested that the essential oil of A. vestita and one of its major constituents, grandisol, can significantly inhibit the growth of different bacterial

  20. Study and application of ion chromatography and activation analysis without chemical separation for the determination of sodium and potassium in muscle tissues

    International Nuclear Information System (INIS)

    Haber, E.P.

    1984-01-01

    The simultaneous determination of Na and K in small amounts of muscular tissue by use of two methods, namely activation analysis and ion chromatography, is presented. For the activation analysis the samples were irradiated for 30 minutes in a 5 X 10 11 n cm sup(-) 2 s sup(-) 1 flux. The induced activities of 24 Na and 42 K were determined, without chemical separation, using a Ge(Li) detector equipped with a 4096 channel analyser on-line with a computer. The gamma ray spectra registered from the samples and standards were analysed and compared by the computer. For the ion chromatography analysis the samples and standards in solution were injected into the apparatus. The ions were separated by an ion-exchange system of columns and the concentrations were measured by conductivity. In addition, the two analytical methods were compared in regard to sensitivity, precision and accuracy as well as simplicity, cost and working time involved in the analysis. From the point of view of the reliability of the results, both techniques proved to be excelent and might be of great value in medical research. (Author) [pt

  1. Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in Arabidopsis[W][OA

    Science.gov (United States)

    Barragán, Verónica; Leidi, Eduardo O.; Andrés, Zaida; Rubio, Lourdes; De Luca, Anna; Fernández, José A.; Cubero, Beatriz; Pardo, José M.

    2012-01-01

    Intracellular NHX proteins are Na+,K+/H+ antiporters involved in K+ homeostasis, endosomal pH regulation, and salt tolerance. Proteins NHX1 and NHX2 are the two major tonoplast-localized NHX isoforms. Here, we show that NHX1 and NHX2 have similar expression patterns and identical biochemical activity, and together they account for a significant amount of the Na+,K+/H+ antiport activity in tonoplast vesicles. Reverse genetics showed functional redundancy of NHX1 and NHX2 genes. Growth of the double mutant nhx1 nhx2 was severely impaired, and plants were extremely sensitive to external K+. By contrast, nhx1 nhx2 mutants showed similar sensitivity to salinity stress and even greater rates of Na+ sequestration than the wild type. Double mutants had reduced ability to create the vacuolar K+ pool, which in turn provoked greater K+ retention in the cytosol, impaired osmoregulation, and compromised turgor generation for cell expansion. Genes NHX1 and NHX2 were highly expressed in guard cells, and stomatal function was defective in mutant plants, further compromising their ability to regulate water relations. Together, these results show that tonoplast-localized NHX proteins are essential for active K+ uptake at the tonoplast, for turgor regulation, and for stomatal function. PMID:22438021

  2. Selective Oxidation of Glycerol to Glyceric Acid in Base-Free Aqueous Solution at Room Temperature Catalyzed by Platinum Supported on Carbon Activated with Potassium Hydroxide

    KAUST Repository

    Tan, Hua

    2016-04-18

    Pt supported on KOH-activated mesoporous carbon (K-AMC) was used to catalyze glycerol oxidation under base-free conditions at room temperature. To study the relationship between the carbon surface chemistry and the catalytic performance of the K-AMC-based Pt catalysts, different levels of surface oxygen functional groups (SOFGs) on the AMC supports were induced by thermal treatment at different temperatures under inert or H2 gas. A strong effect of the surface chemistry was observed on AMC-supported Pt catalysts for glycerol oxidation. The presence of carboxylic acid groups impedes the adsorption of glycerol, which leads to the reduction of catalytic activity, whereas the presence of high-desorption-temperature SOFGs, such as phenol, ether, and carbonyl/quinone groups, provide hydrophilicity to the carbon surface that improves the adsorption of glycerol molecules on Pt metal surface, which is beneficial for the catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages.

    Science.gov (United States)

    Guo, Jia; Lua, Aik Chong

    2002-10-15

    Preparation and characterization of activated carbon from palm shell, a carbonaceous agricultural solid waste, by potassium hydroxide treatment at different stages were studied. The effects of activation temperature and chemical to sample ratio on the characteristics of the activated carbon were investigated. Fixed-bed adsorption of sulfur dioxide (SO(2)) gas was carried out to evaluate the adsorptive capacity of the samples. Desorption tests were conducted to verify the occurrence of chemisorption due to some surface functional groups or of chemical reaction between SO(2) and KOH. It was found that pre-impregnation of raw palm shell was involved in replacement of some hydrogen ions with potassium ions to form cross-linked complexes, which retarded the tar formation during carbonization, resulting in a relatively high yield. Moreover, these potassium ions accelerated the reaction as catalysts during gasification of chars by carbon dioxide. For chars with mid-impregnation, potassium hydroxide acted in two ways: (i) formation of metallic potassium by dehydration and (ii) conversion into potassium carbonate. Metallic potassium intercalated to the carbon matrix accounted for pore development and potassium carbonate layer prevented the sample from over burn-off. Post-impregnation of final products modified the textural characteristics of the sample as some pore entrances were blocked by chemicals. However, potassium hydroxide enhanced the amount of SO(2) uptaken via formation of potassium sulfite.

  4. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    Science.gov (United States)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    Science.gov (United States)

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism

  6. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  7. Evaluation of the potassium adsorption capacity of a potassium adsorption filter during rapid blood transfusion.

    Science.gov (United States)

    Matsuura, H; Akatsuka, Y; Muramatsu, C; Isogai, S; Sugiura, Y; Arakawa, S; Murayama, M; Kurahashi, M; Takasuga, H; Oshige, T; Yuba, T; Mizuta, S; Emi, N

    2015-05-01

    The concentration of extracellular potassium in red blood cell concentrates (RCCs) increases during storage, leading to risk of hyperkalemia. A potassium adsorption filter (PAF) can eliminate the potassium at normal blood transfusion. This study aimed to investigate the potassium adsorption capacity of a PAF during rapid blood transfusion. We tested several different potassium concentrations under a rapid transfusion condition using a pressure bag. The adsorption rates of the 70-mEq/l model were 76·8%. The PAF showed good potassium adsorption capacity, suggesting that this filter may provide a convenient method to prevent hyperkalemia during rapid blood transfusion. © 2015 International Society of Blood Transfusion.

  8. Acid dissociation constant and apparent nucleophilicity of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase

    International Nuclear Information System (INIS)

    Xu, K.Y.

    1989-01-01

    A combination of competitive labeling with [ 3 H]acetic anhydride and immunoaffinity chromatography is described that permits the assignment of the acid dissociation constant and the absolute nucleophilicity of individual lysines in a native enzyme. The acid dissociation constant of lysine-501 of the alpha-polypeptide in native (Na+ + K+)-ATPase was determined. This lysine had a normal pKa of 10.4. The rate constant for the reaction of the free base of lysine-501 with acetic anhydride at 10 degrees C is 400 M-1 s-1. This value is only 30% that for a fully accessible lysine in a protein. The lower than normal apparent nucleophilicity suggests that lysine-501 is hindered from reacting with its intrinsic nucleophilicity by the tertiary structure of the enzyme and is consistent with its location within a pocket that forms the active site upon the surface of the native protein

  9. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors

    Science.gov (United States)

    Zou, Kaixiang; Deng, Yuanfu; Chen, Juping; Qian, Yunqian; Yang, Yuewang; Li, Yingwei; Chen, Guohua

    2018-02-01

    Nitrogen-doped carbon with an ultra-high specific surface area and a hierarchically interconnected porous structure is synthesized in large scale from a green route, that is, the activation of bagasse via a one-step method using KOH and urea. KOH and urea play a synergistic effect for the enhancement of the specific surface area and the modification of pore size of the as-prepared material. Benefiting from the multiple synergistic roles originated from an ultra-high specific area (2905.4 m2 g-1), a high porous volume (2.05 mL g-1 with 75.6 vol% micropores, which is an ideal proportion of micropores for obtaining high specific capacitance), a suitable nitrogen content (2.63 wt%), and partial graphitization, the hierarchically interconnected porous N-doped carbon exhibits an excellent electrochemical performance with a high specific capacitance (350.8, 301.9, and 259.5 F g-1 at 1.0 A g-1 in acidic, alkaline, and neutral electrolytes, respectively), superior rate capability and excellent cycling stability (almost no capacitance loss up to 5000 cycles). Furthermore, the symmetric device assembled by this material achieves high energy densities of 39.1 and 23.5 Wh kg-1 at power densities of 1.0 and 20 kW kg-1, respectively, and exhibits an excellent long-term cycling stability (with capacitance retention above 95.0% after 10 000 cycles).

  10. St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats.

    Science.gov (United States)

    Almeida, R T; Galdino, G; Perez, A C; Silva, G; Romero, T R; Duarte, I D

    2017-02-01

    Orofacial pain is pain perceived in the face and/or oral cavity, generally caused by diseases or disorders of regional structures, by dysfunction of the nervous system, or through referral from distant sources. Treatment of orofacial pain is mainly pharmacological, but it has increased the number of reports demonstrating great clinical results with the use of non-pharmacological therapies, among them electroacupuncture. However, the mechanisms involved in the electroacupuncture are not well elucidated. Thus, the present study investigate the involvement of the nitric oxide synthase (NOS) and ATP sensitive K + channels (KATP) in the antinociception induced by electroacupuncture (EA) at acupoint St36. Thermal nociception was applied in the vibrissae region of rats, and latency time for face withdrawal was measured. Electrical stimulation of acupoint St36 for 20 minutes reversed the thermal withdrawal latency and this effect was maintained for 150 min. Intraperitoneal administration of specific inhibitors of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and a KATP channels blocker reversed the antinociception induced by EA. Furthermore, nitrite concentration in cerebrospinal fluid (CSF) and plasma, increased 4 and 3-fold higher, respectively, after EA. This study suggests that NO participates of antinociception induced by EA by nNOS, iNOS and ATP-sensitive K + channels activation.

  11. Cyclophilin B interacts with sodium-potassium ATPase and is required for pump activity in proximal tubule cells of the kidney.

    Directory of Open Access Journals (Sweden)

    Guillermo Suñé

    Full Text Available Cyclophilins (Cyps, the intracellular receptors for Cyclosporine A (CsA, are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1 that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA.

  12. Cyclophilin B interacts with sodium-potassium ATPase and is required for pump activity in proximal tubule cells of the kidney.

    Science.gov (United States)

    Suñé, Guillermo; Sarró, Eduard; Puigmulé, Marta; López-Hellín, Joan; Zufferey, Madeleine; Pertel, Thomas; Luban, Jeremy; Meseguer, Anna

    2010-11-10

    Cyclophilins (Cyps), the intracellular receptors for Cyclosporine A (CsA), are responsible for peptidyl-prolyl cis-trans isomerisation and for chaperoning several membrane proteins. Those functions are inhibited upon CsA binding. Albeit its great benefits as immunosuppressant, the use of CsA has been limited by undesirable nephrotoxic effects, including sodium retention, hypertension, hyperkalemia, interstial fibrosis and progressive renal failure in transplant recipients. In this report, we focused on the identification of novel CypB-interacting proteins to understand the role of CypB in kidney function and, in turn, to gain further insight into the molecular mechanisms of CsA-induced toxicity. By means of yeast two-hybrid screens with human kidney cDNA, we discovered a novel interaction between CypB and the membrane Na/K-ATPase β1 subunit protein (Na/K-β1) that was confirmed by pull-down, co-immunoprecipitation and confocal microscopy, in proximal tubule-derived HK-2 cells. The Na/K-ATPase pump, a key plasma membrane transporter, is responsible for maintenance of electrical Na+ and K+ gradients across the membrane. We showed that CypB silencing produced similar effects on Na/K-ATPase activity than CsA treatment in HK-2 cells. It was also observed an enrichment of both alpha and beta subunits in the ER, what suggested a possible failure on the maturation and routing of the pump from this compartment towards the plasma membrane. These data indicate that CypB through its interaction with Na/K-β1 might regulate maturation and trafficking of the pump through the secretory pathway, offering new insights into the relationship between cyclophilins and the nephrotoxic effects of CsA.

  13. Potassium

    Science.gov (United States)

    ... confusion listlessness tingling, prickling, burning, tight, or pulling sensation of arms, hands, legs, or feet heaviness or weakness of legs cold, pale, gray skin stomach pain unusual stomach bulging ...

  14. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Fischbach, Michael A; Chu, Frances; Losick, Richard; Kolter, Roberto

    2009-01-06

    We report a previously undescribed quorum-sensing mechanism for triggering multicellularity in Bacillus subtilis. B. subtilis forms communities of cells known as biofilms in response to an unknown signal. We discovered that biofilm formation is stimulated by a variety of small molecules produced by bacteria--including the B. subtilis nonribosomal peptide surfactin--that share the ability to induce potassium leakage. Natural products that do not cause potassium leakage failed to induce multicellularity. Small-molecule-induced multicellularity was prevented by the addition of potassium, but not sodium or lithium. Evidence is presented that potassium leakage stimulates the activity of a membrane protein kinase, KinC, which governs the expression of genes involved in biofilm formation. We propose that KinC responds to lowered intracellular potassium concentration and that this is a quorum-sensing mechanism that enables B. subtilis to respond to related and unrelated bacteria.

  15. Potassium evaluation in blood of Brazilian athletes using NAA

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, L.; Zamboni, C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nunes, L.A.S.; Lourenco, T.F.; Macedo, D. Vaz de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2010-07-01

    Full text: According to nutrition sources an athlete needs per day at least one gram of potassium for keeping the correct mineral balance in the organism. Its deficiency or even instantaneous low concentration in blood can diminish the athlete performance originating nervous irritability, muscular weakness, and mental disorientation and in more several causes cardiac arrhythmias. In this study the K levels in blood were determined in athletes submitted to constant load exercise at treadmill at LABEX (Laboratorio de Bioquimica do Exercicio - UNICAMP, Brazil) using Neutron Activation Analyses (NAA). The blood samples were collected from male athletes, age 18 to 26 years, before and after the physical training. Immediately after the collection an amount of 10 micro liters of whole blood was transferred to the filter paper and dried for a few minutes using an infrared lamp. To determine the concentration of potassium each sample was irradiated in the nuclear reactor (IEA-R1, 2-4MW, pool type) at IPEN and was gamma counted using an HPGe Spectrometer of High Energy Resolution. The concentrations of the selected element, 1525keV related to the potassium activated {sup 42}K, were calculated using in -house software. The potassium levels were evaluated before and after the physical exercise and the data were compared with the normal range. (author)

  16. Potassium evaluation in blood of Brazilian athletes using NAA

    International Nuclear Information System (INIS)

    Kovacs, L.; Zamboni, C.B.; Nunes, L.A.S.; Lourenco, T.F.; Macedo, D. Vaz de

    2010-01-01

    Full text: According to nutrition sources an athlete needs per day at least one gram of potassium for keeping the correct mineral balance in the organism. Its deficiency or even instantaneous low concentration in blood can diminish the athlete performance originating nervous irritability, muscular weakness, and mental disorientation and in more several causes cardiac arrhythmias. In this study the K levels in blood were determined in athletes submitted to constant load exercise at treadmill at LABEX (Laboratorio de Bioquimica do Exercicio - UNICAMP, Brazil) using Neutron Activation Analyses (NAA). The blood samples were collected from male athletes, age 18 to 26 years, before and after the physical training. Immediately after the collection an amount of 10 micro liters of whole blood was transferred to the filter paper and dried for a few minutes using an infrared lamp. To determine the concentration of potassium each sample was irradiated in the nuclear reactor (IEA-R1, 2-4MW, pool type) at IPEN and was gamma counted using an HPGe Spectrometer of High Energy Resolution. The concentrations of the selected element, 1525keV related to the potassium activated 42 K, were calculated using in -house software. The potassium levels were evaluated before and after the physical exercise and the data were compared with the normal range. (author)

  17. (Vapour + liquid) equilibria, volumetric and compressibility behaviour of binary and ternary aqueous solutions of 1-hexyl-3-methylimidazolium chloride, methyl potassium malonate, and ethyl potassium malonate

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Mahdavi, Adibeh

    2012-01-01

    Highlights: ► VLE and volumetry of binary and ternary [C 6 mim][Cl], MPM and EPM aqueous solutions. ► Constant a w lines show small negative deviation from the linear isopiestic relation. ► Solute–water interactions follow the order: EPM > MPM > [C 6 mim][Cl]. ► MPM and EPM have a very weak salting-out effect on [C 6 mim][Cl] aqueous solutions. - Abstract: (Vapour + liquid) equilibrium data (water activity, vapour pressure, osmotic coefficient, and activity coefficient) of binary aqueous solutions of 1-hexyl-3-methylimidazolium chloride ([C 6 mim][Cl]), methyl potassium malonate, and ethyl potassium malonate and ternary {[C 6 mim][Cl] + methyl potassium malonate} and {[C 6 mim][Cl] + ethyl potassium malonate} aqueous solutions were obtained through the isopiestic method at T = 298.15 K. These results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solutions at molality about 0.4 mol · kg −1 . The constant water activity lines of all the ternary systems investigated show small negative deviations from the linear isopiestic relation (Zdanovskii–Stokes–Robinson rule) derived using the semi-ideal hydration model. The density and speed of sound measurements were carried out on solutions of methyl potassium malonate and ethyl potassium malonate in water and of [C 6 mim][Cl] in aqueous solutions of 0.25 mol · kg −1 methyl potassium malonate and ethyl potassium malonate at T = (288.15 to 308.15) K at atmospheric pressure. From the experimental density and speed of sound data, the values of the apparent molar volume, apparent molar isentropic compressibility and excess molar volume were evaluated and from which the infinite dilution apparent molar volume and infinite dilution apparent molar isentropic compressibility were calculated at each temperature. Although, there are no clear differences between the values of the apparent molar volume of [C 6 mim][Cl] in pure water and in methyl potassium malonate or ethyl

  18. Operating experience with potassium systems

    International Nuclear Information System (INIS)

    Schwarz, N.F.

    1984-04-01

    In an international cooperation R and D work for the realization of potassium topping cycles to increase the conversion efficiency of thermal power stations is going on. Feasibility studies show that the realization of such a process can be achieved under economic considerations with existing materials and today's technology. Nevertheless, it has to be shown that the assumptions with respect to material behaviour and component reliability are based on sound technical premises. Therefore, in continuation of design studies, a hardware programme has been initiated in the Austrian Research Centre Seibersdorf. First results with respect to component and material behaviour are described. (Author) [de

  19. Effect of potassium-salt muds on gamma ray, and spontaneous potential measurements

    International Nuclear Information System (INIS)

    Cox, J.W.; Raymer, L.L.

    1976-01-01

    Interpretations of the gamma ray and Spontaneous Potential curves generally assume the presence of sodium chloride as the dominant salt in both the formation water and the mud filtrate. However, potassium-salt muds are increasingly being used by the oil industry. The potassium cation is significantly different from the sodium cation in its radioactive and electrochemical properties. Natural potassium contains a radioactive isotope which emits gamma rays. Thus, the presence of potassium salts in the mud system may contribute to Gamma-Ray tool response. Since the Gamma Ray is used quantitatively in many geological sequences as an indicator of clay content, a way to correct for the effect of potassium in the mud column is desirable. Correction methods and charts based on laboratory measurements and field observations are presented. The effect of temperature on the resistivity of potassium muds is also briefly discussed. From data available, it appears to be similar to that for NaCl muds. On the bases of field observations and laboratory work, the electrochemical properties of potassium-chloride and potassium-carbonate muds and mud filtrates are discussed. Activity relationships are proposed, and the influence of these salts on the SP component potentials--namely, the liquid-junction, membrane, and bi-ionic potentials--is described. Several field examples are presented

  20. Preparation of a Ni-MgO-Al2O3 catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells

    Science.gov (United States)

    Jang, Won-Jun; Jung, You-Shick; Shim, Jae-Oh; Roh, Hyun-Seog; Yoon, Wang Lai

    2018-02-01

    Steam reforming of methane (SRM) is conducted using a series of Ni-MgO-Al2O3 catalysts for direct internal reforming (DIR) in molten carbonate fuel cells (MCFCs). Ni-MgO-Al2O3 catalysts are prepared by the homogeneous precipitation method with a variety of MgO loading amounts ranging from 3 to 15 wt%. In addition, each precursor concentrations are systemically changed (Ni: 1.2-4.8 mol L-1; Mg: 0.3-1.2 mol L-1; Al: 0.4-1.6 mol L-1) at the optimized composition (10 wt% MgO). The effects of MgO loading and precursor concentration on the catalytic performance and resistance against poisoning of the catalyst by potassium (K) are investigated. The Ni-MgO-Al2O3 catalyst with 10 wt% MgO and the original precursor concentration (Ni: 1.2 mol L-1; Mg: 0.3 mol L-1; Al: 0.4 mol L-1) exhibits the highest CH4 conversion and resistance against K poisoning even at the extremely high gas space velocity (GHSV) of 1,512,000 h-1. Excellent SRM performance of the Ni-MgO-Al2O3 catalyst is attributed to strong metal (Ni) to alumina support interaction (SMSI) when magnesium oxide (MgO) is co-precipitated with the Ni-Al2O3. The enhanced interaction of the Ni with MgO-Al2O3 support is found to protect the active Ni species against K poisoning.

  1. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater

    NARCIS (Netherlands)

    Griffioen, J.

    2001-01-01

    Fertilization of agricultural land in groundwater infiltration areas often causes deterioration of groundwater quality. In addition to nitrogen and phosphorous, potassium deserves attention. The fate of potassium in the subsurface is controlled mainly by cation-exchange. Use of the Potassium

  2. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis.

    Science.gov (United States)

    Terker, Andrew S; Zhang, Chong; Erspamer, Kayla J; Gamba, Gerardo; Yang, Chao-Ling; Ellison, David H

    2016-01-01

    Dietary potassium deficiency activates thiazide-sensitive sodium chloride cotransport along the distal nephron. This may explain, in part, the hypertension and cardiovascular mortality observed in individuals who consume a low-potassium diet. Recent data suggest that plasma potassium affects the distal nephron directly by influencing intracellular chloride, an inhibitor of the with-no-lysine kinase (WNK)-Ste20p-related proline- and alanine-rich kinase (SPAK) pathway. As previous studies used extreme dietary manipulations, we sought to determine whether the relationship between potassium and NaCl cotransporter (NCC) is physiologically relevant and clarify the mechanisms involved. We report that modest changes in both dietary and plasma potassium affect NCC in vivo. Kinase assay studies showed that chloride inhibits WNK4 kinase activity at lower concentrations than it inhibits activity of WNK1 or WNK3. Also, chloride inhibited WNK4 within the range of distal cell chloride concentration. Mutation of a previously identified WNK chloride-binding motif converted WNK4 effects on SPAK from inhibitory to stimulatory in mammalian cells. Disruption of this motif in WNKs 1, 3, and 4 had different effects on NCC, consistent with the three WNKs having different chloride sensitivities. Thus, potassium effects on NCC are graded within the physiological range, which explains how unique chloride-sensing properties of WNK4 enable it to mediate effects of potassium on NCC in vivo. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. Discovery, characterization and structure-activity relationships of an inhibitor of inward rectifier potassium (Kir channels with preference for Kir2.3, Kir3.X and Kir7.1

    Directory of Open Access Journals (Sweden)

    Jerod S Denton

    2011-11-01

    Full Text Available The inward rectifier family of potassium (Kir channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that GIRK (G protein-regulated inward rectifier K channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl+ flux-based high-throughput screen (HTS of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC50 = 1.9 M and 19 M, respectively and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK and Kir3.1/3.4 (cardiac GIRK channels with equal potency and preferentially inhibited GIRK, Kir2.3 and Kir7.1 over Kir1.1 and Kir2.1. Tl+ flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure-activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure-function relationships of these Kir channels.

  4. Evaluation of human muscle in vivo by potassium radiometric measuring

    International Nuclear Information System (INIS)

    Sousa, Wanderson de P.

    2000-01-01

    Potassium is an essential element to the human metabolism and is present in all living cells, mainly in the striated muscular fibers. K-40 is one of the natural potassium isotopes with mass percentage of 0,0118% . This isotope emits beta particle and gamma rays with 1460 keV. The energy of K-40 photon and its uniform distribution within the human body allows its in vivo measurement. The objective of this study is to optimize this technique and evaluate the possibility of its medical application in order to quantify muscle increase during recovering procedures. Subjects of both sexes measured until this moment were divided into two groups. Subjects of Group 1 do not exercise routinely and subjects of Group 2 does. In Group 1 the average potassium mass, muscle mass and potassium concentration were (101±16)g of K, (20±3)kg of muscle and (1,3±0,3)g of K/kg of body mass, respectively, while in Group 2 average values were (125±38)g of K, (25±8)kg of muscle and (1,7±0,2)g of K/kg of body mass. The comparison between average values shows a clear difference, which allows to correlate a higher K mass with routine body activity. The technique has shown enough sensitivity for this application. (author)

  5. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium.

    Science.gov (United States)

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-05-01

    Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.

  6. 21 CFR 582.1613 - Potassium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1613 Potassium bicarbonate. (a)...

  7. Potassium doped MWCNTs for hydrogen storage enhancement

    International Nuclear Information System (INIS)

    Adabi Qomi, S.; Gashtasebi, M.; Khoshnevisan, B.

    2012-01-01

    Here we have used potassium doped MWCNTs for enhancement of hydrogen storage process. XRD and SEM images have confirmed the doping of potassium. For studying the storage process a hydrogenic battery set up has been used. In the battery the working electrode has been made of the silver foam deposited by the doped MWCNTs electrophoretically.

  8. 75 FR 23298 - Potassium Permanganate From China

    Science.gov (United States)

    2010-05-03

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on potassium permanganate from China. SUMMARY: The... on potassium permanganate from China would be likely to lead to continuation or recurrence of...

  9. 75 FR 51112 - Potassium Permanganate From China

    Science.gov (United States)

    2010-08-18

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Scheduling of an expedited five-year review concerning the antidumping duty order on potassium permanganate from China... of the antidumping duty order on potassium permanganate from China would be likely to lead to...

  10. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be...

  11. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  12. 21 CFR 184.1610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ...: Category of food Maximum level of use in food (as served) (percent) Functional use Confections and...) of this chapter 0.25 Do. All other food categories 0.01 Do. (d) Prior sanctions for potassium... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food...

  13. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista

    2017-07-01

    Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2  = 0.966 ∗∗∗ ), phenolic (R 2  = 0.741 ∗ ) and chlorophyll (R 2  = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2  = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Interacting influence of potassium and polychlorinated biphenyl on cortisol and aldosterone biosynthesis

    International Nuclear Information System (INIS)

    Li, L.-A.; Lin, Tsu-Chun Emma

    2007-01-01

    Giving human adrenocortical H295R cells 14 mM KCl for 24 h significantly induced not only aldosterone biosynthesis but also cortisol biosynthesis. Pre-treating the cells with polychlorinated biphenyl 126 (PCB126) further increased potassium-induced aldosterone and cortisol productions in a dose-dependent manner, but all examined concentrations of PCB126 had little effect on the yields of precursor steroids progesterone and 17-OH-progesterone. Subsequent examinations revealed that CYP11B1 and CYP11B2 genes, responsible for the respective final steps of the cortisol and aldosterone biosynthetic pathways, exhibited increased responsiveness to PCB126 under high potassium. While 10 -5 M PCB126 was needed to induce a significant increase in the basal mRNA abundance of either gene, PCB126 could enhance potassium-induced mRNA expression of CYP11B1 at 10 -7 M and CYP11B2 at 10 -9 M. Actually, potassium and PCB126 synergistically upregulated mRNA expression of both genes. Potassium raised the transcriptional rates of CYP11B1 and CYP11B2 probably through a conserved Ad5 cis-element, whereas PCB126 appeared to regulate these two genes at the post-transcriptional level. Positive potassium-PCB126 synergism was also detected in CYP11B2 enzyme activity estimated by aldosterone/progesterone ratio. In contrast, potassium and PCB126 increased CYP11B1 enzyme activity or cortisol/17-OH-progesterone ratio additively. Moreover, potassium improved the time effect of PCB126 on gene expression and enzyme activity of CYP11B2, but not the PCB126 time response of CYP11B1. These data demonstrated that potassium differentially enhanced the potency of PCB126 to induce CYP11B1- and CYP11B2-mediated steroidogenesis

  15. Leaching of potassium in a lysimeter experiment

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1996-11-01

    Leaching of potassium was studied in the lysimeter plant in Seibersdorf/Austria (Pannonian climate). Averaged over three years, gravitational water amounted to 15.7% of the sum of precipitation (mean 485 mm) and irrigation (mean 138 mm). Differences between the four soils with respect to drainage were explained by the specific percentage of the soil skeleton. The average yearly potassium leaching ranged from 3.64 kg K/ha·yr (Dystric-Cambisol) to 22.7 kg K/ha·yr (drained Gleysol). Correlation between gravitational water volume and potassium leaching were only significant for one out of four soil types. No correlation was observed between extractable potassium in the soil profiles and potassium leaching. (author)

  16. Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium.

    Science.gov (United States)

    Elabida, Boutaïna; Edwards, Aurélie; Salhi, Amel; Azroyan, Anie; Fodstad, Heidi; Meneton, Pierre; Doucet, Alain; Bloch-Faure, May; Crambert, Gilles

    2011-08-01

    Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.

  17. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  18. Crystal structure of the potassium-importing KdpFABC membrane complex

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ching-Shin; Pedersen, Bjørn Panyella; Stokes, David L.

    2017-06-21

    Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four-subunit potassium pump that maintains intracellular homeostasis, cell shape and turgor under conditions in which potassium is limiting1. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the superfamily of potassium transporters and another pump-like subunit (KdpB) belonging to the superfamily of P-type ATPases. Although there is considerable structural and functional information about members of both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. On the basis of these observations, we propose a mechanism that repurposes protein channel architecture for active transport across biomembranes.

  19. STUDY CONCERNING THE POSSIBILITY OF GAMMA-SPECTROSCOPY METHOD TO DETERMINE THE TOTAL POTASSIUM IN SOILS

    Directory of Open Access Journals (Sweden)

    Tamara Leah

    2011-12-01

    Full Text Available It was proved the possibility of determination the total potassium in soils by gamma-spectroscopic method with subsequent calculation of total potassium content in according to value of 40K isotope (expressed in Becquerel, Bq, using the formula: К2О, % = С . А, where: C – conversion coefficient, A – activity of isotope 40K in soil, Bq/kg. Conversion coefficient for chernozems of Moldova – C=0,00337.

  20. On the fusibility of potassium heptafluorotantalate

    International Nuclear Information System (INIS)

    Agulyanskij, A.I.; Bessonova, V.A.

    1983-01-01

    Phase transformations of potassium heptafluorotantalate near the liquidus temperature have been studied. Thermograms and polytherm of the electric condUctivity of potassium heptafluorotantalate, thermogram of the mechanical mixture 0.5 K 2 TaF 7 +0.5 KF and thermogram of K 3 TaF 8 crystallization are plotted. The phase diagram of the K 2 TaF 7 -KF system is presented. In the temperature range 746 to 778 deg, i.e. above K 2 TaF 7 melting point, the melt is shown to remain heterogeneous. A portion of the phase diagram rich in potassium heptafluorotantalate is qualified as an ordinary eutectics

  1. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  2. Thermodynamic properties of potassium chloride aqueous solutions

    Science.gov (United States)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  3. Estimation of potassium concentration in coconut water by beta radioactivity measurement

    International Nuclear Information System (INIS)

    Reddy, P.J.; Narayani, K.; Bhade, S.P.D.; Anilkumar, S.; Kolekar, R.V.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    Potassium is widely distributed in soil, in all vegetable, fruits and animal tissues. Approximately half the radioactivity found in humans comes from 40 K. Potassium is an essential element in our diet since it is required for proper nerve and muscle function, as well as for maintaining the fluid balance of cells and heart rhythm. Potassium can enter the body mainly consuming fruits, vegetables and food. Tender coconut water is consumed widely as natural refreshing drink which is rich in potassium. The simple way to determine 40 K activity is by gamma ray spectrometry. However, the low abundance of this gamma photon makes the technique less sensitive compared to gross beta measurement. Many analytical methods are reported for potassium estimation which is time consuming and destructive in nature. A unique way to estimate 40 K by beta activity is by Cerenkov Counting technique using Liquid Scintillation Analyzer. Also much lower detection limit is achieved, allowing for greater precision. In this work, we have compared two methods to arrive at the potassium concentration in tender and matured coconut water by measuring 40 K. One is non-scintillator method based on measurement of the Cerenkov radiation generated from the high-energy β of 40 K. The second method is based on beta activity measurement using low background Gas flow counter

  4. Effect of potassium on micromorphological and chemical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... study the effect of potassium on yield and internal leaf tissues composition of cotton ... Nitrogen (N) and phosphorus (P) were applied at 150 mg N/kg soil and 75 mg ..... Copper enzymes in isolated chloroplasts: Polyphenol.

  5. Thanatochemistry: Study of vitreous humor potassium

    African Journals Online (AJOL)

    Nilesh Keshav Tumram

    2014-02-18

    Feb 18, 2014 ... particularly vitreous potassium has received most attention. It is known that ... respect to different age and sex at different death intervals. The details regarding the ... Analyser by the Ion selective method. The reagents used ...

  6. Photoconductivity and dielectric studies of potassium pentaborate

    Indian Academy of Sciences (India)

    Single crystal of potassium pentaborate (KB5) has been grown by solution growth ... equipped with the Gunn Oscillator guided with rectangular wave-guide. ... its dielectric behaviour with the change of frequency has also been investigated.

  7. Suicidal Ingestion of Potassium Permanganate Crystals: A Rare Encounter

    OpenAIRE

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A. C.; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ...

  8. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2015-11-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function PRINCIPAL INVESTIGATOR: Dr. Geoffrey Murphy...NUMBER The Ketogenic Diet and Potassium Channel Function 5b. GRANT NUMBER W81XWH-13-1-0463 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey Murphy...The overall objective of this Discovery Award was to explore the hypothesis the ketogenic diet (KD) regulates neuronal excitability by influencing

  9. Suicide Attempt by Intravenous Potassium Self-Poisoning: A Case Report

    Directory of Open Access Journals (Sweden)

    Florent Battefort

    2012-01-01

    Full Text Available Introduction. Overdose of potassium is not as frequently encountered in clinical practice as hyperkalaemia due to acute or chronic renal disease. However, potassium overdoses leading to serious consequences do occur. Case Presentation. A 20-year-old nurse student presented with a cardiac arrest with asystole rhythm. Beside the patient were found four 50-mL syringes and empty vials of potassium chloride (20 mL, 10%. After initial resuscitation with epinephrine, 125 mL of a 4.2% intravenous solution of sodium bicarbonate were injected which resulted in the recovery of an effective cardiac activity. The patient recovered without sequelae. Conclusion. The difficulty in this case was to recognize the potassium poisoning. The advanced resuscitation with the use of a specific treatment helped to resuscitate the patient.

  10. Detection of potassium deficiency on palm oil tree (Elaeis guineensis (jacq)) by laser induced fluorescence

    International Nuclear Information System (INIS)

    Diomande, K.; Konate, A.; Krou Adjo, V.; Soro, A.; Ebby, N.; Ballo, K.

    1998-02-01

    The potassium is the main nutrient element which plays a significant role on oil palm tree (Elaeis guineensis (jacq)) production and its resistance to the dry season. One can observe 30% decrease of the production in case of potassium deficiency. The potassium nutrition control of an oil palm tree field is a very important activity and leads to the fertilization policy. The Laser Induced Fluorescence (L.I.F.) is a fast and simple method compared to the classical one, ''Diagnostic Foliaire'', usually used in agronomy. We used the L.I.F. method to detect the oil palm tree stress caused by potassium deficiency, analysing the fluorescence spectrum of the chlorophyll a. We proved that the intensity ratio of the fluorescence spectrum R=F690/F73S is superior to 0.5 when the tree is under stress and its value is around 0.4 in case of intact tree. (author)

  11. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  12. Potassium incorporation in fruits of South American tropical species

    International Nuclear Information System (INIS)

    Cid, Alberto S.; Anjos, Roberto M.; Macario, Kita D.; Veiga, Rodrigo; Lacerda, Thiago; Velasco, Hugo; Rizzoto, Marcos; Valladares, Daniel; Zamboni, Cibelle B.; Medeiros, Ilca M.A.

    2010-01-01

    . Fruits could be harvested at different stages of maturity with substantially differences in the radionuclide concentration. In this study we have specifically studied the dynamics of growth fruit and the K accumulation by fruits for two different tropical species: lemon and coconut. K concentrations have been measured by both gamma spectrometry (40K) and neutron activation analysis during the entire cycle of the fruit development. The mathematical model proposed to simulate the fruit grown and the potassium accumulation exhibited a very close agreement with the measures of potassium fruit content in both woody fruit and palm species. (author)

  13. Potassium incorporation in fruits of South American tropical species

    Energy Technology Data Exchange (ETDEWEB)

    Cid, Alberto S.; Anjos, Roberto M.; Macario, Kita D.; Veiga, Rodrigo; Lacerda, Thiago [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Velasco, Hugo; Rizzoto, Marcos; Valladares, Daniel [Univesidad Nacional de San Luis (Argentina); Zamboni, Cibelle B.; Medeiros, Ilca M.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    reality. Fruits could be harvested at different stages of maturity with substantially differences in the radionuclide concentration. In this study we have specifically studied the dynamics of growth fruit and the K accumulation by fruits for two different tropical species: lemon and coconut. K concentrations have been measured by both gamma spectrometry (40K) and neutron activation analysis during the entire cycle of the fruit development. The mathematical model proposed to simulate the fruit grown and the potassium accumulation exhibited a very close agreement with the measures of potassium fruit content in both woody fruit and palm species. (author)

  14. Transverse thermal magnetoresistance of potassium

    International Nuclear Information System (INIS)

    Newrock, R.S.; Maxfield, B.W.

    1976-01-01

    Results are presented of extensive thermal magnetoresistance measurements on single-crystal and polycrystalline specimens of potassium having residual resistance ratios (RRR) ranging from 1100 to 5300. Measurements were made between 2 and 9 0 K for magnetic fields up to 1.8 T. The observed thermal magnetoresistance cannot be understood on the basis of either semiclassical theories or from the electrical magnetoresistance and the Wiedemann-Franz law. A number of relationships are observed between the thermal and electrical magnetoresistances, many of which are not immediately obvious when comparing direct experimental observations. The thermal magnetoresistance W(T,H) is given reasonably well by W(T,H)T = W(T,0)T + AH + BH 2 , where both A and B are temperature-dependent coefficients. Results show that A = A 0 + A 1 T 3 , while B(T) cannot be expressed as any simple power law. A 0 is dependent on the RRR, while A 1 is independent of the RRR. Two relationships are found between corresponding coefficients in the electrical and thermal magnetoresistance: (i) the Wiedmann--Franz law relates A 0 to the Kohler slope of the electrical magnetoresistance and (ii) the temperature-dependent portions of the electrical and thermal Kohler slopes are both proportional to the electron--phonon scattering contribution to the corresponding zero-field resistance. The latter provides evidence that inelastic scattering is very important in determining the temperature-dependent linear magnetoresistances. Part, but by no means all, of the quadratic thermal resistance is accounted for by lattice thermal conduction. It is concluded that at least a portion of the anomalous electrical and thermal magnetoresistances is due to intrinsic causes and not inhomogeneities or other macroscopic defects

  15. Effect of polacrilin potassium as disintegrant on bioavailability of diclofenac potassium in tablets : a technical note.

    Science.gov (United States)

    Bele, Mrudula H; Derle, Diliprao V

    2012-09-01

    Polacrilin potassium is an ion exchange resin used in oral pharmaceutical formulations as a tablet disintegrant. It is a weakly acidic cation exchange resin. Chemically, it is a partial potassium salt of a copolymer of methacrylic acid with divinyl benzene. It ionizes to an anionic polymer chain and potassium cations. It was hypothesized that polacrilin potassium may be able to improve the permeability of anionic drugs according to the Donnan membrane phenomenon. The effect of polacrilin potassium on the permeability of diclofenac potassium, used as a model anionic drug, was tested in vitro using diffusion cells and in vivo by monitoring serum levels in rats. The amount of drug permeated across a dialysis membrane in vitro was significantly more in the presence of polacrilin potassium. Significant improvement was found in the extent of drug absorption in vivo. It could be concluded that polacrilin potassium may be used as a high-functionality excipient for improving the bioavailability of anionic drugs having poor gastrointestinal permeability.

  16. In Vitro Contractile Response of Rabbit Myometrium to BKCa and KATP Potassium Channel Openers

    Directory of Open Access Journals (Sweden)

    Soňa Fraňová

    2009-01-01

    Full Text Available The aim of the study was to evaluate the participation of ligand-sensitive potassium large conductance calcium-activated channels (BKCa and ATP-sensitive potassium channels in uterine smooth muscle reactivity during different stages of the experimentally induced proliferatory and secretory phase in the sexual cycle in ovariectomised rabbits in vitro. The myometrial reactivity to oxytocin (10-6 mol l-1 was investigated by an in vitro method in female rabbits 14 days after ovariectomy treated with 17β-estradiol - 1 mg/kg/day i.m. for 7 days, or with a combination of progesterone 2 mg/kg/day s.c. for 7 days and 17β-estradiol - 0.2 mg/ kg/day (day 3–7. The strips of myometrial smooth muscle were incubated with a specific opener (NS 1619 and an antagonist (TEA of potassium large conductance calcium-activated channel, or with a specific opener (pinacidil and an antagonist (glybenclamide of ATP-sensitive potassium channels before the administration of oxytocin. NS1619 produced more potent inhibition of the oxytocin-induced contraction during the gestagen dominance (experimental secretory phase than the one observed during the oestrogen dominance (experimental proliferatory phase. TEA antagonized the NS1619 induced inhibition of the myometrial contraction. In the matter of KATP potassium channels, after the administration of pinacidil we observed a similar situation in the changes of myometrial contractility. Pinacidil produced more pronounced inhibition of oxytocin-induced contraction during the secretory phase, and its effect was abolished by the selective inhibitor glybenclamide. Our experimental results indicate that both potassium large conductance calcium-activated channels and ATP-sensitive potassium channels significantly participate in the regulation of myometrial oxytocin-induced contractions and the activity of these channels is probably influenced by the levels of oestrogens and gestagens.

  17. Study of the permeability of the various parts of the tubules to sodium and potassium ions

    International Nuclear Information System (INIS)

    Morel, F.; Falbriard, A.

    1959-01-01

    The method of stop flow analysis has been used in rabbits together with radioactive sodium and potassium injected in the middle of a six minutes period of arrest of urine flow during an osmotic diuresis. Urine was subsequently collected in 60 ta 80 mg samples. The specific activities of sodium and potassium suggest that both ions pass directly from the renal interstitial tissue into the urine at different and distinct areas in the tubules. The whole distal segment, including the area of active reabsorption of this ion, is impermeable to sodium in the direction interstitial tissue to lumen. The adjacent, more proximal tubule is, however, extremely permeable. The distal tubular impermeability to potassium is more limited. The specific activity already having reached a maximum at the level of active sodium reabsorption. Reprint of a paper published in 'Revue Francaise d'Etudes Cliniques et Biologiques', n. 5, vol IV, p. 471-474 [fr

  18. Digoxin affects potassium homeostasis during exercise in patients with heart failure.

    Science.gov (United States)

    Schmidt, T A; Bundgaard, H; Olesen, H L; Secher, N H; Kjeldsen, K

    1995-04-01

    The aim was to evaluate whether digitalisation of heart failure patients affects extrarenal potassium handling during and following exercise, and to assess digoxin receptor occupancy in human skeletal muscle in vivo. In a paired study of before versus after digitalisation, 10 patients with congestive heart failure underwent identical exercise sessions consisting of three bouts of increasing work rates, 41-93 W, on a cycle ergometer. The final bouts were followed by exercise to exhaustion. The femoral vessels and brachial artery were catheterised. Arterial blood pressure, heart rate, leg blood flow, cardiac output, plasma potassium, haemoglobin, pH, and skeletal muscle receptor occupancy with digoxin in biopsies were determined. Occupancy of skeletal muscle Na/K-ATPase with digoxin was 9% (P digitalisation femoral venous plasma potassium increased by 0.2-0.3 mmol.litre-1 (P digitalisation the femoral venoarterial difference in plasma potassium increased by 50-100% (P digitalisation on plasma potassium were not the outcome of changes in haemodynamics, because cardiac output and leg blood flow increased by up to 13% and 19% (P < 0.05), nor was it the outcome of changes in haemoconcentration or pH. Extrarenal potassium handling is altered as a result of digoxin treatment. This is likely to reflect a reduced capacity of skeletal muscle Na/K-ATPase for active potassium uptake because of inhibition by digoxin, adding to the reduction of skeletal muscle Na/K-ATPase concentration induced by heart failure per se. In heart failure patients, improved haemodynamics induced by digoxin may, however, increase the capacity for physical conditioning. Thus the impairment of extrarenal potassium homeostasis by heart failure and digoxin treatment may be counterbalanced by training.

  19. Electrical properties of the potassium polytitanate compacts

    International Nuclear Information System (INIS)

    Goffman, V.G.; Gorokhovsky, A.V.; Kompan, M.M.; Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V.; Fedorov, F.S.

    2014-01-01

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10 4 –10 5 . • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10 −2 to 10 −6 –10 −7 Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10 −2 Sm/m (high frequencies, ion conductivity) up to 10 −6 –10 −7 Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10 4 –10 5 . This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures

  20. Potassium permanganate ingestion as a suicide attempt

    Directory of Open Access Journals (Sweden)

    Sebnem Eren Cevik

    2012-02-01

    Full Text Available Potassium permanganate is a highly corrosive, water-soluble oxidizing antiseptic. A 68- year-old female patient was admitted to our Emergency Department after ingestion of 3 tablets of 250 mg potassium permanganate as a suicide attempt. The physical exam revealed brown stained lesions in the oropharynx. Emergency endoscopy was performed by the gastroenterologist after the third hour of ingestion. Emergency endoscopy revealed multiple superficial (Grade I-II lesions on the esophagus and cardia, which were considered secondary to the caustic substance. The mainstay in the treatment of potassium permanganate is supportive and the immediate priority is to secure the airway. Emergency endoscopy is an important tool used to evaluate the location and severity of injury to the esophagus, stomach and duodenum after caustic ingestion. Patients with signs and symptoms of intentional ingestion should undergo endoscopy within 12 to 24 h to define the extent of the disease.

  1. Potassium cardioplegia: early assessment by radionuclide ventriculography

    International Nuclear Information System (INIS)

    Ellis, R.J.; Born, M.; Feit, T.; Ebert, P.A.

    1978-01-01

    Left ventricular function was evaluated by single pass /sup 99m/Tc radionuclide ventriculography when potassium cardioplegia was combined with hypothermia. In 35 patients undergoing myocardial revascularization (3 CABG/patient) in which potassium cardioplegia at 4 0 C was used, no patient developed a myocardial infarction either by electrocardiogram or /sup 99m/Tc pyrophosphate imaging in the postoperative period. In 22 patients, aortic cross-clamp time was greater than 60 min, and the ejection fraction by the single pass radionuclide technique was 50% preoperatively and 53% postoperatively (NS). Wall motion in the single RAO view was not worse postoperatively. No patient required any inotropic agents in the immediate postoperative period. It appears that no significant ventricular impairment occurred in the immediate postoperative period (48 to 72 hours) when potassium cardioplegia combined with hypothermia was used for a 60-minute period

  2. Potassium permanganate ingestion as a suicide attempt

    Directory of Open Access Journals (Sweden)

    Tuba Cimilli Ozturk

    2012-01-01

    Full Text Available Potassium permanganate is a highly corrosive, water-soluble oxidizing antiseptic. A 68- year-old female patient was admitted to our Emergency Department after ingestion of 3 tablets of 250 mg potassium permanganate as a suicide attempt. The physical exam revealed brown stained lesions in the oropharynx. Emergency endoscopy was performed by the gastroenterologist after the third hour of ingestion. Emergency endoscopy revealed multiple superficial (Grade I-II lesions on the esophagus and cardia, which were considered secondary to the caustic substance. The mainstay in the treatment of potassium permanganate is supportive and the immediate priority is to secure the airway. Emergency endoscopy is an important tool used to evaluate the location and severity of injury to the esophagus, stomach and duodenum after caustic ingestion. Patients with signs and symptoms of intentional ingestion should undergo endoscopy within 12 to 24 h to define the extent of the disease.

  3. Suicidal ingestion of potassium permanganate crystals: a rare encounter.

    Science.gov (United States)

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A C; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ingestion of potassium permanganate crystals. After treatment, the patient was discharged home on the 8(th) day after admission. So we conclude that Emergency endoscopy has a significant role in diagnosis and management of potassium permanganate ingestion.

  4. Potassium effect on cesium 137 behaviour in natural waters of contaminated regions (Belarus)

    International Nuclear Information System (INIS)

    Kudel'skij, A.V.; Pashkevich, V.I.; Ovsyannikova, S.V.; Petrovich, A.A.; Smit, D.T.

    1998-01-01

    Very close relationships between cesium 137 activity of water objects (soil solutions, bog and lake water) and their stable potassium contents have been revealed in the contaminated area in south-eastern Belarus. It was revealed the increase of cesium 137 activity in soil solutions and bog ecosystems proportionally with the increase of potassium content. The exponential dependence of cesium 137 activity of fish production was similar to reverse. The coefficient of cesium 137 accumulation in plants was estimated to be reverse connected with the potassium content in soils. So an universal character of these relations and their specificity are of interest when elaborating countermeasures for reducing population dose loads due to cesium 137 water migration

  5. 21 CFR 862.1600 - Potassium test system.

    Science.gov (United States)

    2010-04-01

    ... potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte balance in the diagnosis and treatment of diseases conditions characterized by low or high blood potassium levels. (b) Classification. Class II. ...

  6. The existence of the potassium dioxodifluorobromate

    International Nuclear Information System (INIS)

    Tantot, Georges; Bougon, Roland

    1975-01-01

    The reaction of liquid bromine pentafluoride with potassium bromate allows the formation of an oxyfluorinated complex ion of bromine V: the dioxodifluorobromate ion BrO 2 F 2 - . From Raman spectroscopy data this ion has a structure related to those of the chlorine and iodine corresponding ions [fr

  7. 21 CFR 184.1613 - Potassium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bicarbonate. 184.1613 Section 184.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  8. Resonant second harmonic generation in potassium vapor

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.; Lawrence Berkeley Lab., CA

    1995-06-01

    Picosecond pulses are used to study resonant second harmonic generation in potassium vapor. Although the process is both microscopically and macroscopically forbidden, it can readily be observed. The results can be quantitatively understood by a multiphoton-ionization-initiated, dc-field-induced, coherent transient model

  9. Computational study on potassium picrate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Xue-Hai; Lu, Ya-Lin; Ma, Xiu-Fang; Xiao, He-Ming [Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2006-08-15

    DFT calculation at the B3LYP level was performed on crystalline potassium picrate. The frontier bands are slightly fluctuant. The energy gap between the highest occupied crystal orbital (HOCO) and the lowest unoccupied crystal orbital (LUCO) is 0.121 a.u. (3.29 eV). The carbon atoms that are connected with the nitro groups make up the narrow lower energy bands, with small contributions from nitro oxygen and phenol oxygen. The higher energy bands consist of orbitals from the nitro groups and carbon atom. The potassium bears almost 1 a.u. positive charge. The potassium forms ionic bonding with the phenol oxygen and the nitro oxygen at the same time. The crystal lattice energy is predicted to be -574.40 kJ/mol at the B3LYP level determined with the effective core pseudopotential HAYWSC-31G basis set for potassium and 6-31G** basis set for other atoms. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. Nutritional potassium requirement for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Fernando Guilherme Perazzo Costa

    2011-12-01

    Full Text Available The objective of this study was to evaluate the potassium requirement for laying Japanese quails. Two hundred and forty quails were distributed in a randomized block design, with five treatments and six replicates, with eight birds each. The treatments consisted of a basal diet deficient in potassium (K (2.50 g/kg, supplemented with potassium carbonate, to replace the inert, to reach levels of 2.50, 3.50, 4.50, 5.50 and 6.50 (g/kg of K in the diet. There was a quadratic effect of K levels on feed intake, egg production, egg mass and feed conversion per egg mass and per egg dozen, estimating the requirements of 4.26, 4.41, 4.38, 4.43 and 4.48 (g/kg of K diet, respectively. There was no significant effect on the levels of K in the diet on egg weight, albumen weight, percentage of yolk or shell and yolk color. However, yolk and shell weights reduced and the albumen percentage increased linearly with increasing levels of K in the diet. Despite the reduction of shell weight, the increased levels of K did not influence the specific gravity and shell thickness. The use of 4.41 g/kg of potassium is recommended in the diet for laying Japanese quails.

  11. Potassium ferrate treatment of RFETS' contaminated groundwater

    International Nuclear Information System (INIS)

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe +6 ) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern

  12. Acute Renal Failure following Accidental Potassium Bromate ...

    African Journals Online (AJOL)

    Accidental poisoning is common in children. Potassium bromate is a commonly used additive and raising agent in many edibles particularly bread, a staple food worldwide, yet its accidental poisoning has hitherto, not been documented in Nigeria. We report an unusual case of acute renal failure following accidental ...

  13. Potassium-38, a 7.6 minute half-lived radionuclide for assessment of myocardial function

    International Nuclear Information System (INIS)

    Chandra, R.; McDonald, J.M.; Reiman, R.E.; Tilbury, R.S.

    1979-01-01

    Potassium-38 in isotonic saline solution has been used to study the effect of cardio-active drugs, dipyridamole, propanolol and digoxin on the potassium uptake in the myocardium of dogs. The 38 KCl without added carrier was injected intravenously at about 0, 1, 2, and 3 hours after administration of the drug and the dog was scanned with a rectilinear scanner from 10 to 25 minutes after injection. THe counts/sec/mCi corrected for decay were computed for a fixed number of scan elements and compared with controls. Dipyridamole produced a 50 to 80% increase in potassium uptake at 1 hour which returned to normal at 3 hours, Digoxin produced a 10 to 30% increase, and propanolol produced a 25% decrease at 1 to 2 hours. Results are compared with studies of Hamilton using Tl-201. Our results demonstrate that measurements of K-38 uptake can be made at hourly intervals to study the effects of cardio-active drugs

  14. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    Science.gov (United States)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  15. Electrical properties of the potassium polytitanate compacts

    Energy Technology Data Exchange (ETDEWEB)

    Goffman, V.G.; Gorokhovsky, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Kompan, M.M. [Physico-Technical Institute of the Russian Academy of Science, St. Petersburg (Russian Federation); Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Fedorov, F.S., E-mail: fedorov_fs@daad-alumni.de [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation)

    2014-12-05

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10{sup 4}–10{sup 5}. • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10{sup −2} to 10{sup −6}–10{sup −7} Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10{sup −2} Sm/m (high frequencies, ion conductivity) up to 10{sup −6}–10{sup −7} Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10{sup 4}–10{sup 5}. This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures.

  16. Determinants of renal potassium excretion in critically ill patients : The role of insulin therapy

    NARCIS (Netherlands)

    Hoekstra, Miriam; Yeh, Lu; Oude Lansink, Annemieke; Vogelzang, Mathijs; Stegeman, Coen A.; Rodgers, Michael G. G.; van der Horst, Iwan C. C.; Wietasch, Gotz; Zijlstra, Felix; Nijsten, Maarten W. N.

    Objectives: Insulin administration lowers plasma potassium concentration by augmenting intracellular uptake of potassium. The effect of insulin administration on renal potassium excretion is unclear. Some studies suggest that insulin has an antikaliuretic effect although plasma potassium levels were

  17. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  18. A novel potassium deficiency-induced stimulon in Anabaena torulosa

    Indian Academy of Sciences (India)

    Unknown

    torulosa and of nine proteins in Escherichia coli. These were termed potassium deficiency-induced proteins or. PDPs and constitute hitherto unknown potassium deficiency–induced stimulons. Potassium deficiency also enhanced the synthesis of certain osmotic stress-induced proteins. Addition of K+ repressed the ...

  19. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to 125 milligrams (200,000 units) or 250 milligrams (400,000 units) of penicillin V. (b) Sponsors. See...

  20. Relationship between potassium intake and radiocesium retention in the reindeer

    International Nuclear Information System (INIS)

    Holleman, D.F.; Luick, J.R.

    1975-01-01

    The effect of dietary potassium on radiocesium retention was studied in reindeer fed winter diets of lichens. Potassium added to the diet markedly decreased radiocesium retention; this suggests that seasonal changes in cesium retention observed earlier in reindeer might be caused largely by nutritional factors. Data indicate that a 20-fold increase in dietary potassium results in a 2-fold decrease in radiocesium retention

  1. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    Science.gov (United States)

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  2. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    Science.gov (United States)

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. 1,4,2-Benzo/pyridodithiazine 1,1-dioxides structurally related to the ATP-sensitive potassium channel openers 1,2,4-Benzo/pyridothiadiazine 1,1-dioxides exert a myorelaxant activity linked to a distinct mechanism of action.

    Science.gov (United States)

    Pirotte, Bernard; de Tullio, Pascal; Florence, Xavier; Goffin, Eric; Somers, Fabian; Boverie, Stéphane; Lebrun, Philippe

    2013-04-25

    The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

  4. Killing of Candida albicans by Human Salivary Histatin 5 Is Modulated, but Not Determined, by the Potassium Channel TOK1

    OpenAIRE

    Baev, Didi; Rivetta, Alberto; Li, Xuewei S.; Vylkova, Slavena; Bashi, Esther; Slayman, Clifford L.; Edgerton, Mira

    2003-01-01

    Salivary histatin 5 (Hst 5), a potent toxin for the human fungal pathogen Candida albicans, induces noncytolytic efflux of cellular ATP, potassium, and magnesium in the absence of cytolysis, implicating these ion movements in the toxin's fungicidal activity. Hst 5 action on Candida resembles, in many respects, the action of the K1 killer toxin on Saccharomyces cerevisiae, and in that system the yeast plasma membrane potassium channel, Tok1p, has recently been reported to be a primary target o...

  5. Kidney in potassium depletion. II. K+ handling by the isolated perfused rat kidney

    International Nuclear Information System (INIS)

    Hayashi, M.; Katz, A.I.

    1987-01-01

    In a companion paper the authors reported a large increment in Na + -K + -ATPase activity and [ 3 H]ouabain binding the inner stripe of outer medullary collecting tubules from K-depleted rats. To test the hypothesis that the increased number of Na + -K + pumps in these animals may be involved in potassium reabsorption they examined the effect of ouabain on K excretion by isolated, perfused kidneys from rats fed a K-free diet for 3 wk. Kidneys from K-depleted rats retain potassium avidly, both the fractional (FE/sub K/) and absolute K excretion being approximately fivefold lower than in control kidneys. Ouabain (5 mM) increased FE/sub K/ in kidneys from each K-depleted rat; similar results were obtained when kidneys were perfused with low and high potassium concentrations. In contrast, ouabain produced a variable effect in control kidneys, that depended on the perfusate potassium concentration. In K-depleted rats amiloride did not significantly alter K excretion and did not block the ouabain-induced kaliuresis, suggesting that the latter is not due to enhanced secretion secondary to increased distal fluid delivery. These results provide evidence for ouabain-sensitive potassium reabsorption in kidneys of chronically K-depleted rats, and suggest an explanation for the increased Na + -K + -ATPase observed in such animals

  6. Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury.

    Science.gov (United States)

    Li, Guangke; Sang, Nan

    2009-01-01

    Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.

  7. Determination of uranium, thorium and potassium contents of rock samples in Yemen

    International Nuclear Information System (INIS)

    Abdulrahman Abdul-Hadi; Wedad Al-Qadhi; Enayat El-Zeen

    2011-01-01

    Uranium, thorium and potassium contents in 16 different rock samples from various sites in Republic of Yemen were determined using three different techniques of analysis: γ-spectrometry, Instrumental neutron activation analyses (INAA) and X-ray fluorescence (XRF). The concentration range for thorium, uranium and potassium were found to be from 9,810 ± 272 to 3.6 ± 1.3 ppm, 1,072 ± 40 to 1.2 ± 0.7 ppm and 11 ± 1 to 0.26 ± 0.05%, respectively. (author)

  8. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    to norepinephrine, angiotensin II (ANG II), and potassium were measured after chloride depletion and compared with controls. Chloride depletion did not change arteriolar diameters, but the response to norepinephrine was markedly reduced when chloride was substituted with gluconate (n = 6) or isethionate (n = 6......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses...

  9. Pharmacokinetics of diclofenac potassium after oral administration of sachets and tablets

    Directory of Open Access Journals (Sweden)

    A Martso

    2008-01-01

    Results. There is evidence that patients tolerate both its sachets and tablets equally well, as confirmed by subjective and objective observations. There are neither marked side effects nor considerable changes in laboratory tests and in the values of vital functions. Diclofenac potassium as early-action tablets (50 and 100 mg exerts a very good analgesic effect in treating migraine since the plasma concentration of the drug peaks on an average of an hour of administration (range 0,33-2 hours and the analgesic effect developed following 60-90 min. Conclusion. By comparing the rate of absorption, it may be concluded that diclofenac potassium as sachets will produce a much rapider analgesic effect. Thus, the high solubility of diclofenac potassium and its very good absorbability (as sachets in particular make the drug a superior analgesic that has a rapid analgesic activity.

  10. Scanning Tunneling Spectroscopy of Potassium on Graphene

    Science.gov (United States)

    Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew

    2012-02-01

    We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.

  11. Potassium tetracyanidoaurate(III monohydrate: a redetermination

    Directory of Open Access Journals (Sweden)

    Nobuyuki Matsushita

    2017-03-01

    Full Text Available The structure of the title metal complex salt, K[Au(CN4]·H2O, has been redetermined using X-ray diffraction data at 173 K in order to improve the precision. The previous determination was based on neutron diffraction data [Bertinotti & Bertinotti (1970. Acta Cryst. B26, 422–428]. The title compound crystallizes in the space group P212121 with one potassium cation, one [Au(CN4]− anion and one water molecule in the asymmetric unit. The AuIII atom lies on a general position and has an almost square-planar coordination sphere defined by four cyanide ligands. Interactions between the potassium cation and N atoms of the complex anion, as well as O—H...N hydrogen bonds, lead to the formation of a three-dimensional framework structure.

  12. Behaviour of potassium hexabromoruthenate (4) in solutions

    International Nuclear Information System (INIS)

    Rudnitskaya, O.V.; Miroshnichenko, I.V.; Pichkov, V.N.

    1989-01-01

    Behaviour of potassium hexabromoruthenate in HBr, H 2 O-acetone, dimethylformamide, dimetnylsulfoxide (DMSO) solutions is investigated by means of absorption and ESR specroscopy. Complex is shown to be labile, interacts easily with solvents forming ruthenium complexes in more low oxidation degrees. Hexabromoruthenate-ion is formed in concentrated HBr, while in DMSO the formation of ruthenium (3) and (2) bromide-dimethylsulfoxide complexes occurs gradually, final product is trans-[Ru(DMSO) 4 Br 2

  13. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  14. POTASSIUM AND ITS EFFECT ON THE CONTENT OF POLYPHENOLS IN ONION (ALLIUM CEPA L.

    Directory of Open Access Journals (Sweden)

    Petra Kavalcová

    2015-02-01

    Full Text Available Onion (Allium cepa L. is rich of chemoprotective compounds as polyphenols, flavonoids, anthocyanins, vitamins, sulphur compounds which have potential beneficial properties for human health. Potassium as important mineral abundant plays many vital roles in plant nutrition (reduces respiration, activates enzyme. In generally, potassium increases crop yield and improves quality of onion bulbs. The objectives of this work were to compare and evaluate the impact of potassium on the content of total polyphenols and antioxidant activity of onion (Allium cepa L.. The content of the total polyphenols was determined by using the Folin-Ciocalteu reagent (FCR. The absorbance was measured at 765 nm of wave length against blank. Antioxidant activity was measured using a compound DPPH˙ (2.2-diphenyl-1-picrylhydrazyl at 515.6 nm in the spectrophotometer. The content of total polyphenols in samples of onion during vegatation period moved in the range from 505.6 mg GAE/kg ±25.18 to 621.49 mgGAE/kg ±13.41. In this work was watched also the influence of potassium on antioxidant activity, where values were in interval from 32.20 %± 0.58 to 44.67 % ±0.68.

  15. A Facile Conversion of Alcohols to Esters Mediated by Potassium Ferrate

    OpenAIRE

    Kooti, M.; Tarassoli, A.; Javadi, H. H.; Jorfi, M.

    2008-01-01

    Potassium ferrate in the presence of copper(II) sulfate pentahydrate can convert 1-phenyl ethanol, 4-chloro-1-phenyl ethanol and 2-phenyl ethanol into ester products with good or excellent yields.The reactions have been carried out in n-hexane at room temprature.The effect of other metal salts, as activators, have been also examined instead of copper sulfate.

  16. Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites

    Czech Academy of Sciences Publication Activity Database

    Kikhtyanin, O.; Bulánek, R.; Frolich, K.; Čejka, Jiří; Kubička, D.

    2016-01-01

    Roč. 424, DEC 2016 (2016), s. 358-368 ISSN 1381-1169 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : activated hydrotalcites * carbon-monoxide * cyclic-ketones * Acetone * Furfural * Condensation * Potassium-BEA * Zeolite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.211, year: 2016

  17. Effect of potassium and potting-bag size on foliar biomass and ...

    African Journals Online (AJOL)

    Foliar fresh mass was significantly increased by the interaction between K concentration and potting-bag size. Growers may use a 5.3 mmol L−1 K concentration and a 5 L potting bag for optimum production of rose geranium under soil-less cultivation. Keywords: C:G ratio, enzyme activation, oil quality, potassium, rose ...

  18. The role of potassium as a promoter in iron catalysts for ammonia synthesis

    NARCIS (Netherlands)

    Altenburg, K.; Bosch, H.; van Ommen, J.G.; Gellings, P.J.

    1980-01-01

    Five ammonia synthesis catalysts, mainly differing in potassium content, were prepared from a commercial doubly promoted iron catalyst. The activities of these catalysts were measured at 350–450 °C and 5–200 atm. The experimental reaction rates were fitted to the modified Temkin rate equation.

  19. Potassium iodide capsule treatment of feline sporotrichosis.

    Science.gov (United States)

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  20. Potassium Permanganate Poisoning: A Nonfatal Outcome

    Directory of Open Access Journals (Sweden)

    Suzan M. Eteiwi

    2015-07-01

    Full Text Available Acute poisoning by potassium permanganate is a rare condition with high morbidity and mortality. Diagnosis of the condition relies on a history of exposure or ingestion and a high degree of clinical suspicion. Oxygen desaturation and the presence of methemoglobin are also helpful indicators. Since no specific antidote is available, treatment is mainly supportive. Few cases have been reported in the literature following potassium permanganate ingestion, whether intentional or accidental, and most of the patients in these cases had unfavorable outcomes, which was not the case in our patient. Our patient, a 73-year-old male, purchased potassium permanganate over the counter mistaking it for magnesium salt, which he frequently used as a laxative. Several hours after he ingested it, he was admitted to the endocrine department at King Hussein Medical Center, Jordan, with acute rapidly evolving shortness of breath. During hospitalization, his liver function tests deteriorated. Since he was diagnosed early and managed promptly he had a favorable outcome.

  1. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  2. Cesium immobilization into potassium magnesium phosphate matrix

    International Nuclear Information System (INIS)

    Sayenko, S.Y.; Shkuropatenko, V.A.; Bereznyak, O.P.; Hodyreva, Y.S.; Tarasov, R.V.; Virych, V.D.; Ulybkina, E.A.; Pylypenko, O.V.; Kholomeev, G.O.; Zykova, A.V.; Wagh, Arun S.

    2017-01-01

    The possibility of isomorphous substitution of potassium ions by cesium ions in the structure of potassium magnesium phosphate KMgPO 4 centred dot 6H 2 O (PMP) was shown. It was established, that the Cs included into the PMP matrix does not transfer to the environment during high temperatures heating process (1176 deg C, 3 hours). Analysis of the IR absorption spectrum of the PMP sample has demonstrated that an increase in the amount of additive of the cesium chloride resulted in the shift of the main bands in the spectrum to the low-frequency region with average shift value 10 cm -1 , which indicates the strengthening of bonds in the crystal lattice of matter. The calculated degree of substitution of potassium by cesium during energy release process in the PMP matrix at the level of vitrified high level wastes is about 4%, i. e. the PMP matrix should correspond to the formula K 0.96 Cs 0.04 MgPO 4 centred dot 6H 2 O.

  3. Vanadium, rubidium and potassium in Octopus vulgaris (Mollusca: Cephalopoda

    Directory of Open Access Journals (Sweden)

    Sónia Seixas

    2005-06-01

    Full Text Available The levels of vanadium, rubidium and potassium were determined in Octopus vulgaris caught during commercial fishing activities at three locations (Cascais, Santa Luzia and Viana do Castelo in Portugal in autumn and spring. We determined the concentration of these elements in digestive gland, branchial heart, gills, mantle and arms in males and females. At least five males and five females were assessed for each season/location combination. Elemental concentrations were determined by Particle Induced X-ray Emission (PIXE. Vanadium was detectable only in digestive gland and branchial heart samples. Its concentration was not correlated with total weight, total length or mantle length. There were no differences in concentrations of V, Rb and K between sexes. There were significant differences in vanadium concentrations in branchial hearts in autumn between samples from Viana do Castelo and those from the other two sites. We found a significant positive relationship between the concentration of vanadium and those of potassium and rubidium in branchial hearts. Branchial hearts appear to play an important role in decontamination of V.

  4. Removal of Anabaena spiroides by potassium permanganate pre-oxidation: effect on photosynthetic capacity and molecular weight distribution.

    Science.gov (United States)

    Qiao, Junlian; Zhang, Xiaodong; Lv, Liping

    2017-11-01

    Bench scale tests were conducted to investigate the effect of potassium permanganate pre-oxidation on the photosynthetic activity and molecular weight distribution of Anabaena spiroides. Different concentrations of potassium permanganate were added into the suspension of Anabaena spiroides, one of the dominant algae in water bloom, and after pre-oxidation of permanganate for 1 h, the results show that the removal rate significantly increases by 33.99~36.35% compared to direct coagulation. Then, the algal characteristics, including photosynthetic ability, the changes in extracellular organic matter three-dimensional fluorescence, and the distribution of molecular weight were conducted and the results show that along with increasing concentration of potassium permanganate, the photosynthetic ability of algae decreases, more extracellular organic matter is secreted, and large molecular weight matter (humic-like and fulvic-like substances) are generated. Therefore, this study demonstrates that potassium permanganate could be used in addressing the algae-rich water.

  5. Race, Serum Potassium, and Associations With ESRD and Mortality.

    Science.gov (United States)

    Chen, Yan; Sang, Yingying; Ballew, Shoshana H; Tin, Adrienne; Chang, Alex R; Matsushita, Kunihiro; Coresh, Josef; Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Grams, Morgan E

    2017-08-01

    Recent studies suggest that potassium levels may differ by race. The basis for these differences and whether associations between potassium levels and adverse outcomes differ by race are unknown. Observational study. Associations between race and potassium level and the interaction of race and potassium level with outcomes were investigated in the Racial and Cardiovascular Risk Anomalies in Chronic Kidney Disease (RCAV) Study, a cohort of US veterans (N=2,662,462). Associations between African ancestry and potassium level were investigated in African Americans in the Atherosclerosis Risk in Communities (ARIC) Study (N=3,450). Race (African American vs non-African American and percent African ancestry) for cross-sectional analysis; serum potassium level for longitudinal analysis. Potassium level for cross-sectional analysis; mortality and end-stage renal disease for longitudinal analysis. The RCAV cohort was 18% African American (N=470,985). Potassium levels on average were 0.162mmol/L lower in African Americans compared with non-African Americans, with differences persisting after adjustment for demographics, comorbid conditions, and potassium-altering medication use. In the ARIC Study, higher African ancestry was related to lower potassium levels (-0.027mmol/L per each 10% African ancestry). In both race groups, higher and lower potassium levels were associated with mortality. Compared to potassium level of 4.2mmol/L, mortality risk associated with lower potassium levels was lower in African Americans versus non-African Americans, whereas mortality risk associated with higher levels was slightly greater. Risk relationships between potassium and end-stage renal disease were weaker, with no difference by race. No data for potassium intake. African Americans had slightly lower serum potassium levels than non-African Americans. Consistent associations between potassium levels and percent African ancestry may suggest a genetic component to these differences. Higher and

  6. Proapoptotic Role of Potassium Ions in Liver Cells

    Directory of Open Access Journals (Sweden)

    Zhenglin Xia

    2016-01-01

    Full Text Available Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1.

  7. Use of potassium-42 in the study of kidney functioning; Emploi du patassium-12 pour l'etude du fonctionnement renal

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F.; Guinnebault, M. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Following an intravenous injection of potassium-42 as indicator, an analysis of the specific activity vs. time curve in arterial plasma, in venous plasma efferent from the kidney, in urine and in various regions of the kidney of rabbits reveals that: 1) The turnover rate of potassium in the cortex cells (proximal and distal convoluted tubes) is very large, being limited only by renal blood flow. 2) The turnover rate of potassium in deep regions (Henle loops and collector tubules) is much smaller. 3) Potassium in the urine comes from cells of the convoluted tubes and not from cells of Henle loops, collector ducts, or glomerular filtrate. 4) Any potassium filtered at the level of the glomerules would be entirely reabsorbed at the level of the proximal tube, while total potassium in the urine results from a process of excretion by cells of the distal tube. These results are comparable with the assumption that the movement of potassium between interstitial medium and convoluted tube cells results from entirely passive processes. (author) [French] Apres injection intraveineuse au lapin de radiopotassium comme indicateur, l'analyse des courbes de la radioactivite specifique du potassium, mesuree en fonction du temps dans le plasma arteriel, dans le plasma veineux efferent du rein, dans l'urine et dans diverses regions du rein, lui-meme, permet de montrer: 1)que la vitesse de renouvellement du potassium contenu dans les cellules du cortex (tubes contournes proximaux et distaux), apparait tres grande et semble limitee par le debit sanguin renal. 2) que le vitesse de renouvellement du potassium contenu dans les regions profondes (anses de Henle et tubes collecteurs) est beaucoup plus faible. 3) que le potassium de l'urine a pour precurseur le potassium des cellules des tubes contournes et non celui des cellules des anses de Henle ou des canaux collecteurs, ni celui du filtrat glomerulaire. 4) que le potassium filtre au niveau des glomerules serait entierement

  8. Use of potassium-42 in the study of kidney functioning; Emploi du patassium-12 pour l'etude du fonctionnement renal

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F; Guinnebault, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Following an intravenous injection of potassium-42 as indicator, an analysis of the specific activity vs. time curve in arterial plasma, in venous plasma efferent from the kidney, in urine and in various regions of the kidney of rabbits reveals that: 1) The turnover rate of potassium in the cortex cells (proximal and distal convoluted tubes) is very large, being limited only by renal blood flow. 2) The turnover rate of potassium in deep regions (Henle loops and collector tubules) is much smaller. 3) Potassium in the urine comes from cells of the convoluted tubes and not from cells of Henle loops, collector ducts, or glomerular filtrate. 4) Any potassium filtered at the level of the glomerules would be entirely reabsorbed at the level of the proximal tube, while total potassium in the urine results from a process of excretion by cells of the distal tube. These results are comparable with the assumption that the movement of potassium between interstitial medium and convoluted tube cells results from entirely passive processes. (author) [French] Apres injection intraveineuse au lapin de radiopotassium comme indicateur, l'analyse des courbes de la radioactivite specifique du potassium, mesuree en fonction du temps dans le plasma arteriel, dans le plasma veineux efferent du rein, dans l'urine et dans diverses regions du rein, lui-meme, permet de montrer: 1)que la vitesse de renouvellement du potassium contenu dans les cellules du cortex (tubes contournes proximaux et distaux), apparait tres grande et semble limitee par le debit sanguin renal. 2) que le vitesse de renouvellement du potassium contenu dans les regions profondes (anses de Henle et tubes collecteurs) est beaucoup plus faible. 3) que le potassium de l'urine a pour precurseur le potassium des cellules des tubes contournes et non celui des cellules des anses de Henle ou des canaux collecteurs, ni celui du filtrat glomerulaire. 4) que le potassium filtre au niveau des glomerules serait entierement reabsorbe au

  9. Influência do potássio e da calagem na composição química, qualidade fisiológica e na atividade enzimática de sementes de soja Influence of potassium and liming on chemical composition, physiological quality and enzyme activities of soybean seeds

    Directory of Open Access Journals (Sweden)

    Adriano Delly Veiga

    2010-08-01

    Full Text Available A composição química das sementes pode ser influenciada por fatores genéticos, ambientais e pela disponibilidade de nutrientes no solo durante a produção e, como consequência, terem o seu vigor afetado. O potássio pode influenciar a atividade de várias enzimas presentes nas plantas, necessárias em várias reações envolvidas na utilização de energia, síntese de amido, metabolismo do nitrogênio e respiração. Avaliou-se o efeito da adubação potássica e da calagem na composição química, qualidade fisiológica e na atividade de enzimas de sementes de soja. A pesquisa foi desenvolvida nos laboratórios de análises e biotecnologia de sementes do Departamento de Agricultura e no Laboratório de Produção Vegetal do Departamento de Ciências dos Alimentos da Universidade Federal de Lavras (UFLA. Em sementes de soja do cultivar Msoy 8001, produzidas sob 2 níveis de saturação por base (48% e 85% e quatro doses de K2O por hectare (0, 50, 100 e 200 kg, foram avaliados teores de óleo e proteína, germinação, envelhecimento acelerado e atividade das enzimas envolvidas nos processos de germinação e deterioração de sementes. A adubação potássica não afeta a germinação e o vigor das sementes, enquanto a elevação da saturação por base, proporciona maior vigor de sementes de soja. Há aumento no teor de óleo e redução no teor de proteína em sementes de soja à medida que a dose de K2O é aumentada. Ocorre aumento de teor de proteínas em sementes de soja, produzidas sob maiores níveis de saturação por base. A atividade das enzimas piruvato quinase, esterase e álcool desidrogenase em sementes de soja é afetada pela concentração de potássio e saturação por base no solo.The chemical composition of seeds can be influenced by genetical and environmental factors and by the availability of nutrients in the soil during production, which consequently affect their vigor. Potassium can influence the activity of

  10. Hydrogen and helium adsorption on potassium

    International Nuclear Information System (INIS)

    Garcia, R.; Mulders, N.; Hess, G.

    1995-01-01

    A previous quartz microbalance study of adsorption of helium on sodium indicates that the inert layer is surprisingly small. Similar experiments with hydrogen on sodium show layer by layer growth below a temperature of 7K. These results motivated the authors to extend the experiments to lower temperatures. A suitable apparatus, capable of reaching 0.45 K, while still enabling them to do in situ alkali evaporation, has been constructed. The authors will report on the results of microbalance adsorption experiments of helium and hydrogen on potassium

  11. Sound velocity in potassium hydroxide aqueous solution

    International Nuclear Information System (INIS)

    Tsapuryan, Kh.D.; Aleksandrov, A.A.; Kochetkov, A.I.

    1992-01-01

    Measurements of ultrasonic velocities in potassium hydroxide aqueous solutions are carried out within the frames of studies on improvement of water chemistry in NPP cooling systems. Method of echo pulses superposition with acoustic path length of 41.447 mm is used for measurements. The measurements are performed at 2.6 MHz frequency. Complex temperature dependence of ultrasonic velocity is determined. Ultrasonic velocity dependence on pressure is close to linear one. The formula for calculation of thermodynamic properties of the studied solutions on the basis of experimental data obtained is proposed

  12. Natural potassium as a teaching material

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1993-07-01

    An experience of an educational experiment is presented with results and discussion. It was performed in the introductory course of nuclear energy in the Nuclear Education Center of Japan Atomic Energy Research Institute. Purpose of the experiment is understanding disintegration rate (Bq, radioactivity or λN) through measurement of low radioactivity of natural potassium. It was accomplished through calculation of the radioactivity of a measuring known sample and counting efficiency during measurement. The students in the training course had great variety and most students did not have preliminary knowledge. But they said in the questionnaire having almost understood the experiment; and some students enjoyed it. (author)

  13. A prospective, open, comparative study of 5% potassium hydroxide solution versus cryotherapy in the treatment of genital warts in men.

    Science.gov (United States)

    Camargo, Caio Lamunier de Abreu; Belda Junior, Walter; Fagundes, Luiz Jorge; Romiti, Ricardo

    2014-01-01

    Genital warts are caused by human papillomavirus infection and represent one of the most common sexually transmitted diseases. Many infections are transient but the virus may recur, persist, or become latent. To date, there is no effective antiviral treatment to eliminate HPV infection and most therapies are aimed at the destruction of visible lesions. Potassium hydroxide is a strong alkali that has been shown to be safe and effective for the treatment of genital warts and molluscum contagiosum. Cryotherapy is considered one of the most established treatments for genital warts. No comparative trials have been reported to date on the use of potassium hydroxide for genital warts. A prospective, open-label, randomized clinical trial was conducted to compare topical potassium hydroxide versus cryotherapy in the treatment of genital warts affecting immunocompetent, sexually active men. Over a period of 10 months, 48 patients were enrolled. They were randomly divided into two groups and selected on an alternative basis for either potassium hydroxide therapy or cryotherapy. While response to therapy did not differ substantially between both treatment modalities, side effects such as local pain and post-treatment hypopigmentation were considerably more prevalent in the groups treated using cryotherapy. In our study, potassium hydroxide therapy proved to be at least as effective as cryotherapy and offered the benefit of a better safety profile. Topical 5% potassium hydroxide presents an effective, safe, and low-cost treatment modality for genital warts in men and should be included in the spectrum of therapies for genital warts.

  14. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    Science.gov (United States)

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Poisoning of vanadia based SCR catalysts by potassium:influence of catalyst composition and potassium mobility

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Jensen, Anker Degn

    2016-01-01

    exposure temperatures slowdown the deactivation. K2SO4 causes a lower rate of deactivation compared to KCl. This may be related to a faster transfer of potassium from the solid KCl matrix to the catalyst, however, it cannot be ruled out toalso be caused by a significantly larger particle size of the K2SO4...

  16. Modeling removal of accumulated potassium from T-tubules by inward rectifier potassium channels

    NARCIS (Netherlands)

    Wallinga, W.; Vliek, M.; Wienk, E.D.; Alberink, M.J.; Ypey, D.L.; Ypey, D.L.

    1996-01-01

    The membrane models of Cannon et al. (1993) and Alberink et al. (1995) for mammalian skeletal muscle fibers are based upon Hodgkin-Huxley descriptions of sodium, potassium delayed rectifier and leak conductances and the capacitive current taking into account fast inactivation of sodium channels. Now

  17. Regulation of extrarenal potassium homeostasis by adrenal hormones in rats.

    Science.gov (United States)

    Bia, M J; Tyler, K A; DeFronzo, R A

    1982-06-01

    The effect of chronic (7-10 days) adrenal insufficiency on extrarenal potassium tolerance was examined by infusing potassium into rats after acute nephrectomy. The increment in plasma potassium concentration was significantly higher in glucocorticoid-replaced adrenalectomized rats versus controls (max delta PK 3.59 +/-0.11 vs. 2.93 +/- 0.08 meq/liter; P less than 0.001). The impairment in extrarenal potassium tolerance in adrenalectomized rats could not be attributed to acidemia, hypotension, changes in plasma insulin or glucose concentration, or potassium retention prior to study. Acute replacement with aldosterone resulted in significant improvement in the rise in plasma potassium after KCl (max delta PK 3.18 +/- 0.06 meq/liter; P less than 0.005 compared with aldosterone-deficient adrenalectomized rats but higher than in controls, P less than 0.02). If given on a chronic basis, aldosterone replacement led to a complete correction of the defect (max delta PK = 2.89 +/- 0.08 meq/liter). Acute epinephrine replacement in adrenalectomized rats also returned potassium tolerance to normal (max delta PK = 3.02 +/- 0.10 meq/liter). The results demonstrate that extrarenal potassium tolerance is impaired in chronic adrenal insufficiency and suggest that both aldosterone and epinephrine deficiency may contribute to the defect, since replacement with either hormone returns potassium tolerance toward normal. Accordingly, both aldosterone and epinephrine have important extrarenal mechanisms of action.

  18. Role of hemolysis in potassium release by iodinated contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.; Nakamura, T.; Shimizu, Y. [Department of Radiology, Kyoto City Hospital (Japan)

    1999-09-01

    It has been demonstrated that an iodinated contrast medium (CM) causes release of potassium into blood vessel lumina, resulting in an increase in serum potassium. The purpose of the present study was to assess whether this potassium release is due to hemolysis. Fresh human blood was mixed in vitro with CM at a ratio of 10:2. Potassium release rates were determined, and serum haptoglobin and free hemoglobin were measured after 30 min of exposure to CM. To compare the potassium release curve between CM exposure and true hemolysis induced by distilled water, fresh human blood was also mixed with distilled water. The level of serum haptoglobin decreased due to hemodilution. Changes in haptoglobin were not correlated with potassium release rates. The serum free hemoglobin level did not increase significantly, and there was no correlation between changes in the free hemoglobin level and the rate of potassium release. Hemolysis caused by water occurred instantaneously, whereas potassium release caused by CM was a slow response, which was linearly correlated with exposure time. Potassium release from blood cannot be explained by hemolysis. (orig.) With 4 figs., 4 tabs., 3 refs.

  19. Kinetics studies of oxidation of niacinamide by alkaline potassium permanganate

    Directory of Open Access Journals (Sweden)

    Sandipsingh Gour

    2012-04-01

    Full Text Available The oxidation of niacinamide in alkaline media is carried out using potassium permanganate as a oxiding agent. The reaction was monitored using UV-Visible spectrophotometer at 525 nm. It was found to be zero order with respect to oxidant,, fractional order with respect to hydrogen ion concentration and first order with respect to substrate. The thermodynamic parameters(were determinied . The average (?G# was found to be 87.60 KJ/mol. The values ?S# was found to be -0.2132 KJ/mole and energy of activation was found to be 23.95 KJ/mole. A suitable mechanism is proposed based on the experimental conditions.

  20. Contribution to the study of recoil species produced by potassium ferrocyanide neutron irradiation

    International Nuclear Information System (INIS)

    Meriadec Vernier de Byans, B.

    1969-04-01

    The chemical species produced by potassium ferrocyanide neutron irradiation were separated and identified. The study of their behaviour upon thermal annealing has allowed to establish a scheme of reaction as well as a kinetic treatment of the data. Activation energies are determined in different conditions and the effects of radiation dose, oxygen and water of crystallisation upon the activation energies were studied. Preliminary E.S.R. data and its relevance to the decomposition process is also discussed. (authors) [fr

  1. Calibration of a Micronal flame photometer model B-260. Intercomparison of the analytical results for potassium

    International Nuclear Information System (INIS)

    Alencar, Lucia Maria Laboissiere; Dalston, Regina Celia Reboucas.

    1983-01-01

    In its environmental monitoring program, NUCLEBRAS analyzes systematically environmental samples in order to determine the total alpha and beta activities. In most of these samples, 40 K is present in measurable quantities and can therefore be used for measuring beta activity since it is almost a 100% beta emitter. A method using a flame photometer for measuring the potassium concentration in water is presented. 5 refs., 28 figs., 25 tabs

  2. Acid-permanganate oxidation of potassium tetraphenylboron

    International Nuclear Information System (INIS)

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO 2 , highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO 4 /2.5M H 3 PO 4 solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO 2 (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation

  3. Potassium nutrition on lychee (Litchi chinensis Sonn

    Directory of Open Access Journals (Sweden)

    Aburto-González, C.A

    2016-01-01

    Full Text Available The lychee (Litchi chinensis Sonn is a potential alternative crop for areas with subtropical climate. In Mexico, cv. ‘Brewster’ dominates 98 % in terms of established surface; however, it has many problems to maintain stable production through its production cycles. Worldwide, yield per hectare ranges from 1 to 15 t. In Mexico, yields also fluctuate in that range. Researches who have worked with it agree that much of the problem that leads to low yields is the lack of a proper nutrition program. All existing information regarding the fertilization of this crop has been generated in other countries, mainly India, USA and Australia. Its need for K+ is higher compared to N and P. Since K+ is a nutrient that has an impact on yield and fruit quality, this paper review focuses on studies that have been done on potassium nutrition on lychee and concludes that more research is needed to take correct decision about the amount and time for potassium application.

  4. Effects of dietary magnesium on sodium-potassium pump action in the heart of rats

    International Nuclear Information System (INIS)

    Fischer, P.W.; Giroux, A.

    1987-01-01

    Sprague-Dawley rats were fed a basal AIN-76 diet containing 80, 200, 350, 500 or 650 mg of magnesium per kilogram of diet for 6 wk. Ventricular slices, as well as microsomal fractions, were prepared from the hearts and were used to determine sodium-potassium pump activity. Sodium-potassium pump activity was assessed in the microsomal membranes by determining the ouabain-inhibitable Na+, K+-ATPase activity and [ 3 H]ouabain binding, and in the ventricular slices, by determining ouabain-sensitive 86 Rb uptake under K+-free conditions. The ATPase activity increased with increasing dietary magnesium, so that in the hearts of those animals that were fed 500 and 650 mg of magnesium/kg diet, it was significantly greater than the activity in the hearts of the animals fed 80 and 200 mg/kg diet. Similarly, 86 Rb uptake by heart slices from rats fed 500 and 650 mg of magnesium/kg diet was significantly greater than the uptake by heart slices from animals fed 80 and 200 mg/kg diet. [ 3 H]Ouabain binding did not change with increasing dietary magnesium. Thus, magnesium deficiency appears to have no effect on the number of sodium-potassium pump sites, but does decrease the activity of the pump. It is suggested that this leads to an increase in intracellular Na+, resulting in a change in the membrane potential, and may contribute to the arrhythmias associated with magnesium deficiency

  5. Study on the Effect of Calcium and Potassium Spray on Date Bunch Fading Disorder

    Directory of Open Access Journals (Sweden)

    Hosein Shekofteh

    2017-09-01

    which impair plant cell wall. Stronger cell walls, induced by calcium, can avoid the invasion of diseases. Considering the important roles of calcium, calcium spray increased thetraits of date fruit and decreased bunch fading percentage. As an important element in photosynthesis, , potassium regulates the opening and closing of stomata, and therefore regulates CO2 uptake. Potassium plays a major role in the regulation of water in plants (osmo-regulation. Both uptake of water through plant roots and its loss through the stomata are affected by potassium. Moreover, protein and starch synthesis in plants requires potassium, so that the enzymes responsible for starch synthesis are activated by potassium. Potassium has also an important role in the activation of many growth related enzymes in plants. Results of the analysis of the studied soil showed that available potassium content in soil was less than plant requirement. So spraying of potassium sulfate could result in the improvement of date fruit traits and reduction of bunch fading disorder. Finally, combined spray of calcium and potassium caused a significant reduction in date bunch fading percentage. Conclusion: The results of the present study indicated that spray of calcium and potassium solely improved fruit traits and bunch fading disorder, but maximum values of fruit yield components and minimum bunch fading percentage obtained from foliar spray of calcium and potassium together.

  6. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  7. Influence of biochar application on potassium-solubilizing Bacillus mucilaginosus as potential biofertilizer.

    Science.gov (United States)

    Liu, Sainan; Tang, Wenzhu; Yang, Fan; Meng, Jun; Chen, Wenfu; Li, Xianzhen

    2017-01-02

    Biochar can enhance soil fertility to increase agricultural productivity, whereas its improvement in soil microbial activity is still unclear. In this article, the influence of biochar on the cell growth and the potassium-solubilizing activity of Bacillus mucilaginosus AS1153 was examined. The impact on cell growth is related to the biochar-derived feedstocks and the particle size of biochar. Both intrinsic features and inner component fraction can promote the cell growth of B. mucilaginosus AS1153. The potassium-solubilizing activity was increased by 80% when B. mucilaginosus was incubated in conjunction with the biochar derived from corn stover. The survival time of B. mucilaginosus also was prolonged by adsorption in biochar. The experimental results suggested that the biochar containing B. mucilaginosus could be used as a potential biofertilizer to sustain crop production.

  8. KCNQ4 channel activation by BMS-204352 and retigabine

    DEFF Research Database (Denmark)

    Schrøder, Rikke Louise K.; Jespersen, Thomas; Christophersen, P

    2001-01-01

    Activation of potassium channels generally reduces cellular excitability, making potassium channel openers potential drug candidates for the treatment of diseases related to hyperexcitabilty such as epilepsy, neuropathic pain, and neurodegeneration. Two compounds, BMS-204352 and retigabine, prese...

  9. Quick and enhanced degradation of bisphenol A by activation of potassium peroxymonosulfate to SO4rad - with Mn-doped BiFeO3 nanoparticles as a heterogeneous Fenton-like catalyst

    Science.gov (United States)

    Soltani, Tayyebeh; Tayyebi, Ahmad; Lee, Byeong-Kyu

    2018-05-01

    Mn-doped BiFeO3 magnetic nanoparticles (BFO MNPs), namely BiFe1-xMnxO3 (x = 0.05 and 0.10), were successfully synthesized using a simple and novel sol-gel method and then applied as a highly efficient peroxymonosulfate (KHSO5, PMS) activation catalyst for the fast degradation of bisphenol A (BPA) from aqueous solution. The strong PMS activation ability of 10% Mn-doped BFO MNPs without any metal leaching due to the simultaneous effects of iron and manganese ions in the production of radical sulfate (SO4rad -), caused complete BPA degradation in 15 min, which was much faster than that using combinations with H2O2. TOC was reduced to 33%, 23% and 13% by PMS activated with BFO, 5 and 10% Mn doped BFO, respectively, which are 2.1, 2.6 and 3.15-fold lower than that same nanoparticles activated with H2O2. The photocatalytic mechanism of BPA with the simultaneous effects of iron and manganese ions in Mn-doped BFO was explored. The addition of KBrO3 and NaNO3 salts into Mn-doped BFO/PMS system reduced the complete BPA degradation time to 10 min, whereas Na2CO3 and NaCl salt addition retarded it, because salt addition can generate radical species that are either more or less active than SO4rad -.

  10. The potassium channel KCa3.1 as new therapeutic target for the prevention of obliterative airway disease

    DEFF Research Database (Denmark)

    Hua, Xiaoqin; Deuse, Tobias; Chen, Yi-Je

    2013-01-01

    The calcium-activated potassium channel KCa3.1 is critically involved in T-cell activation as well as in the proliferation of smooth muscle cells and fibroblasts. We sought to investigate whether KCa3.1 contributes to the pathogenesis of obliterative airway disease (OAD) and whether knockout or p...

  11. Sodium and potassium concentrations in floral nectars in relation to ...

    African Journals Online (AJOL)

    Sodium and potassium concentrations have been measured in nectar from a variety of flowering plants visited by honey bees (Apis mellifera capensis). In 18 plant species the mean sodium concentration was 9,8 ± 1,4 mmol (± S.E.), and the mean potassium concentration was 18,7 ± 4,3 mmol. These results are compared ...

  12. 75 FR 63856 - Potassium Permanganate From China Determination

    Science.gov (United States)

    2010-10-18

    ... Permanganate From China Determination On the basis of the record \\1\\ developed in the subject five-year review... potassium permanganate from China would be likely to lead to continuation or recurrence of material injury... Commission are contained in USITC Publication 4183 (September 2010), entitled Potassium Permanganate from...

  13. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  14. Potassium bromate content of some baked breads sold in Kano ...

    African Journals Online (AJOL)

    Background: Potassium bromate is an additive used by some bakers to make the bread rise rapidly, create a good texture in the finished product and to give bulkiness to the dough. Objective: The main objective of this work was to assess the potassium bromate residues of some baked breads sold in some selected local ...

  15. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  16. Burning characteristics of potassium and lithium

    International Nuclear Information System (INIS)

    Sonntag, K.; Menzenhauer, P.; Peppler, W.

    1982-03-01

    A series of laboratory scale tests has been carried out in which lithium and potassium were burnt in trays in atmospheres of air and nitrogen. The test results are compared with those from literature. The maximum weight of metal in a test was 200 gram. The tests were carried out in a glove box which allowed the atomospheric composition to be varied to some extent. The initial temperature was varied to determine its effect on the course of the reaction. The temperature and the composition of the atmosphere were recorded during the tests. After each test the reaction products were weighed and chemically analysed. A good insight into the course of the reaction was obtained from the results. The main phases of the reaction are illustrated by a series of photographs. (orig.) [de

  17. Electron impact study of potassium hydroxide

    Science.gov (United States)

    Vuskovic, L.; Trajmar, S.

    1979-01-01

    An attempt is made to measure the sum of the elastic, rotational and vibrational scattering of electrons by KOH at low impact energies (5 to 20 eV) at angles from 10 to 120 deg. Energy loss spectra taken in the 0 to 18 eV range using an electron impact spectrometer are used to identify the species contributing to electric scattering. At temperatures between 300 and 500 C, only inelastic spectral features belonging to water are detected, while at temperatures from 500 to 800 C strong atomic K lines, indicative of molecular dissociation, and H2 energy loss features become prominent. No features attributable to KOH, the KOH dimer, O2 or potassium oxides were observed, due to the effects of the dissociation products, and it is concluded that another technique will have to be developed in order to measure electron scattering by KOH.

  18. Potassium-argon dating in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, I. (Australian National Univ., Canberra (Australia). Research School of Earth Sciences)

    1990-01-01

    The potassium-argon (K-Ar) isotopic dating method can provide precise and accurate numerical ages on suitable rocks, especially igneous rocks, over a wide range of age from less than 100,000 years old, with no older limit. Together with its variants, the {sup 40}Ar/{sup 39}Ar technique, the K-Ar method is very useful for the numerical age calibration of stratigraphic sequences, including those containing archaeological or fossil material, in cases where appropriate rocks for dating are present. This brief review of the basis of the K-Ar dating method and the underlying assumptions, concludes with an example of its application to the Plio-Pleistocene stratigraphic sequence in the Turkana Basin, northern Kenya. By dating alkali feldspars separated from pumice blocks in tuffaceous beds, excellent age control has been obtained for the wealth of vertebrate fossils, including hominids, as well as archaeological materials that has been found in the sequence. (author).

  19. Electron coincidence spectroscopy of sodium and potassium

    International Nuclear Information System (INIS)

    Frost, L.; Weigold, E.

    1982-03-01

    The Na 3s and K 4s electron momentum distributions have been obtained using the noncoplanar symmetric (e,2e) reaction at total energies of 800 eV and 1200 eV. They show excellent agreement with the results of plane wave impulse approximation calculations using Roothaan-Hartree-Fock functions, after small corrections are made for the finite angular resolution of the apparatus. The potassium valence s momentum profile is a little narrower than that for sodium, implying a correspondingly slightly larger spatial distribution of the outer valence electrons. The ratio between the (n-1)p and ns cross-sections at their respective maxima in q-space were measured to be 0.009 +- 0.003 and 0.019 +- 0.003 for Na and K respectively. These cross-section ratios are in agreement with the PWIA calculations

  20. Potassium Capture by Kaolin, Part 1: KOH

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2018-01-01

    -capture level. The effect of reaction temperature,K-concentration in the flue gas, and, thereby, molar ratio of K/(Al+Si) in reactants, gas residence time, and solid particle size on K-capture reaction was systematically investigated. Corresponding equilibrium calculations were conducted with FactSage 7.......0. The experimental results showed that kaolin reached almost full conversion to K-aluminosilicates under suspension-fired conditions at 1100–1450 °C for a residence time of 1.2 s and a particle size of D50 = 5.47 μm. The amount of potassium captured by kaolin generally followed the equilibrium at temperatures above...

  1. High dose potassium-nitrate chemical dosimeter

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.; Munoz, S.S.

    1982-01-01

    This dosimeter is used to control 10 kGY-order doses (1 Mrad). Nitrate suffers a radiolitic reduction phenomena, which is related to the given dose. The method to use potassium nitrate as dosimeter is described, as well as effects of the temperature of irradiation, pH, nitrate concentration and post-irradiation stability. Nitrate powder was irradiated at a Semi-Industrial Plant, at Centro Atomico Ezeiza, and also in a Gammacell-220 irradiator. The dose rates used were 2,60 and 1,80 KGY/hour, and the given doses varied between 1,0 and 150 KGY. The uncertainty was +-3% in all the range. (author) [es

  2. Formation and structural characterization of potassium titanates and the potassium ion exchange property

    International Nuclear Information System (INIS)

    Wang Qiang; Guo Zhanhu; Chung, Jong Shik

    2009-01-01

    In the present work, K 2 Ti 2 O 5 , K 2 Ti 4 O 9 and K 2 Ti 6 O 13 are synthesized by solid state method. Their structures and morphologies are characterized by X-ray diffraction, Raman spectra and scanning electron microscopy. The binding energies of K, Ti and O in potassium titanates were then evaluated by X-ray photoelectron spectroscopy and compared with those in K/TiO 2 . Finally the corresponding K ion exchange properties are investigated by synthesizing NO oxidation catalysts with Co(NO 3 ) 2 precursor. It is found that the binding energy of K in K 2 Ti 2 O 5 is much higher than those in K 2 Ti 4 O 9 and K 2 Ti 6 O 13 , and because of which, it shows quite different catalytic performances. Compared with other potassium titanates, the K in K 2 Ti 2 O 5 is much easier to be exchanged out.

  3. Potassium recycling pathways in the human cochlea.

    Science.gov (United States)

    Weber, P C; Cunningham, C D; Schulte, B A

    2001-07-01

    Potential pathways for recycling potassium (K+) used in the maintenance of inner ear electrochemical gradients have been elucidated in animal models. However, little is known about K+ transport in the human cochlea. This study was designed to characterize putative K+ recycling pathways in the human ear and to determine whether observations from animal models can be extrapolated to humans. A prospective laboratory study using an immunohistochemical approach to analyze the distribution of key ion transport mediators in the human cochlea. Human temporal bones were fixed in situ within 1 to 6 hours of death and subsequently harvested at autopsy. Decalcification was accomplished with the aid of microwaving. Immunohistochemical staining was then performed to define the presence and cell type-specific distribution of Na,K-ATPase, sodium-potassium-chloride cotransporter (NKCC), and carbonic anhydrase (CA) in the inner ear. Staining patterns visualized in the human cochlea closely paralleled those seen in other species. Anti-Na,K-ATPase stained strongly the basolateral plasma membrane of strial marginal cells and nerve endings underlying hair cells. This antibody also localized Na,K-ATPase to type II, type IV, and type V fibrocytes in the spiral ligament and in limbal fibrocytes. NKCC was present in the basolateral membrane of strial marginal cells as well as in type II, type V, and limbal fibrocytes. Immunoreactive carbonic anhydrase was present in type I and type III fibrocytes and in epithelial cells lining Reissner's membrane and the spiral prominence. The distribution of several major ion transport proteins in the human cochlea is similar but not identical to that described in various rodent models. These results support the presence of a complex system for recycling and regulating K+ homeostasis in the human cochlea, similar to that described in other mammalian species.

  4. Electrochemical study in molten potassium thiocyanate; Etude electrochimique dans le thiocyanate de potassium fondu

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    We have studied in this work the electrochemical properties of molten potassium thiocyanate. The melting point of this salt is 173 deg C and we have chosen to work at 195 deg C. The molten salted is dissociated into K{sup +} and SCN{sup -} ions; since the K{sup +} ions are very difficult to reduce it is the oxido-reduction reaction of the SCN{sup -} ion which limits the electro-active zone of the solvent. We have shown that SCN{sup -} behaves as an addition compound of S{sup 0} and CN{sup -}.analysis of the products formed during the oxidation and the coulometric reduction of the bath shows that the electrochemical reactions which limit the electro-active zone of the solvent are the following: SCN{sup -} + 2 e {yields} S{sup 2-} + CN{sup -} SCN{sup -} + 2 e {yields} S{down_arrow} + 1/2 (CN){sup -}{sub 2} We have shown that it is possible also to carry out the chemical oxidation of the thiocyanate by introducing an oxidising cation such as Fe{sup 3+} or Cu{sup 2+}. This reaction leads to the same chemical species as the electrochemical oxidation. With respect to the Ag{down_arrow} / Ag 0.1 M electrode taken as reference, the electro-active limits are the following: from - 1.050 V to + 0.750 V for a platinum electrode from - 1.350 V to + 0.050 V for a mercury drop electrode. We have studied the electrochemical behaviour of a certain number of ions in the molten salt; by plotting the intensity-potential curves it has been possible to determine the half-wave potentials of several cations: Pb{sup 2+}, Sn{sup 2+}, Fe{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, Hg{sup 2+}{sub 2}, Hg{sup 2+}, Cu{sup +}, Co{sup 2+}, Ni{sup 2+}, Cr{sup 3+}. A comparison of the potential values found in the thiocyanate with those which are already known for other molten solvents has made it possible for us to find parallels between the properties of the thiocyanate and those of certain salts such as molten chlorides or nitrates. Thus the complexing properties of SCN{sup -} with respect to Cu

  5. Reaction of lithium, sodium and potassium polyphosphates with potassium permanganate at elevated temperatures

    International Nuclear Information System (INIS)

    Paderova, L.V.; Onuchina, T.V.; Kochergin, V.P.

    1996-01-01

    A study was made on destruction of molten polyphosphates of alkaline metals by potassium permanganate during change of KMnO 4 content, test time and temperature. Ortho-, di, tri- and tetraphosphate-anions, as well as manganese compounds with different oxidation degree were revealed in products of component interaction. Empirical equations of the dependence of the value of average molecular mass on change of melt temperature were derived. 11 refs.; 2 figs.; 2 tabs

  6. Synthesis of porous poly(acrylamide hydrogels using calcium carbonate and its application for slow release of potassium nitrate

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Porous poly(acrylamide was synthesized using calcium carbonate microparticles and subsequent acid treatment to remove the calcium carbonate. Methylenebisacrylamide and ammonium persulfate/sodium metabisulfite were used as crosslinking agent and redox initiator, respectively. The porous structure of resulted hydrogels was confirmed using SEM micrographs. The effect of methylenebisacrylamide concentration and calcium carbonate amount on the swelling of the hydrogels was investigated. The results showed that the effect of methylenebisacrylamide and calcium carbonate variables on the swelling is reverse. The hydrogels were subsequently utilized for the loading of potassium nitrate. Potassium nitrate as active agent was loaded into hydrogels and subsequently the release of this active agent was investigated. In these series of investigation, the effect of content of loading, methylenebisacrylamide and calcium carbonate amount on the release of potassium nitrate from hydrogels was investigated.

  7. Trk2 Potassium Transport System in Streptococcus mutans and Its Role in Potassium Homeostasis, Biofilm Formation, and Stress Tolerance

    Science.gov (United States)

    Binepal, Gursonika; Gill, Kamal; Crowley, Paula; Cordova, Martha; Brady, L. Jeannine; Senadheera, Dilani B.

    2016-01-01

    ABSTRACT Potassium (K+) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K+ and a variety of K+ transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K+ acquisition in Streptococcus mutans and the importance of K+ homeostasis for its virulence attributes. The S. mutans genome harbors four putative K+ transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K+ cotransporter (GlnQHMP), and a channel-like K+ transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K+] less than 5 mM eliminated biofilm formation in S. mutans. The functionality of the Trk2 system was confirmed by complementing an Escherichia coli TK2420 mutant strain, which resulted in significant K+ accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K+-dependent cellular response of S. mutans to environment stresses. IMPORTANCE Biofilm formation and stress tolerance are important virulence properties of caries-causing Streptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment of S. mutans. K+ is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K+ transporters in S. mutans. We identified the most important system for K+ homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K+ for the activity of biofilm-forming enzymes, which explains why such high levels of K+ would favor biofilm formation. PMID:26811321

  8. The role of potassium and other ions in the control of aldosterone synthesis

    International Nuclear Information System (INIS)

    Kenyon, C.J.; Shepherd, R.M.; Fraser, R.; Pediani, J.D.; Elder, H.Y.

    1991-01-01

    Fast and slow K+ efflux components, independently regulated by angiotensin II (AII), have been identified in bovine adrenocortical cells. The authors have further investigated the role of potassium in the control of aldosterone synthesis in two ways. Firstly, isotopic tracers, in conjunction with channel modulators, have been used to study the interrelationship of K+ and Ca2+ in the control of AII-stimulated aldosterone synthesis. Secondly, electron probe X-ray microanalysis (EPXMA) was used to quantify potassium, sodium, chlorine and phosphorous in control and AII-stimulated cells. The effects of verapamil on 43K efflux were measured at two stages during AII stimulation. During the first ten minutes of treatment, when efflux via the fast component predominates, AII and verapamil both slowed efflux and their effects were additive. If verapamil was added later, at the time when efflux by the fast component appeared exhausted and the stimulatory effect of AII on the slow efflux component was apparent, it again slowed efflux. These data suggest that verapamil prevents calcium-gated K+ channels from opening by blocking Ca2+ channels. However, verapamil had no effect on AII-stimulated calcium efflux. In addition to blocking Ca2+ channels, verapamil may directly inhibit potassium efflux. EPXMA showed a bimodal distribution of potassium concentrations in control cells. However, in cells stimulated with AII for five minutes, the mean potassium content was less than in controls and was not bimodally distributed. Sodium content was increased by AII-treatment, chlorine was lowered and phosphorus remained unchanged. The data confirm previous observations that AII inhibits Na+/K+ ATPase activity

  9. Influência da adubação potássica na produção e na atividade de enzimas pós-colheita em escarola (Cichorium endivia L. / Influence of potassium fertilization in endive (Cichorium endiviaL. production and enzyme post-harvest activity

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Pavinato

    2009-12-01

    Full Text Available ResumoO potássio é um dos nutrientes mais abundantes no citoplasma das células vegetais, e sua alta contribuição no metabolismo das plantas está relacionada ao controle osmótico das células e à ativação de inúmeras enzimas. Sendo de conhecimento que a produção e manutenção da qualidade pós-colheita de sementes, frutos e hortaliças depende da boa nutrição potássica, o presente trabalho teve por objetivo avaliar o efeito de doses de potássio na produção e qualidade pós-colheita de escarola. A escarola, variedade Malan, foi cultivada em vasos com capacidade de 10 kg de solo, em casa de vegetação, na Fazenda Experimental Lajeado, Departamento de Produção Vegetal/Horticultura da FCA-UNESP, Botucatu-SP. Os tratamentos consistiram em cinco doses de potássio, correspondentes a 0, 75, 150, 300 e 600 kg ha-1 de K2O, aplicadas 1/3 no plantio e o restante em três coberturas (8, 16 e 28 dias após o transplante. Por ocasião do transplante, aplicou-se a adubação nitrogenada e fosfatada recomendadas para a cultura. Aos 35 dias após o transplante, as plantas foram colhidas e se efetuaram as avaliações de diâmetro de cabeça, massa fresca e área foliar. Ainda utilizando plantas frescas, determinou-se a atividade das enzimas polifenol oxidase e peroxidase. Em plantas secas, em estufa a 60°C por 72 h, foram determinadas a massa seca, o teor de K no tecido e o acúmulo total de proteínas. De maneira geral, a aplicação de 150 kg ha-1 de K2O, correspondente à dose recomendada pelos boletins de adubação para a escarola, resultou em máxima produção e qualidade pós-colheita, não respondendo a doses mais elevadas.AbstractPotassium is one of the nutrients that is present in higher levels in the cytoplasm of plant cells, and its contribution in plant metabolism is related to cell osmotic regulation and the activation of many enzymes. Given the knowledge that production and post-harvest quality maintenance of seeds, fruit

  10. Impact of Potassium Foliar Application in Alleviating the Harmful Effects of Salinity in Spinach

    Directory of Open Access Journals (Sweden)

    Amirhooshang jalali

    2017-02-01

    spinach with foliar application of K and 4 dS m-1 salinity was equaled 35300 kg ha-1 which had not significantly different from control treatment. Foliar application of K and 8 dS m-1 salinity, and also 8 dS m-1 salinity and without foliar potassium, had 20.2 and 38% yield reduction, respectively. In salinity 2.1, 4 and 8 dS m-1 plants m-2 were 40, 38.1 and 29.1, respectively. Leaf dry matter percent was improved with foliar application of K in 8 dS m-1 salinity. Effect of potassium, as modulators of salt in spinach, by researches of Shannon and Greve (24 and Kaya et al (14 have also been emphasized. Spinach leaves number was from 11.4 to 16.7 in different treatments. Foliar application of K in 4 and 8 dS m-1 salt treatment was increase in the number of leaves. This increased in treatment of 4 and 8 dS m-1 was 15.3 and 28.9 percent, respectively. In both saline treatments of 4 and 8 dS m-1, leaf length was positively affected by the application of potassium but in salinity 4 dS m-1 (unlike the eight salinity dS m-1 leaf width was not affected by the potassium spraying. The ability of plants to maintain intracellular potassium to sodium ratio leaves in certain extent is necessary for a salt tolerance. In fact, the application of potassium in salinity conditions by increasing the concentration of the K in organs is a kind of acclimation to the salt stress and activates repair mechanisms of the damage against of stress agent. The length of tail leaves in 4 dS m-1 salt was not significantly affected by the spraying of potassium while in 8 dS m-1 salinity, spraying potassium led to an increase of 28 percent in length of leaf tail. The effect of K application on the dry matter content in the 8 dS m-1 salinity was statistically significant. Potassium is the most abundant cation-forming in many plants (typically more than 10% of dry weight and less than 10 grams per kg-1 of dry weight appear deficiency symptoms in most plants. Conclusion: According to the results, in salinity

  11. Chemical effects of radiative thermal neutron capture. Part 5.- Potassium bromide

    International Nuclear Information System (INIS)

    Maddock, A. G.; Val Cob, M. del

    1961-01-01

    By the use of the bromine atom exchanging reagent CHBr: CHBr, it has been shown that the specific activity of the atomic bromine in pile-irradiated potassium bromide is greater than that of the total bromine. This result suggests that the inactive radiolytic bromine atoms and the ejected radioactive atoms occupy different defect sites, the latter most likely finding interstitial positrons. (Author) 6 refs

  12. A Facile Conversion of Alcohols to Esters Mediated by Potassium Ferrate

    Directory of Open Access Journals (Sweden)

    M. Kooti

    2008-01-01

    Full Text Available Potassium ferrate in the presence of copper(II sulfate pentahydrate can convert 1-phenyl ethanol, 4-chloro-1-phenyl ethanol and 2-phenyl ethanol into ester products with good or excellent yields.The reactions have been carried out in n-hexane at room temprature.The effect of other metal salts, as activators, have been also examined instead of copper sulfate.

  13. Interomolecular interactions in diluted solutions of potassium iodocuprates (1) in dimethyl ether of diethylene glycol

    International Nuclear Information System (INIS)

    Gorodinskaya, Eh.Ya.; Mel'nikova, N.B.; Yurin, K.V.

    1991-01-01

    The role of donor solvent in the formation of potassium mononuclear iodocuprates (1) in the system CuI-KI-dimethyl ether of diethylene glycol has been considerd. The calculated values of enthalpy, free energy and entropy of viscous flow activation in the range of temperatures 298-318 K for the solutions testify to decomposition of the solvent structure. Negative deviations of mole volumes from the additivity rule characterized strong molecular interaction

  14. Chemical effects of radiative thermal neutron capture. Part 5.- Potassium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Maddock, A G; Val Cob, M del

    1961-07-01

    By the use of the bromine atom exchanging reagent CHBr: CHBr, it has been shown that the specific activity of the atomic bromine in pile-irradiated potassium bromide is greater than that of the total bromine. This result suggests that the inactive radiolytic bromine atoms and the ejected radioactive atoms occupy different defect sites, the latter most likely finding interstitial positrons. (Author) 6 refs.

  15. Protective roles for potassium SK/KCa2 channels in microglia and neurons

    Directory of Open Access Journals (Sweden)

    Amalia M Dolga

    2012-11-01

    Full Text Available New concepts on potassium channel function in neuroinflammation suggest that they regulate mechanisms of microglial activation, including intracellular calcium homeostasis, morphological alterations, pro-inflammatory cytokine release, antigen presentation, and phagocytosis. Although little is known about voltage independent potassium channels in microglia, special attention emerges on small (SK/KCNN1-3/KCa2 and intermediate (IK/KCNN4/KCa3.1-conductance calcium-activated potassium channels as regulators of microglial activation in the field of research on neuroinflammation and neurodegeneration. In particular, recent findings suggested that SK/KCa2 channels, by regulating calcium homeostasis, may elicit a dual mechanism of action with protective properties in neurons and inhibition of inflammatory responses in microglia. Thus, modulating SK/KCa2 channels and calcium signaling may provide novel therapeutic strategies in neurological disorders, where neuronal cell death and inflammatory responses concomitantly contribute to disease progression. Here, we review the particular role of SK/KCa2 channels for [Ca2+]i regulation in microglia and neurons, and we discuss the potential impact for further experimental approaches addressing novel therapeutic strategies in neurological diseases, where neuronal cell death and neuroinflammatory processes are prominent.

  16. Microinjection study on potassium transport of rat kidney

    International Nuclear Information System (INIS)

    Miyamoto, Makoto

    1978-01-01

    Wister rate were divided into the following four groups. (A) control group (B) high-potassium diet group (C) low-potassium diet group (D) nephron population reduction (N.P.R.) group. Microinjection of the artificial solutions containing both 86 Rb and 3 H-inulin were performed into the proximal and distal convoluted tubules as well as cortical peritubular capillaries in rats undergoing mannitol diuresis. Excretory patterns of these substances were analyzed in successive urine samples. 3 H-inulin is entirely recovered in the urine of the experimental kidney following the injection into the proximal and distal tubules. 86 Rb is an adequate tracer for potassium and is absorbed into the potassium pool from either proximal tubular injections or peritubular capillaries. 86 Rb excreted with a time course similar to that of 3 H-inulin is termed as 'direct recovery' and that excreted more slowly, 'delayed recovery'. The 86 Rb recoveries which were obtained after proximal injections were independent of the injection site and averaged 9%. Secretion of 86 Rb into the urine was stimulate during enhanced K secretion and decreased during reduced K secretion along the distal nephron. Distal tubular injections gave 100% direct recovery in control, high-K diet, and N.P.R. rats. It was apparent that the 86 Rb recovery was significantly reduced, although not delayed, in animals deprived of dietary potassium for several weeks. At the collecting duct, the extensive net potassium reabsorption is observed in potassium depleted rats, whereas K absorption might be reduced or even secretion is seemingly taking place in potassium loading rats. In conclution, distal convolution and collecting duct play the major role in the regulation of urinary potassium excretion. (auth.)

  17. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  18. Effects of Long-term Fertilization on Potassium Fixation Capacity in Brown Soil

    Science.gov (United States)

    Li, Na; Guo, Chunlei; Wang, Yue; Gao, Tianyi; Yang, Jinfeng; Han, Xiaori

    2018-01-01

    This study concentrated on the research of features of fixation. The objective of this study was to provide theoretical foundation of rational application of potassium fertilizer along with improving fertilizer availability ratio. A 32 years long-term experiment was conducted to evaluate the effects of fertilizer application on potassium changes and the factors affecting K fixation on brown soil by simulation in laboratory. When the concentration of exogenous potassium was in range of 400∼4000 mg·kg-1, potassium fixation capacity increased along with the rise of concentration of exogenous potassium, whereas K fixation rate reduced; Compared with no-potassium fertilizer, application of potassium fertilizer and organic fertilizer reduced soil potassium fixation capacity. Potassium rate and fixation-release of potassium character in soil should be taken into comprehensive consideration for rational fertilization to maintain or improve soil fertility for increasing potassium fertilizers efficiency in agriculture.

  19. Dielectric properties of a potassium nitrate–ammonium nitrate system

    OpenAIRE

    Alexey Yu. Milinskiy; Anton A. Antonov

    2015-01-01

    Potassium nitrate has a rectangular hysteresis loop and is thought to be a promising material for non-volatile ferroelectric memory. However, its polar phase is observed in a narrow temperature range. This paper deals with an effect of ammonium nitrate NH4NO3 on the dielectric properties of potassium nitrate. Thermal dependencies of the linear dielectric permittivity ε and the third-harmonic coefficient g3 for potassium nitrate and polycrystalline binary (KNO3)1–x(NH4NO3)x system (x = 0.025, ...

  20. Potassium ions intercalated into g-C3N4-modified TiO2 nanobelts for the enhancement of photocatalytic hydrogen evolution activity under visible-light irradiation

    Science.gov (United States)

    Ma, Jian; Zhou, Wei; Tan, Xin; Yu, Tao

    2018-05-01

    Solar-to-chemical energy conversion is a challenging photochemical reaction for renewable energy storage. In recent decades, photocatalytic H2 evolution has been studied extensively. TiO2 is a well-established semiconductor in the field of photocatalytic H2 production; however, its low efficiency for solar energy utilization, and high photocarrier recombination rate, restrict its photocatalytic efficiency. Here, a series of K-intercalated g-C3N4-modified TiO2 nanobelts (TCN–Kx) with different dosages of K atoms were fabricated using a hydrothermal method followed by a calcination process. XRD, TEM and XPS tests indicate that a tight interfacial connection is formed between K–g-C3N4 and the TiO2 nanobelts. DFT calculations indicated that K dopants prefer to be at the interlayer sites of g-C3N4, suggesting increased charge transfer efficiency. The H2 production efficiency of the TCN–Kx composite materials from water splitting under visible-light irradiation was clearly improved. Steady fluorescence spectroscopy and photocurrent measurements confirmed that the improvement in photocatalytic H2 production activity was due to the superior charge separation and electron transfer efficiency of TCN–Kx composite materials.

  1. Thermal decomposition of potassium metaperiodate doped with trivalent ions

    Energy Technology Data Exchange (ETDEWEB)

    Muraleedharan, K., E-mail: kmuralika@gmail.com [Department of Chemistry, University of Calicut, Calicut, Kerala 673 635 (India); Kannan, M.P.; Gangadevi, T. [Department of Chemistry, University of Calicut, Calicut, Kerala 673 635 (India)

    2010-04-20

    The kinetics of isothermal decomposition of potassium metaperiodate (KIO{sub 4}), doped with phosphate and aluminium has been studied by thermogravimetry (TG). We introduced a custom-made thermobalance that is able to record weight decrease with time under pure isothermal conditions. The decomposition proceeds mainly through two stages: an acceleratory stages up to {alpha} = 0.50 and the decay stage beyond. The decomposition data for aluminium and phosphate doped KIO{sub 4} were found to be best described by the Prout-Tompkins equation. Separate kinetic analyses of the {alpha}-t data corresponding to the acceleratory region and decay region showed that the acceleratory stage gave the best fit with Prout-Tompkins equation itself whereas the decay stage fitted better to the contracting area equation. The rate of decomposition of phosphate doped KIO{sub 4} increases approximately linearly with an increase in the dopant concentration. In the case of aluminium doped KIO{sub 4}, the rate passes through a maximum with increase in the dopant concentration. The {alpha}-t data of pure and doped KIO{sub 4} were also subjected to isoconversional studies for the determination of activation energy values. Doping did not change the activation energy of the reaction. The results favour an electron-transfer mechanism for the isothermal decomposition of KIO{sub 4}, agreeing well with our earlier observations.

  2. Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Dobešová, Zdenka; Behuliak, Michal; Kuneš, Jaroslav; Vaněčková, Ivana

    2011-01-01

    Roč. 202, č. 1 (2011), s. 29-38 ISSN 1748-1708 R&D Projects: GA ČR(CZ) GA305/08/0139; GA ČR(CZ) GA305/09/0336; GA AV ČR(CZ) IAA500110902; GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : dietary potassium * nitric oxide * prostacyclin * calcium-activated potassium channels Subject RIV: ED - Physiology Impact factor: 3.090, year: 2011

  3. Dietary Intake and Sources of Potassium and the Relationship to Dietary Sodium in a Sample of Australian Pre-School Children

    Directory of Open Access Journals (Sweden)

    Siobhan A. O’Halloran

    2016-08-01

    Full Text Available The aim of this study was to determine the intake and food sources of potassium and the molar sodium:potassium (Na:K ratio in a sample of Australian pre-school children. Mothers provided dietary recalls of their 3.5 years old children (previous participants of Melbourne Infant Feeding Activity and Nutrition Trial. The average daily potassium intake, the contribution of food groups to daily potassium intake, the Na:K ratio, and daily serves of fruit, dairy, and vegetables, were assessed via three unscheduled 24 h dietary recalls. The sample included 251 Australian children (125 male, mean age 3.5 (0.19 (SD years. Mean potassium intake was 1618 (267 mg/day, the Na:K ratio was 1.47 (0.5 and 54% of children did not meet the Australian recommended adequate intake (AI of 2000 mg/day for potassium. Main food sources of potassium were milk (27%, fruit (19%, and vegetable (14% products/dishes. Food groups with the highest Na:K ratio were processed meats (7.8, white bread/rolls (6.0, and savoury sauces and condiments (5.4. Children had a mean intake of 1.4 (0.75 serves of fruit, 1.4 (0.72 dairy, and 0.52 (0.32 serves of vegetables per day. The majority of children had potassium intakes below the recommended AI. The Na:K ratio exceeded the recommended level of 1 and the average intake of vegetables was 2 serves/day below the recommended 2.5 serves/day and only 20% of recommended intake. An increase in vegetable consumption in pre-school children is recommended to increase dietary potassium and has the potential to decrease the Na:K ratio which is likely to have long-term health benefits.

  4. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  5. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  6. Discovery of potassium salts deposits in colombia

    International Nuclear Information System (INIS)

    Gonzalez Oviedo Leopoldo; Espinosa Baquero Armando

    2012-01-01

    The first potassium salts ores found in Colombia are presented and described; they are located in the Santander province, in La Mesa de los Santos area, between Los Santos village and the rio Chicamocha Canyon. From a geological point of view, the mineralization is associated to the sediments of the Paja Formation, Early Cretaceous in age, and is located near the base of the formation. In the study area the main structure is the Villanueva syncline which involves, from bottom to top, Los Santos, Rosablanca, Paja, Tablazo and Simiti formations.The mineralization consists of small veins where the main mineral is singenite (K 2 Ca[SO4] 2- H 2 O) with small amounts of carbonates and accidental minerals. In the host rock, minerals like langbeinite (K 2 Mg 2 [SO4] 3) andrinneite (K 3 Na[Fe,Cl] 6) are present; they show that the rock was formed in an evaporitic environment and that detailed studies of that sequence may lead to the discovery of other mineralizations of economic interest.

  7. Potassium-phosphorus relationships in cotton (gossypium hirsutum L.) as affected by potassium nutrition

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Ashraf, M.

    2007-01-01

    Field studies were undertaken to determine the interrelationship between potassium (K+) concentration in various organs of plant and phosphorus (P) content as influenced by K-nutrition in cotton. The experiment was conducted on Miani soil series silt loam and classified as Calcaric Cambisols, fine silty, mixed Hyperthermic Fluventic Haplocambids. The treatments consisted .of (a) four cotton (Gossypium hirsutum L.) cultivars (CI.M-448, CIM-IIOO, Karishma, S-12); and (b) four potassium fertilizer doses (0, 62.5, 125.0, 250.0 kg K ha-l). The design of experiment was split plot (main: cultivars, sub-plot: K-doses). The plant samples were collected at five stages of growth, i.e., first flower bud., first flower, peak flowering, first boll split and maturity. The various parts of plants were analyzed for phosphorus and potassium concentration at various stages of growth. Phosphorus concentration in leaves, stems, burs, seed and lint decreased with concurrent increase in K-doses. Crop maintained 0.22% phosphorus concentration in leaf tissues at first flower bud and dropped to 0.11% at maturity. Cultivars differed greatly amongst themselves in terms of maintaining P content in their different parts. Averaged across K-doses, cv. CIM-448 maintained the highest P content in all parts than other cultivars. There was a negative and significant correlation co-efficient between K and P concentration in various parts of the plant. The study demonstrated antagonistic interaction between K+ and P in cotton plant under irrigated conditions. (author)

  8. Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Guoqing; Kusakabe, Katsuki; Yamasaki, Satoko [Department of Living Environmental Science, Fukuoka Women' s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529 (Japan)

    2009-04-15

    Transesterification of waste cooking oil with methanol, using tri-potassium phosphate as a solid catalyst, was investigated. Tri-potassium phosphate shows high catalytic properties for the transesterification reaction, compared to CaO and tri-sodium phosphate. Transesterification of waste cooking oil required approximately two times more solid catalyst than transesterification of sunflower oil. The fatty acid methyl ester (FAME) yield reached 97.3% when the transesterification was performed with a catalyst concentration of 4 wt.% at 60 C for 120 min. After regeneration of the used catalyst with aqueous KOH solution, the FAME yield recovered to 88%. Addition of a co-solvent changed the reaction state from three-phase to two-phase, but reduced the FAME yield, contrary to the results with homogeneous catalysts. The catalyst particles were easily agglomerated by the glycerol drops derived from the homogeneous liquid in the presence of co-solvents, reducing the catalytic activity. (author)

  9. Photocatalytic decomposition of diclofenac potassium using silver-modified TiO2 thin films

    International Nuclear Information System (INIS)

    Cavalheiro, A.A.; Bruno, J.C.; Saeki, M.J.; Valente, J.P.S.; Florentino, A.O.

    2008-01-01

    The effects of silver insertion on the TiO 2 photocatalytic activity for the degradation of diclofenac potassium were reported here. Techniques such as X-ray diffraction, scanning electron microscopy and UV-Vis spectroscopy were used to comprehend the relation between structure and properties of the silver-modified TiO 2 thin films obtained by the sol-gel method. The lattice parameters and the crystallinity of TiO 2 anatase phase were affected by inserted silver, and the film thickness increased about 4 nm for each 1 wt.% of silver inserted. The degradation of diclofenac potassium and by-products reached an efficiency of 4.6 mg C W -1 when the material was modified with silver. Although the first step of degradation involves only the photochemical process related to the loss of the chlorine and hydrogen atoms. This cyclization reaction leads to the formation of intermediate, which degradation is facilitated by the modified material

  10. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    Science.gov (United States)

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  11. Study on the poisoning effect-of non-vanadium catalysts by potassium

    Science.gov (United States)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  12. Lactococcin G is a potassium ion-conducting, two-component bacteriocin.

    Science.gov (United States)

    Moll, G; Ubbink-Kok, T; Hildeng-Hauge, H; Nissen-Meyer, J; Nes, I F; Konings, W N; Driessen, A J

    1996-02-01

    Lactococcin G is a novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, termed alpha and beta. Peptide synthesis of the alpha and beta peptides yielded biologically active lactococcin G, which was used in mode-of-action studies on sensitive cells of Lactococcus lactis. Approximately equivalent amounts of both peptides were required for optimal bactericidal effect. No effect was observed with either the alpha or beta peptide in the absence of the complementary peptide. The combination of alpha and beta peptides (lactococcin G) dissipates the membrane potential (delta omega), and as a consequence cells release alpha-aminoisobutyrate, a non-metabolizable alanine analog that is accumulated through a proton motive-force dependent mechanism. In addition, the cellular ATP level is dramatically reduced, which results in a drastic decrease of the ATP-driven glutamate uptake. Lactococcin G does not form a proton-conducting pore, as it has no effect on the transmembrane pH gradient. Dissipation of the membrane potential by uncouplers causes a slow release of potassium (rubidium) ions. However, rapid release of potassium was observed in the presence of lactococcin G. These data suggest that the bactericidal effect of lactococcin G is due to the formation of potassium-selective channels by the alpha and beta peptides in the target bacterial membrane.

  13. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate

    National Research Council Canada - National Science Library

    Institute of Medicine (U.S.). Panel on Dietary Reference Intakes for Electrolytes and Water

    2005-01-01

    .... This new report, the sixth in a series of reports presenting dietary reference values for the intakes of nutrients by Americans and Canadians, establishes nutrient recommendations on water, potassium...

  14. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG; Zhang, Jianqin; Sun, Xun; Zhang, Qiang; Zhao, Xian; Zhang, Xixiang

    2013-01-01

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property

  15. Synthesis and derivatographic investigation of potassium octacyanotungstate (4)

    International Nuclear Information System (INIS)

    Kovbashin, V.I.; Dovgej, V.V.; Chernyak, B.I.

    1983-01-01

    The interaction between the rated quantities of potassium cyanide and WO(OH) 3 hydroxide resulted in preparation of potassium dioxytetracyanotungstate (4), K 4 [WO 2 (CN) 4 ]X6H 2 O. The latter, while interacting with a saturated potassium cyanide solution in a carbon dioxide flow transforms to potassium octacyanotungstate (4). The process of K 4 [W(CH) 8 ]x2H 2 O compound thermolysis in argon atmosphere is studied. It is found that, after dehydration of the complex, there occurs thermal transformation of K 4 [W(CN) 8 ] to K 3 [W(CN) 7 ] and then to K 3 [W(CN) 6 ]. The thermolysis final product is tungsten carbide WC

  16. Effect of Metformin on Potassium-adapted and Non- adapted ...

    African Journals Online (AJOL)

    determined. Results: The blood glucose of the potassium-adapted diabetic group was not significantly reduced on treatment ... whom dietary carbohydrate restriction has not controlled .... significantly different from the metformin-treated group.

  17. Studies on potassium chlorate as a primary oxidimetric reagent.

    Science.gov (United States)

    Murty, C R; Rao, G G

    1972-01-01

    Conditions have been established for the use of potassium chlorate as a primary oxidizing agent in the direct titration of vanadium(III), tin(II) and titanium(III) with visual or potentiometric end-points.

  18. Effects of different cavity‑disinfectants and potassium titanyl ...

    African Journals Online (AJOL)

    disinfectants and potassium titanyl phosphate (KTP) laser on microtensile bond strength to primary dentin. Chlorhexidine (CHX), propolis (PRO), ozonated water (OW), gaseous ozone (OG) and KTP laser were used for this purpose. Methodology: ...

  19. Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junfang [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia); Rivero, Mayela [CSIRO Petroleum, PO Box 1130, Bentley, Western Australia, 6102 (Australia); Choi, S K [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia)

    2007-02-14

    We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.

  20. Estimation of Total Body Fat from Potassium-40 Content

    International Nuclear Information System (INIS)

    Taha Mohamed Taha Ahmed, T.M.T.

    2010-01-01

    This paper concerns on estimation of total body fat from potassium 40 content using total body counting technique. The work performed using fast scan whole body counter. Calibration of that system for K-40 was carried out under assumption that uniformity distribution of radioactivity of potassium was distributed in 10 polyethylene bottles phantom. Different body sizes were represented by 2, 4, 6, 8 and 10 polyethylene bottles; each bottle has a volume of 0.04 m3. The counting efficiency for each body size was determined. Lean body weight (LBW) was calculated for ten males and ten females using appropriate mathematical equation. Total Body Potassium, TBK for the same selected group was measured using whole body counter. A mathematical relationship between lean body weight and potassium content was deduced .Fat contents for some individuals were calculated and weight/height ratio was indicated for fatness.

  1. Intracellular mediators of potassium-induced aldosterone secretion

    International Nuclear Information System (INIS)

    Ganguly, A.; Chiou, S.; Davis, J.S.

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) in 3 H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium

  2. Inhibition of large conductance calcium-dependent potassium ...

    African Journals Online (AJOL)

    conductance, calcium and voltage- dependent potassium (BKCa) channels thereby promoting vasoconstriction. Our results show that the Rho-kinase inhibitor, Y-27632, induced concentration-dependent relaxation in rat mesenteric artery.

  3. Effect of phosphorus and potassium on seed production of berseem

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... 1Department of Agronomy, Khyber Pukhtunkhwa Agricultural University, Peshawar, Pakistan. ... Key words: Berseem, seed production, phosphorus, potassium. ... important forage legumes in Pakistan and India which belongs ...

  4. Potassium Ferrate: A Novel Chemical Warfare Agent Decontaminant

    National Research Council Canada - National Science Library

    Greene, Russell; von Fahnestock, F. M; Monzyk, Bruce

    2004-01-01

    ..., and/or unsatisfactory CWA destruction efficiencies. Potassium ferrate (K2FeO4) addresses all of these issues through its high oxidation potential, stable shelf life, and benign reduced state, namely iron oxide...

  5. Coulomb interaction rules timescales in potassium ion channel tunneling

    Science.gov (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  6. Degradation behaviour of potassium K-phosphite in apple trees

    OpenAIRE

    Kelderer, Markus; Matteazzi, Aldo; Casera, Claudio

    2008-01-01

    Although potassium phosphite is not registered for organic fruit production in Europe, it has long been regarded as a potential alternative to sulphur- and copper-containing fungicides. In 2005/2006 a field trial was carried out to verify the presence of residues of phosphoric acid over time in apples after applications of potassium phosphite at different time-points. No residues were present on fruits if treatments were applied before flowering, whereas treatments after flower...

  7. Evaluating Status Change of Soil Potassium from Path Model

    Science.gov (United States)

    He, Wenming; Chen, Fang

    2013-01-01

    The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K). Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K), the chemical index of alteration (CIA), Soil Organic Matter in soil solution (SOM), Na and total nitrogen in soil solution (TN), and key indirect factors were Carbonate (CO3), Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK), Non-exchangeable potassium (neK) and water-soluble potassium (wsK) under influences of specific environmental parameters. In reversible equilibrium state of , K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of , K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth. PMID:24204659

  8. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution......-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Udgivelsesdato: 2007-Dec-13...

  9. Evaluating status change of soil potassium from path model.

    Directory of Open Access Journals (Sweden)

    Wenming He

    Full Text Available The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K. Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K, the chemical index of alteration (CIA, Soil Organic Matter in soil solution (SOM, Na and total nitrogen in soil solution (TN, and key indirect factors were Carbonate (CO3, Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK, Non-exchangeable potassium (neK and water-soluble potassium (wsK under influences of specific environmental parameters. In reversible equilibrium state of [Formula: see text], K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of [Formula: see text], K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth.

  10. Mechanism of cesium sorption on potassium titanium hexacyanoferrate

    International Nuclear Information System (INIS)

    Sun Yongxia; Xu Shiping; Song Chongli

    1998-01-01

    The mechanism of cesium sorption on potassium titanium hexacyanoferrate is described. The dependence of the sorption speed on temperature, particle granule size, and the stirring speed is studied. The results show that the sorption process is controlled by liquid film diffusion and particle diffusion. An exchange reaction occurs mainly between K + in the exchanger and Cs + in the solution, i.e. potassium titanium hexacyanoferrate, and Cs + of simulated high-level liquid waste

  11. Homogeneous catalysis of deuterium transfer by potassium hydroxide and potassium methoxide D2-H2O and D2-CH3OH exchange

    International Nuclear Information System (INIS)

    Strathdee, G.G.; Garner, D.M.; Given, R.M.

    1977-01-01

    The kinetics and mechanism of exchange of deuterium between D 2 and water and between D 2 and methanol, catalyzed respectively by concentrated potassium hydroxide and potassium methoxide, has been studied between 348 and 398 K. In the D 2 -KOH-H 2 O case, the transfer of deuterium was found to be controlled by the rate of activation of the D 2 molecule by OH - . Rapid exchange of D + with the aqueous solution followed. From the D 2 -KOCH 3 -CH 3 OH studies, it was concluded that deuterium exchange depended upon the rates of both D 2 activation by methoxide and interaction of the solvent with the transition, or encounter, complex. The dependence of second-order rate constants on solvent activity for both systems was determined by normalization of the exchange reaction rates to unit reagent activity. Analysis of the kinetic isotope effects for each system suggested that their increase with base concentration or temperature was due to solvation effects. (author)

  12. Double-blind, randomized, placebo-controlled trial of the use of topical 10% potassium hydroxide solution in the treatment of molluscum contagiosum.

    Science.gov (United States)

    Short, Katherine A; Fuller, L Claire; Higgins, Elisabeth M

    2006-01-01

    Molluscum contagiosum is a common viral infection of the skin that frequently affects children. Lesions take between 6 and 18 months to resolve spontaneously and are a source of great embarrassment to both caretakers and children, often affecting attendance at school and limiting social activity. Treatment options to date have been poorly tolerated by children but recent studies have suggested that potassium hydroxide may be beneficial. This double-blind, randomized, placebo-controlled study compared 10% potassium hydroxide with placebo (normal saline). Twenty patients, aged 2 to 12 years, were recruited. Parents applied a solution twice daily to lesional skin until signs of inflammation appeared. Children were examined by the same observer on days 0, 15, 30, 60, and 90. Seventy percent of children receiving topical potassium hydroxide cleared, compared with 20% in the placebo group. Further dosing studies are required to identify whether weaker concentrations of potassium hydroxide are as efficacious, with less irritancy.

  13. Potassium-doped n-type bilayer graphene

    Science.gov (United States)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka

    2018-01-01

    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  14. Parathyroid hormone impairs extrarenal potassium tolerance in the rat

    International Nuclear Information System (INIS)

    Sugarman, A.; Kahn, T.

    1988-01-01

    The effect of parathyroid hormone (PTH) on the extrarenal disposition of an acute potassium load was examined in acutely nephrectomized rats infused with KCl alone or in combination with PTH, with serial monitoring of plasma potassium every 10 min. The rise in plasma potassium concentration (ΔPK) in the PTH group was higher than control. PTH was then administered along with KCl to two groups of nephrectomized and acutely thyroparathyroidectomized (TPTX) rats in doses of 1 and 0.25 U · kg -1 · min -1 for 90 min. ΔPK with PTH in both groups was higher than TPTX control. The two higher doses of PTH resulted in a decrease in mean arterial pressure from their respective controls. A similar reduction in arterial pressure in three groups of nephrectomized rats by administration of hydralazine or nitroprusside or by acute blood loss did not change ΔPK subsequent to potassium infusion from that in control rats. Furthermore, the lowest dose of PTH did not lower arterial pressure from its respective control. Therefore, hypotension is not a cause for the PTH-induced potassium intolerance. Serum levels of insulin, aldosterone, catecholamines, calcium, plasma HCO 3 concentration, and pH were not different in PTH-infused vs. respective control rats. These data suggest that PTH impairs extrarenal potassium disposal in the rat. The effect of PTH may relate to enhanced calcium entry into cells

  15. Radiolysis of titanium potassium oxalate in aqueous solution. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bundo, Y; Ono, I [Industrial Research Inst. of Kanagawa Prefecture, Yokohama (Japan); Ogawa, T

    1975-01-01

    The dissolution state of titanium potassium oxalate in aqueous solution is different according to the pH. The yellowish brown titanium complex produced by the reaction of titanium potassium oxalate and hydrogen peroxide seems to be different in its structure according to the pH. Considering these points, gamma-ray irradiation was carried out on the sample by dissolving titanium potassium oxalate in purified water under the conditions of oxygen saturation and nitrogen saturation, and the relation between irradiation dose and the production of titanium complex was determined. On the basis of the experimental result, the mechanism of forming hydrogen peroxide was presumed. The radiation source used was 2,000 Ci of /sup 60/Co. For photometric analysis, a 139 type photoelectric spectrophotometer of Hitachi Ltd. was used. From the experimental results, in neutral water, titanium potassium oxalate exists in the state that two oxalic acid ions are coordinated to titanyl ion, while in case of the pH lowered by the addition of sulfuric acid, it can exist in the state that one oxalic acid ion is coordinated to titanyl ion. The yield of hydrogen peroxide produced by irradiating titanium potassium oxalate aqueous solution with gamma-ray is the sum of the molecular product from water and the radiolysis product from titanium potassium oxalate.

  16. Variable Potassium Concentrations: Which Is Right and Which Is Wrong?

    Science.gov (United States)

    Theparee, Talent; Benirschke, Robert C; Lee, Hong-Kee

    2017-05-01

    Reverse pseudohyperkalemia is a term used to describe in vitro, falsely elevated potassium concentrations in plasma specimens that occur in association with extreme leukocytosis and are commonly associated with hematologic malignant neoplasms. Tumor lysis syndrome is an in vivo lysis of tumor cells that leads to elevated levels of potassium, uric acid, phosphate, and lactate dehydrogenase, as well as decreased calcium concentrations. Herein, we report a case of a 66-year-old Caucasian man with stage IV mantle-cell lymphoma who has elevated levels of potassium, uric acid, and phosphorus, as well as a white blood cell (WBC) count greater than 100,000 cells per mm3. The patient initially was diagnosed as having tumor lysis syndrome. His subsequent potassium concentrations in whole blood remained elevated even after hemodialysis; however, his serum potassium concentrations were decreased. The patient then was diagnosed accurately as having reverse pseudohyperkalemia, and accurate potassium measurements were obtained via serum specimens. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. MATHEMATICAL MODELING FOR BENZYLPENICILIN POTASSIUM AND STREPTOMYCIN SULPHATE POTENCY DETERMINATION OF ASCOMICIN

    Directory of Open Access Journals (Sweden)

    Viviana Ciuca

    2016-12-01

    Full Text Available Ascomicin is an antibacterial unguent for treatment of local infections of skin, eyes, outer ear, in cattle, sheep, pig, dog and cat. The product contains two active substances: benzylpenicillin potassium (Penicillin G potassium and streptomycin sulphate. The main characteristic of commercial product is benzylpenicillin potassium and streptomycin sulphate potency. The potency is estimated by comparing the inhibition of growth of sensitive micro-organisms produced by known concentrations of the antibiotic to be examined and a reference substance. The validation study aims to demonstrate the determination of the potency of benzylpenicillin potassium and streptomycin sulphate, it is an appropriate analytical method, reproducible and meets the quality requirements of Ascomicin product. The paper establishes the performance characteristics of the method considered and identify the factors that influence these characteristics. The diameters of inhibition zones, directly proportional to the logarithm of the concentration of the antibiotic used for the assay, measured and calculated using statistical methods (Combistats Soft. The assay is designed in such a way that the mathematical model on which the potency equation is based can be proved to be valid. A parallel-line model is chosen. The two log dose response lines of the preparation under examination and the standard preparation are parallel; they are rectilinear over the range of doses used in the calculation. These conditions are verified by validity tests for a given probability (P = 0.05. The test is not valid unless the confidence limits (P = 0.95 are not less than 50 per cent and not more than 200 per cent of the estimated potency. The estimated potency is not less than 95 per cent and not more than 105 per cent of the stated potency. The stated potency is not less than 19400 international units/g benzylpenicillin potassium and 13960 international units/g streptomycin sulphate. The validation

  18. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  19. Impact of potassium bromate and potassium iodate in a pound cake system.

    Science.gov (United States)

    Wilderjans, Edith; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2010-05-26

    This study investigates the impact of the oxidants potassium bromate and potassium iodate (8, 16, 32, 64, and 128 micromol/g dry matter of egg white protein) on pound cake making. The impact of the oxidants on egg white characteristics was studied in a model system. Differential scanning calorimetry showed that the oxidants caused egg white to denature later. During heating in a rapid visco analyzer, the oxidants caused the free sulfhydryl (SH) group levels to decrease more intensively and over a smaller temperature range. The oxidants made the proteins more resistant to decreases in protein extractability in sodium dodecyl sulfate containing buffer during cake recipe mixing and less resistant to such decreases during cake baking. We assume that, during baking, the degree to which SH/disulfide exchange and SH oxidation can occur depends on the properties of the protein at the onset of the process. In our view, the prevention of extractability loss during mixing increased the availability of SH groups and caused more such loss during baking. During cooling, all cakes baked with added oxidants showed less collapse. On the basis of the presented data, we put forward that only those protein reactions that occur during baking contribute to the formation of a network that supports final cake structure and prevents collapse.

  20. Tomato yield and potassium concentrations in soil and in plant petioles as affected by potassium fertirrigation

    Directory of Open Access Journals (Sweden)

    FONTES PAULO CEZAR REZENDE

    2000-01-01

    Full Text Available Tomato (Lycopersicon esculentum Mill. cv. Santa Clara was grown on a silt clay soil with 46 mg dm-3 Mehlich 1 extractable K, to evaluate the effects of trickle-applied K rates on fruit yield and to establish K critical concentrations in soil and in plant petioles. Six potassium rates (0, 48, 119, 189, 259 and 400 kg ha-1 K were applied in a randomized complete block design with four replications. Soil and plant K critical levels were determined at two plant growth stages (at the beginning of the second and fourth cluster flowering. Total, marketable and weighted yields increased with K rates, reaching their maximum of 86.4, 73.4, and 54.9 ton ha-1 at 198, 194, and 125 kg ha-1 K , respectively. At the first soil sampling date K critical concentrations in the soil associated with K rates for maximum marketable and weighted yields were 92 and 68 mg dm-3, respectively. Potassium critical concentrations in the dry matter of the petioles sampled by the beginning of the second and fourth cluster flowering time, associated with maximum weighted yield, were 10.30 and 7.30 dag kg-1, respectively.

  1. VEGF attenuated increase of outward delayed-rectifier potassium currents in hippocampal neurons induced by focal ischemia via PI3-K pathway.

    Science.gov (United States)

    Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y

    2015-07-09

    We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.

  2. Ocular Injury due to Potassium Permanganate Granules

    Directory of Open Access Journals (Sweden)

    Chareenun Chirapapaisan

    2018-02-01

    Full Text Available Purpose: We report a rare case of ocular injury due to potassium permanganate (KMnO4 granules in a child. Methods: This is a retrospective case report. Results: A 2-year-old boy was transferred to our emergency room with severe pain in his right eye, inflamed eyelids, and brownish stains on his fingers. Chemical injury was suspected. Copious eye irrigation was immediately performed. Diffuse brownish splotches were then observed at the inferior bulbar conjunctiva. Otherwise, systemic organs were intact. Complete eye exam under general anesthesia revealed a 5-mm epithelial defect at the central cornea, along with generalized conjunctival injection and limbal ischemia, inferiorly. Multiple semi-dissolved granules of KMnO4 trapped in the inferior fornix were identified. The chemical particles were gradually washed out and removed; however, the brownish stains remained. The patient received preservative-free steroid, antibiotic eye drops, and lubricants as regular management for mild to moderate degree of ocular burn. Pseudomembrane developed early and transformed into symblepharon within a few days after the injury. Membrane adhesion was lysed, and more aggressive medications were then substituted. Commercial amniotic membrane (PROKERA® was also applied to promote wound healing and to prevent recurrence of symblepharon. The ocular surface was eventually restored, and corneal transparency was preserved. Conclusion: Ocular injury with the granular form of KMnO4 is rare. Its toxicity is comparable to concentrated KMnO4 solution. However, the dissolved particles that had been absorbed in the stained conjunctiva were continuously released and damaged the ocular surface more than we primarily anticipated. Awareness of this condition and prompt management yield a good treatment outcome.

  3. Arrhythmias and hemodialysis: role of potassium and new diagnostic tools.

    Science.gov (United States)

    Buemi, Michele; Coppolino, Giuseppe; Bolignano, Davide; Sturiale, Alessio; Campo, Susanna; Buemi, Antoine; Crascì, Eleonora; Romeo, Adolfo

    2009-01-01

    Cardiovascular diseases represent the main causes of death in patients affected by renal failure, and arrhythmias are frequently observed in patients undergoing hemodialysis. Dialytic treatment per se can be considered as an arrhythmogenic stimulus; moreover, uraemic patients are characterized by a "pro-arrhythmic substrate" because of the high prevalence of ischaemic heart disease, left ventricular hypertrophy and autonomic neuropathy. One of the most important pathogenetic element involved in the onset of intra-dialytic arrhythmias is the alteration in electrolytes concentration, particularly calcium and potassium. It may be very useful to monitor the patient's cardiac activity during the whole hemodilaytic session. Nevertheless, the application of an extended intradialytic electrocardiographic monitoring is not simple because of several technical and structural impairments. We tried to overcome these difficulties using Whealthy, a wearable system consisting in a t-shirt composed of conductors and piezoresistive materials, integrated to form fibers and threads connected to tissutal sensors, electrodes, and connectors. ECG and pneumographic impedance signals are acquired by the electrodes in the tissue, and the data are registered by a small computer and transmitted via GPRS or Bluetooth.

  4. Kalium: a database of potassium channel toxins from scorpion venom.

    Science.gov (United States)

    Kuzmenkov, Alexey I; Krylov, Nikolay A; Chugunov, Anton O; Grishin, Eugene V; Vassilevski, Alexander A

    2016-01-01

    Kalium (http://kaliumdb.org/) is a manually curated database that accumulates data on potassium channel toxins purified from scorpion venom (KTx). This database is an open-access resource, and provides easy access to pages of other databases of interest, such as UniProt, PDB, NCBI Taxonomy Browser, and PubMed. General achievements of Kalium are a strict and easy regulation of KTx classification based on the unified nomenclature supported by researchers in the field, removal of peptides with partial sequence and entries supported by transcriptomic information only, classification of β-family toxins, and addition of a novel λ-family. Molecules presented in the database can be processed by the Clustal Omega server using a one-click option. Molecular masses of mature peptides are calculated and available activity data are compiled for all KTx. We believe that Kalium is not only of high interest to professional toxinologists, but also of general utility to the scientific community.Database URL:http://kaliumdb.org/. © The Author(s) 2016. Published by Oxford University Press.

  5. Atomic basis for therapeutic activation of neuronal potassium channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Yau, Michael C; Galpin, Jason D

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific...

  6. Ketone deprotonation mediated by mono- and heterobimetallic alkali and alkaline earth metal amide bases: structural characterization of potassium, calcium, and mixed potassium-calcium enolates.

    Science.gov (United States)

    He, Xuyang; Noll, Bruce C; Beatty, Alicia; Mulvey, Robert E; Henderson, Kenneth W

    2004-06-23

    Potassium, calcium, and mixed potassium-calcium amide combinations have been shown to be efficient reagents in enolization reactions, and a set of representative intermediate mono- and heterobimetallic enolates have been successfully isolated and crystallographically characterized.

  7. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp.

    Science.gov (United States)

    Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.

    2008-08-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  8. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp

    International Nuclear Information System (INIS)

    Ayub, J. Juri; Velasco, R. H.; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.

    2008-01-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs + (and K + ) using electrophysiological techniques. Although the 137 Cs soil inventory ranged between 328-730 Bq m -2 in this region, no 137 Cs activity was detected in these plants. However, all the species, submitted previously to K + starvation, showed the uptake of both Cs + and K + when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. K M values were smaller for K + than for Cs + , indicating a higher affinity for the first cation. The presence of increasing K + concentrations in the assay medium inhibited Cs + uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs + is smaller than K + concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors

  9. A prospective, open, comparative study of 5% potassium hydroxide solution versus cryotherapy in the treatment of genital warts in men*

    Science.gov (United States)

    Camargo, Caio Lamunier de Abreu; Belda, Walter; Fagundes, Luiz Jorge; Romiti, Ricardo

    2014-01-01

    BACKGROUND Genital warts are caused by human papillomavirus infection and represent one of the most common sexually transmitted diseases. Many infections are transient but the virus may recur, persist, or become latent. To date, there is no effective antiviral treatment to eliminate HPV infection and most therapies are aimed at the destruction of visible lesions. Potassium hydroxide is a strong alkali that has been shown to be safe and effective for the treatment of genital warts and molluscum contagiosum. Cryotherapy is considered one of the most established treatments for genital warts. No comparative trials have been reported to date on the use of potassium hydroxide for genital warts. OBJECTIVE A prospective, open-label, randomized clinical trial was conducted to compare topical potassium hydroxide versus cryotherapy in the treatment of genital warts affecting immunocompetent, sexually active men. METHODS Over a period of 10 months, 48 patients were enrolled. They were randomly divided into two groups and selected on an alternative basis for either potassium hydroxide therapy or cryotherapy. While response to therapy did not differ substantially between both treatment modalities, side effects such as local pain and post-treatment hypopigmentation were considerably more prevalent in the groups treated using cryotherapy. RESULT In our study, potassium hydroxide therapy proved to be at least as effective as cryotherapy and offered the benefit of a better safety profile. CONCLUSION Topical 5% potassium hydroxide presents an effective, safe, and low-cost treatment modality for genital warts in men and should be included in the spectrum of therapies for genital warts. PMID:24770498

  10. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis.

    Science.gov (United States)

    Grau, Roberto R; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Donato, Verónica; Hölscher, Theresa; Boland, Wilhelm; Kuipers, Oscar P; Kovács, Ákos T

    2015-07-07

    Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective

  11. Effect of nitrogen, potassium and lime on soil and manganese availability and uptake by bean

    International Nuclear Information System (INIS)

    Muraoka, T.; Nascimento Filho, V.F. do; Salvador, J.O.

    1982-01-01

    A pot experiment was conducted to assess the effect of nitrogen, potassium and lime on the availability of soil Zn and Mn and the absorption of these elements by bean (Phaseolus vulgaris, L.). The TE (Terra Roxa Estruturada) soil, used in this experiment, had been uniformily labelled with 65 Zn and 54 Mn and incubated prior to the seeding. The nitrogen favoured the absorption of manganese and zinc, tripling the manganese content in the plant and increasing by 2.5 fold the Zn content. The potassium also increased significantly the manganese uptake, but did not affect the zinc uptake. In the case of the Zn, however, the effect continued, though with less intensity. The lime alone reduced by almost 5 times the Mn content in the plant and by 50% the Zn content. Based on the results of the soil analysis (pH, CaCl 2 O.5M extractable Mn and EDTA + CaCl 2 extractable Zn) and on the 65 Zn and 54 Mn specific activities, it is suggested that the effets of nitrogen and potassium could be, partly, of synergic nature and that of the lime, due, also partly, to Ca-Mn and Ca-Zn antagonism in the plant. (Author) [pt

  12. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    Science.gov (United States)

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; Pblood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation. © 2016 American Heart Association, Inc.

  13. Regeneration dynamics of potassium-based sediment sorbents for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li-wei; Diao, Yong-fa; Wang, Lin-lin; Shi, Xiao-fang; Tai, Xiao-yan [Donghua University, Shanghai (China)

    2013-08-15

    Simulating regeneration tests of Potassium-Based sorbents that supported by Suzhou River Channel Sediment were carried out in order to obtain parameters of regeneration reaction. Potassium-based sediment sorbents have a better morphology with the surface area of 156.73 m{sup 2}·g{sup −1}, the pore volume of 357.5x10{sup −3} cm{sup 3}·g{sup −1} and the distribution of pore diameters about 2-20 nm. As a comparison, those of hexagonal potassium-based sorbents are only 2.83 m{sup 2}g{sup −1}, 7.45x10{sup −3} cm{sup 3}g{sup −1} and 1.72-5.4 nm, respectively. TGA analysis shows that the optimum final temperature of regeneration is 200 and the optimum loading is about 40%, with the best heating rate of 10 .deg. C·min{sup −1}. By the modified Coats-Redfern integral method, the activation energy of 40% KHCO{sub 3} sorbents is 102.43 kJ·mol{sup −1}. The results obtained can be used as basic data for designing and operating CO{sub 2} capture process.

  14. Alteration of hemorrhagic aldosterone response during sodium restriction, potassium supplement and diuresis

    International Nuclear Information System (INIS)

    Sung, H.K.; Ryu, Y.W.; Joo, B.S.; Koh, J.W.; Park, K.W.; Lee, J.K.

    1977-01-01

    Effect of sodium restriction with or without potassium supplement and furosemide diuresis on plasma aldosterone response to mild hemorrhage were studied in normotensive young volunteers. After an overnight fast, blood were drawn just before and 10, 20, 30, 50, 70, 90, and 120 minutes after the 3 H-aldosterone injection. The sum of blood delivered reached over 100ml (during two hours). Plasma aldosterone and renin were measured by means of radiommunoassay. The results were as followed: 1. Hemorrhage resulted in a moderate increase in plasma aldosterone level of volunteers with normal diet. 2. The mean figures of plasma aldosterone in subjects with sodium restriction and diuresis were likewise significantly increased by hemorrhage, however, the figure of the subjects with potassium supplement who already shown higher plasma level was without effect on hemorrhage. 3. Hemorrhage produced slight decrease in serum sodium concentration in every experimental conditions, although the changes were not significant. 4. Plasma renin activities after the hemorrhage followed a similar pattern with that of aldosterone, increased during sodium restriction or diuresis and unaffected during potassium supplement. (author)

  15. Alteration of Hemorrhagic Aldosterone Response During Sodium Restriction, Potassium Supplement and Diuresis

    International Nuclear Information System (INIS)

    Sung, Ho Kyung; Ryu, Yong Wun; Koh, Joo Whan; Park, Kee Won; Lee, Jang Kyu

    1977-01-01

    Effect of sodium restriction with or without potassium supplement and furosemide diuresis on plasma aldosterone response to mild hemorrhage were studied in normotensive young volunteers. After an overnight fast, blood were drawn just before and 10, 20, 30, 50, 70, 90, and 120 minutes after the 3H-aldosterone injection. The sum of blood delivered reached over 100 ml (during two hours). Plasma aldosterone and renin were measured by means of radioimmunoassay. The results were as followed; 1) Hemorrhage resulted in a moderate increase in plasma aldosterone level of volunteers with normal diet. 2) The mean figures of plasma aldosterone in subjects with sodium restriction and diuresis were likewise significantly increased by hemorrhage, however, the figure of the subjects with potassium supplement who already shown higher plasma level was without effect on hemorrhage. 3) Hemorrhage produced slight decrease in serum sodium concentration in every experimental conditions, although the changes were not significant. 4) Plasma renin activities after the hemorrhage followed a similar pattern with that of aldosterone, increased during sodium restriction or diuresis and unaffected during potassium supplement.

  16. High-Resolution Spectroscopic Observations of Potassium Emissions in the Lunar Exosphere

    Science.gov (United States)

    Robertson, Sarena D.; Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Kuruppuaratchi, Dona Chathuni P.; Derr, Nicholas James; Gallant, Margaret A.; McFarland, Christina G.; Sarantos, Menelaos

    2018-01-01

    We investigate lunar exospheric potassium D1 emissions (7698.9646 Å) using high-resolution (R = 180,000 or 1.7 km/s) spectroscopy with our dual-etalon Fabry-Perot instrument to measure line widths and radial velocities. The Field of View (FOV) is 2 arcmins (~224 km at the mean lunar distance of 384,400 km) positioned tangent to the sunlit limb. The FOV placements are at cardinal directions from a variety of reference craters. All observations are collected at the National Solar Observatory McMath-Pierce Telescope in Kitt Peak, Arizona. The data are from several observations from 2014 through 2017 at various times of the year. Results are produced via a newly created automated data reduction using Python. Python was chosen as an open-source alternative to the previously used IDL and MATLAB scripts to decrease the cost of software licenses and maintenance. The potassium spectral line profiles provide a direct method to track exospheric effective temperatures and velocities. By monitoring the state of the potassium emissions over different lunar phases, solar activity, and the influx of meteor streams, we can constrain physical processes of sources and sinks at the lunar surface. Mechanisms that create the exosphere include photon-stimulated desorption, thermal evaporation, meteoroid impact vaporization, and ion sputtering via solar wind. In contrast, the exosphere is diminished due to the low lunar escape velocity, solar radiation pressure, and neutral gas being ionized and swept away by the interplanetary and terrestrial magnetic field. Preliminary analysis of 2017 data (January through June, excluding February) indicates an average potassium temperature of 1140 K but varying over the range of 550 K to 2000 K. Preliminary results from 2014 data depict a similar range of temperatures to that of 2017. Further analysis is expected for additional data from 2014 to later observations in 2017 that were not included in the initial set of models.

  17. Potassium/sodium ion exchange of sodium aluminosilicate and soda-lime glasses with potassium nitrate melts

    International Nuclear Information System (INIS)

    Richter, E.

    1983-08-01

    The alkali self-diffusion coefficients, the concentration-dependent interdiffusion coefficients, and the actual equilibrium constants of the ion exchange process were determinated for model glasses of the Na 2 O-Al 2 O 3 -SiO 2 type and the Na 2 O-CaO-SiO 2 type by nuclear techniques. The measured self-diffusion data and interdiffusion coefficients were used to estimate the stress profiles initiated by the K/Na exchange below the transformation temperature in the surface region. The activation volume of the sodium and potassium ions for diffusion through the surface zone stressed by ion exchange was determined. The disturbing influence of small concentrations of determined divalent cations in KNO 3 (especially Ca 2+ ) was investigated and thermodynamically described. Possibilities were demonstrated to remove these disturbances by anionic admixtures to the KNO 3 melt. Conclusions were drawn for the technical process of the chemical strengthening of glass by K/Na ion exchange at lower temperatures. (author)

  18. Influence of Potassium on Sapric Peat under Different Environmental Conditions

    Science.gov (United States)

    Tajuddin, Syafik Akmal Mohd; Rahman, Junita Abdul; Rahim, Nor Haakmal Abd; Saphira Radin Mohamed, Radin Maya; Saeed Abduh Algheethi, Adel Ali, Dr

    2018-04-01

    Potassium is mainly present in soil in the natural form known as the K-bearing mineral. Potassium is also available in fertilizer as a supplement to plants and can be categorized as macronutrient. The application of potassium improves the texture and structure of the soil beside to improves plant growth. The main objective of this study was to determine the concentration of potassium in sapric peat under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of potassium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of potassium for flush condition at outlet 4 was 13.58 ppm. Similarly, sapric under rainwater condition recorded the highest value of 13.32 and 12.34 ppm respectively at outlet 4 for wet and dry condition. However, the difference in Sapric, rainwater and fertilizer category showed that the highest value for the wet condition was achieved at outlet 2 with 13.99 ppm while highest value of 14.82 ppm was obtained for the dry condition at the outlet 3. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of potassium in the soil which was influenced by the environmental conditions.

  19. Potassium isotope abundances in Australasian tektites and microtektites.

    Science.gov (United States)

    Herzog, G. F.; O'D. Alexander, C. M.; Berger, E. L.; Delaney, J. S.; Glass, B. P.

    2008-10-01

    We report electron microprobe determinations of the elemental compositions of 11 Australasian layered tektites and 28 Australasian microtektites; and ion microprobe determinations of the 41K/39K ratios of all 11 tektites and 13 of the microtektites. The elemental compositions agree well with literature values, although the average potassium concentrations measured here for microtektites, 1.1 1.6 wt%, are lower than published average values, 1.9 2.9 wt%. The potassium isotope abundances of the Australasian layered tektites vary little. The average value of δ41K, 0.02 ± 0.12‰ (1σ mean), is indistinguishable from the terrestrial value (= 0 by definition) as represented by our standard, thereby confirming four earlier tektite analyses of Humayun and Koeberl (2004). In agreement with those authors, we conclude that evaporation has significantly altered neither the isotopic nor the elemental composition of Australasian layered tektites for elements less volatile than potassium. Although the average 41K/39K ratio of the microtektites, 1.1 ± 1.7‰ (1σ mean), is also statistically indistinguishable from the value for the standard, the individual ratios vary over a very large range, from -10.6 ± 1.4‰ to +13.8 ± 1.5‰ and at least three of them are significantly different from zero. We interpret these larger variations in terms of the evaporation of isotopically light potassium; condensation of potassium in the vapor plume; partial or complete stirring and quenching of the melts; and the possible uptake of potassium from seawater. That the average 41K/39K ratio of the microtektites equals the terrestrial value suggests that the microtektite-forming system was compositionally closed with respect to potassium and less volatile elements. The possibility remains open that 41K/39K ratios of microtektites vary systematically with location in the strewn field.

  20. Combustion aerosols from potassium-containing fuels

    International Nuclear Information System (INIS)

    Balzer Nielsen, Lars

    1998-01-01

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW Th pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using chemical

  1. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1999-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  2. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1998-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  3. Phosphatidic acid accumulation and catecholamine release in adrenal chromaffin cells: stimulation by high potassium and by nicotine, and effect of a diacylglycerol kinase inhibitor R 59 022.

    Science.gov (United States)

    Owen, P J; Jones, J A; Boarder, M R

    1991-09-01

    Using primary cultures of bovine adrenal chromaffin cells labelled with 32Pi, we show that stimulation with bradykinin, nicotine, or a depolarising concentration of potassium stimulates the accumulation of [32P]phosphatidic acid. The effects of nicotine and potassium are smaller than the effect of bradykinin, and are dependent entirely on extracellular calcium. The diacylglycerol kinase inhibitor R 59 022 attenuates the formation of phosphatidic acid by nicotine and depolarising concentrations of potassium. This inhibitor also blocks the nicotine and potassium stimulation of noradrenaline release from chromaffin cells. Using 45Ca2+ influx studies, we show that the nicotine-evoked calcium influx is also attenuated by R 59 022. These observations contrast with those in another report in which we showed that bradykinin stimulation of either [32P]phosphatidic acid accumulation or noradrenaline release is not affected by R 59 022. It is likely that the calcium influx produced by nicotine and depolarising potassium is blocked by R 59 022 by a mechanism that is independent of its ability to block diacylglycerol kinase. The nicotine- and potassium-stimulated [32P]phosphatidic acid accumulation is a consequence of this calcium influx and presumably reflects calcium activation of either phospholipase C or phospholipase D.

  4. Study of the Szilard-Chalmers effect on potassium ferrocyanide; Etude de l'effet Szilard-Chalmers sur le ferrocyanure de potassium

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R; Aubertin, C; Valade, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Irradiation conditions and a simple chemical treatment are described, for obtaining from potassium ferrocyanide the mixture {sup 55}Fe, {sup 59}Fe with a high specific activity. The recoil behaviour of the two isotopes is shown to be different: because of its greater energy {sup 55}Fe will be enriched by extraction of the ejected atoms from the rest of the molecule. An attempt is made to explain the increase in retention as proportional to the decrease in specific activity. (author) [French] Les conditions d'irradiation du ferrocyanure de potassium et un traitement chimique simple sont donnes pour permettre l'obtention du melange {sup 55}Fe, {sup 59}Fe de grande activite specifique. On a mis en evidence une difference de comportement des deux isotopes sous l'effet de recul; l'energie plus grande du {sup 55}Fe permettant son enrichissement par extraction des atomes ejectes du reste de la molecule. Un essai d'explication de l'augmentation de la retention proportionnellement a la diminution de l'activite specifique est donne. (auteur)

  5. Soil salinity and yield of mango fertigated with potassium sources

    Directory of Open Access Journals (Sweden)

    Marcio A. Carneiro

    Full Text Available ABSTRACT Irrigated fruit crops have an important role in the economic and social aspects in the region of the Sub-middle São Francisco River Valley. Thus, the aim of this study was to evaluate soil salinity and the productive aspects of the mango crop, cv. Tommy Atkins, fertigated with doses of potassium chloride (KCl and potassium sulfate (K2SO4 during two crop cycles (from January to March 2014 and from January to March 2015. The experiment was carried out in a strip-split-plot design and five potassium doses (50, 75, 100, 125 and 150% of the recommended dose as plots and two potassium sources (KCl and K2SO4 as subplots, with four replicates. Soil electrical conductivity (EC, exchangeable sodium (Na+ and potassium (K+ contents and pH were evaluated. In addition, the number of commercial fruits and yield were determined. The fertilization with KCl resulted in higher soil EC compared with K2SO4 fertigation. Soil Na+ and K+ contents increased with increasing doses of fertilizers. K2SO4 was more efficient for the production per plant and yield than KCl. Thus, under the conditions of this study, the K2SO4 dose of 174.24 g plant-1 (24.89 kg ha-1 or 96.8% of recommendation, spacing of 10 x 7 m was recommended for a yield of 23.1 t ha-1 of mango fruits, cv. Tommy Atkins.

  6. Potassium acceptor doping of ZnO crystals

    Directory of Open Access Journals (Sweden)

    Narendra S. Parmar

    2015-05-01

    Full Text Available ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 1016 cm−3. IR measurements show a local vibrational mode (LVM at 3226 cm−1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm−1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  7. Potassium acceptor doping of ZnO crystals

    Science.gov (United States)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  8. Potassium acceptor doping of ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Narendra S., E-mail: nparmar@wsu.edu; Lynn, K. G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2711 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Corolewski, Caleb D.; McCluskey, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  9. [Serial change of perilymphatic potassium ion concentration in the scala tympani after introducing KCl-solution into the guinea pigs' tympanic cavity].

    Science.gov (United States)

    Ikeno, K

    1990-09-01

    Characteristic nystagmus similar to the Meniere's attack could be observed after introducing KCl solution into the tympanic cavity of guinea pigs. To confirm the fact that this nystagmus was provoked by the high perilymphatic potassium ion concentration, the K+ activity of perilymph was recorded serially through the K+ specific microelectrode inserted into the scala tympani. The rapid increment of K+ activity reached maximum at 120 minutes after introducing KCl solution, and then it decreased gradually to a half of the maximum activity. However, such change of perilymphatic potassium ion concentration was not observed by introducing sucrose solution as control.

  10. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis

    Science.gov (United States)

    de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Hölscher, Theresa; Kuipers, Oscar P.

    2015-01-01

    ABSTRACT Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. PMID:26152584

  11. Inward rectifier potassium currents in mammalian skeletal muscle fibres

    Science.gov (United States)

    DiFranco, Marino; Yu, Carl; Quiñonez, Marbella; Vergara, Julio L

    2015-01-01

    Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface andthe transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K+], and could be blocked by Ba2+ or Rb+. In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba2+ (or Rb+) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K+] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10−6 cm s−1 and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K+ depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of

  12. A Small Potassium Current in AgRP/NPY Neurons Regulates Feeding Behavior and Energy Metabolism.

    Science.gov (United States)

    He, Yanlin; Shu, Gang; Yang, Yongjie; Xu, Pingwen; Xia, Yan; Wang, Chunmei; Saito, Kenji; Hinton, Antentor; Yan, Xiaofeng; Liu, Chen; Wu, Qi; Tong, Qingchun; Xu, Yong

    2016-11-08

    Neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) are indispensable for normal feeding behavior. Firing activities of AgRP/NPY neurons are dynamically regulated by energy status and coordinate appropriate feeding behavior to meet nutritional demands. However, intrinsic mechanisms that regulate AgRP/NPY neural activities during the fed-to-fasted transition are not fully understood. We found that AgRP/NPY neurons in satiated mice express high levels of the small-conductance calcium-activated potassium channel 3 (SK3) and are inhibited by SK3-mediated potassium currents; on the other hand, food deprivation suppresses SK3 expression in AgRP/NPY neurons, and the decreased SK3-mediated currents contribute to fasting-induced activation of these neurons. Genetic mutation of SK3 specifically in AgRP/NPY neurons leads to increased sensitivity to diet-induced obesity, associated with chronic hyperphagia and decreased energy expenditure. Our results identify SK3 as a key intrinsic mediator that coordinates nutritional status with AgRP/NPY neural activities and animals' feeding behavior and energy metabolism. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Gamma-spectrometric correction in radiometric determination of potassium

    International Nuclear Information System (INIS)

    Gejsler, M.

    1979-01-01

    The method is described of determination of potassium in mixed fertilizers in production conditions on a chemical enterprise in the GDR. Potassium content was determined according to the value of measured radiation from potassium-40. For measurement probes were used with radiation counters. While changing raw material, coming to the enterprise has been established that in raw phosphate, supplied from Morocco, there is low enough concentration of the natural radioactive isotopes of the uranium-radium series. In this connection, the two-cannel gamma-spectroscopy method has been developed taking into account influence of the background from these isotopes. Principles are explained of the method used and descriptions are given of the instruments used and sources of errors are listed. Relative standard deviation of the potassiun determination by this method equals nearly to 5% [ru

  14. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  15. Microgreens Production with Low Potassium Content for Patients with Impaired Kidney Function

    Directory of Open Access Journals (Sweden)

    Massimiliano Renna

    2018-05-01

    Full Text Available Chronic kidney disease represents a global problem together with other so-called ‘lifestyle-related diseases’. Unlike the healthy population, for the patients with impaired kidney function, it is of course prudent to recommend a restriction of high-potassium foods. Thus, it is suggested to limit the consumption of vegetables, because they generally contain high concentrations of potassium. At the same time, a lower consumption of vegetables reduces the intake of healthy compounds such as vitamins, fibers, and antioxidants, which also reduces the vegetables’ potential benefit in chronic kidney disease patients. Microgreens are an emerging class of specialty crop that represent a nutritious and refined food. In this study, for the first time, some chicory (local variety ‘Molfetta’ and cultivar ‘Italico a costa rossa’ and lettuce (cultivar ‘Bionda da taglio’ genotypes were grown using a hydroponic system with different potassium (K levels (0, 29.1, 58.4, and 117 mg L−1 in order to produce microgreens with a low potassium content. The crop performances, cations content, proximate composition, and antioxidant activity were analyzed. Independent of the genotype, the K content in the microgreens was successfully reduced using a nutrient solution (NS, without K or with 29.1 mg K L−1, which supplied between 103 and 129 mg of K 100 g−1 FW (about 7.7–8.6% of the K daily intake that was recommended for the patients that were affected by chronic kidney disease. Whereas, 100 g of microgreens that were grown by using an NS with 58.4 or 117 mg K L−1 supply between 225 and 250 mg of K (about 15.8–16.5% of the K daily intake recommended for patients affected by chronic kidney disease. No differences were observed in terms of the shoot height, dry matter, proximate composition, and visual quality. A slightly lower yield was observed using an NS with a K concentration <58.4 mg L−1. These results suggest that by using an NS without K

  16. Electrocardiography and serum potassium before and after hemodialysis sessions

    International Nuclear Information System (INIS)

    Tarif, N.; Al-Wakeel, Jamal Saleh; Sulaimani, F.; Memon, Nawaz Ali; Al-Suwaida, Abdul Kareem; Yamani, H.; Bakhsh, Ahmed Jahangir

    2008-01-01

    This study was undertaken to assess potassium level and electrocardiographic (ECG) changes post hemodialysis and whether fall in potassium level during hemodialysis may potentiate cardiac arrythemia. We studied 21 chronic hemodialysis (HD) patients who had their serum electrolytes measured before and after dialysis session and ECG performed at the same time. The patients included 14 females and 7 males with a mean age of 53.1+-15.6 years and range from 26 to 81 years; 9 (43%) patients were diabetics. All the patients had been on dialysis for a minimum of 6 months each Pre-HD serum potassium levels had no correlation with any ECG parameters except a negative correlation with T wave amplitude r=-0.5, p=0.021. ECG parameters significantly changed post-HD; the T wave amplitude decreased and the R wave amplitude increased. A comparatively higher R wave significantly decreased the T to R wave ratio post dialysis. The QRS duration and QTc interval also increased significantly. The patients with post-HD serum potassium of 3.5 mmol/L had a higher R wave amplitude and a significantly less T to R wave ratio (11.8+-9.7 vs 6.4+-5.1, p=0.045 and 0.4+-0.38 vs 1.0+-0.97, p=0.049, respectively. In patients with serum potassium decrement of >2.0 mmol/L, the T to R wave ratio decreased significantly, 0.32+-0.21 vs 0.85+-0.26, p=0.023; The T wave amplitude decreased more than the rise in R wave. Multiple regression analysis did not reveal any relationship of pre or post HD ECG changes and serum potassium, serum calcium or net change in serum potassium post-HD. We conclude that post-HD serum potassium decrement results in a decrease in T to R wave ratio on ECG; this change may have an arrhythmogenic potential. (author)

  17. Cardiac Delayed Rectifier Potassium Channels in Health and Disease

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J.; Kass, Robert S.

    2016-01-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this chapter, we will review the molecular identities and biophysical properties of these channels. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the possibility and prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  18. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  19. Potassium Permanganate as an Alternative for Gold Mining Wastewater Treatment

    Science.gov (United States)

    Ordiales, M.; Fernández, D.; Verdeja, L. F.; Sancho, J.

    2015-09-01

    The feasibility of using potassium permanganate as a reagent for cyanide oxidation in wastewater was experimentally studied. Both artificial and production wastewater from two different gold mines were tested. The experiments had three goals: determine the optimum reagent concentration and reaction time required to achieve total cyanide removal, obtain knowledge of the reaction kinetics, and improve the management of the amount of reagent. The results indicate that potassium permanganate is an effective and reliable oxidizing agent for the removal of cyanide from gold mining wastewater.

  20. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    Science.gov (United States)

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Mass-spectrometric study of thermodynamics of molybdate potassium evaporation

    International Nuclear Information System (INIS)

    Kazenas, E.K.; Tsvetkov, Yu.V.; Samojlova, I.O.; Astakhova, G.K.; Petrov, A.A.

    2002-01-01

    One investigated into evaporation of potassium molybdate within 1170-1310 K temperature range using platinum effusion chambers. Evaporation of potassium molybdate within 1170-1310 K temperature range may be described as follows: K 2 MoO 4(s,l) = K 2 MoO 4(g) . Based on method of least squares one calculated equation of K 2 MoO 4(g) vapor pressure (pressure in millimeters of mercury column) dependence on temperature for 1200-1320 K range. One evaluated value of K 2 MoO 4(g) molecule atomization energy [ru

  2. Preparation of potassium tantalum fluoride from tantalum hydroxide

    International Nuclear Information System (INIS)

    Silva, F.T. da; Espinola, A.; Dutra, A.J.B.

    1987-01-01

    Potassium tantalum fluoride (K 2 TaF 7 ) is an intermediary product in the processing of tantaliferous materials; it is the basic raw material for both reduction processes in use presently: reduction by metallic sodium and electrolysis in molten halides. It is normally obtained from a fluorotantalic acid solution to which potassium ions are added the precipitation of white acicular crystals of K 2 TaF 7 . The conditions for precipitation and recrystallization were studied, and crystal characterization were done by scanning electron microscopy, X-ray diffraction and thermogravimetric and thermodifferential analyses. (Author) [pt

  3. The effect of preliminary processing and different methods of cooking on the iodine content and selected antioxidative properties of carrot (Daucus carota L. biofortified with (potassium iodine

    Directory of Open Access Journals (Sweden)

    Kapusta-Duch Joanna

    2017-06-01

    Full Text Available Carrot is a vegetable that contains many nutrients and has strong antioxidant activity as well as pro-health potential. The level of bioactive compounds is strongly connected with the production chain. The thermal treatment of food products induces several biological, physical and chemical changes. In this study, changes in the levels of iodine, total carotenoids, total polyphenols as well as the antioxidant activity of unpeeled and peeled controls and carrots biofortified with (potassium iodine (KJ during cultivation due to the cooking and steaming process were investigated. The use of thermal processes resulted in a lower concentration of iodine in the roots of the control as well as in carrots biofortified with (potassium iodine. In addition, peeling carrots caused higher losses of this trace element in the control and the biofortified carrots cooked or steamed for various times. In this study, a significant growth of the total carotenoids in peeled carrots biofortified with (potassium iodine and of the total polyphenols in unpeeled carrots biofortified with (potassium iodine under the influence of the cooking and steaming processes was observed compared with raw peeled and unpeeled biofortified carrots, respectively. Antioxidant activity significantly increased in the unpeeled and peeled carrots biofortified with (potassium iodine under all thermal treatments in comparison with the raw unpeeled and peeled biofortified carrots.

  4. Potassium-40 content in male radiation workers at Narora Atomic Power Station

    International Nuclear Information System (INIS)

    Kumar, M.; Sharma, L.N.

    2001-01-01

    749 radiation workers at NAPS, aged 20 to 59 years, were monitored by using Shadow Shield Whole Body Counting System, having NaI (Tl) crystal coupled with 4K Multi Channel Analyser (MCA), to determine the 40 K activity in the body and assess internal dose due to naturally occurring 40 K. These subjects belonged to 18 different states with nearly 54% from Uttar Pradesh. The data have been grouped for analysis in vegetarian and non-vegetarian. The paper describes the calibration details of whole body counter for 40 K using water phantom. The frequency distribution of natural potassium content (g K kg -1 body weight) is found to be normally distributed with the peak occurring for 1.70-1.90g K kg -1 grouping. The average natural potassium content per unit body weight (g K kg -1 ) (average 40 K activity kBq kg -1 ) for vegetarian, non-vegetarian and all subjects taken together is found to be 1.84 (57.66), 1.92 (60.20) and 1.88(58.86) respectively. The data obtained could be expressed as a linear relationship C= A+Bx, where 'C' is the potassium content per unit body weight in g K kg - 1 o f body weight and 'x' is the age of the subject, in years. The coefficient A and B for vegetarian, non-vegetarian and all subjects taken together are found to be 1.89 and -0.002, 2.18 and -0.008 and 2.03 and -0.005 respectively. The data obtained for all these groups was also fitted in a linear relationship between the activity due to 40 K(kBq) and the ratio of weight to height, W/H (kg cm - 1 ) . The average annual dose from 40 K for the subjects is evaluated as 165.42±37.91μSv. (author)

  5. Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel.

    Science.gov (United States)

    Sesti, Federico; Rajan, Sindhu; Gonzalez-Colaso, Rosana; Nikolaeva, Natalia; Goldstein, Steve A N

    2003-04-01

    MVP, a Methanococcus jannaschii voltage-gated potassium channel, was cloned and shown to operate in eukaryotic and prokaryotic cells. Like pacemaker channels, MVP opens on hyperpolarization using S4 voltage sensors like those in classical channels activated by depolarization. The MVP S4 span resembles classical sensors in sequence, charge, topology and movement, traveling inward on hyperpolarization and outward on depolarization (via canaliculi in the protein that bring the extracellular and internal solutions into proximity across a short barrier). Thus, MVP opens with sensors inward indicating a reversal of S4 position and pore state compared to classical channels. Homologous channels in mammals and plants are expected to function similarly.

  6. Corrosion of nickel in potassium and sodium chloride melts containing vanadium trichloride

    International Nuclear Information System (INIS)

    Kochergin, V.P.; Ponomarev, Yu.S.; Bezvoritnij, V.A.; Bajbakov, D.P.

    1976-01-01

    Corrosion of nickel has been studied by the method of the rotating disc in melts of potassium and sodium chlorides containing vanadium trichloride in the concentration 0-20.0 wt.% in the temperature range 1103-1328 K. Corrosion proceeds in the diffusion region, the corrosion rate being controlled by diffusion of either V 3+ or V 2+ depending on the concentration of VCl 3 in the melts. The apparent activation energy of nickel corrosion is 43,110-74660 joule/mol

  7. Preparation and photocatalytic property of potassium niobate K6Nb10.8O30

    International Nuclear Information System (INIS)

    Zhang Gaoke; Zou Xi; Gong Jie; He Fangsheng; Zhang Hao; Zhang Qiang; Liu Ying; Yang Xia; Hu Bo

    2006-01-01

    The TB-type potassium niobate K 6 Nb 10.8 O 30 was synthesized by a simple solid-state reaction method. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to characterize the structure of the photocatalyst. The photocatalyst K 6 Nb 10.8 O 30 shows high photocatalytic activity to photodegrade acid red G under UV irradiation. The influences of catalyst dosage, initial concentration of acid red G on the photocatalytic reaction were investigated. The kinetics of photocatalytic degradation of acid red G follows the first order kinetics

  8. Evaluation of crop residues on potassium kinetics in an acid soil and potassium use efficiency in potato-garlic sequence using tracer 86Rb

    International Nuclear Information System (INIS)

    Sud, K.C.

    2005-01-01

    Greenhouse and laboratory studies were conducted on an acid soil in order to evaluate the role of two crop residues i.e. paddy and wheat along with farmyard manure on potassium kinetics and its availability in the potato-garlic sequence using tracer 86 Rb. Under rapid equilibrium, application of crop residues of paddy, wheat straw and FYM were able to enhance soil pH and organic carbon content. In addition, their application helped in enhancing soil K availability indices like water soluble, available and non-exchangeable -K. This was further augmented by the Q/I studies using 86 Rb where application of organic residues helped in lowering the potassium buffering capacity of the soil. Greenhouse study supplemented the results obtained from laboratory study where application of crop residues/FYM were able to improve the potato yield significantly and maintained higher concentration of K in potato leaf at early growth stages. A significant correlation was obtained between leaf K and haulms-K with that of 86 Rb activities in potato leaf at 35 days and 86 Rb absorbed in the haulms, respectively. Residues/ FYM and PK application to potato left sufficient residual effect on succeeding garlic crop. In potato-garlic sequence, K recovery was highest with FYM while N and P recoveries were higher with wheat residues. The nutrient recoveries with PK application followed law of diminishing returns. (author)

  9. Relationship of soil potassium forms with maize potassium contents in soils derived from different parent materials

    Directory of Open Access Journals (Sweden)

    Rashid Mehmood Butt

    2017-06-01

    Full Text Available Understanding of soil potassium (K dynamics is essential for sustainable crop production. Bioavailability of K depends on forms and distribution within the soil profile. The objectives of this research were to determine which soil K forms control the maize (Zea mays K contents and compare the extracting capability of sodium tetraphenylborate (NaTPB with ammonium acetate (NH4OAc method. Nine soils representing three different parent materials, i.e. loess, sandstone and shale were sampled at three surface genetic horizons. Within each parent material, three soils at varying level of development were selected. Besides basic soil parameters, K was fractioned into water soluble K, exchangeable K, non-exchangeable K, and NaTPB-extracted K. The maize was sown in pots having 2 kg soil from each genetic horizon. Crop was harvested at seven weeks and plant was analysed for K contents. Results show that NaTPB-extracted K gave best correlation as compared to NH4OAc method. This conveys that a non-exchangeable K portion that becomes available to plants can be better estimated by NaTPB method than NH4OAc extraction.

  10. Palytoxin and the sodium/potassium pump—phosphorylation and potassium interaction

    International Nuclear Information System (INIS)

    Rodrigues, Antônio M; De Almeida, Antônio-Carlos G; Infantosi, Antonio F C

    2009-01-01

    We proposed a reaction model for investigating interactions between K + and the palytoxin–sodium–potassium (PTX–Na + /K + ) pump complex under conditions where enzyme phosphorylation may occur. The model is composed of (i) the Albers–Post model for Na + /K + –ATPase, describing Na + and K + pumping; (ii) the reaction model proposed for Na + /K + –ATPase interactions with its ligands (Na + , K + , ATP, ADP and P) and with PTX. A mathematical model derived for representing the reactions was used to simulate experimental studies of the PTX-induced current, in different concentrations for the pump ligands. The simulations allow interpretation of the simultaneous action of Na + /K + –ATPase phosphorylation and K + on the PTX-induced channels. The results suggest that (i) phosphorylation increases the PTX toxic effect, increasing its affinity and reducing the K + occlusion rate, and (ii) K + causes channel blockage, increases the toxin dissociation rate and impedes the induced channel phosphorylation, implying reduction of the PTX toxic effect

  11. Dielectric behaviour of sodium and potassium doped magnesium ...

    Indian Academy of Sciences (India)

    Dielectric behaviour of sodium and potassium doped magnesium titanate. VISHNU SHANKER. ∗. , SANTOSH KUMAR and T SURENDAR. Department of Chemistry, National Institute of Technology, Warangal 506 004, India. MS received 10 November 2011; revised 27 February 2012. Abstract. Pure phase of magnesium ...

  12. Performance Evaluation of Refractory Composite Coatings in Potassium Rich Environment

    Directory of Open Access Journals (Sweden)

    Kristina BRINKIENĖ

    2016-09-01

    Full Text Available A laboratory scale method was used to study the performance of reinforced cement composites in potassium rich environment of biomass combustion. Buckwheat husk (BH was used as potential source of unexploited biomass product applicable as biomass derived fuel. In order to enhance the alkali effect on the properties of the investigated materials, the solution of potassium carbonate (K2CO3 was selected as potassium rich aggressive environment. Two reinforced cement composites as potential repair coatings for restoration of damaged refractory surfaces with different composition of aggregate were used in corrosion tests. Performance of refractory coatings was evaluated by analysing the microstructure of the treated composites as well as mechanical properties. Energy-dispersive X-ray spectroscopy (SEM/EDS and optical microscopy were used to study the microstructure in the corroded region of the refractory coatings. Long term studies in the solution of 1M K2CO3 for 56 months have demonstrated that composite with the additive of fluid cracking catalyst of oil refinery and petrochemical industries is more durable in the potassium rich environment.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.8348

  13. Treatment of amiodarone-induced hypothyroidism with potassium perchlorate

    NARCIS (Netherlands)

    van Dam, E. W.; Prummel, M. F.; Wiersinga, W. M.; Nikkels, R. E.

    1993-01-01

    The antiarrhythmic drug, amiodarone, induces thyroid dysfunction, which is potentially dangerous in cardiac patients. After discontinuation of the drug it takes several months before euthyroidism is restored. The potent antithyroid drug, potassium perchlorate (KClO4), is used successfully to treat

  14. New nonabsorbable potassium-exchange resins in hyperkalaemia

    NARCIS (Netherlands)

    Roscioni, Sara S.; Lambers Heerspink, Hiddo

    New data suggest that treatment with patiromer or sodium zirconium cyclosilicate for up to 8 weeks reduces plasma potassium levels in hyperkalaemic patients. If proven safe and effective for long-term use, these therapies might be administered together with intensive renin-angiotensin-aldosterone

  15. Cranial MR imaging findings of potassium chlorate intoxication.

    Science.gov (United States)

    Mutlu, Hakan; Silit, Emir; Pekkafali, Zekai; Basekim, C Cinar; Kizilkaya, Esref; Ay, Hakan; Karsli, A Fevzi

    2003-08-01

    We present the case of a patient who attempted suicide by ingesting matchstick heads (55% potassium chlorate). The patient presented to the emergency room with loss of consciousness, and MR imaging revealed symmetric hyperintense signal within the deep gray matter and medial temporal lobes. The patient improved after undergoing conventional treatment and hyperbaric oxygen.

  16. Sodium and potassium concentrations in floral nectars in relation to ...

    African Journals Online (AJOL)

    1989-08-03

    Aug 3, 1989 ... techniques (Instrumentation Laboratory Model IL 243). In order to examine ... mmol. Potassium and sugar concentrations were very poorly ... cations that the error in calculating its energy content would be .... mellifica adults (subspecies not named). .... consumption, and thoracic temperature during flight in a.

  17. Determination and comparison of vitamin C, calcium and potassium ...

    African Journals Online (AJOL)

    It is evident that the growing interest in organically grown produce has correspondingly necessitated the debate on the nutritional supremacy between organically and conventionally grown produce. A study was carried out to determine and compare vitamin C, calcium and potassium in organically and conventionally grown ...

  18. How Potassium Can Help Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More How Potassium Can Help Control High Blood Pressure Updated:Jan 29,2018 Understanding the heart-healthy ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  19. The mutagenic potentials of potassium bromate and some ...

    African Journals Online (AJOL)

    Food additives are substances added to preserve flavour or improve the taste and appearance of food. The continuous consumption of these food additives could be hazardous to human health. Food additives including sodium bicarbonate, sodium benzoate, ammonium bicarbonate and potassium bromate were subjected ...

  20. Effect of gibberellic acid and potassium nitrate on seed germination ...

    African Journals Online (AJOL)

    Ramonda serbica and Ramonda nathaliae are rare resurrection plants, endemic and relict species from Balkan Peninsula. The effect of gibberellic acid (GA3) and potassium nitrate (KNO3) were conducted to determine the seed germination response for these two species. An experiment was conducted with four ...

  1. Isotope effect in the Knight shift of potassium

    International Nuclear Information System (INIS)

    Sahm, W.; Schwenk, A.

    1975-01-01

    The Knight shifts of the potassium isotopes 39 K and 41 K were determined with high accuracy: Ksup((39)) = 0.274 35(10)% and Ksup((41)) = 0.274 93(12)%. The relative isotope effect ΔK/K = -0.210 (20)% is in agreement with the hyperfine structure anomaly 39 Δ 41 . (orig.) [de

  2. Mechanism of Proarrhythmic Effects of Potassium Channel Blockers

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Ravens, Ursula

    2016-01-01

    Any disturbance of electrical impulse formation in the heart and of impulse conduction or action potential (AP) repolarization can lead to rhythm disorders. Potassium (K(+)) channels play a prominent role in the AP repolarization process. In this review we describe the causes and mechanisms...

  3. Formulation and evaluation of sublingual tablets of losartan potassium

    Directory of Open Access Journals (Sweden)

    Nikunj J. Aghera

    2012-05-01

    Full Text Available Objective: Sublingual tablets of Losartan Potassium were prepared to improve its bioavailability, to avoid pre-systemic metabolism in the gastrointestinal tract and hepatic first pass elimination. Methods: The Sublingual tablets were prepared by direct compression procedure using different concentration of Starch 1500 and microcrystalline cellulose. Compatibility studies of drug and polymer were performed by FTIR spectroscopy and DSC. Preformulation property of API was evaluated. Postcompressional parameters such disintegration time, wetting time, water absorption ratio, in vitro drug release and in vivo bioavailability study of optimized formulation were determined. Results: FTIR spectroscopy and DSC study revealed that there was no possible interaction between drug and polymers. The precompression parameters were in acceptable range of pharmacopoeial specification. The disintegration time of optimized formulation (F3 was upto 48 sec. The in vitro release of Losartan Potassium was upto 15 min. The percentage relative bioavailability of Losartan Potassium from optimized sublingual tablets was found to be 144.7 %. Conclusions: Sublingual tablets of Losartan Potassium were successfully prepared with improved bioavailability.

  4. Noise Controlled Synchronization in Potassium Coupled Neural Models

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Zhirin, R. A.

    2007-01-01

    The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we......-temporal oscillations in neuronal ensembles....

  5. Quaternary system of lithium, potassium, calcium and strontium fluorides

    International Nuclear Information System (INIS)

    Garkushin, I.K.; Voronin, K.Yu.; Dibirov, M.A.; Miftakhov, T.T.

    1996-01-01

    Four-component system of lithium, potassium, calcium and strontium fluorides is studied by differential thermal analysis. A low-melting eutectic composition is revealed, specific fusion heat of the composition is experimentally determined, its thermal properties are calculated. 8 refs., 5 figs., 1 tab

  6. Effect of osmolarity on potassium transport in isolated cerebral microvessels

    International Nuclear Information System (INIS)

    Lin, J.D.

    1988-01-01

    Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of 86 Rb into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity of K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed

  7. Relationship between serum total magnesium and serum potassium ...

    African Journals Online (AJOL)

    Relationship between serum total magnesium and serum potassium in emergency surgical patients in a tertiary hospital in Ghana. Robert Djagbletey, Brenda Phillips, Frank Boni, Christian Owoo, Ebenezer Owusu-Darkwa, Papa Kobina Gyakye deGraft-Johnson, Alfred E. Yawson ...

  8. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.|info:eu-repo/dai/nl/330985655; Prokofyev, A.; van der Cruijsen, E.A.W.|info:eu-repo/dai/nl/330826743; Nand, D.|info:eu-repo/dai/nl/337731403; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Pongs, O.; Baldus, M.|info:eu-repo/dai/nl/314410864

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while

  9. Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation.

    Science.gov (United States)

    Li, Ji-Tai; Liu, Xiao-Ru; Sun, Ming-Xuan

    2010-01-01

    Synthesis of the glycolurils catalyzed by potassium hydroxide was carried out in 17-75% yield at 40 degrees C in EtOH under ultrasound irradiation. Compared to the method using stirring, the main advantage of the present procedure is milder conditions and shorter reaction time.

  10. Consumption of potassium permanganate by impurities in deuterium oxide

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The titrimetric measurement of the consumption of potassium permanganate by impurities in deuterium oxide is one of the required methods intended for use in establishing whether the deuterium oxide is of sufficient purity to meet specifications. The method includes a discussion of reagents, procedure, and calculation

  11. Reaction of iodine oxidation by potassium permanganate in tributyl phosphate

    International Nuclear Information System (INIS)

    Khokhlov, M.L.; Legin, E.K.

    1990-01-01

    Stoichiometry was determined and kinetics of iodine oxidation by potassium permanganate in tributylphosphate was studied. Kinetic scheme, which agrees with stoichiometry and experimental kinetic equation of the reaction, is suggested. A mixture is the reaction product. It is ascertained that when the mixture is heated, thermal decomposition of iodate to iodide occurs without elementary iodine separation, which is catalyzed by polymanganate

  12. Effects of Potassium Iodide on Low Avid Immunological Reactions ...

    African Journals Online (AJOL)

    In identical test conditions keeping appropriate control, the following ... Abstract. Background: Selective in‑vivo anti‑fungal action of potassium iodide (KI) is an enigma, but .... mechanism of action of the drug against selective infections. In fact, if ...

  13. Acute toxicity of potassium permanganate to fingerlings of the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... Key words: Potassium permanganate, acute toxicity, LC50, LT50, behaviour, Clarias gariepinus, Nigeria. ... soft waters where other chemicals, such as copper sulphate, were too .... The temperature (oC) was measured by dipping a dry bulb thermo- .... (KMnO4) interferes with the respiratory mechanisms of.

  14. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  15. Salinity effect on seedling growth, water, sodium and potassium ...

    African Journals Online (AJOL)

    Mature leaves exhibited good adaptative behavior toward salinity stress by increasing succulence due to absorption of large quantities of water and K+ in leaves. Potassium uptake in leaves was not found to be affected by NaCl concentration. As a consequence, monovalent cations adsorption resulted in an increase in the ...

  16. effect of population density and dose of nitrogen and potassium ...

    African Journals Online (AJOL)

    A. Hussein

    2018-01-01

    Jan 1, 2018 ... while, nitrogen consumption increased dry weight resulting in increased plant yield (Hatami et al., 2009). Vorob (2000) ... of this study was to investigate the effect of plant density and dose of nitrogen and potassium on Green bean Cv. ..... biogeochem. cycle., 2008, 22(1), 1022-1041. [11] Moniruzzaman M ...

  17. Apical Membrane Potassium Conductance in Guinea Pig Gallbladder Epithelial Cells

    Science.gov (United States)

    1988-12-01

    did block the accompanying der short-circuit conditions except for brief periods (300 change in fR.. TEA was ineffective when added to the ms) during...toad skin. Biochim. 29. RICHARDS, N. W., AND D. C. DAWSON. Single potassium channelsBiophys. Acta 728: 455-459, 1983. blocked by lidocaine and quinidine

  18. Does Electroconvulsive therapy aggravate the rise in potassium and ...

    African Journals Online (AJOL)

    Background: Potassium and creatine kinase levels increase after the administration of suxamethonium. This rise may be exaggerated by the combination of suxamethonium fasciculation and the modified tonic/clonic convulsion induced by electroconvulsive therapy. This study compared the magnitude of increase in ...

  19. Argon analytical procedures for potassium-argon dating

    International Nuclear Information System (INIS)

    Gabites, J.E.; Adams, C.J.

    1981-01-01

    A manual for the argon analytical methods involved in potassium-argon geochronology, including: i) operating procedures for the ultra-high vacuum argon extraction/purification equipment for the analysis of nanolitre quantities of radiogenic argon in rocks, minerals and gases; ii) operating procedures for the AEI-MS10 gas source mass spectrometer

  20. Potassium and calcium nutrition improves potato production in drip ...

    African Journals Online (AJOL)

    The response of Spunta potato (Solanum tuberosum L.) plants to different rates of potassium (60 and 120 kg Fed-1 ) in presence or absence of Ca nutrition was studied. The study was performed in sandy-loam soil under a drip-irrigation system during fall seasons of 1996 and 1997 years. Plants fertilised with high rate of K ...

  1. Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; McDonald, Lindsay M.; Stříbrná, Eva; Lukeš, Julius

    2013-01-01

    Roč. 288, č. 37 (2013), s. 26914-26925 ISSN 0021-9258 R&D Projects: GA ČR GAP305/12/2261 Institutional support: RVO:60077344 Keywords : Bioenergetics * Letm1 * Mitochondria * Potassium Transport * Translation * Trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.600, year: 2013

  2. Effects of different cavity‑disinfectants and potassium titanyl ...

    African Journals Online (AJOL)

    2014-10-25

    Oct 25, 2014 ... applied to dentin surfaces, and composite crowns were built up. ... Key words: Chlorhexidine gluconate, potassium titanyl phosphate .... absence of enamel and pulp tissue on the resultant substrate. ..... and Clearfil Protect Bond. ... Awawdeh L, Al‑Beitawi M, Hammad M. Effectiveness of propolis and calcium.

  3. Potassium availability in soils - forms and spatial distribution

    International Nuclear Information System (INIS)

    Afari-Sefa, Victor; Kwakye, Peter K.; Nyamiah, Mercy; Okae-Anti, Daniel; Imoro, A. Ziblim

    2004-10-01

    Potassium forms the third most important plant nutrient limiting plant growth and consequently reducing crop yields. This study was conducted on soil potassium availability, distribution and relationship with other soil properties. Seventeen top soil samples (0-15 cm) were collected from four agro-ecological zones of the Central and Western Regions of Ghana. Water soluble, exchangeable and non-exchangeable forms of K were determined. The exchangeable K was extracted with 1 N-bar NH 4 OAc, 0.1 N-bar HNO 3 , 0.01 M-bar CaCl 2 , Bray No. 1 and 1 N-bar boiling HNO 3 . The non-exchangeable K was extracted with 1 N-bar boiling HNO 3 . Potassium was determined using flame photometer. The results showed that potassium is available in the soil in different forms and amounts. Soils from the forest-savanna transition and coastal savanna zones had relatively higher soil solution K concentration than soils from the moist rainforest and semi-deciduous forest zones. Also, soils of the semi-deciduous forest and forest savanna transition as well as the coastal savanna zones contained 2-3 times exchangeable K of the soils of the moist rainforest. The results also showed that the pH, texture as well as the land use affected K availability in the soils. (author)

  4. DRIS Analysis Identifies a Common Potassium Imbalance in Sweetgum Plantations

    Science.gov (United States)

    Mark D. Coleman; S.X. Chang; D.J. Robison

    2003-01-01

    DRIS (Diagnosis and Recommendation Integrated System) analysis was applied to fast-growing sweetgum (Liquidambar styraciflua L.) plantations in the southeast United States as a tool for nutrient diagnosis and fertilizer recommendations. First, standard foliar nutrient ratios for nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and...

  5. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K channels may be of importance....

  6. Elevated potassium levels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Thomsen, Reimar W; Nicolaisen, Sia K; Hasvold, Pål

    2018-01-01

    Background: Data on the true burden of hyperkalemia (HK) in patients with chronic kidney disease (CKD) in a real-world setting are scarce. Methods: The incidence rate of HK [first blood test with an elevated blood potassium level level >5.0 mmol/L] in primary or hospital care was assessed...

  7. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG

    2013-04-18

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property in the ultraviolet region which confirms and agrees well with former results. © 2013 Astro Ltd.

  8. Acute toxicity of potassium permanganate to fingerlings of the ...

    African Journals Online (AJOL)

    Laboratory static bioassays were conducted to determine the 96-h LC50 and the lethal levels of concentrations of the aquaculture therapeutant, potassium permanganate (KMnO4) on fingerlings (mean weight, 6.24 ± 0.15 g and mean length, 4.25 ± 0.07 cm) of the African catfish, Clarias gariepinus. A total number of one ...

  9. Cassava productivity linked to potassium's influence on water use efficiency

    NARCIS (Netherlands)

    Ezui, K.S.; Franke, A.C.; Leffelaar, P.A.; Giller, K.E.

    2017-01-01

    This paper presents the results of field studies conducted in Togo (Djakakope and Sevekpota) to assess the effect of potassium (K) on cassava yield, water use efficiency (WUE) and transpiration as affected by nitrogen (N) and phosphorus (P) availability under rainfed conditions. It was shown that an

  10. 21 CFR 184.1804 - Sodium potassium tartrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium potassium tartrate. 184.1804 Section 184.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... has a cooling saline taste. It is obtained as a byproduct of wine manufacture. (b) The ingredient...

  11. 21 CFR 184.1077 - Potassium acid tartrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium acid tartrate. 184.1077 Section 184.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... a white, crystalline powder. It has a pleasant, acid taste. It is obtained as a byproduct of wine...

  12. β1-Adrenoceptor autoantibodies affect action potential duration and delayed rectifier potassium currents in guinea pigs.

    Science.gov (United States)

    Zhao, Yuhui; Huang, Haixia; Du, Yunhui; Li, Xiao; Lv, Tingting; Zhang, Suli; Wei, Hua; Shang, Jianyu; Liu, Ping; Liu, Huirong

    2015-01-01

    β1-Adrenoceptor autoantibodies (β1-AAs) affect the action potential duration (APD) in cardiomyocytes and are related to ventricular arrhythmias. The delayed rectifier potassium current (I K) plays a crucial role in APD, but the effects of β1-AAs on I K have not been completely illuminated. This work aimed to observe the effects of β1-AAs on I K and APD and further explore the mechanisms of β1-AA-mediated ventricular arrhythmias. β1-AAs were obtained from sera of patients with coronary heart disease (CHD) and nonsustained ventricular tachycardia. With whole-cell patch clamp technique, action potentials and I K were recorded. The results illustrated 0.1 μmol/L β1-AAs shortened APD at 50 % (APD50) and 90 % (APD90) of the repolarization. However, at 0.01 μmol/L, β1-AAs had no effects on either APD90 or APD50 (P > 0.05). At 0.001 μmol/L, β1-AAs significantly prolonged APD90 and APD50. Moreover, β1-AAs (0.001, 0.01, 0.1 μmol/L) dose-dependently increased the rapidly activating delayed rectifier potassium current (I Kr), but similarly decreased the slowly activating delayed rectifier potassium current (I Ks) and increased L-type calcium currents at the different concentrations. Taken together, the IKr increase induced by high β1-AA concentrations is responsible for a significant APD reduction which would contribute to repolarization changes and trigger the malignant ventricular arrhythmias in CHD patients.

  13. Serum potassium monitoring for users of ethinyl estradiol/drospirenone taking medications predisposing to hyperkalemia: physician compliance and survey of knowledge and attitudes.

    Science.gov (United States)

    Mona Eng, Patricia; Seeger, John D; Loughlin, Jeanne; Oh, Kelly; Walker, Alexander M

    2007-02-01

    Yasmin-28 [ethinyl estradiol 0.03 mg/drospirenone 3 mg (EE/DRSP)] contains drospirenone, a progestin component that possesses antimineralocorticoid activity with a potassium-sparing diuretic effect similar to that in spironolactone. Product labeling recommends potassium monitoring in the first month of use for women concurrently receiving medication that may increase serum potassium. We evaluated compliance with this recommendation by measuring monitoring around the date of oral contraceptive (OC) initiation in women who received EE/DRSP while being treated with medications predisposing to hyperkalemia and in similar women who received other OCs. Because preliminary analyses indicated incomplete compliance, we surveyed physicians who prescribed EE/DRSP to women receiving drugs predisposing to hyperkalemia on their knowledge and attitudes with regard to the recommendation. We conducted this study using data from the Ingenix Research Datamart, which includes insurance claims for reimbursement for medical services and prescription medications for approximately 8,000,000 members of a large nationally dispersed health plan. We used claims for pharmacy dispensings of prescription medications to identify all women aged 10-59 years old who initiated EE/DRSP or other OCs during the first 3 years of EE/DRSP availability (July 2001 to June 2004). The frequency of potassium monitoring was measured by identifying claims for serum potassium tests. We conducted a telephone survey of 58 physicians who had prescribed EE/DRSP up to June 2003 to women who received concomitant hyperkalemic drugs. Although potassium monitoring was generally more frequent among EE/DRSP initiators receiving concomitant hyperkalemic drugs than among other OC initiators receiving similar medications, only 40% of 466 EE/DRSP initiators with concurrent hyperkalemic treatment had potassium tests. More than 98% of surveyed physicians were aware of the potassium-sparing property of EE/DRSP. Compared with

  14. Impact of potassium promoter on Cu–Fe based mixed alcohols synthesis catalyst

    International Nuclear Information System (INIS)

    Ding, Mingyue; Tu, Junling; Qiu, Minghuang; Wang, Tiejun; Ma, Longlong; Li, Yuping

    2015-01-01

    Highlights: • Adding K facilitated the immigration of bulky iron species to surface layers. • Adding potassium strengthened the interaction of Fe–K on the surface layers. • Increasing K content facilitated the formation of C 2 + OH. • A maximum in catalytic activity is obtained at 0.5 wt.% of potassium loading. - Abstract: Impacts of K promoter on microstructures of a precipitated Cu–Fe based catalyst were studied by N 2 -physisorption (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD) and hydrogen temperature-programmed desorption/reduction (H 2 -TPD/TPR). Mixed alcohols synthesis (MAS) was carried out in a fixed-bed reactor. The results indicated that incorporation of K in the Cu–Fe based catalyst decreased the surface area of the particles, whereas promoted the immigration of bulky iron species to surface layers and strengthened the interaction of surface Fe–Cu. The increase of K concentration weakened the H 2 chemisorption and restrained the reduction of both the Cu and Fe species. The catalytic activity and mixed alcohols selectivity increased accompanied with a gradually increasing K concentration, and reached the highest values as the amount of K increased to 0.5 wt.%. Subsequently, the MAS activity and selectivity C 2 + OH presented a decreasing trend. In addition, the increase of K concentration facilitated the formation of heavy hydrocarbons

  15. Potassium effects on kinetics of propane oxydehydrogenation on vanadia-titania catalyst

    International Nuclear Information System (INIS)

    Grabowski, R.; Samson, K.

    2003-01-01

    Oxidative dehydrogenation of propane (ODH) over V 2 O 5 /TiO 2 and V 2 O 5 /TiO 2 doped with K was carried out by measuring conversions and selectiveness for various feed compositions, contact times and temperatures. The results obtained for both catalysts were interpreted on the basis of the mechanism, in which propene is formed through Eley-Rideal sequence of steps, i.e. without participation of the adsorbed propane species. Kinetic constants (activation energies, pre-exponential factors) for the model of ODH reaction of propane on these catalysts, obtained on the basis of steady-state results, are given. Addition of K to vanadia-titania catalysts leads to decrease of total combustion of propane and consecutive combustion of propene. It has been found that the direct propane total oxidation is 5 - 9 times lower than that of the consecutive propene oxidation and is almost temperature independent for potassium doped catalyst, whereas it quickly decreases with temperature for a non-doped catalyst. Secondly, the addition of K to a vanadia-titania catalyst decreases the activation energies for propene formation (k 1 ), parallel formation of CO x (k 3 ) and reoxidation of the catalyst (k os ). Potassium exhibits a stronger inhibitory effect on the secondary propene combustion, what reflects the lower activity of V 5+ cations modified by the strongly basic alkali oxide species. (author)

  16. KINETICS OF PALM OIL TRANSESTERIFICATION IN METHANOL WITH POTASSIUM HYDROXIDE AS A CATALYST

    Directory of Open Access Journals (Sweden)

    Yoeswono Yoeswono

    2010-06-01

    Full Text Available A study on palm oil transesterification to evaluate the effect of some parameters in the reaction on the reaction kinetics has been carried out. Transesterification was started by preparing potassium methoxide from potassium hydroxide and methanol and then mixed it with the palm oil. An aliquot was taken at certain time interval during transesterification and poured into test tube filled with distilled water to stop the reaction immediately. The oil phase that separated from the glycerol phase by centrifugation was analyzed by 1H-NMR spectrometer to determine the percentage of methyl ester conversion. Temperature and catalyst concentration were varied in order to determine the reaction rate constants, activation energies, pre-exponential factors, and effective collisions. The results showed that palm oil transesterification in methanol with 0.5 and 1 % w/w KOH/palm oil catalyst concentration appeared to follow pseudo-first order reaction. The rate constants increase with temperature. After 13 min of reaction, More methyl esters were formed using KOH 1 % than using 0.5 % w/w KOH/palm oil catalyst concentration. The activation energy (Ea and pre-exponential factor (A for reaction using 1 % w/w KOH was lower than those using 0.5 % w/w KOH.   Keywords: palm oil, transesterification, catalyst, first order kinetics, activation energy, pre-exponential factor

  17. An in vitro investigation of the anti inflammatory properties of potassium humate

    Energy Technology Data Exchange (ETDEWEB)

    Joone, G.K.; van Rensburg, C.E.J. [University of Pretoria, Pretoria (South Africa). Faculty of Health Science, Dept. of Pharmacology

    2004-06-01

    In this study the anti-inflammatory potential of potassium humate, derived from bituminous coal, has been investigated in vitro. Exposure of resting and phorbol-12-myristate-13-acetate (PMA) stimulated human neutrophils to potassium humate resulted in a decreased expression of CR3 by activated, but not resting cells, in a dose-related way. Humate also inhibited the adhesion of PMA-stimulated neutrophils to a baby hamster kidney cell line expressing ICAM1 (the CR3 ligand) (BHK331-7). Similar results were obtained using normal BHK cells indicating that this inhibition does not only target specific adhesion molecules on the neutrophil and eosinophil membrane by activated phagocytes, but also affects other mechanisms involved in cell adhesion. Opsonised Sephadex or FMLP/Cyto B-induced degranulation of neutrophils and eosinophils were also decreased by humate treatment. Inhibition of the adhesion of activated phagocytes, as well as inhibition of the release of granule polypeptides, both of which are responsible for tissue damage during inflammatory processes, are attractive targets for anti-inflammatory drugs. Because humate is well tolerated with an excellent safety profile it merits further evaluation in patients suffering from inflammatory conditions.

  18. Caesium absorption by barley - influence of its retention by the soil - competitive action of potassium

    International Nuclear Information System (INIS)

    Ferron-Trosseau, F.

    1964-06-01

    We have studied, in various culture media, how the absorption of caesium by barley varies with its concentration, and how this absorption can be in competition with a similar alkali cation-potassium. We have also considered the caesium distribution in the ground in particular radio-active caesium, between the soil and solution, as a function of the amount of caesium. From our work it is clear that barley behaves very differently according to whether the caesium is in a nutritive solution or is in the soil: for a nutritive solution, the fraction of caesium (radioactive and stable) absorbed by barley remains practically constant in the presence of increasing amounts (relatively small) of stable caesium; in soil, the fraction of the radio-active caesium absorbed increases as the stable caesium content (fairly low) of the soil increases, in relationship with a rapidly decreasing selectivity of the soil for Cs + . The difference between these results is thus explained by the very pronounced selectivity of the illitic soil studied for Cs + , as long as the proportion of Cs remains low, about as low as that of most natural soils. Furthermore, the K + ion is in competition with the Cs + ion, for absorption by barley in a culture medium in a nutritive solution or in soil, only when the potassium concentrations are relatively low, of the order of the nutritive maximum. This shows that the addition of potassium to a medium already rich in this element does not reduce the absorption of caesium by barley. The choice of experimental conditions close to natural conditions (nutritive media strong in calcium) and the examination of the distribution of radioactive caesium between the soil, the soil solution and the plant in the presence of very low doses of stable caesium make these results interesting from the 'atomic health' point of view; it should be expected that a definite contamination risk exists for plants cultivated on synthetic media and for plants such as rice and cress

  19. The increases in potassium concentrations are greater with succinylcholine than with rocuronium-sugammadex in outpatient surgery: a randomized, multicentre trial.

    Science.gov (United States)

    Sabo, Daniel; Jahr, Jonathan; Pavlin, Janet; Philip, Beverly; Shimode, Noriko; Rowe, Everton; Woo, Tiffany; Soto, Roy

    2014-05-01

    Succinylcholine provides rapid onset of neuromuscular blockade and short duration of action, but its administration may be associated with hyperkalemia. Rocuronium is not known to increase potassium concentration, has fast onset of activity, and can be rapidly reversed by sugammadex. This study evaluated changes in plasma potassium concentrations in patients randomized either to rocuronium followed by sugammadex reversal or to succinylcholine in ambulatory surgery. In this multicentre randomized active-controlled study, adult patients undergoing short surgical procedures in an outpatient setting received either rocuronium 0.6 mg·kg(-1) for intubation with sugammadex 4.0 mg·kg(-1) for reversal (n = 70) or succinylcholine 1.0 mg·kg(-1) with spontaneous recovery (n = 80). Blood potassium concentrations were assessed at baseline (before study drug administration) and at intervals up to 15 min after rocuronium, sugammadex, and succinylcholine. At the primary endpoint, five minutes post-administration, the changes in potassium concentrations from baseline were significantly smaller in patients treated with rocuronium than in those given succinylcholine [mean (SD): -0.06 (0.32) vs 0.30 (0.34) mmol·L(-1), respectively; P rocuronium (P rocuronium baseline. No adverse effects related to hyperkalemia were observed. Succinylcholine was associated with a modest increase in potassium concentration; these changes were not seen after rocuronium or sugammadex ( NCT00751179).

  20. Nutritional and taste characteristics of low-potassium lettuce developed for patients with chronic kidney diseases

    OpenAIRE

    Yoshida, Takuya; Sakuma, Kozue; Kumagai, Hiromichi

    2014-01-01

    Dietary potassium restriction is recommended for chronic kidney disease (CKD) patients with hyperkalemia. Boiling or soaking vegetables in water is known to decrease their potassium content. However, these methods can also reduce the quantity of other nutrients. Recently, low-potassium (LK) lettuce has been developed for CKD patients with hyperkalemia. This study compared the potassium content, other nutritional values, and taste characteristics of LK lettuce with those of normal lettuce. The...