WorldWideScience

Sample records for taurocholic acid tca

  1. Taurocholate Deconjugation and Cholesterol Binding by Indigenous Dadih Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    USMAN PATO

    2005-09-01

    Full Text Available High serum cholesterol levels have been associated with an increased risk for human coronary heart disease. Lowering of serum cholesterol has been suggested to prevent the heart disease. To reduce serum cholesterol levels one may consumed diet supplementat of fermented dairy product such as dadih. Lactic acid bacteria present in dadih may alter serum cholesterol by directly bind to dietary cholesterol and/or deconjugation of bile salts. Acid and bile tolerance, deconjugation of sodium taurocholate, and the cholesterol-binding ability of lactic acid bacteria from dadih were examined. Among ten dadih lactic acid bacteria tested, six strains namely I-11, I-2775, K-5, I-6257, IS-7257, and B-4 could bind cholesterol and deconjugate sodium taurocholate. However, the last four strains were very sensitive to bile. Therefore, Lactobacillus fermentum I-11 and Leuconostoc lactis subsp. lactis I-2775 those were tolerant to acid and oxgall (bile and deconjugated sodium taurocholate and bound cholesterol could be recommended as probiotic to prevent coronary heart disease.

  2. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    Science.gov (United States)

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  3. Na+-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter.

    Science.gov (United States)

    Yu, Dongke; Zhang, Han; Lionarons, Daniel A; Boyer, James L; Cai, Shi-Ying

    2017-04-01

    The Na + -dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na + -dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [ 3 H]TCA uptake assay revealed that skSlc10a1 functioned as a Na + -dependent transporter, but with low affinity for TCA ( K m = 92.4 µM) and scymnol sulfate ( K i = 31 µM), compared with hNTCP (TCA, K m = 5.4 µM; Scymnol sulfate, K i = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na + -dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution. Copyright © 2017 the American Physiological Society.

  4. IRIS Toxicological Review of Trichloroacetic Acid (TCA) ...

    Science.gov (United States)

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroacetic acid (TCA) that when finalized will appear on the Integrated Risk Information System (IRIS) database. The draft Toxicological Review of trichloroacetic acid provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to trichloroacetic acid.

  5. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis.

    Science.gov (United States)

    Ooi, Makoto; Nishiumi, Shin; Yoshie, Tomoo; Shiomi, Yuuki; Kohashi, Michitaka; Fukunaga, Ken; Nakamura, Shiro; Matsumoto, Takayuki; Hatano, Naoya; Shinohara, Masakazu; Irino, Yasuhiro; Takenawa, Tadaomi; Azuma, Takeshi; Yoshida, Masaru

    2011-09-01

    The roles that amino acids play in immunity and inflammation are well defined, and the relationship between inflammatory bowel disease (IBD) and certain amino acids has recently attracted attention. In this study, the levels of amino acids and trichloroacetic acid (TCA) cycle-related molecules in the colonic tissues and sera of patients with ulcerative colitis (UC) were profiled by gas chromatography/mass spectrometry (GC/MS), with the aim of evaluating whether the clinical state induced by UC leads to variations in the amino acid profile. Colonic biopsy samples from 22 UC patients were used, as well as serum samples from UC patients (n = 13), Crohn's disease (CD) patients (n = 21), and healthy volunteers (n = 17). In the GC/MS-based profiling of amino acids and TCA cycle-related molecules, lower levels of 16 amino acids and 5 TCA cycle-related molecules were observed in the colonic lesion tissues of the UC patients, and the serum profiles of amino acids and TCA cycle-related molecules of the UC patients were different from those of the CD patients and healthy volunteers. Our study raises the possibility that GC/MS-based profiling of amino acids and TCA cycle-related molecules is a useful early diagnostic tool for UC.

  6. The effect of taurocholate on canine bile flow, biliary excretion and concentration of ioglycamide

    International Nuclear Information System (INIS)

    Toetterman, S.; Santavirta, S.; Mankinen, P.; Antila, H.; Lukkari, E.; Goethlin, J.; Korpi-Tommola, T.

    1983-01-01

    The bile acid taurocholate increases the biliary excretion of organic anions, such as sulfobromophthalein (BSP), bilirubin and iopanoic acid. In the present study has been investigated the effect of taurocholate on 1. Canine biliary excretion and concentration of the i.v. contrast medium ioglycamide and 2. Canine bile flow. The experimental model consisted of cholecystectomized, anaesthetized dogs with a fistula, through which the common bile duct could be catheterized and drained. One hour after cannulation, i.v. infusion of ioglycamide at a rate of 4 μmol/min./kg. was started. Two hours after the infusion start a control group received i.v. infusion of saline, while in another a 1.5% sodium taurocholate infusion was started with stepwise increases with 30 min. intervals from 0.4 to 0.8, 1.6 and 3.2 μmol/min./kg. Compared with control, all rates of taurocholate infusion increased bile flow and decreased biliary ioglycamide concentration. Although the bile flow with increasing taurocholate infusion rates was enhanced, the biliary ioglycamide excretion did not increase. The results indicate that ioglycamide and taurocholate are excreted into bile by separate excretion mechanisms. As taurocholate increases the biliary excretion of some other organic anions, it supports the hypothesis that organic anions are excreted into bile by more than two excretion mechanisms, taurocholate affecting only some of them. (orig.)

  7. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Science.gov (United States)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  8. IRIS Toxicological Review of Trichloroacetic Acid (TCA) (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Trichloroacetic acid (TCA) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  9. Comparative study of 15% TCA peel versus 35% glycolic acid peel for the treatment of melasma.

    Science.gov (United States)

    Puri, Neerja

    2012-05-01

    Chemical peels are the mainstay of a cosmetic practitioner's armamentarium because they can be used to treat some skin disorders and can provide aesthetic benefit. To compare 15% TCA peel and 35% glycolic acid peel for the treatment of melasma. We selected 30 participants of melasma aged between 20 and 50 years from the dermatology outpatient department and treated equal numbers with 15% TCA and 35% glycolic acid. Subjective response as graded by the patient showed good or very good response in 70% participants in the glycolic acid group and 64% in the TCA group. There was statistically insignificant difference in the efficacy between the two groups for the treatment of melasma.

  10. TCA precipitation.

    Science.gov (United States)

    Koontz, Laura

    2014-01-01

    Trichloroacetic acid (TCA) precipitation of proteins is commonly used to concentrate protein samples or remove contaminants, including salts and detergents, prior to downstream applications such as SDS-PAGE or 2D-gels. TCA precipitation denatures the protein, so it should not be used if the protein must remain in its folded state (e.g., if you want to measure a biochemical activity of the protein). © 2014 Elsevier Inc. All rights reserved.

  11. Bile acids induce arrhythmias in human atrial myocardium--implications for altered serum bile acid composition in patients with atrial fibrillation.

    Science.gov (United States)

    Rainer, Peter P; Primessnig, Uwe; Harenkamp, Sandra; Doleschal, Bernhard; Wallner, Markus; Fauler, Guenter; Stojakovic, Tatjana; Wachter, Rolf; Yates, Ameli; Groschner, Klaus; Trauner, Michael; Pieske, Burkert M; von Lewinski, Dirk

    2013-11-01

    High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids. Multicellular human atrial preparations ('trabeculae') were exposed to primary bile acids and the incidence of arrhythmic events was assessed. Bile acid concentrations were measured in serum samples from 250 patients and their association with AF and ECG parameters analysed. Additionally, we conducted electrophysiological studies in murine myocytes. Taurocholic acid (TCA) concentration-dependently induced arrhythmias in atrial trabeculae (14/28 at 300 µM TCA, pursodeoxycholic acid did not. Patients with AF had significantly decreased serum levels of ursodeoxycholic acid conjugates and increased levels of non-ursodeoxycholic bile acids. In isolated myocytes, TCA depolarised the resting membrane potential, enhanced Na(+)/Ca(2+) exchanger (NCX) tail current density and induced afterdepolarisations. Inhibition of NCX prevented arrhythmias in atrial trabeculae. High TCA concentrations induce arrhythmias in adult human atria while ursodeoxycholic acid does not. AF is associated with higher serum levels of non-ursodeoxycholic bile acid conjugates and low levels of ursodeoxycholic acid conjugates. These data suggest that higher levels of toxic (arrhythmogenic) and low levels of protective bile acids create a milieu with a decreased arrhythmic threshold and thus may facilitate arrhythmic events.

  12. IRIS Toxicological Review of Trichloroacetic Acid (TCA) (Interagency Science Discussion Draft)

    Science.gov (United States)

    EPA is releasing the draft report, Toxicological Review of Trichloroacetic Acid (TCA), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development ...

  13. TMFunction data: 2256 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 110 uptake activity (%...) TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  14. TMFunction data: 2241 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 4 uptake activity (%) ...TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  15. TMFunction data: 2249 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 100 uptake activity (%...) TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  16. TMFunction data: 2250 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 99 uptake activity (%)... TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  17. TMFunction data: 2243 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 50 uptake activity (%)... TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  18. TMFunction data: 2253 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 131 uptake activity (%...) TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  19. TMFunction data: 2240 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 1 uptake activity (%) ...TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  20. TMFunction data: 2255 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 74 uptake activity (%)... TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  1. TMFunction data: 2245 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 105 uptake activity (%...) TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  2. TMFunction data: 2246 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 90 uptake activity (%)... TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  3. TMFunction data: 2257 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 80 uptake activity (%)... TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  4. TMFunction data: 2251 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 61 uptake activity (%)... TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  5. TMFunction data: 2258 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 5 uptake activity (%) ...TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  6. TMFunction data: 2254 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 114 uptake activity (%...) TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  7. TMFunction data: 2259 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 64 uptake activity (%)... TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  8. TMFunction data: 2248 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 52 uptake activity (%)... TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  9. TMFunction data: 2252 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 114 uptake activity (%...) TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  10. TMFunction data: 2239 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available l CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 18 uptake activity (%)... TCA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  11. TMFunction data: 2238 [TMFunction[Archive

    Lifescience Database Archive (English)

    Full Text Available CM, Swaan PW Biochemistry. 2008 Mar 25;47(12):3606-14 Cysteine-scanning mutagenesis 0 uptake activity (%) T...CA ... NTCP2_HUMAN (Q12908) Helix TCA; taurocholic acid cysteine-scanning mutagenesis; transport; uptake; charged; polar; sodium translocation

  12. Localisation of gluconeogenesis and tricarboxylic acid (TCA)-cycle enzymes and first functional analysis of the TCA cycle in Toxoplasma gondii.

    Science.gov (United States)

    Fleige, Tobias; Pfaff, Nils; Gross, Uwe; Bohne, Wolfgang

    2008-08-01

    The apicomplexan parasite Toxoplasma gondii displays some unusual localisations of carbohydrate converting enzymes, which is due to the presence of a vestigial, non-photosynthetic plastid, referred to as the apicoplast. It was recently demonstrated that the single pyruvate dehydrogenase complex (PDH) in T. gondii is exclusively localised inside the apicoplast but absent in the mitochondrion. This raises the question about expression, localisation and function of enzymes for the tricarboxylic acid (TCA)-cycle, which normally depends on PDH generated acetyl-CoA. Based on the expression and localisation of epitope-tagged fusion proteins, we show that all analysed TCA cycle enzymes are localised in the mitochondrion, including both isoforms of malate dehydrogenase. The absence of a cytosolic malate dehydrogenase suggests that a typical malate-aspartate shuttle for transfer of reduction equivalents is missing in T. gondii. We also localised various enzymes which catalyse the irreversible steps in gluconeogenesis to a cellular compartment and examined mRNA expression levels for gluconeogenesis and TCA cycle genes between tachyzoites and in vitro bradyzoites. In order to get functional information on the TCA cycle for the parasite energy metabolism, we created a conditional knock-out mutant for the succinyl-CoA synthetase. Disruption of the sixth step in the TCA cycle should leave the biosynthetic parts of the cycle intact, but prevent FADH2 production. The succinyl-CoA synthetase depletion mutant displayed a 30% reduction in growth rate, which could be restored by supplementation with 2 microM succinate in the tissue culture medium. The mitochondrial membrane potential in these parasites was found to be unaltered. The lack of a more severe phenotype suggests that a functional TCA cycle is not essential for T. gondii replication and for maintenance of the mitochondrial membrane potential.

  13. Taurocholate transport by brush-border membrane vesicles from the developing rabbit ileum: Structure/function relationships

    International Nuclear Information System (INIS)

    Schwarz, S.M.; Watkins, J.B.; Ling, S.C.

    1990-01-01

    To examine the ontogenesis of bile acid transport in the rabbit ileum, brush-border membrane vesicles (12- to 20-fold purified) were prepared from 14- to 49-day-old animals. Taurocholate uptake was characterized by the emergence of secondary active, Na(+)-dependent transport at the start of weaning (21 days). Transient intravesicular accumulation (overshoot) of taurocholate occurred at 5-10 s of incubation, and the overshoot maximum increased significantly from 21 days (349.2 +/- 22.4 nmol/mg protein) to 35 days (569.0 +/- 84.3 nmol/mg protein; p less than 0.001), without further increase at maturity (49 days, not equal to 607.6 +/- 136.7 nmol/mg protein). No significant taurocholate active uptake component was noted at 14 days; however, ileal vesicles from sucklings showed carrier-mediated, Na+ D-glucose cotransport. In greater than or equal to 35-day-old rabbits, osmolarity studies at 20 s of incubation showed that only approximately 12% of [14C]taurocholate uptake was secondary to bile acid-to-membrane binding. Conversely, at 20 min, greater than 95% of radiolabel incorporation represented solute bound to the external and/or internal membrane surface. Arrhenius plots establish brush-border membrane taurocholate uptake as an intrinsic, lipid-dependent process, with a slope discontinuity between 24 and 28 degrees C, similar to the membrane lipid thermotropic transition region. Steady-state fluorescence polarization studies (1,6-diphenyl-1,3,5-hexatriene) demonstrate a temporal association between the maturation of taurocholate uptake and age-related decreases in ileal brush-border membrane fluidity. These data indicate that maturation of bile acid secondary active transport in the rabbit ileum may be regulated, at least in part, by changes in brush-border membrane lipid dynamics

  14. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis.

    Science.gov (United States)

    Araújo, Wagner L; Martins, Auxiliadora O; Fernie, Alisdair R; Tohge, Takayuki

    2014-01-01

    The tricarboxylic acid (TCA) cycle intermediate 2-oxoglutarate (2-OG) is used as an obligatory substrate in a range of oxidative reactions catalyzed by 2-OG-dependent dioxygenases. These enzymes are widespread in nature being involved in several important biochemical processes. We have recently demonstrated that tomato plants in which the TCA cycle enzyme 2-OG dehydrogenase (2-ODD) was antisense inhibited were characterized by early senescence and modified fruit ripening associated with differences in the levels of bioactive gibberellin (GA). Accordingly, there is now compelling evidence that the TCA cycle plays an important role in modulating the rate of flux from 2-OG to amino acid metabolism. Here we discuss recent advances in the biochemistry and molecular biology of 2-OG metabolism occurring in different biological systems indicating the importance of 2-OG and 2-OG dependent dioxygenases not only in glucosinolate, flavonoid and alkaloid metabolism but also in GA and amino acid metabolism. We additionally summarize recent findings regarding the impact of modification of 2-OG metabolism on biosynthetic pathways involving 2-ODDs.

  15. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    International Nuclear Information System (INIS)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-01-01

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion ( TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  16. Discrimination of bile acids by the rainbow trout olfactory system: Evidence as potential pheromone

    Directory of Open Access Journals (Sweden)

    PERCILIA C GIAQUINTO

    2008-01-01

    Full Text Available Electro-olfactogram recording was used to determine whether the olfactory epithelium of adult rainbow trout is specifically sensitive to bile acids, some of which have been hypothesized to function as pheromones. Of 38 bile acids that had been pre-screened for olfactory activity, 6 were selected. The rainbow trout-specific bile acids, taurocholic acid (TCA, and taurolithocholic acid 3-sulfate (TLS were the most potent compounds tested. TLS had a distinctive dose-response curve. Cross-adaptation experiments demonstrated that sensitivity to bile acids is attributable to at least 3 independent classes of olfactory receptor sites. Our data suggest that bile acids are discriminated by olfaction in rainbow trout, supporting the possibility that these compounds function as pheromones

  17. Efficacy of Modified Jessner's Peel and 20% TCA Versus 20% TCA Peel Alone for the Treatment of Acne Scars.

    Science.gov (United States)

    Puri, Neerja

    2015-01-01

    There is a paucity of studies on the use of chemical peels for acne scars among the Asian population. A trichloroacetic acid (TCA) and Jessner's combination chemical peel, originally described by Monheit, is said to be better than a TCA peel alone. The aim of the study was to compare the efficacy of 20% TCA and Jessner's solution versus 20% TCA alone for the treatment of acne scars. : The patients were divided into two groups of 25 patients each. Chemical peeling was done in both the groups. In Group I, chemical peeling with Jessner's peel followed by 20% TCA was done and in Group II patients chemical peeling with 20% TCA peel alone was done. In Group I (Jessner's peel and 20% TCA), mild improvement of acne scars was seen in 8% cases, moderate improvement in 32% cases and marked improvement of acne scars was seen in 60% patients. In Group II (20% TCA), mild improvement of acne scars was seen in 32% cases, moderate improvement in 40% cases and marked improvement of acne scars was seen in 28% patients. But, the difference in improvement of acne scars was not statistically significant in both the groups (P value > 0.05).

  18. Glucose feeds the TCA cycle via circulating lactate.

    Science.gov (United States)

    Hui, Sheng; Ghergurovich, Jonathan M; Morscher, Raphael J; Jang, Cholsoon; Teng, Xin; Lu, Wenyun; Esparza, Lourdes A; Reya, Tannishtha; Le Zhan; Yanxiang Guo, Jessie; White, Eileen; Rabinowitz, Joshua D

    2017-11-02

    Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13 C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13 C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.

  19. Efficacy of modified Jessner′s peel and 20% TCA versus 20% TCA peel alone for the treatment of acne scars

    Directory of Open Access Journals (Sweden)

    Neerja Puri

    2015-01-01

    Full Text Available Introduction: There is a paucity of studies on the use of chemical peels for acne scars among the Asian population. A trichloroacetic acid (TCA and Jessner′s combination chemical peel, originally described by Monheit, is said to be better than a TCA peel alone. Aims: The aim of the study was to compare the efficacy of 20% TCA and Jessner′s solution versus 20% TCA alone for the treatment of acne scars. Materials and Methods : The patients were divided into two groups of 25 patients each. Chemical peeling was done in both the groups. In Group I, chemical peeling with Jessner′s peel followed by 20% TCA was done and in Group II patients chemical peeling with 20% TCA peel alone was done. Results: In Group I (Jessner′s peel and 20% TCA, mild improvement of acne scars was seen in 8% cases, moderate improvement in 32% cases and marked improvement of acne scars was seen in 60% patients. In Group II (20% TCA, mild improvement of acne scars was seen in 32% cases, moderate improvement in 40% cases and marked improvement of acne scars was seen in 28% patients. But, the difference in improvement of acne scars was not statistically significant in both the groups (P value > 0.05.

  20. Interactions between organic anions on multiple transporters in Caco-2 cells

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Steffansen, Bente

    2011-01-01

    Caco-2 cell line may be used as an overall model to predict interactions on multiple membrane transporters in the intestine. Taurocholic acid (TCA) and estrone-3-sulfate (E1S) were used as model substrates. Possible inhibitors studied were TCA, E1S, taurolithocholic acid, fluvastatin, and glipizide......-dependent bile acid transporter and the organic solute transporter α/β, and to less extent by the organic anion transporting polypeptide 2B1. However, interactions on efflux transporters were not detected, although they were expected from the literature on the investigated compounds. Biosimulation methods may...

  1. Reduced TCA flux in diabetic myotubes: A governing influence on the diabetic phenotype?

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. It is unknown whether the reduced tricarboxylic acid cycle (TCA) flux in skeletal muscle of obese and obese type 2 diabetic (T2D) subjects is of primary origin. Acetate oxidation (measurement of TCA-flux) was sign......The diabetic phenotype is complex, requiring elucidation of key initiating defects. It is unknown whether the reduced tricarboxylic acid cycle (TCA) flux in skeletal muscle of obese and obese type 2 diabetic (T2D) subjects is of primary origin. Acetate oxidation (measurement of TCA...

  2. Metabolic Engineering of TCA Cycle for Production of Chemicals

    NARCIS (Netherlands)

    Vuoristo, K.S.; Mars, A.E.; Sanders, J.P.M.; Eggink, G.; Weusthuis, R.A.

    2016-01-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical

  3. Reduced TCA Flux in Diabetic Myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP p...... production of investigated substrate combinations was significantly reduced in mitochondria isolated from type 2 diabetic subjects compared to lean. However, when ATP synthesis rates at different substrate combinations were normalized to the corresponding individual pyruvate-malate rate...

  4. GATOR1 regulates nitrogenic cataplerotic reactions of the mitochondrial TCA cycle.

    Science.gov (United States)

    Chen, Jun; Sutter, Benjamin M; Shi, Lei; Tu, Benjamin P

    2017-11-01

    The GATOR1 (SEACIT) complex consisting of Iml1-Npr2-Npr3 inhibits target of rapamycin complex 1 (TORC1) in response to amino acid insufficiency. In glucose medium, Saccharomyces cerevisiae mutants lacking the function of this complex grow poorly in the absence of amino acid supplementation, despite showing hallmarks of increased TORC1 signaling. Such mutants sense that they are amino acid replete and thus repress metabolic activities that are important for achieving this state. We found that npr2Δ mutants have defective mitochondrial tricarboxylic acid (TCA)-cycle activity and retrograde response. Supplementation with glutamine, and especially aspartate, which are nitrogen-containing forms of TCA-cycle intermediates, rescues growth of npr2Δ mutants. These amino acids are then consumed in biosynthetic pathways that require nitrogen to support proliferative metabolism. Our findings revealed that negative regulators of TORC1, such as GATOR1 (SEACIT), regulate the cataplerotic synthesis of these amino acids from the TCA cycle, in tune with the amino acid and nitrogen status of cells.

  5. Excision versus trichloroacetic acid (TCA) chemocauterization for branchial sinus of the pyriform fossa.

    Science.gov (United States)

    Hwang, Jihee; Kim, Seong Chul; Kim, Dae Yeon; Namgoong, Jung-Man; Nam, Soon Yuhl; Roh, Jong-Lyel

    2015-11-01

    We analyzed the outcomes of open surgical excision and endoscopic trichloroacetic acid (TCA) chemocauterization for the treatment of branchial sinus of the pyriform fossa (BSPF). We retrospectively reviewed the records of 27 patients (16 males and 11 females) who were treated for BSPF at the Asan Medical Center between 1996 and 2013. The median age of the 27 patients was 4.5years (range, 0 to 15years). Before definitive surgery, 19 (70.3%) of the patients had histories of neck infection, and 16 (59.2%) patients had neck abscesses that were drained. The lesions were predominantly located on the left side (26 of 27; 96.2%). Excisions were performed for 14 (48.1%) patients. TCA chemocauterizations were performed for 13 patients. After a median follow-up period of 5.5years, 11 patients developed recurrence. The recurrence rates were not significantly different between the excision and chemocauterization groups (35.7% vs 46.1%, respectively, p=0.704). All of the recurred patients were successfully treated with repeated chemocauterization or reexcision. Analyses of the risk factors for recurrence revealed that a previous infection history tended to increase the rate of recurrence (90.9% vs 56.2%, p=0.090). Our experience suggests that the outcomes of excision and TCA chemocauterization are not significantly different. Additional studies are needed to reach a consensus regarding the best treatment strategy for BSPF. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Metabolic Engineering of TCA Cycle for Production of Chemicals.

    Science.gov (United States)

    Vuoristo, Kiira S; Mars, Astrid E; Sanders, Johan P M; Eggink, Gerrit; Weusthuis, Ruud A

    2016-03-01

    The tricarboxylic acid (TCA) cycle has been used for decades in the microbial production of chemicals such as citrate, L-glutamate, and succinate. Maximizing yield is key for cost-competitive production. However, for most TCA cycle products, the maximum pathway yield is lower than the theoretical maximum yield (Y(E)). For succinate, this was solved by creating two pathways to the product, using both branches of the TCA cycle, connected by the glyoxylate shunt (GS). A similar solution cannot be applied directly for production of compounds from the oxidative branch of the TCA cycle because irreversible reactions are involved. Here, we describe how this can be overcome and what the impact is on the yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.

    Science.gov (United States)

    Rezaei, Mohammad N; Aslankoohi, Elham; Verstrepen, Kevin J; Courtin, Christophe M

    2015-07-02

    Succinic acid produced by yeast during bread dough fermentation can significantly affect the rheological properties of the dough. By introducing mutations in the model S288C yeast strain, we show that the oxidative pathway of the TCA cycle and the glyoxylate shunt contribute significantly to succinic acid production during dough fermentation. More specifically, deletion of ACO1 and double deletion of ACO1 and ICL1 resulted in a 36 and 77% decrease in succinic acid levels in fermented dough, respectively. Similarly, double deletion of IDH1 and IDP1 decreased succinic acid production by 85%, while also affecting the fermentation rate. By contrast, double deletion of SDH1 and SDH2 resulted in a two-fold higher succinic acid accumulation compared to the wild-type. Deletion of fumarate reductase activity (FRD1 and OSM1) in the reductive pathway of the TCA cycle did not affect the fermentation rate and succinic acid production. The changes in the levels of succinic acid produced by mutants Δidh1Δidp1 (low level) and Δsdh1Δsdh2 (high level) in fermented dough only resulted in small pH differences, reflecting the buffering capacity of dough at a pH of around 5.1. Moreover, Rheofermentometer analysis using these mutants revealed no difference in maximum dough height and gas retention capacity with the dough prepared with S288C. The impact of the changed succinic acid profile on the organoleptic or antimicrobial properties of bread remains to be demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism

    DEFF Research Database (Denmark)

    Mourtzakis, M.; Graham, T.E.; Gonzalez-Alonso, J.

    2008-01-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate...... declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70......% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (Pglutamate infusion. Peak...

  9. Formal TCA cycle description based on elementary actions

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    Dec 20, 2006 ... Applied to the description of the tricarboxylic acid cycle (TCA), we show that. BioΨ allows ... BAs, biological activities; BEAs, basic elements of action; BFs, biological ..... the mitochondria, such as respiratory chain and fatty acid.

  10. Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Rahman, Mohammad M; Rosu, Simona; Joseph-Strauss, Daphna; Cohen-Fix, Orna

    2014-02-18

    The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.

  11. Evaluation the efficacy of trichloroacetic acid (TCA) 33% in treatment of oral retinoid-induced cheilitis compared with placebo (Vaseline): a randomized pilot study.

    Science.gov (United States)

    Mansouri, Parvin; Azizian, Zahra; Hejazi, Somayeh; Chalangari, Reza; Chalangari, Katalin Martits

    2018-03-06

    Oral Isotretinoin (13-cis-retinoic acid) is a gold standardtreatment for severe forms of acne with cheilitis as a most frequent complication. We designed this novel study to investigate the therapeutic effect of trichloroacetic acid (TCA) 33% as compared with placebo to treat cheilitis. In this pilot study, 90 acne vulgaris patients between 18 and 50 years, who referred dermatologic clinic with cheilitis, were assigned to either case (TCA) or control (Vaseline) group using permuted-block randomization from 2013 to 2015 with data analysis in 2016. Patients had follow-up visits after 2 and 6 weeks, at which their lesions were photographed. Two blinded expert dermatologists recorded physician International global score for each image. Ninety eligible patients were randomly allocated into two groups. This included 45 patients in each group. At the end of follow-up, 44 patients in the intervention group and 37 patients in control group completed the final assessment. Compared to the control group, the TCA group had a greater reduction in the mean ICGS value from baseline to Week 6 (mean difference 2.59 points, p TCA can be considered as a good strategy in improvement of cheilitis to isotretinoin therapy.

  12. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.

    Science.gov (United States)

    Mourtzakis, M; Graham, T E; González-Alonso, J; Saltin, B

    2008-08-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (PTCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33+/-0.07 vs. 0.02+/-0.01 mmol/kg dry wt (dw), PTCA cycle, glutamate and TCA cycle intermediates do not directly affect VO2peak in either trained or untrained muscle.

  13. Reduced TCA Flux in Diabetic Myotubes: Determined by Single Defects?

    Science.gov (United States)

    Gaster, Michael

    2012-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP production in isolated mitochondria from substrates entering the TCA cycle at various points. ATP production was measured by luminescence with or without concomitant ATP utilisation by hexokinase in mitochondria isolated from myotubes established from eight lean and eight type 2 diabetic subjects. The ATP production of investigated substrate combinations was significantly reduced in mitochondria isolated from type 2 diabetic subjects compared to lean. However, when ATP synthesis rates at different substrate combinations were normalized to the corresponding individual pyruvate-malate rate, there was no significant difference between groups. These results show that the primary reduced TCA cycle flux in diabetic myotubes is not explained by defects in specific part of the TCA cycle but rather results from a general downregulation of the TCA cycle.

  14. Origin of the Reductive Tricarboxylic Acid (rTCA Cycle-Type CO2 Fixation: A Perspective

    Directory of Open Access Journals (Sweden)

    Norio Kitadai

    2017-10-01

    Full Text Available The reductive tricarboxylic acid (rTCA cycle is among the most plausible candidates for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO2 in this cycle contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system emerged at once in a prebiotic process. Here, we discuss the feasibility of non-enzymatic cofactor-assisted drive of the rTCA reactions in the primitive Earth environments, particularly focusing on the acetyl-CoA conversion to pyruvate. Based on the energetic and mechanistic aspects of this reaction, we propose that the deep-sea hydrothermal vent environments with active electricity generation in the presence of various sulfide catalysts are a promising setting for it to progress. Our view supports the theory of an autotrophic origin of life from primordial carbon assimilation within a sulfide-rich hydrothermal vent.

  15. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile.

    Science.gov (United States)

    Nunoura, Takuro; Chikaraishi, Yoshito; Izaki, Rikihisa; Suwa, Takashi; Sato, Takaaki; Harada, Takeshi; Mori, Koji; Kato, Yumiko; Miyazaki, Masayuki; Shimamura, Shigeru; Yanagawa, Katsunori; Shuto, Aya; Ohkouchi, Naohiko; Fujita, Nobuyuki; Takaki, Yoshihiro; Atomi, Haruyuki; Takai, Ken

    2018-02-02

    Inorganic carbon fixation is essential to sustain life on Earth, and the reductive tricarboxylic acid (rTCA) cycle is one of the most ancient carbon fixation metabolisms. A combination of genomic, enzymatic, and metabolomic analyses of a deeply branching chemolithotrophic Thermosulfidibacter takaii ABI70S6 T revealed a previously unknown reversible TCA cycle whose direction was controlled by the available carbon source(s). Under a chemolithoautotrophic condition, a rTCA cycle occurred with the reverse reaction of citrate synthase (CS) and not with the adenosine 5'-triphosphate-dependent citrate cleavage reactions that had been regarded as essential for the conventional rTCA cycle. Phylometabolic evaluation suggests that the TCA cycle with reversible CS may represent an ancestral mode of the rTCA cycle and raises the possibility of a facultatively chemolithomixotrophic origin of life. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Convergent evolution of a modified, acetate-driven TCA cycle in bacteria.

    Science.gov (United States)

    Kwong, Waldan K; Zheng, Hao; Moran, Nancy A

    2017-04-28

    The tricarboxylic acid (TCA) cycle is central to energy production and biosynthetic precursor synthesis in aerobic organisms. There are few known variations of a complete TCA cycle, with the common notion being that the enzymes involved have already evolved towards optimal performance. Here, we present evidence that an alternative TCA cycle, in which acetate:succinate CoA-transferase (ASCT) replaces the enzymatic step typically performed by succinyl-CoA synthetase (SCS), has arisen in diverse bacterial groups, including microbial symbionts of animals such as humans and insects.

  17. Induction of PDGF-B in TCA-treated epidermal keratinocytes.

    Science.gov (United States)

    Yonei, Nozomi; Kanazawa, Nobuo; Ohtani, Toshio; Furukawa, Fukumi; Yamamoto, Yuki

    2007-11-01

    Trichloroacetic acid (TCA) is one of the most widely used peeling agents, and induces full necrosis of the whole epidermis, followed by reconstitution of the epidermis and the matrix of the papillary dermis. The cytotoxic effects of TCA, such as suppressing proliferation of keratinocytes and fibroblasts and protein synthesis by fibroblasts, have already been reported. However, the entire biological mechanism responsible for TCA peeling has yet to be determined. Hypothetical activation effects of TCA treatment on epidermal cells to induce production of growth factors and cytokines are examined, and are compared with its cytotoxic effects in terms of time course and applied TCA concentrations. After various periods of incubation with TCA, viability of Pam212 murine keratinocytes was investigated with MTT assay and dye exclusion assay, and production of growth factors and cytokines with reverse transcription-polymerase chain reaction (RT-PCR). Changes in platelet-derived growth factor (PDGF)-B mRNA expression and protein production in the human skin specimens after TCA application were then examined by RT-PCR and immunohistochemistry, respectively. Incubation with TCA showed cytotoxicity and induced death of Pam212 cells, depending on the incubation period and the TCA concentration. In addition, expressions of PDGF-B, tumor growth factor (TGF)-alpha, TGF- beta1 and vascular endothelial growth factor, which are the growth factors reportedly secreted from keratinocytes during wound healing, were all detected in Pam212 cells after short-term treatment with TCA. Expressions of inflammatory cytokines such as interleukin (IL)-1 and IL-10 were also induced. In TCA-treated NIH-3T3 fibroblasts, in contrast, observed was upregulation of only keratinocyte growth factor, which is reportedly secreted from fibroblasts, as well as the similar cytotoxic effect. In human skin, PDGF-B mRNA expression became significantly upregulated after TCA application, and then immediately

  18. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.

    Science.gov (United States)

    Desideri, Enrico; Vegliante, Rolando; Ciriolo, Maria Rosa

    2015-01-28

    The tricarboxylic acid (TCA) cycle is a central route for oxidative metabolism. Besides being responsible for the production of NADH and FADH2, which fuel the mitochondrial electron transport chain to generate ATP, the TCA cycle is also a robust source of metabolic intermediates required for anabolic reactions. This is particularly important for highly proliferating cells, like tumour cells, which require a continuous supply of precursors for the synthesis of lipids, proteins and nucleic acids. A number of mutations among the TCA cycle enzymes have been discovered and their association with some tumour types has been established. In this review we summarise the current knowledge regarding alterations of the TCA cycle in tumours, with particular attention to the three germline mutations of the enzymes succinate dehydrogenase, fumarate hydratase and isocitrate dehydrogenase, which are involved in the pathogenesis of tumours, and to the aberrant regulation of TCA cycle components that are under the control of oncogenes and tumour suppressors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State.

    Science.gov (United States)

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Inborn defects of the tricarboxylic acid (TCA) cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate dehydrogenase (IDH), pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  20. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State

    Directory of Open Access Journals (Sweden)

    Simone Cardaci

    2012-01-01

    Full Text Available Inborn defects of the tricarboxylic acid (TCA cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH, fumarate hydratase (FH, and isocitrate dehydrogenase (IDH, pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  1. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Gaster, Michael; Nehlin, Jan O; Minet, Ariane D

    2012-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. Recent research has shown that diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux. A reduced TCA cycle flux has also been shown both in insulin resistant offspring of T2D patients...... and exercising T2D patients in vivo. This review will discuss the latest advances in the understanding of the molecular mechanisms regulating the TCA cycle with focus on possible underlying mechanism which could explain the impaired TCA flux in insulin resistant human skeletal muscle in type 2 diabetes....... A reduced TCA is both a marker and a maker of the diabetic phenotype....

  2. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells.

    Science.gov (United States)

    Filipp, Fabian V; Scott, David A; Ronai, Ze'ev A; Osterman, Andrei L; Smith, Jeffrey W

    2012-05-01

    The tricarboxylic acid (TCA) cycle is the central hub of oxidative metabolism, running in the classic forward direction to provide carbon for biosynthesis and reducing agents for generation of ATP. Our metabolic tracer studies in melanoma cells showed that in hypoxic conditions the TCA cycle is largely disconnected from glycolysis. By studying the TCA branch point metabolites, acetyl CoA and citrate, as well as the metabolic endpoint glutamine and fatty acids, we developed a comprehensive picture of the rewiring of the TCA cycle that occurs in hypoxia. Hypoxic tumor cells maintain proliferation by running the TCA cycle in reverse. The source of carbon for acetyl CoA, citrate, and fatty acids switches from glucose in normoxia to glutamine in hypoxia. This hypoxic flux from glutamine into fatty acids is mediated by reductive carboxylation. This reductive carboxylation is catalyzed by two isocitrate dehydrogenases, IDH1 and IDH2. Their combined action is necessary and sufficient to effect the reverse TCA flux and maintain cellular viability. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  3. TCA High Lift Preliminary Assessment

    Science.gov (United States)

    Wyatt, G. H.; Polito, R. C.; Yeh, D. T.; Elzey, M. E.; Tran, J. T.; Meredith, Paul T.

    1999-01-01

    This paper presents a TCA (Technology Concept Airplane) High lift Preliminary Assessment. The topics discussed are: 1) Model Description; 2) Data Repeatability; 3) Effect of Inboard L.E. (Leading Edge) Flap Span; 4) Comparison of 14'x22' TCA-1 With NTF (National Transonic Facility) Modified Ref. H; 5) Comparison of 14'x22' and NTF Ref. H Results; 6) Effect of Outboard Sealed Slat on TCA; 7) TCA Full Scale Build-ups; 8) Full Scale L/D Comparisons; 9) TCA Full Scale; and 10) Touchdown Lift Curves. This paper is in viewgraph form.

  4. Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients.

    Science.gov (United States)

    Bubber, P; Hartounian, V; Gibson, G E; Blass, J P

    2011-03-01

    Images of brain metabolism and measurements of activities of components of the electron transport chain support earlier studies that suggest that brain glucose oxidation is inherently abnormal in a significant proportion of persons with schizophrenia. Therefore, we measured the activities of enzymes of the tricarboxylic (TCA) cycle in dorsolateral-prefrontal-cortex from schizophrenia patients (N=13) and non-psychiatric disease controls (N=13): the pyruvate dehydrogenase complex (PDHC), citrate synthase (CS), aconitase, isocitrate dehydrogenase (ICDH), the alpha-ketoglutarate dehydrogenase complex (KGDHC), succinate thiokinase (STH), succinate dehydrogenase (SDH), fumarase and malate dehydrogenase (MDH). Activities of aconitase (18.4%, pTCA cycle, were lower, but SDH (18.3%, pTCA cycle and cognitive function, age or choline acetyl transferase activity, except for aconitase activity which decreased slightly with age (r=0.55, p=003). The increased activities of dehydrogenases in the second half of the TCA cycle may reflect a compensatory response to reduced activities of enzymes in the first half. Such alterations in the components of TCA cycle are adequate to alter the rate of brain metabolism. These results are consistent with the imaging studies of hypometabolism in schizophrenia. They suggest that deficiencies in mitochondrial enzymes can be associated with mental disease that takes the form of schizophrenia. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  5. Mathematical modeling of (13)C label incorporation of the TCA cycle: the concept of composite precursor function.

    Science.gov (United States)

    Uffmann, Kai; Gruetter, Rolf

    2007-11-15

    A novel approach for the mathematical modeling of (13)C label incorporation into amino acids via the TCA cycle that eliminates the explicit calculation of the labeling of the TCA cycle intermediates is described, resulting in one differential equation per measurable time course of labeled amino acid. The equations demonstrate that both glutamate C4 and C3 labeling depend in a predictable manner on both transmitochondrial exchange rate, V(X), and TCA cycle rate, V(TCA). For example, glutamate C4 labeling alone does not provide any information on either V(X) or V(TCA) but rather a composite "flux". Interestingly, glutamate C3 simultaneously receives label not only from pyruvate C3 but also from glutamate C4, described by composite precursor functions that depend in a probabilistic way on the ratio of V(X) to V(TCA): An initial rate of labeling of glutamate C3 (or C2) being close to zero is indicative of a high V(X)/V(TCA). The derived analytical solution of these equations shows that, when the labeling of the precursor pool pyruvate reaches steady state quickly compared with the turnover rate of the measured amino acids, instantaneous labeling can be assumed for pyruvate. The derived analytical solution has acceptable errors compared with experimental uncertainty, thus obviating precise knowledge on the labeling kinetics of the precursor. In conclusion, a substantial reformulation of the modeling of label flow via the TCA cycle turnover into the amino acids is presented in the current study. This approach allows one to determine metabolic rates by fitting explicit mathematical functions to measured time courses.

  6. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Gameiro, Paulo A; Laviolette, Laura A; Kelleher, Joanne K; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-05-03

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)(+) cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)(+) ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle.

  7. Advanced TCA Backplane Tester

    CERN Document Server

    Oltean, Alexandra Dana

    2004-01-01

    At the beginning of 2003, the PICMG group adopted the AdvancedTCA (Advanced Telecom Computing Architecture) standard. The 10Gb/s backplane of the AdvancedTCA chassis is well specified in the standard but it remains however a high end product, which can be itself subject to printed circuit board manufacturing control problems that could greatly affect its quality control. In order to study the practical aspects of high speed Ethernet switching at 10Gb/s and to validate the signal integrity of the AdvancedTCA backplane, we developed a Backplane Tester. The tester system is able of running monitored PRBS traffic at 3.125Gb/s over every link on the AdvancedTCA backplane simultaneously and to monitor any possible connectivity failure immediately in terms of link and slot position inside the chassis. The present report presents the architectural hardware design, the control structure and software aspects of the AdvancedTCA Backplane Tester design.

  8. Reduced TCA flux in diabetic myotubes: A governing influence on the diabetic phenotype?

    Science.gov (United States)

    Gaster, Michael

    2009-10-02

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. It is unknown whether the reduced tricarboxylic acid cycle (TCA) flux in skeletal muscle of obese and obese type 2 diabetic (T2D) subjects is of primary origin. Acetate oxidation (measurement of TCA-flux) was significantly reduced in primary myotube cultures established from T2D versus lean subjects. Acetate oxidation was acutely stimulated by insulin and respiratory uncoupling. Inhibition of TCA flux in lean myotubes by malonate was followed by a measured decline in; acetate oxidation, complete palmitate oxidation, lipid uptake, glycogen synthesis, ATP content and increased glucose uptake, while glucose oxidation was unaffected. Acute TCA inhibition did not induce insulin resistance. Thus the reduced TCA cycle flux in T2D skeletal muscle may be of primary origin. The diabetic phenotype of increased basal glucose uptake and glucose oxidation, the reduced complete lipid oxidation and increased respiratory quotient, are likely to be adaptive responses to the reduced TCA cycle flux.

  9. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.

    Science.gov (United States)

    Choi, Sol; Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2016-11-01

    To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Cofactor Balance by Nicotinamide Nucleotide Transhydrogenase (NNT) Coordinates Reductive Carboxylation and Glucose Catabolism in the Tricarboxylic Acid (TCA) Cycle*♦

    Science.gov (United States)

    Gameiro, Paulo A.; Laviolette, Laura A.; Kelleher, Joanne K.; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-01-01

    Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to support anabolic processes. In addition, reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) was recently shown to be a major source of citrate synthesis from glutamine. The role of NAD(P)H/NAD(P)+ cofactors in coordinating glucose and glutamine utilization in the tricarboxylic acid (TCA) cycle is not well understood, with the source(s) of NADPH for the reductive carboxylation reaction remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT inhibits the contribution of glutamine to the TCA cycle and activates glucose catabolism in SkMel5 melanoma cells. The increase in glucose oxidation partially occurred through pyruvate carboxylase and rendered NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT inhibits reductive carboxylation in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate glutamine oxidation and reductive carboxylation, whereas it inhibits glucose catabolism in the TCA cycle. These observations are supported by an impairment of the NAD(P)H/NAD(P)+ ratios. Our findings underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other mechanisms that coordinate substrate preference to maintain a functional TCA cycle. PMID:23504317

  11. Bile Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Promotes Neuroinflammation during Hepatic Encephalopathy in Mice

    Directory of Open Access Journals (Sweden)

    Matthew McMillin

    2017-07-01

    Full Text Available Hepatic encephalopathy (HE is a neuropsychiatric complication that occurs due to deteriorating hepatic function and this syndrome influences patient quality of life, clinical management strategies and survival. During acute liver failure, circulating bile acids increase due to a disruption of the enterohepatic circulation. We previously identified that bile acid-mediated signaling occurs in the brain during HE and contributes to cognitive impairment. However, the influences of bile acids and their downstream signaling pathways on HE-induced neuroinflammation have not been assessed. Conjugated bile acids, such as taurocholic acid (TCA, can activate sphingosine-1-phosphate receptor 2 (S1PR2, which has been shown to promote immune cell infiltration and inflammation in other models. The current study aimed to assess the role of bile-acid mediated S1PR2 signaling in neuroinflammation and disease progression during azoxymethane (AOM-induced HE in mice. Our findings demonstrate a temporal increase of bile acids in the cortex during AOM-induced HE and identified that cortical bile acids were elevated as an early event in this model. In order to classify the specific bile acids that were elevated during HE, a metabolic screen was performed and this assay identified that TCA was increased in the serum and cortex during AOM-induced HE. To reduce bile acid concentrations in the brain, mice were fed a diet supplemented with cholestyramine, which alleviated neuroinflammation by reducing proinflammatory cytokine expression in the cortex compared to the control diet-fed AOM-treated mice. S1PR2 was expressed primarily in neurons and TCA treatment increased chemokine ligand 2 mRNA expression in these cells. The infusion of JTE-013, a S1PR2 antagonist, into the lateral ventricle prior to AOM injection protected against neurological decline and reduced neuroinflammation compared to DMSO-infused AOM-treated mice. Together, this identifies that reducing bile acid

  12. Spheroid cancer stem cells display reprogrammed metabolism and obtain energy by actively running the tricarboxylic acid (TCA) cycle.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Takahashi, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-05-31

    The Warburg effect is a metabolic hallmark of cancer cells; cancer cells, unlike normal cells, exclusively activate glycolysis, even in the presence of enough oxygen. On the other hand, intratumoral heterogeneity is currently of interest in cancer research, including that involving cancer stem cells (CSCs). In the present study, we attempted to gain an understanding of metabolism in CSCs that is distinct from that in non-CSCs. After forming spheroids from the OVTOKO (ovarian clear cell adenocarcinoma) and SiHa (cervical squamous cell carcinoma) cell lines, the metabolites of these cells were compared with the metabolites of cancer cells that were cultured in adherent plates. A principle components analysis clearly divided their metabolic features. Amino acids that participate in tricarboxylic acid (TCA) cycle reactions, such as serine and glutamine, were significantly increased in the spheroids. Indeed, spheroids from each cell line contained more total adenylates than did their corresponding cells in adherent cultures. This study demonstrated that cancer metabolism is not limited to aerobic glycolysis (i.e. the Warburg effect), but is flexible and context-dependent. In addition, activation of TCA cycles was suggested to be a metabolic feature of CSCs that was distinct from non-CSCs. The amino acid metabolic pathways discussed here are already considered as targets for cancer therapy, and they are additionally proposed as potential targets for CSC treatment.

  13. Micro-coulometric study of bioelectrochemical reaction coupled with TCA cycle.

    Science.gov (United States)

    Tsujimura, Seiya; Fukuda, Jun; Shirai, Osamu; Kano, Kenji; Sakai, Hideki; Tokita, Yuichi; Hatazawa, Tsuyonobu

    2012-04-15

    The mediated electro-enzymatic electrolysis systems based on the tricarboxylic acid (TCA) cycle reaction were examined on a micro-bulk electrolytic system. A series of the enzyme-catalyzed reactions in the TCA cycle was coupled with electrode reaction. Electrochemical oxidation of NADH was catalyzed by diaphorase with an aid of a redox mediator with a formal potential of -0.15 V vs. Ag|AgCl. The mediator was also able to shuttle electrons between succinate dehydrogenase and electrode. The charge during the electrolysis increased on each addition of dehydrogenase reaction in a cascade of the TCA cycle. However, the electrolysis efficiencies were close to or less than 90% because of the product inhibition. Lactate oxidation to acetyl-CoA catalyzed by two NAD-dependent dehydrogenases was coupled with the bioelectrochemical TCA cycle reaction to achieve the 12-electron oxidation of lactate to CO(2). The charge passed in the bioelectrocatalytic oxidation of 5 nmol of lactate was 4 mC, which corresponds to 70% of the electrolysis efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. © 2015 Wiley Periodicals, Inc.

  15. Advanced TCA BAckplane Tester

    CERN Document Server

    Oltean, Alexandra Dana; PGNet2005

    2005-01-01

    The “Advanced Telecom Computing Architecture” (AdvancedTCA) is a modular standard chassis based system designed to support the needs of carrier class telecommunication applications. It is defined by a set of industry standards under the direction of the PICMG group. One early deployment of the standard technology has been a 10 Gigabit Ethernet switch developed in the framework of the EU funded ESTA project. In order to study the practical aspects of high speed Ethernet switching at 10 Gigabit and above and to validate the signal integrity of the AdvancedTCA backplane, we developed a Backplane Tester. This system is able to run pseudo-random bit sequence (PRBS) traffic at 3.125 Gbps over every link on the AdvancedTCA backplane simultaneously, and to monitor any possible connectivity failure immediately in terms of the link and slot positions inside the chassis. In this paper, we describe the design and the practical architectural hardware and software aspects of the AdvancedTCA Backplane Tester. We also pr...

  16. The emerging role and targetability of the TCA cycle in cancer metabolism.

    Science.gov (United States)

    Anderson, Nicole M; Mucka, Patrick; Kern, Joseph G; Feng, Hui

    2018-02-01

    The tricarboxylic acid (TCA) cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.

  17. The emerging role and targetability of the TCA cycle in cancer metabolism

    Directory of Open Access Journals (Sweden)

    Nicole M. Anderson

    2017-07-01

    Full Text Available ABSTRACT The tricarboxylic acid (TCA cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.

  18. Different effects of ursodeoxycholic acid on intrahepatic cholestasis in acute and recovery stages induced by alpha-naphthylisothiocyanate in mice.

    Science.gov (United States)

    Zhang, Linlin; Su, Huizong; Li, Yue; Fan, Yujuan; Wang, Qian; Jiang, Jian; Hu, Yiyang; Chen, Gaofeng; Tan, Bo; Qiu, Furong

    2018-03-01

    The aim of this study was to determine the effect of ursodeoxycholic acid (UDCA) on the alpha-naphthylisothiocyanate (ANIT)-induced acute and recovery stage of cholestasis model mice. In the acute stage of model mice, pretreatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 12 days prior to ANIT administration (50 mg·kg -1 , ig) resulted in the dramatic increase in serum biochemistry, with aggrevation of bile infarcts and hepatocyte necrosis. The elevation of beta-muricholic acid (β-MCA), cholic acid (CA), and taurocholic acid (TCA) in serum and liver, and reduction of these bile acids (BAs) in bile was observed. In contrast, in the recovery stage of model mice, treatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 7 days after ANIT administration (50 mg·kg -1 , ig) resulted in the significant decrease in levels of serum alanine aminotransferase (ALT) and total bile acid (TBA). Liver injury was attenuated, and the levels of TBA, CA, TCA, and β-MCA in the liver were significantly decreased. Additionally, UDCA can upregulate expression of BSEP, but it cannot upregulate expression of AE2. UDCA, which induced BSEP to increase bile acid-dependent bile flow, aggravated cholestasis and liver injury when the bile duct was obstructed in the acute stage of injury in model mice. In contrast, UDCA alleviated cholestasis and liver injury induced by ANIT when the obstruction was improved in the recovery stage. Copyright © 2018. Published by Elsevier Inc.

  19. [Removal of high-abundance proteins in plasma of the obese by improved TCA/acetone precipitation method].

    Science.gov (United States)

    Wang, Jun; Feng, Liru; Yu, Wei; Xu, Jian; Yang, Hui; Liu, Xiaoli

    2013-09-01

    To develop an improved trichloroacetic acid (TCA)/acetone precipitation method for removal of high-abundance proteins in plasma of the obese. Volumes of TCA/acetone solution (1, 3, 4, 5, 6, 8, 10 and 20 times of the sample) and concentrations of TCA (10%, 30%, 50%, 60%, 70% TCA/acetone solution) have been investigated to optimize the conditions of sample preparation. SDS-PAGE were used to separate and tested proteins in the supernatant and sediment. The best concentration of the TCA/acetone solution was first determined by SDS-PAGE. The protein in precipitation from 10% TCA/acetone solution processing and the new determined concentration TCA/acetone solution processing were verified by 2-D-SDS-PAGE. And then the digested products of the protein in precipitation and supernatant by trypsin were analyzed by nano HPLC-Chip-MS/MS to verify which is the best concentration to process the plasma. The best volume of TCA/acetone is four times to sample, which less or more TCA/acetone would reduce the removal efficiency of high-abundance proteins. The concentration of TCA in acetone solution should be 60%, which may remove more high-abundance proteins in plasma than 10%, 30%, 50% TCA in acetone solution. If the TCA concentration is more than 60%, the reproducibility will be much poorer due to fast precipitation of proteins. The results of mass identification showed that human plasma prepared with 60% TCA/acetone (4 times sample volume) could be verified more low-abundance proteins than 10%. The most desirable conditions for removal of high-abundance proteins in plasma is 60% TCA/acetone (4 times sample volume), especially for the plasma of obesity.

  20. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans.

    Science.gov (United States)

    Tao, Li; Zhang, Yulong; Fan, Shuru; Nobile, Clarissa J; Guan, Guobo; Huang, Guanghua

    2017-08-01

    Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.

  1. Integration of the tricarboxylic acid (TCA cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Li Tao

    2017-08-01

    Full Text Available Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.

  2. Boosted TCA cycle enhances survival of zebrafish to Vibrio alginolyticus infection.

    Science.gov (United States)

    Yang, Man-Jun; Cheng, Zhi-Xue; Jiang, Ming; Zeng, Zao-Hai; Peng, Bo; Peng, Xuan-Xian; Li, Hui

    2018-01-01

    Vibrio alginolyticus is a waterborne pathogen that infects a wide variety of hosts including fish and human, and the outbreak of this pathogen can cause a huge economic loss in aquaculture. Thus, enhancing host's capability to survive from V. alginolyticus infection is key to fighting infection and this remains still unexplored. In the present study, we established a V. alginolyticus-zebrafish interaction model by which we explored how zebrafish survived from V. alginolyticus infection. We used GC-MS based metabolomic approaches to characterize differential metabolomes between survival and dying zebrafish upon infection. Pattern recognition analysis identified the TCA cycle as the most impacted pathway. The metabolites in the TCA cycle were decreased in the dying host, whereas the metabolites were increased in the survival host. Furthermore, the enzymatic activities of the TCA cycle including pyruvate dehydrogenase (PDH), α-ketoglutaric dehydrogenase (KGDH) and succinate dehydrogenase (SDH) also supported this conclusion. Among the increased metabolites in the TCA cycle, malic acid was the most crucial biomarker for fish survival. Indeed, exogenous malate promoted zebrafish survival in a dose-dependent manner. The corresponding activities of KGDH and SDH were also increased. These results indicate that the TCA cycle is a key pathway responsible for the survival or death in response to infection caused by V. alginolyticus, and highlight the way on development of metabolic modulation to control the infection.

  3. The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis.

    Science.gov (United States)

    Anderson, N M; Li, D; Peng, H L; Laroche, F J F; Mansour, M R; Gjini, E; Aioub, M; Helman, D J; Roderick, J E; Cheng, T; Harrold, I; Samaha, Y; Meng, L; Amsterdam, A; Neuberg, D S; Denton, T T; Sanda, T; Kelliher, M A; Singh, A; Look, A T; Feng, H

    2016-06-01

    Despite the pivotal role of MYC in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and many other cancers, the mechanisms underlying MYC-mediated tumorigenesis remain inadequately understood. Here we utilized a well-characterized zebrafish model of Myc-induced T-ALL for genetic studies to identify novel genes contributing to disease onset. We found that heterozygous inactivation of a tricarboxylic acid (TCA) cycle enzyme, dihydrolipoamide S-succinyltransferase (Dlst), significantly delayed tumor onset in zebrafish without detectable effects on fish development. DLST is the E2 transferase of the α-ketoglutarate (α-KG) dehydrogenase complex (KGDHC), which converts α-KG to succinyl-CoA in the TCA cycle. RNAi knockdown of DLST led to decreased cell viability and induction of apoptosis in human T-ALL cell lines. Polar metabolomics profiling revealed that the TCA cycle was disrupted by DLST knockdown in human T-ALL cells, as demonstrated by an accumulation of α-KG and a decrease of succinyl-CoA. Addition of succinate, the downstream TCA cycle intermediate, to human T-ALL cells was sufficient to rescue defects in cell viability caused by DLST inactivation. Together, our studies uncovered an important role for DLST in MYC-mediated leukemogenesis and demonstrated the metabolic dependence of T-lymphoblasts on the TCA cycle, thus providing implications for targeted therapy.

  4. Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype?

    Science.gov (United States)

    Gaster, Michael; Nehlin, Jan O; Minet, Ariane D

    2012-07-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. Recent research has shown that diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux. A reduced TCA cycle flux has also been shown both in insulin resistant offspring of T2D patients and exercising T2D patients in vivo. This review will discuss the latest advances in the understanding of the molecular mechanisms regulating the TCA cycle with focus on possible underlying mechanism which could explain the impaired TCA flux in insulin resistant human skeletal muscle in type 2 diabetes. A reduced TCA is both a marker and a maker of the diabetic phenotype.

  5. Detection of endogenous DNA adducts, O-carboxymethyl-2'-deoxyguanosine and 3-ethanesulfonic acid-2'-deoxycytidine, in the rat stomach after duodenal reflux.

    Science.gov (United States)

    Terasaki, Masaru; Totsuka, Yukari; Nishimura, Koichi; Mukaisho, Ken-Ichi; Chen, Kuan-Hao; Hattori, Takanori; Takamura-Enya, Takeji; Sugimura, Takashi; Wakabayashi, Keiji

    2008-09-01

    The endogenous DNA adducts O(6)-carboxymethyl-deoxyguanosine (O(6)-CM-dG) and 3-ethanesulfonic acid-deoxycytidine (3-ESA-dC) are produced from N-nitroso bile acid conjugates, such as N-nitrosoglycocholic acid (NO-GCA) and N-nitrosotaurocholic acid (NO-TCA), respectively. Formation of these DNA adducts in vivo was here analyzed by 32P-postlabeling in the glandular stomach of rats subjected to duodenal content reflux surgery. In this model, all duodenal contents, including bile acid conjugates, flow back from the jejunum into the gastric corpus. The levels of O(6)-CM-dG found at 4 and 8 weeks after surgery were 40.9 +/- 9.4 and 56.3 +/- 3.2 per 10(8) nucleotides, respectively, whereas the sham operation groups had values of 5.8 +/- 2.3 and 5.9 +/- 0.5 per 10(8) nucleotides. Moreover, adduct spots corresponding to 3-ESA-dC were detected in both duodenal reflux and sham operation groups and levels in the duodenal reflux groups were around four-fold elevated at 11.2 +/- 1.0 and 8.9 +/- 1.0 per 10(8) nucleotides after 4 and 8 weeks, respectively. When the duodenal reflux animals were treated with a nitrite trapping agent, thiazolidine- 4-carboxylic acid (thioproline, TPRO), the levels of O(6)-CM-dG and 3-ESA-dC were reduced to the same levels as in the sham operation animals. These observations suggest that NO-TCA and NO-GCA are formed by nitrosation of glycocholic acid and taurocholic acid, respectively, and these nitroso compounds produce DNA adducts in the glandular stomach of rats subjected to duodenal content reflux surgery.

  6. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli.

    Science.gov (United States)

    Harder, Björn-Johannes; Bettenbrock, Katja; Klamt, Steffen

    2018-01-01

    Based on the recently constructed Escherichia coli itaconic acid production strain ita23, we aimed to improve the productivity by applying a two-stage process strategy with decoupled production of biomass and itaconic acid. We constructed a strain ita32 (MG1655 ΔaceA Δpta ΔpykF ΔpykA pCadCs), which, in contrast to ita23, has an active tricarboxylic acid (TCA) cycle and a fast growth rate of 0.52 hr -1 at 37°C, thus representing an ideal phenotype for the first stage, the growth phase. Subsequently we implemented a synthetic genetic control allowing the downregulation of the TCA cycle and thus the switch from growth to itaconic acid production in the second stage. The promoter of the isocitrate dehydrogenase was replaced by the Lambda promoter (p R ) and its expression was controlled by the temperature-sensitive repressor CI857 which is active at lower temperatures (30°C). With glucose as substrate, the respective strain ita36A grew with a fast growth rate at 37°C and switched to production of itaconic acid at 28°C. To study the impact of the process strategy on productivity, we performed one-stage and two-stage bioreactor cultivations. The two-stage process enabled fast formation of biomass resulting in improved peak productivity of 0.86 g/L/hr (+48%) and volumetric productivity of 0.39 g/L/hr (+22%) in comparison to the one-stage process. With our dynamic production strain, we also resolved the glutamate auxotrophy of ita23 and increased the itaconic acid titer to 47 g/L. The temperature-dependent activation of gene expression by the Lambda promoters (p R /p L ) has been frequently used to improve protein or, in a few cases, metabolite production in two-stage processes. Here we demonstrate that the system can be as well used in the opposite direction to selectively knock-down an essential gene (icd) in E. coli to design a two-stage process for improved volumetric productivity. The control by temperature avoids expensive inducers and has the

  7. Cold boronisation in TCA

    International Nuclear Information System (INIS)

    Hollenstein, C.; Duval, B.P.; Wit, T.D. de; Joye, B.

    1990-01-01

    Boronisation of the TCA vacuum vessel was performed at ambient temperature. The paper presents detailed surface analysis of the coating and a description of the tokamak performance after boronisation. The obtained coatings showed a film composition close to the feed gas composition although a high oxygen content was measured. Apart from the dominating carbidic B-C bonds, the existence of at least two non-equivalent carbon bonding sites were found. Boronisation gave an immediate and long-term improvement of many plasma parameters in TCA with a strong reduction of both low and high-Z impurities in the plasma. In particular oxygen was reduced by over 20 despite a high level oxygen contamination in the coating. The gas retention in the film has been shown to be temporarily reduced by glow discharge cleaning. With these techniques we are able to obtain nearly isotropically pure discharges. Boronisation has been shown to be a very efficient wall conditioning procedure in TCA. (orig.)

  8. ATCA/muTCA for Physics

    International Nuclear Information System (INIS)

    Jeznski, Tomasz

    2012-01-01

    ATCA/μTCA platforms are attractive because of the modern serial link architecture, high availability features and many packaging options. Less-demanding availability applications can be met economically by scaling back speed and redundancy. The ATCA specification was originally targeted for the Telecom industry but has gained recently a much wider user audience. The purpose of this paper is to report on present hardware and software R and D efforts where ATCA and μTCA are planned, already being used or in development using selected examples for accelerator and detectors in the Physics community. It will present also the status of a proposal for physics extensions to ATCA/μTCA specifications to promote inter-operability of laboratory and industry designs for physics.

  9. Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling.

    Science.gov (United States)

    Corbet, Cyril; Feron, Olivier

    2017-08-01

    Warburg's hypothesis that cancer cells take up a lot of glucose in the presence of ambient oxygen but convert pyruvate into lactate due to impaired mitochondrial function led to the misconception that cancer cells rely on glycolysis as their major source of energy. Most recent 13 C-based metabolomic studies, including in cancer patients, indicate that cancer cells may also fully oxidize glucose. In addition to glucose-derived pyruvate, lactate, fatty acids and amino acids supply substrates to the TCA cycle to sustain mitochondrial metabolism. Here, we discuss how the metabolic flexibility afforded by these multiple mitochondrial inputs allows cancer cells to adapt according to the availability of the different fuels and the microenvironmental conditions such as hypoxia and acidosis. In particular, we focused on the role of the TCA cycle in interconnecting numerous metabolic routes in order to highlight metabolic vulnerabilities that represent attractive targets for a new generation of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analyses of SLC13A5-epilepsy patients reveal perturbations of TCA cycle.

    Science.gov (United States)

    Bainbridge, Matthew N; Cooney, Erin; Miller, Marcus; Kennedy, Adam D; Wulff, Jacob E; Donti, Taraka; Jhangiani, Shalini N; Gibbs, Richard A; Elsea, Sarah H; Porter, Brenda E; Graham, Brett H

    2017-08-01

    To interrogate the metabolic profile of five subjects from three families with rare, nonsense and missense mutations in SLC13A5 and Early Infantile Epileptic Encephalopathies (EIEE) characterized by severe, neonatal onset seizures, psychomotor retardation and global developmental delay. Mass spectrometry of plasma, CSF and urine was used to identify consistently dysregulated analytes in our subjects. Distinctive elevations of citrate and dysregulation of citric acid cycle intermediates, supporting the hypothesis that loss of SLC13A5 function alters tricarboxylic acid cycle (TCA) metabolism and may disrupt metabolic compartmentation in the brain. Our results indicate that analysis of plasma citrate and other TCA analytes in SLC13A5 deficient patients define a diagnostic metabolic signature that can aid in diagnosing children with this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The annual course of TCA formation in the lower troposphere: a modeling study

    International Nuclear Information System (INIS)

    Folberth, Gerd; Pfister, Gabriele; Baumgartner, Dietmar; Putz, Erich; Weissflog, Ludwig; Elansky, Nikolai P.

    2003-01-01

    The Caspian Catchment Area is affected by many pollutants and prevailing climate conditions. - We present a modeling study investigating the influence of climate conditions and solar radiation intensity on gas-phase trichloroacetic acid (TCA) formation. As part of the ECCA-project (Ecotoxicological Risk in the Caspian Catchment Area), this modeling study uses climate data specific for the two individual climate regimes, namely 'Kalmykia' and 'Kola Peninsula'. A third regime has also been included in this study, namely 'Central Europe', which serves as a reference to somehow more moderate climate conditions. The simulations have been performed with a box modeling package (SBOX, photoRACM), which uses Regional Atmospheric Chemistry Mechanism (RACM) as its chemistry scheme. For this model a mechanism supplement has been developed including the reaction pathways of methyl chloroform photooxidation. The investigations are completed by a detailed sensitivity study addressing the impact of temperature and relative humidity. Atmospheric OH and HO 2 concentrations and the NO x /HO 2 ratio were identified as the governing quantities controlling the TCA formation trough methyl chloroform oxidation in the gas phase. Model calculations show a TCA production rate ranging between almost zero and 6.5x10 3 molecules cm -3 day -1 depending on location and season. In the Kalmykia regime the model predicts mean TCA production rates of 1.3x10 -4 and 5.4x10 -5 μg m -3 year -1 for the urban and rural environment, respectively. From the comparison of model calculations with measured TCA burdens in the soil ranging between 130 μg m -3 and 1750 μg m -3 we conclude that TCA formation through methyl chloroform photooxidation in the gas-phase is probably not the principal atmospheric TCA source in this region

  12. GC/TOFMS analysis of metabolites in serum and urine reveals metabolic perturbation of TCA cycle in db/db mice involved in diabetic nephropathy.

    Science.gov (United States)

    Li, Mengjie; Wang, Xufang; Aa, Jiye; Qin, Weisong; Zha, Weibin; Ge, Yongchun; Liu, Linsheng; Zheng, Tian; Cao, Bei; Shi, Jian; Zhao, Chunyan; Wang, Xinwen; Yu, Xiaoyi; Wang, Guangji; Liu, Zhihong

    2013-06-01

    Early diagnosis of diabetic nephropathy (DN) is difficult although it is of crucial importance to prevent its development. To probe potential markers and the underlying mechanism of DN, an animal model of DN, the db/db mice, was used and serum and urine metabolites were profiled using gas chromatography/time-of-flight mass spectrometry. Metabolic patterns were evaluated based on serum and urine data. Principal component analysis of the data revealed an obvious metabonomic difference between db/db mice and controls, and db/db mice showed distinctly different metabolic patterns during the progression from diabetes to early, medium, and later DN. The identified metabolites discriminating between db/db mice and controls suggested that db/db mice have perturbations in the tricarboxylic acid cycle (TCA, citrate, malate, succinate, and aconitate), lipid metabolism, glycolysis, and amino acid turnover. The db/db mice were characterized by acidic urine, high TCA intermediates in serum at week 6 and a sharp decline thereafter, and gradual elevation of free fatty acids in the serum. The sharp drop of serum TCA intermediates from week 6 to 8 indicated the downregulated glycolysis and insulin resistance. However, urinary TCA intermediates did not decrease in parallel with those in the serum from week 6 to 10, and an increased portion of TCA intermediates in the serum was excreted into the urine at 8, 10, and 12 wk than at 6 wk, indicating kidney dysfunction occurred. The relative abundances of TCA intermediates in urine relative to those in serum were suggested as an index of renal damage.

  13. Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver.

    Science.gov (United States)

    Lickteig, Andrew J; Csanaky, Iván L; Pratt-Hyatt, Matthew; Klaassen, Curtis D

    2016-06-01

    Activation of Constitutive Androstane Receptor (CAR) protects against bile acid (BA)-induced liver injury. This study was performed to determine the effect of CAR activation on bile flow, BA profile, as well as expression of BA synthesis and transport genes. Synthetic CAR ligand 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) was administered to mice for 4 days. BAs were quantified by UPLC-MS/MS (ultraperformance liquid chromatography-tandem mass spectrometry). CAR activation decreases total BAs in livers of male (49%) and female mice (26%), largely attributable to decreases of the 12α-hydroxylated BA taurocholic acid (T-CA) (males (M) 65%, females (F) 45%). Bile flow in both sexes was increased by CAR activation, and the increases were BA-independent. CAR activation did not alter biliary excretion of total BAs, but overall BA composition changed. Excretion of muricholic (6-hydroxylated) BAs was increased in males (101%), and the 12α-OH proportion of biliary BAs was decreased in both males (37%) and females (28%). The decrease of T-CA in livers of males and females correlates with the decreased mRNA of the sterol 12α-hydroxylase Cyp8b1 in males (71%) and females (54%). As a response to restore BAs to physiologic concentrations in liver, mRNA of Cyp7a1 is upregulated following TCPOBOP (males 185%, females 132%). In ilea, mRNA of the negative feedback regulator Fgf15 was unaltered by CAR activation, indicating biliary BA excretion was sufficient to maintain concentrations of total BAs in the small intestine. In summary, the effects of CAR activation on BAs in male and female mice are quite similar, with a marked decrease in the major BA T-CA in the liver. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; Nicolás Cruz-Bournazou, Mariano; Neubauer, Peter; Ríos-Estepa, Rigoberto

    2018-05-01

    Clavulanic acid (CA) is produced by Streptomyces clavuligerus (S. clavuligerus) as a secondary metabolite. Knowledge about the carbon flux distribution along the various routes that supply CA precursors would certainly provide insights about metabolic performance. In order to evaluate metabolic patterns and the possible accumulation of tricarboxylic acid (TCA) cycle intermediates during CA biosynthesis, batch and subsequent continuous cultures with steadily declining feed rates were performed with glycerol as the main substrate. The data were used to in silico explore the metabolic capabilities and the accumulation of metabolic intermediates in S. clavuligerus. While clavulanic acid accumulated at glycerol excess, it steadily decreased at declining dilution rates; CA synthesis stopped when glycerol became the limiting substrate. A strong association of succinate, oxaloacetate, malate, and acetate accumulation with CA production in S. clavuligerus was observed, and flux balance analysis (FBA) was used to describe the carbon flux distribution in the network. This combined experimental and numerical approach also identified bottlenecks during the synthesis of CA in a batch and subsequent continuous cultivation and demonstrated the importance of this type of methodologies for a more advanced understanding of metabolism; this potentially derives valuable insights for future successful metabolic engineering studies in S. clavuligerus.

  15. Protective Effect of Tetrandrine on Sodium Taurocholate-Induced Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Xian-lin Wu

    2015-01-01

    Full Text Available Tet is a type of alkaloid extracted from Stephania tetrandra, and it has recently been demonstrated that Tet can protect against inflammation and free radical injury and inhibit the release of inflammatory mediators. The present study was designed to observe the protective effect of Tet on sodium taurocholate-induced severe acute pancreatitis (SAP. The rat model of SAP was induced by retrograde bile duct injection of sodium taurocholate and then treated with Verapamil and Tet. The results showed that Tet can reduce NF-κB activation in pancreas issue, inhibit the SAP cascade, and improve SAP through inducing pancreas acinar cell apoptosis and stabilizing intracellular calcium in the pancreas, thus mitigating the damage to the pancreas. Our study revealed that Tet may reduce systemic inflammatory response syndrome (SIRS and multiple organ dysfunction syndromes (MODS to protect against damage, and these roles may be mediated through the NF-κB pathway to improve the proinflammatory/anti-inflammatory imbalance.

  16. Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA) anaplerosis, glutamate synthesis, and growth.

    Science.gov (United States)

    Saunders, Eleanor C; Ng, William W; Chambers, Jennifer M; Ng, Milica; Naderer, Thomas; Krömer, Jens O; Likic, Vladimir A; McConville, Malcolm J

    2011-08-05

    Leishmania parasites proliferate within nutritionally complex niches in their sandfly vector and mammalian hosts. However, the extent to which these parasites utilize different carbon sources remains poorly defined. In this study, we have followed the incorporation of various (13)C-labeled carbon sources into the intracellular and secreted metabolites of Leishmania mexicana promastigotes using gas chromatography-mass spectrometry and (13)C NMR. [U-(13)C]Glucose was rapidly incorporated into intermediates in glycolysis, the pentose phosphate pathway, and the cytoplasmic carbohydrate reserve material, mannogen. Enzymes involved in the upper glycolytic pathway are sequestered within glycosomes, and the ATP and NAD(+) consumed by these reactions were primarily regenerated by the fermentation of phosphoenolpyruvate to succinate (glycosomal succinate fermentation). The initiating enzyme in this pathway, phosphoenolpyruvate carboxykinase, was exclusively localized to the glycosome. Although some of the glycosomal succinate was secreted, most of the C4 dicarboxylic acids generated during succinate fermentation were further catabolized in the TCA cycle. A high rate of TCA cycle anaplerosis was further suggested by measurement of [U-(13)C]aspartate and [U-(13)C]alanine uptake and catabolism. TCA cycle anaplerosis is apparently needed to sustain glutamate production under standard culture conditions. Specifically, inhibition of mitochondrial aconitase with sodium fluoroacetate resulted in the rapid depletion of intracellular glutamate pools and growth arrest. Addition of high concentrations of exogenous glutamate alleviated this growth arrest. These findings suggest that glycosomal and mitochondrial metabolism in Leishmania promastigotes is tightly coupled and that, in contrast to the situation in some other trypanosomatid parasites, the TCA cycle has crucial anabolic functions.

  17. Revisiting the TCA cycle: signaling to tumor formation.

    Science.gov (United States)

    Raimundo, Nuno; Baysal, Bora E; Shadel, Gerald S

    2011-11-01

    A role for mitochondria in tumor formation is suggested by mutations in enzymes of the TCA cycle: isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH) and fumarate hydratase (FH). Although they are all components of the TCA cycle, the resulting clinical presentations do not overlap. Activation of the hypoxia pathway can explain SDH phenotypes, but recent data suggest that FH and IDH mutations lead to tumor formation by repressing cellular differentiation. In this review, we discuss recent findings in the context of both mitochondrial and cytoplasmic components of the TCA cycle, and we propose that extrametabolic roles of TCA cycle metabolites result in reduced cellular differentiation. Furthermore, activation of the pseudohypoxia pathway likely promotes the growth of these neoplasias into tumors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver.

    Science.gov (United States)

    Satapati, Santhosh; Sunny, Nishanth E; Kucejova, Blanka; Fu, Xiaorong; He, Tian Teng; Méndez-Lucas, Andrés; Shelton, John M; Perales, Jose C; Browning, Jeffrey D; Burgess, Shawn C

    2012-06-01

    The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.

  19. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte...... Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  20. The TCA Pathway is an Important Player in the Regulatory Network Governing Vibrio alginolyticus Adhesion Under Adversity.

    Science.gov (United States)

    Huang, Lixing; Huang, Li; Yan, Qingpi; Qin, Yingxue; Ma, Ying; Lin, Mao; Xu, Xiaojin; Zheng, Jiang

    2016-01-01

    Adhesion is a critical step in the initial stage of Vibrio alginolyticus infection; therefore, it is important to understand the underlying mechanisms governing the adhesion of V. alginolyticus and determine if environmental factors have any effect. A greater understanding of this process may assist in developing preventive measures for reducing infection. In our previous research, we presented the first RNA-seq data from V. alginolyticus cultured under stress conditions that resulted in reduced adhesion. Based on the RNA-seq data, we found that the Tricarboxylic acid cycle (TCA pathway) might be closely related to adhesion. Environmental interactions with the TCA pathway might alter adhesion. To validate this, bioinformatics analysis, quantitative Real-Time PCR (qPCR), RNAi, and in vitro adhesion assays were performed, while V. alginolyticus was treated with various stresses including temperature, pH, salinity, and starvation. The expression of genes involved in the TCA pathway was confirmed by qPCR, which reinforced the reliability of the sequencing data. Silencing of these genes was capable of reducing the adhesion ability of V. alginolyticus. Adhesion of V. alginolyticus is influenced substantially by environmental factors and the TCA pathway is sensitive to some environmental stresses, especially changes in pH and starvation. Our results indicated that (1) the TCA pathway plays a key role in V. alginolyticus adhesion: (2) the TCA pathway is sensitive to environmental stresses.

  1. The TCA pathway is an important player in the regulatory network governing Vibrio alginolyticus adhesion under adversity

    Directory of Open Access Journals (Sweden)

    Lixing eHuang

    2016-02-01

    Full Text Available Adhesion is a critical step in the initial stage of Vibrio alginolyticus infection; therefore, it is important to understand the underlying mechanisms governing the adhesion of V. alginolyticus and determine if environmental factors have any effect. A greater understanding of this process may assist in developing preventive measures for reducing infection. In our previous research, we presented the first RNA-seq data from V. alginolyticus cultured under stress conditions that resulted in reduced adhesion. Based on the RNA-seq data, we found that the Tricarboxylic acid cycle (TCA pathway might be closely related to adhesion. Environmental interactions with the TCA pathway might alter adhesion. To validate this, bioinformatics analysis, qPCR, RNAi and in vitro adhesion assays were performed, while V. alginolyticus was treated with various stresses including temperature, pH, salinity and starvation. The expression of genes involved in the TCA pathway was confirmed by qPCR, which reinforced the reliability of the sequencing data. Silencing of these genes was capable of reducing the adhesion ability of V. alginolyticus. Adhesion of V. alginolyticus is influenced substantially by environmental factors and the TCA pathway is sensitive to some environmental stresses, especially changes in pH and starvation. Our results indicated that 1 the TCA pathway plays a key role in V. alginolyticus adhesion: 2 the TCA pathway is sensitive to environmental stresses.

  2. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Romano, M.; Razandi, M.; Ivey, K.J. (Long Beach VA Medical Center, CA (USA))

    1990-04-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells.

  3. Effect of sucralfate and its components on taurocholate-induced damage to rat gastric mucosal cells in tissue culture

    International Nuclear Information System (INIS)

    Romano, M.; Razandi, M.; Ivey, K.J.

    1990-01-01

    The present study evaluated the effect of sucralfate and its components, sucrose octasulfate and aluminum hydroxide, on: (1) damage to rat cultured gastric mucosal cells induced by sodium taurocholate in a neutral environment and in conditions independent of systemic factors, (2) prostaglandin E2 and on 6-keto prostaglandin F1 alpha release by cultured cells, and (3) sulfhydryl content of cultured cells. Cell damage was quantitated by chromium-51 release assay. Prostaglandin E2 and 6-keto prostaglandin F1 alpha were measured by radioimmunoassay. Total sulfhydryl content of cultured cells was determined calorimetrically. Microscopically, sucralfate was found to adhere tightly to epithelial cell surfaces despite frequent washings. Sucralfate 2 mg/ml and 5 mg/ml significantly decreased taurocholate-induced damage, reducing taurocholate-induced specific 51Cr release by 11.8 points (equal to 29% decrease in cell damage, P less than 0.01) and 22.9 points (equal to 56% decrease in cell damage, P less than 0.001), respectively. Sucrose octasulfate and aluminum hydroxide did not exert significant protection against damage induced by sodium taurocholate. The protective effect of sucralfate was not prevented by indomethacin, nor was it counteracted by the sulfhydryl blocker, iodoacetamide. Sucralfate, but not its components, significantly and dose-dependently stimulated prostaglandin E2 (r = 0.94, P less than 0.05) and 6-keto prostaglandin F1 alpha (r = 0.89, P less than 0.05) production by cultured cells. Neither sucralfate nor its components affected sulfhydryl content of cultured cells. In conclusion, sucralfate, but not its components, (1) protects rat gastric mucosal cells against taurocholate-induced damage in conditions independent of systemic factors and in a neutral environment and (2) significantly stimulates prostaglandin production by cultured cells

  4. A pilot pharmacokinetic study of tricyclic antidepressant ovine Fab for TCA poisoning in children.

    Science.gov (United States)

    Yalindağ-Oztürk, Nilüfer; Goto, Collin S; Shepherd, Greene; Torres, Olivia Nayeli; Giroir, Brett

    2010-06-01

    A pilot study of tricyclic antidepressant (TCA)-specific antibody fragments (TCA Fab) in TCA-intoxicated adults showed a marked increase in serum total TCA concentrations following TCA Fab infusion with no worsening signs of TCA toxicity. TCA Fab pharmacokinetics (PK) was not described in this adult study. The objective of this study was to evaluate the PK of TCA Fab in children with TCA poisoning. This was an open-label, single-center, dose escalation pilot trial of three patients. Inclusion criteria were documented TCA ingestion with at least one serious complication (QRS prolongation, dysrhythmia, hypotension, seizure, or coma). Patients were assigned to either a low-dose intravenous TCA Fab regimen (15, 30, and 60 mg/kg) or a high-dose regimen (30, 60, and 120 mg/kg) as needed to reverse TCA toxicity. Following the administration of TCA Fab, samples of blood and urine were obtained for PK evaluations. The outcomes of interest were serum and urine TCA concentrations (free and total), serum and urine Fab concentrations, improvement or worsening of TCA toxicity, and adverse effects. Three study patients were 11, 11, and 14 years of age. Two patients received 15 mg/kg of TCA Fab and one patient received a total of 90 mg/kg of TCA Fab (30 + 60 mg/kg). Serum-bound TCA increased significantly following TCA Fab administration with concomitant enhanced urinary elimination. Serum-free TCA concentrations were minimal to undetectable. Fab data were available for two patients. The serum TCA Fab area under the curve was 306.12 mg/L/h for the 15 mg/kg dose and 2,198.10 mg/L/h for the 90 mg/kg dose of TCA Fab. Maximum Fab concentrations correlated with maximum bound TCA in serum. The volume of distribution (V(D)) of TCA Fab was 0.2-0.3 L/kg. The clearance was 0.036-0.05 L/kg/h and the elimination half-life was 4 h. No adverse effects were observed. The limited PK data from this study are consistent with binding of TCA to TCA Fab and redistribution of TCA from the tissue to

  5. Transluminal coronary angioplasty (TCA) techniques, indications and results

    International Nuclear Information System (INIS)

    Kober, G.; Lang, H.; Vallbracht, C.; Bussmann, W.D.; Hopf, R.; Kunkel, B.; Kaltenbach, M.

    1985-01-01

    Transluminal coronary angioplasty (TCA) was introduced in 1977 for dilatation of coronary stenoses. From October 1977 to December 1984 1087 procedures have been performed in Frankfurt. The mean success rate was 77% with an increase from 58% to 84% since 1977. Recurrences were seen within the first year in 15% of the patients, which could be treated successfully in a high percentage with a second TCA. Emergency bypass operations were necessary in 5.2%. Four patients (fatality rate 0.37%) died as the consequence of the intervention. Within few years TCA has become an established procedure for myocardial revascularisation, with a high success rate. Major progress has been possible in the last few years due to technical developments, which are still going on. They may lead to further improvement of the results and enlargement of the indication for TCA. (orig.) [de

  6. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver[S

    Science.gov (United States)

    Satapati, Santhosh; Sunny, Nishanth E.; Kucejova, Blanka; Fu, Xiaorong; He, Tian Teng; Méndez-Lucas, Andrés; Shelton, John M.; Perales, Jose C.; Browning, Jeffrey D.; Burgess, Shawn C.

    2012-01-01

    The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo 2H/13C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis. PMID:22493093

  7. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Matthijs, Michiel; Fabris, Michele; Obata, Toshihiro; Foubert, Imogen; Franco-Zorrilla, José Manuel; Solano, Roberto; Fernie, Alisdair R; Vyverman, Wim; Goossens, Alain

    2017-06-01

    Diatoms are amongst the most important marine microalgae in terms of biomass, but little is known concerning the molecular mechanisms that regulate their versatile metabolism. Here, the pennate diatom Phaeodactylum tricornutum was studied at the metabolite and transcriptome level during nitrogen starvation and following imposition of three other stresses that impede growth. The coordinated upregulation of the tricarboxylic acid (TCA) cycle during the nitrogen stress response was the most striking observation. Through co-expression analysis and DNA binding assays, the transcription factor bZIP14 was identified as a regulator of the TCA cycle, also beyond the nitrogen starvation response, namely in diurnal regulation. Accordingly, metabolic and transcriptional shifts were observed upon overexpression of bZIP14 in transformed P. tricornutum cells. Our data indicate that the TCA cycle is a tightly regulated and important hub for carbon reallocation in the diatom cell during nutrient starvation and that bZIP14 is a conserved regulator of this cycle. © 2017 The Authors.

  8. Unstructured Navier-Stokes Analysis of Full TCA Configuration

    Science.gov (United States)

    Frink, Neal T.; Pirzadeh, Shahyar Z.

    1999-01-01

    This paper presents an Unstructured Navier-Stokes Analysis of Full TCA (Technology Concept Airplane) Configuration. The topics include: 1) Motivation; 2) Milestone and approach; 3) Overview of the unstructured-grid system; 4) Results on full TCA W/B/N/D/E configuration; 5) Concluding remarks; and 6) Future directions.

  9. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Tracy L., E-mail: tracylmarion@qualyst.com [Curriculum in Toxicology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7270 (United States); Perry, Cassandra H., E-mail: cassandraperry@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); St Claire, Robert L., E-mail: bobstclaire@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); Brouwer, Kim L.R., E-mail: kbrouwer@unc.edu [Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB 7569 Kerr Hall, Chapel Hill, NC 27599-7569 (United States)

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  10. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    International Nuclear Information System (INIS)

    Marion, Tracy L.; Perry, Cassandra H.; St Claire, Robert L.; Brouwer, Kim L.R.

    2012-01-01

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR ® technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na + -taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA concentrations

  11. Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain.

    Science.gov (United States)

    Tiwari, Vivek; Ambadipudi, Susmitha; Patel, Anant B

    2013-10-01

    The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.

  12. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation.

    Science.gov (United States)

    Nagaraj, Raghavendra; Sharpley, Mark S; Chi, Fangtao; Braas, Daniel; Zhou, Yonggang; Kim, Rachel; Clark, Amander T; Banerjee, Utpal

    2017-01-12

    Transcriptional control requires epigenetic changes directed by mitochondrial tricarboxylic acid (TCA) cycle metabolites. In the mouse embryo, global epigenetic changes occur during zygotic genome activation (ZGA) at the 2-cell stage. Pyruvate is essential for development beyond this stage, which is at odds with the low activity of mitochondria in this period. We now show that a number of enzymatically active mitochondrial enzymes associated with the TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the nucleus. Pyruvate is essential for this nuclear localization, and a failure of TCA cycle enzymes to enter the nucleus correlates with loss of specific histone modifications and a block in ZGA. At later stages, however, these enzymes are exclusively mitochondrial. In humans, the enzyme pyruvate dehydrogenase is transiently nuclear at the 4/8-cell stage coincident with timing of human embryonic genome activation, suggesting a conserved metabolic control mechanism underlying early pre-implantation development. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Magnetic diagnostic plasma position in the TCA/BR tokamak

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Kuznetsov, Yu.K.; Nascimento, I.C.

    1996-01-01

    The cross-section of the plasma column is TCA/BR has a nearly circular plasma shape. This allows implementation of simplified methods of magnetic diagnostics. Although these methods were in may tokamaks and are well described, their accuracies are not clearly defined because the very simplified theoretical model of plasma equilibrium on which they are based differs from the real conditions in tokamaks like TCA/BR. In this paper we present the methods of plasma position diagnostics in TCA/BR from external magnetic measurements with an error analysis. (author). 4 refs., 3 figs

  14. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae.

    Science.gov (United States)

    Heyland, Jan; Fu, Jianan; Blank, Lars M

    2009-12-01

    Glucose repression of the tricarboxylic acid (TCA) cycle in Saccharomyces cerevisiae was investigated under different environmental conditions using (13)C-tracer experiments. Real-time quantification of the volatile metabolites ethanol and CO(2) allowed accurate carbon balancing. In all experiments with the wild-type, a strong correlation between the rates of growth and glucose uptake was observed, indicating a constant yield of biomass. In contrast, glycerol and acetate production rates were less dependent on the rate of glucose uptake, but were affected by environmental conditions. The glycerol production rate was highest during growth in high-osmolarity medium (2.9 mmol g(-1) h(-1)), while the highest acetate production rate of 2.1 mmol g(-1) h(-1) was observed in alkaline medium of pH 6.9. Under standard growth conditions (25 g glucose l(-1) , pH 5.0, 30 degrees C) S. cerevisiae had low fluxes through the pentose phosphate pathway and the TCA cycle. A significant increase in TCA cycle activity from 0.03 mmol g(-1) h(-1) to about 1.7 mmol g(-1) h(-1) was observed when S. cerevisiae grew more slowly as a result of environmental perturbations, including unfavourable pH values and sodium chloride stress. Compared to experiments with high glucose uptake rates, the ratio of CO(2) to ethanol increased more than 50 %, indicating an increase in flux through the TCA cycle. Although glycolysis and the ethanol production pathway still exhibited the highest fluxes, the net flux through the TCA cycle increased significantly with decreasing glucose uptake rates. Results from experiments with single gene deletion mutants partially impaired in glucose repression (hxk2, grr1) indicated that the rate of glucose uptake correlates with this increase in TCA cycle flux. These findings are discussed in the context of regulation of glucose repression.

  15. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice.

    Science.gov (United States)

    Slijepcevic, Davor; Roscam Abbing, Reinout L P; Katafuchi, Takeshi; Blank, Antje; Donkers, Joanne M; van Hoppe, Stéphanie; de Waart, Dirk R; Tolenaars, Dagmar; van der Meer, Jonathan H M; Wildenberg, Manon; Beuers, Ulrich; Oude Elferink, Ronald P J; Schinkel, Alfred H; van de Graaf, Stan F J

    2017-11-01

    The Na + -taurocholate cotransporting polypeptide (NTCP/SLC10A1) is believed to be pivotal for hepatic uptake of conjugated bile acids. However, plasma bile acid levels are normal in a subset of NTCP knockout mice and in mice treated with myrcludex B, a specific NTCP inhibitor. Here, we elucidated which transport proteins mediate the hepatic uptake of conjugated bile acids and demonstrated intestinal sensing of elevated bile acid levels in plasma in mice. Mice or healthy volunteers were treated with myrcludex B. Hepatic bile acid uptake kinetics were determined in wild-type (WT), organic anion transporting polypeptide (OATP) knockout mice (lacking Slco1a/1b isoforms), and human OATP1B1-transgenic mice. Effects of fibroblast growth factor 19 (FGF19) on hepatic transporter mRNA levels were assessed in rat hepatoma cells and in mice by peptide injection or adeno-associated virus-mediated overexpression. NTCP inhibition using myrcludex B had only moderate effects on bile acid kinetics in WT mice, but completely inhibited active transport of conjugated bile acid species in OATP knockout mice. Cholesterol 7α-hydroxylase Cyp7a1 expression was strongly down-regulated upon prolonged inhibition of hepatic uptake of conjugated bile acids. Fgf15 (mouse counterpart of FGF19) expression was induced in hypercholanemic OATP and NTCP knockout mice, as well as in myrcludex B-treated cholestatic mice, whereas plasma FGF19 was not induced in humans treated with myrcludex B. Fgf15/FGF19 expression was induced in polarized human enterocyte-models and mouse organoids by basolateral incubation with a high concentration (1 mM) of conjugated bile acids. NTCP and OATPs contribute to hepatic uptake of conjugated bile acids in mice, whereas the predominant uptake in humans is NTCP mediated. Enterocytes sense highly elevated levels of (conjugated) bile acids in the systemic circulation to induce FGF15/19, which modulates hepatic bile acid synthesis and uptake. (Hepatology 2017;66:1631-1643).

  16. Viscous Design of TCA Configuration

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  17. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    Science.gov (United States)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  18. Alteration of the enterohepatic recirculation of bile acids in rats after exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Scanff, P.; Souidi, M.; Grison, S.; Griffiths, N.M.; Gourmelon, P.

    2004-01-01

    The aim of this work was to study acute alterations of the enterohepatic recirculation (EHR) of bile acids 3 days after an 8-Gy radiation exposure in vivo in the rat by a washout technique. Using this technique in association with HPLC analysis, the EHR of the major individual bile acids was determined in control and irradiated animals. Ex vivo ileal taurocholate absorption was also studied in Ussing chambers. Major hepatic enzyme activities involved in bile acid synthesis were also measured. Measurements of bile acid intestinal content and intestinal absorption efficiency calculation from washout showed reduced intestinal absorption with significant differences from one bile acid to another: absorption of taurocholate and tauromuricholate was decreased, whereas absorption of the more hydrophobic taurochenodeoxycholate was increased, suggesting that intestinal passive diffusion was enhanced, whereas ileal active transport might be reduced. Basal hepatic secretion was increased only for taurocholate, in accordance with the marked increase of CYP8B1 activity in the liver. The results are clearly demonstrate that concomitantly with radiation-induced intestinal bile acid malabsorption, hepatic bile acid synthesis and secretion are also changed. A current working model for pathophysiological changes in enterohepatic recycling after irradiation is thus proposed. (author)

  19. Present status of TCA/BR Tokamak

    International Nuclear Information System (INIS)

    Nascimento, I.C.; Galvao, R.M.O.; Tuszel, A.G.

    1997-01-01

    The TCA tokamak is being partially reconstructed and reassembled in the Plasma Laboratory of The University of Sao Paulo, and afterwards it will be named TCA/BR. The first discharges are expected by June/July of next year. The main scientific objectives envisaged for the machine are: Alfven wave heating and current drive, confinement improvement, disruptions and turbulence. In this paper we also describe: (i) the present status of the project; (ii) the diagnostic system; (iii) the control and data acquisition system; (iv) the RF system for the excitation of Alfven waves, that are being developed, and also the results of predictive transport simulations of its performance. (author)

  20. Specific bile acid radioimmunoassays for separate determinations of unconjugated cholic acid, conjugated cholic acid and conjugated deoxycholic acid in serum and their clinical application

    International Nuclear Information System (INIS)

    Matern, S.; Gerok, W.

    1977-01-01

    Specific radioimmunoassays for separate determinations of serum unconjugated cholic, conjugated cholic and conjugated deoxycholic acids have been developed. Prior to the radioimmunoassay, extraction of serum bile acids was performed with Amberlite XAD-2. Unconjugated cholic acid was separated from glyco- and taurocholic acids by thin-layer chromatography. At 50% displacement of bound labeled glyco[ 3 H]cholic acid using antiserum obtained after immunization with cholic acid-bovine serum albumin-conjugate the cross-reactivity of taurocholic acid was 100%, cholic acid 80%, glycochenodeoxycholic acid 10%, chenodeoxycholic acid 7%, conjugated deoxycholic acid 3%, and conjugated lithocholic acid 3 H]cholic acid was linear on a logit-log plot from 5 to 80 pmol of unlabeled glycocholic acid. Fasting serum conjugated cholic acid in healthy subjects was 0.68 +- 0.34 μmol/l. Unconjugated cholic acid was determined by a solid phase radioimmunoassay using the cholic acid antibody chemically bound to Sepharose. The displacement curve of [ 3 H]cholic acid in the solid phase radioimmunoassay was linear on a logit-log plot from 5 to 200 pmol of unlabeled cholic acid. The coefficient of variation between samples was 5%. Fasting serum conjugated deoxycholic acid concentrations in 10 healthy subjects ranged from 0.18 to 0.92 μmol/l determined by a radioimmunoassay using antiserum obtained after immunization with deoxycholic acid-bovine serum albumin-conjugate. The clinical application of these bile acid radioimmunoassays is shown by an 'oral cholate tolerance test' as a sensitive indicator of liver function and by an 'oral cholyglycine tolerance test' as a useful test for bile acid absorption. (orig.) [de

  1. CERN-IPMC solution for AdvancedTCA blades

    CERN Document Server

    Mendez, Julian Maxime; Haas, Stefan Ludwig; Joos, Markus; Mico, Sylvain; Vasey, Francois

    2018-01-01

    The AdvancedTCA standard has been selected as one of the hardware platforms for the upgrades of the back-end electronics of the CMS and ATLAS experiments of the Large Hadron Collider. In this context, the CERN EP-ESE group has designed and produced an IPMC mezzanine card for the management of AdvancedTCA blades. This paper presents the CERN-IPMC hardware and the software environment to be used for its customization and describes a test pad that can also be used as a development kit.

  2. An incomplete TCA cycle increases survival of Salmonella Typhimurium during infection of resting and activated murine macrophages.

    Science.gov (United States)

    Bowden, Steven D; Ramachandran, Vinoy K; Knudsen, Gitte M; Hinton, Jay C D; Thompson, Arthur

    2010-11-08

    In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice. We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence. Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous.

  3. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  4. Educational reactor-physics experiments with the critical assembly TCA

    International Nuclear Information System (INIS)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki; Horiki, Oichiro; Suzaki, Takenori.

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for 1) Critical approach and Exponential experiment, 2) Measurement of neutron flux distribution, 3) Measurement of power distribution, 4) Measurement of fuel rod worth distribution, and 5) Measurement of safety plate worth by the rod drop method. (author)

  5. Preliminary Evaluation of Nonlinear Effects on TCA Flutter

    Science.gov (United States)

    Arslan, Alan E.; Hartwich, Peter M.; Baker, Myles L.

    1998-01-01

    The objective of this study is to investigate the effect of nonlinear aerodynamics, especially at high angles-of-attack with leading-edge separation, on the TCA flutter properties at transonic speeds. In order to achieve that objective, flutter simulations with Navier-Stokes CFD must be performed. To this end, time-marching Navier-Stokes solutions are computed for the TCA wing/body configuration at high angles-of-attack in transonic flight regimes. The approach is to perform non-linear flutter calculations on the TCA at two angles-of-attack, the first one being a case with attached flow (a=2.8 degrees) and the second one being a high angle-of-attack case with a wing leading edge vortex (a=12.11 degrees). Comparisons of the resulting histories and frequency damping information for both angles-of-attack will evaluate the impact of high-alpha aerodynamics on flutter.

  6. Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs.

    Science.gov (United States)

    Saqcena, M; Mukhopadhyay, S; Hosny, C; Alhamed, A; Chatterjee, A; Foster, D A

    2015-05-14

    Cancer cells undergo a metabolic transformation that allows for increased anabolic demands, wherein glycolytic and tricarboxylic acid (TCA) cycle intermediates are shunted away for the synthesis of biological molecules required for cell growth and division. One of the key shunts is the exit of citrate from the mitochondria and the TCA cycle for the generation of cytosolic acetyl-coenzyme A that can be used for fatty acid and cholesterol biosynthesis. With the loss of mitochondrial citrate, cancer cells rely on the 'conditionally essential' amino acid glutamine (Q) as an anaplerotic carbon source for TCA cycle intermediates. Although Q deprivation causes G1 cell cycle arrest in non-transformed cells, its impact on the cancer cell cycle is not well characterized. We report here a correlation between bypass of the Q-dependent G1 checkpoint and cancer cells harboring K-Ras mutations. Instead of arresting in G1 in response to Q-deprivation, K-Ras-driven cancer cells arrest in either S- or G2/M-phase. Inhibition of K-Ras effector pathways was able to revert cells to G1 arrest upon Q deprivation. Blocking anaplerotic utilization of Q mimicked Q deprivation--causing S- and G2/M-phase arrest in K-Ras mutant cancer cells. Significantly, Q deprivation or suppression of anaplerotic Q utilization created synthetic lethality to the cell cycle phase-specific cytotoxic drugs, capecitabine and paclitaxel. These data suggest that disabling of the G1 Q checkpoint could represent a novel vulnerability of cancer cells harboring K-Ras and possibly other mutations that disable the Q-dependent checkpoint.

  7. Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation.

    Science.gov (United States)

    Lozoya, Oswaldo A; Martinez-Reyes, Inmaculada; Wang, Tianyuan; Grenet, Dagoberto; Bushel, Pierre; Li, Jianying; Chandel, Navdeep; Woychik, Richard P; Santos, Janine H

    2018-04-18

    Mitochondrial function affects many aspects of cellular physiology, and, most recently, its role in epigenetics has been reported. Mechanistically, how mitochondrial function alters DNA methylation patterns in the nucleus remains ill defined. Using a cell culture model of induced mitochondrial DNA (mtDNA) depletion, in this study we show that progressive mitochondrial dysfunction leads to an early transcriptional and metabolic program centered on the metabolism of various amino acids, including those involved in the methionine cycle. We find that this program also increases DNA methylation, which occurs primarily in the genes that are differentially expressed. Maintenance of mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation in the context of mtDNA loss rescues methionine salvage and polyamine synthesis and prevents changes in DNA methylation and gene expression but does not affect serine/folate metabolism or transsulfuration. This work provides a novel mechanistic link between mitochondrial function and epigenetic regulation of gene expression that involves polyamine and methionine metabolism responding to changes in the tricarboxylic acid (TCA) cycle. Given the implications of these findings, future studies across different physiological contexts and in vivo are warranted.

  8. Quantum chemical study, spectroscopic investigations, NBO and HOMO-LUMO analyses of 3-aminoquinoline (3AQ) and [Ag(3AQ)2(TCA)] complex (TCA = Trichloroacetate)

    Science.gov (United States)

    Soliman, Saied M.; Kassem, Taher S.; Badr, Ahmed M. A.; Abu Youssef, Morsy A.; Assem, Rania

    2014-09-01

    The new [Ag(3AQ)2(TCA)]; (3AQ = 3-aminoquinoline and TCA = Trichloroacetate) complex is synthesized and characterized using elemental analysis, FTIR, NMR and mass spectroscopy. The molecular geometry, vibrational frequencies, gauge-including atomic orbital (GIAO) 1H chemical shift values of the free and coordinated 3AQ in the ground state have been calculated by using DFT/B3LYP method. The TD-DFT results of the [Ag(3AQ)2(TCA)] complex showed a π-π* transition band at 240.3-242.6 nm (f = 0.1334-0.1348) which has longer wavelength and lower absorption intensity than that for the free 3AQ (233.2 nm, f = 0.3958). Dipole moment, polarizability and HOMO-LUMO gap values predicted better nonlinear optical properties (NLO) for the [Ag(3AQ)2(TCA)] than the 3AQ ligand. NBO analysis has been used to predict the most accurate Lewis structure of the studied molecules. The energies of the different intramolecular charge transfer (ICT) interactions within the studied molecules were estimated using second order perturbation theory.

  9. Experimental pancreatitis in the rat: role of bile reflux in sodium taurocholate-induced acute haemorrhagic pancreatitis

    NARCIS (Netherlands)

    Lange, J. F.; van Gool, J.; Tytgat, G. N.

    1986-01-01

    Mortality of sodium taurocholate-induced acute haemorrhagic pancreatitis in the rat was prevented by biliary diversion. Bile reflux into the pancreas after the induction of pancreatitis is postulated to be a major factor affecting mortality of this popular model of acute pancreatitis. The reduction

  10. Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump.

    Science.gov (United States)

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Stieger, Bruno; Meier, Peter J; Hofmann, Alan F; Sugiyama, Yuichi

    2005-01-01

    Bile salts are predominantly taken up by hepatocytes via the basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and secreted into the bile by the bile salt export pump (BSEP/ABCB11). In the present study, we transfected rat Ntcp and rat Bsep into polarized Madin-Darby canine kidney cells and characterized the transport properties of these cells for eight bile salts. Immunohistochemical staining demonstrated that Ntcp was expressed at the basolateral domains, whereas Bsep was expressed at the apical domains. Basal-to-apical transport of taurocholate across the monolayer expressing only Ntcp and that coexpressing Ntcp/Bsep was observed, whereas the flux across the monolayer of control and Bsep-expressing cells was symmetrical. Basal-to-apical transport of taurocholate across Ntcp/Bsep-coexpressing monolayers was significantly higher than that across monolayers expressing only Ntcp. Kinetic analysis of this vectorial transport of taurocholate gave an apparent K(m) value of 13.9 +/- 4.7 microM for cells expressing Ntcp alone, which is comparable with 22.2 +/- 4.5 microM for cells expressing both Ntcp and Bsep and V(max) values of 15.8 +/- 4.2 and 60.8 +/- 9.0 pmol.min(-1).mg protein(-1) for Ntcp alone and Ntcp and Bsep-coexpressing cells, respectively. Transcellular transport of cholate, glycocholate, taurochenodeoxycholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, ursodeoxycholate, and glycoursodeoxycholate, but not that of lithocholate was also observed across the double transfectant. This double-expressing system can be used as a model to clarify vectorial transport of bile salts across hepatocytes under physiological conditions.

  11. The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer.

    Science.gov (United States)

    Ciccarone, Fabio; Vegliante, Rolando; Di Leo, Luca; Ciriolo, Maria Rosa

    2017-12-01

    Cancer cells exploit metabolic rearrangements for sustaining their high proliferation rate and energy demand. The TCA cycle is a central metabolic hub necessary for ATP production and for providing precursors used in many biosynthetic pathways. Thus, dysregulation of the TCA cycle flux is frequently observed in cancer. The identification of mutations in several enzymes of the TCA cycle in human tumours demonstrated a direct connection between this metabolic pathway and cancer occurrence. Moreover, changes in the expression/activity of these enzymes were also shown to promote metabolic adaptation of cancer cells. In this review, the main genetic and non-genetic alterations of TCA cycle in cancer will be described. Particular attention will be given to extrametabolic roles of TCA cycle enzymes and metabolites underlying the regulation of nuclear and mitochondrial DNA transactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Genetic Dissociation of Glycolysis and the TCA Cycle Affects Neither Normal nor Neoplastic Proliferation.

    Science.gov (United States)

    Jackson, Laura E; Kulkarni, Sucheta; Wang, Huabo; Lu, Jie; Dolezal, James M; Bharathi, Sivakama S; Ranganathan, Sarangarajan; Patel, Mulchand S; Deshpande, Rahul; Alencastro, Frances; Wendell, Stacy G; Goetzman, Eric S; Duncan, Andrew W; Prochownik, Edward V

    2017-11-01

    Rapidly proliferating cells increase glycolysis at the expense of oxidative phosphorylation (oxphos) to generate sufficient levels of glycolytic intermediates for use as anabolic substrates. The pyruvate dehydrogenase complex (PDC) is a critical mitochondrial enzyme that catalyzes pyruvate's conversion to acetyl coenzyme A (AcCoA), thereby connecting these two pathways in response to complex energetic, enzymatic, and metabolic cues. Here we utilized a mouse model of hepatocyte-specific PDC inactivation to determine the need for this metabolic link during normal hepatocyte regeneration and malignant transformation. In PDC "knockout" (KO) animals, the long-term regenerative potential of hepatocytes was unimpaired, and growth of aggressive experimental hepatoblastomas was only modestly slowed in the face of 80%-90% reductions in AcCoA and significant alterations in the levels of key tricarboxylic acid (TCA) cycle intermediates and amino acids. Overall, oxphos activity in KO livers and hepatoblastoma was comparable with that of control counterparts, with evidence that metabolic substrate abnormalities were compensated for by increased mitochondrial mass. These findings demonstrate that the biochemical link between glycolysis and the TCA cycle can be completely severed without affecting normal or neoplastic proliferation, even under the most demanding circumstances. Cancer Res; 77(21); 5795-807. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Enzymatic mechanism of oxalate production in the TCA and glyoxylate pathways using various isolates of Antrodia radiculosa

    Science.gov (United States)

    K.M. Jenkins; S.V. Diehl; C.A. Clausen; F. Green

    2011-01-01

    Brown-rot fungi produce oxalate in large amounts; however, levels of accumulation and function vary by species. Copper-tolerant fungi, like Antrodia radiculosa, produce and accumulate high levels of oxalate in response to copper. Oxalate biosynthesis in copper-tolerant fungi has been linked to the glyoxylate and tricarboxylic acid (TCA) cycles. Within these two cycles...

  14. IPbus A flexible Ethernet-based control system for xTCA hardware

    CERN Document Server

    Williams, Thomas Stephen

    2014-01-01

    The ATCA and uTCA standards include industry-standard data pathway technologies such as Gigabit Ethernet which can be used for control communication, but no specific hardware control protocol is defined. The IPbus suite of software and firmware implements a reliable high-performance control link for particle physics electronics, and has successfully replaced VME control in several large projects. In this paper, we outline the IPbus system architecture, and describe recent developments in the reliability, scalability and performance of IPbus systems, carried out in preparation for deployment of uTCA-based CMS upgrades before the LHC 2015 run. We also discuss plans for future development of the IPbus suite.SUMMARY IPbus will be used for controlling the uTCA electronics in the CMS HCAL, TCDS, Pixel and Level-1 trigger upgrades. IPbus control has already been extensively used in the work of these upgrade projects so far, and final uTCA systems will be deployed in the experiment starting from Autumn 2014. IPbus is...

  15. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    , and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA...... tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U-13 C]glucose. The presence of metformin did not compromise the viability of cultured...

  16. Limits of 2D-TCA in detecting BOLD responses to epileptic activity.

    Science.gov (United States)

    Khatamian, Yasha Borna; Fahoum, Firas; Gotman, Jean

    2011-05-01

    Two-dimensional temporal clustering analysis (2D-TCA) is a relatively new functional MRI (fMRI) based technique that breaks blood oxygen level dependent activity into separate components based on timing and has shown potential for localizing epileptic activity independently of electroencephalography (EEG). 2D-TCA has only been applied to detect epileptic activity in a few studies and its limits in detecting activity of various forms (i.e. activation size, amplitude, and frequency) have not been investigated. This study evaluated 2D-TCA's ability to detect various forms of both simulated epileptic activity and EEG-fMRI activity detected in patients. When applied to simulated data, 2D-TCA consistently detected activity in 6min runs containing 5 spikes/run, 10 spikes/run, and one 5s long event with hemodynamic response function amplitudes of at least 1.5%, 1.25%, and 1% above baseline respectively. When applied to patient data, while detection of interictal spikes was inconsistent, 2D-TCA consistently produced results similar to those obtained by EEG-fMRI when at least 2 prolonged interictal events (a few seconds each) occurred during the run. However, even for such cases it was determined that 2D-TCA can only be used to validate localization by other means or to create hypotheses as to where activity may occur, as it also detects changes not caused by epileptic activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. New method for the determination of bile acid turnover using /sup 75/Se-homocholic acid taurine

    Energy Technology Data Exchange (ETDEWEB)

    Delhez, H.; Meerwaldt, J.H.; van den Berg, J.W.O.; van Blankenstein, M.

    1982-06-01

    The introduction of /sup 75/Se-homocholic acid taurine (/sup 75/SeHCAT) greatly facilitates the investigation of diarrhoea of unknown origin. By using gamma-labelled bile acids, daily faecal bile acid loss can be measured in total collected stools, thus circumventing laborious mixing and sampling. The /sup 75/SeHCAT method proved to be reliable for the determination of bile acid turnover, giving results identical to the established turnover method using /sup 14/C-taurocholic acid. The new method however, is simpler and faster.

  18. Development of a MicroTCA Carrier Hub for CMS at HL-LHC

    International Nuclear Information System (INIS)

    Dimitriyev, M; Hazen, E; Wu, S X; Rohlf, J

    2010-01-01

    We are developing a Micro TCA Carrier Hub card which provides timing, control and data acquisition functions in a Micro TCA crate for HL-LHC readout electronics. This module may be mounted in the primary or redundant MCH slot in a Micro TCA crate, and distributes low-jitter LHC RF clock and encoded fast timing signals to up to 12 AMC modules. In addition, it receives buffer status signals and DAQ data at up to 600 MBytes/sec from each AMC. The prototype module is built on a commercial MCH base board with a custom mezzanine board stack. The latest Xilinx(R) Virtex(R)-6 FPGA are used to provide a clear upgrade path. Prototype modules have been developed for a CMS HCAL test beam in summer 2010. We describe the specifications of the module, its application in a Micro TCA system beyond CMS HCAL, and our experience in commissioning the module for the test beam.

  19. Development of a MicroTCA Carrier Hub for CMS at HL-LHC

    CERN Document Server

    Dimitriyev, M; Wu, S X; Rohlf, J; 10.1088/1748-0221/5/12/C12042

    2010-01-01

    We are developing a Micro TCA Carrier Hub card which provides timing, control and data acquisition functions in a Micro TCA crate for HL-LHC readout electronics. This module may be mounted in the primary or redundant MCH slot in a Micro TCA crate, and distributes low-jitter LHC RF clock and encoded fast timing signals to up to 12 AMC modules. In addition, it receives buffer status signals and DAQ data at up to 600 MBytes/sec from each AMC. The prototype module is built on a commercial MCH base board with a custom mezzanine board stack. The latest Xilinx® Virtex®-6 FPGA are used to provide a clear upgrade path. Prototype modules have been developed for a CMS HCAL test beam in summer 2010. We describe the specifications of the module, its application in a Micro TCA system beyond CMS HCAL, and our experience in commissioning the module for the test beam

  20. Preliminary Results of the 1.5% TCA (Modular) Controls Model in the NASA Langley UPWT

    Science.gov (United States)

    Kubiatko, Paul; McMillin, Naomi; Cameron, Douglas C.

    1999-01-01

    To summarize the significant highlights in this report: (1) Data quality, determined by multiple repeat runs performed on the TCA baseline configuration, and long-term repeatability, determined by comparing baseline Reference H data from this test to a previous test, have been shown to be good. (2) The longitudinal stability of the TCA is more non-linear than for the Reference H, and while it is similar at normal lift values, the TCA has considerably more pitch-up at higher lift. (3) Longitudinal control effectiveness of the TCA is similar to the Reference H and the ratio of elevator effectiveness to horizontal tail effectiveness is approximately 0.3. (4) The directional stability of the TCA is improved relative to Reference H at higher angles-of attack. The chine is effective for improving directional stability.

  1. Equilibrium reconstruction in the TCA/Br tokamak; Reconstrucao do equilibrio no tokamak TCA/BR

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Wanderley Pires de

    1996-12-31

    The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author) 68 refs., 31 figs., 16 tabs.

  2. Development of a cellular biosensor for the detection of 2,4,6-trichloroanisole (TCA).

    Science.gov (United States)

    Varelas, Vassileios; Sanvicens, Nuria; M-Pilar-Marco; Kintzios, Spiridon

    2011-05-15

    2,4,6-trichloroanisole (TCA) is a microbial metabolite formed from chlorophenols through the activity of several natural fungal strains present on the cork oak bark. TCA is the primary compound responsible for the mousty/mould off-odour known as "cork taint" present in cork stoppers, wine, water and alcoholic beverages. Chromatographic and electrochemical methods are currently used for the determination of TCA, however its detection at low concentrations remains a technical challenge. The aim of this study was the development of a rapid novel biosensor system based on the Bioelectric Recognition Assay (BERA). The sensor measured the electric response of cultured membrane-engineered fibroblast cells suspended in an alginate gel matrix due to the change of their membrane potential in the presence of the analyte. Membrane-engineered cells were prepared by osmotic insertion of 0.5 μg/l of specific TCA antibodies into the membrane of the cells. The BERA-based sensor was able to detect TCA in a few minutes (3-5 min) at extremely low concentrations (10(-1)ppt), thus demonstrating higher sensitivity than the human sensory threshold. In addition, the assay was quite selective against other haloanisoles and halophenols structurally related to or co-occurring with TCA. Finally the sensor was tested against real white wine samples from cork soaks. At this real test, the BERA sensor was able to detect TCA from cork soaks rapidly (3-5 min) at very low concentrations (1.02-12 ng/l), covering the whole range for the detection threshold for wines (1.4-10 ng/l). Therefore, this novel biosensor offers new perspectives for ultra-rapid, ultra-sensitive and low-cost monitoring of TCA presence in cork and wine and possibly also other food commodities. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Relative estimates of TCA cycle pool size from 14CO2 production profiles

    International Nuclear Information System (INIS)

    Kelleher, J.K.; Cesta, M.L.; Holleran, A.L.

    1986-01-01

    In metabolic and isotopic steady state, the rate of 14 CO 2 production by TCA cycle intermediates labeled at different positions is linear. However, before the system reaches isotopic steady state, the rate of 14 CO 2 production is non-linear. The x-intercept extrapolated from the linear phase indicates the turnover rate of all metabolic pools the tracer must pass through. By exposing identical systems to 14 C succinate labeled in different positions, the contribution of TCA cycle pools to the non-linear phase may be considered. Specifically, the extrapolated x-intercept for [2,3 14 C] succinate will be greater than the x-intercept for [1,4 14 C] succinate if the TCA cycle pools are a contributing factor to the non-linear phase. The authors have used this method to analyze pyruvate oxidation in AS 30D hepatoma cells. They found that the extrapolated x-intercepts for the two tracers were identical. This indicates that the non-linear phase resulted from equilibration of the tracer with pools prior to entering the TCA cycle, i.e. lactate. Using this technique, it may be possible to estimate the variations in TCA cycle pool sizes in vivo

  4. Radiographic abnormalities in tricyclic acid overdose

    International Nuclear Information System (INIS)

    Varnell, R.M.; Richardson, M.L.; Vincent, J.M.; Godwin, J.D.

    1987-01-01

    Several case reports have described adult respiratory distress syndrome (ARDS) secondary to tricyclic acid (TCA) overdose. During a 1-year period 83 patients requiring intubation secondary to drug overdose were evaluated. Abnormalities on chest radiographs occurred in 26 (50%) of the 54 patients with TCA overdose, compared to six (21%) of the 29 patients overdosed with other drugs. In addition, five (9%) of the patients with TCA overdose subsequently had radiographic and clinical abnormalities meeting the criteria for ARDS. Only one (3%) of the patients with non-TCA overdose subsequently had change suggesting ARDS. TCAs should be added to the list of drugs associated with ARDS, and TCA overdose should be considered a major risk factor in the development of radiographically evident abnormalities

  5. Effects of boronisation on the plasma parameters in TCA

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Duval, B.P.; Hollenstein, Ch.; Joye, B.

    1990-01-01

    Wall conditioning and deposition of low Z materials on the first wall and limiters play an important role in plasma impurity control. Carbon film deposition (carbonisation) is already used on many Tokamaks. As proposed by Veprek, a film containing boron and carbon would be more resistant to chemical erosion and could also getter the oxygen. This procedure (boronisation) has been tried on Textor, Asdex and recently on TCA. The TCA vacuum vessel, the 8 rf antenna groups and 4 antenna screens are stainless steel and there are 4 carbon limiters placed in one poloidal plane. (author) 6 refs., 3 figs

  6. Microbiological aspects of determination of trichloroacetic acid in soil

    International Nuclear Information System (INIS)

    Matucha, M.; Rohlenová, J.; Forczek, S.T.; Gryndler, M.; Uhlířová, H.; Fuksová, K.; Schroder, P.

    2004-01-01

    Soils have been shown to possess a strong microbial trichloroacetic acid (TCA)-degrading activity. High TCA-degradation rate was also observed during soil extraction with water. For correct measurements of TCA levels in soil all TCA-degrading activities have to be inhibited immediately after sampling before analysis. We used rapid freezing of soil samples (optimally in liquid nitrogen) with subsequent storage and slow thawing before analysis as an efficient technique for suppressing the degradation. Frozen soil samples stored overnight at −20 °C and then thawed slowly exhibited very low residual TCA-degrading activity for several hours. Omitting the above procedure could lead to the confusing differences between the TCA levels previously reported in the literature

  7. Reactor physics experiment plan using TCA

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Shoichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors, which aims at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. This report is to plan critical experiments using TCA in JAERI. Critical Experiments performed so far in Europe and Japan are reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modifications of equipment are needed for use of MOX fuel rods. This report describes the preliminary plan of physics experiments. The number of MOX-fuel rods used in the experiments is obtained by calculations and modification of the equipment for the experiments are shown. New MOX fuel and UO{sub 2} fuel rods are necessary for the RMWR critical experiments. Number of MOX fuel rods is 1000 for Plutonium fissile enrichment of 5 wt%, 1000 for 10 wt%, 1500 for 15 wt% and 500 for 20 wt%, respectively. Depleted UO{sub 2} fuel rods for blanket/buffer region are 4000. Driver fuel rods of 4.9 wt% UO{sub 2} are 3000. Modification of TCA facility is requested to treat the large amount of MOX fuels from safety point of view. Additional shielding device at the top of the tank for loading the MOX fuels and additional safety plates to ensure safety are requested. The core is divided into two regions by inserting an inner tank to avoid criticality in MOX region only. The test region is composed by MOX fuel rods in the inner tank. Criticality is established by UO{sub 2} driver fuel rods outside of the inner tank. (Tsuchihashi, K.)

  8. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zidong Donna [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160 (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160 (United States)

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.

  9. Comments on the Alfven wave spectrum as measured on the TCA tokamak

    International Nuclear Information System (INIS)

    Puri, S.

    1986-06-01

    The heating in the TCA tokamak is ascribed to a combination of compressional Alfven wave heating (CAW) and discrete Alfven wave (DAW) heating. In this communication we invoke an alternative plasma heating mechanism by the direct excitation of torsional Alfven waves (TAW) to account for the observed features of the TCA experiment. (orig./GG)

  10. Comparison of efficacy of chemical peeling with 25% trichloroacetic acid and 0.1% retinoic acid for facial rejuvenation

    Directory of Open Access Journals (Sweden)

    Selda Yildirim

    2016-06-01

    Full Text Available Introduction : Skin aging is a problem which negatively affects the psyche of the person, social relations, as well as work life and health and which compels the patients to find appropriate treatment methods. Numerous treatment methods have been developed in order to delay aging and to reduce the aging effects in addition to having a younger, healthier and more beautiful facial appearance. Aim : To compare the efficiency, cosmetic results and possible adverse effects of the peeling treatment with 25% trichloroacetic acid (TCA and 0.1% retinoic acid for facial rejuvenation in patients presenting with skin aging. Material and methods: Fifty female patients in total presenting with medium and advanced degree skin aging were subject to this study. Two separate treatment groups were formed; the first group underwent chemical skin treatment with 25% TCA while the other group was applied with 0.1% retinoic acid treatment. Following the 4 months’ treatment the patients were controlled three times in total for post lesional hypopigmentation, hyperpigmentation, scars, skin irritation and other possible changes per month. The pretreatment and first follow-up visit, and final control images were comparatively evaluated by three observers via specific software. Results : The healing rates of the group subject to retinoic acid were statistically higher (p 0.05. The frequency of TCA- and retinoic acid-associated adverse effects was similar in both groups (p > 0.05. As a result of both treatments, a reduction in the quality of life scores as well as a pronounced recovery (p = 0.001 in the quality of life of those patients with skin aging was observed. Conclusions : The photo aging treatment option with 0.1% retinoic acid is cheaper and more feasible for patients compared to 25% TCA, and it is also as reliable and effective as TCA.

  11. Performance of confocal scanning laser tomograph Topographic Change Analysis (TCA) for assessing glaucomatous progression.

    Science.gov (United States)

    Bowd, Christopher; Balasubramanian, Madhusudhanan; Weinreb, Robert N; Vizzeri, Gianmarco; Alencar, Luciana M; O'Leary, Neil; Sample, Pamela A; Zangwill, Linda M

    2009-02-01

    To determine the sensitivity and specificity of confocal scanning laser ophthalmoscope's Topographic Change Analysis (TCA; Heidelberg Retina Tomograph [HRT]; Heidelberg Engineering, Heidelberg, Germany) parameters for discriminating between progressing glaucomatous and stable healthy eyes. The 0.90, 0.95, and 0.99 specificity cutoffs for various (n=70) TCA parameters were developed by using 1000 permuted topographic series derived from HRT images of 18 healthy eyes from Moorfields Eye Hospital, imaged at least four times. The cutoffs were then applied to topographic series from 36 eyes with known glaucomatous progression (by optic disc stereophotograph assessment and/or standard automated perimetry guided progression analysis, [GPA]) and 21 healthy eyes from the University of California, San Diego (UCSD) Diagnostic Innovations in Glaucoma Study (DIGS), all imaged at least four times, to determine TCA sensitivity and specificity. Cutoffs also were applied to 210 DIGS patients' eyes imaged at least four times with no evidence of progression (nonprogressed) by stereophotography or GPA. The TCA parameter providing the best sensitivity/specificity tradeoff using the 0.90, 0.95, and 0.99 cutoffs was the largest clustered superpixel area within the optic disc margin (CAREA(disc) mm(2)). Sensitivities/specificities for classifying progressing (by stereophotography and/or GPA) and healthy eyes were 0.778/0.809, 0.639/0.857, and 0.611/1.00, respectively. In nonprogressing eyes, specificities were 0.464, 0.570, and 0.647 (i.e., lower than in the healthy eyes). In addition, TCA parameter measurements of nonprogressing eyes were similar to those of progressing eyes. TCA parameters can discriminate between progressing and longitudinally observed healthy eyes. Low specificity in apparently nonprogressing patients' eyes suggests early progression detection using TCA.

  12. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis.

    Science.gov (United States)

    Goto, Mineaki; Miwa, Hiroshi; Shikami, Masato; Tsunekawa-Imai, Norikazu; Suganuma, Kazuto; Mizuno, Shohei; Takahashi, Miyuki; Mizutani, Motonori; Hanamura, Ichiro; Nitta, Masakazu

    2014-07-01

    Some cancer cells depend on glutamine despite of pronounced glycolysis. We examined the glutamine metabolism in leukemia cells, and found that HL-60 cells most depended on glutamine in the 4 acute myelogenous leukemia (AML) cell lines examined: growth of HL-60 cells was most suppressed by glutamine deprivation and by inhibition of glutaminolysis, which was rescued by tricarboxylic acid (TCA) cycle intermediate, oxaloacetic acid. Glutamine is also involved in antioxidant defense function by increasing glutathione. Glutamine deprivation suppressed the glutathione content and elevated reactive oxygen species most evidently in HL-60 cells. Glutamine metabolism might be a therapeutic target in some leukemia.

  13. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons.

    Science.gov (United States)

    Brekke, Eva M F; Walls, Anne B; Schousboe, Arne; Waagepetersen, Helle S; Sonnewald, Ursula

    2012-09-01

    The brain is highly susceptible to oxidative injury, and the pentose phosphate pathway (PPP) has been shown to be affected by pathological conditions, such as Alzheimer's disease and traumatic brain injury. While this pathway has been investigated in the intact brain and in astrocytes, little is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism of (13)C-labeled glucose via the PPP does not appear to contribute to the production of releasable lactate, it contributes to labeling of tricarboxylic acid (TCA) cycle intermediates and related amino acids. Based on glutamate isotopomers, it was calculated that PPP activity accounts for ~6% of glucose metabolism in cortical neurons and ~4% in cerebellar neurons. This is the first demonstration that pyruvate generated from glucose via the PPP contributes to the synthesis of acetyl CoA for oxidation in the TCA cycle. Moreover, the fact that (13)C labeling from glucose is incorporated into glutamate proves that both the oxidative and the nonoxidative stages of the PPP are active in neurons.

  14. Secretin enhances [14C]erythritol clearance in unanesthetized dogs

    International Nuclear Information System (INIS)

    Lewis, M.H.; Baker, A.L.; Dhorajiwala, J.; Moossa, A.R.

    1982-01-01

    To determine the effect of secretin infusion on clearance of inert markers into bile, unanesthetized dogs fitted with Thomas cannulas received continuous infusions of [ 14 C]erythritol and [ 3 H]inulin throughout study. Taurocholic acid administered sequentially at 9.0, 20.0, and 40.0 mumol/min enhanced [ 14 C]erythritol clearance, and GIH secretin (3 units/min) administered along with TCA (40.0 mumol/min) increased [ 14 C]erythritol clearance from 4.9 +/- 1.2 ml/10 min to 6.8 +/- 1.3 ml/10 min (P less than 0.001), but simultaneously measured [ 3 H]inulin clearance was unaltered. Secretin alone also increased [ 14 C]erythritol clearance but did not alter [ 3 H]inulin clearance. The increase in [ 14 C]erythritol clearance per unit increase in bile flow was less during secretin infusion than TCA. Thus, secretin increases [ 14 C]erythritol transport through restricted channels, probably distal to the canaliculi. [ 14 C]Erythritol may not be an accurate marker for canalicular bile flow in dogs during secretin infusion

  15. The modeling of the RF system performance in TCA/BR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.; Galvao, R.M.O.; Nascimento, I.; Ozono, E.; Lerche, E.; Degasperi, F.T.; Tuszel, A.G.

    1996-01-01

    The results of numerical simulation of RF Alfven wave heating system that is intended to be used in TCA/BR tokamak are presented. The problem of monochromatic travelling RF field excitation in TCA/BR tokamak is analyzed by means of numerical simulation. The spectrum of the excited Alfven waves is determined using a one-dimensional MHD code. The transient time and AC analysis of the RF generator performance with antenna loading are discussed. (author). 9 refs., 6 figs

  16. Isomerization of α-pinene in the terpentin oil with TCA/Natural Zeolite using microwave irradiation

    Science.gov (United States)

    Wijayati, N.; Supartono; Kusumastuti, E.

    2018-04-01

    The catalytic potensial of trichloroacetic acid (TCA)//Natural Zeolite in the isomerization of α-pinene in the terpentin oil was investigated. The purpose of this study is to investigate the influence of the power of microvawe on activity and selectivity of catalyst. The main product were champhene, terpinene, limonene, p-cymene, and terpinolene. The highest selectivity was 28.26% with a conversion of 23.25%, whereas the higher conversion was 98.99% with selectivity of 16.90% at room temperature using power of microwave 640 W.

  17. Functional studies of ssDNA binding ability of MarR family protein TcaR from Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Yu-Ming Chang

    Full Text Available The negative transcription regulator of the ica locus, TcaR, regulates proteins involved in the biosynthesis of poly-N-acetylglucosamine (PNAG. Absence of TcaR increases PNAG production and promotes biofilm formation in Staphylococci. Previously, the 3D structure of TcaR in its apo form and its complex structure with several antibiotics have been analyzed. However, the detailed mechanism of multiple antibiotic resistance regulator (MarR family proteins such as TcaR is unclear and only restricted on the binding ability of double-strand DNA (dsDNA. Here we show by electrophoretic mobility shift assay (EMSA, electron microscopy (EM, circular dichroism (CD, and Biacore analysis that TcaR can interact strongly with single-stranded DNA (ssDNA, thereby identifying a new role in MarR family proteins. Moreover, we show that TcaR preferentially binds 33-mer ssDNA over double-stranded DNA and inhibits viral ssDNA replication. In contrast, such ssDNA binding properties were not observed for other MarR family protein and TetR family protein, suggesting that the results from our studies are not an artifact due to simple charge interactions between TcaR and ssDNA. Overall, these results suggest a novel role for TcaR in regulation of DNA replication. We anticipate that the results of this work will extend our understanding of MarR family protein and broaden the development of new therapeutic strategies for Staphylococci.

  18. An artificial TCA cycle selects for efficient α-ketoglutarate dependent hydroxylase catalysis in engineered Escherichia coli.

    Science.gov (United States)

    Theodosiou, Eleni; Breisch, Marina; Julsing, Mattijs K; Falcioni, Francesco; Bühler, Bruno; Schmid, Andreas

    2017-07-01

    Amino acid hydroxylases depend directly on the cellular TCA cycle via their cosubstrate α-ketoglutarate (α-KG) and are highly useful for the selective biocatalytic oxyfunctionalization of amino acids. This study evaluates TCA cycle engineering strategies to force and increase α-KG flux through proline-4-hydroxylase (P4H). The genes sucA (α-KG dehydrogenase E1 subunit) and sucC (succinyl-CoA synthetase β subunit) were alternately deleted together with aceA (isocitrate lyase) in proline degradation-deficient Escherichia coli strains (ΔputA) expressing the p4h gene. Whereas, the ΔsucCΔaceAΔputA strain grew in minimal medium in the absence of P4H, relying on the activity of fumarate reductase, growth of the ΔsucAΔaceAΔputA strictly depended on P4H activity, thus coupling growth to proline hydroxylation. P4H restored growth, even when proline was not externally added. However, the reduced succinyl-CoA pool caused a 27% decrease of the average cell size compared to the wildtype strain. Medium supplementation partially restored the morphology and, in some cases, enhanced proline hydroxylation activity. The specific proline hydroxylation rate doubled when putP, encoding the Na + /l-proline transporter, was overexpressed in the ΔsucAΔaceAΔputA strain. This is in contrast to wildtype and ΔputA single-knock out strains, in which α-KG availability obviously limited proline hydroxylation. Such α-KG limitation was relieved in the ΔsucAΔaceAΔputA strain. Furthermore, the ΔsucAΔaceAΔputA strain was used to demonstrate an agar plate-based method for the identification and selection of active α-KG dependent hydroxylases. This together with the possibility to waive selection pressure and overcome α-KG limitation in respective hydroxylation processes based on living cells emphasizes the potential of TCA cycle engineering for the productive application of α-KG dependent hydroxylases. Biotechnol. Bioeng. 2017;114: 1511-1520. © 2017 Wiley Periodicals, Inc.

  19. The MicroTCA acquisition and processing back-end for FERMI-Elettra diagnostics

    International Nuclear Information System (INIS)

    Borga, A.O.; Monte, R. de; Pavlovic, L.; Predonzani, M.; Rossi, F.; Gaio, G.; Ferianis, M.

    2012-01-01

    During the construction and commissioning of the FERMI-Elettra Free Electron Laser (FEL) facility, tight requirements for diagnostics readout, processing, and control electronics had been specified; together with a complete integration in the main machine control system. Among the diagnostics devices to be controlled, the Bunch Arrival Monitors (BAM) and the Cavity Beam Position Monitors (C-BPM). The back-end platform, based on the MicroTCA (or uTCA) standard, provides a robust environment for accommodating such electronics, including reliable infrastructure features for slow control and monitoring of the electronics inside the crates. Two types of Advanced Mezzanine Cards (AMC) had been conceived, developed and manufactured in order to meet the demanding requisites. The first is a fast (160 MSps) and high-resolution (16 bits) Analog to Digital and Digital to Analog (A-D-A) Convert Board, hosting two A-D and two D-A converters controlled by an FPGA. The onboard logic is also responsible for service and host interface handling. The latter board is an Analog to Digital Only (A-DO) Converter, derived from the A-D-A, with an analog front side stage made of four A-D converters. Timing synthesis and distribution from a MicroTCA Central Hub (MCH) slot can be provided by means of a custom MicroTCA Timing Central Hub (MiTiCH), specifically designed for accurate (sub ps range) timing distribution over uTCA back-planes. The overall systems' architectures, together with the AMCs and MCH concept and functionalities, are described hereafter. A summary of the achievements, for each specific use case, together with our experience in the field with the new architecture, are then summarized. (authors)

  20. IRIS Toxicological Review of Trichloroacetic Acid (Tca) (Final ...

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Trichloroacetic Acid: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. The draft Toxicological Review of Trichloroacetic Acid provides scientific support and rationale for the hazard identification and dose-response assessment pertaining to chronic exposure to trichloroacetic acid.

  1. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Lake, April D.; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D.; Lu, Zhenqiang; Lehman-McKeeman, Lois D.; Cherrington, Nathan J.

    2013-01-01

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  2. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Lake, April D. [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States); Novak, Petr [Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice 37001 (Czech Republic); Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Lu, Zhenqiang [The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lehman-McKeeman, Lois D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Cherrington, Nathan J., E-mail: cherrington@pharmacy.arizona.edu [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States)

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  3. Scrape-off measurements during Alfven wave heating in the TCA tokamak

    International Nuclear Information System (INIS)

    Hofmann, F.; Hollenstein, C.; Joye, B.; Lietti, A.; Lister, J.B.; Pochelon, A.; Gimzewski, J.K.; Veprek, S.

    1984-01-01

    Plasma parameters and impurity fluxes in the scrape-off layer of the TCA tokamak have been measured during Alfven wave heating. Langmuir probes are used to measure electron density, electron temperature and plasma potential. Collection probes, in conjunction with XPS surface analysis, are used to determine impurity fluxes and ion impact energies. During RF heating, the electron edge temperature rises, the plasma potential drops and impurity fluxes are enhanced. Probe erosion due to impurity sputtering is clearly observed. The measurements are correlated with other diagnostics on TCA. (orig.)

  4. Nuclear medical quality control of transluminal coronary angioplastic (TCA)

    International Nuclear Information System (INIS)

    Klepzig, H. Jr.; Scherer, D.; Kober, G.; Kaltenbach, M.; Maul, F.D.; Standke, R.; Hoer, G.; Kanemoto, N.

    1984-01-01

    To assess the results of transluminal coronary angioplasty 48 patients with coronary heart disease were investigated at rest and during exercise with the ECG (46 patients), thallium-201 myocardial scintigraphy (26 patients), and equilibrium radionuclide ventriculography (38 patients). Exercise stress test was quantified by means of an ischemia score, myocardial scintigraphy by an vitality index and by corresponding redistribution factors, and radionuclide ventriculography by ejection fraction and maximum systolic volume change as a fraction of enddiastolic volume. The patients were divided into three groups: 36 patients had successful TCA (group 1); 6 patients underwent aortocoronary bypass operation (ACB, group 2); in 6 patients TCA was unsuccessful, they served as control (group 3). On average TCA yielded a reduction of coronary artery stenosis from 83% to 44%. Functional improvement was comparable in group 1 and 2: Ischemia score was reduced significantly. Perfusion index increased, the corresponding redistribution factors decreased. Left ventricular ejection fraction increased at rest and during exercise. Maximum systolic volume change increased correspondingly. Only slight changes were noted in group 3. Three months later 2 of 16 reinvestigated patients showed a restenosis and one a new narrowing distal to the successfully dilated stenosis. Functional deterioration could be demonstrated in these, whilst maintainance of the good functional results was documented in the others. (orig./MG) [de

  5. The Tribolium castaneum cell line TcA: a new tool kit for cell biology.

    Science.gov (United States)

    Silver, Kristopher; Jiang, Hongbo; Fu, Jinping; Phillips, Thomas W; Beeman, Richard W; Park, Yoonseong

    2014-10-30

    The red flour beetle, Tribolium castaneum, is an agriculturally important insect pest that has been widely used as a model organism. Recently, an adherent cell line (BCIRL-TcA-CLG1 or TcA) was developed from late pupae of the red flour beetle. Next generation transcriptome sequencing of TcA cells demonstrated expression of a wide variety of genes associated with specialized functions in chitin metabolism, immune responses and cellular and systemic RNAi pathways. Accordingly, we evaluated the sensitivity of TcA cells to dsRNA to initiate an RNAi response. TcA cells were highly sensitive to minute amounts of dsRNA, with a minimum effective dose of 100 pg/mL resulting in significant suppression of gene expression. We have also developed a plasmid containing two TcA-specific promoters, the promoter from the 40S ribosomal protein subunit (TC006550) and a bi-directional heat shock promoter (TcHS70) from the intergenic space between heat shock proteins 68a and b. These promoters have been employed to provide high levels of either constitutive (TC006550) or inducible (TcHS70) gene expression of the reporter proteins. Our results show that the TcA cell line, with its sensitivity to RNAi and functional TcA-specific promoters, is an invaluable resource for studying basic molecular and physiological questions.

  6. A study comparing chemical peeling using modified jessner′s solution and 15% trichloroacetic acid versus 15% trichloroacetic acid in the treatment of melasma

    Directory of Open Access Journals (Sweden)

    Safoury Omar

    2009-01-01

    Full Text Available Background: Melasma is a symmetric progressive hyperpigmentation of the facial skin that occurs in all races but has a predilection for darker skin phenotypes. Depigmenting agents, laser and chemical peeling as classic Jessner′s solution, modified Jessner′s solution and trichloroacetic acid have been used alone and in combination in the treatment of melasma. Objectives: The aim of the study was to compare the therapeutic effect of combined 15% Trichloroacetic acid (TCA and modified Jessner′s solution with 15% TCA on melasma. Materials and Methods: Twenty married females with melasma (epidermal type, with a mean age of 38.25 years, were included in this study. All were of skin type III or IV. Fifteen percent TCA was applied to the whole face, with the exception of the left malar area to which combined TCA 15% and modified Jessner′s solution was applied. Results: Our results revealed statistically highly significant difference between MASI Score (Melasma Area and Severity Index between the right malar area and the left malar area. Conclusion: Modified Jessner′s solution proved to be useful as an adjuvant treatment with TCA in the treatment of melasma, improving the results and minimizing postinflammatory hyperpigmentation.

  7. Anaerobic Respiration Using a Complete Oxidative TCA Cycle Drives Multicellular Swarming in Proteus mirabilis

    Science.gov (United States)

    Alteri, Christopher J.; Himpsl, Stephanie D.; Engstrom, Michael D.; Mobley, Harry L. T.

    2012-01-01

    ABSTRACT Proteus mirabilis rapidly migrates across surfaces using a periodic developmental process of differentiation alternating between short swimmer cells and elongated hyperflagellated swarmer cells. To undergo this vigorous flagellum-mediated motility, bacteria must generate a substantial proton gradient across their cytoplasmic membranes by using available energy pathways. We sought to identify the link between energy pathways and swarming differentiation by examining the behavior of defined central metabolism mutants. Mutations in the tricarboxylic acid (TCA) cycle (fumC and sdhB mutants) caused altered patterns of swarming periodicity, suggesting an aerobic pathway. Surprisingly, the wild-type strain swarmed on agar containing sodium azide, which poisons aerobic respiration; the fumC TCA cycle mutant, however, was unable to swarm on azide. To identify other contributing energy pathways, we screened transposon mutants for loss of swarming on sodium azide and found insertions in the following genes that involved fumarate metabolism or respiration: hybB, encoding hydrogenase; fumC, encoding fumarase; argH, encoding argininosuccinate lyase (generates fumarate); and a quinone hydroxylase gene. These findings validated the screen and suggested involvement of anaerobic electron transport chain components. Abnormal swarming periodicity of fumC and sdhB mutants was associated with the excretion of reduced acidic fermentation end products. Bacteria lacking SdhB were rescued to wild-type pH and periodicity by providing fumarate, independent of carbon source but dependent on oxygen, while fumC mutants were rescued by glycerol, independent of fumarate only under anaerobic conditions. These findings link multicellular swarming patterns with fumarate metabolism and membrane electron transport using a previously unappreciated configuration of both aerobic and anaerobic respiratory chain components. PMID:23111869

  8. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.

    Science.gov (United States)

    Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon; Schieber, Michael; Huang, He; Hensley, Christopher T; Mehta, Manan M; Wang, Tianyuan; Santos, Janine H; Woychik, Richard; Dufour, Eric; Spelbrink, Johannes N; Weinberg, Samuel E; Zhao, Yingming; DeBerardinis, Ralph J; Chandel, Navdeep S

    2016-01-21

    Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Equilibrium reconstruction in the TCA/Br tokamak

    International Nuclear Information System (INIS)

    Sa, Wanderley Pires de

    1996-01-01

    The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author)

  10. An assessment of the efficacy and safety of cross technique with 100% TCA in the management of ice pick acne scars

    Directory of Open Access Journals (Sweden)

    Deepali Bhardwaj

    2010-01-01

    Full Text Available Background : Chemical reconstruction of skin scars (CROSS is a technique using high concentrations of trichloroacetic acid (TCA focally on atrophic acne scars to induce inflammation followed by collagenisation. This can lead to reduction in the appearance of scars and cosmetic improvement. Aims : The aim of this pilot study is to investigate the safety of the CROSS technique, using 100% TCA, for atrophic ice pick acne scars. Settings and Design : Open prospective study. Materials and Methods : Twelve patients with predominant atrophic ice pick post acne scars were treated with the CROSS technique, using 100% TCA, applied with a wooden toothpick, at two weekly intervals for four sittings. Efficacy was assessed on the basis of the physician′s clinical assessment, photographic evaluation at each sitting and patient′s feedback after the fourth treatment, and at the three-month and six-month follow-up period, after the last treatment. Results : More than 70% improvement was seen in eight out of ten patients evaluated and good results (50 - 70% improvement were observed in the remaining two patients. No significant side effects were noted. Transient hypopigmentation and hyperpigmentation was observed in one patient each. Physician′s findings were in conformity with the patient′s assessment. Three months after the last treatment, one patient noted a decrease in improvement with no further improvement even at the six-month follow-up period. Conclusion : The CROSS technique with 100% TCA is a safe, efficacious, cost-effective and minimally invasive technique for the management of ice pick acne scars that are otherwise generally difficult to treat. In few patients the improvement may not be sustained, probably due to inadequate or delayed collagenisation.

  11. Analysis and Multipoint Design of the TCA Concept

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Buning, Pieter G.

    1999-01-01

    The goal in this effort is to analyze the baseline TCA concept at transonic and supersonic cruise, then apply the natural flow wing design concept to obtain multipoint performance improvements. Analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between the overset grids.

  12. Differential feedback regulation of cholesterol 7α-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Lehmann, E.M.; Princen, H.M.G.

    1993-01-01

    We have used primary monolayer cultures of rat hepatocytes to study the effects of physiological concentrations of various bile acids, commonly found in bile of normal rats, on the mechanism of regulation of cholesterol 7α-hydroxylase and bile acid synthesis. Addition of taurocholic acid, the most

  13. Measurement of the ion temperature by analysing the neutral particles in TCA (Tokamak Chauffage Alfven)

    International Nuclear Information System (INIS)

    Chambrier, A. de; Heym, A.; Hofmann, F.; Joye, B.; Keller, R.; Lietti, A.; Lister, J.B.; Pochelon, A.; Simm, W.

    1983-01-01

    The aim of the TCA project is to investigate the heating effects of resonant absorption of Alfven waves in a Tokamak plasma. In TCA, the ion temperature increases linearly with the heating. Depending on the conditions, the ion temperature rises from 150 eV to 225 eV. (Auth./G.T.H.)

  14. Association of ECRG2 TCA short tandem repeat polymorphism with the risk of oesophageal cancer in a North Indian population.

    Science.gov (United States)

    Jain, Meenu; Kumar, Shaleen; Ghoshal, Uday C; Mittal, Balraj

    2008-06-01

    Oesophageal cancer-related gene (ECRG2) is a tumour suppressor gene and it has been suggested that a triplet TCA short tandem repeat (STR) in the noncoding region of exon 4 plays a role in genetic susceptibility to oesophageal cancer. In the present study, ECRG2 STR polymorphism was studied in 134 patients with oesophageal cancer and 194 controls, using PCR and polyacrylamide gel electrophoresis. The results showed a higher frequency of the ECRG2 TCA (3)/TCA (4) genotype in cancer patients than in controls (odds ratio 2.6, 95% CI 1.0-6.4, p = 0.03). The association of the ECRG2 TCA (3)/TCA (4) genotype with clinical characteristics showed an increased risk for squamous cell histology (2.8, 95% CI 1.1-7.1, p = 0.03), while no association with tumor location or lymph node involvement was observed. Interaction of tobacco, alcohol and occupational exposure with the ECRG2 genotypes did not show modulation of risk. In conclusion, the ECRG2 TCA (3)/TCA (4) genotype is associated with the risk of oesophageal carcinoma in a North Indian population.

  15. Study of a novel agent for TCA precipitated proteins washing - comprehensive insights into the role of ethanol/HCl on molten globule state by multi-spectroscopic analyses.

    Science.gov (United States)

    Eddhif, Balkis; Lange, Justin; Guignard, Nadia; Batonneau, Yann; Clarhaut, Jonathan; Papot, Sébastien; Geffroy-Rodier, Claude; Poinot, Pauline

    2018-02-20

    Sample preparation for mass spectrometry-based proteomics is a key step for ensuring reliable data. In gel-free experimental workflows, protein purification often starts with a precipitation stage using trichloroacetic acid (TCA). In presence of TCA, proteins precipitate in a stable molten globule state making the pellet difficult to solubilize in aqueous buffer for proteolytic digestion and MS analysis. In this context, the objective of this work was to study the suitability of a novel agent, ethanol/HCl, for the washing of TCA-precipitated proteins. This method optimized the recovery of proteins in aqueous buffer (50 to 96%) while current organic solvents led to losses of material. Following a mechanistic study, the effect of ethanol/HCl on the conformation of TCA-precipitated proteins was investigated. It was shown that the reagent triggered the unfolding of TCA-stabilized molten globule into a reversible intermediate, characterized by a specific Raman signature, which favored protein subsequent resolubilization. Finally, the efficiency of ethanol/HCl for the washing of TCA-precipitated proteins extracted from a biofilm, a soil or a mouse liver was demonstrated (data available via ProteomeXchange with identifier PXD008110). Being versatile and simple, it could be of great interest to include an ethanol/HCl wash-step to produce high-quality protein extracts. In mass spectrometry-based proteomics workflows, proteins precipitation and/or washing usually involves the use of acetone. In fact, this solvent is effective for removing both biological interferences (e.g. lipids) and chemicals employed in protein extraction/purification protocols (e.g. TCA, SDS). However, the use of acetone can lead to significant protein losses. Moreover, when proteins are precipitated with TCA, the acetone-treated precipitate remains hard to disperse, leading to poor resolubilization of proteins in aqueous buffers. Here, we investigated the use of ethanol/HCl for washing TCA

  16. Correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis.

    Science.gov (United States)

    Liu, Wenlan; Sun, Zhirong; Qu, Jixu; Yang, Chunning; Zhang, Xiaomin; Wei, Xinxin

    2017-09-01

    The aim of the present study was to investigate the correlation between root respiration and the levels of biomass and glycyrrhizic acid in Glycyrrhiza uralensis . Root respiration was determined using a biological oxygen analyzer. Respiration-related enzymes including glucose-6-phosphate dehydrogenase plus 6-phosphogluconate dehydrogenase, phosphohexose isomerase and succinate dehydrogenase, and respiratory pathways were evaluated. Biomass was determined by a drying-weighing method. In addition, the percentage of glycyrrhizic acid was detected using high-performance liquid chromatography. The association between root respiration and the levels of biomass and glycyrrhizic acid was investigated. The glycolysis pathway (EMP), tricarboxylic acid cycle (TCA) and pentose phosphate (PPP) pathway acted concurrently in the roots of G. uralensis . Grey correlation analysis showed that TCA had the strongest correlation (correlation coefficient, 0.8003) with biomass. Starch and acetyl coenzyme A had the closest association with above-ground biomass, while soluble sugar correlated less strongly with above-ground biomass. Grey correlation analysis between biochemical pathways and the intermediates showed that pyruvic acid had the strongest correlation with EMP, while acetyl coenzyme A correlated most strongly with TCA. Among the intermediates and pathways, pyruvic acid and EMP exhibited the greatest correlation with glycyrrhizic acid, while acetyl coenzyme A and TCA correlated with glycyrrhizic acid less closely. The results of this study may aid the cultivation of G. uralensis . However, these results require verification in further studies.

  17. Design of the RF system for Alfven wave heating and current drive in a TCA/BR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.; Andrade, M.L.; Ozono, E.; Galvao, R.M.O.; Degaspari, F.T.; Nascimento, I.C.

    1995-01-01

    The advanced RF system for Alfven wave plasma heating and current drive in TCA/BR tokamak is presented. The antenna system is capable of exciting the standing and travelling wave M = -1,N = 1,N =-4,-6 with single helicity and thus provides the possibility to improve Alfven wave plasma heating efficiency in TCA/BR tokamak and to increase input power level up to P ≅ 1 MW, without the uncontrolled density rise which was encountered in previous TCA (Switzerland) experiments. (author). 4 refs., 3 figs

  18. Coordinated activation of PTA-ACS and TCA cycles strongly reduces overflow metabolism of acetate in Escherichia coli.

    Science.gov (United States)

    Peebo, Karl; Valgepea, Kaspar; Nahku, Ranno; Riis, Gethe; Oun, Mikk; Adamberg, Kaarel; Vilu, Raivo

    2014-06-01

    Elimination of acetate overflow in aerobic cultivation of Escherichia coli would improve many bioprocesses as acetate accumulation in the growth environment leads to numerous negative effects, e.g. loss of carbon, inhibition of growth, target product synthesis, etc. Despite many years of studies, the mechanism and regulation of acetate overflow are still not completely understood. Therefore, we studied the growth of E. coli K-12 BW25113 and several of its mutant strains affecting acetate-related pathways using the continuous culture method accelerostat (A-stat) at various specific glucose consumption rates with the aim of diminishing acetate overflow. Absolute quantitative exo-metabolome and proteome analyses coupled to metabolic flux analysis enabled us to demonstrate that onset of acetate overflow can be postponed and acetate excretion strongly reduced in E. coli by coordinated activation of phosphotransacetylase-acetyl-CoA synthetase (PTA-ACS) and tricarboxylic acid (TCA) cycles. Fourfold reduction of acetate excretion (2 vs. 8 % from total carbon) at fastest growth compared to wild type was achieved by deleting the genes responsible for inactivation of acetyl-CoA synthetase protein (pka) and TCA cycle regulator arcA. The Δpka ΔarcA strain did not accumulate any other detrimental by-product besides acetate and showed identical μ max and only ~5 % lower biomass yield compared to wild type. We conclude that a fine-tuned coordination between increasing the recycling capabilities of acetate in the PTA-ACS node through a higher concentration of active acetate scavenging Acs protein and downstream metabolism throughput in the TCA cycle is necessary for diminishing overflow metabolism of acetate in E. coli and achieving higher target product production in bioprocesses.

  19. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw; Stridh, Malin H; Zaganas, Ioannis; Skytt, Dorte M; Schousboe, Arne; Bak, Lasse K; Enard, Wolfgang; Pääbo, Svante; Waagepetersen, Helle S

    2017-03-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO 2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [ 3 H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of 13 C and 14 C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO 2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488. © 2016 Wiley Periodicals, Inc.

  20. Coordination polymers of Fe(iii) and Al(iii) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction.

    Science.gov (United States)

    Dhara, Barun; Sappati, Subrahmanyam; Singh, Santosh K; Kurungot, Sreekumar; Ghosh, Prasenjit; Ballav, Nirmalya

    2016-04-28

    Fe and Al belong to different groups in the periodic table, one from the p-block and the other from the d-block. In spite of their different groups, they have the similarity of exhibiting a stable 3+ oxidation state. Here we have prepared Fe(iii) and Al(iii) based coordination polymers in the form of metal-organic gels with the 4,4',4''-tricarboxyltriphenylamine (TCA) ligand, namely Fe-TCA and Al-TCA, and evaluated some important physicochemical properties. Specifically, the electrical conductivity, redox-activity, porosity, and electrocatalytic activity (oxygen evolution reaction) of the Fe-TCA system were noted to be remarkably higher than those of the Al-TCA system. As for the photophysical properties, almost complete quenching of the fluorescence originating from TCA was observed in case of the Fe-TCA system, whereas for the Al-TCA system a significant retention of fluorescence with red-shifted emission was observed. Quantum mechanical calculations based on density functional theory (DFT) were performed to unravel the origin of such discriminative behaviour of these coordination polymer systems.

  1. A Process-Based Model of TCA Cycle Functioning to Analyze Citrate Accumulation in Pre- and Post-Harvest Fruits.

    Science.gov (United States)

    Etienne, Audrey; Génard, Michel; Bugaud, Christophe

    2015-01-01

    Citrate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. The regulation of citrate accumulation throughout fruit development, and the origins of the phenotypic variability of the citrate concentration within fruit species remain to be clarified. In the present study, we developed a process-based model of citrate accumulation based on a simplified representation of the TCA cycle to predict citrate concentration in fruit pulp during the pre- and post-harvest stages. Banana fruit was taken as a reference because it has the particularity of having post-harvest ripening, during which citrate concentration undergoes substantial changes. The model was calibrated and validated on the two stages, using data sets from three contrasting cultivars in terms of citrate accumulation, and incorporated different fruit load, potassium supply, and harvest dates. The model predicted the pre and post-harvest dynamics of citrate concentration with fairly good accuracy for the three cultivars. The model suggested major differences in TCA cycle functioning among cultivars during post-harvest ripening of banana, and pointed to a potential role for NAD-malic enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. The sensitivity of citrate accumulation to growth parameters and temperature differed among cultivars during post-harvest ripening. Finally, the model can be used as a conceptual basis to study citrate accumulation in fleshy fruits and may be a powerful tool to improve our understanding of fruit acidity.

  2. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner.

    Science.gov (United States)

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2015-10-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. A comparative study on 100% tca versus 88% phenol for the treatment of vitiligo

    Directory of Open Access Journals (Sweden)

    Neerja Puri

    2012-07-01

    Full Text Available There are various medical and surgical modalities for the treatment of vitiligo. Surgical modalities are used in the patients who fail to respond to medical therapy. We selected thirty patients of stable vitiligo from the department of dermatology for the study. The patients were divided into two groups of 15 patients each. In Group I patients application of 100% TCA was done on the vitiliginous sites and in Group II patients 88% phenol was applied on the affected sites. Comparing the results of repigmentation in both the groups it was seen that marked pigmentation was seen in 66.6% patients in the TCA group and 80% in the Phenol group. Moderate pigmentation was seen in 13.3% patients in both the groups and mild pigmentation was seen in 20% patients in the TCA group and 6.6% in the Phenol group.

  4. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum.

    Science.gov (United States)

    Tavsan, Zehra; Ayar Kayali, Hulya

    2015-05-01

    The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites' levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L.

  5. Addition of urea and thiourea to electrophoresis sample buffer improves efficiency of protein extraction from TCA/acetone-treated smooth muscle tissues for phos-tag SDS-PAGE.

    Science.gov (United States)

    Takeya, Kosuke; Kaneko, Toshiyuki; Miyazu, Motoi; Takai, Akira

    2018-01-01

    Phosphorylation analysis by using phos-tag technique has been reported to be suitable for highly sensitive quantification of smooth muscle myosin regulatory light chain (LC 20 ) phosphorylation. However, there is another factor that will affect the sensitivity of phosphorylation analysis, that is, protein extraction. Here, we optimized the conditions for total protein extraction out of trichloroacetic acid (TCA)-fixed tissues. Standard SDS sample buffer extracted less LC 20 , actin and myosin phosphatase targeting subunit 1 (MYPT1) from TCA/acetone treated ciliary muscle strips. On the other hand, sample buffer containing urea and thiourea in addition to lithium dodecyl sulfate (LDS) or SDS extracted those proteins more efficiently, and thus increased the detection sensitivity up to 4-5 fold. Phos-tag SDS-PAGE separated dephosphorylated and phosphorylated LC 20 s extracted in LDS/urea/thiourea sample buffer to the same extent as those in standard SDS buffer. We have concluded that LDS (or SDS) /urea/thiourea sample buffer is suitable for highly sensitive phosphorylation analysis in smooth muscle, especially when it is treated with TCA/acetone. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Trichloroacetic Acid Ingestion: Self-Harm Attempt

    Directory of Open Access Journals (Sweden)

    E. R. Black

    2017-01-01

    Full Text Available Objective. Trichloroacetic acid (TCAA, or trichloroethanoic acid, is a chemical analogue of acetic acid where three methyl group hydrogen atoms are replaced by chlorine. TCAAs are also abbreviated and referred to as TCAs, causing confusion with the psychiatric antidepressant drug class, especially among patients. TCAAs exist in dermatological treatments such as chemical peels or wart chemoablation medication. TCAA ingestion or overdose can cause gastric irritation symptoms including vomiting, diarrhea, or lassitude. This symptomatology is less severe than TCA overdose, where symptoms may include elevated body temperature, blurred vision, dilated pupils, sleepiness, confusion, seizures, rapid heart rate, and cardiac arrest. Owing to the vast difference in symptoms, the need for clinical intervention differs greatly. While overdose of either in a self-harm attempt can warrant psychiatric hospital admission, the risk of death in TCAA ingestion is far less. Case Report. A patient ingested TCAA in the form of a commercially available dermatological chemical peel as a self-harm attempt, thinking that it was a more injurious TCA. Conclusion. Awareness among physicians, particularly psychiatrists, regarding this relatively obscure chemical compound (TCAA and its use by suicidal patients mistakenly believing it to be a substance that can be significantly more lethal (TCA, is imperative.

  7. Circulating bile acids in healthy adults respond differently to a dietary pattern characterized by whole grains, legumes and fruits and vegetables compared to a diet high in refined grains and added sugars: a randomized, controlled, crossover feeding study.

    Science.gov (United States)

    Ginos, Bigina N R; Navarro, Sandi L; Schwarz, Yvonne; Gu, Haiwei; Wang, Dongfang; Randolph, Timothy W; Shojaie, Ali; Hullar, Meredith A J; Lampe, Paul D; Kratz, Mario; Neuhouser, Marian L; Raftery, Daniel; Lampe, Johanna W

    2018-02-16

    The effects of diets high in refined grains on biliary and colonic bile acids have been investigated extensively. However, the effects of diets high in whole versus refined grains on circulating bile acids, which can influence glucose homeostasis and inflammation through activation of farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (TGR5), have not been studied. We conducted a secondary analysis from a randomized controlled crossover feeding trial (NCT00622661) in 80 healthy adults (40 women/40 men, age 18-45 years) from the greater Seattle Area, half of which were normal weight (BMI 18.5-25.0 kg/m 2 ) and half overweight to obese (BMI 28.0-39.9 kg/m 2 ). Participants consumed two four-week controlled diets in randomized order: 1) a whole grain diet (WG diet), designed to be low in glycemic load (GL), high in whole grains, legumes, and fruits and vegetables, and 2) a refined grain diet (RG diet), designed to be high GL, high in refined grains and added sugars, separated by a four-week washout period. Quantitative targeted analysis of 55 bile acid species in fasting plasma was performed using liquid chromatography tandem mass spectrometry. Concentrations of glucose, insulin, and CRP were measured in fasting serum. Linear mixed models were used to test the effects of diet on bile acid concentrations, and determine the association between plasma bile acid concentrations and HOMA-IR and CRP. Benjamini-Hochberg false discovery rate (FDR) < 0.05 was used to control for multiple testing. A total of 29 plasma bile acids were reliably detected and retained for analysis. Taurolithocholic acid (TLCA), taurocholic acid (TCA) and glycocholic acid (GCA) were statistically significantly higher after the WG compared to the RG diet (FDR < 0.05). There were no significant differences by BMI or sex. When evaluating the association of bile acids and HOMA-IR, GCA, taurochenodeoxycholic acid, ursodeoxycholic acid (UDCA), 5β-cholanic acid-3β,12

  8. Fluxes of trichloroacetic acid through a conifer forest canopy

    International Nuclear Information System (INIS)

    Stidson, R.T.; Heal, K.V.; Dickey, C.A.; Cape, J.N.; Heal, M.R.

    2004-01-01

    Controlled-dosing experiments with conifer seedlings have demonstrated an above-ground route of uptake for trichloroacetic acid (TCA) from aqueous solution into the canopy, in addition to uptake from the soil. The aim of this work was to investigate the loss of TCA to the canopy in a mature conifer forest exposed only to environmental concentrations of TCA by analysing above- and below-canopy fluxes of TCA and within-canopy instantaneous reservoir of TCA. Concentrations and fluxes of TCA were quantified for one year in dry deposition, rainwater, cloudwater, throughfall, stemflow and litterfall in a 37-year-old Sitka spruce and larch plantation in SW Scotland. Above-canopy TCA deposition was dominated by rainfall (86%), compared with cloudwater (13%) and dry deposition (1%). On average only 66% of the TCA deposition passed through the canopy in throughfall and stemflow (95% and 5%, respectively), compared with 47% of the wet precipitation depth. Consequently, throughfall concentration of TCA was, on average, ∼1.4 x rainwater concentration. There was no significant difference in below-canopy fluxes between Sitka spruce and larch, or at a forest-edge site. Annual TCA deposited from the canopy in litterfall was only ∼1-2% of above-canopy deposition. On average, ∼800 μg m -2 of deposited TCA was lost to the canopy per year, compared with estimates of above-ground TCA storage of ∼400 and ∼300 μg m -2 for Sitka spruce and larch, respectively. Taking into account likely uncertainties in these values (∼±50%), these data yield an estimate for the half-life of within-canopy elimination of TCA in the range 50-200 days, assuming steady-state conditions and that all TCA lost to the canopy is transferred into the canopy material, rather than degraded externally. The observations provide strong indication that an above-ground route is important for uptake of TCA specifically of atmospheric origin into mature forest canopies, as has been shown for seedlings (in

  9. Agreement among graders on Heidelberg retina tomograph (HRT) topographic change analysis (TCA) glaucoma progression interpretation.

    Science.gov (United States)

    Iester, Michele M; Wollstein, Gadi; Bilonick, Richard A; Xu, Juan; Ishikawa, Hiroshi; Kagemann, Larry; Schuman, Joel S

    2015-04-01

    To evaluate agreement among experts of Heidelberg retina tomography's (HRT) topographic change analysis (TCA) printout interpretations of glaucoma progression and explore methods for improving agreement. 109 eyes of glaucoma, glaucoma suspect and healthy subjects with ≥5 visits and 2 good quality HRT scans acquired at each visit were enrolled. TCA printouts were graded as progression or non-progression. Each grader was presented with 2 sets of tests: a randomly selected single test from each visit and both tests from each visit. Furthermore, the TCA printouts were classified with grader's individual criteria and with predefined criteria (reproducible changes within the optic nerve head, disregarding changes along blood vessels or at steep rim locations and signs of image distortion). Agreement among graders was modelled using common latent factor measurement error structural equation models for ordinal data. Assessment of two scans per visit without using the predefined criteria reduced overall agreement, as indicated by a reduction in the slope, reflecting the correlation with the common factor, for all graders with no effect on reducing the range of the intercepts between the graders. Using the predefined criteria improved grader agreement, as indicated by the narrower range of intercepts among the graders compared with assessment using individual grader's criteria. A simple set of predefined common criteria improves agreement between graders in assessing TCA progression. The inclusion of additional scans from each visit does not improve the agreement. We, therefore, recommend setting standardised criteria for TCA progression evaluation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Reconstitution of TCA cycle with DAOCS to engineer Escherichia coli into an efficient whole cell catalyst of penicillin G.

    Science.gov (United States)

    Lin, Baixue; Fan, Keqiang; Zhao, Jian; Ji, Junjie; Wu, Linjun; Yang, Keqian; Tao, Yong

    2015-08-11

    Many medically useful semisynthetic cephalosporins are derived from 7-aminodeacetoxycephalosporanic acid (7-ADCA), which has been traditionally made by the polluting chemical method. Here, a whole-cell biocatalytic process based on an engineered Escherichia coli strain expressing 2-oxoglutarate-dependent deacetoxycephalosporin C synthase (DAOCS) for converting penicillin G to G-7-ADCA is developed. The major engineering strategy is to reconstitute the tricarboxylic acid (TCA) cycle of E. coli to force the metabolic flux to go through DAOCS catalyzed reaction for 2-oxoglutarate to succinate conversion. Then the glyoxylate bypass was disrupted to eliminate metabolic flux that may circumvent the reconstituted TCA cycle. Additional engineering steps were taken to reduce the degradation of penicillin G and G-7-ADCA in the bioconversion process. These steps include engineering strategies to reduce acetate accumulation in the biocatalytic process and to knock out a host β-lactamase involved in the degradation of penicillin G and G-7-ADCA. By combining these manipulations in an engineered strain, the yield of G-7-ADCA was increased from 2.50 ± 0.79 mM (0.89 ± 0.28 g/L, 0.07 ± 0.02 g/gDCW) to 29.01 ± 1.27 mM (10.31 ± 0.46 g/L, 0.77 ± 0.03 g/gDCW) with a conversion rate of 29.01 mol%, representing an 11-fold increase compared with the starting strain (2.50 mol%).

  11. A Process-Based Model of TCA Cycle Functioning to Analyze Citrate Accumulation in Pre- and Post-Harvest Fruits.

    Directory of Open Access Journals (Sweden)

    Audrey Etienne

    Full Text Available Citrate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. The regulation of citrate accumulation throughout fruit development, and the origins of the phenotypic variability of the citrate concentration within fruit species remain to be clarified. In the present study, we developed a process-based model of citrate accumulation based on a simplified representation of the TCA cycle to predict citrate concentration in fruit pulp during the pre- and post-harvest stages. Banana fruit was taken as a reference because it has the particularity of having post-harvest ripening, during which citrate concentration undergoes substantial changes. The model was calibrated and validated on the two stages, using data sets from three contrasting cultivars in terms of citrate accumulation, and incorporated different fruit load, potassium supply, and harvest dates. The model predicted the pre and post-harvest dynamics of citrate concentration with fairly good accuracy for the three cultivars. The model suggested major differences in TCA cycle functioning among cultivars during post-harvest ripening of banana, and pointed to a potential role for NAD-malic enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. The sensitivity of citrate accumulation to growth parameters and temperature differed among cultivars during post-harvest ripening. Finally, the model can be used as a conceptual basis to study citrate accumulation in fleshy fruits and may be a powerful tool to improve our understanding of fruit acidity.

  12. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes.

    Science.gov (United States)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S; Dringen, Ralf

    2017-11-01

    Metformin is an antidiabetic drug that is used daily by millions of patients worldwide. Metformin is able to cross the blood-brain barrier and has recently been shown to increase glucose consumption and lactate release in cultured astrocytes. However, potential effects of metformin on mitochondrial tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U- 13 C]glucose. The presence of metformin did not compromise the viability of cultured astrocytes during 4 hr of incubation, but almost doubled cellular glucose consumption and lactate release. Compared with control cells, the presence of metformin dramatically lowered the molecular 13 C carbon labeling (MCL) of the cellular TCA cycle intermediates citrate, α-ketoglutarate, succinate, fumarate, and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA cycling ratio in metformin-treated astrocytes. Finally, the oxygen consumption of mitochondria isolated from metformin-treated astrocytes was drastically reduced in the presence of complex I substrates, but not of complex II substrates. These data demonstrate that exposure to metformin strongly impairs complex I-mediated mitochondrial respiration in astrocytes, which is likely to cause the observed decrease in labeling of mitochondrial TCA cycle intermediates and the stimulation of glycolytic lactate production. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Molecular structure and spectral properties of ethyl 3-quinolinecarboxylate (E3Q) and [Ag(E3Q)2(TCA)] complex (TCA = Trichloroacetate)

    Science.gov (United States)

    Soliman, Saied M.; Kassem, Taher S.; Badr, Ahmed M. A.; Abou Youssef, Morsy A.; Assem, Rania

    2014-09-01

    A new [Ag(E3Q)2(TCA)] complex; (E3Q = Ethyl 3-quinolinecarboxylate and TCA = Trichloroacetate) has been synthesized and characterized using elemental analysis, FTIR, NMR and mass spectroscopy. The molecular geometry and spectroscopic properties of the complex as well as the free ligand have been calculated using the hybrid B3LYP method. The calculations predicted a distorted tetrahedral arrangement around Ag(I) ion. The vibrational spectra of the studied compounds have been assigned using potential energy distribution (PED). TD-DFT method was used to predict the electronic absorption spectra. The most intense absorption band showed a bathochromic shift and lowering of intensity in case of the complex (233.7 nm, f = 0.5604) compared to E3Q (λmax = 228.0 nm, f = 0.9072). The calculated 1H NMR chemical shifts using GIAO method showed good correlations with the experimental data. The computed dipole moment, polarizability and HOMO-LUMO energy gap were used to predict the nonlinear optical (NLO) properties. It is found that Ag(I) enhances the NLO activity. The natural bond orbital (NBO) analyses were used to elucidate the intramolecular charge transfer interactions causing stabilization for the investigated systems.

  14. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw

    2017-01-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1...... and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation...

  15. The composition of bile acids in patients with cholelithiasis according to the data of liquid chromatography with mass spectrometric detection

    Directory of Open Access Journals (Sweden)

    V. M. Klymenko

    2017-12-01

    Full Text Available Bile acids play a leading role in the physical and colloidal properties of bile stabilization. Lack of bile acids consequences result in the formation of cholesterol stones in the gall bladder, diarrhea and steatorrhea, fat-soluble vitamins impaired absorption, and kidney stones formation (oxalates. Investigation of altered bile composition, especially the content of bile acids, in patients with gallstone disease by means of modern analytical analysis methods (liquid chromatography with mass spectrometric detection would complement the modern ideas about mechanisms of lithogenesis and aim efforts at prevention of stone formation in the gall bladder, that was the purpose of our work. Materials and methods. Bile samples were tested for bile acid content using liquid chromatography with mass spectrometry. 14 samples of bile from patients with cholelithiasis were included in the main group, and control group consisted of 7 bile samples from practically healthy persons. Results. In patients with cholelithiasis there is an increase in the content of conjugated forms of bile acids – glycolic acid in 2 times (p = 0.002, taurocholic acid in 1.57 times (p = 0.062 compared with practically healthy persons. In patients with cholelithiasis, the ratio of taurocholic to glycolic acidі content (0.95 vs. 1.27, p = 0.0179, as well as glycogenodeoxycholic to glycodeoxycholic acid (1.11 vs. 1.58, p = 0.027 is significantly less than that in practically healthy persons. In addition, one in two patients with cholelithiasis does not reveal the presence of ursodeoxycholic acid in the bile. Conclusions. The lithogenic properties of bile are primarily caused by conjugated forms of cholic acid with glycine and taurine content violation. The ratio of taurocholic to glycolic acid content in patients with cholelithiasis is significantly lower than the similar index in practically healthy persons (0.95 vs. 1.27, p = 0.0179. The ratio of glycine conjugated bile acids

  16. TcA, the putative transposase of the C. elegans Tc1 transposon, has an N-terminal DNA binding domain.

    OpenAIRE

    Schukkink, R F; Plasterk, R H

    1990-01-01

    Tc1 is a transposon present in several copies in the genome of all natural isolates of the nematode C.elegans; it is actively transposing in many strains. In those strains Tc1 insertion is the main cause of spontaneous mutations. The transposon contains one large ORF that we call TcA; we assume that the TcA protein is the transposase of Tc1. We expressed TcA in E.coli, purified the protein and showed that it has a strong affinity for DNA (both single stranded and double stranded). A fusion pr...

  17. 39GHz ECRH system for breakdown studies on the TCA tokamak

    International Nuclear Information System (INIS)

    Pochelon, A.; Goodman, T.; Whaley, D.; Tran, M.Q.; Reinhard, D.; Perrenoud, A.; Joedicke, B.; Mathews, H.G.; Kasparek, W.; Thumm, M.

    1990-01-01

    The design construction and first operation of a 39GHz ECRH system (300 kW, 100 ms) for low loop-voltage breakdown and startup-assist experiments on the TCA tokamak is described. (author) 5 refs., 6 figs., 1 tab

  18. The kinetics and properties of thermal oxidation of silicon in TCA-O/sub 2/

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, E.

    1993-01-01

    The oxidation of silicon using dry O/sub 2/ is now well established as a key process for the fabrication of electronic devices in the semiconductor industry. However, this process is complicated by its sensitivity to impurities which reduce device yields. HCl can be added to O/sub 2/ to remove these impurities but due to its highly corrosive nature a safer and cleaner alternative such as trichloroethane (TCA) is desirable. In this paper, the thermal oxidation of silicon using a mixture of TCA-O/sub 2/ has been investigated in a large scale industrial system. The growth kinetics and the properties of these films have been studies and compared to oxides produced from dry 2. The addition of TCA generates HCl in situ, enhances the oxidation rate by approximately 54% nd improves the electrical properties. It was found that a 1 mol.% mixture gives the optimum process. An analysis of the data suggests that a liner parabolic growth model is applicable and provides a valuable insight into the physical phenomena governing this important process. (author)

  19. Measurement and analysis of reactivity worth of 237Np sample in cores of TCA and FCA

    International Nuclear Information System (INIS)

    Sakurai, Takeshi; Mori, Takamasa; Okajima, Shigeaki; Tani, Kazuhiro; Suzaki, Takenori; Saito, Masaki

    2009-01-01

    The reactivity worth of 22.87 grams of 237 Np oxide sample was measured and analyzed in seven uranium cores in the Tank-Type Critical Assembly (TCA) and two uranium cores in the Fast Critical Assembly (FCA) at the Japan Atomic Energy Agency. The TCA cores provided a systematic variation in the neutron spectrum between the thermal and resonance energy regions. The FCA cores, XXI and XXV, provided a hard neutron spectrum of the fast reactor and a soft one of the resonance energy region, respectively. Analyses were carried out using the JENDL-3.3 nuclear data library with a Monte Carlo method for the TCA cores and a deterministic method for the FCA cores. The ratios of calculated to experimental (C/E) reactivity worth were between 0.97 and 0.91, and showed no apparent dependence on the neutron spectrum. (author)

  20. Trichloroacetic acid cycling in Sitka spruce saplings and effects on sapling health following long term exposure

    International Nuclear Information System (INIS)

    Dickey, C.A.; Heal, K.V.; Stidson, R.T.; Koren, R.; Schroeder, P.; Cape, J.N.; Heal, M.R.

    2004-01-01

    Trichloroacetic acid (TCA, CCl 3 COOH) has been associated with forest damage but the source of TCA to trees is poorly characterised. To investigate the routes and effects of TCA uptake in conifers, 120 Sitka spruce (Picea sitchensis (Bong.) Carr) saplings were exposed to control, 10 or 100 μg l -1 solutions of TCA applied twice weekly to foliage only or soil only over two consecutive 5-month growing seasons. At the end of each growing season similar elevated TCA concentrations (approximate range 200-300 ng g -1 dwt) were detected in both foliage and soil-dosed saplings exposed to 100 μg l -1 TCA solutions showing that TCA uptake can occur from both exposure routes. Higher TCA concentrations in branchwood of foliage-dosed saplings suggest that atmospheric TCA in solution is taken up indirectly into conifer needles via branch and stemwood. TCA concentrations in needles declined slowly by only 25-30% over 6 months of winter without dosing. No effect of TCA exposure on sapling growth was measured during the experiment. However at the end of the first growing season needles of saplings exposed to 10 or 100 μg l -1 foliage-applied TCA showed significantly more visible damage, higher activities of some detoxifying enzymes, lower protein contents and poorer water control than needles of saplings dosed with the same TCA concentrations to the soil. At the end of each growing season the combined TCA storage in needles, stemwood, branchwood and soil of each sapling was <6% of TCA applied. Even with an estimated half-life of tens of days for within-sapling elimination of TCA during the growing season, this indicates that TCA is eliminated rapidly before uptake or accumulates in another compartment. Although TCA stored in sapling needles accounted for only a small proportion of TCA stored in the sapling/soil system it appears to significantly affect some measures of sapling health. - TCA stored in Sitka spruce needles may affect the health of saplings

  1. Comparative study to evaluate the efficacy of radiofrequency ablation versus trichloroacetic acid in the treatment of xanthelasma palpebrarum

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Shanmugam Reddy

    2016-01-01

    Full Text Available Background: Xanthelasma palpebrarum (XP is a metabolic disorder involving the eyelids. Radiofrequency(RF surgery and trichloroacetic acid (TCA applications have been listed among the procedures for XP, but comparative studies are not available. Aim: To compare the efficacy of radiofrequency surgery versus trichloroacetic acid application in the treatment of XP. Settings and Design: 20 consecutive cases of XP attending dermatology, medicine and endocrinology out-patient departments of M.S.Ramaiah teaching hospital were enrolled for the study. It was an open-label clinical trial conducted in our hospital for a duration of 1 year. Materials and Methods: 20 consecutive patients conforming to inclusion criteria were selected for the study. For each patient, lesions were treated with radiofrequency ablation on one side and TCA application on the other side. Results: RF ablation was done for 12 patients over right eye lesions and 8 patients over the left eye lesions. TCA applications were done for 8 patients over right eye lesions and 12 patients over left eye lesions. 70% of lesions treated with RF ablation had a score of improvement of 4 and 70% of lesions treated with TCA application had a score of improvement of 4, at 4 weeks of follow-up. At four weeks of follow-up 40% in RF group and 15% in TCA group had scarring and 45% in RF group and 30% in TCA group had pigmentation. Conclusion: RF ablation as compared to TCA application, required fewer sessions for achieving more than 75% clearance of lesions. However, TCA applications were associated with fewer complications comparatively.

  2. Kinetics for the synthetic bile acid 75-selenohomocholic acid-taurine in humans: comparison with [14C]taurocholate

    International Nuclear Information System (INIS)

    Jazrawi, R.P.; Ferraris, R.; Bridges, C.; Northfield, T.C.

    1988-01-01

    The apparent fractional turnover rate of the gamma-labeled bile acid analogue 75-selenohomocholic acid-taurine (75-SeHCAT) was assessed from decline in radioactivity over the gallbladder area on 4 successive days using a gamma-camera, and was compared in the same subjects with the fractional turnover rate of the corresponding natural bile acid, cholic acid-taurine, labeled with 14C ([14C]CAT) using the classical Lindstedt technique. Very similar results were obtained in 5 healthy individuals (coefficient of variation 4.8%, medians 0.35 and 0.34, respectively). By contrast, the fractional deconjugation rate assessed from zonal scanning of glycine- and taurine-conjugated bile acids on thin-layer chromatography was much less for 75-SeHCAT than for [14C]CAT (0.02 and 0.13, respectively; p less than 0.05). The fractional rate for deconjugation plus dehydroxylation was also determined by zonal scanning, and gave lower values for 75-SeHCAT than for [14C]CAT (0.02 and 0.12, respectively; p less than 0.05). There was a striking similarity between the fractional rate for deconjugation alone and that for deconjugation plus dehydroxylation for both bile acids in individual samples (r = 0.999, p less than 0.001), suggesting that these two processes might occur simultaneously and probably involve the same bacteria. We conclude that our scintiscanning technique provides an accurate, noninvasive method of measuring fractional turnover rate of a bile acid in humans, and that the finding that 75SeHCAT remains conjugated with taurine during enterohepatic recycling means that absorption should be specific for the ileal active transport site, thus rendering it an ideal substance for assessing ileal function

  3. Development of a LC-MS/MS Method for the Simultaneous Detection of Tricarboxylic Acid Cycle Intermediates in a Range of Biological Matrices

    Directory of Open Access Journals (Sweden)

    Omar Al Kadhi

    2017-01-01

    Full Text Available It is now well-established that perturbations in the tricarboxylic acid (TCA cycle play an important role in the metabolic transformation occurring in cancer including that of the prostate. A method for simultaneous qualitative and quantitative analysis of TCA cycle intermediates in body fluids, tissues, and cultured cell lines of human origin was developed using a common C18 reversed-phase column by LC-MS/MS technique. This LC-MS/MS method for profiling TCA cycle intermediates offers significant advantages including simple and fast preparation of a wide range of human biological samples. The analytical method was validated according to the guideline of the Royal Society of Chemistry Analytical Methods Committee. The limits of detection were below 60 nM for most of the TCA intermediates with the exception of lactic and fumaric acids. The calibration curves of all TCA analytes showed linearity with correlation coefficients r2>0.9998. Recoveries were >95% for all TCA analytes. This method was established taking into consideration problems and limitations of existing techniques. We envisage that its application to different biological matrices will facilitate deeper understanding of the metabolic changes in the TCA cycle from in vitro, ex vivo, and in vivo studies.

  4. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Power Effects on High Lift, Stability and Control Characteristics of the TCA Model Tested in the LaRC 14 x 22 Ft Wind Tunnel

    Science.gov (United States)

    Glessner, Paul T.

    1999-01-01

    The TCA-2 wind-tunnel test was the second in a series of planned tests utilizing the 5% Technology Concept Airplane (TCA) model. Each of the tests was planned to utilize the unique capabilities of the NASA Langley 14'x22' and the NASA Ames 12' test facilities, in order to assess specific aspects of the high lift and stability and control characteristics of the TCA configuration. However, shortly after the completion of the TCA-1 test, an early projection of the Technology Configuration (TC) identified the need for several significant changes to the baseline TCA configuration. These changes were necessary in order to meet more stringent noise certification levels, as well as, to provide a means to control dynamic structural modes. The projected changes included a change to the outboard wing (increased aspect ratio and lower sweep) and a reconfiguration of the longitudinal control surfaces to include a medium size canard and a reduced horizontal tail. The impact of these proposed changes did not affect the TCA-2 test, because it was specifically planned to address power effects on the empennage and a smaller horizontal tail was in the plan to be tested. However, the focus of future tests was reevaluated and the emphasis was shifted away from assessment of TCA specific configurations to a more general assessment of configurations that encompass the projected design space for the TC.

  6. Commissioning of CMS Forward Hadron Calorimeters with Upgraded Multi-anode PMTs and uTCA Readout

    CERN Document Server

    Tiras, Emrah; Onel, Yasar

    2016-01-01

    The high flux of charged particles interacting with the CMS Forward Hadron Calorimeter PMT windows introduced a significant background for the trigger and offline data analysis. During Long Shutdown 1, all of the original PMTs were replaced with multi-anode, thin window photomultiplier tubes. At the same time, the back-end electronic readout system was upgraded to uTCA readout. The experience with commissioning and calibration of the Forward Hadron Calorimeter is described as well as the uTCA system. The upgrade was successful and provided quality data for Run 2 data-analysis at 13 TeV.

  7. Waste Not, Want Not: Lactate Oxidation Fuels the TCA Cycle.

    Science.gov (United States)

    Martínez-Reyes, Inmaculada; Chandel, Navdeep S

    2017-12-05

    Previous studies have demonstrated that mitochondrial respiration is essential for tumorigenesis. Hui et al. (2017) and Faubert et al. (2017) demonstrate that lactate, traditionally viewed as a waste product of anaerobic and aerobic glycolysis, is a major carbon source to fuel the mitochondrial TCA cycle in normal tissue and in tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Energy balance in the TCA tokamak plasma with Alfven wave heating

    International Nuclear Information System (INIS)

    Ding Ning; Qu Wenxiao; Huang Li; Long Yongxing; Qiu Xiaoming

    1993-01-01

    The energy balance in TCA tokamak plasma with Alfven wave heating is studied, in which the equivalent electron thermal conductivity is determined by using the profile consistency principle. The results are in good agreement with experiments. It is shown that this method is applicable to various devices and other heating methods

  9. Coordinating bracket torque and incisor inclination : Part 2: Reproducibility and statistical measures of the torque coordination angle (TCA).

    Science.gov (United States)

    Sino, H; Zimmer, B; Schelper, I; Schenk-Kazan, S; Streibelt, F

    2018-03-09

    To determine the reproducibility and statistical measures of the torque coordination angle (TCA). A total of 107 final cephalograms and corresponding casts were included, all reflecting treatment outcomes that met high qualitative standards, one of them being a Peer Assessment Rating (PAR) score of ≤3. Based on these records, the TCA was measured as a parameter to identify differences related to tooth morphology and bracket position between the torque-relevant reference plane at the bracket base and the long axis of a tooth. All measurements were performed on upper and lower central incisors (U1 and L1). Several reproducibility assessments for the TCA measurements yielded good results, including objectivity at 1.26 ± 0.81° (U1) or 1.41 ± 1.18° (L1), examiner reliability at 1.30 ± 0.97° (U1) or 1.25 ± 0.82° (L1), and method reliability at 1.80 ± 1.13° (U1) or 1.53 ± 1.07° (L1). The statistical measures revealed a high degree of interindividual variability. With bracket placement 4.5 mm (U1) or 4.0 mm (L1) above the incisal edge, the differences between the maximum and minimum TCA values were similarly large in both jaws (21.0° for U1 or 20.0° for L1), given mean TCA values of 24.6 ± 3.6° (U1) or 22.9 ± 4.3° (L1). Moving the bracket placement from 3.5 to 5.5 mm (U1) or from 3.0 to 5.0 mm (L1) changed the mean TCA values by 4.5° (U1) or 3.2° (L1). The TCA is a suitable cephalometric parameter to identify differences related to tooth morphology and bracket placement. Given its high interindividual variability, the fixed torque value of a specific bracket system should not be expected to produce the same incisor inclinations across patients.

  10. Comparative Study of the Use of Trichloroacetic Acid and Phenolic Acid in the Treatment of Atrophic-Type Acne Scars.

    Science.gov (United States)

    Dalpizzol, Mariana; Weber, Magda B; Mattiazzi, Anna Paula F; Manzoni, Ana Paula D

    2016-03-01

    Many therapies involving varying degrees of complexity have been used to treat acne scars, but none is considered the gold standard treatment. A comparative evaluation of 88% phenol and 90% trichloroacetic acid (TCA) applied using the chemical reconstruction of skin scars (CROSS) technique. A nonrandomized, single-blinded self-controlled clinical trial was conducted among patients with ice pick-type and boxcar-type atrophic acne scars. Using 88% phenol on the left hemiface and 90% TCA on the right hemiface was adopted as the standard practice of the CROSS technique. The dermatological quality of life index (DLQI) questionnaire, acne scar grading scale Échelle d´Evaluation Clinique des Cicatrices d'Acne (ECCA), and evaluation of improvement were performed pretreatment and post-treatment. Regarding ECCA, significant differences were found in pretreatment and post-treatment (p < .001). Regarding tolerance to pain, it was found that the discomfort felt with 90% TCA was significantly less than that felt with 88% phenol (p = .020). Regarding the quality of life measured with the DLQI, the results showed that the mean score in post-treatment assessment was significantly lower than that in the pretreatment assessment (p < .05). Hypochromia and enlargement scar were only seen after the use of 90% TCA. This study confirmed the efficacy of both TCA and phenol for treating such scars, with less severe complications from the use of phenol.

  11. Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA

    Science.gov (United States)

    Boothe, R. E.

    2003-01-01

    This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

  12. Extraction-less, rapid assay for the direct detection of 2,4,6-trichloroanisole (TCA) in cork samples.

    Science.gov (United States)

    Apostolou, Theofylaktos; Pascual, Nuria; Marco, M-Pilar; Moschos, Anastassios; Petropoulos, Anastassios; Kaltsas, Grigoris; Kintzios, Spyridon

    2014-07-01

    2,4,6-trichloroanisole (TCA), the cork taint molecule, has been the target of several analytical approaches over the few past years. In spite of the development of highly efficient and sensitive tools for its detection, ranging from advanced chromatography to biosensor-based techniques, a practical breakthrough for routine cork screening purposes has not yet been realized, in part due to the requirement of a lengthy extraction of TCA in organic solvents, mostly 12% ethanol and the high detectability required. In the present report, we present a modification of a previously reported biosensor system based on the measurement of the electric response of cultured fibroblast cells membrane-engineered with the pAb78 TCA-specific antibody. Samples were prepared by macerating cork tissue and mixing it directly with the cellular biorecognition elements, without any intervening extraction process. By using this novel approach, we were able to detect TCA in just five minutes at extremely low concentrations (down to 0.2 ppt). The novel biosensor offers a number of practical benefits, including a very considerable reduction in the total assay time by one day, and a full portability, enabling its direct employment for on-site, high throughput screening of cork in the field and production facilities, without requiring any type of supporting infrastructure. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules

    International Nuclear Information System (INIS)

    Crawford, J.M.; Gollan, J.L.

    1988-01-01

    Modulation of bile pigment excretion by bile salts has been attributed to modification of canalicular membrane transport or a physical interaction in bile. Based on the observation that a microtubule-dependent pathway is involved in the hepatocellular transport of bile salts, the authors investigated the possibility that bilirubin glucuronides are associated with bile salts during intracellular transport. Experiments were conducted in intact rats (basal) or after overnight biliary diversion and intravenous reinfusion of taurocholate (depleted/reinfused). All rats were pretreated with intravenous low-dose colchicine or its inactive isomer lumicolchicine. Biliary excretion of radiolabeled bilirubin glucuronides derived from tracer [ 14 C]bilirubin-[ 3 H]bilirubin monoglucuronide (coinjected iv) was unchanged in basal rats but was consistently delayed in depleted/reinfused rats. This was accompanied by a significant shift toward bilirubin diglucuronide formation from both substrates. In basal Gunn rats, with deficient bilirubin glucuronidation, biliary excretion of intravenous [ 14 C]bilirubin monoglucuronide-[ 3 H]bilirubin diglucuronide was unaffected by colchicine but was retarded in depleted/reinfused Gunn rats. Colchicine had no effect on the rate of bilirubin glucuronidation in vitro in rat liver microsomes. They conclude that a portion of the bilirubin glucuronides generated endogenously in hepatocytes or taken up directly from plasma may be cotransported with bile salts to the bile canalicular membrane via a microtubule-dependent mechanism

  14. Parametric study of ohmic discharges in the TCA tokamak

    International Nuclear Information System (INIS)

    De Chambrier, A.; Collins, G.A.; Heym, A.; Hofmann, F.; Hollenstein, Ch.; Joye, B.; Keller, R.; Lietti, A.; Lister, J.B.; Moret, J.-M.; Nowak, S.; O'Rourke, J.; Pochelon, A.; Simm, W.

    1983-01-01

    The study of the energy confinement in a tokamak is an important aspect in the characterisation of its performance. The TCA tokamak has been in operation now for more than two years and the state of the machine and of its diagnostics have permitted such work to be performed. The authors describe the proper method for this type of approach and then present the results concerning the energy confinement of the electrons and ions. (Auth./G.T.H.)

  15. TCA UO2/MOX core analyses

    International Nuclear Information System (INIS)

    Tahara, Yoshihisa; Noda, Hideyuki

    2000-01-01

    In order to examine the adequacy of nuclear data, the TCA UO 2 and MOX core experiments were analyzed with MVP using the libraries based on ENDF/B-VI Mod.3 and JENDL-3.2. The ENDF/B-VI data underpredict k eff values. The replacement of 238 U data with the JENDL-3.2 data and the adjustment of 235 ν-value raise the k eff values by 0.3% for UO 2 cores, but still underpredict k eff values. On the other hand, the nuclear data of JENDL-3.2 for H, O, Al, 238 U and 235 U of ENDF/B-VI whose 235 ν-value in thermal energy region is adjusted to the average value of JENDL-3.2 give a good prediction of k eff . (author)

  16. Experience utilizing a 3.7 MeV tandem cascade accelerator (TCA) for PET radioisotope production

    International Nuclear Information System (INIS)

    Welch, M.J.; Gaehle, G.; Dence, C.S.

    1994-01-01

    A 3.7 MeV TCA was installed at Washington University in the Spring of 1993 for evaluation as a PET isotope production accelerator. The accelerator was installed in a specially designed suite consisting of the accelerator room, a open-quotes hot labclose quotes and a open-quotes cold labclose quotes. The accelerator has been utilized routinely for PET isotope production since it's installation. Although the major radionuclide produced utilizing the TCA is oxygen-15, techniques for the production of fluorine-18 and nitrogen-13 have been developed. The novel techniques used to produce usable quantities of these latter two isotopes will be discussed

  17. Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle

    Directory of Open Access Journals (Sweden)

    Hangjun Ke

    2015-04-01

    Full Text Available New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO lines that delete six of the eight mitochondrial tricarboxylic acid (TCA cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of 13C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development.

  18. Lecithin inhibits fatty acid and bile salt absorption from rat small intestine in vivo.

    Science.gov (United States)

    Saunders, D R; Sillery, J

    1976-12-01

    During digestion of a fatty meal, long chain free fatty acids (FFA) and lecithin are among the lipids solubilized in intestinal contents as mixed micelles with bile salts. We hypothesized that if lecithin were not hydrolyzed, the mixed micelles would be abnormal, and absorption of FFA and bile salts would be depressed. To test this hypothesis, isolated segments of rat small intestine were infused in vivo with micellar solutions of 2 mMolar linoleic acid and 10 mMolar taurocholate to which was added 3 mMolar 1-palmitoyl, 2-oleoyl lecithin (a common lecithin in bile and food), or 1-palmitoyl lysolecithin (the hydrolytic product of lecithin). Absorption of FFA and bile salt was measured under steady state conditions using a single-pass technique. Lecithin depressed the rate of FFA absorption by 40% (p less than 0.025) in jejunal and ileal segments whereas lysolecithin was associated with normal rates of FFA absorption. Lecithin also reduced taurocholate absorption from the ileum by 30% (p less than 0.05). These data support the idea that lecithin may depress FFA and bile salt absorption from the small intestine in pancreatic insufficiency.

  19. Role of vitamin C transporters and biliverdin reductase in the dual pro-oxidant and anti-oxidant effect of biliary compounds on the placental-fetal unit in cholestasis during pregnancy

    International Nuclear Information System (INIS)

    Perez, Maria J.; Castano, Beatriz; Jimenez, Silvia; Serrano, Maria A.; Gonzalez-Buitrago, Jose M.; Marin, Jose J.G.

    2008-01-01

    Maternal cholestasis causes oxidative damage to the placental-fetal unit that may challenge the outcome of pregnancy. This has been associated with the accumulation of biliary compounds able to induce oxidative stress. However, other cholephilic compounds such as ursodeoxycholic acid (UDCA) and bilirubin have direct anti-oxidant properties. In the present study we investigated whether these compounds exert a protective effect on cholestasis-induced oxidative stress in placenta as compared to maternal and fetal livers, and whether this is due in part to the activation of anti-oxidant mechanisms involving vitamin C uptake and biliverdin/bilirubin recycling. In human placenta (JAr) and liver (HepG2) cells, deoxycholic acid (DCA) similar rates of free radical generation. In JAr (not HepG2), the mitochondrial membrane potential and cell viability were impaired by low DCA concentrations; this was partly prevented by bilirubin and UDCA. In HepG2, taurocholic acid (TCA) and UDCA up-regulated biliverdin-IXα reductase (BVRα) and the vitamin C transporter SVCT2 (not SVCT1), whereas bilirubin up-regulated both SVCT1 and SVCT2. In JAr, TCA and UDCA up-regulated BVRα, SVCT1 and SVCT2, whereas bilirubin up-regulated only SVCT2. A differential response to these compounds of nuclear receptor expression (SXR, CAR, FXR and SHP) was found in both cell types. When cholestasis was induced in pregnant rats, BVRα, SVCT1 and SVCT2 expression in maternal and fetal livers was stimulated, and this was further enhanced by UDCA treatment. In placenta, only BVRα was up-regulated. In conclusion, bilirubin accumulation and UDCA administration may directly and indirectly protect the placental-fetal unit from maternal cholestasis-induced oxidative stress

  20. Influence of dopant on dielectric properties of polyaniline weakly doped with dichloro and trichloroacetic acids

    International Nuclear Information System (INIS)

    Fattoum, A; Arous, M; Gmati, F; Dhaoui, W; Mohamed, A Belhadj

    2007-01-01

    We report the results of dielectric measurements over the frequency range10 Hz-1 MHz and the temperature range 150-300 K on polyaniline subjected to doping with dichloroacetic acid (DCA) and trichloroacetic acid (TCA) with various doping levels (6.1%, 8.2%, 13.3% and 4.1%, 6.15%, 13.5%, respectively). Conductivity is increased when the doping level or temperature is increased and samples doped with TCA are more conductive than those doped with DCA. A high frequency relaxation peak is observed in the loss factor curves attributed to the motion of charge carriers in the bulk polymer. A second loss peak appears in the low frequency range when we use the dielectric modulus representation and is attributed to electrode polarization. Both relaxations are well fitted by the Havriliak-Negami function, and the fitting parameters are determined. The characteristic relaxation frequency is described by the Arrhenius law. The activation energy for both relaxations is decreased by increasing the doping level and it is lower in the case of TCA doping acid

  1. The broadly insecticidal Photorhabdus luminescens toxin complex a (Tca): Activity against the Colorado potato beetle, Leptinotarsa decemlineata, and sweet potato whitefly, Bemisia tabaci

    OpenAIRE

    Blackburn, Michael B.; Domek, John M.; Gelman, Dale B.; Hu, Jing S.

    2005-01-01

    Toxin complex a (Tca), a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens, has been found to be orally toxic to both the Colorado potato beetle, Leptinotarsa decemlineata, and the sweet potato whitefly, Bemisia tabaci biotype B. The 48 hour LC50 for Tca against neonate L. decemlineata was found to be 2.7 ppm, and the growth of 2nd instar L. decemlineata exposed to Tca for 72 hours was almost entirely inhibited at concentrat...

  2. IRIS Toxicological Review of Trichloroacetic Acid (Tca) (Final Report)

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Trichloroacetic Acid: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.

  3. Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Veyrat-Durebex, Charlotte; Corcia, Philippe; Piver, Eric; Devos, David; Dangoumau, Audrey; Gouel, Flore; Vourc'h, Patrick; Emond, Patrick; Laumonnier, Frédéric; Nadal-Desbarats, Lydie; Gordon, Paul H; Andres, Christian R; Blasco, Hélène

    2016-12-01

    This study aims to develop a cellular metabolomics model that reproduces the pathophysiological conditions found in amyotrophic lateral sclerosis in order to improve knowledge of disease physiology. We used a co-culture model combining the motor neuron-like cell line NSC-34 and the astrocyte clone C8-D1A, with each over-expressing wild-type or G93C mutant human SOD1, to examine amyotrophic lateral sclerosis (ALS) physiology. We focused on the effects of mutant human SOD1 as well as oxidative stress induced by menadione on intracellular metabolism using a metabolomics approach through gas chromatography coupled with mass spectrometry (GC-MS) analysis. Preliminary non-supervised analysis by Principal Component Analysis (PCA) revealed that cell type, genetic environment, and time of culture influenced the metabolomics profiles. Supervised analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) on data from intracellular metabolomics profiles of SOD1 G93C co-cultures produced metabolites involved in glutamate metabolism and the tricarboxylic acid cycle (TCA) cycle. This study revealed the feasibility of using a metabolomics approach in a cellular model of ALS. We identified potential disruption of the TCA cycle and glutamate metabolism under oxidative stress, which is consistent with prior research in the disease. Analysis of metabolic alterations in an in vitro model is a novel approach to investigation of disease physiology.

  4. In Folio Respiratory Fluxomics Revealed by 13C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    International Nuclear Information System (INIS)

    Tcherkez, G.; Mahe, A.; Gauthier, P.; Hodges, M.; Tcherkez, G.; Mauve, C.; Cornic, G.; Gout, E.; Bligny, R.

    2009-01-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, 13 C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  5. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle.

    Science.gov (United States)

    Ke, Hangjun; Lewis, Ian A; Morrisey, Joanne M; McLean, Kyle J; Ganesan, Suresh M; Painter, Heather J; Mather, Michael W; Jacobs-Lorena, Marcelo; Llinás, Manuel; Vaidya, Akhil B

    2015-04-07

    New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO) lines that delete six of the eight mitochondrial tricarboxylic acid (TCA) cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of (13)C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Multichannel bolometer for radiation measurements on the TCA tokamak

    International Nuclear Information System (INIS)

    Joye, B.; Marmillod, P.; Nowak, S.

    1986-01-01

    A multichannel radiation bolometer has been developed for the Tokamak Chauffage Alfven (TCA) tokamak. It has 16 equally spaced chords that view the plasma through a narrow horizontal slit. Almost an entire vertical plasma cross section can be observed. The bolometer operates on the basis of a semiconducting element which serves as a temperature-dependent resistance. A new electronic circuit has been developed which takes advantage of the semiconductor characteristics of the detector by using feedback techniques. Measurements made with this instrument are discussed

  7. Integrated Analysis of the Transcriptome and Metabolome of Corynebacterium glutamicum during Penicillin-Induced Glutamic Acid Production.

    Science.gov (United States)

    Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi

    2018-05-01

    Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In Folio Respiratory Fluxomics Revealed by {sup 13}C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Tcherkez, G; Mahe, A; Gauthier, P; Hodges, M [Institut de Biotechnologie des Plantes, Plateforme Metabolisme-Metabolome IFR87, Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Tcherkez, G; Mauve, C; Cornic, G [Laboratoire d' Ecophysiologie Vegetale, Ecologie Systematique Evolution (G.C.), Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Gout, E; Bligny, R [Laboratoire de Physiologie Cellulaire Vegetale, Commissariat a l' Energie Atomique-Grenoble, 38054 Grenoble cedex 9 (France)

    2009-07-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, {sup 13}C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  9. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    Science.gov (United States)

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na

  10. In Folio Respiratory Fluxomics Revealed by 13C Isotopic Labeling and H/D Isotope Effects Highlight the Noncyclic Nature of the Tricarboxylic Acid “Cycle” in Illuminated Leaves1[W

    Science.gov (United States)

    Tcherkez, Guillaume; Mahé, Aline; Gauthier, Paul; Mauve, Caroline; Gout, Elizabeth; Bligny, Richard; Cornic, Gabriel; Hodges, Michael

    2009-01-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, 13C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA “cycle” does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. PMID:19675152

  11. Induction of Tca8113 tumor cell apoptosis by icotinib is associated with reactive oxygen species mediated p38-MAPK activation.

    Science.gov (United States)

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-08-01

    Icotinib, a selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has been shown to exhibit anti-tumor activity against several tumor cell lines. However, the exact molecular mechanism of icotinib's anti-tumor effect remains unknown. This study aims to examine the zytotoxic effect of icotinib on Tca8113 cells and its potential molecular mechanism. Icotinib significantly resulted in dose-dependent cell death as determined by MTT assay, accompanied by increased levels of Bax and DNA fragmentation. Icotinib could also induce Reactive Oxygen Species (ROS) generation. Further studies confirmed that scavenging of reactive oxygen species by N-acetyl-L-cysteine (NAC), and pharmacological inhibition of MAPK reversed icotinib-induced apoptosis in Tca8113 cells. Our data provide evidence that icotinib induces apoptosis, possibly via ROS-mediated MAPK pathway in Tca8113 cells.

  12. In Folio Respiratory Fluxomics Revealed by {sup 13}C Isotopic Labeling and H/D Isotope Effects Highlight the Non-cyclic Nature of the Tricarboxylic Acid 'Cycle' in Illuminated Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Tcherkez, G.; Mahe, A.; Gauthier, P.; Hodges, M. [Institut de Biotechnologie des Plantes, Plateforme Metabolisme-Metabolome IFR87, Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Tcherkez, G.; Mauve, C.; Cornic, G. [Laboratoire d' Ecophysiologie Vegetale, Ecologie Systematique Evolution (G.C.), Batiment 630, Universite Paris-Sud 11, 91405 Orsay cedex (France); Gout, E.; Bligny, R. [Laboratoire de Physiologie Cellulaire Vegetale, Commissariat a l' Energie Atomique-Grenoble, 38054 Grenoble cedex 9 (France)

    2009-07-01

    While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.e. the limiting steps involved in such a down-regulation) is not well known. Here, we investigated the in vivo metabolic fluxes of individual reactions of the TCA cycle by developing two isotopic methods, {sup 13}C tracing and fluxomics and the use of H/D isotope effects, with Xanthium strumarium leaves. We provide evidence that the TCA 'cycle' does not work in the forward direction like a proper cycle but, rather, operates in both the reverse and forward directions to produce fumarate and glutamate, respectively. Such a functional division of the cycle plausibly reflects the compromise between two contrasted forces: (1) the feedback inhibition by NADH and ATP on TCA enzymes in the light, and (2) the need to provide pH-buffering organic acids and carbon skeletons for nitrate absorption and assimilation. (authors)

  13. Treatment technologies and mechanisms for three odorants at trace level: IPMP, IBMP, and TCA.

    Science.gov (United States)

    Li, Xin; Lin, Pengfei; Wang, Jun; Liu, Yuanyuan; Li, Yong; Zhang, Xiaojian; Chen, Chao

    2016-01-01

    Odour episodes caused by algal metabolites are gaining more and more attention in recent years. Besides geosmin and 2-methylisoborneol (MIB), 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), and 2,4,6-trichloroanisole (TCA) have emerged to be important off-flavour sources. Their low odour threshold concentrations (several ng ·L(-1)), which are even lower than those of MIB and geosmin, pose challenges for treatment strategies. Hence, a practical and efficient mitigation technology is needed. The possible practical technologies, including powdered activated carbon (PAC) adsorption and oxidation by chlorine and potassium permanganate, were investigated. The results indicated that chlorine and potassium permanganate oxidation of the three odorants were unfeasible while PAC adsorption was effective. As for adsorption, TCA, followed by IBMP and IPMP, was most easily removed by PAC. The Freundlich model could well describe the adsorption isotherm data. The adsorption capacities for IPMP, IBMP, and TCA were described as follows: [Formula: see text], [Formula: see text], and [Formula: see text]. For five earthy/musty odorants including geosmin and MIB, octanol/water partition coefficient, molecular weight, and polarizability all promoted adsorption while aqueous solubility showed a negative influence. The hydrophobic interaction was believed to be the dominant force in the adsorption mechanism while the π-electron interaction enhanced adsorption when a benzene ring was present. This result could be used to predict the adsorption performance of emerging odorants.

  14. Inflammation and ER Stress Regulate Branched-Chain Amino Acid Uptake and Metabolism in Adipocytes

    Science.gov (United States)

    Burrill, Joel S.; Long, Eric K.; Reilly, Brian; Deng, Yingfeng; Armitage, Ian M.; Scherer, Philipp E.

    2015-01-01

    Inflammation plays a critical role in the pathology of obesity-linked insulin resistance and is mechanistically linked to the effects of macrophage-derived cytokines on adipocyte energy metabolism, particularly that of the mitochondrial branched-chain amino acid (BCAA) and tricarboxylic acid (TCA) pathways. To address the role of inflammation on energy metabolism in adipocytes, we used high fat-fed C57BL/6J mice and lean controls and measured the down-regulation of genes linked to BCAA and TCA cycle metabolism selectively in visceral but not in subcutaneous adipose tissue, brown fat, liver, or muscle. Using 3T3-L1 cells, TNFα, and other proinflammatory cytokine treatments reduced the expression of the genes linked to BCAA transport and oxidation. Consistent with this, [14C]-leucine uptake and conversion to triglycerides was markedly attenuated in TNFα-treated adipocytes, whereas the conversion to protein was relatively unaffected. Because inflammatory cytokines lead to the induction of endoplasmic reticulum stress, we evaluated the effects of tunicamycin or thapsigargin treatment of 3T3-L1 cells and measured a similar down-regulation in the BCAA/TCA cycle pathway. Moreover, transgenic mice overexpressing X-box binding protein 1 in adipocytes similarly down-regulated genes of BCAA and TCA metabolism in vivo. These results indicate that inflammation and endoplasmic reticulum stress attenuate lipogenesis in visceral adipose depots by down-regulating the BCAA/TCA metabolism pathway and are consistent with a model whereby the accumulation of serum BCAA in the obese insulin-resistant state is linked to adipose inflammation. PMID:25635940

  15. Influence of trichloroacetic acid peeling on the skin stress response system.

    Science.gov (United States)

    Kimura, Ayako; Kanazawa, Nobuo; Li, Hong-Jin; Yonei, Nozomi; Yamamoto, Yuki; Furukawa, Fukumi

    2011-08-01

    Although trichloroacetic acid (TCA) peeling is widely applied for cosmetic treatment of photodamaged skin, the entire biological mechanisms have yet to be determined. The skin stress response system (SSRS) involves corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) products that are locally-generated in response to locally-provided stressors or pro-inflammatory cytokines. This system would restrict tissue damage and restore local homeostasis. To determine the influence of TCA peeling on the SSRS in vitro and in vivo, expressions of POMC, melanocortin receptor 1 (MC1R), CRH and CRH receptor 1 (CRHR1) mRNA were examined by reverse transcription polymerase chain reaction in Pam212 murine keratinocytes, murine plantar and healthy human abdominal skin specimens after TCA treatment. In addition, their protein expressions as well as those of POMC-derived peptides were examined immunohistochemically. After TCA treatment, transient upregulation of POMC and MC1R mRNA expressions was observed in both murine and human skin, as well as in Pam212. Enhanced POMC protein, recovery of once-impaired MC1R protein, and no enhancement of POMC-derived peptide productions were revealed immunohistochemically in both murine and human epidermis. In contrast, neither expression levels of CRH and CRHR1 mRNA nor epidermal protein were enhanced after TCA application in murine and human skin, except for induction of human CRH mRNA expression. These results suggest that TCA activates the SSRS by inducing POMC and MC1R productions of keratinocytes in the CRH-independent manner, and that the biological effects of POMC itself are responsible for the TCA-induced epidermal SSRS activation. © 2010 Japanese Dermatological Association.

  16. The potential of ion mobility spectrometry (IMS) for detection of 2,4,6-trichloroanisole (2,4,6-TCA) in wine.

    Science.gov (United States)

    Karpas, Zeev; Guamán, Ana V; Calvo, Daniel; Pardo, Antonio; Marco, Santiago

    2012-05-15

    The off-flavor of "tainted wine" is attributed mainly to the presence of 2,4,6-trichloroanisole (2,4,6-TCA) in the wine. In the present study the atmospheric pressure gas-phase ion chemistry, pertaining to ion mobility spectrometry, of 2,4,6-trichloroanisole was investigated. In positive ion mode the dominant species is a monomer ion with a lower intensity dimer species with reduced mobility values (K(0)) of 1.58 and 1.20 cm(2)V(-1) s(-1), respectively. In negative mode the ion with K(0) =1.64 cm(2)V(-1)s(-1) is ascribed to a trichlorophenoxide species while the ions with K(0) =1.48 and 1.13 cm(2)V(-1)s(-1) are attributed to chloride attachment adducts of a TCA monomer and dimer, respectively. The limit of detection of the system for 2,4,6-TCA dissolved in dichloromethane deposited on a filter paper was 2.1 μg and 1.7 ppm in the gas phase. In ethanol and in wine the limit of detection is higher implying that pre-concentration and pre-separation are required before IMS can be used to monitor the level of TCA in wine. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Expression of long non-coding RNA-HOTAIR in oral squamous cell carcinoma Tca8113 cells and its associated biological behavior

    Science.gov (United States)

    Liu, Huawei; Li, Zhiyong; Wang, Chao; Feng, Lin; Huang, Haitao; Liu, Changkui; Li, Fengxia

    2016-01-01

    As a long noncoding RNA, HOX transcript antisense intergenic RNA (HOTAIR) is highly expressed in many types of tumors. However, its expression and function in oral squamous cell carcinoma (OSCC) cells and tissues remains largely unknown. We herein studied the biological functions of HOTAIR in OSCC Tca8113 cells. Real-time quantitative PCR showed that HOTAIR, p21 and p53 mRNA expressions in doxorubicin (DOX)-treated or γ-ray-irradiated Tca8113 cells were up-regulated. Knockdown of p53 expression inhibited DOX-induced HOTAIR up-regulation, suggesting that DNA damage-induced HOTAIR expression may be associated with p53. Transfection and CCK-8 assays showed that compared with the control group, overexpression of HOTAIR promoted the proliferation of Tca8113 cells, while interfering with its expression played an opposite role. Flow cytometry exhibited that HOTAIR overexpression decreased the rate of DOX-induced apoptosis. When HOTAIR expression was inhibited by siRNA, the proportions of cells in G2/M and S phases increased and decreased respectively. Meanwhile, the rate of DOX-induced apoptosis rose. DNA damage-induced HOTAIR expression facilitated the proliferation of Tca8113 cells and decreased their apoptosis. However, whether the up-regulation depends on p53 still needs in-depth studies. PMID:27904675

  18. The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1.

    Science.gov (United States)

    Fu, Yanfen; Li, Yi; Lidstrom, Mary

    2017-07-01

    Methanotrophs are a group of bacteria that use methane as sole carbon and energy source. Type I methanotrophs are gamma-proteobacterial methanotrophs using the ribulose monophosphate cycle (RuMP) cycle for methane assimilation. In order to facilitate metabolic engineering in the industrially promising Type I methanotroph Methylomicrobium buryatense 5GB1, flux analysis of cellular metabolism is needed and 13 C tracer analysis is a foundational tool for such work. This biological system has a single-carbon input and a special network topology that together pose challenges to the current well-established methodology for 13 C tracer analysis using a multi-carbon input such as glucose, and to date, no 13 C tracer analysis of flux in a Type I methanotroph has been reported. In this study, we showed that by monitoring labeling patterns of several key intermediate metabolites in core metabolism, it is possible to quantitate the relative flux ratios for important branch points, such as the malate node. In addition, it is possible to assess the operation of the TCA cycle, which has been thought to be incomplete in Type I methanotrophs. Surprisingly, our analysis provides direct evidence of a complete, oxidative TCA cycle operating in M. buryatense 5GB1 using methane as sole carbon and energy substrate, contributing about 45% of the total flux for de novo malate production. Combined with mutant analysis, this method was able to identify fumA (METBUDRAFT_1453/MBURv2__60244) as the primary fumarase involved in the oxidative TCA cycle, among 2 predicted fumarases, supported by 13 C tracer analysis on both fumA and fumC single knockouts. Interrupting the oxidative TCA cycle leads to a severe growth defect, suggesting that the oxidative TCA cycle functions to not only provide precursors for de novo biomass synthesis, but also to provide reducing power to the system. This information provides new opportunities for metabolic engineering of M. buryatense for the production of

  19. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    production. In addition, T23-treatment strongly increased the molecular carbon labeling of the TCA cycle intermediates citrate, succinate, fumarate and malate, and significantly increased the incorporation of (13)C-labelling into the amino acids glutamate, glutamine and aspartate. These results clearly......Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA...

  20. TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans.

    Science.gov (United States)

    Capitanio, Daniele; Fania, Chiara; Torretta, Enrica; Viganò, Agnese; Moriggi, Manuela; Bravatà, Valentina; Caretti, Anna; Levett, Denny Z H; Grocott, Michael P W; Samaja, Michele; Cerretelli, Paolo; Gelfi, Cecilia

    2017-08-29

    In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.

  1. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Sunny, Nishanth E; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J; Nautiyal, Manisha; Mathew, Justin T; Williams, Caroline M; Cusi, Kenneth

    2015-08-15

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.

  2. Dansyl-labeled cholic acid as a tool to build speciation diagrams for the aggregation of bile acids.

    Science.gov (United States)

    Gomez-Mendoza, Miguel; Marin, M Luisa; Miranda, Miguel A

    2012-12-27

    Bile acids (BAs) are a family of natural steroids biosynthesized from cholesterol in the liver that tend to form aggregates in solution. A fluorescent derivative of cholic acid, namely 3α-Dns-ChA, was employed as a reporter to establish the speciation diagrams of the most abundant BAs that can be found mainly in three microenvironments, solution, and primary and secondary aggregates. The developed methodology is based on the analysis of the combined steady-state and time-resolved experiments performed on 3α-Dns-ChA whose emission behavior was found to be strongly medium dependent. In particular, speciation diagrams of sodium glycocholate (NaGCh), sodium taurocholate (NaTCh), sodium chenodeoxycholate (NaCDCh), sodium glycochenodeoxycholate (NaGCDCh), sodium deoxycholate (NaDCh), and sodium ursodeoxycholate (NaUDCh) were successfully built up.

  3. Successful treatment of hypertrophic lichen planus with betamethasone under occlusion and TCA-peelings.

    Science.gov (United States)

    Theodosiou, Grigorios; Papageorgiou, Marina; Vakirlis, Efstratios; Mandekou-Lefaki, Ioanna

    2016-09-01

    Hypertrophic lichen planus (HLP) is a variant of lichen planus characterized by marked epidermal hyperplasia and severe pruritus. We present a case of a female patient with HLP and concomitant primary biliary cirrhosis, which responded to topical therapy with betamethasone under occlusion and TCA-peelings. © 2016 Wiley Periodicals, Inc.

  4. Investigation on the pancreatic and stomach secretion in pigs by means of continuous infusion of 14C-amino acids

    International Nuclear Information System (INIS)

    Simon, O.; Bergner, H.; Muenchmeyer, R.; Zebrowska, T.

    1983-01-01

    2 pigs received a barley-soya bean meal diet and another 2 a casein-wheat starch diet. The specific radioactivity (SR = dpm/μmol) of leucine and phenylalanine in the TCA soluble fraction of plasma and in the TCA soluble and TCA precipitable fractions of pancreatic juice and of digesta leaving the stomach was determined during 6 hours of intravenous infusion of 14 C-leucine and 14 C-phenylalanine. At the end of the infusion the SR of both amino acids in both fractions of several tissues was measured and used for calculations of the rate of tissue protein synthesis. The results are that mainly amino acids derived from the extracellular space were used for synthesis that the process of synthesis, concentration and secretion of secretory proteins requires in pigs 120 to 180 minutes, and that TCA soluble amino acids in pancreatic juice are not free amino acids per se, but originate from processing of presecretory proteins. In the duodenal digesta labelled proteins appeared 3 to 4 hours after the beginning of the infusion. Both, secretion of proteins by the pancreas and by the stomach seemed to be more stimulated after feeding the barley-soya diet than the casein-starch diet. Of all tissues, the SR of amino acids in proteins was highest in the pancreas. However, proteins secreted by the pancreas were 3 to 4 times higher labelled than those retained in the tissue. The range of the fractional rate of protein synthesis was calculated for the sections of the gastrointestinal tract, the liver and skeletal muscles and discussed with other findings. (author)

  5. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  6. Topology of modified helical gears and Tooth Contact Analysis (TCA) program

    Science.gov (United States)

    Litvin, Faydor L.; Zhang, Jiao

    1989-01-01

    The contents of this report covers: (1) development of optimal geometries for crowned helical gears; (2) a method for their generation; (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact of the crowned helical gears; and (4) modelling and simulation of gear shaft deflection. The developed method for synthesis was used to determine the optimal geometry for a crowned helical pinion surface and was directed to localize the bearing contact and guarantee favorable shape and a low level of transmission errors. Two new methods for generation of the crowned helical pinion surface are proposed. One is based on the application of a tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The other is based on a crowning pinion tooth surface with predesigned transmission errors. The pinion tooth surface can be generated by a computer-controlled automatic grinding machine. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined. The gear shaft deformation was modelled and investigated. It was found that the deflection of gear shafts has the same effect as gear misalignment.

  7. Simultaneous determination of nine kinds of dominating bile acids in various snake bile by ultrahigh-performance liquid chromatography with triple quadrupole linear iontrap mass spectrometry.

    Science.gov (United States)

    Zhang, Jie; Fan, Yeqin; Gong, Yajun; Chen, Xiaoyong; Wan, Luosheng; Zhou, Chenggao; Zhou, Jiewen; Ma, Shuangcheng; Wei, Feng; Chen, Jiachun; Nie, Jing

    2017-11-15

    Snake bile is one of the most expensive traditional Chinese medicines (TCMs). However, due to the complicated constitutes of snake bile and the poor ultraviolet absorbance of some trace bile acids (BAs), effective analysis methods for snake bile acids were still unavailable, making it difficult to solve adulteration problems. In present study, ultrahigh-performance liquid chromatography with triple quadrupole linear ion trap mass spectrometry (UHPLC-QqQ-MS/MS) was applied to conduct a quantitative analysis on snake BAs. The mass spectrometer was monitored in the negative ion mode, and multiple-reaction monitoring (MRM) program was used to determine the contents of BAs in snake bile. In all, 61 snake bile from 17 commonly used species of three families (Elapidae, Colubridae and Viperidae), along with five batches of commercial snake bile from four companies, were collected and detected. Nine components, Tauro-3α,12α-dihydroxy-7-oxo-5β-cholenoic acid (T1), Tauro-3α,7α,12α,23R-tetrahydroxy-5β-cholenoic acid (T2), taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic acid (TDCA), cholic acid (CA), Tauro-3α,7α-dihydroxy-12-oxo-5β-cholenoic acid (T3), and Tauro-3α,7α,9α,16α-tetrahydroxy-5β-cholenoic acid (T4) were simultaneously and rapidly determined for the first time. In these BAs, T1 and T2, self-prepared with purity above 90%, were first reported with their quantitative determination, and the latter two (T3 and T4) were tentatively determined by quantitative analysis multi-components by single marker (QAMS) method for roughly estimating the components without reference. The developed method was validated with acceptable linearity (r 2 ≥0.995), precision (RSD<6.5%) and recovery (RSD<7.5%). It turned out that the contents of BAs among different species were also significantly different; T1 was one of the principle bile acids in some common snake bile, and also was the characteristic one in Viperidae

  8. Investigation on the pancreatic and stomach secretion in pigs by means of continuous infusion of /sup 14/C-amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Simon, O; Bergner, H; Muenchmeyer, R [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin; Zebrowska, T [Polska Akademia Nauk, Warsaw

    1983-01-01

    2 pigs received a barley-soya bean meal diet and another 2 a casein-wheat starch diet. The specific radioactivity (SR = dpm/..mu..mol) of leucine and phenylalanine in the TCA soluble fraction of plasma and in the TCA soluble and TCA precipitable fractions of pancreatic juice and of digesta leaving the stomach was determined during 6 hours of intravenous infusion of /sup 14/C-leucine and /sup 14/C-phenylalanine. At the end of the infusion the SR of both amino acids in both fractions of several tissues was measured and used for calculations of the rate of tissue protein synthesis. The results are that mainly amino acids derived from the extracellular space were used for synthesis that the process of synthesis, concentration and secretion of secretory proteins requires in pigs 120 to 180 minutes, and that TCA soluble amino acids in pancreatic juice are not free amino acids per se, but originate from processing of presecretory proteins. In the duodenal digesta labelled proteins appeared 3 to 4 hours after the beginning of the infusion. Both, secretion of proteins by the pancreas and by the stomach seemed to be more stimulated after feeding the barley-soya diet than the casein-starch diet. Of all tissues, the SR of amino acids in proteins was highest in the pancreas. However, proteins secreted by the pancreas were 3 to 4 times higher labelled than those retained in the tissue. The range of the fractional rate of protein synthesis was calculated for the sections of the gastrointestinal tract, the liver and skeletal muscles and discussed with other findings.

  9. Exposure of clinical MRSA heterogeneous strains to β-lactams redirects metabolism to optimize energy production through the TCA cycle.

    Science.gov (United States)

    Keaton, Mignon A; Rosato, Roberto R; Plata, Konrad B; Singh, Christopher R; Rosato, Adriana E

    2013-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as one of the most important pathogens both in health care and community-onset infections. The prerequisite for methicillin resistance is mecA, which encodes a β-lactam-insensitive penicillin binding protein PBP2a. A characteristic of MRSA strains from hospital and community associated infections is their heterogeneous expression of resistance to β-lactam (HeR) in which only a small portion (≤ 0.1%) of the population expresses resistance to oxacillin (OXA) ≥ 10 µg/ml, while in other isolates, most of the population expresses resistance to a high level (homotypic resistance, HoR). The mechanism associated with heterogeneous expression requires both increase expression of mecA and a mutational event that involved the triggering of a β-lactam-mediated SOS response and related lexA and recA genes. In the present study we investigated the cellular physiology of HeR-MRSA strains during the process of β-lactam-mediated HeR/HoR selection at sub-inhibitory concentrations by using a combinatorial approach of microarray analyses and global biochemical profiling employing gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) to investigate changes in metabolic pathways and the metabolome associated with β-lactam-mediated HeR/HoR selection in clinically relevant heterogeneous MRSA. We found unique features present in the oxacillin-selected SA13011-HoR derivative when compared to the corresponding SA13011-HeR parental strain that included significant increases in tricarboxyl citric acid (TCA) cycle intermediates and a concomitant decrease in fermentative pathways. Inactivation of the TCA cycle enzyme cis-aconitase gene in the SA13011-HeR strain abolished β-lactam-mediated HeR/HoR selection demonstrating the significance of altered TCA cycle activity during the HeR/HoR selection. These results provide evidence of both the metabolic cost and the adaptation that He

  10. Exposure of clinical MRSA heterogeneous strains to β-lactams redirects metabolism to optimize energy production through the TCA cycle.

    Directory of Open Access Journals (Sweden)

    Mignon A Keaton

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA has emerged as one of the most important pathogens both in health care and community-onset infections. The prerequisite for methicillin resistance is mecA, which encodes a β-lactam-insensitive penicillin binding protein PBP2a. A characteristic of MRSA strains from hospital and community associated infections is their heterogeneous expression of resistance to β-lactam (HeR in which only a small portion (≤ 0.1% of the population expresses resistance to oxacillin (OXA ≥ 10 µg/ml, while in other isolates, most of the population expresses resistance to a high level (homotypic resistance, HoR. The mechanism associated with heterogeneous expression requires both increase expression of mecA and a mutational event that involved the triggering of a β-lactam-mediated SOS response and related lexA and recA genes. In the present study we investigated the cellular physiology of HeR-MRSA strains during the process of β-lactam-mediated HeR/HoR selection at sub-inhibitory concentrations by using a combinatorial approach of microarray analyses and global biochemical profiling employing gas chromatography/mass spectrometry (GC/MS and liquid chromatography/mass spectrometry (LC/MS to investigate changes in metabolic pathways and the metabolome associated with β-lactam-mediated HeR/HoR selection in clinically relevant heterogeneous MRSA. We found unique features present in the oxacillin-selected SA13011-HoR derivative when compared to the corresponding SA13011-HeR parental strain that included significant increases in tricarboxyl citric acid (TCA cycle intermediates and a concomitant decrease in fermentative pathways. Inactivation of the TCA cycle enzyme cis-aconitase gene in the SA13011-HeR strain abolished β-lactam-mediated HeR/HoR selection demonstrating the significance of altered TCA cycle activity during the HeR/HoR selection. These results provide evidence of both the metabolic cost and the

  11. Criticality Analysis Of TCA Critical Lattices With MNCP-4C Monte Carlo Calculation

    International Nuclear Information System (INIS)

    Zuhair

    2002-01-01

    The use of uranium-plutonium mixed oxide (MOX) fuel in electric generation light water reactor (PWR, BWR) is being planned in Japan. Therefore, the accuracy evaluations of neutronic analysis code for MOX cores have been employed by many scientists and reactor physicists. Benchmark evaluations for TCA was done using various calculation methods. The Monte Carlo become the most reliable method to predict criticality of various reactor types. In this analysis, the MCNP-4C code was chosen because various superiorities the code has. All in all, the MCNP-4C calculation for TCA core with 38 MOX critical lattice configurations gave the results with high accuracy. The JENDL-3.2 library showed significantly closer results to the ENDF/B-V. The k eff values calculated with the ENDF/B-VI library gave underestimated results. The ENDF/B-V library gave the best estimation. It can be concluded that MCNP-4C calculation, especially with ENDF/B-V and JENDL-3.2 libraries, for MOX fuel utilized NPP design in reactor core is the best choice

  12. Spur gears: Optimal geometry, methods for generation and Tooth Contact Analysis (TCA) program

    Science.gov (United States)

    Litvin, Faydor L.; Zhang, Jiao

    1988-01-01

    The contents of this report include the following: (1) development of optimal geometry for crowned spur gears; (2) methods for their generation; and (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact on the crowned spur gears. The method developed for synthesis is used for the determination of the optimal geometry for crowned pinion surface and is directed to reduce the sensitivity of the gears to misalignment, localize the bearing contact, and guarantee the favorable shape and low level of the transmission errors. A new method for the generation of the crowned pinion surface has been proposed. This method is based on application of the tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The crowned pinion surface can also be generated by a generating plane whose motion is provided by an automatic grinding machine controlled by a computer. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined.

  13. Metabolism of U14C palmitic and 1-14C caproic acids by lettuce seeds during early germination

    International Nuclear Information System (INIS)

    Salon, C.; Raymond, P.; Pradet, A.

    1986-01-01

    Germinating lettuce embryos (before radicule emergence) were fed with either U 14 C palmitic acid or 1 14 C caproic acid until a metabolic steady state was reached. The bulk of labelled caproate was evolved as respiratory CO 2 (52%) and incorporated into organic and amino acids (38%) and only a small part incorporated into lipids whereas most of labelled palmitic acid was found into lipids (92%) and only 8% evolved as CO 2 and incorporated into organic and amino acids. The label distribution at steady state in intermediates linked to the T.C.A. cycle was interpreted using a metabolic model. They found that the two fatty acids were degraded by β-oxidation and incorporated into the T.C.A. cycle as acetylCoA suggesting that β-oxidation is located in the mitochondria. The results also indicate that lipids contribute for at least 90% to the carbon supply to respiration

  14. Interaction of conjugated bile acids and detergents with a radiosorbent assay of vitamin B-12

    International Nuclear Information System (INIS)

    Andersen, K.-J.; Romslo, I.

    1977-01-01

    The effect of conjugated bile acids and detergents on the radiosorbent technique for the determination of vitamin B-12 activity is reported. It is shown that whereas the non-ionic detergent Triton X-100 has no effect on the vitamin B-12-radiosorbent assay, the addition of ionic detergents, e.g. glycocholic acid, taurocholic acid or sodium lauryl sulfate, results in a falsely-elevated vitamin B-12 activity presumably due to the disruption of the binding of vitamin B-12 to the intrinsic factor-Sephadex complex. This effect may be of importance not only to the radiosorbent assaying of vitamin B-12, but to the in vivo intestinal absorption of vitamin B-12 as well

  15. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  16. Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product.

    Science.gov (United States)

    Gottardi, Manuela; Grün, Peter; Bode, Helge B; Hoffmann, Thomas; Schwab, Wilfried; Oreb, Mislav; Boles, Eckhard

    2017-12-01

    Trans-cinnamic acid (tCA) and hydrocinnamyl alcohol (HcinOH) are valuable aromatic compounds with applications in the flavour, fragrance and cosmetic industry. They can be produced with recombinant yeasts from sugars via phenylalanine after expression of a phenylalanine ammonia lyase (PAL) and an aryl carboxylic acid reductase. Here, we show that in Saccharomyces cerevisiae a PAL enzyme from the bacterium Photorhabdus luminescens was superior to a previously used plant PAL enzyme for the production of tCA. Moreover, after expression of a UDP-glucose:cinnamate glucosyltransferase (FaGT2) from Fragaria x ananassa, tCA could be converted to cinnamoyl-D-glucose which is expected to be less toxic to the yeast cells. Production of tCA and HcinOH from glucose could be increased by eliminating feedback-regulated steps of aromatic amino acid biosynthesis and diminishing the decarboxylation step of the competing Ehrlich pathway. Finally, an unknown by-product resulting from further metabolisation of a carboligation product of cinnamaldehyde (cinALD) with activated acetaldehyde, mediated by pyruvate decarboxylases, could be identified as cinnamyl methyl ketone providing a new route for the biosynthesis of precursors, such as (2S,3R) 5-phenylpent-4-ene-2,3-diol, necessary for the chemical synthesis of specific biologically active drugs such as daunomycin. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    Science.gov (United States)

    Lenzi, T.

    2017-01-01

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). The GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. The architecture of the readout system is based on the use of the microTCA standard hosting FPGA-based Advanced Mezzanine Card (AMC) and of the Versatile Link with the GBT chipset to link the on-detector electronics to the micro-TCA boards. For the front-end electronics a new ASIC, called VFAT3, is being developed. On the detector, a Xilinx Virtex-6 FPGA mezzanine board, called the OptoHybrid, has to collect the data from 24 VFAT3s and to transmit the data optically to the off-detector micro-TCA electronics, as well as to transmit the trigger data at 40 MHz to the CMS Cathode Strip Chamber (CSC) trigger. The microTCA electronics provides the interfaces from the detector (and front-end electronics) to the CMS DAQ, TTC (Timing, Trigger and Control) and Trigger systems. In this paper, we will describe the DAQ system of the Triple-GEM project and provide results from the latest test beam campaigns done at CERN.

  18. Histopathologic changes of the eyelid skin following trichloroacetic acid chemical peel

    NARCIS (Netherlands)

    Dailey, R. A.; Gray, J. F.; Rubin, M. G.; Hildebrand, P. L.; Swanson, N. A.; Wobig, J. L.; Wilson, D. J.; Speelman, P.

    1998-01-01

    The use of trichloroacetic acid (TCA) as a periorbital and eyelid peel for skin rejuvenation is gaining significant acceptance among oculoplastic surgeons, dermatologists, and other surgery groups. In spite of the current enthusiasm, there remain potentially serious complications resulting from any

  19. TLNS3D/CDISC Multipoint Design of the TCA Concept

    Science.gov (United States)

    Campbell, Richard L.; Mann, Michael J.

    1999-01-01

    This paper presents the work done to date by the authors on developing an efficient approach to multipoint design and applying it to the design of the HSR TCA configuration. While the title indicates that this exploratory study has been performed using the TLNS3DMB flow solver and the CDISC design method, the CDISC method could have been used with any flow solver, and the multipoint design approach does not require the use of CDISC. The goal of the study was to develop a multipoint design method that could achieve a design in about the same time as 10 analysis runs.

  20. Basic experiments of reactor physics using the critical assembly TCA

    International Nuclear Information System (INIS)

    Obara, Toru; Igashira, Masayuki; Sekimoto, Hiroshi; Nakajima, Ken; Suzaki, Takenori.

    1994-02-01

    This report is based on lectures given to graduate students of Tokyo Institute of Technology. It covers educational experiments conducted with the Tank-Type Critical Assembly (TCA) at Japan Atomic Energy Research Institute in July, 1993. During this period, the following basic experiments on reactor physics were performed: (1) Critical approach experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, (5) Measurement of safety sheet worth by the rod drop method. The principle of experiments, experimental procedure, and analysis of results are described in this report. (author)

  1. An Optimized Trichloroacetic Acid/Acetone Precipitation Method for Two-Dimensional Gel Electrophoresis Analysis of Qinchuan Cattle Longissimus Dorsi Muscle Containing High Proportion of Marbling.

    Science.gov (United States)

    Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen

    2015-01-01

    Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.

  2. Aortic Hemostasis and Resuscitation Advanced REBOA for NCTH and Reversal of HiTCA

    Science.gov (United States)

    2017-06-01

    animal model by effectively achieving ROSC, providing hemodynamic support, and increase pre- hospital transport and long-term survival. Non-compressible...other Internet site(s)  Technologies or techniques American Heart Association Resuscitation Conference Abstract submission June 12, 2017. Draft...swine NCTH and HiTCA in a series of experiments in which each animal underwent a liver laceration and allowed to free bleed for five minutes through

  3. The Krebs Uric Acid Cycle: A Forgotten Krebs Cycle.

    Science.gov (United States)

    Salway, Jack G

    2018-05-25

    Hans Kornberg wrote a paper entitled 'Krebs and his trinity of cycles' commenting that every school biology student knows of the Krebs cycle, but few know that Krebs discovered two other cycles. These are (i) the ornithine cycle (urea cycle), (ii) the citric acid cycle (tricarboxylic acid or TCA cycle), and (iii) the glyoxylate cycle that was described by Krebs and Kornberg. Ironically, Kornberg, codiscoverer of the 'glyoxylate cycle', overlooked a fourth Krebs cycle - (iv) the uric acid cycle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2016-07-01

    Full Text Available Organic acids are synthesized in plants as a result of the incomplete oxidation of photosynthetic products and represent the stored pools of fixed carbon accumulated due to different transient times of conversion of carbon compounds in metabolic pathways. When redox level in the cell increases, e.g., in conditions of active photosynthesis, the tricarboxylic acid (TCA cycle in mitochondria is transformed to a partial cycle supplying citrate for the synthesis of 2-oxoglutarate and glutamate (citrate valve, while malate is accumulated and participates in the redox balance in different cell compartments (via malate valve. This results in malate and citrate frequently being the most accumulated acids in plants. However, the intensity of reactions linked to the conversion of these compounds can cause preferential accumulation of other organic acids, e.g., fumarate or isocitrate, in higher concentrations than malate and citrate. The secondary reactions, associated with the central metabolic pathways, in particularly with the TCA cycle, result in accumulation of other organic acids that are derived from the intermediates of the cycle. They form the additional pools of fixed carbon and stabilize the TCA cycle. Trans-aconitate is formed from citrate or cis-aconitate, accumulation of hydroxycitrate can be linked to metabolism of 2-oxoglutarate, while 4-hydroxy-2-oxoglutarate can be formed from pyruvate and glyoxylate. Glyoxylate, a product of either glycolate oxidase or isocitrate lyase, can be converted to oxalate. Malonate is accumulated at high concentrations in legume plants. Organic acids play a role in plants in providing redox equilibrium, supporting ionic gradients on membranes, and acidification of the extracellular medium.

  5. Trichloroacetic Acid Spray for the Treatment of Foot Ulcers of Foot and Mouth Disease in Cattle

    Directory of Open Access Journals (Sweden)

    Imad I. Aldabagh, Oday S. Al-Obaddy and Hafidh I. Al-Sadi*

    2012-01-01

    Full Text Available An attempt was made to evaluate the therapeutic effect of trichloroacetic acid (TCA for ulcers of the hooves of 120 cattle affected with foot and mouth disease (FMD. Each hoof was cleaned and washed with water before using the TCA spray (2% once daily. Biopsies were taken from the soft tissue lesions before and after10 days of treatment. These tissue specimens were processed routinely for histopathological examination. A marked improvement was seen in the pain inflicted by palpation of the affected hoof. Microscopically, coagulative necrosis of the soft tissue of the hoof was seen. An advanced stage of healing of the hoof ulcers was observed on 10th day post–treatment. It was concluded that 2% solution of TCA was an effective treatment of ulcers of the hooves of cattle affected with FMD.

  6. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli.

    Science.gov (United States)

    Deng, Yu; Ma, Ning; Zhu, Kangjia; Mao, Yin; Wei, Xuetuan; Zhao, Yunying

    2018-03-01

    The glyoxylate shunt is a branch of the tricarboxylic acid (TCA) cycle which directly determines the synthesis of glycolate, and the balance between the glyoxylate shunt and TCA cycle is very important for the growth of Escherichia coli. In order to accumulate glycolate at high yield and titer, strategies for over-expressing glycolate pathway enzymes including isocitrate lyase (AceA), isocitrate dehydrogenase kinase/phosphatase (AceK) and glyoxylate reductase (YcdW) were analyzed. The genes encoding these three enzymes were transcribed under the control of promoter pTrc on pTrc99A, to form pJNU-3, which was harbored by strain Mgly1, resulting in strain Mgly13. Strain Mgly13 produced glycolate with 0.385 g/g-glucose yield (45.2% of the theoretical yield). Citrate synthase (GltA) converted excess acetyl-CoA and oxaloacetate to citrate and was over-expressed by pJNU-4 (pCDFDuet-1 backbone). Thus, the resulting strain Mgly134 produced glycolate with a 0.504 g/g-glucose yield (59.3% of the theoretical yield). We then eliminated the pathways involved in the degradation of glycolate, resulting in strain Mgly434, which produced glycolate with 92.9% of the theoretical yield. Following optimization of fermentation, the maximum glycolate titer from strain Mgly434 was 65.5 g/L. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis.

    Science.gov (United States)

    Hu, D; Luo, W; Fan, L F; Liu, F L; Gu, J; Deng, H M; Zhang, C; Huang, L H; Feng, Q L

    2016-04-01

    Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis. © 2015 The Royal Entomological Society.

  8. The cerebral metabolism of amino acids and related metabolites as studied by 13C and 14C labelling

    International Nuclear Information System (INIS)

    Hassel, B.

    1995-11-01

    The present investigations show the feasibility of analyzing the cerebral metabolism of amino acids and related metabolites by 13 C-and 14 C-labelling using labelled acetate and glucose as markers for glial and neuronal metabolism, respectively. Using [ 13 C[acetate, it was shown that glial cells export ∼60% of their TCA cycle intermediates, mostly as glutamine, and that this glutamine is used by neurons partly as an energy reserve, and partly it is converted directly to glutamate and GABA. Using [ 13 C[glucose, the glial process or pyruvate carboxylation was shown to compensate fully for the loss of glutamine. The mechanism of action of two neurotoxins, fluorocitrate and 3-nitropropionate was elucidated. The latter toxin was shown to inhibit the TCA cycle of GABAergic neurons selectively. Formation of pyruvate and lactate from glial TCA cycle intermediates was demonstrated in vivo. This pathway may be important for glial inactivation of transmitter glutamate and GABA. The results illustrate glianeuronal interactions, and they suggest the applicability of 13 CNMR spectroscopy to the detailed study of the cerebral metabolism of amino acids in the intact, unanesthetized human brain. 174 refs

  9. Effect of tricarboxylic acid cycle regulator on carbon retention and organic component transformation during food waste composting.

    Science.gov (United States)

    Lu, Qian; Zhao, Yue; Gao, Xintong; Wu, Junqiu; Zhou, Haixuan; Tang, Pengfei; Wei, Qingbin; Wei, Zimin

    2018-05-01

    Composting is an environment friendly method to recycling organic waste. However, with the increasing concern about greenhouse gases generated in global atmosphere, it is significant to reduce the emission of carbon dioxide (CO 2 ). This study analyzes tricarboxylic acid (TCA) cycle regulators on the effect of reducing CO 2 emission, and the relationship among organic component (OC) degradation and transformation and microorganism during composting. The results showed that adding adenosine tri-phosphate (ATP) and nicotinamide adenine dinucleotide (NADH) could enhance the transformation of OC and increase the diversity of microorganism community. Malonic acid (MA) as a competitive inhibitor could decrease the emission of CO 2 by inhibiting the TCA cycle. A structural equation model was established to explore effects of different OC and microorganism on humic acid (HA) concentration during composting. Furthermore, added MA provided an environmental benefit in reducing the greenhouse gas emission for manufacture sustainable products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The effect of Walterinnesia aegyptia venom proteins on TCA cycle activity and mitochondrial NAD(+)-redox state in cultured human fibroblasts.

    Science.gov (United States)

    Ghneim, Hazem K; Al-Sheikh, Yazeed A; Aboul-Soud, Mourad A M

    2015-01-01

    Fibroblast cultures were used to study the effects of crude Walterinnesia aegyptia venom and its F1-F7 protein fractions on TCA cycle enzyme activities and mitochondrial NAD-redox state. Confluent cells were incubated with 10 μg of venom proteins for 4 hours at 37°C. The activities of all studied TCA enzymes and the non-TCA mitochondrial NADP(+)-dependent isocitrate dehydrogenase underwent significant reductions of similar magnitude (50-60% of control activity) upon incubation of cells with the crude venom and fractions F4, F5, and F7 and 60-70% for fractions F3 and F6. In addition, the crude and fractions F3-F7 venom proteins caused a drop in mitochondrial NAD(+) and NADP(+) levels equivalent to around 25% of control values. Whereas the crude and fractions F4, F5, and F7 venom proteins caused similar magnitude drops in NADH and NADPH (around 55% of control levels), fractions F3 and F6 caused a more drastic drop (60-70% of control levels) of both reduced coenzymes. Results indicate that the effects of venom proteins could be directed at the mitochondrial level and/or the rates of NAD(+) and NADP(+) biosynthesis.

  11. Comparison of commercially available radioimmunoassays for the determination of bile acids in serum

    Energy Technology Data Exchange (ETDEWEB)

    Wildgrube, H.J.; Schiller, W.; Winkler, M.; Weber, J.; Campana, H.; Mauritz, G.

    1982-05-01

    Three commercially available radioimmunoassays for the determination of bile acids in serum were evaluated with respect to specificity and precision. The SLCG-radioimmunoassay (Abbott) measures only sulphated glycolithocholic acid, the CG-radioimmunoassay (Abbott) measures chiefly cholic acid conjugates, and the CBA-radioimmunoassay (Becton-Dickinson) measures all conjugated bile acids, with an over-response to taurine metabolites. With respect to cross reactions, the performances of the CG-and the CBA-radioimmunoassays differed significantly from those stated by the manufacturers, the former showing a 32% response to taurocholic acid, the latter responding only 118% to taurochenodeoxycholic acid. At physiological concentrations of albumin + globulin, the recovery of defined cholanic acids was 85-101%. Good reproducibility was shown by the CG-radioimmunoassay in the range 0.5-10.9 ..mu..mol/l, by the CBA-radioimmunoassay in the range 1.0-25.0 ..mu..mol/l, and by the SLCG-radioimmunoassay in the range 0.5-3.0 ..mu..mol/l. There were no important differences in the inter- and intra-assay precision of the three methods.

  12. Nuclear medical control of the efficiency of transluminal coronary angioplasty (TCA)

    International Nuclear Information System (INIS)

    Klepzig, H. Jr.; Scherer, D.; Kober, G.; Maul, F.D.; Kanemoto, N.; Standke, R.; Hoer, G.; Kaltenbach, M.; Frankfurt Univ.

    1982-01-01

    To assess the results of transluminal coronary angioplasty 48 patients with coronary heart disease were investigated at rest and during exercise with the ECG (46 patients), thallium-201 myocardial scintigraphy (26 patients), and equilibrium radionuclide ventriculography (38 patients). Exercise stress test was quantified by means of an ischemia score, myocardial scintigraphy by an vitality index and by corresponding redistribution factors, and radionuclide ventriculography by ejection fraction and maximum systolic volume change as a fraction of enddiastolic volume. This, the results show, that in selected cases, TCA can achieve improved left ventricular function and perfusion comparable to that of aortocoronary bypass surgery. (orig./MG) [de

  13. Control, acquisition and data retrieval for the TCA Tokamak

    International Nuclear Information System (INIS)

    Lister, J.B.; Simik, A.

    1981-01-01

    A Modular Control and Acquisition System based on the extensive use of distributed processing power using microprocessors has been designed and implemented in Lausanne for use on the TCA Tokamak experiment. The control system is entirely software-driven. Standardization of the main components has allowed the rapid realisation of a variety of functions for both control and data acquisition. Although there has been a considerable initial investment of design effort, we are now in a position to gain from the simplicity inherent in the modularity of both hardware and software, allowing the rapid realisation of new units tailored to the exact requirements of the physicist or engineer. The communication between these units and the PDP 11/60 analysis computer is via the RS232 terminal interface. This solution has demonstrated considerable advantages during its implementation. (author)

  14. The production and degradation of trichloroacetic acid in soil: Results from in situ soil column experiments

    Czech Academy of Sciences Publication Activity Database

    Heal, M. R.; Dickey, C. A.; Heal, K.V.; Stidson, R.T.; Matucha, Miroslav; Cape, J. N.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 401-407 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z50380511 Keywords : Trichloroacetic acid * TCA * Soil lysimeter Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 3.155, year: 2010

  15. Comparison of CFD Predictions of the TCA Baseline

    Science.gov (United States)

    Cappuccio, Gelsomina

    1999-01-01

    The computational fluid dynamics (CFD) comparisons being presented are compared to each other and to wind tunnel (WT) data on the baseline TCA. Some of the CFD computations were done prior to the tests and others later. Only force data (CL vs CD) from CFD will be presented as part of this report. The WT data presented comes from the testing of the baseline TCA in the Langley Unitary Plan Wind Tunnel (UPWT), Test Section #2. There are 2 sets of wind tunnel data being presented: one from test 1671 of model 2a (flapped wing) and the other from test 1679 of model 2b (solid wing). Most of the plots show only one run from each of the WT tests per configuration. But many repeat runs were taken during the tests. The WT repeat runs showed an uncertainty in the drag of +/- 0.5 count. There were times when the uncertainty in drag was better, +/- 0.25 count. Test 1671 data was of forces and pressures measured from model 2a. The wing had cutouts for installing various leading and trailing edge flaps at lower Mach numbers. The internal duct of the nacelles are not designed and fabricated as defined in the outer mold lines (OML) iges file. The internal duct was fabricated such that a linear transition occurs from the inlet to exhaust. Whereas, the iges definition has a constant area internal duct that quickly transitions from the inlet to exhaust cross sectional shape. The nacelle internal duct was fabricated, the way described, to save time and money. The variation in the cross sectional area is less than 1% from the iges definition. The nacelles were also installed with and without fairings. Fairings are defined as the build up of the nacelles on the upper wing surface so that the nacelles poke through the upper surface as defined in the OML iges file. Test 1679 data was of forces measured from model 2a and 2b. The wing for model 2b was a solid wing. The nacelles were built the same way as for model 2a, except for the nacelle base pressure installation. The nacelles were only

  16. The cerebral metabolism of amino acids and related metabolites as studied by {sup 13}C and {sup 14}C labelling

    Energy Technology Data Exchange (ETDEWEB)

    Hassel, B

    1995-11-01

    The present investigations show the feasibility of analyzing the cerebral metabolism of amino acids and related metabolites by {sup 13}C-and {sup 14}C-labelling using labelled acetate and glucose as markers for glial and neuronal metabolism, respectively. Using [{sup 13}C]acetate, it was shown that glial cells export {approx}60% of their TCA cycle intermediates, mostly as glutamine, and that this glutamine is used by neurons partly as an energy reserve, and partly it is converted directly to glutamate and GABA. Using [{sup 13}C]glucose, the glial process or pyruvate carboxylation was shown to compensate fully for the loss of glutamine. The mechanism of action of two neurotoxins, fluorocitrate and 3-nitropropionate was elucidated. The latter toxin was shown to inhibit the TCA cycle of GABAergic neurons selectively. Formation of pyruvate and lactate from glial TCA cycle intermediates was demonstrated in vivo. This pathway may be important for glial inactivation of transmitter glutamate and GABA. The results illustrate glianeuronal interactions, and they suggest the applicability of {sup 13}CNMR spectroscopy to the detailed study of the cerebral metabolism of amino acids in the intact, unanesthetized human brain. 174 refs.

  17. Efectos de la publicidad de productos de alimentación en pacientes ingresadas con TCA

    OpenAIRE

    Añaños, Elena

    2016-01-01

    Se estudian los efectos de la publicidad de alimentación, especialmente la relacionada con la estética corporal, en las actitudes y los comportamientos incitados en pacientes ingresadas por TCA. Se analizan las diferencias de los efectos de la publicidad en función de la edad (adolescentes, jóvenes y adultas) y la influencia de la variable enfermedad (anorexia o bulimia).

  18. Status and future program of reactor physics experiments in JAERI Critical facilities, FCA and TCA

    International Nuclear Information System (INIS)

    Okajima, Shigeaki; Osugi, Toshitaka; Nakajima, Ken; Suzaki, Takenori; Miyoshi, Yoshinori

    1999-01-01

    The critical facilities in JAERI, FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly), have been used to provide integral data for evaluation of nuclear data as well as for development of various types of reactor since they went critical in 1960's. In this paper a review is presented on the experimental programs in both facilities. And the experimental programs in next 5 years are also shown. (author)

  19. Unstructured Grid Euler Method Assessment for Aerodynamics Performance Prediction of the Complete TCA Configuration at Supersonic Cruise Speed

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a proposed high speed civil transport configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at Mach 2.4 for a range of angles-of-attack and sideslip. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex shock wave structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics are shown to correlate very well with the measured data across the examined range of angles-of-attack and sideslip. The results from the present effort have been documented into a NASA Controlled-Distribution report which is being presently reviewed for publication.

  20. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Eun-Gyeong; Yoon, Sang-Hwal; Das, Amitabha; Lee, Sook-Hee; Li, Cui; Kim, Jae-Yean; Choi, Myung-Suk; Oh, Deok-Kun; Kim, Seon-Won

    2009-01-01

    The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5alpha (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5alpha (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli.

  1. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli

    OpenAIRE

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-01-01

    Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental...

  2. Branched-Chain Amino Acid Levels Are Related with Surrogates of Disturbed Lipid Metabolism among Older Men

    OpenAIRE

    Urho M Kujala; Markku Peltonen; Merja K. Laine; Merja K. Laine; Jaakko Kaprio; Jaakko Kaprio; Jaakko Kaprio; Olli. J. Heinonen; Jouko Sundvall; Johan G. Eriksson; Johan G. Eriksson; Johan G. Eriksson; Antti Jula; Seppo Sarna; Heikki Kainulainen

    2016-01-01

    Aims/hypothesis Existing studies suggest that decreased branched-chain amino acid (BCAA) catabolism and thus elevated levels in blood are associated with metabolic disturbances. Based on such information we have developed a hypothesis how BCAA degradation mechanistically connects to tricarboxylic acid (TCA) cycle, intramyocellular lipid storage and oxidation thus allowing more efficient mitochondrial energy production from lipids as well as providing better metabolic health. We analyzed wheth...

  3. Investigation of the energy transport mechanism in the TCA tokamak by studying the plasma dynamical response

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Duval, B.P.; Joye, B.; Lister, J.B.; Moret, J.M.

    1989-01-01

    The energy transport mechanisms that govern the electron temperature behaviour of a tokamak remain very badly understood and up to now no proper model has been proposed that can explain experimental observations such as profile consistency or the influence of the density profile. One approach to this problem, extensively used on TCA, is to study the dynamical response of the plasma due to externally imposed modifications of parameters which have an influence on the plasma energy content. The temporal evolution of the electron temperature will closely depend on the type and the characteristics of the implied mechanisms. Thus a detailed measurement of the dynamical response would reveal experimentally the dominant properties that would have to be taken into account in the elaboration of a model of the transport processes. Most of the results presented here were obtained by analysing the electron temperature response inferred from soft X-ray emissivity during modification of the plasma density due to either gas puffing, laser impurity ablation or alfven wave heating on TCA (a = 0.18 m, R = 0.61 m, B Φ = 1.52 T). 4 refs., 3 figs

  4. A primary reduced TCA flux governs substrate oxidation in T2D skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    Our current knowledge on substrate oxidation in skeletal muscle in relation to insulin resistance and type 2 diabetes (T2D) originate mainly from in vivo studies. The oxidative capacity of skeletal muscle is highly influenced by physical activity, ageing, hormonal status, and fiber type composition...... further regulatory mechanism to our understanding of substrate oxidation in human skeletal muscle during normo- an pathophysiological conditions, focusing especially on the governing influence of a primary reduced TCA flux for the diabetic phenotype in skeletal muscle....

  5. Haloacetic acids in the aquatic environment. Part II: ecological risk assessment

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are environmental contaminants found in aquatic ecosystems throughout the world as a result of both anthropogenic and natural production. The ecological risk posed by these compounds to organisms in freshwater environments, with a specific focus on aquatic macrophytes, was characterized. The plants evaluated were Lemna gibba, Myriophyllum spicatum and M. sibiricum and the HAAs screened were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). Laboratory toxicity data formed the basis of the risk assessment, but field studies were also utilized. The estimated risk was calculated using hazard quotients (HQ), as well as effect measure distributions (EMD) in a modified probabilistic ecological risk assessment. EMDs were used to estimate HAA thresholds of toxicity for use in HQ assessments. This threshold was found to be a more sensitive measure of low toxicity than the no observed effect concentrations (NOEC) or the effective concentration (EC 10 ). Using both deterministic and probabilistic methods, it was found that HAAs do not pose a significant risk to freshwater macrophytes at current environmental concentrations in Canada, Europe or Africa for both single compound and mixture exposures. Still, HAAs are generally found as mixtures and their potential interactions are not fully understood, rendering this phase of the assessment uncertain and justifying further effects characterization. TCA in some environments poses a slight risk to phytoplankton and future concentrations of TFA and CDFA are likely to increase due to their recalcitrant nature, warranting continued environmental surveillance of HAAs. - Current environmental concentrations of haloacetic acids do not pose a risk to aquatic macrophytes, but could impact plankton

  6. A Modified Fluorimetric Method for Determination of Hydrogen Peroxide Using Homovanillic Acid Oxidation Principle

    Directory of Open Access Journals (Sweden)

    Biswaranjan Paital

    2014-01-01

    Full Text Available Hydrogen peroxide (H2O2 level in biological samples is used as an important index in various studies. Quantification of H2O2 level in tissue fractions in presence of H2O2 metabolizing enzymes may always provide an incorrect result. A modification is proposed for the spectrofluorimetric determination of H2O2 in homovanillic acid (HVA oxidation method. The modification was included to precipitate biological samples with cold trichloroacetic acid (TCA, 5% w/v followed by its neutralization with K2HPO4 before the fluorimetric estimation of H2O2 is performed. TCA was used to precipitate the protein portions contained in the tissue fractions. After employing the above modification, it was observed that H2O2 content in tissue samples was ≥2 fold higher than the content observed in unmodified method. Minimum 2 h incubation of samples in reaction mixture was required for completion of the reaction. The stability of the HVA dimer as reaction product was found to be >12 h. The method was validated by using known concentrations of H2O2 and catalase enzyme that quenches H2O2 as substrate. This method can be used efficiently to determine more accurate tissue H2O2 level without using internal standard and multiple samples can be processed at a time with additional low cost reagents such as TCA and K2HPO4.

  7. Identification of a novel bile acid in swans, tree ducks, and geese: 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid.

    Science.gov (United States)

    Kakiyama, Genta; Iida, Takashi; Goto, Takaaki; Mano, Nariyasu; Goto, Junichi; Nambara, Toshio; Hagey, Lee R; Schteingart, Claudio D; Hofmann, Alan F

    2006-07-01

    By HPLC, a taurine-conjugated bile acid with a retention time different from that of taurocholate was found to be present in the bile of the black-necked swan, Cygnus melanocoryphus. The bile acid was isolated and its structure, established by (1)H and (13)C NMR and mass spectrometry, was that of the taurine N-acyl amidate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid. The compound was shown to have chromatographic and spectroscopic properties that were identical to those of the taurine conjugate of authentic 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid, previously synthesized by us from ursodeoxycholic acid. By HPLC, the taurine conjugate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid was found to be present in 6 of 6 species in the subfamily Dendrocygninae (tree ducks) and in 10 of 13 species in the subfamily Anserinae (swans and geese) but not in other subfamilies in the Anatidae family. It was also not present in species from the other two families of the order Anseriformes. 3alpha,7alpha,15alpha-Trihydroxy-5beta-cholan-24-oic acid is a new primary bile acid that is present in the biliary bile acids of swans, tree ducks, and geese and may be termed 15alpha-hydroxy-chenodeoxycholic acid.

  8. Comparative Evaluation of Topical 10% Potassium Hydroxide and 30% Trichloroacetic Acid in the Treatment of Plane Warts.

    Science.gov (United States)

    Jayaprasad, Sandhaya; Subramaniyan, Radhakrishnan; Devgan, Shalini

    2016-01-01

    Warts are benign proliferations of skin and mucosa caused by the human papillomavirus (HPV). Plane warts are caused by HPV types 3, 10, 28, and 41, occurring mostly in children and young adults. Among the treatment modalities, topical application of trichloroacetic acid (TCA) is age old. Potassium hydroxide (KOH) has a keratolytic effect on virus-infected cells. It is less irritating, less painful, less scar forming, and can be safely used in children too. Hence, it could be a better topical agent in the treatment of plane warts. To compare the safety and efficacy of topical 10% KOH with 30% TCA in the treatment of plane warts. Sixty consecutive patients with plane warts were randomly assigned into two arms of thirty patients each; arm A received topical 10% KOH and arm B received topical 30% TCA as a once weekly application until the complete clearance of warts or a maximum period of 12 weeks. Statistically no significant difference ( P = 0.07) was found between the objective therapeutic response to 10% KOH and 30% TCA at the end of study (12 weeks). However, subjective response to 10% KOH was better and statistically significant ( P = 0.03). There was no recurrence of warts seen on follow-up for 3 months of complete responders in both the arms. 10% KOH is found to be equally effective in the treatment of plane warts compared to 30% TCA with the advantage of faster onset of action and tendency of completely clearing warts with fewer side effects.

  9. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression.

    Science.gov (United States)

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-09-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro . The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and increased the expression of tissue inhibitor of metalloproteinase-1. In addition, icotinib was found to significantly decrease the protein levels of nuclear factor κB (NF-κB) p65, which suggested that icotinib inhibits NF-κB activity. Furthermore, treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, suppressed cell invasion and MMP-2 expression. These results suggested that icotinib inhibits the invasion of Tca8113 cells by downregulating MMP via the inactivation of the NF-κB signaling pathways.

  10. Screening for biomarkers of liver injury induced by Polygonum multiflorum: a targeted metabolomic study

    Directory of Open Access Journals (Sweden)

    Qin eDong

    2015-10-01

    Full Text Available Heshouwu (HSW, the dry roots of Polygonum multiflorum, a classical traditional Chinese medicine is used as a tonic for a wide range of conditions,particularly those associated with aging. However, it tends to be taken overdose or long term in these years, which has resulted in liver damage reported in many countries. In this study, the indicative roles of nine bile acids (BAs were evaluated to offer potential biomarkers for HSW induced liver injury. Nine BAs including cholic acid (CA and chenodeoxycholic acid (CDCA, taurocholic acid (TCA, glycocholic acid (GCA, glycochenodeoxycholic acid (GCDCA, deoxycholic acid (DCA, glycodeoxycholic acid (GDCA, ursodeoxycholic acid (UDCA and hyodeoxycholic acid (HDCA in rat bile and serum were detected by a developed LC-MS method after 42 days treatment. Partial least square-discriminate analysis (PLS-DA was applied to evaluate the indicative roles of the nine BAs, and metabolism of the nine BAs was summarized. Significant change was observed for the concentrations of nine BAs in treatment groups compared with normal control; In the PLS-DA plots of nine BAs in bile, normal control and raw HSW groups were separately clustered and could be clearly distinguished, GDCA was selected as the distinguished components for raw HSW overdose treatment group. In the PLS-DA plots of nine BAs in serum, the normal control and raw HSW overdose treatment group were separately clustered and could be clearly distinguished, and HDCA was selected as the distinguished components for raw HSW overdose treatment group. The results indicated the perturbation of nine BAs was associated with HSW induced liver injury; GDCA in bile, as well as HDCA in serum could be selected as potential biomarkers for HSW induced liver injury; it also laid the foundation for the further search on the mechanisms of liver injury induced by HSW .

  11. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria.

    Directory of Open Access Journals (Sweden)

    Erin L Seifert

    2010-03-01

    Full Text Available Incomplete or limited long-chain fatty acid (LCFA combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate.Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition. Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates and 9 microM palmitate plus tricarboxylic acid (TCA cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria.This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that

  12. Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.; Hollenstein, C.

    1989-01-01

    The study of the scrape-off layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The scrape-off layer of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of this work is to present measurements on the influence of the Alfven wave spectrum on the scrape-off layer. These experiments have shown that the plasma boundary layer is strongly affected by the wave field, in particular the ion saturation current and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes, the Discrete Alfven Wave (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. In case of MHD mode activity, this behaviour changes for power exceeding 100 kW. The profiles of basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF (radio frequency) phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the coupling between RF power and typical edge parameters. (orig.)

  13. Configurable Crossbar Switch for Deterministic, Low-latency Inter-blade Communications in a MicroTCA Platform

    Energy Technology Data Exchange (ETDEWEB)

    Karamooz, Saeed [Vadatech Inc. (United States); Breeding, John Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Justice, T Alan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    As MicroTCA expands into applications beyond the telecommunications industry from which it originated, it faces new challenges in the area of inter-blade communications. The ability to achieve deterministic, low-latency communications between blades is critical to realizing a scalable architecture. In the past, legacy bus architectures accomplished inter-blade communications using dedicated parallel buses across the backplane. Because of limited fabric resources on its backplane, MicroTCA uses the carrier hub (MCH) for this purpose. Unfortunately, MCH products from commercial vendors are limited to standard bus protocols such as PCI Express, Serial Rapid IO and 10/40GbE. While these protocols have exceptional throughput capability, they are neither deterministic nor necessarily low-latency. To overcome this limitation, an MCH has been developed based on the Xilinx Virtex-7 690T FPGA. This MCH provides the system architect/developer complete flexibility in both the interface protocol and routing of information between blades. In this paper, we present the application of this configurable MCH concept to the Machine Protection System under development for the Spallation Neutron Sources's proton accelerator. Specifically, we demonstrate the use of the configurable MCH as a 12x4-lane crossbar switch using the Aurora protocol to achieve a deterministic, low-latency data link. In this configuration, the crossbar has an aggregate bandwidth of 48 GB/s.

  14. Real-time cell analysis and heat shock protein gene expression in the TcA Tribolium castaneum cell line in response to environmental stress conditions.

    Science.gov (United States)

    García-Reina, Andrés; Rodríguez-García, María Juliana; Ramis, Guillermo; Galián, José

    2017-06-01

    The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat response studies in terms of survival and heat shock protein expression, which are regulated to protect other proteins against environmental stress conditions. In the present study, we characterize the impedance profile with the xCELLigence Real-Time Cell Analyzer and study the effect of increased temperature in cell growth and viability in the cell line BCIRL-TcA-CLG1 (TcA) of T. castaneum. This novel system measures cells behavior in real time and is applied for the first time to insect cells. Additionally, cells are exposed to heat shock, increased salinity, acidic pH and UV-A light with the aim of measuring the expression levels of Hsp27, Hsp68a, and Hsp83 genes. Results show a high thermotolerance of TcA in terms of cell growth and viability. This result is likely related to gene expression results in which a significant up-regulation of all studied Hsp genes is observed after 1 h of exposure to 40 °C and UV light. All 3 genes show similar expression patterns, but Hsp27 seems to be the most affected. The results of this study validate the RTCA method and reveal the utility of insect cell lines, real-time analysis and gene expression studies to better understand the physiological response of insect cells, with potential applications in different fields of biology such as conservation biology and pest management. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  15. Estimation of subcriticality of TCA using 'indirect estimation method for calculation error'

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Yamamoto, Toshihiro; Arakawa, Takuya; Sakurai, Kiyoshi

    1996-01-01

    To estimate the subcriticality of neutron multiplication factor in a fissile system, 'Indirect Estimation Method for Calculation Error' is proposed. This method obtains the calculational error of neutron multiplication factor by correlating measured values with the corresponding calculated ones. This method was applied to the source multiplication and to the pulse neutron experiments conducted at TCA, and the calculation error of MCNP 4A was estimated. In the source multiplication method, the deviation of measured neutron count rate distributions from the calculated ones estimates the accuracy of calculated k eff . In the pulse neutron method, the calculation errors of prompt neutron decay constants give the accuracy of the calculated k eff . (author)

  16. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion?

    Science.gov (United States)

    2015-01-01

    Whey protein intake is associated with the modulation of energy metabolism and altered body composition both in human subjects and in animals, but the underlying mechanisms are not yet elucidated. We fed obesity-prone C57BL/6J mice high-fat diets with either casein (HF casein) or whey (HF whey) for 6 weeks. At equal energy intake and apparent fat and nitrogen digestibility, mice fed HF whey stored less energy as lipids, evident both as lower white adipose tissue mass and as reduced liver lipids, compared with HF-casein-fed mice. Explorative analyses of 48 h urine, both by 1H NMR and LC–MS metabolomic platforms, demonstrated higher urinary excretion of tricarboxylic acid (TCA) cycle intermediates citric acid and succinic acid (identified by both platforms), and cis-aconitic acid and isocitric acid (identified by LC–MS platform) in the HF whey, relative to in the HF-casein-fed mice. Targeted LC–MS analyses revealed higher citric acid and cis-aconitic acid concentrations in fed state plasma, but not in liver of HF-whey-fed mice. We propose that enhanced urinary loss of TCA cycle metabolites drain available substrates for anabolic processes, such as lipogenesis, thereby leading to reduced lipid accretion in HF-whey-fed compared to HF-casein-fed mice. PMID:24702026

  17. Relevancia de Factores de Riesgo, Psicopatología Alimentaria, Insatisfacción Corporal y Funcionamiento Psicológico en Pacientes con TCA

    Directory of Open Access Journals (Sweden)

    Anna Carretero García

    2009-01-01

    Full Text Available Objetivo: El primer objetivo del estudio es evaluar restrospectivamente, la relevancia de factores de riesgo en pacientes con Trastorno de la Conducta Alimentaria (TCA en función de la categoría diagnóstica. El segundo objetivo, es evaluar la psicopatología alimentaria, la insatisfacción corporal y el funcionamiento psicológico en cada grupo diagnóstico. Método: Se evalúa en el momento previo al tratamiento de TCA, un total de 73 pacientes con diferentes criterios diagnósticos: Bulimia Nerviosa Purgativa (BN-P; n=29, la provisional forma diagnóstica del Trastorno por Atracón (TA; n=6, el Trastorno de la Conducta Alimentaria No Especificado tipo Purgativo (TCANE-P; n=17 y el Trastorno de la Conducta Alimentaria No Especificado tipo Restrictivo (TCANE-R; n=21. Resultados: Se hallan como factores de riesgo de consistencia el antecedente de obesidad y el inicio del TCA en la adolescencia. El inicio de la menarquia en la edad temprana no resulta ser un factor de riesgo. El Índice de Masa Corporal (IMC refleja la sintomatología alimentaria de cada cuadro diagnóstico. El grupo BN-P, se caracteriza por presentar mayor severidad en la sintomatología alimentaria. La mayoría de grupos presenta larga duración de la enfermedad, dificultades en la imagen corporal, el funcionamiento psicosocial y características de personalidad. El sentimiento de ineficacia no fue una característica clínica en casos de TA. Conclusiones: El que los antecedentes de obesidad se hayan mostrado como un factor de riesgo de consistencia en los TCA es un argumento más a favor de la necesidad de su prevención. Las dificultades en el funcionamiento psicosocial encontradas en casos clínicos con TA, avalarían la necesidad de líneas de intervención de tipo más interpersonal en este tipo de pacientes.

  18. Superficial basal cell carcinoma treated with 70% trichloroacetic acid applied topically: a case study

    Directory of Open Access Journals (Sweden)

    Chiriac A

    2017-02-01

    Full Text Available Anca Chiriac,1–3 Piotr Brzezinski,4 Cosmin Moldovan,5 Cristian Podoleanu,6 Marius Florin Coros,7 Simona Stolnicu8 1Department of Dermatology, Nicolina Medical Center, Iasi, 2Department of Dermatology, Apollonia University, Iasi, 3Department of Dermatology, P. Poni Research Institute, Romanian Academy Iasi, Romania; 4Department of Dermatology, 6th Military Support Unit, Utska, Poland; 5Department of Histology, 6Department of Cardiology, 7Department of Surgery, 8Department of Pathology, University of Medicine and Pharmacy of Targu‑Mures, Targu-Mures, Romania Background: Basal cell carcinoma (BCC is the most common form of skin cancer, affecting millions of people worldwide. The treatment concept for BCCs is the surgical one, but it is costly, as such, searching for alternative medical therapeutics is justified. Aim: To highlight the efficacy of high concentration (70% trichloroacetic acid (TCA as a choice therapy for low-risk BCC. Method and patient: Authors present, for the first time, the use of a high concentration TCA applied once a week for 2 consecutive weeks with a toothpick, on a patient with BCC on the right preauricular area. Results: On examination 4 weeks later, the lesion was not clinically and dermatoscopically evidenced. Conclusion: High concentration TCA could be an effective and safe, non-invasive choice of therapy for low-risk BCC, easy to perform, not expensive, with good cosmetic results, especially for patients who are not likely to undergo invasive or expensive treatments. Keywords: basal cell carcinoma, therapy, trichloroacetic acid, dermatology

  19. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine

    Science.gov (United States)

    Kim, Sungkyoon; Kim, David; Pollack, Gary M.; Collins, Leonard B.; Rusyn, Ivan

    2009-01-01

    Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ~74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 hr, 0.081 ml/hr; TCA: 12 hr, 3.80 ml/hr; DCVG: 1.4 hr, 16.8 ml/hr; DCVC: 1.2 hr, 176 ml/hr. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (~3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment. PMID:19409406

  20. Pharmacokinetic analysis of trichloroethylene metabolism in male B6C3F1 mice: Formation and disposition of trichloroacetic acid, dichloroacetic acid, S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine

    International Nuclear Information System (INIS)

    Kim, Sungkyoon; Kim, David; Pollack, Gary M.; Collins, Leonard B.; Rusyn, Ivan

    2009-01-01

    Trichloroethylene (TCE) is a well-known carcinogen in rodents and concerns exist regarding its potential carcinogenicity in humans. Oxidative metabolites of TCE, such as dichloroacetic acid (DCA) and trichloroacetic acid (TCA), are thought to be hepatotoxic and carcinogenic in mice. The reactive products of glutathione conjugation, such as S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2-dichlorovinyl) glutathione (DCVG), are associated with renal toxicity in rats. Recently, we developed a new analytical method for simultaneous assessment of these TCE metabolites in small-volume biological samples. Since important gaps remain in our understanding of the pharmacokinetics of TCE and its metabolites, we studied a time-course of DCA, TCA, DCVG and DCVG formation and elimination after a single oral dose of 2100 mg/kg TCE in male B6C3F1 mice. Based on systemic concentration-time data, we constructed multi-compartment models to explore the kinetic properties of the formation and disposition of TCE metabolites, as well as the source of DCA formation. We conclude that TCE-oxide is the most likely source of DCA. According to the best-fit model, bioavailability of oral TCE was ∼ 74%, and the half-life and clearance of each metabolite in the mouse were as follows: DCA: 0.6 h, 0.081 ml/h; TCA: 12 h, 3.80 ml/h; DCVG: 1.4 h, 16.8 ml/h; DCVC: 1.2 h, 176 ml/h. In B6C3F1 mice, oxidative metabolites are formed in much greater quantities (∼ 3600 fold difference) than glutathione-conjugative metabolites. In addition, DCA is produced to a very limited extent relative to TCA, while most of DCVG is converted into DCVC. These pharmacokinetic studies provide insight into the kinetic properties of four key biomarkers of TCE toxicity in the mouse, representing novel information that can be used in risk assessment.

  1. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease

    OpenAIRE

    Sunny, Nishanth E.; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J.; Nautiyal, Manisha; Mathew, Justin T.; Williams, Caroline M.; Cusi, Kenneth

    2015-01-01

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperin...

  2. Wave propagation and absorption in the electron cyclotron frequency range for TCA and TCV machines

    International Nuclear Information System (INIS)

    Cardinali, A.

    1990-01-01

    The main theoretical aspects of the propagation and absorption of electron cyclotron frequency waves are reviewed and applied to TCA and TCV tokamak plasmas. In particular the electromagnetic cold dispersion relation is solved analytically and numerically in order to recall the basic properties of mode propagation and to calculate the ray-trajectories by means of geometric optics. A numerical code which integrates the coupled first order differential ray-equations, has been developed and applied to the cases of interest. (author) 4 figs., 23 refs

  3. Upregulated ROS production induced by the proteasome inhibitor MG-132 on XBP1 gene expression and cell apoptosis in Tca-8113 cells.

    Science.gov (United States)

    Chen, Hai-ying; Ren, Xiao-yan; Wang, Wei-hua; Zhang, Ying-xin; Chen, Shuang-feng; Zhang, Bin; Wang, Le-xin

    2014-07-01

    Exposure of Tca-8113 cells to proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal (MG-132) causing apoptosis is associated with endoplasmic reticulum (ER) stress. X-box-binding protein-1 (XBP1) is an important regulator of a subset of genes active during ER stress, which is related to cell survival and is required for tumor growth. The present study is to evaluate the effect of MG-132 on ROS production, XBP1 gene expression, tumor necrosis factor receptor-associated factor 2 (TRAF2), ASK1 and c-jun protein expression in tongue squamous cell carcinoma cell line Tca-8113 cells. ROS production was measured by reactive oxygen species assay. X-box binding protein-1 (XBP1) mRNA was analyzed by real-time-PCR, TRAF2, ASK1 and c-jun protein were investigated by western blot and immunocytochemistry respectively. The result indicated that ROS production, TRAF2, ASK1 and c-jun were elevated in MG-132 treated cells. Giving ROS scavenger N-acetyl-L-cysteine (NAC) largely prevented the effects of MG-132. Furthermore, treating with MG-132 lead to decreased XBP1 mRNA expression but could not completely block the expression of XBP1. Taken together, these findings provide the evidence that MG-132 induced ER stress lead to Tca-8113 cells apoptosis through ROS generation and TRAF2-ASK1-JNK signal pathway activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Influence of the Alfven wave spectrum on the scrape-off layer of the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.; Hollenstein, Ch.

    1988-01-01

    The study of the Scrape-Off Layer (SOL) during Alfven wave heating may lead to a better understanding of the antenna-plasma interaction. The SOL of the TCA tokamak has been widely investigated by means of Langmuir probes. The aim of the present work is to present in detail the influence of the Alfven wave spectrum on the SOL. The experiments have shown that the plasma boundary layer is strongly affected by the RF, in particular the ion density, the electron temperature and the floating potential. In TCA, as the spectrum evolves due to a density rise, the passage of the Alfven continua and their associated eigenmodes (DAW) induces a strong depletion in the edge density of up to 70% during the continuum part and a density increase during the crossing of an eigenmode. The floating potential becomes negative during the continua and even more negative crossing the eigenmodes. This behaviour changes as a function of the power transmitted to the plasma through the antennae, especially we have found with MHD modes a change around 100 kW. The profiles of the basic parameters are modified, depending on the wave spectrum. MHD mode activity which can occur during the RF phase considerably alters the behaviour mentioned above. Finally, the modulation of the RF power allows us to characterize the difference in coupling, for the continua and the eigenmodes, between the Alfven wave field and the scrape-off layer. (author) 5 figs., 6 refs

  5. Analysis of L-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli.

    Science.gov (United States)

    Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi

    2013-09-22

    Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.

  6. Research of high speed data readout and pre-processing system based on xTCA for silicon pixel detector

    International Nuclear Information System (INIS)

    Zhao Jingzhou; Lin Haichuan; Guo Fang; Liu Zhen'an; Xu Hao; Gong Wenxuan; Liu Zhao

    2012-01-01

    As the development of the detector, Silicon pixel detectors have been widely used in high energy physics experiments. It needs data processing system with high speed, high bandwidth and high availability to read data from silicon pixel detectors which generate more large data. The same question occurs on Belle II Pixel Detector which is a new style silicon pixel detector used in SuperKEKB accelerator with high luminance. The paper describes the research of High speed data readout and pre-processing system based on xTCA for silicon pixel detector. The system consists of High Performance Computer Node (HPCN) based on xTCA and ATCA frame. The HPCN consists of 4XFPs based on AMC, 1 AMC Carrier ATCA Board (ACAB) and 1 Rear Transmission Module. It characterized by 5 high performance FPGAs, 16 fiber links based on RocketIO, 5 Gbit Ethernet ports and DDR2 with capacity up to 18GB. In a ATCA frame, 14 HPCNs make up a system using the high speed backplane to achieve the function of data pre-processing and trigger. This system will be used on the trigger and data acquisition system of Belle II Pixel detector. (authors)

  7. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria.

    Science.gov (United States)

    Ding, W K; Shah, N P

    2007-11-01

    Eight strains of probiotic bacteria, including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl-O4, and B. lactis type Bi-07, were studied for their acid, bile, and heat tolerance. Microencapsulation in alginate matrix was used to enhance survival of the bacteria in acid and bile as well as a brief exposure to heat. Free probiotic organisms were used as a control. The acid tolerance of probiotic organisms was tested using HCl in MRS broth over a 2-h incubation period. Bile tolerance was tested using 2 types of bile salts, oxgall and taurocholic acid, over an 8-h incubation period. Heat tolerance was tested by exposing the probiotic organisms to 65 degrees C for up to 1 h. Results indicated microencapsulated probiotic bacteria survived better (P strains. At 30 min of heat treatment, microencapsulated probiotic bacteria survived with an average loss of only 4.17-log CFU/mL, compared to 6.74-log CFU/mL loss with free probiotic bacteria. However, after 1 h of heating both free and microencapsulated probiotic strains showed similar losses in viability. Overall microencapsulation improved the survival of probiotic bacteria when exposed to acidic conditions, bile salts, and mild heat treatment.

  8. Exposure of ELF-EMF and RF-EMF Increase the Rate of Glucose Transport and TCA Cycle in Budding Yeast.

    Science.gov (United States)

    Lin, Kang-Wei; Yang, Chuan-Jun; Lian, Hui-Yong; Cai, Peng

    2016-01-01

    In this study, we investigated the transcriptional response to 50 Hz extremely low frequency electromagnetic field (ELF-EMF) and 2.0 GHz radio frequency electromagnetic field (RF-EMF) exposure by Illumina sequencing technology using budding yeast as the model organism. The transcription levels of 28 genes were upregulated and those of four genes were downregulated under ELF-EMF exposure, while the transcription levels of 29 genes were upregulated and those of 24 genes were downregulated under RF-EMF exposure. After validation by reverse transcription quantitative polymerase chain reaction (RT-qPCR), a concordant direction of change both in differential gene expression (DGE) and RT-qPCR was demonstrated for nine genes under ELF-EMF exposure and for 10 genes under RF-EMF exposure. The RT-qPCR results revealed that ELF-EMF and RF-EMF exposure can upregulate the expression of genes involved in glucose transportation and the tricarboxylic acid (TCA) cycle, but not the glycolysis pathway. Energy metabolism is closely related with the cell response to environmental stress including EMF exposure. Our findings may throw light on the mechanism underlying the biological effects of EMF.

  9. Kinetics of acid-induced degradation of tetra- and dihydrobiopterin in relation to their relevance as biomarkers of endothelial function

    DEFF Research Database (Denmark)

    Mortensen, Alan; Lykkesfeldt, Jens

    2013-01-01

    The ratio of the nitric oxide synthase (NOS) cofactor tetrahydrobiopterin (BH(4)) to its oxidized form dihydrobiopterin (BH(2)) has been suggested as an index of endothelial dysfunction. Consequently, much effort has been put into preserving the in vivo equilibrium between these labile analytes. ...... conducted using trichloroacetic acid (TCA)....

  10. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Chapa-Rodriguez, Adrian; Liu, Wensheng; Nugent, Colleen A; Tsompana, Maria; Mastrandrea, Lucy; Buck, Michael J; Baker, Robert D; Genco, Robert J; Zhu, Ruixin; Zhu, Lixin

    2017-08-03

    Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na + -taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome. © Article

  11. A Comparison between the Effects of Glucantime, Topical Trichloroacetic Acid 50% plus Glucantime, and Fractional Carbon Dioxide Laser plus Glucantime on Cutaneous Leishmaniasis Lesions

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2016-01-01

    Full Text Available Background. Cutaneous leishmaniasis is an endemic disease in Iran. Pentavalent antimonial drugs have been the first line of therapy in cutaneous leishmaniasis for many years. However, the cure rate of these agents is still not favorable. This study was carried out to compare the efficacies of intralesional glucantime with topical trichloroacetic acid 50% (TCA 50% + glucantime and fractional carbon dioxide laser + glucantime in the treatment of cutaneous leishmaniasis. Methods. A total of 90 patients were randomly divided into three groups of 30 to be treated with intralesional injection of glucantime, a combination of topical TCA 50% and glucantime, or a combination of fractional laser and glucantime. The overall clinical improvement and changes in sizes of lesions and scars were assessed and compared among three groups. Results. The mean duration of treatment was 6.1±2.1 weeks in all patients (range: 2–12 weeks and 6.8±1.7, 5.2±1.0, and 6.3±3.0 weeks in glucantime, topical TCA plus glucantime, and fractional laser plus glucantime groups, respectively (P=0.011. Complete improvement was observed in 10 (38.5%, 27 (90%, and 20 (87% patients of glucantime, glucantime + TCA, and glucantime + laser groups, respectively (P<0.001. Conclusion. Compared to glucantime alone, the combination of intralesional glucantime and TCA 50% or fractional CO2 laser had significantly higher and faster cure rate in patients with cutaneous leishmaniasis.

  12. Are bile acid malabsorption and bile acid diarrhoea important causes of loose stool complicating cancer therapy?

    Science.gov (United States)

    Phillips, F; Muls, A C G; Lalji, A; Andreyev, H J N

    2015-08-01

    Gastrointestinal (GI) symptoms during and after cancer therapy can significantly affect quality of life and interfere with treatment. This study assessed whether bile acid malabsorption (BAM) or bile acid diarrhoea (BAD) are important causes of diarrhoea associated with cancer treatment. A retrospective analysis was carried out of consecutive patients assessed for BAM using ((75) Se) Selenium homocholic acid taurocholate (SeHCAT) scanning, after reporting any episodes of loose stool, attending a gastroenterology clinic in a cancer centre. Between 2009 and 2013, 506 consecutive patients (54.5% male; age range: 20-91 years), were scanned. BAM/BAD was diagnosed in 215 (42.5%). It was mild in 25.6%, moderate in 29.3% and severe in 45.1%. Pelvic chemoradiation had induced BAM in > 50% of patients. BAM was also frequent after treatment for conditions not previously associated with BAM, such as anal and colorectal cancer, and was present in > 75% of patients referred after pancreatic surgery. It was also unexpectedly frequent in patients who were treated for malignancy outside the GI tract, such as breast cancer and haematological malignancy. BAM/BAD are very common and under-appreciated causes of GI symptoms after cancer treatment. Health professionals should have a low threshold in suspecting this condition, as diagnosis and treatment can significantly improve quality of life. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  13. Brownian dynamic study of an enzyme metabolon in the TCA cycle: Substrate kinetics and channeling.

    Science.gov (United States)

    Huang, Yu-Ming M; Huber, Gary A; Wang, Nuo; Minteer, Shelley D; McCammon, J Andrew

    2018-02-01

    Malate dehydrogenase (MDH) and citrate synthase (CS) are two pacemaking enzymes involved in the tricarboxylic acid (TCA) cycle. Oxaloacetate (OAA) molecules are the intermediate substrates that are transferred from the MDH to CS to carry out sequential catalysis. It is known that, to achieve a high flux of intermediate transport and reduce the probability of substrate leaking, a MDH-CS metabolon forms to enhance the OAA substrate channeling. In this study, we aim to understand the OAA channeling within possible MDH-CS metabolons that have different structural orientations in their complexes. Three MDH-CS metabolons from native bovine, wild-type porcine, and recombinant sources, published in recent work, were selected to calculate OAA transfer efficiency by Brownian dynamics (BD) simulations and to study, through electrostatic potential calculations, a possible role of charges that drive the substrate channeling. Our results show that an electrostatic channel is formed in the metabolons of native bovine and recombinant porcine enzymes, which guides the oppositely charged OAA molecules passing through the channel and enhances the transfer efficiency. However, the channeling probability in a suggested wild-type porcine metabolon conformation is reduced due to an extended diffusion length between the MDH and CS active sites, implying that the corresponding arrangements of MDH and CS result in the decrease of electrostatic steering between substrates and protein surface and then reduce the substrate transfer efficiency from one active site to another. © 2017 The Protein Society.

  14. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are contaminants of aquatic ecosystems with numerous sources, both anthropogenic and natural. The toxicity of HAAs to aquatic plants is generally uncharacterized. Laboratory tests were conducted with three macrophytes (Lemna gibba, Myriophyllum sibiricum and Myriophyllum spicatum) to assess the toxicity of five HAAs. Myriophyllum spp. has been proposed as required test species for pesticide registration in North America, but few studies have been conducted under standard test conditions. The HAAs in the present experiments were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). MCA was the most toxic to Myriophyllum spp. with EC 50 values ranging from 8 to 12.4 mg/l depending on the endpoint, followed by DCA (EC 50 range 62-722.5 mg/l), TCA (EC 50 range 49.5-1702.6 mg/l), CDFA (EC 50 range 105.3 to >10,000 mg/l) and with TFA (EC 50 range 222.1 to 10,000 mg/l) the least toxic. Generally, L. gibba was less sensitive to HAA toxicity than Myriophyllum spp., with the difference in toxicity between them approximately threefold. The range of toxicity within Myriophyllum spp. was normally less than twofold. Statistically, plant length and node number were the most sensitive endpoints as they had the lowest observed coefficients of variation, but they were not the most sensitive to HAA toxicity. Toxicological sensitivity of endpoints varied depending on the measure of effect chosen and the HAA, with morphological endpoints usually an order of magnitude more sensitive than pigments for all plant species. Overall, mass and root measures tended to be the most sensitive indicators of HAA toxicity. The data from this paper were subsequently used in an ecological risk assessment for HAAs and aquatic plants. The assessment found HAAs to be of low risk to aquatic macrophytes and the results are described in the second manuscript of this series

  15. Common Variance Among Three Measures of Nonverbal Cognitive Ability: WISC-R Performance Scale, WJPB-TCA Reasoning Cluster, and Halstead Category Test.

    Science.gov (United States)

    Telzrow, Cathy F.; Harr, Gale A.

    1987-01-01

    Examined the relationships among two psychometric measures of nonverbal cognitive ability - The Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Woodcock-Johnson Psychoeducational Battery-Tests of Cognitive Ability (WJPB-TCA) and a neuropsychological test of abstract reasoning and concept formation (Halstead Category Test) in 25…

  16. Measurement of toroidal and poloidal plasma rotation in TCA

    International Nuclear Information System (INIS)

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-01-01

    With optimal observation geometry we have measured both the toroidal and poloidal rotation velocities in the edge and in the bulk of the TCA plasma. Regular calibration and correction for variations in the spectrometer temperature permitted a measurement with an error of ∼0.5 km/s which is an order of magnitude smaller than the range of measured velocities. In general, changes in the velocities are observed to be stronger and faster in the plasma edge than in the plasma bulk. With increasing density, the toroidal velocity is observed to change sign and follow the plasma density, while the poloidal velocity increases. These two effects lead to an increase in the absolute value of the radial electric field. With very strong gas puffing, the toroidal velocity is observed to again reverse and tend to zero, an effect which is stronger as the gradient of the density ramp is increased. Comparison between gas puffing and high power AWH does not show a significant difference in the radial electric field that could be responsible for the large associated density rise, which still remains unexplained. (author) 4 figs., 2 refs

  17. Bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge.

    Science.gov (United States)

    Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime

    2017-02-01

    OBJECTIVE To examine bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge. ANIMALS 18 dogs with gallbladder mucocele (GBM group), 8 dogs with immobile biliary sludge (i-BS group), 17 dogs with mobile biliary sludge (m-BS group), and 14 healthy dogs (control group). PROCEDURES Samples of gallbladder contents were obtained by use of percutaneous ultrasound-guided cholecystocentesis or during cholecystectomy or necropsy. Concentrations of 15 bile acids were determined by use of highperformance liquid chromatography, and a bile acid compositional ratio was calculated for each group. RESULTS Concentrations of most bile acids in the GBM group were significantly lower than those in the control and m-BS groups. Compositional ratio of taurodeoxycholic acid, which is 1 of 3 major bile acids in dogs, was significantly lower in the GBM and i-BS groups, compared with ratios for the control and m-BS groups. The compositional ratio of taurocholic acid was significantly higher and that of taurochenodeoxycholic acid significantly lower in the i-BS group than in the control group. CONCLUSIONS AND CLINICAL RELEVANCE In this study, concentrations and fractions of bile acids in gallbladder contents were significantly different in dogs with gallbladder mucocele or immobile biliary sludge, compared with results for healthy control dogs. Studies are needed to determine whether changes in bile acid composition are primary or secondary events of gallbladder abnormalities.

  18. Infusion of Bone Marrow Mesenchymal Stem Cells Attenuates Experimental Severe Acute Pancreatitis in Rats

    Directory of Open Access Journals (Sweden)

    Hang Zhao

    2016-01-01

    Full Text Available Background & Aims. Severe acute pancreatitis (SAP remains a high-mortality disease. Bone marrow (BM mesenchymal stem cells (MSCs have been demonstrated to have plasticity of transdifferentiation and to have immunomodulatory functions. In the present study, we assessed the roles of MSCs in SAP and the therapeutic effects of MSC on SAP after transplantation. Methods. A pancreatitis rat model was induced by the injection of taurocholic acid (TCA into the pancreatic duct. After isolation and characterization of MSC from BM, MSC transplantation was conducted 24 hrs after SAP induction by tail vein injection. The survival rate was observed and MSCs were traced after transplantation. The expression of TNF-α and IL-1β mRNA in the transplantation group was also analyzed. Results. The survival rate of the transplantation group was significantly higher compared to the control group (p<0.05. Infused MSCs were detected in the pancreas and BM 3 days after transplantation. The expression of TNF-α and IL-1β mRNA in the transplantation group was significantly lower than in the control group in both the pancreas and the lungs (p<0.05. Conclusions. MSC transplantation could improve the prognosis of SAP rats. Engrafted MSCs have the capacity of homing, migration, and planting during the treatment of SAP.

  19. The influence of co-formers on the dissolution rates of co-amorphous sulfamerazine/excipient systems

    DEFF Research Database (Denmark)

    Gniado, Katarzyna; Löbmann, Korbinian; Rades, Thomas

    2016-01-01

    A comprehensive study on the dissolution properties of three co-amorphous sulfamerazine/excipient systems, namely sulfamerazine/deoxycholic acid, sulfamerazine/citric acid and sulfamerazine/sodium taurocholate (SMZ/DA, SMZ/CA and SMZ/NaTC; 1:1 molar ratio), is reported. While all three co...

  20. A plant pathogenic bacterium exploits the tricarboxylic acid cycle metabolic pathway of its insect vector

    Science.gov (United States)

    Nehela, Yasser; Hijaz, Faraj; Vincent, Christopher I.

    2018-01-01

    ABSTRACT Huanglongbing in citrus is caused by a phloem-limited, uncultivable, gram-negative α-proteobacterium, Candidatus Liberibacter asiaticus (CLas). CLas is transmitted by the phloem-sucking insect, Diaphorina citri (Hemiptera: Liviidae), in a persistent, circulative, and propagative manner. In this study, we investigated the metabolomic and respiration rates changes in D. citri upon infection with CLas using gas chromatography-mass spectrometry (GC-MS) and gas exchange analysis. The level of glycine, L-serine, L-threonine, and gamma-amino butyric acid were higher in CLas-infected D. citri, while L-proline, L-aspartic acid, and L-pyroglutamic acid were lower in CLas-infected D. citri compared with the control. Citric acid was increased in CLas-infected D. citri, whereas malic and succinic acids were reduced. Interestingly, most of the reduced metabolites such as malate, succinate, aspartate, and L-proline are required for the growth of CLas. The increase in citric acid, serine, and glycine indicated that CLas induced glycolysis and the tricarboxylic acid cycle (TCA) in its vector. In agreement with the GC-MS results, the gene expression results also indicated that glycolysis and TCA were induced in CLas-infected D. citri and this was accompanied with an increases in respiration rate. Phosphoric acid and most of the sugar alcohols were higher in CLas-infected D. citri, indicating a response to the biotic stress or cell damage. Only slight increases in the levels of few sugars were observed in CLas-infected D. citri, which indicated that sugars are tightly regulated by D. citri. Our results indicated that CLas induces nutrient and energetic stress in its host insect. This study may provide some insights into the mechanism of colonization of CLas in its vector. PMID:28594267

  1. The effect of BAY o 2752 on bile acid absorption and cholesterol esterification

    International Nuclear Information System (INIS)

    Harnett, K.M.

    1988-01-01

    BAY o 2752 [N,N-(1,11-undecandiyl)bis(2,3-dihydro-2-methyl-1H-indole-1-carboxamide)] has been demonstrated to inhibit intestinal cholesterol absorption in rats. Studies were carried out on male Wistar rats to determine if this drug alters intestinal bile acid absorption or cholesterol esterification by acyl CoA: cholesterol acyltransferase (ACAT) or cholesterol ester hydrolase (CEH). BAY o 2752 did not affect intestinal absorption of taurocholic acid (TC) from ileal segments perfused in vivo with a tragacanth suspension in phosphate buffer containing NaCl, TC, and 24- 14 C-TC as determined by the excretory rate of radioactivity in bile. BAY o 2752 also did not affect the uptake of TC into ileal everted sacs incubated in stirred, gassed Krebs-Ringer bicarbonate buffer with 1 mM TC, 24- 14 C-TC and 3 H-inulin. BAY o 2752 also did not bind TC; TG, in a filtrate of the above solutions remained at 92-98% of control

  2. The effect of BAY o 2752 on bile acid absorption and cholesterol esterification

    Energy Technology Data Exchange (ETDEWEB)

    Harnett, K.M.

    1988-01-01

    BAY o 2752 (N,N-(1,11-undecandiyl)bis(2,3-dihydro-2-methyl-1H-indole-1-carboxamide)) has been demonstrated to inhibit intestinal cholesterol absorption in rats. Studies were carried out on male Wistar rats to determine if this drug alters intestinal bile acid absorption or cholesterol esterification by acyl CoA: cholesterol acyltransferase (ACAT) or cholesterol ester hydrolase (CEH). BAY o 2752 did not affect intestinal absorption of taurocholic acid (TC) from ileal segments perfused in vivo with a tragacanth suspension in phosphate buffer containing NaCl, TC, and 24-{sup 14}C-TC as determined by the excretory rate of radioactivity in bile. BAY o 2752 also did not affect the uptake of TC into ileal everted sacs incubated in stirred, gassed Krebs-Ringer bicarbonate buffer with 1 mM TC, 24-{sup 14}C-TC and {sup 3}H-inulin. BAY o 2752 also did not bind TC; TG, in a filtrate of the above solutions remained at 92-98% of control.

  3. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation.

    Science.gov (United States)

    Sadykov, Marat R; Ahn, Jong-Sam; Widhelm, Todd J; Eckrich, Valerie M; Endres, Jennifer L; Driks, Adam; Rutkowski, Gregory E; Wingerd, Kevin L; Bayles, Kenneth W

    2017-06-01

    Numerous bacteria accumulate poly(3-hydroxybutyrate) (PHB) as an intracellular reservoir of carbon and energy in response to imbalanced nutritional conditions. In Bacillus spp., where PHB biosynthesis precedes the formation of the dormant cell type called the spore (sporulation), the direct link between PHB accumulation and efficiency of sporulation was observed in multiple studies. Although the idea of PHB as an intracellular carbon and energy source fueling sporulation was proposed several decades ago, the mechanisms underlying PHB contribution to sporulation have not been defined. Here, we demonstrate that PHB deficiency impairs Bacillus anthracis sporulation through diminishing the energy status of the cells and by reducing carbon flux into the tricarboxylic acid (TCA) cycle and de novo lipid biosynthesis. Consequently, this metabolic imbalance decreased biosynthesis of the critical components required for spore integrity and resistance, such as dipicolinic acid (DPA) and the spore's inner membrane. Supplementation of the PHB deficient mutant with exogenous fatty acids overcame these sporulation defects, highlighting the importance of the TCA cycle and lipid biosynthesis during sporulation. Combined, the results of this work reveal the molecular mechanisms of PHB contribution to B. anthracis sporulation and provide valuable insight into the metabolic requirements for this developmental process in Bacillus species. © 2017 John Wiley & Sons Ltd.

  4. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli

    Science.gov (United States)

    2013-01-01

    Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID

  5. Injection of pellets into the TCA tokamak

    International Nuclear Information System (INIS)

    Martin, Y.

    1993-05-01

    This thesis presents experimental results from the analysis of the ablation process of pellets injected into the TCA tokamak. The determination of scaling laws relating the pellet penetration to the pellet and plasma parameters preceding injection, were used to improve the understanding of the interaction of the pellet with the plasma since a) the pellet and plasma conditions preceding injection were varied over a large range, and b) the estimation of the penetration depth takes into account the influence of striations in the deposition profile. Over 400 pellets with a range of sizes and speeds were injected into a range of plasma parameters in order to create a database from which the scaling laws could be deduced. The ablation characteristics were principally measured with two CCD video cameras, which provided good spatial resolution, and two filtered photomultiplier tubes, which provided good temporal resolution of the light emitted from the pellet ablation cloud. In the text, the traditional methods of analysing these diagnostics are examined with special reference to the presumptions that a) the pellet velocity is constant in the plasma, and b) the light intensity determined from the ablation cloud is proportional to the ablation rate. After successive data reduction from the database, in order to separate the effects of varying different parameters, the main observations were that, a) the pellet penetration varies as the square root of the pellet velocity, b) the scaling laws for the other parameters strongly depend on whether the pellet has sufficient velocity to reach the q=1 rational magnetic surface in the tokamak. (author) 45 refs

  6. An object oriented framework of EPICS for MicroTCA based control system

    International Nuclear Information System (INIS)

    Geng, Z.

    2012-01-01

    EPICS (Experimental Physics and Industrial Control System) is a distributed control system platform which has been widely used for large scientific devices control like particle accelerators and fusion plant. EPICS has introduced object oriented (C ++ ) interfaces to most of the core services. But the major part of EPICS, the run-time database, only provides C interfaces, which is hard to involve the EPICS record concerned data and routines in the object oriented architecture of the software. This paper presents an object oriented framework which contains some abstract classes to encapsulate the EPICS record concerned data and routines in C ++ classes so that full OOA (Objected Oriented Analysis) and OOD (Object Oriented Design) methodologies can be used for EPICS IOC design. We also present a dynamic device management scheme for the hot swap capability of the MicroTCA based control system. (authors)

  7. Microneedling combined with platelet-rich plasma or trichloroacetic acid peeling for management of acne scarring: A split-face clinical and histologic comparison.

    Science.gov (United States)

    El-Domyati, Moetaz; Abdel-Wahab, Hossam; Hossam, Aliaa

    2018-02-01

    Minimally invasive procedures provide effective, safe, relatively long-lasting, and natural results without large damage to the skin. A combination treatment is considered an approach that includes at least 2 different and unrelated modalities. This study aims to evaluate the use and effectiveness of some combined minimally invasive procedures for management of acne scarring. Twenty-four volunteers with postacne atrophic scars were randomly divided into 3 equal groups according to performed procedure on each side of the face (microneedling by dermaroller alone or combined with platelet-rich plasma [PRP] or trichloroacetic acid [TCA] 15% peeling) and received 6 bi-weekly sessions of treatment. Photography and punch biopsies were taken before and after 3 months of treatment for clinical, histological, and histometrical evaluation. Combined treatment of dermaroller and PRP or dermaroller and TCA 15% showed significant improvement when compared with dermaroller alone (P = .015 and .011 respectively). Epidermal thickness showed statistically significant increase in studied groups, mainly after dermaroller and TCA 15%. Moreover, the 3 studied groups showed more organized collagen bundles and newly formed collagen formation and markedly decreased abnormal elastic fibers. Based on the clinical, histometrical, and histochemical assessment, inspite that most volunteers showed significant improvement after treatment, however, the combined use of dermaroller and TCA 15% was more effective in postacne atrophic scars than the use of dermaroller and PRP or dermaroller only. © 2017 Wiley Periodicals, Inc.

  8. PENGIKATAN GARAM EMPEDU OLEH SUSU KEDELAI TERFERMENTASI DAN STABILITASNYA TERHADAP PEPSIN DAN PANKREATIN [Binding of Bile Salts by Fermented Soymilk and Its Stability Against Pepsin and Pancreatin

    Directory of Open Access Journals (Sweden)

    Yusmarini1*

    2013-06-01

    Full Text Available Processed soybean products especially the fermented ones have beneficial health effects since they are capable of reducing the level of plasmacholesterol (hypocholesterolemic effect. One of the mechanisms is by increasing the binding of bile salt. This research was aimed to assess the ability of soymilk, fermented soymilk products and fermented soymilk products combined with enzymatic hydrolysis to bind bile salts. The stability of the binding against hydrolysis by digestive enzymes (pepsin and pancreatin was also evaluated. Fermented soybean products inoculated with isolates of L. plantarum 1 R.11.1.2 was be able to bind 1.40 μmol/100 mg protein (62.26% of natrium taurocholate. This binding ability is slightly higher than that of soymilk to natrium taurocholate, i.e.1.33 μmol/100 mg protein (59.04%. Addition of a protease enzyme specific to hydrophobic amino acid (thermolysin on fermented soymilk products was able to enhance the ability of bind natrium taurocholate. Enzymatic hydrolysis products having a molecular weight of <7 kDa could bind 1.51 μmol/100 mg protein natrium taurocholate (67.4%. There was a significant increase in the binding, i.e. 7.9% by the fermented products or an increase of 13.5% from soymilk. Meanwhile peptides measuring ≥7 kDa showed no binding ability against natrium taurocholate.

  9. Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect.

    Science.gov (United States)

    Lu, X Y; Ren, S L; Lu, J Z; Zong, H; Song, J; Zhuge, B

    2018-03-01

    This study aimed to strengthen the reducing equivalent generation in Klebsiella pneumoniae for improving 1,3-propanediol (PDO) production. Disruption of the arcA gene activated the transcription levels of the TCA cycle genes and thus increased the NADH/NAD + ratio by 54·2%, leading to the improved PDO titre and yield per cell from 16·1 g l -1 and 4·0 g gDCW -1 to 18·8 g l -1 and 6·4 g gDCW -1 respectively. Further ldhA gene deletion eliminated lactate accumulation and promoted the PDO titre to 19·9 g l -1 . Finally, the glucose effect was weakened by deleting the crr gene to enhance the co-utilization of glucose and glycerol, resulting in the increased PDO production to 23·8 g l -1 with the glycerol conversion rate of 59·5%. The PDO titre in bioreactor was promoted from 61·2 to 78·1 g l -1 . Deletions of the arcA and the crr genes showed positive effects on the TCA cycle activity and the co-utilization of glucose and glycerol, leading to the strengthened reducing equivalent generation and the improved PDO titre by 47·8% in shaker. The PDO titre in the bioreactor was enhanced to 78·1 g l -1 . This study provided novel information on generating reducing equivalent for the PDO biosynthesis by strengthening the TCA cycle and weakening the glucose effect in K. pneumoniae. © 2018 The Society for Applied Microbiology.

  10. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    CERN Document Server

    Lenzi, Thomas

    2016-01-01

    We will present the electronic and DAQ system being developed for TripleGEM detectors which will be installed in the CMS muon spectrometer. The microTCA system uses an Advanced Mezzanine Card equipped with an FPGA and the Versatile Link with the GBT chipset to link the front and back-end. On the detector an FPGA mezzanine board, the OptoHybrid, has to collect the data from the detector readout chips to transmit them optically to the microTCA boards using the GBT protocol. We will describe the hardware architecture, report on the status of the developments, and present results obtained with the system.In this contribution we will report on the progress of the design of the electronic readout and data acquisition (DAQ) system being developed for Triple-GEM detectors which will be installed in the forward region (1.5 < eta < 2.2) of the CMS muon spectrometer during the 2nd long shutdown of the LHC, planed for the period 2018-2019. The architecture of the Triple-GEM readout system is based on the use of the...

  11. HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer.

    Science.gov (United States)

    Mondal, Susmita; Roy, Debarshi; Camacho-Pereira, Juliana; Khurana, Ashwani; Chini, Eduardo; Yang, Lifeng; Baddour, Joelle; Stilles, Katherine; Padmabandu, Seth; Leung, Sam; Kalloger, Steve; Gilks, Blake; Lowe, Val; Dierks, Thomas; Hammond, Edward; Dredge, Keith; Nagrath, Deepak; Shridhar, Viji

    2015-10-20

    Warburg effect has emerged as a potential hallmark of many cancers. However, the molecular mechanisms that led to this metabolic state of aerobic glycolysis, particularly in ovarian cancer (OVCA) have not been completely elucidated. HSulf-1 predominantly functions by limiting the bioavailability of heparan binding growth factors and hence their downstream signaling. Here we report that HSulf-1, a known putative tumor suppressor, is a negative regulator of glycolysis. Silencing of HSulf-1 expression in OV202 cell line increased glucose uptake and lactate production by upregulating glycolytic genes such as Glut1, HKII, LDHA, as well as metabolites. Conversely, HSulf-1 overexpression in TOV21G cells resulted in the down regulation of glycolytic enzymes and reduced glycolytic phenotype, supporting the role of HSulf-1 loss in enhanced aerobic glycolysis. HSulf-1 deficiency mediated glycolytic enhancement also resulted in increased inhibitory phosphorylation of pyruvate dehydrogenase (PDH) thus blocking the entry of glucose flux into TCA cycle. Consistent with this, metabolomic and isotope tracer analysis showed reduced glucose flux into TCA cycle. Moreover, HSulf-1 loss is associated with lower oxygen consumption rate (OCR) and impaired mitochondrial function. Mechanistically, lack of HSulf-1 promotes c-Myc induction through HB-EGF-mediated p-ERK activation. Pharmacological inhibition of c-Myc reduced HB-EGF induced glycolytic enzymes implicating a major role of c-Myc in loss of HSulf-1 mediated altered glycolytic pathway in OVCA. Similarly, PG545 treatment, an agent that binds to heparan binding growth factors and sequesters growth factors away from their ligand also blocked HB-EGF signaling and reduced glucose uptake in vivo in HSulf-1 deficient cells.

  12. Broadband magnetic and density fluctuations in the TCA tokamak

    International Nuclear Information System (INIS)

    Hollenstein, Ch.; Keller, R.; Pochelon, A.; Ryter, F.; Sawley, M.L.; Simm, W.; Weisen, H.

    1987-01-01

    The results of comparative studies of broadband magnetic and density fluctuations during ohmic discharges in the TCA tokamak are described. Long coherence lengths are observed in poloidal and toroidal directions between magnetic probes in the scrape-off layer. A phase contrast diagnostic provides a newly accessible range of density fluctuations in the bulk plasma with very long wavelengths. Langmuir probes provide similar measurements in the scrape-off layer. Statistical dispersion relations for both density and magnetic fluctuations are deduced and are shown to be substantially different. Low mean poloidal wavenumbers (m ∼ 2 at 100 kHz) are obtained for the magnetic fluctuations, in contrast to the much higher values measured for density fluctuations. The difference between magnetic and density fluctuations is also reflected in different scalings with plasma parameters and with electron confinement time. The helicity of the coherent magnetic structures is analyzed to show that interior regions of the plasma, such as the q = 2 region contribute to the magnetic activity at the edge. This explains why the magnetic fluctuations measured at the edge are likely to reflect the confinement properties of the bulk plasma. The results of detailed probe rotation experiments and coherence measurements give indications of the physical nature and origin of magnetic fluctuations

  13. Tricarboxylic acid cycle activity measured by 13C magnetic resonance spectroscopy in rats subjected to the kaolin model of obstructed hydrocephalus

    DEFF Research Database (Denmark)

    Melø, Torun M; Håberg, Asta K; Risa, Øystein

    2011-01-01

    in the amounts of glutamate, alanine and taurine. In addition, the concentration of the neuronal marker N-acetyl aspartate was decreased. (13)C Labelling of most amino acids derived from [1,6-(13)C]glucose was unchanged 2 weeks after hydrocephalus induction. The only indication of astrocyte impairment......Evaluating early changes in cerebral metabolism in hydrocephalus can help in the decision making and the timing of surgical intervention. This study was aimed at examining the tricarboxylic acid (TCA) cycle rate and (13)C label incorporation into neurotransmitter amino acids and other compounds 2...

  14. Gemfibrozil disrupts lysophosphatidylcholine and bile acid homeostasis via PPARα and its relevance to hepatotoxicity.

    Science.gov (United States)

    Liu, Aiming; Krausz, Kristopher W; Fang, Zhong-Ze; Brocker, Chad; Qu, Aijuan; Gonzalez, Frank J

    2014-04-01

    Gemfibrozil, a ligand of peroxisome proliferator-activated receptor α (PPARα), is one of the most widely prescribed anti-dyslipidemia fibrate drugs. Among the adverse reactions observed with gemfibrozil are alterations in liver function, cholestatic jaundice, and cholelithiasis. However, the mechanisms underlying these toxicities are poorly understood. In this study, wild-type and Ppara-null mice were dosed with a gemfibrozil-containing diet for 14 days. Ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics and traditional approaches were used to assess the mechanism of gemfibrozil-induced hepatotoxicity. Unsupervised multivariate data analysis revealed four lysophosphatidylcholine components in wild-type mice that varied more dramatically than those in Ppara-null mice. Targeted metabolomics revealed taurocholic acid and tauro-α-muricholic acid/tauro-β-muricholic acid were significantly increased in wild-type mice, but not in Ppara-null mice. In addition to the above perturbations in metabolite homeostasis, phenotypic alterations in the liver were identified. Hepatic genes involved in metabolism and transportation of lysophosphatidylcholine and bile acid compounds were differentially regulated between wild-type and Ppara-null mice, in agreement with the observed downstream metabolic alterations. These data suggest that PPARα mediates gemfibrozil-induced hepatotoxicity in part by disrupting phospholipid and bile acid homeostasis.

  15. TCA cycle activity in Staphylococcus aureus is essential for iron-regulated synthesis of staphyloferrin A, but not staphyloferrin B: the benefit of a second citrate synthase.

    Science.gov (United States)

    Sheldon, Jessica R; Marolda, Cristina L; Heinrichs, David E

    2014-05-01

    Staphylococcus aureus elaborates two citrate-containing siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), that enhance growth under iron-restriction, yet, paradoxically, expression of the TCA cycle citrate synthase, CitZ, is downregulated during iron starvation. Iron starvation does, however, result in expression of SbnG, recently identified as a novel citrate synthase that is encoded from within the iron-regulated SB biosynthetic locus, suggesting an important role for SbnG in staphyloferrin production. We demonstrate that during growth of S. aureus in iron-restricted media containing glucose, SB is produced but, in contrast, SA production is severely repressed; accordingly, SB-deficient mutants grow poorly in these media. Hypothesizing that reduced TCA cycle activity hinders SA production, we show that a citZ mutant is capable of SB synthesis, but not SA synthesis, providing evidence that SbnG does not generate citrate for incorporation into SA. A citZ sbnG mutant synthesizes neither staphyloferrin, is severely compromised for growth in iron-restricted media, and is significantly more impaired for virulence than either of the single-deletion mutants. We propose that SB is the more important of the two siderophores for S. aureus insofar as it is synthesized, and supports iron-restricted growth, without need of TCA cycle activity. © 2014 John Wiley & Sons Ltd.

  16. A thermochemical study on the coordination complex of cerium trichloroacetic acid with 8-hydroxyquinoline

    International Nuclear Information System (INIS)

    Li Qiangguo; Qu Songsheng; Liu Yi

    2003-01-01

    The standard molar reaction enthalpies of two reactions, CeCl 3 ·7H 2 O(s) + 3CCl 3 COOH(s)(or TCA) = Ce(TCA) 3 ·3H 2 O(s) + 3HCl(g) + 4H 2 O(l) and Ce(TCA) 3 ·3H 2 O(s) + 2C 9 H 7 NO(s) Ce(TCA)(C 9 H 6 NO) 2 (s) + 2CCl 3 COOH(s) + 3H 2 O(l), were studied by classical solution calorimetry at 298.15 K. The molar dissolution enthalpies of the reactants and the products in certain solvent (the first reaction in 1 mol/l HCl, the second in a mixed solution consisting of absolute ethyl alcohol, dimethyl sulfoxide and 4 mol/l HCl) have been measured by using an isoperibolic calorimeter at 298.15 K. From the results and other auxiliary quantities, the standard molar formation enthalpies of [Ce(TCA) 3 ·3H 2 O, s, 298.15 K] and [Ce(TCA)(C 9 H 6 NO) 2 , s, 298.15 K] were determined to be Δ f H m θ [Ce(TCA) 3 ·3H 2 O, s, 298.15 K] = -3059.9 kJ/mol and Δ f H m θ [Ce(TCA)(C 9 H 6 NO) 2 , s, 298.15 K] = -1368.9 kJ/mol

  17. Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry

    Science.gov (United States)

    Guzman, Marcelo I.; Martin, Scot T.

    2008-10-01

    The carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10-3+[OAA])-1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k-2)=11.74 4956/T, where k-2 is in units of s-1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.

  18. The FEROL40, a microTCA card interfacing custom point-to-point links and standard TCP/IP

    CERN Document Server

    Gigi, Dominique; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Contescu, Cristian; da Silva Gomes, Diego; Darlea, Georgiana-Lavinia; Deldicque, Christian; Demiragli, Zeynep; Dobson, Marc; Doualot, Nicolas; Erhan, Samim; Fulcher, Jonathan Richard; Gladki, Maciej; Glege, Frank; Gomez-Ceballos, Guillelmo; Hegeman, Jeroen; Holzner, Andre; Janulis, Mindaugas; Lettrich, Michael; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K; Morovic, Srecko; O'Dell, Vivian; Orn, Samuel Johan; Orsini, Luciano; Papakrivopoulos, Ioannis; Paus, Christoph; Petrova, Petia; Petrucci, Andrea; Pieri, Marco; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Sakulin, Hannes; Schwick, Christoph; Simelevicius, Dainius; Vazquez Velez, Cristina; Vougioukas, Michail; Zejdl, Petr

    2017-01-01

    In order to accommodate new back-end electronics of upgraded CMS sub-detectors, a new FEROL40 card in the microTCA standard has been developed. The main function of the FEROL40 is to acquire event data over multiple point-to-point serial optical links, provide buffering, perform protocol conversion, and transmit multiple TCP/IP streams (4x10Gbps) to the Ethernet network of the aggregation layer of the CMS DAQ (data acquisition) event builder. This contribution discusses the design of the FEROL40 and experience from operation.

  19. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle.

    Science.gov (United States)

    Flipphi, Michel; Oestreicher, Nathalie; Nicolas, Valérie; Guitton, Audrey; Vélot, Christian

    2014-07-01

    In Aspergillus nidulans, the utilization of acetate as sole carbon source requires several genes (acu). Most of them are also required for the utilization of fatty acids. This is the case for acuD and acuE, which encode the two glyoxylate cycle-specific enzymes, isocitrate lyase and malate synthase, respectively, but also for acuL that we have identified as AN7287, and characterized in this study. Deletion of acuL resulted in the same phenotype as the original acuL217 mutant. acuL encodes a 322-amino acid protein which displays all the structural features of a mitochondrial membrane carrier, and shares 60% identity with the Saccharomyces cerevisiae succinate/fumarate mitochondrial antiporter Sfc1p (also named Acr1p). Consistently, the AcuL protein was shown to localize in mitochondria, and partial cross-complementation was observed between the S. cerevisiae and A. nidulans homologues. Extensive phenotypic characterization suggested that the acuL gene is involved in the utilization of carbon sources that are catabolized via the TCA cycle, and therefore require gluconeogenesis. In addition, acuL proves to be co-regulated with acuD and acuE. Overall, our data suggest that AcuL could link the glyoxylate cycle to gluconeogenesis by exchanging cytoplasmic succinate for mitochondrial fumarate. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Comparison of endogenous and radiolabeled bile acid excretion in patients with idiopathic chronic diarrhea

    International Nuclear Information System (INIS)

    Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A.

    1990-01-01

    Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high in most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients

  1. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 10

    International Nuclear Information System (INIS)

    Gruhn, K.; Hennig, A.

    1989-01-01

    Over a period of 4 days 12 colostomized laying hens daily received 36 g coarse wheat meal containing 14.37 atom-% 15 N excess ( 15 N') together with a conventional ration. After the homogenisation of each oviduct N and 15 N' were determined. After the precipitation with TCA the 15 N' of the amino acids was analysed in both the precipitate and the supernatant. In addition, the free amino acids and the peptides were determined in the TCA soluble fraction. The atom-% 15 N' in the total N and in the non-basic amino acid N showed a parallel decrease; it diminshed from 1.75 atom-% 15 N' to 0.64. Of the three basic amino acids, lysine shows the lowest labelling at all four measuring points. The quotas of non-basic amino acid 14 N and 15 N' in the total 14 N and 15 N' of the oviduct are the same and amount to 53%. In contrast to this, the quota of the 14 N of the basic amino acids in the total 14 N of the oviduct only amounts to 21.6% and that of 15 N' only to 15.4%. The average atom-% 15 N' of the free amino acids 12 h after the last 15 N application is 1.54 and is considerably above that of the peptides with 1.15 atom-% 15 N'. 36 h after the last 15 N application the ascertained value of 1.25 is identical in both fractions. The labelling of the free amino acids decreases more quickly than that of the peptides the more time has passed after the last 15 N application. (author)

  2. FMC-based Neutron and Gamma Radiation Monitoring Module for xTCA Applications

    CERN Document Server

    Kozak, T; Napieralski, A

    2012-01-01

    The machines used in High Energy Physics (HEP) experiments, such as accelerators or tokamaks, are sources of gamma and neutron radiation fields. The radiation has a negative influence on electronics and can lead to the incorrect functioning of complex control and diagnostic system designed for HEP machines. Therefore, in most cases the electronic equipments is installed in radiation-safe areas, but in some cases this rule is omitted to decrease costs of the project. The European X-ray Free Electron Laser (E-XFEL), being under construction at DESY research center, is a good example. The E-XFEL uses single tunnel and part of the electronic system will be installed next to main beam pipe and exposed to radiation. The modern Advanced/Micro Telecommunications Computing Architecture (ATCA/μTCA) standards are foreseen as a base for control and diagnostic system for this new project. These flexible standards provide high reliability, availability and usability for the system which can be decreased by negative influe...

  3. Compression module for the BCM1F microTCA raw data readout

    CERN Document Server

    Dostanic, Milica

    2017-01-01

    BCM1F is a diamond based detector and one of the luminometers and background monitors operated by the BRIL group, part of the CMS experiment. BCM1F's front-end produces analog signals which are digitized in a new microTCA back-end. An FPGA in the back-end part takes care of signal processing and stores raw data. The raw data readout has been improved by implementing a data compression module in the firmware. This module has allowed storing larger amount of data in short time intervals. The module has been implemented in VHDL, using a zero suppression algorithm: only data above a defined threshold is stored into memory, while the samples around the base line are discarded. Thanks to metadata, describing the suppressed data, the shape of input signals and time information are preserved. Tests with simulations and a pulse generator showed good results and proved that the module can achieve large compression factor.

  4. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact...

  5. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

    Directory of Open Access Journals (Sweden)

    Esther M Verhaag

    Full Text Available Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.HepG2.rNtcp cells were preconditioned (24 h with sub-apoptotic concentrations (0.1-50 μM of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h, menadione (50 μM, 6 h or cytokine mixture (CM; 6 h. Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11 and bile acid sensors, as well as intracellular GCDCA levels were analyzed.Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauroursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  6. Icotinib inhibits the invasion of Tca8113 cells via downregulation of nuclear factor κB-mediated matrix metalloproteinase expression

    OpenAIRE

    YANG, CAILING; YAN, JIANGUO; YUAN, GUOYAN; ZHANG, YINGHUA; LU, DERONG; REN, MINGXIN; CUI, WEIGANG

    2014-01-01

    Icotinib is an epidermal growth factor receptor tyrosine kinase inhibitor, which has been revealed to inhibit proliferation in tumor cells. However, the effect of icotinib on cancer cell metastasis remains to be explained. This study examines the effect of icotinib on the migration and invasion of squamous cells of tongue carcinoma (Tca8113 cells) in vitro. The results of the Boyden chamber invasion assay demonstrated that icotinib reduced cell invasion, suppressed the protein levels of matri...

  7. Aqueous Extract of Black Maca Prevents Metabolism Disorder via Regulating the Glycolysis/Gluconeogenesis-TCA Cycle and PPARα Signaling Activation in Golden Hamsters Fed a High-Fat, High-Fructose Diet.

    Science.gov (United States)

    Wan, Wenting; Li, Hongxiang; Xiang, Jiamei; Yi, Fan; Xu, Lijia; Jiang, Baoping; Xiao, Peigen

    2018-01-01

    Maca ( Lepidium meyenii Walpers) has been used as a dietary supplement and ethnomedicine for centuries. Recently, maca has become a high profile functional food worldwide because of its multiple biological activities. This study is the first explorative research to investigate the prevention and amelioration capacity of the aqueous extract of black maca (AEM) on high-fat, high-fructose diet (HFD)-induced metabolism disorder in golden hamsters and to identify the potential mechanisms involved in these effects. For 20 weeks, 6-week-old male golden hamsters were fed the following respective diets: (1) a standard diet, (2) HFD, (3) HFD supplemented with metformin, or (4) HFD supplemented with three doses of AEM (300, 600, or 1,200 mg/kg). After 20 weeks, the golden hamsters that received daily AEM supplementation presented with the beneficial effects of improved hyperlipidemia, hyperinsulinemia, insulin resistance, and hepatic steatosis in vivo . Based on the hepatic metabolomic analysis results, alterations in metabolites associated with pathological changes were examined. A total of 194 identified metabolites were mapped to 46 relative metabolic pathways, including those of energy metabolism. In addition, via in silico profiling for secondary maca metabolites by a joint pharmacophore- and structure-based approach, a compound-target-disease network was established. The results revealed that 32 bioactive compounds in maca targeted 16 proteins involved in metabolism disorder. Considering the combined metabolomics and virtual screening results, we employed quantitative real-time PCR assays to verify the gene expression of key enzymes in the relevant pathways. AEM promoted glycolysis and inhibited gluconeogenesis via regulating the expression of key genes such as Gck and Pfkm . Moreover, AEM upregulated tricarboxylic acid (TCA) cycle flux by changing the concentrations of intermediates and increasing the mRNA levels of Aco2 , Fh , and Mdh2 . In addition, the lipid

  8. Aqueous Extract of Black Maca Prevents Metabolism Disorder via Regulating the Glycolysis/Gluconeogenesis-TCA Cycle and PPARα Signaling Activation in Golden Hamsters Fed a High-Fat, High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Wenting Wan

    2018-04-01

    Full Text Available Maca (Lepidium meyenii Walpers has been used as a dietary supplement and ethnomedicine for centuries. Recently, maca has become a high profile functional food worldwide because of its multiple biological activities. This study is the first explorative research to investigate the prevention and amelioration capacity of the aqueous extract of black maca (AEM on high-fat, high-fructose diet (HFD-induced metabolism disorder in golden hamsters and to identify the potential mechanisms involved in these effects. For 20 weeks, 6-week-old male golden hamsters were fed the following respective diets: (1 a standard diet, (2 HFD, (3 HFD supplemented with metformin, or (4 HFD supplemented with three doses of AEM (300, 600, or 1,200 mg/kg. After 20 weeks, the golden hamsters that received daily AEM supplementation presented with the beneficial effects of improved hyperlipidemia, hyperinsulinemia, insulin resistance, and hepatic steatosis in vivo. Based on the hepatic metabolomic analysis results, alterations in metabolites associated with pathological changes were examined. A total of 194 identified metabolites were mapped to 46 relative metabolic pathways, including those of energy metabolism. In addition, via in silico profiling for secondary maca metabolites by a joint pharmacophore- and structure-based approach, a compound-target-disease network was established. The results revealed that 32 bioactive compounds in maca targeted 16 proteins involved in metabolism disorder. Considering the combined metabolomics and virtual screening results, we employed quantitative real-time PCR assays to verify the gene expression of key enzymes in the relevant pathways. AEM promoted glycolysis and inhibited gluconeogenesis via regulating the expression of key genes such as Gck and Pfkm. Moreover, AEM upregulated tricarboxylic acid (TCA cycle flux by changing the concentrations of intermediates and increasing the mRNA levels of Aco2, Fh, and Mdh2. In addition, the lipid

  9. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  10. High-density natural luffa sponge as anaerobic microorganisms carrier for degrading 1,1,1-TCA in groundwater.

    Science.gov (United States)

    Wang, Wenbing; Wu, Yanqing; Zhang, Chi

    2017-03-01

    Anaerobic microorganisms were applied to degrade organic contaminants in groundwater with permeable reactive barriers (PRBs). However, anaerobic microorganisms need to select optimal immobilizing material as carrier. The potential of high-density natural luffa sponge (HDLS) (a new variety of luffa) for the immobilization and protection of anaerobic microorganisms was investigated. The HDLS has a dense structure composed of a complicated interwoven fibrous network. Therefore, the abrasion rate of HDLS (0.0068 g s -1 ) was the smallest among the four carriers [HDLS, ordinary natural luffa sponge (OLS), polyurethane sponge (PS), and gel carrier AQUAPOROUSGEL (APG)]. The results suggest that it also had the greatest water retention (10.26 H 2 O-g dry carrier-g -1 ) and SS retention (0.21 g dry carrier-g -1 ). In comparison to well-established commercialized gel carrier APG, HDLS was of much better mechanical strength, hydrophilicity and stability. Microbial-immobilized HDLS also had the best performance for the remediation of 1,1,1-TCA simulated groundwater. Analysis of the clone libraries from microorganism-immobilized HDLS showed the HDLS could protect microorganisms from the toxicity of 1,1,1-TCA and maintain the stability of microbial community diversity. The mechanism of HDLS immobilizing and protecting microorganisms was proposed as follows. The HDLS had a micron-scale honeycomb structure (30-40 μm) and an irregular ravine structure (4-20 μm), which facilitate the immobilization of anaerobic microorganisms and protect the anaerobic microorganisms.

  11. Ion temperature measurements of H-, D- and He-plasmas in the TCA tokamak by collective Thomson scattering of D2O laser radiation

    International Nuclear Information System (INIS)

    Behn, R.; Dicken, D.; Hackmann, J.; Salito, S.A.; Siegrist, M.R.

    1989-01-01

    Development of collective Thomson scattering as a method to measure the ion temperature of a tokamak plasma has been successful and encouraging results have been obtained during experiments on TCA in H-, D- and He-plasmas. Using a laser source in the far-infrared spectral region allows scattering angles close to 90 o , which results in excellent spatial resolution. The system installed on the TCA tokamak comprises an optically pumped D 2 O laser emitting 0.5 J in a 1.4 μs pulse on its Raman transition at 385μm. A heterodyne receiver with a Schottky barrier diode mixer has been chosen to detect the scattered radiation and analyze its spectral distribution in 12 channels of 80 MHz. Recent improvements of the mixer and 1st IF-amplifier yielded a system NEP of 2.2·10 -19 W/Hz. As a consequence we have obtained results which allow for the first time to evaluate the ion temperature T i in a single laser shot. (author) 3 figs., 1 tab

  12. Bioelectrocatalytic dechlorination of trichloroacetic acid at gel-immobilized hemoglobin on multiwalled carbon nanotubes modified graphite electrode: Kinetic modeling and reaction pathways

    International Nuclear Information System (INIS)

    Liu, Qi; Yu, Jianming; Xu, Yinghua; Wang, Jiade; Ying, Le; Song, Xinxin; Zhou, Gendi; Chen, Jianmeng

    2013-01-01

    Highlights: ► The electrons transfer from enzyme in the electrode to COCs was the key step. ► The average current efficiency was influenced by pH and temperature of the systems. ► The most favourable degradation conditions for TCA were found to be pH 3 and 310 K. ► The activation energy of 26.2 kJ mol −1 was also calculated by the Arrhenius equation. ► Bioelectrocatalytic mechanism of TCA was verified by kinetic expressions. -- Abstract: In bioelectrochemically reductive dechlorination of chlorinated organic compounds (COCs), the electrons transfer from enzyme in the electrode to COCs was the key step, which determined the average current efficiency (CE) and was influenced by the pH and temperature of the systems. In this work, the effect of temperature (288–318 K) and pH (2–11) of the electrolyte on decholrination of trichloroacetic acid (TCA) was investigated in the sodium alginate/hemoglobin-multiwalled carbon nanotubes-graphite composite electrode (Hb/SA–MWCNT–GE). The results showed that the most favourable degradation conditions for TCA by Hb/SA–MWCNT–GE were found to be pH 3 and 310 K. By varying the pH of the systems, it was found that a proton accompanied with an electron transfer between the electrode and heme Fe(III)/Fe(II) of Hb during the reaction. Additionally, the activation energy of 26.2 kJ mol −1 was also calculated by the Arrhenius equation for the reaction. The total mass balance of the reactant and the products was in the range of 97–105% during the bioelectrochemically reductive reaction. The CE only decreased from 87% to 83% when the Hb/SA–MWCNT–GE was used 5 times. Based on the intermediates detected, a pathway was proposed for TCA degradation in which it underwent dechlorination process. The main degradation mechanism described by a parallel reaction rather than by a sequential reaction for dechlorination of TCA in Hb/SA–MWCNT–GE system was proposed. These data provided relevant information about the

  13. Silymarin ameliorates metabolic dysfunction associated with Diet-induced Obesity via activation of farnesyl X receptor

    Directory of Open Access Journals (Sweden)

    Ming Gu

    2016-09-01

    ; Rosi, rosiglitazone; TBA, total bile acid; TC, total cholesterol; TCA, taurocholic acid; TCDCA, tauro-chenodeoxycholic acid; TG, triglyceride; TUDCA, tauro-ursodeoxycholic acid

  14. Highly sensitive amperometric sensor for micromolar detection of trichloroacetic acid based on multiwalled carbon nanotubes and Fe(II)–phtalocyanine modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Kurd, Masoumeh; Salimi, Abdollah; Hallaj, Rahman

    2013-01-01

    A highly sensitive electrochemical sensor for the detection of trichloroacetic acid (TCA) is developed by subsequent immobilization of phthalocyanine (Pc) and Fe(II) onto multiwalled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode. The GC/MWCNTs/Pc/Fe(II) electrode showed a pair of well-defined and nearly reversible redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) with surface-confined characteristics. The surface coverage (Γ) and heterogeneous electron transfer rate constant (k s ) of immobilized Fe(II)–Pc were calculated as 1.26 × 10 −10 mol cm −2 and 28.13 s −1 , respectively. Excellent electrocatalytic activity of the proposed GC/MWCNTs/Pc/Fe(II) system toward TCA reduction has been indicated and the three consequent irreversible peaks for electroreduction of CCl 3 COOH to CH 3 COOH have been clearly seen. The observed chronoamperometric currents are linearly increased with the concentration of TCA at concentration range up to 20 mM. Detection limit and sensitivity of the modified electrode were 2.0 μM and 0.10 μA μM −1 cm −2 , respectively. The applicability of the sensor for TCA detection in real samples was tested. The obtained results suggest that the proposed system can serve as a promising electrochemical platform for TCA detection. Highlights: ► Phthalocyanine (PC) and Fe(II) immobilized onto MWCNTs modified GC electrode. ► A pair of well-defined redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) observed. ► Modified electrode shows excellent catalytic activity to electroreduction of CCl 3 COOH. ► Amperometry and cyclic voltammetry techniques were used for detection of CCl 3 COOH. ► Detection limit and sensitivity were 2.0 μM and 0.10 μA μM −1 cm −2 , respectively

  15. Metabonomics Indicates Inhibition of Fatty Acid Synthesis, β-Oxidation, and Tricarboxylic Acid Cycle in Triclocarban-Induced Cardiac Metabolic Alterations in Male Mice.

    Science.gov (United States)

    Xie, Wenping; Zhang, Wenpeng; Ren, Juan; Li, Wentao; Zhou, Lili; Cui, Yuan; Chen, Huiming; Yu, Wenlian; Zhuang, Xiaomei; Zhang, Zhenqing; Shen, Guolin; Li, Haishan

    2018-02-14

    Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.

  16. A new MicroTCA-based waveform digitizer for the Muon g-2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sweigart, David A. [Cornell U.

    2016-12-15

    We present the design of a new $\\mu$TCA-based waveform digitizer, which will be deployed in the Muon g-2 experiment at Fermilab and will allow our pileup identification requirement to be met. This digitizer features five independent channels, each with 12-bit, 800-MSPS digitization and a 1-Gbit memory buffer. The data storage and readout along with configuration are handled by six Xilinx Kintex-7 FPGAs. In addition, the digitizer is equipped with a mezzanine card for analog signal conditioning prior to digitization, further widening its range of possible applications. The performance results of this design are also presented, highlighting its $0.51 \\pm 0.13$ mV intrinsic noise level and $< 22$ ps intrinsic timing resolution between channels. We believe that its performance, together with its flexible design, could be of interest to future experiments in search of a cost-effective waveform digitizer.

  17. Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens.

    Science.gov (United States)

    Ramasamy, Kalavathy; Abdullah, Norhani; Wong, Michael Cvl; Karuthan, Chinna; Ho, Yin Wan

    2010-01-15

    Bile salt deconjugation by Lactobacillus strains is often closely linked to bile tolerance and survival of the strains in the gut and lowering of cholesterol in the host. The present study investigated the deconjugation of bile salts and removal of cholesterol by 12 Lactobacillus strains in vitro. The 12 strains were previously isolated from the gastrointestinal tract of chickens. The 12 Lactobacillus strains could deconjugate sodium glycocholate (GCA, 16.87-100%) and sodium taurocholate (TCA, 1.69-57.43%) bile salts to varying degrees, with all strains except L. salivarius I 24 having a higher affinity for GCA. The 12 Lactobacillus strains also showed significant (P strains (C1, C10 and C16) and between cholesterol removal and deconjugation of TCA (r = 0.38) and GCA (r = 0.70) among the L. brevis strains (I 12, I 23, I 25, I 211 and I 218). In contrast, although L. gallinarum I 16 and I 26 and L. panis C 17 showed high deconjugating activity, there was no correlation between cholesterol removal and deconjugation of bile salts in these strains. The results showed that the 12 Lactobacillus strains were able to deconjugate bile salts and remove cholesterol in vitro, but not all strains with high deconjugating activity removed cholesterol effectively. Copyright (c) 2009 Society of Chemical Industry.

  18. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.

    Science.gov (United States)

    Liu, Jingjing; Xie, Zhipeng; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    2017-07-10

    Aspergillus oryzae finds wide application in the food, feed, and wine industries, and is an excellent cell factory platform for production of organic acids. In this work, we achieved the overproduction of L-malate by rewiring the reductive tricarboxylic acid (rTCA) pathway and L-malate transport pathway of A. oryzae NRRL 3488. First, overexpression of native pyruvate carboxylase and malate dehydrogenase in the rTCA pathway improved the L-malate titer from 26.1gL -1 to 42.3gL -1 in shake flask culture. Then, the oxaloacetate anaplerotic reaction was constructed by heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase from Escherichia coli, increasing the L-malate titer to 58.5gL -1 . Next, the export of L-malate from the cytoplasm to the external medium was strengthened by overexpression of a C4-dicarboxylate transporter gene from A. oryzae and an L-malate permease gene from Schizosaccharomyces pombe, improving the L-malate titer from 58.5gL -1 to 89.5gL -1 . Lastly, guided by transcription analysis of the expression profile of key genes related to L-malate synthesis, the 6-phosphofructokinase encoded by the pfk gene was identified as a potential limiting step for L-malate synthesis. Overexpression of pfk with the strong sodM promoter increased the L-malate titer to 93.2gL -1 . The final engineered A. oryzae strain produced 165gL -1 L-malate with a productivity of 1.38gL -1 h -1 in 3-L fed-batch culture. Overall, we constructed an efficient L-malate producer by rewiring the rTCA pathway and L-malate transport pathway of A. oryzae NRRL 3488, and the engineering strategy adopted here may be useful for the construction of A. oryzae cell factories to produce other organic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. TCA precipitation and ethanol/HCl single-step purification evaluation: One-dimensional gel electrophoresis, bradford assays, spectrofluorometry and Raman spectroscopy data on HSA, Rnase, lysozyme - Mascots and Skyline data

    Directory of Open Access Journals (Sweden)

    Balkis Eddhif

    2018-04-01

    Full Text Available The data presented here are related to the research paper entitled “Study of a Novel Agent for TCA Precipitated Proteins Washing - Comprehensive Insights into the Role of Ethanol/HCl on Molten Globule State by Multi-Spectroscopic Analyses” (Eddhif et al., submitted for publication [1]. The suitability of ethanol/HCl for the washing of TCA-precipitated proteins was first investigated on standard solution of HSA, cellulase, ribonuclease and lysozyme. Recoveries were assessed by one-dimensional gel electrophoresis, Bradford assays and UPLC-HRMS. The mechanistic that triggers protein conformational changes at each purification stage was then investigated by Raman spectroscopy and spectrofluorometry. Finally, the efficiency of the method was evaluated on three different complex samples (mouse liver, river biofilm, loamy soil surface. Proteins profiling was assessed by gel electrophoresis and by UPLC-HRMS.

  20. Simulation of reactor noise analysis measurement for light-water critical assembly TCA using MCNP-DSP

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Sakurai, Kiyoshi; Tonoike, Kotaro; Miyoshi, Yoshinori

    2001-01-01

    Reactor noise analysis methods using Monte Carlo technique have been proposed and developed in the field of nuclear criticality safety. The Monte Carlo simulation for noise analysis can be made by simulating physical phenomena in the course of neutron transport in a nuclear fuel as practically as possible. MCNP-DSP was developed by T. Valentine of ORNL for this purpose and it is a modified version of MCNP-4A. The authors applied this code to frequency analysis measurements performed in light-water critical assembly TCA. Prompt neutron generation times for critical and subcritical cores were measured by doing the frequency analysis of detector signals. The Monte Carlo simulations for these experiments were carried out using MCNP-DSP, and prompt neutron generation times were calculated. (author)

  1. In silico analysis and experimental validation of azelastine hydrochloride (N4) targeting sodium taurocholate co-transporting polypeptide (NTCP) in HBV therapy.

    Science.gov (United States)

    Fu, L-L; Liu, J; Chen, Y; Wang, F-T; Wen, X; Liu, H-Q; Wang, M-Y; Ouyang, L; Huang, J; Bao, J-K; Wei, Y-Q

    2014-08-01

    The aim of this study was to explore sodium taurocholate co-transporting polypeptide (NTCP) exerting its function with hepatitis B virus (HBV) and its targeted candidate compounds, in HBV therapy. Identification of NTCP as a novel HBV target for screening candidate small molecules, was used by phylogenetic analysis, network construction, molecular modelling, molecular docking and molecular dynamics (MD) simulation. In vitro virological examination, q-PCR, western blotting and cytotoxicity studies were used for validating efficacy of the candidate compound. We used the phylogenetic analysis of NTCP and constructed its protein-protein network. Also, we screened compounds from Drugbank and ZINC, among which five were validated for their authentication in HepG 2.2.15 cells. Then, we selected compound N4 (azelastine hydrochloride) as the most potent of them. This showed good inhibitory activity against HBsAg (IC50 = 7.5 μm) and HBeAg (IC50 = 3.7 μm), as well as high SI value (SI = 4.68). Further MD simulation results supported good interaction between compound N4 and NTCP. In silico analysis and experimental validation together demonstrated that compound N4 can target NTCP in HepG2.2.15 cells, which may shed light on exploring it as a potential anti-HBV drug. © 2014 John Wiley & Sons Ltd.

  2. Functional tests of 2S modules for the CMS Phase-2 Tracker Upgrade with a MicroTCA-based readout system

    CERN Document Server

    Preuten, Marius; Klein, Katja; Lipinski, Martin; Rauch, Max; Feld, Lutz

    2017-01-01

    First full size 2S module prototypes for the CMS Phase-2 Outer Tracker Upgrade have been assembled. With two sensors of realistic dimensions and 16 CBC2 readout ASICs on two front-end hybrids, the characteristics of these novel and complex objects can be studied.A MicroTCA based readout system was developed to test multiple front-end hybrids simultaneously. Therefore the concurrent information of the full module can be used for noise and signal studies.

  3. Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma.

    Science.gov (United States)

    Liu, Meng-Xi; Jin, Lei; Sun, Si-Jia; Liu, Peng; Feng, Xu; Cheng, Zhou-Li; Liu, Wei-Ren; Guan, Kun-Liang; Shi, Ying-Hong; Yuan, Hai-Xin; Xiong, Yue

    2018-03-01

    Phosphoenolpyruvate carboxykinase (PEPCK or PCK) catalyzes the first rate-limiting step in hepatic gluconeogenesis pathway to maintain blood glucose levels. Mammalian cells express two PCK genes, encoding for a cytoplasmic (PCPEK-C or PCK1) and a mitochondrial (PEPCK-M or PCK2) isoforms, respectively. Increased expressions of both PCK genes are found in cancer of several organs, including colon, lung, and skin, and linked to increased anabolic metabolism and cell proliferation. Here, we report that the expressions of both PCK1 and PCK2 genes are downregulated in primary hepatocellular carcinoma (HCC) and low PCK expression was associated with poor prognosis in patients with HCC. Forced expression of either PCK1 or PCK2 in liver cancer cell lines results in severe apoptosis under the condition of glucose deprivation and suppressed liver tumorigenesis in mice. Mechanistically, we show that the pro-apoptotic effect of PCK1 requires its catalytic activity. We demonstrate that forced PCK1 expression in glucose-starved liver cancer cells induced TCA cataplerosis, leading to energy crisis and oxidative stress. Replenishing TCA intermediate α-ketoglutarate or inhibition of reactive oxygen species production blocked the cell death caused by PCK expression. Taken together, our data reveal that PCK1 is detrimental to malignant hepatocytes and suggest activating PCK1 expression as a potential treatment strategy for patients with HCC.

  4. The CMS Fast Beams Condition Monitor Backend Electronics based on MicroTCA technology

    CERN Document Server

    Zagozdzinska, Agnieszka Anna

    2016-01-01

    The Fast Beams Condition Monitor (BCM1F), upgraded for LHC Run II, is one sub-system of the Beam Radiation Instrumentation and Luminosity Project of the CMS experiment. It is based on 24 single crystal CVD diamond sensors. Each sensor is metallised with two pads, being read out by a dedicated fast frontend chip produced in 130 nm CMOS technology. Signals for real time monitoring are processed by custom-made back-end electronics to measure separately rates corresponding to LHC collision products, machine induced background and residual activation exploiting different arrival times. The system is built in MicroTCA technology and uses high speed analog-to-digital converters. The data processing module designed for the FPGA allows a distinguishing of collision and machine induced background, both synchronous to the LHC clock, from the residual activation products. In operational modes of high rates, consecutive events, spaced in time by less than 12.5 ns, may partially overlap. Hence, novel signal processing tec...

  5. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    International Nuclear Information System (INIS)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S.; Wada, H.; Horio, Y.

    1990-01-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP PM ) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP PM have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP PM reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of [ 3 H]oleate but not that of [ 35 S]sulfobromophthalein or [ 14 C]taurocholate. The inhibition of oleate uptake produced by anti-h-FABP PM can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP PM and mGOT are closely related

  6. Data Corrections and Wind-Tunnel Data Comparisons of a 5% TCA Model in the NASA Ames 12-ft Pressure Tunnel

    Science.gov (United States)

    Zuniga, Fanny A.

    1999-01-01

    The objectives of this research are: 1) To determine the effect of geometric variations near the inboard leading-edge flap on high-lift and stability and control performance data; 2) To determine Re effects on TCA (Technology Concept Aircraft) high-lift configuration for optimum high-lift and stability and control performance at takeoff, climbout, approach and landing conditions; and 3) To obtain flow-visualization data on upper surface of wing for CFD validations. This paper is presented in viewgraph form.

  7. Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by desulfuromonas acetoxidans IMV B-7384

    Science.gov (United States)

    Vasyliv, Oresta M.; Maslovska, Olga D.; Ferensovych, Yaroslav P.; Bilyy, Oleksandr I.; Hnatush, Svitlana O.

    2015-05-01

    Desulfuromonas acetoxidans IMV B-7384 is exoelectrogenic obligate anaerobic sulfur-reducing bacterium. Its one of the first described electrogenic bacterium that performs complete oxidation of an organic substrate with electron transfer directly to the electrode in microbial fuel cell (MFC). This bacterium is very promising for MFC development because of inexpensive cultivation medium, high survival rate and selective resistance to various heavy metal ions. The size of D. acetoxidans IMV B-7384 cells is comparatively small (0.4-0.8×1-2 μm) that is highly beneficial while application of porous anode material because of complete bacterial cover of an electrode area with further significant improvement of the effectiveness of its usage. The interconnection between functioning of reductive stage of tricarboxylic acid (TCA) cycle under anaerobic conditions, and MFC performance was established. Malic, pyruvic, fumaric and succinic acids in concentration 42 mM were separately added into the anode chamber of MFC as the redox agents. Application of malic acid caused the most stabile and the highest power generation in comparison with other investigated organic acids. Its maximum equaled 10.07±0.17mW/m2 on 136 hour of bacterial cultivation. Under addition of pyruvic, succinic and fumaric acids into the anode chamber of MFC the maximal power values equaled 5.80±0.25 mW/m2; 3.2±0.11 mW/m2, and 2.14±0.19 mW/m2 respectively on 40, 56 and 32 hour of bacterial cultivation. Hence the malic acid conversion via reductive stage of TCA cycle is shown to be the most efficient process in terms of electricity generation by D. acetoxidans IMV B-7384 in MFC under anaerobic conditions.

  8. Narrowband NIR-Induced In Situ Generation of the High-Energy Trans Conformer of Trichloroacetic Acid Isolated in Solid Nitrogen and its Spontaneous Decay by Tunneling to the Low-Energy Cis Conformer

    Directory of Open Access Journals (Sweden)

    R. F. G. Apóstolo

    2015-12-01

    Full Text Available The monomeric form of trichloroacetic acid (CCl3COOH; TCA was isolated in a cryogenic nitrogen matrix (15 K and the higher energy trans conformer (O=C–O–H dihedral: 180° was generated in situ by narrowband near-infrared selective excitation the 1st OH stretching overtone of the low-energy cis conformer (O=C–O–H dihedral: 0°. The spontaneous decay, by tunneling, of the generated high-energy conformer into the cis form was then evaluated and compared with those observed previously for the trans conformers of acetic and formic acids in identical experimental conditions. The much faster decay of the high-energy conformer of TCA compared to both formic and acetic acids (by ~35 and ca. 25 times, respectively was found to correlate well with the lower energy barrier for the trans→cis isomerization in the studied compound. The experimental studies received support from quantum chemistry calculations undertaken at the DFT(B3LYP/cc-pVDZ level of approximation, which allowed a detailed characterization of the potential energy surface of the molecule and the detailed assignment of the infrared spectra of the two conformers.

  9. Effect of a high-fat-high-cholesterol diet on gallbladder bile acid composition and gallbladder motility in dogs.

    Science.gov (United States)

    Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime

    2017-12-01

    OBJCTIVE To investigate the effects of dietary lipid overload on bile acid metabolism and gallbladder motility in healthy dogs. ANIMALS 7 healthy Beagles. PROCEDURES In a crossover study, dogs were fed a high-fat-high-cholesterol diet (HFCD) or a low-fat diet (LFD) for a period of 2 weeks. After a 4-month washout period, dogs were fed the other diet for 2 weeks. Before and at the end of each feeding period, the concentrations of each of the gallbladder bile acids, cholecystokinin (CCK)-induced gallbladder motility, and bile acid metabolism-related hepatic gene expression were examined in all dogs. RESULTS The HFCD significantly increased plasma total cholesterol concentrations. The HFCD also increased the concentration of taurochenodeoxycholic acid and decreased the concentration of taurocholic acid in bile and reduced gallbladder contractility, whereas the LFD significantly decreased the concentration of taurodeoxycholic acid in bile. Gene expression analysis revealed significant elevation of cholesterol 7α-hydroxylase mRNA expression after feeding the HFCD for 2 weeks, but the expression of other genes was unchanged. CONCLUSIONS AND CLINICAL RELEVANCE Feeding the HFCD and LFD for 2 weeks induced changes in gallbladder bile acid composition and gallbladder motility in dogs. In particular, feeding the HFCD caused an increase in plasma total cholesterol concentration, an increase of hydrophobic bile acid concentration in bile, and a decrease in gallbladder sensitivity to CCK. These results suggested that similar bile acid compositional changes and gallbladder hypomotility might be evident in dogs with hyperlipidemia.

  10. Comparative studies of the structure, morphology and electrical conductivity of polyaniline weakly doped with chlorocarboxylic acids

    International Nuclear Information System (INIS)

    Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Mohamed, Abdellatif Belhadj

    2007-01-01

    We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-10 6 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T 0 , density of states at the Fermi level (N(E F )), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σ ac (ω,T) A(T)ω s(T,ω) , which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems

  11. Measurement of the ion temperature in the tokamak TCA by collective Thomson diffusion in the far infrared

    International Nuclear Information System (INIS)

    Salito, S.A.

    1989-07-01

    This paper covers the analysis of spectra obtained by collective Thomson diffusion and the measurement, by this method, of the ionic temperature in the plasmas of the TCA tokamak. The experimental equipment we have used consists of a D 2 O laser and of a heterodyne detection system analyzing the spectra diffused by the plasma. The diffused spectra were obtained using a geometry determining a diffusion angle Θ s of 90 o . We could choose two different angles β between the wave vector k and the direction of the magnetic field (β=90 o , β=86 o ). We have performed the measurement of the coherent (collective) spectrum in the hydrogen, deuterium and helium plasmas of the TCA tokamak. When the electron density exceeded 4x10 19 m -3 , the diffused spectra were analyzed on the basis of a single laser shot of 1.4 μs duration. The ionic acoustic resonance was observed in the helium plasma for an angle β of 86 o . When β was 90 o , we observed that the experimental spectra were heavily disturbed by the effects of the magnetic field, and their shapes became triangular. A small concentration of light impurities affected the shape of the spectra up to their extremities. By collective diffusion we could measure the typical ionic temperatures of 330 eV for the hydrogen plasmas and of 390 eV for the deuterium and helium plasmas. The precision of this measurement was 10% at an average of 10 shots, and it was 25% for a single measurement of 1.4 μs duration. It is mainly limited by the signal/noise ratio which is in the order of 3 for one measurement during a single laser shot of 1.4 μs. (author) 70 figs., 5 tabs., 106 refs

  12. Effects of chlorpromazine on Na+-K+-ATPase pumping and solute transport in rat hepatocytes

    International Nuclear Information System (INIS)

    Van Dyke, R.W.; Scharschmidt, B.F.

    1987-01-01

    Inhibition of Na+-K+-ATPase and sodium-dependent bile acid transport has been suggested as a mechanism for the cholestasis produced by certain drugs such as chlorpromazine. We examined the effects of chlorpromazine (and in selected studies, two of its metabolites) on Na+-K+-ATPase cation pumping (ouabain-suppressible 86 Rb uptake), exchangeable intracellular sodium content, membrane potential (assessed by 36 Cl- distribution), and sodium-dependent transport of taurocholate and alanine in primary cultures of rat hepatocytes. Chlorpromazine (10-300 microM), 7,8-dihydroxychlorpromazine (10-300 microM), and ouabain (0.1-2 mM), but not chlorpromazine sulfoxide, produced a concentration-dependent decrease in Na+-K+-ATPase cation pumping and an increase in intracellular sodium content. Chlorpromazine (100 microM) and ouabain (0.75 mM) also modestly decreased hepatocyte membrane potential. In further studies, chlorpromazine (75 and 100 microM) and ouabain (0.1, 0.5, and 0.75 mM) decreased initial sodium-dependent uptake rates of taurocholate and alanine by 18-63%. Although the steady-state intracellular content of alanine was decreased 25-53% by both agents, chlorpromazine increased the steady-state content of taurocholate by 171% and decreased taurocholate efflux, apparently related to partitioning of taurocholate into a large, slowly turning over intracellular pool. These studies provide direct evidence that chlorpromazine inhibits Na+-K+-ATPase cation pumping in intact cells and that partial inhibition of Na+-K+-ATPase cation pumping is associated with a reduction of both the electrochemical sodium gradient and sodium-dependent solute transport. These effects of chlorpromazine may contribute to chlorpromazine-induced cholestasis in animals and humans

  13. Effects of chlorpromazine on Na+-K+-ATPase pumping and solute transport in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Van Dyke, R.W.; Scharschmidt, B.F.

    1987-11-01

    Inhibition of Na+-K+-ATPase and sodium-dependent bile acid transport has been suggested as a mechanism for the cholestasis produced by certain drugs such as chlorpromazine. We examined the effects of chlorpromazine (and in selected studies, two of its metabolites) on Na+-K+-ATPase cation pumping (ouabain-suppressible /sup 86/Rb uptake), exchangeable intracellular sodium content, membrane potential (assessed by /sup 36/Cl- distribution), and sodium-dependent transport of taurocholate and alanine in primary cultures of rat hepatocytes. Chlorpromazine (10-300 microM), 7,8-dihydroxychlorpromazine (10-300 microM), and ouabain (0.1-2 mM), but not chlorpromazine sulfoxide, produced a concentration-dependent decrease in Na+-K+-ATPase cation pumping and an increase in intracellular sodium content. Chlorpromazine (100 microM) and ouabain (0.75 mM) also modestly decreased hepatocyte membrane potential. In further studies, chlorpromazine (75 and 100 microM) and ouabain (0.1, 0.5, and 0.75 mM) decreased initial sodium-dependent uptake rates of taurocholate and alanine by 18-63%. Although the steady-state intracellular content of alanine was decreased 25-53% by both agents, chlorpromazine increased the steady-state content of taurocholate by 171% and decreased taurocholate efflux, apparently related to partitioning of taurocholate into a large, slowly turning over intracellular pool. These studies provide direct evidence that chlorpromazine inhibits Na+-K+-ATPase cation pumping in intact cells and that partial inhibition of Na+-K+-ATPase cation pumping is associated with a reduction of both the electrochemical sodium gradient and sodium-dependent solute transport. These effects of chlorpromazine may contribute to chlorpromazine-induced cholestasis in animals and humans.

  14. [A case report: anomaly of the fourth branchial pouch with recurring cervical abscesses. Cauterization with trichloroacetic acid closed the fistula opening and cured the patient].

    Science.gov (United States)

    Stenquist, Monika; Juhlin, Claes; Aström, Gunnar; Friberg, Ulla

    2003-04-24

    A fourth branchial pouch sinus is a rare congenital anomaly, which in a 13-year-old girl presented clinically as recurrent deep cervical abscesses. The location of the majority of these anomalies is the left side of the neck (90%). Radiological and endoscopic investigations verified the diagnosis. The internal orifice located at the apex of the pyriform sinus could facilitate contamination by infectious pharyngeal secretions and lead to abscess recurrence. Traditionally, the recommended treatment is radical surgery. It can, however, be technically difficult to excise the whole fistula tract. In this patient we used a non-invasive treatment modality; chemocauterization with 40% trichloroacetic acid (TCA). After three treatments the fistula was closed. To date (month no. 15) there has been no abscess recurrence. TCA chemocauterization seems to be a safe first-line treatment for patients with pyriform sinus fistulas.

  15. Identification of a single sinusoidal bile salt uptake system in skate liver

    International Nuclear Information System (INIS)

    Fricker, G.; Hugentobler, G.; Meier, P.J.; Kurz, G.; Boyer, J.L.

    1987-01-01

    To identify the sinusoidal bile acid uptake system(s) of skate liver, photoaffinity labeling and kinetic transport studies were performed in isolated plasma membranes as well as intact hepatocytes. In both preparations photoaffinity labeling with the photolabile bile salt derivative revealed the presence of a predominant bile salt binding polypeptide with an apparent molecular weight of 54,000. The [ 3 H]-labeling of this polypeptide was inhibited by taurocholate and cholate in a concentration-dependent manner and was virtually abolished by 1 mM of the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Kinetic studies of hepatic uptake with taurocholate, cholate, and the photoreactive bile salt derivative indicated the involvement of a single transport system, and all three substrates mutually competed with the uptake of each other. Finally, irreversible inhibition of the bile salt uptake system of photoaffinity labeling of hepatocytes with high concentrations of photolabile derivative reduced the V max but the K m of taurocholate uptake. These findings strongly indicate that a single polypeptide with an apparent molecular weight of 54,000 is involved in sinusoidal bile salt uptake into skate hepatocytes. These findings contrast with similar studies in rat liver that implicate both a 54,000- and 48,000-K polypeptide in bile salt uptake and are consistent with a single Na + -independent transport mechanism for hepatic bile salt uptake in this primitive vertebrate

  16. Protein precipitation of diluted samples in SDS-containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach.

    Science.gov (United States)

    Santa, Cátia; Anjo, Sandra I; Manadas, Bruno

    2016-07-01

    Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH-MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Highly sensitive amperometric sensor for micromolar detection of trichloroacetic acid based on multiwalled carbon nanotubes and Fe(II)–phtalocyanine modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kurd, Masoumeh [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P. O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-04-01

    A highly sensitive electrochemical sensor for the detection of trichloroacetic acid (TCA) is developed by subsequent immobilization of phthalocyanine (Pc) and Fe(II) onto multiwalled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode. The GC/MWCNTs/Pc/Fe(II) electrode showed a pair of well-defined and nearly reversible redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) with surface-confined characteristics. The surface coverage (Γ) and heterogeneous electron transfer rate constant (k{sub s}) of immobilized Fe(II)–Pc were calculated as 1.26 × 10{sup −10} mol cm{sup −2} and 28.13 s{sup −1}, respectively. Excellent electrocatalytic activity of the proposed GC/MWCNTs/Pc/Fe(II) system toward TCA reduction has been indicated and the three consequent irreversible peaks for electroreduction of CCl{sub 3}COOH to CH{sub 3}COOH have been clearly seen. The observed chronoamperometric currents are linearly increased with the concentration of TCA at concentration range up to 20 mM. Detection limit and sensitivity of the modified electrode were 2.0 μM and 0.10 μA μM{sup −1} cm{sup −2}, respectively. The applicability of the sensor for TCA detection in real samples was tested. The obtained results suggest that the proposed system can serve as a promising electrochemical platform for TCA detection. Highlights: ► Phthalocyanine (PC) and Fe(II) immobilized onto MWCNTs modified GC electrode. ► A pair of well-defined redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) observed. ► Modified electrode shows excellent catalytic activity to electroreduction of CCl{sub 3}COOH. ► Amperometry and cyclic voltammetry techniques were used for detection of CCl{sub 3}COOH. ► Detection limit and sensitivity were 2.0 μM and 0.10 μA μM{sup −1} cm{sup −2}, respectively.

  18. Olfactory transduction pathways in the Senegalese sole Solea senegalensis.

    Science.gov (United States)

    Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M

    2013-09-01

    This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms. © 2013 The Fisheries Society of the British Isles.

  19. Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Joanne M Kingsbury

    2015-12-01

    Full Text Available The conserved target of rapamycin complex 1 (TORC1 integrates nutrient signals to orchestrate cell growth and proliferation. Leucine availability is conveyed to control TORC1 activity via the leu-tRNA synthetase/EGOC-GTPase module in yeast and mammals, but the mechanisms sensing leucine remain only partially understood. We show here that both leucine and its α-ketoacid metabolite, α-ketoisocaproate, effectively activate the yeast TORC1 kinase via both EGOC GTPase-dependent and -independent mechanisms. Leucine and α-ketoisocaproate are interconverted by ubiquitous branched-chain aminotransferases (BCAT, which in yeast are represented by the mitochondrial and cytosolic enzymes Bat1 and Bat2, respectively. BCAT yeast mutants exhibit severely compromised TORC1 activity, which is partially restored by expression of Bat1 active site mutants, implicating both catalytic and structural roles of BCATs in TORC1 control. We find that Bat1 interacts with branched-chain amino acid metabolic enzymes and, in a leucine-dependent fashion, with the tricarboxylic acid (TCA-cycle enzyme aconitase. BCAT mutation perturbed TCA-cycle intermediate levels, consistent with a TCA-cycle block, and resulted in low ATP levels, activation of AMPK, and TORC1 inhibition. We propose the biosynthetic capacity of BCAT and its role in forming multicomplex metabolons connecting branched-chain amino acids and TCA-cycle metabolism governs TCA-cycle flux to activate TORC1 signaling. Because mammalian mitochondrial BCAT is known to form a supramolecular branched-chain α-keto acid dehydrogenase enzyme complex that links leucine metabolism to the TCA-cycle, these findings establish a precedent for understanding TORC1 signaling in mammals.

  20. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.

    Science.gov (United States)

    Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer

    2017-11-06

    Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Methodological investigation on the use of 14C-leucine and 15N-leucine for studying the absorption of amino acids in the experimental rat

    International Nuclear Information System (INIS)

    Bergner, H.; Bergner, U.; Adam, K.

    1980-01-01

    After nine days of adaptation to a whole-egg diet, albino rats were given 14 C-U-L-leucine and 15 N-L-leucine in addition by the oral route. Each rat received the labelled leucine via a pellet made from the whole-egg diet after food deprivation for 15 h. Thereafter, the experimental animals consumed the unlabelled experimental diet ad libitum. Four times, 30 min, and 1, 2, 4 and 8 h after ingestion of the labelled food, four experimental rats were sacrificed. The contents of the digestive tract and tissue samples were examined for 14 C and 15 N. The halftime of disappearance of the 14 C activity and of the 15 N excess from the TCA-soluble fraction of the gastric contents lay between 1.9 and 2.2 h. Up to the fourth hour of experiment, the 15 N level of the TCA-soluble fraction of the gastric contents was high. The free leucine is obviously absorbed in the stomach and is used for the synthesis of enzyme protein and mucoproteides. In the TCA-soluble fraction of the total contents of the small intestine, the following values (expressed as percentages of the total amounts ingested at the times of measurement) were found: 14 C = 2.0; 6.5; 9.6; 7.4 and 1.5; 15 N excess = 0.8; 1.2; 1.6; 1.6 and 1.2 Were these values regarded as non-absorbed leucine, the 14 C values obtained during the one-to-four hour period of experiment would unequivocally be too high. Presumably, they are simulated by other 14 C-metabolites which originate from the leucine catabolism and reach the intestinal lumen through the intestinal wall. Amino acids labelled with 15 N should be preferred in studies on the absorption of amino acids because, in case of catabolization, the 15 N-amino group is excreted mainly in the form of urea. 14 C-amino acids can be recommended for such studies only if the specific 14 C activity of the amino acid used is also measured. (author)

  2. Ultrastructural changes in the isolated rat kidney induced by conjugated bilirubin and bile acids.

    Science.gov (United States)

    Gollan, J L; Billing, B H; Huang, S N

    1976-10-01

    The effects of bilirubin and bile acids on the ultrastructure of proximal renal tubules have been studied using an isolated rat kidney preparation, perfused with a protein-free dextran medium. Control kidneys perfused for 1 h had a normal glomerular filtration rate and effective renal plasma flow; the ultrastructure of proximal tubular cells was well preserved, with normal mitochondria, nuclear and plasma membranes, and microvilli of the brush border. When conjugated bilirubin, prepared from human hepatic bile, was added to the perfusion medium (5-0-7-5 mg/100 ml), marked alterations were observed in some cells, particularly with regard to the mitochondria and plasma membranes. These changes were greatly diminished by the inclusion of bovine albumin in the medium, indicating that the unbound fraction was primarily responsible for the tubular damage. The addition of taurocholate (450 muM), taurochenodeoxycholate (550 muM) or taurolithocholate (250 muM, bound to albumin) also produced plasma membrane changes, but only slight abnormalities were seen in the mitochondria and other structures. These ultrastructural observations support the concept that the elevated plasma levels of conjugated bilirubin and to a lesser extent bile acids are related to the renal failure associated with obstructive jaundice.

  3. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    Energy Technology Data Exchange (ETDEWEB)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S. (Mount Sinai School of Medicine, New York, NY (USA)); Wada, H.; Horio, Y. (Univ. of Osaka (Japan))

    1990-05-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP{sub PM}) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP{sub PM} have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP{sub PM} reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of ({sup 3}H)oleate but not that of ({sup 35}S)sulfobromophthalein or ({sup 14}C)taurocholate. The inhibition of oleate uptake produced by anti-h-FABP{sub PM} can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP{sub PM} and mGOT are closely related.

  4. EVALUASI IN VITRO TERHADAP KEMAMPUAN ISOLAT BAKTERI ASAM LAKTAT ASAL AIR SUSU IBU UNTUK MENGASIMILASI KOLESTEROL DAN MENDEKONJUGASI GARAM EMPEDU [In Vitro Evaluation of Cholesterol Assimilation and Bile Salt Deconjugation by Lactic Acid Bacteria Isolated from Breast Milk

    Directory of Open Access Journals (Sweden)

    Lilis Nuraida1,2*

    2011-06-01

    Full Text Available Hypercholesterolemia is a risk factor for cardiovascular disease, the leading cause of death in many countries. Several studies have shown that reduction of excessive levels of cholesterol in the blood decreases the risk of cardiovascular disease. It is therefore important to develop ways of reducing serum cholesterol. Based on in vitro and in vivo studies, some of lactic acid bacteria (LAB having potential probiotic properties can reduce total cholesterol and low-density lipoprotein cholesterol levels. The aim of this study was to evaluate the ability of LAB isolated from breast milk in reducing cholesterol by assimilation and by bile salt deconjugation activity in vitro.Thirteen strains of LABs were evaluated for their acid and bile salt resistance and selected to test their ability to assimilate cholesterol and to deconjugate bile salt (natrium taurocholate in vitro. Cholesterol assimilation activity was determined by measuring the difference between the remaining cholesterol in broth medium inoculated with LAB with cholesterol in control after incubation. Bile salt deconjugation activity was determined by measuring free cholic acid released in broth medium after incubation with LAB. The results shows that most of the isolates was susceptible to low pH and all isolates used were able to survive in the presence of 0.5% bile salt. The LAB were also able to assimilate cholesterol at varying levels ranging from 0.86-14.97 µg/ml, with the highest activity showed by Pediococcus pentosaceus 1-A38, Pediococcus pentosaceus 2-B2 and Pediococcus pentosaceus 2-A16. Taurocholate deconjugation assay showed that the isolates have weak bile salts deconjugation activity as indicated by free cholic acid released ranging from 0.06-0.25 µmol/ml, with the highest release in Pediococcus pentosaceus 1-A38 and Pediococcus pentosaceus 1-A22. The present study suggest that Pediococcus pentosaceus 1-A38 was potential for the development of probiotic products with

  5. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1G93A mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tefera, Tesfaye W; Borges, Karin

    2018-01-01

    Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1- 13 C]glucose and [1,2- 13 C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1 G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1 H and 13 C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3- 13 C]lactate, total alanine and [3- 13 C]alanine, but not cortical glucose and [1- 13 C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1- 13 C]glucose-derived [4- 13 C]glutamate, [4- 13 C]glutamine and [2- 13 C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3- 13 C]pyruvate entry into the TCA cycle. Lack of changes in [1,2- 13 C]acetate-derived [4,5- 13 C]glutamate, [4,5- 13 C]glutamine and [1,2- 13 C]GABA levels indicate unchanged astrocytic 13 C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2- 13 C] and [4- 13 C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1 G93A mouse model at symptomatic disease stages.

  6. A plan of reactor physics experiments for reduced-moderation water reactors with MOX fuel in TCA

    International Nuclear Information System (INIS)

    Shimada, Shoichiro; Akie, Hiroshi; Suzaki, Takenori; Okubo, Tutomu; Usui, Shuji; Shirakawa, Toshihisa; Iwamura, Takamiti; Kugo, Teruhiko; Ishikawa, Nobuyuki

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors which aim at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. Critical Experiments performed so far in Eualope and Japan were reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modifications of the equipment are needed for use of MOX fuel rods. This report describes the preliminary plan of physics experiments. The number of MOX fuel rods used in the experiments are obtained by calculations and the modification of the equipment for the experiments are shown. (author)

  7. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes.

    Science.gov (United States)

    Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-08-01

    Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OST α ) and OST β increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OST α and OST β, by OCA reduced the intracellular concentrations of d 8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and

  8. Genome wide response to dietary tetradecylthioacetic acid supplementation in the heart of Atlantic Salmon (Salmo salar L

    Directory of Open Access Journals (Sweden)

    Grammes Fabian

    2012-05-01

    Full Text Available Abstract Background Under-dimensioned hearts causing functional problems are associated with higher mortality rates in intensive Atlantic salmon aquaculture. Previous studies have indicated that tetradecylthioacetic acid (TTA induces cardiac growth and also stimulates transcription of peroxisome proliferator activated receptors (PPAR αand βin the Atlantic salmon heart. Since cardiac and transcriptional responses to feed are of high interest in aquaculture, the objective of this study was to characterize the transcriptional mechanisms induced by TTA in the heart of Atlantic salmon. Results Atlantic salmon were kept at sea for 17 weeks. During the first 8 weeks the fish received a TTA supplemented diet. Using microarrays, profound transcriptional effects were observed in the heart at the end of the experiment, 9 weeks after the feeding of TTA stopped. Approximately 90% of the significant genes were expressed higher in the TTA group. Hypergeometric testing revealed the over-representation of 35 gene ontology terms in the TTA fed group. The GO terms were generally categorized into cardiac performance, lipid catabolism, glycolysis and TCA cycle. Conclusions Our results indicate that TTA has profound effects on cardiac performance based on results from microarray and qRT-PCR analysis. The gene expression profile favors a scenario of ”physiological”lright hypertrophy recognized by increased oxidative fatty acid metabolism, glycolysis and TCA cycle activity as well as cardiac growth and contractility in the heart ventricle. Increased cardiac efficiency may offer significant benefits in the demanding Aquaculture situations.

  9. Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Cabello Ferrete, Elena; Bravo, Daniel; Chappuis, Marie-Luise; Ortega Pérez, Ruben; Junier, Pilar; Perret, Xavier; Barja, François

    2016-05-01

    Acetic acid bacteria (AAB) are widespread microorganisms in nature, extensively used in food industry to transform alcohols and sugar alcohols into their corresponding organic acids. Specialized strains are used in the production of vinegar through the oxidative transformation of ethanol into acetic acid. The main AAB involved in the production of high-acid vinegars using the submerged fermentation method belong to the genus Komagataeibacter, characterized by their higher ADH stability and activity, and higher acetic acid resistance (15-20%), compared to other AAB. In this work, the bacteria involved in the production of high-acid spirit vinegar through a spontaneous acetic acid fermentation process was studied. The analysis using a culture-independent approach revealed a homogeneous bacterial population involved in the process, identified as Komagataeibacter spp. Differentially expressed proteins during acetic acid fermentation were investigated by using 2D-DIGE and mass spectrometry. Most of these proteins were functionally related to stress response, the TCA cycle and different metabolic processes. In addition, scanning and transmission electron microscopy and specific staining of polysaccharide SDS-PAGE gels confirmed that Komagataeibacter spp. lacked the characteristic polysaccharide layer surrounding the outer membrane that has been previously reported to have an important role in acetic acid resistance in the genus Acetobacter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Activity of mevalonate pathway inhibitors against breast and ovarian cancers in the ATP-based tumour chemosensitivity assay

    International Nuclear Information System (INIS)

    Knight, Louise A; Kurbacher, Christian M; Glaysher, Sharon; Fernando, Augusta; Reichelt, Ralf; Dexel, Susanne; Reinhold, Uwe; Cree, Ian A

    2009-01-01

    Previous data suggest that lipophilic statins such as fluvastatin and N-bisphosphonates such as zoledronic acid, both inhibitors of the mevalonate metabolic pathway, have anti-cancer effects in vitro and in patients. We have examined the effect of fluvastatin alone and in combination with zoledronic acid in the ATP-based tumour chemosensitivity assay (ATP-TCA) for effects on breast and ovarian cancer tumour-derived cells. Both zoledronic acid and fluvastatin showed activity in the ATP-TCA against breast and ovarian cancer, though fluvastatin alone was less active, particularly against breast cancer. The combination of zoledronic acid and fluvastatin was more active than either single agent in the ATP-TCA with some synergy against breast and ovarian cancer tumour-derived cells. Sequential drug experiments showed that pre-treatment of ovarian tumour cells with fluvastatin resulted in decreased sensitivity to zoledronic acid. Addition of mevalonate pathway components with zoledronic acid with or without fluvastatin showed little effect, while mevalonate did reduced inhibition due to fluvastatin. These data suggest that the combination of zoledronic acid and fluvastatin may have activity against breast and ovarian cancer based on direct anti-cancer cell effects. A clinical trial to test this is in preparation

  11. REMOVAL OF TRICHLOROACETIC ACID FROM THE AQUEOUS SOLUTIONS USING NATURAL AND ACTIVATED LIGNITE COALS

    Directory of Open Access Journals (Sweden)

    Hüseyin GÜLENSOY

    1998-02-01

    Full Text Available In these studies, a typical lignite coal found near Istanbul (Yeniköy and its activated products were used to adsorb TCA from aqueous solutions. Particle sizes of coal samples and the concentrations of TCA solutions were chosen as parameters against the fixed amount of adsorbent. The maximum efficiency has been obtained for the coal having (-120 + 150 mesh size fraction activated by heating. As a result, it was shown that these kinds of lignite coals could be used as a good adsorbent. In addition, it was also proved that both the removal and recovery of TCA from some waste waters would easily be possible.

  12. History of Hepatic Bile Formation: Old Problems, New Approaches

    Science.gov (United States)

    Javitt, Norman B.

    2014-01-01

    Studies of hepatic bile formation reported in 1958 established that it was an osmotically generated water flow. Intravenous infusion of sodium taurocholate established a high correlation between hepatic bile flow and bile acid excretion. Secretin, a hormone that stimulates bicarbonate secretion, was also found to increase hepatic bile flow. The…

  13. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Saad, Maged M; Chappuis, Marie-Louise; Boffa, Mauro; Perret, Xavier; Ortega Pérez, Ruben; Barja, François

    2012-03-16

    Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar. Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH. In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262(T) when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified. Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Searching for the main anti-bacterial components in artificial Calculus bovis using UPLC and microcalorimetry coupled with multi-linear regression analysis.

    Science.gov (United States)

    Zang, Qing-Ce; Wang, Jia-Bo; Kong, Wei-Jun; Jin, Cheng; Ma, Zhi-Jie; Chen, Jing; Gong, Qian-Feng; Xiao, Xiao-He

    2011-12-01

    The fingerprints of artificial Calculus bovis extracts from different solvents were established by ultra-performance liquid chromatography (UPLC) and the anti-bacterial activities of artificial C. bovis extracts on Staphylococcus aureus (S. aureus) growth were studied by microcalorimetry. The UPLC fingerprints were evaluated using hierarchical clustering analysis. Some quantitative parameters obtained from the thermogenic curves of S. aureus growth affected by artificial C. bovis extracts were analyzed using principal component analysis. The spectrum-effect relationships between UPLC fingerprints and anti-bacterial activities were investigated using multi-linear regression analysis. The results showed that peak 1 (taurocholate sodium), peak 3 (unknown compound), peak 4 (cholic acid), and peak 6 (chenodeoxycholic acid) are more significant than the other peaks with the standard parameter estimate 0.453, -0.166, 0.749, 0.025, respectively. So, compounds cholic acid, taurocholate sodium, and chenodeoxycholic acid might be the major anti-bacterial components in artificial C. bovis. Altogether, this work provides a general model of the combination of UPLC chromatography and anti-bacterial effect to study the spectrum-effect relationships of artificial C. bovis extracts, which can be used to discover the main anti-bacterial components in artificial C. bovis or other Chinese herbal medicines with anti-bacterial effects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modes of carbon fixation in an arsenic and CO2-rich shallow hydrothermal ecosystem

    DEFF Research Database (Denmark)

    Callac, Nolwenn; Posth, Nicole R.; Rattray, Jayne E.

    2017-01-01

    for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of Ru...

  16. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 7

    International Nuclear Information System (INIS)

    Gruhn, K.

    1988-01-01

    In a 15 N labelling experiment 12 colostomized laying hens received 15 N-labelled wheat with 14.37 atom-% 15 N excess ( 15 N') over 4 days. 3 hens each were butchered after 12 h, 36 h, 60 h and 108 h after the last 15 N' application. The gastrointestinal tract was divided into 3 parts (esophagus with crop and gizzard as well as glandular stomach, small intestine, large intestine). These parts and the pancreas were hydrolyzed with 6 N HCl and the individual basic as well as the sum of acid and neutral amino acids were determined in the hydrolyzed fractions. In addition, the amino acids and peptides were determined in the TCA soluble N fraction. The atom-% 15 N' was determined in the individual amino acid and peptide fractions. The labelling of the basic amino acids in the individual tract segments was lower than in the acid and neutral amino acids. In comparison to the peptides, a higher atom-% 15 N' could be determined in the free amino acids. (author)

  17. Antitumor activity of zoledronic acid in primary breast cancer cells determined by the ATP tumor chemosensitivity assay

    International Nuclear Information System (INIS)

    Fehm, Tanja; Zwirner, Manfred; Wallwiener, Diethelm; Seeger, Harald; Neubauer, Hans

    2012-01-01

    The NeoAzure study has demonstrated that the use of the bisphosphonate zoledronic acid (Zol) in the neoadjuvant setting increases the rate of complete response in primary breast cancer and therefore indicates direct antitumor activity. The purpose of this study was to compare the antitumor effect of Zol with standard chemotherapy in primary breast cancer cells using ATP-tumor chemosensitivity assay (ATP-TCA). Breast cancer specimens were obtained from patients with breast cancer who underwent primary breast cancer surgery at the Department of Obstetrics and Gynecology, Tübingen, Germany, between 2006 through 2009. Antitumor effects of Zol, TAC (Docetaxel, Adriamycin, Cyclophosphamide) and FEC (5-Fluorouracil, Epirubicin, Cyclophosphamide) were tested in 116 fresh human primary breast cancer specimens using ATP-TCA. ATP-TCA results were analyzed with different cut-off levels for the half maximal inhibitory concentration (IC50), for IC90 and for the sensitivity index (IndexSUM). Each single agent or combination was tested at six doubling dilutions from 6.25, 12.5, 25, 50, 100, and 200% of test drug concentrations (TDC) derived from the plasma peak concentrations determined by pharmacokinetic data. The assay was carried out in duplicate wells with positive and negative controls. The median IndexSUM value was lower for Zol than for the combined regimen FEC (36.8%) and TAC (12.9%), respectively, indicating increased antitumor activity of Zol in primary breast cancer cells. The difference regarding Zol and FEC was significant (p < 0.05). The median IC50 value for Zol (8.03% TDC) was significantly lower than the IC50 values for FEC (33.5% TDC) and TAC (19.3% TDC) treatment (p < 0.05). However, the median IC90 value for Zol (152.5% TDC) was significantly higher than the IC90 value obtained with TAC (49.5% TDC; p < 0.05), but similar to the IC90 value for FEC (180.9% TDC). In addition a significant positive correlation was observed for the IndexSum of Zol and the ER status

  18. Nuclear magnetic resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp. vasinfectum.

    Science.gov (United States)

    Stipanovic, Robert D; Wheeler, Michael H; Puckhaber, Lorraine S; Liu, Jinggao; Bell, Alois A; Williams, Howard J

    2011-05-25

    Fusarium oxysporum is a fungal pathogen that attacks many important plants. Uniquely pathogenic strains of F. oxysporum f. sp. vasinfectum were inadvertently imported into the United States on live cottonseed for dairy cattle feed. These strains produce exceptionally high concentrations of the phytotoxin fusaric acid. Thus, fusaric acid may be a critical component in the pathogenicity of these biotypes. This study investigated the biosynthesis of fusaric acid using (13)C-labeled substrates including [1,2-(13)C(2)]acetate as well as (13)C- and (15)N-labeled aspartate and [(15)N]glutamine. The incorporation of labeled substrates is consistent with the biosynthesis of fusaric acid from three acetate units at C5-C6, C7-C8, and C9-C10, with the remaining carbons being derived from aspartate via oxaloacetate and the TCA cycle; the oxaloacetate originates in part by transamination of aspartate, but most of the oxaloacetate is derived by deamination of aspartate to fumarate by aspartase. The nitrogen from glutamine is more readily incorporated into fusaric acid than that from aspartate.

  19. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    Science.gov (United States)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  20. Preventive effect of chemical peeling on ultraviolet induced skin tumor formation.

    Science.gov (United States)

    Abdel-Daim, Mohamed; Funasaka, Yoko; Kamo, Tsuneyoshi; Ooe, Masahiko; Matsunaka, Hiroshi; Yanagita, Emmy; Itoh, Tomoo; Nishigori, Chikako

    2010-10-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. We assessed the photochemopreventive effect of several clinically used chemical peeling agents on the ultraviolet (UV)-irradiated skin of hairless mice. Chemical peeling was done using 35% glycolic acid dissolved in distilled water, 30% salicylic acid in ethanol, 10% or 35% trichloroacetic acid (TCA) in distilled water at the right back of UV-irradiated hairless mice every 2 weeks in case of glycolic acid, salicylic acid, and 10% TCA and every 4 weeks in case of 35% TCA for totally 18 weeks after the establishment of photoaged mice by irradiation with UVA+B range light three times a week for 10 weeks at a total dose of 420 J/cm(2) at UVA and 9.6 J/cm(2) at UVB. Tumor formation was assessed every week. Skin specimens were taken from treated and non-treated area for evaluation under microscopy, evaluation of P53 expression, and mRNA expression of cyclooxygenase (COX)-2. Serum level of prostaglandin E(2) was also evaluated. All types of chemical peeling reduced tumor formation in treated mice, mostly in the treated area but also non-treated area. Peeling suppressed clonal retention of p53 positive abnormal cells and reduced mRNA expression of COX-2 in treated skin. Further, serum prostaglandin E(2) level was decreased in chemical peeling treated mice. These results indicate that chemical peeling with glycolic acid, salicylic acid, and TCA could serve tumor prevention by removing photodamaged cells. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Research for the deep inelastic collision induced by 93 MeV /sup 14/N on /sup n//sup a//sup t/Ca

    Energy Technology Data Exchange (ETDEWEB)

    Shu-Zhi, Yin; Yong-Tai, Zhu; Wen-Qing, Shen; Zhong-Yan, Guo; Wen-Long, Zhan; Wei-Min, Qiao; En-Chiu, Wu; Zhi-hao, Zheng

    1987-03-01

    The projectile-like fragments produced by 93 MeV /sup 14/N on /sup n//sup a//sup t/Ca have been measured with a large area position sensitive ionization chamber. Energy spectra, angular distributions and contour plots of d/sup 3/sigma/d..cap omega..dEdZ and TKE-theta plane for various elements from Li to Mg have been obtained. The variances of the charge distributions sigma/sub z//sup 2/ as a function of the dissipated energy have been deduced too. In the framework of a simple diffusion model the experimental results have been anlaysed and discussed.

  2. Metabolomic Analysis and Mode of Action of Metabolites of Tea Tree Oil Involved in the Suppression of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Jiayu Xu

    2017-06-01

    Full Text Available Tea tree oil (TTO, a volatile essential oil, has been widely used as an antimicrobial agent. However, the mechanism underlying TTO antifungal activity is not fully understood. In this study, a comprehensive metabolomics survey was undertaken to identify changes in metabolite production in Botrytis cinerea cells treated with TTO. Significant differences in 91 metabolites were observed, including 8 upregulated and 83 downregulated metabolites in TTO-treated cells. The results indicate that TTO inhibits primary metabolic pathways through the suppression of the tricarboxylic acid (TCA cycle and fatty acid metabolism. Further experiments show that TTO treatment decreases the activities of key enzymes in the TCA cycle and increases the level of hydrogen peroxide (H2O2. Membrane damage is also induced by TTO treatment. We hypothesize that the effect of TTO on B. cinerea is achieved mainly by disruption of the TCA cycle and fatty acid metabolism, resulting in mitochondrial dysfunction and oxidative stress.

  3. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

    Science.gov (United States)

    Greseth, Matthew D; Traktman, Paula

    2014-03-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in

  4. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Greseth

    2014-03-01

    Full Text Available The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis. Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia

  5. Maintaining Supersaturation of Nimodipine by PVP with or without the Presence of Sodium Lauryl Sulfate and Sodium Taurocholate.

    Science.gov (United States)

    Pui, Yipshu; Chen, Yuejie; Chen, Huijun; Wang, Shan; Liu, Chengyu; Tonnis, Wouter; Chen, Linc; Serno, Peter; Bracht, Stefan; Qian, Feng

    2018-05-30

    Amorphous solid dispersion (ASD) is one of the most versatile supersaturating drug delivery systems to improve the dissolution rate and oral bioavailability of poorly water-soluble drugs. PVP based ASD formulation of nimodipine (NMD) has been marketed and effectively used in clinic for nearly 30 years, yet the mechanism by which PVP maintains the supersaturation and subsequently improves the bioavailability of NMD was rarely investigated. In this research, we first studied the molecular interactions between NMD and PVP by solution NMR, using CDCl 3 as the solvent, and the drug-polymer Flory-Huggins interaction parameter. No strong specific interaction between PVP and NMD was detected in the nonaqueous state. However, we observed that aqueous supersaturation of NMD could be significantly maintained by PVP, presumably due to the hydrophobic interactions between the hydrophobic moieties of PVP and NMD in aqueous medium. This hypothesis was supported by dynamic light scattering (DLS) and supersaturation experiments in the presence of different surfactants. DLS revealed the formation of NMD/PVP aggregates when NMD was supersaturated, suggesting the formation of hydrophobic interactions between the drug and polymer. The addition of surfactants, sodium lauryl sulfate (SLS) or sodium taurocholate (NaTC), into PVP maintained that NMD supersaturation demonstrated different effects: SLS could only improve NMD supersaturation with concentration above its critical aggregation concentration (CAC) value while not with lower concentration. Nevertheless, NaTC could prolong NMD supersaturation independent of concentration, with lower concentration outperformed higher concentration. We attribute these observations to PVP-surfactant interactions and the formation of PVP/surfactant complexes. In summary, despite the lack of specific interactions in the nonaqueous state, NMD aqueous supersaturation in the presence of PVP was attained by hydrophobic interactions between the hydrophobic

  6. The effect of insulin on amino acid incorporation into exocrine pancreatic cells of the rat

    International Nuclear Information System (INIS)

    Kramer, M.F.; Poort, C.

    1975-01-01

    The rate of incorporation of radioactive leucine per cell in the acinar pancreatic cells of the rat increases by 50 per cent within one hour after subcutaneous administration of insulin, an effect that lasts for at least one more hour. The rate of incorporation has been measured by quantitative radioautography and by determination of the radioactivity per μg DNA in TCA-precipitable material from tissue homogenates. The capacity for amino acid (leucine and lysine) incorporation as measured by incubating pancreatic fragments in vitro is not enhanced by insulin treatment of the rat in vivo during one or more hours. Insulin was found to lower the serum concentration of most amino acids significantly, leucine by 50 per cent. The apparent effect of insulin on the incorporation of radioactive leucine in vivo can be explained by the difference in the specific radioactivity of the circulating amino acid in the treated rats as compared to the untreated ones. A change in amino acid concentration in the serum may likewise be the explanation of the decrease in amino acid incorporation rate in alloxan diabetic rats. (orig./GSE) [de

  7. Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography–tandem mass spectrometry

    Science.gov (United States)

    Li, Ke; Buchinger, Tyler J.; Bussy, Ugo; Fissette, Skye D.; Johnson, Nicholas; Li, Weiming

    2015-01-01

    Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC–MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile–water (containing 7.5 mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25 mL/min for 12 min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00–5,000 ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2 ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2 ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.

  8. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women.

    Directory of Open Access Journals (Sweden)

    Oliver Fiehn

    2010-12-01

    Full Text Available Insulin resistance progressing to type 2 diabetes mellitus (T2DM is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = -0.631; p<0.0001. In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine, 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is "anaplerotic stress" emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery.

  9. Ursodeoxycholic acid choleresis: Relationship to biliary HCO-3 and effects of Na+-H+ exchange inhibitors

    International Nuclear Information System (INIS)

    Renner, E.L.; Lake, J.R.; Cragoe, E.J. Jr.; van Dyke, R.W.; Scharschmidt, B.F.

    1988-01-01

    The authors have recently shown that substitution of Li + for perfusate Na + eliminates the HCO 3 - -rich choleresis produced by ursodeoxycholic acid (UDCA) in isolated perfused rat liver and that the increase in bile flow produced by both UDCA and taurocholic acid is partially inhibited by 1 mM amiloride. Although these findings are consistent with a role for Na + -H + exchange in the choleresis produced by these bile acids, both Li + substitution and amiloride affect other cellular processes, including Na + -K + -ATPase activity. They have now further explored both the relationship between UDCA-stimulated bile flow and biliary HCO 3 - secretion and the possible role of Na + -H + exchange in this process by comparing the effects of amiloride with two of its more potent and presumably more specific analogues, 5-(N,N-dimethyl)amiloride hydrochloride (DMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIA). None of the inhibitors significantly altered biliary UDCA output or the relationship between UDCA-induced bile flow and either biliary [HCO 3 - ] or biliary HCO 3- output. Effects of these inhibitors did not appear attributable either to nonspecific toxicity, as reflected by hepatic release of lactate dehydrogenase or K + , or to inhibition of hepatic Na + -K + -ATPase, measured as Na + -dependent uptake of 86 Rb. These findings indicate that UDCA-induced but not basal bile formation is closely coupled to biliary HCO 3 - concentration and output, and they provide additional evidence that UDCA choleresis requires an intact Na + -H + exchange mechanism

  10. Effect of a commercial extract of Paullinia cupana (guarana) on the binding of 99mTc-DMSA on blood constituents: An in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.S. [Departamento de Biofisica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 4 Andar, Rio de Janeiro 20551-030 (Brazil); Moreno, S.R.F. [Departamento de Biofisica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 4 Andar, Rio de Janeiro 20551-030 (Brazil); Lima-Filho, G.L. [Departamento de Biofisica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 4 Andar, Rio de Janeiro 20551-030 (Brazil); Fonseca, A.S. [Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 5 Andar, Rio de Janeiro, 20551-030 (Brazil)]. E-mail: adenilso@uerj.br; Bernardo-Filho, M. [Departamento de Biofisica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 4 Andar, Rio de Janeiro 20551-030 (Brazil); Instituto Nacional do Cancer, Coordenadoria de Pesquisa, Praca Cruz Vermelha 23, Rio de Janeiro, 20230-130 (Brazil)

    2007-05-15

    We studied the influence of a commercial extract of Paullinia cupana (guarana) on the binding of technetium-99m-dimercaptosuccinic acid ({sup 99m}Tc-DMSA) on blood constituents. Plasma (P) and blood cells (BC) from Wistar rats (control and treated) were separated. P and BC were precipitated with trichloroacetic acid (TCA) or ammonium sulphate (AS) and soluble (SF) and insoluble fractions (IF) isolated. The percentage of incorporated radioactivity (%ATI) in each fraction was determined. The treatment influenced the %ATI in IF-P and in IF-BC isolated by TCA precipitation.

  11. Effect of a commercial extract of Paullinia cupana (guarana) on the binding of 99mTc-DMSA on blood constituents: An in vivo study

    International Nuclear Information System (INIS)

    Freitas, R.S.; Moreno, S.R.F.; Lima-Filho, G.L.; Fonseca, A.S.; Bernardo-Filho, M.

    2007-01-01

    We studied the influence of a commercial extract of Paullinia cupana (guarana) on the binding of technetium-99m-dimercaptosuccinic acid ( 99m Tc-DMSA) on blood constituents. Plasma (P) and blood cells (BC) from Wistar rats (control and treated) were separated. P and BC were precipitated with trichloroacetic acid (TCA) or ammonium sulphate (AS) and soluble (SF) and insoluble fractions (IF) isolated. The percentage of incorporated radioactivity (%ATI) in each fraction was determined. The treatment influenced the %ATI in IF-P and in IF-BC isolated by TCA precipitation

  12. Optimized conditions for MDCK permeability and turbidimetric solubility studies using compounds representative of BCS classes I-IV.

    Science.gov (United States)

    Taub, Mitchell E; Kristensen, Lisbeth; Frokjaer, Sven

    2002-05-01

    The solubility enhancing effects of various excipients, including their compatibility with in vitro permeability (P(app)) systems, was investigated using drugs representative of Biopharmaceutics Classification System (BCS) classes I-IV. Turbidimetric solubility determination using nephelometry and transport experiments using MDCK Strain I cell monolayers were employed. The highest usable concentration of each excipient [dimethyl sulfoxide (DMSO), ethanol, hydroxypropyl-beta-cyclodextrin (HPCD), and sodium taurocholate] was determined by monitoring apical (AP) to basolateral (BL) [14C]mannitol apparent permeability (P(app)) and the transepithelial electrical resistance (TEER) in transport experiments done at pH 6.0 and 7.4. The excipients were used in conjunction with compounds demonstrating relatively low aqueous solubility (amphotericin B, danazol, mefenamic acid, and phenytoin) in order to obtain a drug concentration >50 microM in the donor compartment. The addition of at least one of the selected excipients enhanced the solubility of the inherently poorly soluble compounds to >50 microM as determined via turbidimetric evaluation at pH 6.0 and 7.4. Ethanol and DMSO were found to be generally disruptive to the MDCK monolayer and were not nearly as useful as HPCD and sodium taurocholate. Sodium taurocholate (5 mM) was compatible with MDCK monolayers under all conditions investigated. Additionally, a novel in vitro system aimed at more accurately simulating in vivo conditions, i.e., a pH gradient (6.0 AP/7.4 BL), sodium taurocholate (5 mM, AP), and bovine serum albumin (0.25%, BL), was shown to generate more reliable P(app) values for compounds that are poorly soluble and/or highly protein bound.

  13. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    Science.gov (United States)

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Operation and Performance of a new microTCA-based CMS Calorimeter Trigger in LHC Run 2

    CERN Document Server

    Klabbers, Pamela Renee

    2016-01-01

    The Large Hadron Collider (LHC) at CERN is currently increasing the instantaneous luminosity for p-p collisions. In LHC Run 2, the center-of-mass energy has gone from 8 to 13 TeV and the instantaneous luminosity will approximately double for proton collisions. This will make it even more challenging to trigger on interesting events since the number of interactions per crossing (pileup) and the overall trigger rate will be significantly larger than in LHC Run 1. The Compact Muon Solenoid (CMS) experiment has installed the second stage of a two-stage upgrade to the Calorimeter Trigger to ensure that the trigger rates can be controlled and the thresholds kept low, so that physics data will not be compromised. The stage-1, which replaced the original CMS Global Calorimeter Trigger, operated successfully in 2015. The completely new stage-2 has replaced the entire calorimeter trigger in 2016 with AMC form-factor boards and optical links operating in a microTCA chassis. It required that updates to the calorimet...

  15. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis

    International Nuclear Information System (INIS)

    Ressom, Habtom W.; Xiao, Jun Feng; Tuli, Leepika; Varghese, Rency S.; Zhou Bin; Tsai, Tsung-Heng; Nezami Ranjbar, Mohammad R.; Zhao Yi; Wang Jinlian; Di Poto, Cristina; Cheema, Amrita K.; Tadesse, Mahlet G.; Goldman, Radoslav; Shetty, Kirti

    2012-01-01

    (GCA), glycodeoxycholic acid (GDCA), taurocholic acid (TCA), and taurochenodeoxycholate (TCDCA). These results provide useful insights into HCC biomarker discovery utilizing metabolomics as an efficient and cost-effective platform. Our work shows that metabolomic profiling is a promising tool to identify candidate metabolic biomarkers for early detection of HCC cases in high risk population of cirrhotic patients.

  16. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Ressom, Habtom W., E-mail: hwr@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Xiao, Jun Feng; Tuli, Leepika; Varghese, Rency S.; Zhou Bin; Tsai, Tsung-Heng; Nezami Ranjbar, Mohammad R.; Zhao Yi; Wang Jinlian; Di Poto, Cristina; Cheema, Amrita K. [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Tadesse, Mahlet G. [Department of Mathematics and Statistics, Georgetown University, Washington, DC 20057 (United States); Goldman, Radoslav [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Shetty, Kirti [Department of Surgery, Georgetown University Medical Center, Washington, DC 20057 (United States); Georgetown University Hospital, Washington, DC 20057 (United States)

    2012-09-19

    cholesterol metabolism) such as glycochenodeoxycholic acid 3-sulfate (3-sulfo-GCDCA), glycocholic acid (GCA), glycodeoxycholic acid (GDCA), taurocholic acid (TCA), and taurochenodeoxycholate (TCDCA). These results provide useful insights into HCC biomarker discovery utilizing metabolomics as an efficient and cost-effective platform. Our work shows that metabolomic profiling is a promising tool to identify candidate metabolic biomarkers for early detection of HCC cases in high risk population of cirrhotic patients.

  17. Abiotic and biotic transformations of 1,1,1-trichloroethane under methanogenic conditions

    International Nuclear Information System (INIS)

    Vogel, T.M.; McCarty, P.L.

    1987-01-01

    A common industrial solvent, 1,1,1-trichloroethane (TCA), is one of the most frequently found contaminants in ground water. The fate of TCA in ground water is complicated by the different possible abiotic and biotic transformations that it may undergo. Abiotic transformation of TCA can result in a mixture of 1,1-dichloro-ethylene (1,1-DCE) and acetic acid, as shown by others. This study confirms that TCA can be biotransformed by reductive dehalogenation to 1,1-dichloroethane (1,1-DCA) and chloroethane (CA) under methanogenic conditions. Also, reductive dehalogenation of 1,1-DCE to vinyl chloride (VC) is confirmed. This study demonstrates that these transformations can occur stoichiometrically. In addition, [ 14 C]TCA, [ 14 C]-1,1-DCA, [ 14 C]-1,1-DCE, [ 14 C]CA, and [ 14 C]VC were at least partially mineralized to 14 CO 2 under similar methanogenic conditions.23 references, 3 figures, 4 tables

  18. A medium-chain fatty acid as an alternative energy source in mouse preimplantation development.

    Science.gov (United States)

    Yamada, Mitsutoshi; Takanashi, Kazumi; Hamatani, Toshio; Hirayama, Akiyoshi; Akutsu, Hidenori; Fukunaga, Tomoko; Ogawa, Seiji; Sugawara, Kana; Shinoda, Kosaku; Soga, Tomoyoshi; Umezawa, Akihiro; Kuji, Naoaki; Yoshimura, Yasunori; Tomita, Masaru

    2012-01-01

    To further optimize the culturing of preimplantation embryos, we undertook metabolomic analysis of relevant culture media using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We detected 28 metabolites: 23 embryo-excreted metabolites including 16 amino acids and 5 media-derived metabolites (e.g., octanoate, a medium-chain fatty acid (MCFA)). Due to the lack of information on MCFAs in mammalian preimplantation development, this study examined octanoate as a potential alternative energy source for preimplantation embryo cultures. No embryos survived in culture media lacking FAs, pyruvate, and glucose, but supplementation of octanoate rescued the embryonic development. Immunoblotting showed significant expression of acyl-CoA dehydrogenase and hydroxyacyl-CoA dehydrogenase, important enzymes for ß-oxidation of MCFAs, in preimplantation embryo. Furthermore, CE-TOFMS traced [1-(13)C(8)] octanoate added to the culture media into intermediate metabolites of the TCA cycle via ß-oxidation in mitochondria. These results are the first demonstration that octanoate could provide an efficient alternative energy source throughout preimplantation development.

  19. In vivo effects of naproxen, salicylic acid, and valproic acid on the pharmacokinetics of trichloroethylene and metabolites in rats.

    Science.gov (United States)

    Rouhou, Mouna Cheikh; Charest-Tardif, Ginette; Haddad, Sami

    2015-01-01

    It was recently demonstrated that some drugs modulate in vitro metabolism of trichloroethylene (TCE) in humans and rats. The objective was to assess in vivo interactions between TCE and three drugs: naproxen (NA), valproic acid (VA), and salicylic acid (SA). Animals were exposed to TCE by inhalation (50 ppm for 6 h) and administered a bolus dose of drug by gavage, equivalent to 10-fold greater than the recommended daily dose. Samples of blood, urine, and collected tissues were analyzed by headspace gas chromatography coupled to an electron capture detector for TCE and metabolites (trichloroethanol [TCOH] and trichloroacetate [TCA]) levels. Coexposure to NA and TCE significantly increased (up to 50%) total and free TCOH (TCOHtotal and TCOHfree, respectively) in blood. This modulation may be explained by an inhibition of glucuronidation. VA significantly elevated TCE levels in blood (up to 50%) with a marked effect on TCOHtotal excretion in urine but not in blood. In contrast, SA produced an increase in TCOHtotal levels in blood at 30, 60, and 90 min and urine after coexposure. Data confirm in vitro observations that NA, VA, and SA affect in vivo TCE kinetics. Future efforts need to be directed to evaluate whether populations chronically medicated with the considered drugs display greater health risks related to TCE exposure.

  20. Three coordination polymers based on a star-like geometry 4, 4', 4'' -nitrilotribenzoic acid ligand and their framework dependent luminescent properties

    Science.gov (United States)

    Hu, Zhiyong; Zhao, Meng; Su, Jian; Xu, Shasha; Hu, Lei; Liu, Hui; Zhang, Qiong; Zhang, Jun; Wu, Jieying; Tian, Yupeng

    2018-02-01

    Three novel coordination polymers, [Zn(μ2-HTCA)(Phen)]n (1), {[Cd(μ3-HTCA)(Phen)]·2H2O}n (2), [Mn(μ2-HTCA)(Phen)(H2O)]n (3) were prepared by hydrothermal synthesis from the 4, 4', 4''-nitrilotribenzoicacid (H3TCA) and 1, 10-phenanthroline monohydrate (Phen) with different transition metal salts, which were characterized by elemental analysis, IR spectra, powder and single-crystal X-ray diffraction and thermogravimetric analysis. The photophysical properties of the complexes were investigated by solid-state diffuse reflectance spectra, photoluminescent properties, lifetime and quantum yield. For these complexes, it was found that the band gaps follow the order: 3 < 2 < 1 < 2.80 eV, fluorescence intensity order: 1 > H3TCA > 2 > 3; quantum yield order: H3TCA > 1 > 2 > 3; while the lifetime order: 1 > 2 > H3TCA > 3.

  1. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    Directory of Open Access Journals (Sweden)

    Jiayang Qin

    Full Text Available Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  2. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    Science.gov (United States)

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  3. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    OpenAIRE

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-01-01

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoprot...

  4. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Full Text Available Objective: Plasma levels of branched-chain amino acids (BCAA are consistently elevated in obesity and type 2 diabetes (T2D and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28. We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Results: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Keywords: Insulin sensitivity, BCAA, Fatty acid oxidation, TCA cycle

  5. Effects of pentylenetetrazole and glutamate on metabolism of [U-(13)C]glucose in cultured cerebellar granule neurons.

    Science.gov (United States)

    Eloqayli, Haytham; Qu, Hong; Unsgård, Geirmund; Sletvold, Olav; Hadidi, Hakam; Sonnewald, Ursula

    2002-02-01

    This study was performed to analyze the effects of glutamate and the epileptogenic agent pentylenetetrazole (PTZ) on neuronal glucose metabolism. Cerebellar granule neurons were incubated for 2 h in medium containing 3 mM [U-(13)C]glucose, with and without 0.25 mM glutamate and/or 10 mM PTZ. In the presence of PTZ, decreased glucose consumption with unchanged lactate release was observed, indicating decreased glucose oxidation. PTZ also slowed down tricarboxylic acid (TCA) cycle activity as evidenced by the decreased amounts of labeled aspartate and [1,2-(13)C]glutamate. When glutamate was present, glucose consumption was also decreased. However, the amount of glutamate, derived from [U-(13)C]glucose via the first turn of the TCA cycle, was increased. The decreased amount of [1,2-(13)C]glutamate, derived from the second turn in the TCA cycle, and increased amount of aspartate indicated the dilution of label due to the entrance of unlabeled glutamate into TCA cycle. In the presence of glutamate plus PTZ, the effect of PTZ was enhanced by glutamate. Labeled alanine was detected only in the presence of glutamate plus PTZ, which indicated that oxaloacetate was a better amino acid acceptor than pyruvate. Furthermore, there was also evidence for intracellular compartmentation of oxaloacetate metabolism. Glutamate and PTZ caused similar metabolic changes, however, via different mechanisms. Glutamate substituted for glucose as energy substrate in the TCA cycle, whereas, PTZ appeared to decrease mitochondrial activity.

  6. Alternative Fuels in Epilepsy and Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Tefera, Tesfaye W; Tan, Kah Ni; McDonald, Tanya S; Borges, Karin

    2017-06-01

    This review summarises the recent findings on metabolic treatments for epilepsy and Amyotrophic Lateral Sclerosis (ALS) in honour of Professor Ursula Sonnewald. The metabolic impairments in rodent models of these disorders as well as affected patients are being discussed. In both epilepsy and ALS, there are defects in glucose uptake and reduced tricarboxylic acid (TCA) cycling, at least in part due to reduced amounts of C4 TCA cycle intermediates. In addition there are impairments in glycolysis in ALS. A reduction in glucose uptake can be addressed by providing the brain with alternative fuels, such as ketones or medium-chain triglycerides. As anaplerotic fuels, such as the triglyceride of heptanoate, triheptanoin, refill the TCA cycle C4/C5 intermediate pool that is deficient, they are ideal to boost TCA cycling and thus the oxidative metabolism of all fuels.

  7. Imagen corporal, IMC, afrontamiento, depresión y riesgo de TCA en jóvenes universitarios

    Directory of Open Access Journals (Sweden)

    Lina-María Hernández-Cortés

    2013-10-01

    Full Text Available El presente estudio descriptivo correlacional pretendió determinar la relación entre estilo de afrontamiento, historia psiquiátrica familiar, salud percibida, IMC, género, percepción de la figura y depresión y el riesgo de padecer un trastorno de conducta alimentaria. Participaron 417 estudiantes universitarios que se seleccionaron de manera no aleatorizada estratificada con grupos de conveniencia. Para obtener los datos se utilizó la Ficha de Registro de Información General, la Escala Abreviada de las actitudes alimentarias EAT -26-M, el Cuestionario de Formas de Afrontamiento, el Inventario de Depresión de Beck, la Prueba de Optimismo Disposicional y el Registro de Percepción de la Figura. El análisis de datos se llevo a cabo mediante el uso de ecuaciones estructurales. Se concluyó que la interacción de las variables antecedentes psicológicos familiares, género, deseo de disminución del peso, satisfacción con la imagen corporal, estilo de afrontamiento evitativo y depresión en conjunto predicen el riesgo de padecer un TCA, se discuten los hallazgos y se evidencian las limitaciones del presente estudio.

  8. Radioiodinated Rhodamine-123: a potential cationic hepatobiliary imaging agent

    International Nuclear Information System (INIS)

    Moonen, P.; Gorree, G.C.M.; Hoekstra, A.

    1987-01-01

    The labelling of the cationic dye Rhodamine-123 with 125 I is described. The biodistribution of the iodinated Rhodamine-123 has been determined at different time intervals after intravenous injection into fasted rats. It turned out that the dye is predominantly cleared by the liver and discharged into the bile. The bile acid taurocholate did not enhance the rate of excretion of 125 I-Rhodamine-123. (author)

  9. Polyphosphates in Intraradical and Extraradical Hyphae of an Arbuscular Mycorrhizal Fungus, Gigaspora margarita

    OpenAIRE

    Solaiman, M. Zakaria; Ezawa, Tatsuhiro; Kojima, Tomoko; Saito, Masanori

    1999-01-01

    The amount of polyphosphate in the intraradical and extraradical hyphae of Gigaspora margarita was estimated from successive extractions with trichloroacetic acid (TCA), EDTA, and phenol-chloroform (PC). In the intraradical hyphae, most of the polyphosphate was present in TCA- and EDTA-soluble (short-chain and long-chain) fractions, whereas most of the polyphosphate in the extraradical hyphae was present in EDTA- and PC-soluble (long-chain and granular) fractions.

  10. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism.

    Science.gov (United States)

    Pathak, Preeti; Liu, Hailiang; Boehme, Shannon; Xie, Cen; Krausz, Kristopher W; Gonzalez, Frank; Chiang, John Y L

    2017-06-30

    The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr -/- , and Tgr5 -/- mice. INT-767 efficaciously stimulated intracellular Ca 2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr -/- and Tgr5 -/- mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5 -/- mice but not in the Fxr -/- mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca 2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Glycocholic Acid Based on Chicken Single-Chain Variable Fragment Antibodies.

    Science.gov (United States)

    Cui, Xiping; Vasylieva, Natalia; Wu, Panpan; Barnych, Bogdan; Yang, Jun; Shen, Ding; He, Qiyi; Gee, Shirley J; Zhao, Suqing; Hammock, Bruce D

    2017-10-17

    Glycocholic acid (GCA) is an important metabolite of bile acids, whose urine levels are expected to be a specific diagnostic biomarker for hepatocellular carcinoma (HCC). A high-throughput immunoassay for determination of GCA would be of significant advantage and useful for primary diagnosis, surveillance, and early detection of HCC. Single-chain variable fragment (scFv) antibodies have several desirable characteristics and are an attractive alternative to traditional antibodies for the immunoassay. Because chicken antibodies possess single heavy and light variable functional domains, they are an ideal framework for simplified generation of recombinant antibodies for GCA detection. However, chicken scFvs have rarely been used to detect GCA. In this study, a scFv library was generated from chickens immunized with a GCA hapten coupled to bovine serum albumin (BSA), and anti-GCA scFvs were isolated by a phage-displayed method. Compared to the homologous coating antigen, use of a heterologous coating antigen resulted in about an 85-fold improvement in sensitivity of the immunoassay. This assay, under optimized conditions, had a linear range of 0.02-0.18 μg/mL, with an IC 50 of 0.06 μg/mL. The assay showed negligible cross-reactivity with various related bile acids, except for taurocholic acid. The detection of GCA from spiked human urine samples ranged from 86.7% to 123.3%. These results, combined with the advantages of scFv antibodies, indicated that a chicken scFv-based enzyme-linked immunosorbent assay is a suitable method for high-throughput screening of GCA in human urine.

  12. Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys.

    Science.gov (United States)

    Shen, Hong; Nelson, David M; Oliveira, Regina V; Zhang, Yueping; Mcnaney, Colleen A; Gu, Xiaomei; Chen, Weiqi; Su, Ching; Reily, Michael D; Shipkova, Petia A; Gan, Jinping; Lai, Yurong; Marathe, Punit; Humphreys, W Griffith

    2018-02-01

    Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032.

    Science.gov (United States)

    Wada, Masaru; Sawada, Kazunori; Ogura, Kotaro; Shimono, Yuta; Hagiwara, Takuya; Sugimoto, Masakazu; Onuki, Akiko; Yokota, Atsushi

    2016-02-01

    Phosphoenolpyruvate carboxylase (PEPC) in Corynebacterium glutamicum ATCC13032, a glutamic-acid producing actinobacterium, is subject to feedback inhibition by metabolic intermediates such as aspartic acid and 2-oxoglutaric acid, which implies the importance of PEPC in replenishing oxaloacetic acid into the TCA cycle. Here, we investigated the effects of feedback-insensitive PEPC on glutamic acid production. A single amino-acid substitution in PEPC, D299N, was found to relieve the feedback control by aspartic acid, but not by 2-oxoglutaric acid. A simple mutant, strain R1, having the D299N substitution in PEPC was constructed from ATCC 13032 using the double-crossover chromosome replacement technique. Strain R1 produced glutamic acid at a concentration of 31.0 g/L from 100 g/L glucose in a jar fermentor culture under biotin-limited conditions, which was significantly higher than that of the parent, 26.0 g/L (1.19-fold), indicative of the positive effect of desensitized PEPC on glutamic acid production. Another mutant, strain DR1, having both desensitized PEPC and PYK-gene deleted mutations, was constructed in a similar manner using strain D1 with a PYK-gene deleted mutation as the parent. This mutation had been shown to enhance glutamic acid production in our previous study. Although marginal, strain D1 produced higher glutamic acid, 28.8 g/L, than ATCC13032 (1.11-fold). In contrast, glutamic acid production by strain DR-1 was elevated up to 36.9 g/L, which was 1.42-fold higher than ATCC13032 and significantly higher than the other three strains. The results showed a synergistic effect of these two mutations on glutamic acid production in C. glutamicum. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Investigation of the Buckling-Reactivity Conversion Coefficient using SRAC and MVP codes for UO2 Lattices in TCA experiments

    International Nuclear Information System (INIS)

    Le Dai Dien

    2008-01-01

    Benchmark experiments for International Reactor Physics Benchmark Experiments (IRPhE) Project carried out at TCA, the temperature effects on reactivity were studied for light water moderated and reflected UO 2 cores with/without soluble poisons. The buckling coefficient method using the measured critical water levels was proposed by Suzaki et al. The temperature dependence of buckling coefficient of reactivity and its variance by the core configurations of the benchmark experiments was investigated using SRAC and MVP calculations. From the calculations by SRAC as well as by MVP it is seen that the K-value can be taken as an average value only for each core with temperature changes which are considered as perturbation parameter. The difference between our calculations and benchmark results which uses constant K-value for all cores proves that the results depend on K-value and it play important role in defining reactivity effect using the water level worth method. (author)

  15. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    Science.gov (United States)

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  16. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Yao Pan

    2015-08-01

    Full Text Available Trichloroethylene (TCE is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA and dichloroacetic acid (DCA, on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  17. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle

    OpenAIRE

    Patel, Anant B.; Lai, James C. K.; Chowdhury, Golam M. I.; Hyder, Fahmeed; Rothman, Douglas L.; Shulman, Robert G.; Behar, Kevin L.

    2014-01-01

    A near one-to-one relationship had previously been observed between increments in the fluxes of the glutamate−glutamine neurotransmitter cycle and neuronal glucose oxidation in the tricarboxylic acid (TCA) cycle. This flux relationship was consistent with a hypothesized mechanism involving glycolytic ATP in astrocytes and astrocyte-to-neuron lactate shuttling. Here, 2-fluoro-2-deoxy-d-glucose was used to evaluate the glucose flux through glycolysis and the TCA cycle in nerve terminals isolate...

  18. One-Pot Enzymatic Synthesis of D-Arylalanines Using Phenylalanine Ammonia Lyase and L-Amino Acid Deaminase.

    Science.gov (United States)

    Zhu, Longbao; Feng, Guoqiang; Ge, Fei; Song, Ping; Wang, Taotao; Liu, Yi; Tao, Yugui; Zhou, Zhemin

    2018-06-08

    The phenylalanine ammonia-lyase (AvPAL) from Anabaena variabilis catalyzes the amination of substituent trans-cinnamic acid (t-CA) to produce racemic D,L-enantiomer arylalanine mixture owing to its low stereoselectivity. To produce high optically pure D-arylalanine, a modified AvPAL with high D-selectivity is expected. Based on the analyses of catalytic mechanism and structure, the Asn347 residue in the active site was proposed to control stereoselectivity. Therefore, Asn347 was mutated to construct mutant AvPAL-N347A, the stereoselectivity of AvPAL-N347A for D-enantiomer arylalanine was 2.3-fold higher than that of wild-type AvPAL (WtPAL). Furthermore, the residual L-enantiomer product in reaction solution could be converted into the D-enantiomer product through stereoselective oxidation by PmLAAD and nonselective reduction by reducing agent NH 3 BH 3 . At optimal conditions, the conversion rate of t-CA and optical purity (enantiomeric excess (ee D )) of D-phenylalanine reached 82% and exceeded 99%, respectively. The two enzymes displayed activity toward a broad range of substrate and could be used to efficiently synthesize D-arylalanine with different groups on the phenyl ring. Among these D-arylalanines, the yield of m-nitro-D-phenylalanine was highest and reached 96%, and the ee D exceeded 99%. This one-pot synthesis using AvPAL and PmLAAD has prospects for industrial application.

  19. Crystal structures of eight 3D molecular adducts derived from bis-imidazole, bis(benzimidazole), and organic acids

    Science.gov (United States)

    Ding, Aihua; Jin, Shouwen; Jin, Shide; Hu, KaiKai; Lin, Zhihao; Liu, Hui; Wang, Daqi

    2018-01-01

    Cocrystallization of the bis(imidazole)/bis(benzimidazole) with a series of organic acids gave a total of eight molecular adducts with the compositions: (3,6-bis(imidazole-1-yl)pyridazine): (trichloroacetic acid)2(1) [(H2L1)2+ · (tca-)2, L1 = 3,6-bis(imidazole-1-yl)pyridazine, tca- = trichloroacetate], (bis(N-imidazolyl)methane): (suberic acid) (2) [(L2) · (H2suba), L2 = bis(N-imidazolyl)methane, H2suba = suberic acid], bis(N-imidazolyl)methane: (3-nitrophthalic acid): 3H2O (3) [(H2L2)2+ · (3-Hnpa-)2 · 3H2O, 3-Hnpa- = 3-nitro hydrogenphthalate], (bis(N-imidazolyl)butane)0.5: (4-nitrophthalic acid): H2O (4) [(H2L3)0.5+ · (4-Hnpa-)- · H2O, L3 = bis(N-imidazolyl)butane, 4-Hnpa- = 4-nitro hydrogenphthalate], (1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole): (3,5-dinitrosalicylic acid) (5) [(HL4) · (3,5-dns-), L4 = 1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole, 3,5-dns- = 3,5-dinitrosalicylate], (1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole): (3-nitrophthalic acid) (6) [(H2L4) · (3-npa2-), L4 = 1-(3-(1H-benzimidazol-1-yl)propyl)-1H-benzimidazole, 3-npa2-=3-nitrogenphthalate], (bis(N-imidazolyl)butane): (pamoic acid) (7) [(H2L3) · (pam), pam = pamoate], and (3,6-bis(imidazole-1-yl)pyridazine): (1,5-naphthalenedisulfonic acid) [(H2L1)2+ · (npda)2- = 1,5-naphthalenedisulfonate] (8). The eight adducts have been characterized by X-ray diffraction technique, infrared spectrum, and elemental analysis, and the melting points of all adducts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the eight investigated crystals both the end ring N in the bis(imidazole) moieties are protonated when the organic acids are deprotonated except 2, and 5, and the crystal packing is interpreted in terms of the strong ionic Nsbnd H⋯O H-bond between the imidazolium and the deprotonated acidic groups. Except the Nsbnd H⋯O H-bond, the Osbnd H⋯O H-bonds were also found at the salts 3, 4

  20. Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood

    DEFF Research Database (Denmark)

    Brekke, Eva; Morken, Tora Sund; Walls, Anne B

    2016-01-01

    A central task of the tricarboxylic acid (TCA, Krebs, citric acid) cycle in brain is to provide precursors for biosynthesis of glutamate, GABA, aspartate and glutamine. Three of these amino acids are the partners in the intricate interaction between astrocytes and neurons and form the so-called g...

  1. 13C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    13 C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the 13 C enrichments at the individual carbons of glutamate when [3- 13 C]alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of 13 C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by [1- 13 C]acetyl-CoA (from [2- 13 C]pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by [3- 13 C]alanine plus [2- 13 C]ethanol, which are converted to [2- 13 C]acetyl-CoA. Thus, measurement of 13 C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the 13 C-labeled fatty acids produced

  2. Influência de desproteinizantes ácidos na quantificação da glutationa reduzida eritrocitária por CLAE-UV Influence of deproteinizing acids in erythrocytic reduced glutathione quantification by HPLC-UV

    Directory of Open Access Journals (Sweden)

    Karen L. Schott

    2007-06-01

    Full Text Available Large differences in reduced glutathione (GSH levels have been found in different investigations, also in healthy people. GSH oxidation in vitro has been associated with sample acidification in the presence of oxihemoglobin. In this work, the influence of different acids on GSH determination utilizing HPLC with UV detection was evaluated. The results showed that metaphosphoric acid and sulfosalicylic acid were inadequate for analysis, because metaphosphoric acid showed to be inefficient for deproteinization and with sulfosalicylic acid loss of GSH was observed. Trichloroacetic acid did not effect GSH quantification, since the deproteinized form was immediately derivatized with 5, 5´-dithio-bis (2-nitrobenzoic acid. Methods with TCA deproteinization presented linear results from 0.5 to 3.0 mM. The correlation coefficient between aqueous curves and GSH spiked RBC exceeded 0.99. Precision calculations showed CV lower than 10% and bias within ± 10% for concentrations of 0.5; 1.5 and 3.0 mM GSH. The recovery was higher than 94%. Moreover, GSH blood concentrations were independent of hemoglobin concentrations.

  3. The role of surface chemical analysis in a study to select replacement processes for TCA vapor degreasing

    Science.gov (United States)

    Lesley, Michael W.; Davis, Lawrence E.; Moulder, John F.; Carlson, Brad A.

    1995-01-01

    The role of surface-sensitive chemical analysis (ESCA, AES, and SIMS) in a study to select a process to replace 1, 1, 1-trichloroethane (TCA) vapor degreasing as a steel and aluminum bonding surface preparation method is described. The effort was primarily concerned with spray-in-air cleaning processes involving aqueous alkaline and semi-aqueous cleaners and a contamination sensitive epoxy-to-metal bondline. While all five cleaners tested produced bonding strength results equal to or better than those produced by vapor degreasing, the aqueous alkaline cleaners yielded results which were superior to those produced by the semi-aqueous cleaners. The main reason for the enhanced performance appears to be a silicate layer left behind by the aqueous alkaline cleaners. The silicate layer increases the polarity of the surface and enhances epoxy-to-metal bonding. On the other hand, one of the semi-aqueous cleaners left a nonpolar carbonaceous residue which appeared to have a negative effect on epoxy-to-metal bonding. Differences in cleaning efficiency between cleaners/processes were also identified. These differences in surface chemistry, which were sufficient to affect bonding, were not detected by conventional chemical analysis techniques.

  4. Culture engineering examination and metabolism flux distribution system analysis for madding to convert into poly {beta}- hydroxybutyric acid (PHB) using the hydrogen bacteria of organic acid got in liquid-phase oxidation of lignite; Kattan no ekiso sanka de erareru yukisan wo suiso saikin wo riyoshite pori {beta}-hidorokishi rakusan(PHB) ni henkan saseru tameno baiyo kogakuteki kento to taisha ryusoku bunpu shisutemu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, Kinko; Seki, Suito; Shimizu, Kazuyuki; Mae, Kazuhiro; Miura, Koichi

    1999-04-05

    The culture engineering examination for madding to convert into poly {beta} - hydroxy Wisteria (PHB) which glycolic acid. Acetic acid, ant acid, malonic acid got in liquid-phase oxidation of lignite are raw material of biodegradable plastic using hydrogen bacteria Alcaligenes eutrophus was carried out. It was proven that acetic acid was the most efficiently converted into the PHB as a result of cultivating these organic acid as a single carbon source. And, it was utilized to the bacterial cell at the order of ant acid, acetic acid, glycolic acid, when it was cultivated in mixing organic acid, and it was proven to convert into the PHB. Though the malonic acid was not utilized for the bacterial cell breeding, it was indicated that as the result which analyzed metabolism flow distribution by calculating using the culture data, the succinate dehydrogenase of the tricarboxylic acid (TCA) circuit received competitive inhibition, when this is added in culture middle point, and that the flux of griot lysyl acid route and gluconeogenesis route lowers. And, it was proven that it was utilized in the route which comes to the PHB synthesis from acetoacetyl CoA with the lowering of the ammonia concentration on NADPH produced from the isocitric acid, though it was prior consumed to the glutamic acid of tricarboxylic acid cycle in the route, if ammonia concentration is high. (translated by NEDO)

  5. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    Science.gov (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  6. Bark Extracts of Ceylon Cinnamon Possess Antilipidemic Activities and Bind Bile Acids In Vitro

    Directory of Open Access Journals (Sweden)

    Walimuni Prabhashini Kaushalya Mendis Abeysekera

    2017-01-01

    Full Text Available Ethanol (95% and dichloromethane : methanol (1 : 1 bark extracts of authenticated Ceylon cinnamon were investigated for range of antilipidemic activities (ALA: HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities and bile acids binding in vitro. Individual compounds in bark extracts were also evaluated. Bark extracts showed ALA in all the assays studied. The IC50 (μg/mL values ranged within 153.07±8.38–277.13±32.18, 297.57±11.78–301.09±4.05, 30.61±0.79–34.05±0.41, and 231.96±9.22–478.89±9.27, respectively, for HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities. The bile acids binding (3 mg/mL for taurocholate, glycodeoxycholate, and chenodeoxycholate ranged within 19.74±0.31–20.22±0.31, 21.97±2.21–26.97±1.61, and 16.11±1.42–19.11±1.52%, respectively. The observed ALA were moderate compared to the reference drugs studied. Individual compounds in bark extracts ranged within 2.14±0.28–101.91±3.61 and 0.42±0.03–49.12±1.89 mg/g of extract. Cinnamaldehyde and gallic acid were the highest and the lowest among the tested compounds. The ethanol extract had highest quantity of individual compounds and ALA investigated. Properties observed indicate usefulness of Ceylon cinnamon bark in managing hyperlipidemia and obesity worldwide. Further, this study provides scientific evidence for the traditional claim that Ceylon cinnamon has antilipidemic activities.

  7. Effect of Eu(III) on the degradation of malic acid by Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Nankawa, T.; Ozaki, T.; Ohnuki, T.; Suzuki, Y.; Francis, A.J.

    2005-01-01

    Full text of publication follows: The transuranic elements, such as Am(III) and Cm(III), are highly toxic because they emit high-energy α particles and have long half-lives. To estimate their long-term environmental behavior, we need to elucidate degradation of actinide-organic complexes by microorganisms. We studied the biodegradation of Eu(III)-malic acid complexes by Pseudomonas fluorescens. Malic acid is ubiquitous in the environment and is one of the microbial metabolites that is part of the tri-carboxylic acid (TCA) cycle. Europium(III) is a good analogue for Am(III) and Cm(III). To investigate the effect of Eu(III) on the degradation of malic acid by P. fluorescens, we compared the degradation behavior of Eu(III)-malic acid complexes to that of Fe(III) and Al(III)-malic acid complexes. In the medium containing 1 mM malic acid and 0-0.5 mM Fe(III), malic acid was degraded completely. In the medium containing 1 mM malic acid and 0.05-0.5 mM Al(III), malic acid was degraded until the concentration of malic acid became equal to that of Al(III), indicating that Al(III)-malic acid complex with 1: 1 molar ratio was recalcitrant to biodegradation. In the medium containing 1 mM malic acid and 0.05-0.5 mM Eu(III), degradation of malic acid was not observed. The effect of metals on degradation of malic acid was in the order of Fe(III) < Al(III) < Eu(III). The stability constants of 1:1 Fe(III)-, Al(III)-, and Eu(III)-malic acid complexes are 7.1, 4.6, and 4.9, respectively. These results indicate that degradability of malic acid does not depend on the stability constants of metal-malic acid complexes. We found that 10 mM malic acid was degraded in the presence of 0.05 and 0.1 mM Eu(III) but 1 mM malic acid was not degraded in the presence of 0.05 and 0.1 mM Eu(III). The degradation rate of malic acid increased with a decreasing ratio of Eu(III) to malic acid. (authors)

  8. Degradation of high density lipoprotein in cultured rat luteal cells

    International Nuclear Information System (INIS)

    Rajan, V.P.; Menon, K.M.J.

    1986-01-01

    In rat ovary luteal cells, degradation of high density lipoprotein (HDL) to tricholoracetic acid (TCA)-soluble products accounts for only a fraction of the HDL-derived cholesterol used for steroidogenesis. In this study the authors have investigated the fate of 125 I]HDL bound to cultured luteal cells using pulse-chase technique. Luteal cell cultures were pulse labeled with [ 125 I]HDL 3 and reincubated in the absence of HDL. By 24 h about 50% of the initallay bound radioactivity was released into the medium, of which 60-65% could be precipitated with 10% TCA. Gel filtration of the chase incubation medium on 10% agarose showed that the amount of TCA-soluble radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity eluted over a wide range of molecular weights (15,000-80,000), and there was very little intact HDL present. Electrophoresis of the chase medium showed that component of the TCA-precipitable portion had mobility similar to apo AI. Lysosomal inhibitors of receptor-mediated endocytosis had no effect on the composition or quantity of radioactivity released during chase incubation. The results show that HDL 3 binding to luteal cells is followed by complete degradation of the lipoprotein, although the TCA-soluble part does not reflect the extent of degradation

  9. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  10. 3α-6α-Dihydroxy-7α-fluoro-5β-cholanoate (UPF-680), physicochemical and physiological properties of a new fluorinated bile acid that prevents 17α-ethynyl-estradiol-induced cholestasis in rats

    International Nuclear Information System (INIS)

    Clerici, Carlo; Castellani, Danilo; Asciutti, Stefania; Pellicciari, Roberto; Setchell, Kenneth D.R.; O'Connell, Nancy C.; Sadeghpour, Bahman; Camaioni, Emidio; Fiorucci, Stefano; Renga, Barbara; Nardi, Elisabetta; Sabatino, Giuseppe; Clementi, Mattia; Giuliano, Vittorio; Baldoni, Monia; Orlandi, Stefano; Mazzocchi, Alessandro; Morelli, Antonio; Morelli, Olivia

    2006-01-01

    3α-6α-Dihydroxy-7α-fluoro-5β-cholanoate (UPF-680), the 7α-fluorine analog of hyodeoxycholic acid (HDCA), was synthesized to improve bioavailability and stability of ursodeoxycholic acid (UDCA). Acute rat biliary fistula and chronic cholestasis induced by 17α-ethynyl-estradiol (17EE) models were used to study and compare the effects of UPF-680 (dose range 0.6-6.0 μmol/kg min) with UDCA on bile flow, biliary bicarbonate (HCO 3 - ), lipid output, biliary bile acid composition, hepatic enzymes and organic anion pumps. In acute infusion, UPF-680 increased bile flow in a dose-related manner, by up to 40.9%. Biliary HCO 3 - output was similarly increased. Changes were observed in phospholipid secretion only at the highest doses. Treatment with UDCA and UPF-680 reversed chronic cholestasis induced by 17EE; in this model, UDCA had no effect on bile flow in contrast to UPF-680, which significantly increased bile flow. With acute administration of UPF-680, the biliary bile acid pool became enriched with unconjugated and conjugated UPF-680 (71.7%) at the expense of endogenous cholic acid and muricholic isomers. With chronic administration of UPF-680 or UDCA, the main biliary bile acids were tauro conjugates, but modification of biliary bile acid pool was greater with UPF-680. UPF-680 increased the mRNA for cytochrome P450 7A1 (CYP7A1) and cytochrome P450 8B (CYP8B). Both UDCA and UPF-680 increased the mRNA for Na + taurocholate co-transporting polypeptide (NCTP). In conclusion, UPF-680 prevented 17EE-induced cholestasis and enriched the biliary bile acid pool with less detergent and cytotoxic bile acids. This novel fluorinated bile acid may have potential in the treatment of cholestatic liver disease

  11. Extracts from the Mongolian traditional medicinal plants Dianthus versicolorFisch. and Lilium pumilum Delile stimulate bile flow in an isolated perfused rat liver model.

    Science.gov (United States)

    Obmann, Astrid; Tsendayush, Damba; Thalhammer, Theresia; Zehl, Martin; Vo, Thanh Phuong Nha; Purevsuren, Sodnomtseren; Natsagdorj, Damdinsuren; Narantuya, Samdan; Kletter, Christa; Glasl, Sabine

    2010-10-05

    Dianthus versicolor (Caryophyllaceae) and Lilium pumilum (Liliaceae) are two medicinal plants used in traditional Mongolian medicine to treat hepatic and gastrointestinal disorders. In this study aqueous (AE) and methanolic (ME) extracts of Dianthus versicolor and Lilium pumilum were investigated for their influence on the bile flow. The aqueous extracts of both plants were tested in absence and presence of 10 μM taurocholic acid at three different concentrations (100, 250, and 500 mg/L). The aqueous extract of Dianthus versicolor was further purified in order to locate the active principles. Two resulting fractions, one enriched in flavonoids and the other in sugars, were investigated for their influence on the bile flow in absence of taurocholic acid at 10, 20, and 40 mg/L. The aqueous extracts of both plants were analysed qualitatively by LC-MS(n) and quantitatively by UV-spectrophotometry. The bile flow experiments were performed in the isolated perfused rat liver. The compounds were identified by LC-DAD-MS(n) and TLC using references. The UV-spectrophotometric analysis was based on the monograph "Passiflorae herba" of the European Pharmacopoeia, and the total flavonoid contents were calculated and expressed as vitexin. AE and ME of both plants increased the bile flow dose-dependently (between 9% and 30%), and no hepatotoxic effect was seen even during longer perfusions. Stimulation of bile secretion was comparable in the presence and in the absence of taurocholic acid. The flavonoid fraction of Dianthus versicolor increased the bile flow by 18% (pDianthus versicolor AE (total flavonoid content 1.78%) revealed the presence of the isovitexin derivative saponarin. In the AE of Lilium pumilum (total flavonoid content 1.04%) the flavonoids rutoside, kaempferol-3-O-rutinoside, and isorhamnetin-3-O-rutinoside were detected. The results show that choleresis under extract application is due to a stimulation of the bile-salt-independent bile flow which might be caused

  12. Di(2-ethylhexyl)phthalate Alters the Synthesis and β-Oxidation of Fatty Acids and Hinders ATP Supply in Mouse Testes via UPLC-Q-Exactive Orbitrap MS-Based Metabonomics Study.

    Science.gov (United States)

    Shen, Guolin; Zhou, Lili; Liu, Wei; Cui, Yuan; Xie, Wenping; Chen, Huiming; Yu, Wenlian; Li, Wentao; Li, Haishan

    2017-06-21

    Di(2-ethylhexyl) phthalate (DEHP) is considered to be an environmental endocrine disruptor at high levels of general exposure. Studies show that DEHP may cause testicular toxicity on human being. In this study, metabonomics techniques were used to identify differential endogenous metabolites, draw the network metabolic pathways, and conduct network analysis, to determine the underlying mechanisms of testicular toxicity induced by DEHP. The results showed that DEHP inhibited synthesis and accelerated β-oxidation of fatty acids and impaired the tricarboxylic acid cycle (TCA cycle) and gluconeogenesis, resulting in lactic acid accumulation and an insufficient ATP supply in the microenvironment of the testis. These alterations led to testicular atrophy and, thus, may be the underlying causes of testicular toxicity. DEHP also inhibited peroxisome proliferator activated receptors in the testis, which may be another potential reason for the testicular atrophy. These findings provided new insights to better understand the mechanisms of testicular toxicity induced by DEHP exposure.

  13. Bactericidal Antibiotics Do Not Appear To Cause Oxidative Stress in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Feld, Louise; Knudsen, Gitte Maegaard; Gram, Lone

    2012-01-01

    Oxidative stress can be an important contributor to the lethal effect of bactericidal antibiotics in some bacteria, such as Escherichia coli and Staphylococcus aureus. Thus, despite the different target-specific actions of bactericidal antibiotics, they have a common mechanism leading to bacterial...... to cause oxidative stress in L. monocytogenes and propose that this is caused by its noncyclic tricarboxylic acid (TCA) pathway. Hence, in this noncyclic metabolism, there is a decoupling between the antibiotic-mediated cellular requirement for NADH and the induction of TCA enzyme activity, which...

  14. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production.

    Science.gov (United States)

    Agren, Rasmus; Otero, José Manuel; Nielsen, Jens

    2013-07-01

    In this work, we describe the application of a genome-scale metabolic model and flux balance analysis for the prediction of succinic acid overproduction strategies in Saccharomyces cerevisiae. The top three single gene deletion strategies, Δmdh1, Δoac1, and Δdic1, were tested using knock-out strains cultivated anaerobically on glucose, coupled with physiological and DNA microarray characterization. While Δmdh1 and Δoac1 strains failed to produce succinate, Δdic1 produced 0.02 C-mol/C-mol glucose, in close agreement with model predictions (0.03 C-mol/C-mol glucose). Transcriptional profiling suggests that succinate formation is coupled to mitochondrial redox balancing, and more specifically, reductive TCA cycle activity. While far from industrial titers, this proof-of-concept suggests that in silico predictions coupled with experimental validation can be used to identify novel and non-intuitive metabolic engineering strategies.

  15. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine

    DEFF Research Database (Denmark)

    Leke, Renata; Bak, Lasse Kristoffer; Anker, Malene

    2011-01-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme....... Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways...... in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure...

  16. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    Science.gov (United States)

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  17. Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways.

    Science.gov (United States)

    Luo, Congwei; Jiang, Jin; Ma, Jun; Pang, Suyan; Liu, Yongze; Song, Yang; Guan, Chaoting; Li, Juan; Jin, Yixin; Wu, Daoji

    2016-06-01

    The transformation efficiency and products of an odorous compound 2,4,6-trichloroanisole (TCA) at the wavelength of 254 nm in the presence of persulfate were investigated for the first time. The effects of water matrix (i.e., natural organic matter (NOM), pH, carbonate/bicarbonate (HCO3(-)/CO3(2-)), and chloride ions (Cl(-))) were evaluated. The second order rate constant of TCA reacting with sulfate radical (SO4(-)) was determined to be (3.72 ± 0.10) × 10(9) M(-1) s(-1). Increasing dosage of persulfate increased the observed pseudo-first-order rate constant for TCA degradation (kobs), and the contribution of SO4(-) to TCA degradation was much higher than that of HO at each experimental condition. Degradation rate of TCA decreased with pH increasing from 4.0 to 9.0, which could be explained by the lower radical scavenging effect of dihydrogen phosphate than hydrogen phosphate in acidic condition (pH kinetic results could be described by a steady-state kinetic model. Furthermore, liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry at powerful precursor ion scan approach was used to selectively detect oxidation products of TCA. It was found that 2,4,6-trichorophenol (TCP) was the major oxidation product (i.e., the initial yield of TCP was above 90%). The second order rate constant between TCP and SO4(-) was estimated to be (4.16 ± 0.20) × 10(9) M(-1) s(-1). In addition, three products (i.e., 2,6-dichloro-1,4-benzoquinone and two aromatic ring-opening products) were detected in the reaction of TCP with SO4(-), which also appeared in the oxidation of TCA in the UV/persulfate process. A tentative pathway was proposed, where the initial one-electron oxidation of TCA by SO4(-) and further reactions (e.g., ipso-hydroxylation and aromatic ring-cleavage) of the formed cation intermediate TCA were involved. Copyright © 2016. Published by Elsevier Ltd.

  18. In vivo and in vitro study of the 99mTc-DMSA radiopharmaceutical connection to blood elements

    International Nuclear Information System (INIS)

    Freitas, Rosimeire de S.; Gomes, Maria L.; Mattos, Deise M.M.; Moreno, Silvana R.F.; Dire, Glaucio F.; Lima, Elaine A.; Lima-Filho, Guilherme L.; Aleixo, Luiz Claudio; Bernardo-Filho, Mario; Instituto Nacional do Cancer, Rio de Janeiro

    2002-01-01

    Radiopharmaceuticals are widely used in nuclear medicine. The comprehension of their uptake mechanism in target organs, as well as their clearance may depend on the elucidation of their biochemical characteristics, for instance, their binding to blood elements. The reported precipitating studies of blood with radiopharmaceuticals have shown that the results can not be easily compared. Then, we decide evaluate of the binding proteins on the blood elements using trichloroacetic acid (TCA) to determine the radioactivity of the dimercaptosuccinic acid with technetium-99m (99mTc-DMSA) present in precipitating plasma (P) and blood cells (BC). Depending on the TCA concentration we have determined different values in the insoluble fractions of the plasma when the in vivo and in vitro evaluations were carried out. (author)

  19. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli.

    Science.gov (United States)

    Perrenoud, Annik; Sauer, Uwe

    2005-05-01

    Even though transcriptional regulation plays a key role in establishing the metabolic network, the extent to which it actually controls the in vivo distribution of metabolic fluxes through different pathways is essentially unknown. Based on metabolism-wide quantification of intracellular fluxes, we systematically elucidated the relevance of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc for aerobic glucose catabolism in batch cultures of Escherichia coli. Knockouts of ArcB, Cra, Fnr, and Mlc were phenotypically silent, while deletion of the catabolite repression regulators Crp and Cya resulted in a pronounced slow-growth phenotype but had only a nonspecific effect on the actual flux distribution. Knockout of ArcA-dependent redox regulation, however, increased the aerobic tricarboxylic acid (TCA) cycle activity by over 60%. Like aerobic conditions, anaerobic derepression of TCA cycle enzymes in an ArcA mutant significantly increased the in vivo TCA flux when nitrate was present as an electron acceptor. The in vivo and in vitro data demonstrate that ArcA-dependent transcriptional regulation directly or indirectly controls TCA cycle flux in both aerobic and anaerobic glucose batch cultures of E. coli. This control goes well beyond the previously known ArcA-dependent regulation of the TCA cycle during microaerobiosis.

  20. Hepatic handling of bile salts and protein in the rat during intrahepatic cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, M.A.; Huling, S.; Jones, A.L.

    1983-05-01

    17 alpha-Ethynyl estradiol-induced cholestasis was used to study the relationship of protein to bile salt transport in liver. The biliary secretion of horseradish peroxidase was unaltered in treated animals despite a 56% reduction in bile flow. Cytochemistry confirmed that estradiol caused no alteration in the handling of tracer. In a second study, the peak biliary secretion of (/sup 14/C)taurocholate was reduced by approximately 46% in treated animals. The kinetics of /sup 125/I-cholyglycylhistamine, a bile salt derivative, were identical to those of taurocholate in control and cholestatic animals. Taurocholate and cholylglycylhistamine secretion were markedly reduced in control animals during competition with unlabeled taurocholate. Quantitative electron microscopic autoradiography with /sup 125/I-cholylglycylhistamine revealed a high concentration of grains over the endoplasmic reticulum and the Golgi complex including associated lysosomes and vesicles. These data demonstrate that estradiol markedly inhibits bile salt transport, but not vesicular transport of horseradish peroxidase. Furthermore, estradiol may alter the movement of bile salts through these organelles.

  1. Influence of chemical peeling on the skin stress response system.

    Science.gov (United States)

    Kimura, Ayako; Kanazawa, Nobuo; Li, Hong-Jin; Yonei, Nozomi; Yamamoto, Yuki; Furukawa, Fukumi

    2012-07-01

    Skin stress response system (SSRS) involves corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC)-derived peptides, such as adrenocorticotropic hormone (ACTH), a-melanocyte-stimulating hormone (MSH) and b-endorphin that are locally generated in response to locally provided stressors or proinflammatory cytokines. This system would restrict tissue damage and restore local homoeostasis. Trichloroacetic acid (TCA) is one of the most widely used peeling agents and applied for cosmetic treatment of photodamaged skin. However, the biological mechanism responsible for TCA peeling has yet to be fully determined. While our investigation focused on the inflammation and wound healing pathways, in the recent study, we have examined involvement of the SSRS as the third pathway. Mostly depending on our findings that TCA peeling activates the SSRS by inducing the POMC expression of keratinocytes in the CRH-independent manner, together with the results reported by other researchers, we can say that the biological effect of POMC seems to be responsible for the TCA-induced epidermal SSRS activation. © 2012 John Wiley & Sons A/S.

  2. Celecoxib and tauro-ursodeoxycholic acid co-treatment inhibits cell growth in familial adenomatous polyposis derived LT97 colon adenoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Heumen, Bjorn W.H. van, E-mail: b.vanheumen@mdl.umcn.nl [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Roelofs, Hennie M.J.; Morsche, Rene H.M. te [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Marian, Brigitte [Institute of Cancer Research, Wien University, Vienna (Austria); Nagengast, Fokko M.; Peters, Wilbert H.M. [Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-04-15

    Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14-17%, p < 0.01). A more pronounced decrease (23-27%, p < 0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to 'artificial bile' enriched with UDCA, was decreased (p < 0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with 'artificial bile' enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p < 0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired. -- Highlights: Black-Right-Pointing-Pointer Celecoxib and UDCA acid co-treatment decreases cell growth in colon tumor cells. Black-Right-Pointing-Pointer UDCA enriched 'artificial bile' decreases LT-97 cell growth only in presence of celecoxib. Black-Right-Pointing-Pointer PCNA, caspase-3, nor COX-2 seem to be involved in the observed changes in cell growth.

  3. Celecoxib and tauro-ursodeoxycholic acid co-treatment inhibits cell growth in familial adenomatous polyposis derived LT97 colon adenoma cells

    International Nuclear Information System (INIS)

    Heumen, Bjorn W.H. van; Roelofs, Hennie M.J.; Morsche, René H.M. te; Marian, Brigitte; Nagengast, Fokko M.; Peters, Wilbert H.M.

    2012-01-01

    Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14–17%, p < 0.01). A more pronounced decrease (23–27%, p < 0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to ‘artificial bile’ enriched with UDCA, was decreased (p < 0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with ‘artificial bile’ enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p < 0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired. -- Highlights: ► Celecoxib and UDCA acid co-treatment decreases cell growth in colon tumor cells. ► UDCA enriched ‘artificial bile’ decreases LT-97 cell growth only in presence of celecoxib. ► PCNA, caspase-3, nor COX-2 seem to be involved in the observed changes in cell growth.

  4. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors

    DEFF Research Database (Denmark)

    Majdi, Mohammad; Malekzadeh-Mashhady, Atefe; Maroufi, Asad

    2017-01-01

    of the regulation of monoterpene biosynthesis in thyme, the expression of genes related to thymol and carvacrol biosynthesis in different tissues and in response to abiotic elicitors was analyzed. Methyl jasmonate (MeJA), salicylic acid (SA), trans-cinnamic acid (tCA) and UV-C irradiation were applied to T. vulgare...

  5. Tauroursodeoxycholate Protects Rat Hepatocytes from Bile Acid-Induced Apoptosis via β1-Integrin- and Protein Kinase A-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Annika Sommerfeld

    2015-05-01

    Full Text Available Background/Aims: Ursodeoxycholic acid, which in vivo is rapidly converted into its taurine conjugate, is frequently used for the treatment of cholestatic liver disease. Apart from its choleretic effects, tauroursodeoxycholate (TUDC can protect hepatocytes from bile acid-induced apoptosis, but the mechanisms underlying its anti-apoptotic effects are poorly understood. Methods: These mechanisms were investigated in perfused rat liver and isolated rat hepatocytes. Results: It was found that TUDC inhibited the glycochenodeoxycholate (GCDC-induced activation of the CD95 death receptor at the level of association between CD95 and the epidermal growth factor receptor. This was due to a rapid TUDC-induced β1-integrin-dependent cyclic AMP (cAMP signal with induction of the dual specificity mitogen-activated protein (MAP kinase phosphatase 1 (MKP-1, which prevented GCDC-induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4 and c-jun-NH2-terminal kinase (JNK activation. Furthermore, TUDC induced a protein kinase A (PKA-mediated serine/threonine phosphorylation of the CD95, which was recently identified as an internalization signal for CD95. Furthermore, TUDC inhibited GCDC-induced CD95 targeting to the plasma membrane in a β1-integrin-and PKA-dependent manner. In line with this, the β1-integrin siRNA knockdown in sodium taurocholate cotransporting polypeptide (Ntcp-transfected HepG2 cells abolished the protective effect of TUDC against GCDC-induced apoptosis. Conclusion: TUDC exerts its anti-apoptotic effect via a β1-integrin-mediated formation of cAMP, which prevents CD95 activation by hydrophobic bile acids at the levels of JNK activation and CD95 serine/threonine phosphorylation.

  6. The NF-kappa B inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    He, Di; Chen, Wantao; Xu, Qin; Yan, Ming; Zhang, Ping; Zhou, Xiaojian; Zhang, Zhiyuan; Duan, Wenhu; Zhong, Laiping; Ye, Dongxia

    2009-01-01

    Gambogic acid (GA) is a major active ingredient of gamboge, a widely used traditional Chinese medicine that has been reported to be a potent cytotoxic agent against some malignant tumors. Many studies have shown that the NF-kappa B signaling pathway plays an important role in anti-apoptosis and the drug resistance of tumor cells during chemotherapy. In this study, the effects and mechanisms of GA and the NF-kappa B inhibitor celastrol on oral cancer cells were investigated. Three human oral squamous cell carcinoma cell lines, Tca8113, TSCC and NT, were treated with GA alone, celastrol alone or GA plus celastrol. Cytotoxicity was assessed by MTT assay. The rate of apoptosis was examined with annexin V/PI staining as well as transmission electronic microscopy in Tca8113 cells. The level of constitutive NF-kappa B activity in oral squamous cell carcinoma cell lines was determined by immunofluorescence assays and nuclear extracts and electrophoretic mobility shift assays (EMSAs) in vitro. To further investigate the role of NF-kappa B activity in GA and celastrol treatment in oral squamous cell carcinoma, we used the dominant negative mutant SR-IκBα to inhibit NF-kappa B activity and to observe its influence on the effect of GA. The results showed that GA could inhibit the proliferation and induce the apoptosis of the oral squamous cell carcinoma cell lines and that the NF-kappa B pathway was simultaneously activated by GA treatment. The minimal cytotoxic dose of celastrol was able to effectively suppress the GA-induced NF-kappa B pathway activation. Following the combined treatment with GA and the minimal cytotoxic dose of celastrol or the dominant negative mutant SR-IκBα, proliferation was significantly inhibited, and the apoptotic rate of Tca8113 cells was significantly increased. The combination of GA and celastrol has a synergistic antitumor effect. The effect can be primarily attributed to apoptosis induced by a decrease in NF-kappa B pathway activation. The

  7. Carbon isotopic patterns of amino acids associated with various microbial metabolic pathways and physiological conditions

    Science.gov (United States)

    Wang, P. L.; Hsiao, K. T.; Lin, L. H.

    2017-12-01

    Amino acids represent one of the most important categories of biomolecule. Their abundance and isotopic patterns have been broadly used to address issues related to biochemical processes and elemental cycling in natural environments. Previous studies have shown that various carbon assimilative pathways of microorganisms (e.g. autotrophy, heterotrophy and acetotrophy) could be distinguished by carbon isotopic patterns of amino acids. However, the taxonomic and catabolic coverage are limited in previous examination. This study aims to uncover the carbon isotopic patterns of amino acids for microorganisms remaining uncharacterized but bearing biogeochemical and ecological significance in anoxic environments. To fulfill the purpose, two anaerobic strains were isolated from riverine wetland and mud volcano in Taiwan. One strain is a sulfate reducing bacterium (related to Desulfovibrio marrakechensis), which is capable of utilizing either H2 or lactate, and the other is a methanogen (related to Methanolobus profundi), which grows solely with methyl-group compounds. Carbon isotope analyses of amino acids were performed on cells grown in exponential and stationary phase. The isotopic patterns were similar for all examined cultures, showing successive 13C depletion along synthetic pathways. No significant difference was observed for the methanogen and lactate-utilizing sulfate reducer harvested in exponential and stationary phases. In contrast, the H2-utilizing sulfate reducer harvested in stationary phase depleted and enriched 13C in aspartic acid and glycine, respectively when compared with that harvested in exponential phase. Such variations might infer the change of carbon flux during synthesis of these two amino acids in the reverse TCA cycle. In addition, the discriminant function analysis for all available data from culture studies further attests the capability of using carbon isotope patterns of amino acids in identifying microbial metabolisms.

  8. 1,25(OH)2D3 disrupts glucose metabolism in prostate cancer cells leading to a truncation of the TCA cycle and inhibition of TXNIP expression.

    Science.gov (United States)

    Abu El Maaty, Mohamed A; Alborzinia, Hamed; Khan, Shehryar J; Büttner, Michael; Wölfl, Stefan

    2017-10-01

    Prostate cell metabolism exhibits distinct profiles pre- and post-malignancy. The malignant metabolic shift converts prostate cells from "citrate-producing" to "citrate-oxidizing" cells, thereby enhancing glucose metabolism, a phenotype that contrasts classical tumoral Warburg metabolism. An on-line biosensor chip system (BIONAS 2500) was used to monitor metabolic changes (glycolysis and respiration) in response to the putative anti-cancer nutraceutical 1,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ], in different prostate cancer (PCa) cell lines (LNCaP, VCaP, DU145 and PC3). LNCaP cells exhibited profound metabolic responsiveness to the treatment and thus extensive analysis of metabolism-modulating effects of 1,25(OH) 2 D 3 were performed, including mRNA expression analysis of key metabolic genes (e.g. GLUT1 and PDHK1), analysis of TCA cycle metabolites, glucose uptake/consumption measurements, ATP production, and mitochondrial biogenesis/activity. Altogether, data demonstrate a vivid disruption of glucose metabolism by 1,25(OH) 2 D 3 , illustrated by a decreased glucose uptake and an accumulation of citrate/isocitrate due to TCA cycle truncation. Depletion of glycolytic intermediates led to a consistent decrease in TXNIP expression in response to 1,25(OH) 2 D 3 , an effect that coincided with the activation of AMPK signaling and a reduction in c-MYC expression. Reduction in TXNIP levels in response to 1,25(OH) 2 D 3 was rescued by an AMPK signaling inhibitor and mimicked by a MYC inhibitor highlighting the possible involvement of both pathways in mediating 1,25(OH) 2 D 3 's metabolic effects in PCa cells. Furthermore, pharmacological and genetic modulation of the androgen receptor showed similar and disparate effects on metabolic parameters compared to 1,25(OH) 2 D 3 treatment, highlighting the AR-independent nature of 1,25(OH) 2 D 3 's metabolism-modulating effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of water stress and seed mass on germination and ...

    African Journals Online (AJOL)

    enoh

    2012-03-01

    Mar 1, 2012 ... polyvinylpyrrolidone; TCA, trichloroacetic acid; NBT, nitroblue tetrazolium; TBA ..... seeds had weaker resistances to moderate stress (-0.6. MPa) compared with .... Chen YN,Chen YP,Li WH,Zhang HF (2003). Response of ...

  10. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    Science.gov (United States)

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e

  11. Investigation of absorption and utilisation of amino acids infused into the cecum of growing pigs. 4

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Wuensche, J.; Bock, H.D.; Zebrowska, T.

    1984-01-01

    12 pigs were divided into 4 groups. All animals received an identic basal diet deficient in lysine and additional isonitrogenous amounts of 66.4 mmol N in the form of 15 N-lysine and 15 N-urea,resp. N and 15 N balances were ascertained and the remain of the labelled nitrogen was determined. From the comparison of the N-balances the conclusion can be drawn that through cecally applied N compounds, whether they where infused as amino acids or as nonamino acid N, disappear in the large intestine, i.e. are digested, do not, however, improve the N balance but are excreted as additional urine N. Subsequent to oral application, lysine or urea are almost quantitatively absorbed in the small intestine. Absorbed lysine is used in the synthesis of body protein, absorbed urea, however, is almost completely excreted in urine. 15 N excretion in feces after oral application of 15 N-lysine and 15 N-urea, resp., was less than 1% of the 15 N amount applied, after cecal infusion, however, it was approximately 6%, the biggest part of which (70-77%) was incorporated in bacteria protein. After cecal infusion the main quota of the infused 15 N was excreted in urine, most of it in the form of urea. After the oral application of 15 N-lysine this could be detected in both the TCA-soluble fraction of the serum and the serum protein. After cecal infusion 15 N in the TCA-soluble fraction of the serum could mainly be found as NPN, absorption and incorporation of intact 15 N-lysine were considerably lower. The maximum of the absorbed 15 N in the form of lysine was 3% and that of the infused amount was 1.8%. It can generally be doubted that the absorption of lysine in the large intestine is significant in the protein metabolism. The absorption of utilizable lysine is practically completed at the end of the ileum. In the large intestine mainly the ammonia by the catabolic activity of the intestinal flora is absorbed and subsequently excreted through the intestines. (author)

  12. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger.

    Science.gov (United States)

    Wang, Lu; Zhang, Jianhua; Cao, Zhanglei; Wang, Yajun; Gao, Qiang; Zhang, Jian; Wang, Depei

    2015-01-16

    intracellular ATP can accelerate glycolysis and the TCA cycle to enhance citric acid yield.

  13. Increasing the radiosensitivity of tumours in an hypoxic environment using inhibitors of the pentose phosphate pathway

    International Nuclear Information System (INIS)

    Sahasrabudhe, M.B.; Bhonsle, S.R.; Krishnamurti, K.; Tilak, B.D.

    1977-01-01

    Rapidly growing tumours contain few blood vessels in the tumour mass. Cells in such tumours obtain nutrients and oxygen from the periphery by diffusion, resulting in a diminishing oxygen and nutrient gradient from the periphery to centre of the tumour mass. In normal tissues, oxygen is utilized via a tricarboxylic acid (TCA) cycle; in tumour cells oxygen is utilized via a hexose monophosphate (HMP) pathway and through the TCA cycle at a 30% reduced level. Interference with the HMP pathway selectively inhibits the utilization of oxygen by tumour cells, thus increasing the availability of oxygen to hypoxic cells situated deeper in the tumour mass. This effect has been exploited for increasing the radiosensitivity of tumour cells situated in an hypoxic environment. The influence of sixteen potential antimetabolites on the HMP pathway has been studied. Of these, six compounds, namely, (1) 2-carboxy 5-hydroxymethyl thiophene, (2) the sodium salt of 2:5 dicarbethoxy 3:4 dihydroxy thiophene, (3) the dihydrazide of 2:5 dicarboxy thiophene, (4) the dihydrazide of 3:4 dimethoxy 2:5 dicarboxy thiophene, (5) trithiocyanuric acid, and (6) cyanuric trithioglycollic acid showed an inhibiting effect on the HMP pathway without any influence on the TCA cycle. Influence of administration of compounds (1), (2) and (4) prior to radiation on the growth of transplanted fibrosarcomas in mice has been studied and is reported here. These three compounds showed marked potentiation of radiosensitivity of tumours. (author)

  14. Development and validation of a stability-indicating HPLC-UV method for the determination of triamcinolone acetonide and its degradation products in an ointment formulation

    NARCIS (Netherlands)

    van Heugten, A J P; Boer, W.; de Vries, W S; Markesteijn, C M A; Vromans, H

    2018-01-01

    A stability indicating high performance liquid chromatography method has been developed for the determination of triamcinolone acetonide (TCA) and its main degradation products in ointment formulations. The method, based on extensive stress testing using metal salts, azobisisobutyronitrile, acid,

  15. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    Science.gov (United States)

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.

  16. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet.

    Science.gov (United States)

    Wambacq, Wendy; Rybachuk, Galena; Jeusette, Isabelle; Rochus, Kristel; Wuyts, Brigitte; Fievez, Veerle; Nguyen, Patrick; Hesta, Myriam

    2016-06-28

    that guar gum and sugar beet pulp supplementation diminishes postprandial use of amino acids favoring instead the use of short-chain fatty acids as substrate for the tricarboxylic acid (TCA) cycle. Further research is warranted to investigate the amino acid sparing effect of fermentable fibres in dogs with kidney/liver disease.

  17. Orion: a glimpse of hope in life span extension?

    Science.gov (United States)

    Muradian, K; Bondar, V; Bezrukov, V; Zhukovsky, O; Polyakov, V; Utko, N

    2010-01-01

    Orion is a multicomponent drug based on derivatives of taurocholic acid and several other compounds. Application of Orion into the feeding medium of Drosophila melanogaster resulted in increased life span and survival at stressful conditions. Two paradoxical features of the drug should be stressed: The "age-threshold" (life span extension was observed only when the drug was applied starting from the second half of life) and induction of "centenarian" flies (older 100 days). Orion enhanced survival at heat shock (38 degrees C) and acidic (pH = 1.6) or alkaline (pH = 11.8) feeding mediums, but not at oxidative stresses modeled by 100% oxygen or application of hydrogen peroxide (H(2)O(2)).

  18. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.

    Science.gov (United States)

    Toya, Yoshihiro; Hirasawa, Takashi; Ishikawa, Shu; Chumsakul, Onuma; Morimoto, Takuya; Liu, Shenghao; Masuda, Kenta; Kageyama, Yasushi; Ozaki, Katsuya; Ogasawara, Naotake; Shimizu, Hiroshi

    2015-01-01

    Bacterial bio-production during the stationary phase is expected to lead to a high target yield because the cells do not consume the substrate for growth. Bacillus subtilis is widely used for bio-production, but little is known about the metabolism during the stationary phase. In this study, we focused on the dipicolinic acid (DPA) production by B. subtilis and investigated the metabolism. We found that DPA production competes with acetoin synthesis and that acetoin synthesis genes (alsSD) deletion increases DPA productivity by 1.4-fold. The mutant showed interesting features where the glucose uptake was inhibited, whereas the cell density increased by approximately 50%, resulting in similar volumetric glucose consumption to that of the parental strain. The metabolic profiles revealed accumulation of pyruvate, acetyl-CoA, and the TCA cycle intermediates in the alsSD mutant. Our results indicate that alsSD-deleted B. subtilis has potential as an effective host for stationary-phase production of compounds synthesized from these intermediates.

  19. Effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1

    International Nuclear Information System (INIS)

    Watanabe, Ayahisa; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara; Kuge, Yuji; Tanaka, Yoshikazu; Itoh, Takeshi; Takemoto, Hiroshi

    2012-01-01

    Glycosylation is generally applicable as a strategy for increasing the activity of bioactive proteins. In this study, we examined the effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1 (GLP-1) as a bioactive peptide for type 2 diabetes. Noninvasive imaging studies were performed using a gamma camera after the intravenous administration of 123 I-GLP-1 or 123 I-α2, 6-sialyl N-acetyllactosamine (glycosylated) GLP-1 in rats. In ex vivo biodistribution studies using 125 I-GLP-1 or 125 I-glycosylated GLP-1, organ samples were measured for radioactivity. Plasma samples were added to 15% trichloroacetic acid (TCA) to obtain TCA-insoluble and TCA-soluble fractions. The radioactivity in the TCA-insoluble and TCA-soluble fractions was measured. In the noninvasive imaging studies, a relatively high accumulation level of 123 I-GLP-1 was found in the liver, which is the major organ to eliminate exogenous GLP-1. The area under the time-activity curve (AUC) of 123 I-glycosylated GLP-1 in the liver was significantly lower (89%) than that of 123 I-GLP-1. These results were consistent with those of ex vivo biodistribution studies using 125 I-labeled peptides. The AUC of 125 I-glycosylated GLP-1 in the TCA-insoluble fraction was significantly higher (1.7-fold) than that of GLP-1. This study demonstrated that glycosylation significantly decreased the distribution of radiolabeled GLP-1 into the liver and increased the concentration of radiolabeled GLP-1 in plasma. These results suggested that glycosylation is a useful strategy for decreasing the distribution into the liver of bioactive peptides as desirable pharmaceuticals. (author)

  20. CHANGES IN THE BILE-ACIDS COMPOSITION OF BILE JUICE AFTER FAT INTAKE

    Directory of Open Access Journals (Sweden)

    CRISTINA DINU

    2009-05-01

    Full Text Available A high fat intake increases the flow of bile or changes the composition of bile acids in refluxed duodenal contents, and then plays an important role in the developmental precancerous lesion of BE and leading to esophageal adenocarcinoma EAC. Wistar rats were divided into three groups based on their diet: a control group (fed with standard diet, containing 4.20% soybean oil, a second group (fed with a low cowfat diet, containing 4.20% cow fat and the third group (fed with a high cow-fat diet, containing 16.8% cow fat. The TCA value detected in the animals fed the high cowfat diet (median concentration, 13.8 ± 2.42 mmol/L was significant increased comparative with those detected of animals fed the standard diet (8.15 ± 1.22 mmol/L. The TDCA value in the high cow-fat group (2.64 ± 0.97 mmol/L was significantly increased comparative with those detected of animals fed the standard diet (1.66 ± 0.50 mmol/L.

  1. A comparison of analytic procedures for measurement of fractional dextran clearances

    NARCIS (Netherlands)

    Hemmelder, MH; de Jong, PE; de Zeeuw, D

    Fractional dextran clearances have been extensively used to study glomerular size selectivity. We report on an analysis of different laboratory procedures involved in measuring fractional dextran clearances. The deproteinization of plasma samples by 20% trichloroacetic acid (TCA) revealed a protein

  2. De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli.

    Science.gov (United States)

    Wang, Jian; Wu, Yifei; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2017-10-20

    Microbial based bioplastics are promising alternatives to petroleum based synthetic plastics due to their renewability and economic feasibility. Glutarate is one of the most potential building blocks for bioplastics. The recent biosynthetic routes for glutarate were mostly based on the l-lysine degradation pathway from Pseudomonas putida that required lysine either by feeding or lysine overproduction via genetic manipulations. Herein, we established a novel glutarate biosynthetic pathway by incorporation of a "+1" carbon chain extension pathway from α-ketoglutarate (α-KG) in combination with α-keto acid decarboxylation pathway in Escherichia coli. Introduction of homocitrate synthase (HCS), homoaconitase (HA) and homoisocitrate dehydrogenase (HICDH) from Saccharomyces cerevisiae into E. coli enabled "+1" carbon extension from α-KG to α-ketoadipate (α-KA), which was subsequently converted into glutarate by a promiscuous α-keto acid decarboxylase (KivD) and a succinate semialdehyde dehydrogenase (GabD). The recombinant E. coli coexpressing all five genes produced 0.3 g/L glutarate from glucose. To further improve the titers, α-KG was rechanneled into carbon chain extension pathway via the clustered regularly interspersed palindromic repeats system mediated interference (CRISPRi) of essential genes sucA and sucB in tricarboxylic acid (TCA) cycle. The final strain could produce 0.42 g/L glutarate, which was increased by 40% compared with the parental strain.

  3. Revealing differences in metabolic flux distributions between a mutant strain and its parent strain Gluconacetobacter xylinus CGMCC 2955.

    Directory of Open Access Journals (Sweden)

    Cheng Zhong

    Full Text Available A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955 using DEC (diethyl sulfate and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid</