WorldWideScience

Sample records for tastes organic material

  1. Data on performance of air stripping tower- PAC integrated system for removing of odor, taste, dye and organic materials from drinking water-A case study in Saqqez, Iran

    Directory of Open Access Journals (Sweden)

    Meghdad Pirsaheb

    2018-06-01

    Full Text Available Unpleasant taste or smell are more importantly constituents of drinking-water, lead to complaints from consumers. Dye and organic matter as well change in disinfection practice may generate taste and an odorous compound in treated water. According to low efficiency of conventional methods to remove taste and odor compounds, present study was aimed to evaluate the performance of air stripping tower- Poly Aluminum Chloride (PAC integrated system to remove odor and taste, dye and organic materials from drinking water. Different air to water ratio and PAC doses were used to remove considered parameters in certain condition. The results of this study indicated that the maximum removal efficiency of 86.2, 76.47, 58.46 and 41.27% of taste and odor, dye, COD and TOC were achieved by the air stripping tower- PAC integrated system, respectively. However, the physico-chemical characteristics of water and adsorbent effect on the of substances removal efficiency considerably. It can be stated that the air striping tower - PAC integrated system is able to reduce the odor and taste-causing substances and organic matter to a level which is recommended by the Institute of Standards and Industrial Research of Iran. Keywords: Air stripping tower, PAC, Odor and Taste, Dye, Organic materials, Drinking water, Saqqez city

  2. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation.

    Science.gov (United States)

    Kumari, Archana; Ermilov, Alexandre N; Allen, Benjamin L; Bradley, Robert M; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2015-02-01

    Taste sensation on the anterior tongue requires chorda tympani nerve function and connections with continuously renewing taste receptor cells. However, it is unclear which signaling pathways regulate the receptor cells to maintain chorda tympani sensation. Hedgehog (HH) signaling controls cell proliferation and differentiation in numerous tissues and is active in taste papillae and taste buds. In contrast, uncontrolled HH signaling drives tumorigenesis, including the common skin cancer, basal cell carcinoma. Systemic HH pathway inhibitors (HPIs) lead to basal cell carcinoma regression, but these drugs cause severe taste disturbances. We tested the hypothesis that taste disruption by HPIs reflects a direct requirement for HH signaling in maintaining taste organs and gustatory sensation. In mice treated with the HPI LDE225 up to 28 days, HH-responding cells were lost in fungiform papilla epithelium, and papillae acquired a conical apex. Taste buds were either absent or severely reduced in size in more than 90% of aberrant papillae. Taste bud remnants expressed the taste cell marker keratin 8, and papillae retained expression of nerve markers, neurofilament and P2X3. Chorda tympani nerve responses to taste stimuli were markedly reduced or absent in LDE225-treated mice. Responses to touch were retained, however, whereas cold responses were retained after 16 days of treatment but lost after 28 days. These data identify a critical, modality-specific requirement for HH signaling in maintaining taste papillae, taste buds and neurophysiological taste function, supporting the proposition that taste disturbances in HPI-treated patients are an on-target response to HH pathway blockade in taste organs. Copyright © 2015 the American Physiological Society.

  3. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    Science.gov (United States)

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  4. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    Directory of Open Access Journals (Sweden)

    Alexandre N Ermilov

    2016-11-01

    Full Text Available For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings

  5. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.

    Science.gov (United States)

    Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M

    2016-11-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste

  6. Molecular and cellular organization of taste neurons in adult Drosophila pharynx

    Science.gov (United States)

    Chen, Yu-Chieh (David); Dahanukar, Anupama

    2017-01-01

    SUMMARY The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide road maps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. PMID:29212040

  7. Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx

    Directory of Open Access Journals (Sweden)

    Yu-Chieh David Chen

    2017-12-01

    Full Text Available Summary: The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide roadmaps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. : Chen and Dahanukar carry out a large-scale, systematic analysis to understand the molecular organization of pharyngeal taste neurons. Taking advantage of the molecular genetic toolkit that arises from this map, they use genetic dissection strategies to probe the functional roles of selected pharyngeal neurons in food choice. Keywords: Drosophila, taste, pharynx, chemosensory receptors, gustatory receptors, ionotropic receptors, feeding

  8. Distribution, Innervation, and Cellular Organization of Taste Buds in the Sea Catfish, Plotosus japonicus.

    Science.gov (United States)

    Nakamura, Tatsufumi; Matsuyama, Naoki; Kirino, Masato; Kasai, Masanori; Kiyohara, Sadao; Ikenaga, Takanori

    2017-01-01

    The gustatory system of the sea catfish Plotosus japonicus, like that of other catfishes, is highly developed. To clarify the details of the morphology of the peripheral gustatory system of Plotosus, we used whole-mount immunohistochemistry to investigate the distribution and innervation of the taste buds within multiple organs including the barbels, oropharyngeal cavity, fins (pectoral, dorsal, and caudal), and trunk. Labeled taste buds could be observed in all the organs examined. The density of the taste buds was higher along the leading edges of the barbels and fins; this likely increases the chance of detecting food. In all the fins, the taste buds were distributed in linear arrays parallel to the fin rays. Labeling of nerve fibers by anti-acetylated tubulin antibody showed that the taste buds within each sensory field are innervated in different ways. In the barbels, large nerve bundles run along the length of the organ, with fascicles branching off to innervate polygonally organized groups of taste buds. In the fins, nerve bundles run along the axis of fin rays to innervate taste buds lying in a line. In each case, small fascicles of fibers branch from large bundles and terminate within the basal portions of the taste buds. Serotonin immunohistochemistry demonstrated that most of the taste buds in all the organs examined contained disk-shaped serotonin-immunopositive cells in their basal region. This indicates a similar organization of the taste buds, in terms of the existence of serotonin-immunopositive basal cells, across the different sensory fields in this species. © 2017 S. Karger AG, Basel.

  9. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    Science.gov (United States)

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  10. Tongue and taste organ development in the ontogeny of direct-developing salamander Plethodon cinereus (Lissamphibia: Plethodontidae).

    Science.gov (United States)

    Budzik, Karolina A; Żuwała, Krystyna; Kerney, Ryan

    2016-07-01

    The latest research on direct developing caecilian and anuran species indicate presence of only one generation of taste organs during their ontogeny. This is distinct from indirect developing batrachians studied thus far, which possess taste buds in larvae and anatomically distinct taste discs in metamorphs. This study is a description of the tongue and taste organ morphology and development in direct developing salamander Plethodon cinereus (Plethodontidae) using histology and electron microscopy techniques. The results reveal two distinct stages tongue morphology (primary and secondary), similar to metamorphic urodeles, although only one stage of taste organ morphology. Taste disc sensory zones emerge on the surface of the oropharyngeal epithelium by the end of embryonic development, which coincides with maturation of the soft tongue. Taste organs occur in the epithelium of the tongue pad (where they are situated on the dermal papillae), the palate and the inner surface of the mandible and the maxilla. Plethodon cinereus embryos only possess taste disc type taste organs. Similar to the direct developing anuran Eleutherodactylus coqui (Eleutherodactylidae), these salamanders do not recapitulate larval taste bud morphology as an embryo. The lack of taste bud formation is probably a broadly distributed feature characteristic to direct developing batrachians. J. Morphol. 277:906-915, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx

    OpenAIRE

    Yu-Chieh David Chen; Anupama Dahanukar

    2017-01-01

    Summary: The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The ...

  12. Electrophysiological studies of salty taste modification by organic acids in the labellar taste cell of the blowfly.

    Science.gov (United States)

    Murata, Yoshihiro; Kataoka-Shirasugi, Naoko; Amakawa, Taisaku

    2002-01-01

    Using the labellar salt receptor cells of the blowfly, Phormia regina, we electrophysiologically showed that the response to NaCl and KCl aqueous solutions was enhanced and depressed by acetic, succinic and citric acids. The organic acid concentrations at which the most enhanced salt response (MESR) was obtained were found to be different: 0.05-1 mM citric acid, 0.5-2 mM succinic acid and 5-50 mM acetic acid. Moreover, the degree of the salt response was not always dependent on the pH values of the stimulating solutions. The salt response was also enhanced by HCl (pH 3.5-3.0) only when the NaCl concentration was greater than the threshold, indicating that the salty taste would be enhanced by the comparatively lower concentrations of hydrogen ions. Another explanation for the enhancement is that the salty taste may also be enhanced by undissociated molecules of the organic acids, because the MESRs were obtained at the pH values lower than the pKa(1) or pKa(2) values of these organic acids. On the other hand, the salty taste could be depressed by both the lower pH range (pH 2.5-2.0) and the dissociated organic anions from organic acid molecules with at least two carboxyl groups.

  13. Processing umami and other tastes in mammalian taste buds.

    Science.gov (United States)

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  14. Processing Umami and Other Tastes in Mammalian Taste Buds

    OpenAIRE

    Roper, Stephen D.; Chaudhari, Nirupa

    2009-01-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potentia...

  15. Nerve-independent and ectopically additional induction of taste buds in organ culture of fetal tongues.

    Science.gov (United States)

    Honda, Kotaro; Tomooka, Yasuhiro

    2016-10-01

    An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.

  16. Fingerprinting taste buds: intermediate filaments and their implication for taste bud formation.

    OpenAIRE

    Witt, M; Reutter, K; Ganchrow, D; Ganchrow, J R

    2000-01-01

    Intermediate filaments in taste organs of terrestrial (human and chick) as well as aquatic (Xenopus laevis) species were detected using immunohistochemistry and electron microscopy. During development, the potential importance of the interface between the taste bud primordium and non-gustatory adjacent tissues is evidenced by the distinct immunoreactivity of a subpopulation of taste bud cells for cytokeratins and vimentin. In human foetuses, the selective molecular marker for taste bud primor...

  17. Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.

    Science.gov (United States)

    Shin, Yu-Kyong; Cong, Wei-na; Cai, Huan; Kim, Wook; Maudsley, Stuart; Egan, Josephine M; Martin, Bronwen

    2012-04-01

    Normal aging is a complex process that affects every organ system in the body, including the taste system. Thus, we investigated the effects of the normal aging process on taste bud morphology, function, and taste responsivity in male mice at 2, 10, and 18 months of age. The 18-month-old animals demonstrated a significant reduction in taste bud size and number of taste cells per bud compared with the 2- and 10-month-old animals. The 18-month-old animals exhibited a significant reduction of protein gene product 9.5 and sonic hedgehog immunoreactivity (taste cell markers). The number of taste cells expressing the sweet taste receptor subunit, T1R3, and the sweet taste modulating hormone, glucagon-like peptide-1, were reduced in the 18-month-old mice. Concordant with taste cell alterations, the 18-month-old animals demonstrated reduced sweet taste responsivity compared with the younger animals and the other major taste modalities (salty, sour, and bitter) remained intact.

  18. Coevolutionary patterning of teeth and taste buds

    Science.gov (United States)

    Bloomquist, Ryan F.; Parnell, Nicholas F.; Phillips, Kristine A.; Fowler, Teresa E.; Yu, Tian Y.; Sharpe, Paul T.; Streelman, J. Todd

    2015-01-01

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium. PMID:26483492

  19. Coevolutionary patterning of teeth and taste buds.

    Science.gov (United States)

    Bloomquist, Ryan F; Parnell, Nicholas F; Phillips, Kristine A; Fowler, Teresa E; Yu, Tian Y; Sharpe, Paul T; Streelman, J Todd

    2015-11-03

    Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.

  20. Peptide regulators of peripheral taste function.

    Science.gov (United States)

    Dotson, Cedrick D; Geraedts, Maartje C P; Munger, Steven D

    2013-03-01

    The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Tasting green: An experimental design for investigating consumer perception of organic wine

    OpenAIRE

    Wiedmann, Klaus-Peter; Hennigs, Nadine; Behrens, Stefan Henrik; Klarmann, Christiane

    2014-01-01

    Purpose: There is empirical evidence that the image of organic products has a stronger effect on consumer perception than the intrinsic characteristics. Against this background, the aim of this paper is twofold; first, to ascertain if the stimulus "organic food", placed by storytelling, influences the perception of wine. Based on this, the study tries to discover wherein a positive perception of organic wine might be reflected (e.g. willingness to pay premium prices, better taste perception)....

  2. Participation of the peripheral taste system in aging-dependent changes in taste sensitivity.

    Science.gov (United States)

    Narukawa, Masataka; Kurokawa, Azusa; Kohta, Rie; Misaka, Takumi

    2017-09-01

    Previous studies have shown that aging modifies taste sensitivity. However, the factors affecting the changes in taste sensitivity remain unclear. To investigate the cause of the age-related changes in taste sensitivity, we compared the peripheral taste detection systems in young and old mice. First, we examined whether taste sensitivity varied according to age using behavioral assays. We confirmed that the taste sensitivities to salty and bitter tastes decreased with aging. In other assays, the gustatory nerve responses to salty and sweet tastes increased significantly with aging, while those to bitter taste did not change. Thus, the profile of the gustatory nerve responses was inconsistent with the profile of the behavioral responses. Next, we evaluated the expressions of taste-related molecules in the taste buds. Although no apparent differences in the expressions of representative taste receptors were observed between the two age groups, the mRNA expressions of signaling effectors were slightly, but significantly, decreased in old mice. No significant differences in the turnover rates of taste bud cells were observed between the two age groups. Thus, we did not observe any large decreases in the expressions of taste-related molecules and turnover rates of taste bud cells with aging. Based on these findings, we conclude that changes in taste sensitivity with aging were not caused by aging-related degradation of peripheral taste organs. Meanwhile, the concentrations of several serum components that modify taste responses changed with age. Thus, taste signal-modifying factors such as serum components may have a contributing role in aging-related changes in taste sensitivity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Changes in taste bud volume during taste disturbance.

    Science.gov (United States)

    Srur, Ehab; Pau, Hans Wilhelm; Just, Tino

    2011-08-01

    On-line mapping and serial volume measurements of taste buds with confocal laser scanning microscopy provide information on the peripheral gustatory organ over time. We report the volumetric measurements of four selected fungiform papillae over 8 weeks in a 62-year-old man with taste disturbance, which was more apparent on the right than on the left side. In the two papillae on the right side, no taste buds were detected within the fungiform papillae in the sixth and eighth week. During sixth and eighth week, there was no response to the highest presented stimuli in electrogustometry (1 mA) on the right-sided tongue tip nor at the tongue edge. The morphology (shape, diameter) of the fungiform papillae on both sides remained unchanged. Comparison of the time course of the volume changes revealed differences corresponding to gustatory sensitivity. These findings suggest that the time course of volume changes indicated taste disturbance in our patient, rather than morphological changes in the fungiform papillae. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Calcium Signaling in Taste Cells

    Science.gov (United States)

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  5. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    Directory of Open Access Journals (Sweden)

    Ralf Kist

    2014-10-01

    Full Text Available In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  6. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    Science.gov (United States)

    Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko

    2014-10-01

    In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  7. Caffeine taste signaling in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi A Apostolopoulou

    2016-08-01

    Full Text Available The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal and ventral organ. However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative coreceptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s. This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviours.

  8. Fabrication of taste sensor for education

    Science.gov (United States)

    Wu, Xiao; Tahara, Yusuke; Toko, Kiyoshi; Kuriyaki, Hisao

    2017-03-01

    In order to solve the unconcern to usefulness of learning science among high school students in Japan, we developed a simple fabricated taste sensor with sensitivity and selectivity to each taste quality, which can be applied in science class. A commercialized Teflon membrane was used as the polymer membrane holding lipids. In addition, a non-adhesive method is considered to combine the membrane and the sensor electrode using a plastic cap which is easily accessible. The taste sensor for education fabricated in this way showed a good selectivity and sensitivity. By adjusting the composition of trioctylmethylammonium chloride (TOMA) and phosphoric acid di(2-ethylhexyl) ester (PAEE) included in lipid solution, we improved the selectivity of this simple taste sensor to saltiness and sourness. To verify this taste sensor as a useful science teaching material for science class, we applied this taste sensor into a science class for university students. By comparing the results between the sensory test and the sensor response, humans taste showed the same tendency just as the sensor response, which proved the sensor as a useful teaching material for science class.

  9. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    Science.gov (United States)

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  10. Tasteful Brands: Products of Brands Perceived to be Warm and Competent Taste Subjectively Better

    Directory of Open Access Journals (Sweden)

    Boyka Bratanova

    2015-06-01

    Full Text Available Using survey and experimental data, the present research examines the effect of brand perception on experienced taste. The content of brand perception can be organized along the two social perception dimensions of warmth and competence. We use these two dimensions to systematically investigate the influence of brand perception on experienced taste and consumer behavior toward food products. The brand’s perceived warmth and competence independently influenced taste, both when it was measured as a belief and as an embodied experience following consumption. Taste mediated the link between brand’s warmth and competence perceptions and three consumer behavioral tendencies crucial for the marketing success of brands: buying intentions, brand loyalty, and support for the brand.

  11. Distribution of sensory taste thresholds for phenylthiocarbamide ...

    African Journals Online (AJOL)

    The ability to taste Phenylthiocarbamide (PTC), a bitter organic compound has been described as a bimodal autosomal trait in both genetic and anthropological studies. This study is based on the ability of a person to taste PTC. The present study reports the threshold distribution of PTC taste sensitivity among some Muslim ...

  12. Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells.

    Science.gov (United States)

    Yamashita, Atsuko; Kondo, Kaori; Kunishima, Yoshimi; Iseki, Sachiko; Kondo, Takashi; Ota, Masato S

    2018-01-22

    Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Taste profile characterization of white ginseng by electronic tongue ...

    African Journals Online (AJOL)

    GREGORY

    2012-05-10

    May 10, 2012 ... the flavor of substances such as foods and poisons. Humans perceive taste through sensory organs called taste buds concentrated on the upper tongue surface. Basic taste contributes to the sensation and flavor of foods in the mouth. Sourness is the taste that detects acidity. The sourness of substances is ...

  14. Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds.

    Science.gov (United States)

    Huang, Anthony Y; Wu, Sandy Y

    2015-09-16

    membranes in the oronasal cavities and being perceived as pungency, irritation, or heat. This is a study of a fundamental question in neurobiology: how are signals processed in sensory end organs, taste buds? More specifically, taste-modifying interactions, via transmitters, between gustatory and chemosensory afferents inside taste buds will help explain how a coherent output is formed before being transmitted to the brain. Copyright © 2015 the authors 0270-6474/15/3512714-11$15.00/0.

  15. Taste buds as peripheral chemosensory processors.

    Science.gov (United States)

    Roper, Stephen D

    2013-01-01

    Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    Science.gov (United States)

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Limited taste discrimination in Drosophila.

    Science.gov (United States)

    Masek, Pavel; Scott, Kristin

    2010-08-17

    In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.

  18. NEURAL ORGANIZATION OF SENSORY INFORMATIONS FOR TASTE,

    Science.gov (United States)

    TASTE , ELECTROPHYSIOLOGY), (*NERVES, *TONGUE), NERVE CELLS, NERVE IMPULSES, PHYSIOLOGY, NERVOUS SYSTEM, STIMULATION(PHYSIOLOGY), NERVE FIBERS, RATS...HAMSTERS, STIMULATION(PHYSIOLOGY), PERCEPTION, COOLING, BEHAVIOR, PSYCHOPHYSIOLOGY, TEMPERATURE, THRESHOLDS(PHYSIOLOGY), CHEMORECEPTORS , STATISTICAL ANALYSIS, JAPAN

  19. Intravital Microscopic Interrogation of Peripheral Taste Sensation

    Science.gov (United States)

    Choi, Myunghwan; Lee, Woei Ming; Yun, Seok Hyun

    2015-03-01

    Intravital microscopy is a powerful tool in neuroscience but has not been adapted to the taste sensory organ due to anatomical constraint. Here we developed an imaging window to facilitate microscopic access to the murine tongue in vivo. Real-time two-photon microscopy allowed the visualization of three-dimensional microanatomy of the intact tongue mucosa and functional activity of taste cells in response to topically administered tastants in live mice. Video microscopy also showed the calcium activity of taste cells elicited by small-sized tastants in the blood circulation. Molecular kinetic analysis suggested that intravascular taste sensation takes place at the microvilli on the apical side of taste cells after diffusion of the molecules through the pericellular capillaries and tight junctions in the taste bud. Our results demonstrate the capabilities and utilities of the new tool for taste research in vivo.

  20. Smelling and Tasting Underwater.

    Science.gov (United States)

    Atema, Jelle

    1980-01-01

    Discusses differences between smell and taste, comparing these senses in organisms in aquatic and terrestrial environments. Describes the chemical environment underwater and in air, differences in chemoreceptors to receive stimuli, and the organs, brain, and behavior involved in chemoreception. (CS)

  1. Habitual Tastes and Embedded Taste

    DEFF Research Database (Denmark)

    Hedegaard, Liselotte

    2016-01-01

    The interest of this paper is to position taste within the framework of time. This might seem peculiar given that taste, in its physical sense, is referred to as an ephemeral experience taking place in the mouth. Taste, however, is more than that. It is the transient experience that infiltrates...... may be bridged by story-telling or other ways of handing over historically embedded practices, but this leaves a more fundamental question unanswered. Namely, that given that all remembrance has individual recollection as the point of departure, then how does individual recollection of tastes...

  2. Recent Advances in Molecular Mechanisms of Taste Signaling and Modifying.

    Science.gov (United States)

    Shigemura, Noriatsu; Ninomiya, Yuzo

    2016-01-01

    The sense of taste conveys crucial information about the quality and nutritional value of foods before it is ingested. Taste signaling begins with taste cells via taste receptors in oral cavity. Activation of these receptors drives the transduction systems in taste receptor cells. Then particular transmitters are released from the taste cells and activate corresponding afferent gustatory nerve fibers. Recent studies have revealed that taste sensitivities are defined by distinct taste receptors and modulated by endogenous humoral factors in a specific group of taste cells. Such peripheral taste generations and modifications would directly influence intake of nutritive substances. This review will highlight current understanding of molecular mechanisms for taste reception, signal transduction in taste bud cells, transmission between taste cells and nerves, regeneration from taste stem cells, and modification by humoral factors at peripheral taste organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Discrimination of taste qualities among mouse fungiform taste bud cells.

    Science.gov (United States)

    Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-09-15

    Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.

  4. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  5. Developing and regenerating a sense of taste.

    Science.gov (United States)

    Barlow, Linda A; Klein, Ophir D

    2015-01-01

    Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero. © 2015 Elsevier Inc. All rights reserved.

  6. Breadth of Tuning and Taste Coding in Mammalian Taste Buds

    OpenAIRE

    Tomchik, Seth M.; Berg, Stephanie; Kim, Joung Woul; Chaudhari, Nirupa; Roper, Stephen D.

    2007-01-01

    A longstanding question in taste research concerns taste coding and, in particular, how broadly are individual taste bud cells tuned to taste qualities (sweet, bitter, umami, salty, and sour). Taste bud cells express G-protein-coupled receptors for sweet, bitter, or umami tastes but not in combination. However, responses to multiple taste qualities have been recorded in individual taste cells. We and others have shown previously there are two classes of taste bud cells directly involved in gu...

  7. What is taste and how do we teach taste?

    DEFF Research Database (Denmark)

    Wistoft, Karen; Qvortrup, Lars

    2017-01-01

    students to learn about taste. This section presents a systematic division of taste into its four main dimensions: The dimension of good taste, the dimension of healthy taste, the dimension of perceived taste, and the dimension of moral taste. The second section comprises taste as an instrument of teaching....... Here, the intention is to use ‘taste’ as a means to teach home economics and food education. This section answers the question of how to teach in a way that enables the students to develop knowledge and skills in relation to the four dimensions of taste. In this section four knowledge types...... and argument forms are presented, each related to one of the four taste dimensions, because they provide a basis for structuring an appropriate curriculum of taste. The final aim is to enable students to make well-reasoned food decisions with ‘taste’ as the compass of judgment....

  8. Mechanisms of radiation-induced conditioned taste aversion learning

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.

    1986-01-01

    The literature on taste aversion learning is reviewed and discussed, with particular emphasis on those studies that have used exposure to ionizing radiation as an unconditioned stimulus to produce a conditioned taste aversion. The primary aim of the review is to attempt to define the mechanisms that lead to the initiation of the taste aversion response following exposure to ionizing radiation. Studies using drug treatments to produce a taste aversion have been included to the extent that they are relevant to understanding the mechanisms by which exposure to ionizing radiation can affect the behavior of the organism. 141 references

  9. Taste buds in the palatal mucosa of snakes | Berkhoudt | African ...

    African Journals Online (AJOL)

    An examination of the oral mucosa of Crotalus and several Scolecophidia revealed the presence of taste buds. The taste buds in these two divergent groups of snakes are similar in appearance, and correspond to previous descriptions of gustatory organs in other reptiles. Few taste buds were present in any specimen, and ...

  10. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors

    Science.gov (United States)

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E.

    2013-01-01

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates. PMID:23466675

  11. Evolutionary origins of taste buds: phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors.

    Science.gov (United States)

    Kirino, Masato; Parnes, Jason; Hansen, Anne; Kiyohara, Sadao; Finger, Thomas E

    2013-03-06

    Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.

  12. Galvanic Tongue Stimulation Inhibits Five Basic Tastes Induced by Aqueous Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Kazuma Aoyama

    2017-12-01

    Full Text Available Galvanic tongue stimulation (GTS modulates taste sensation. However, the effect of GTS is contingent on the electrode polarity in the proximity of the tongue. If an anodal electrode is attached in the proximity of the tongue, an electrical or metallic taste is elicited. On the other hand, if only cathodal electrode is attached in the proximity of the tongue, the salty taste, which is induced by electrolyte materials, is inhibited. The mechanism of this taste inhibition is not adequately understood. In this study, we aim to demonstrate that the inhibition is cause by ions, which elicit taste and which migrate from the taste sensors on the tongue by GTS. We verified the inhibitory effect of GTS on all five basic tastes induced by electrolyte materials. This technology is effective for virtual reality systems and interfaces to support dietary restrictions. Our findings demonstrate that cathodal-GTS inhibits all the five basic tastes. The results also support our hypothesis that the effects of cathodal-GTS are caused by migrating tasting ions in the mouth.

  13. AP1 transcription factors are required to maintain the peripheral taste system.

    Science.gov (United States)

    Shandilya, Jayasha; Gao, Yankun; Nayak, Tapan K; Roberts, Stefan G E; Medler, Kathryn F

    2016-10-27

    The sense of taste is used by organisms to achieve the optimal nutritional requirement and avoid potentially toxic compounds. In the oral cavity, taste receptor cells are grouped together in taste buds that are present in specialized taste papillae in the tongue. Taste receptor cells are the cells that detect chemicals in potential food items and transmit that information to gustatory nerves that convey the taste information to the brain. As taste cells are in contact with the external environment, they can be damaged and are routinely replaced throughout an organism's lifetime to maintain functionality. However, this taste cell turnover loses efficiency over time resulting in a reduction in taste ability. Currently, very little is known about the mechanisms that regulate the renewal and maintenance of taste cells. We therefore performed RNA-sequencing analysis on isolated taste cells from 2 and 6-month-old mice to determine how alterations in the taste cell-transcriptome regulate taste cell maintenance and function in adults. We found that the activator protein-1 (AP1) transcription factors (c-Fos, Fosb and c-Jun) and genes associated with this pathway were significantly downregulated in taste cells by 6 months and further declined at 12 months. We generated conditional c-Fos-knockout mice to target K14-expressing cells, including differentiating taste cells. c-Fos deletion caused a severe perturbation in taste bud structure and resulted in a significant reduction in the taste bud size. c-Fos deletion also affected taste cell turnover as evident by a decrease in proliferative marker, and upregulation of the apoptotic marker cleaved-PARP. Thus, AP1 factors are important regulators of adult taste cell renewal and their downregulation negatively impacts taste maintenance.

  14. A taste for ATP: neurotransmission in taste buds

    Science.gov (United States)

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  15. A taste for ATP: neurotransmission in taste buds

    Directory of Open Access Journals (Sweden)

    Thomas E. Finger

    2013-12-01

    Full Text Available Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells.

  16. Molecular Mechanisms Underlying Memory Consolidation of Taste Information in the Cortex

    OpenAIRE

    Gal-Ben-Ari, Shunit; Rosenblum, Kobi

    2012-01-01

    The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this aut...

  17. The taste cell-related diffuse chemosensory system.

    Science.gov (United States)

    Sbarbati, A; Osculati, F

    2005-03-01

    Elements expressing the molecular mechanisms of gustatory transduction have been described in several organs in the digestive and respiratory apparatuses. These taste cell-related elements are isolated cells, which are not grouped in buds, and they have been interpreted as chemoreceptors. Their presence in epithelia of endodermal origin suggests the existence of a diffuse chemosensory system (DCS) sharing common signaling mechanisms with the "classic" taste organs. The elements of this taste cell-related DCS display a site-related morphologic polymorphism, and in the past they have been indicated with various names (e.g., brush, tuft, caveolated, fibrillo-vesicular or solitary chemosensory cells). It may be that the taste cell-related DCS is like an iceberg: the taste buds are probably only the most visible portion, with most of the iceberg more caudally located in the form of solitary chemosensory cells or chemosensory clusters. Comparative anatomical studies in lower vertebrates suggest that this 'submerged' portion may represent the most phylogenetically ancient component of the system, which is probably involved in defensive or digestive mechanisms. In the taste buds, the presence of several cell subtypes and of a wide range of molecular mechanisms permits precise food analysis. The larger, 'submerged' portion of the iceberg is composed of a polymorphic population of isolated elements or cell clusters in which the molecular cascade of cell signaling needs to be explored in detail. The little data we have strongly suggests a close relationship with taste cells. Morphological and biochemical considerations suggest that the DCS is a potential new drug target. Modulation of the respiratory and digestive apparatuses through substances, which act on the molecular receptors of this chemoreceptive system, could be a new frontier in drug discovery.

  18. Characterization of Conventional, Biodynamic, and Organic Purple Grape Juices by Chemical Markers, Antioxidant Capacity, and Instrumental Taste Profile

    NARCIS (Netherlands)

    Granato, D.; Margraf, T.; Brotzakis, I.; Capuano, E.; Ruth, van S.M.

    2015-01-01

    The objectives of this study were to characterize organic, biodynamic, and conventional purple grape juices (n = 31) produced in Europe based on instrumental taste profile, antioxidant activity, and some chemical markers and to propose a multivariate statistical model to analyze their quality and

  19. Taste isn't just for taste buds anymore

    OpenAIRE

    Finger, Thomas E.; Kinnamon, Sue C.

    2011-01-01

    Taste is a discriminative sense involving specialized receptor cells of the oral cavity (taste buds) and at least two distinct families of G protein-coupled receptor molecules that detect nutritionally important substances or potential toxins. Yet the receptor mechanisms that drive taste also are utilized by numerous systems throughout the body. How and why these so-called taste receptors are used to regulate digestion and respiration is now a matter of intense study. In this article we provi...

  20. Genomic evidence of bitter taste in snakes and phylogenetic analysis of bitter taste receptor genes in reptiles

    Directory of Open Access Journals (Sweden)

    Huaming Zhong

    2017-08-01

    Full Text Available As nontraditional model organisms with extreme physiological and morphological phenotypes, snakes are believed to possess an inferior taste system. However, the bitter taste sensation is essential to distinguish the nutritious and poisonous food resources and the genomic evidence of bitter taste in snakes is largely scarce. To explore the genetic basis of the bitter taste of snakes and characterize the evolution of bitter taste receptor genes (Tas2rs in reptiles, we identified Tas2r genes in 19 genomes (species corresponding to three orders of non-avian reptiles. Our results indicated contractions of Tas2r gene repertoires in snakes, however dramatic gene expansions have occurred in lizards. Phylogenetic analysis of the Tas2rs with NJ and BI methods revealed that Tas2r genes of snake species formed two clades, whereas in lizards the Tas2r genes clustered into two monophyletic clades and four large clades. Evolutionary changes (birth and death of intact Tas2r genes in reptiles were determined by reconciliation analysis. Additionally, the taste signaling pathway calcium homeostasis modulator 1 (Calhm1 gene of snakes was putatively functional, suggesting that snakes still possess bitter taste sensation. Furthermore, Phylogenetically Independent Contrasts (PIC analyses reviewed a significant correlation between the number of Tas2r genes and the amount of potential toxins in reptilian diets, suggesting that insectivores such as some lizards may require more Tas2rs genes than omnivorous and carnivorous reptiles.

  1. Taste information derived from T1R-expressing taste cells in mice.

    Science.gov (United States)

    Yoshida, Ryusuke; Ninomiya, Yuzo

    2016-03-01

    The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet). Receptors for each of the basic tastes are thought to be expressed exclusively in taste bud cells. Sweet (T1R2+T1R3-expressing) taste cells were thought to be segregated from umami (T1R1+T1R3-expressing) taste cells in taste buds. However, recent studies have revealed that a significant portion of taste cells in mice expressed all T1R subunits and responded to both sweet and umami compounds. This suggests that sweet and umami taste cells may not be segregated. Mice are able to discriminate between sweet and umami tastes, and both tastes contribute to behavioural preferences for sweet or umami compounds. There is growing evidence that T1R3 is also involved in behavioural avoidance of calcium tastes in mice, which implies that there may be a further population of T1R-expressing taste cells that mediate aversion to calcium taste. Therefore the simple view of detection and segregation of sweet and umami tastes by T1R-expressing taste cells, in mice, is now open to re-examination. © 2016 Authors; published by Portland Press Limited.

  2. Smell and Taste

    Science.gov (United States)

    ... Gustatory (taste nerve) cells are clustered in the taste buds of the mouth and throat. They react to ... that can be seen on the tongue contain taste buds. These surface cells send taste information to nearby ...

  3. Molecular mechanisms underlying memory consolidation of taste information in the cortex.

    Science.gov (United States)

    Gal-Ben-Ari, Shunit; Rosenblum, Kobi

    2011-01-01

    The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste-memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.

  4. Molecular mechanisms underlying memory consolidation of taste information in the cortex

    Directory of Open Access Journals (Sweden)

    Shunit eGal-Ben-Ari

    2012-01-01

    Full Text Available The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste memory consolidation in the gustatory cortex. Specifically, the role of neurotransmitters, meuromodulators, immediate early genes, and translation regulation are addressed.

  5. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya

    2018-01-30

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  6. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  7. Change of the human taste bud volume over time.

    Science.gov (United States)

    Srur, Ehab; Stachs, Oliver; Guthoff, Rudolf; Witt, Martin; Pau, Hans Wilhelm; Just, Tino

    2010-08-01

    The specific aim of this study is to measure the taste volume in healthy human subjects over a 2.5-month period and to demonstrate morphological changes of the peripheral taste organs. Eighteen human taste buds in four fungiform papillae (fPap) were examined over a 10-week period. The fungiform papillae investigated were selected based on the form of the papillae or the arrangement of surface taste pores. Measurements were performed over 10 consecutive weeks, with five scans in a day once a week. The following parameters were measured: height and diameter of the taste bud, diameter of the fungiform papilla and diameter of the taste pore. The findings of this exploratory study indicated that (1) taste bud volumes changed over a 10-week period, (2) the interval between two volume maxima within the 10-week period was 3-5 weeks, and (3) the diameter of the fPap did not correlate with the volume of a single taste bud or with the volume of all taste buds in the fPap within the 10-week period. This exploratory in vivo study revealed changes in taste bud volumes in healthy humans with age-related gustatory sensitivity. These findings need to be considered when studying the effect of denervation of fungiform papillae in vivo using confocal microscopy. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Tasting with Eyes

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sakai

    2011-10-01

    Full Text Available Whenever we eat and drink something, we experience the sense of taste. We attribute the sense of taste to gustation without doubt, but it is not true. The olfaction is the most important component of the flavor. On the other hand, the gustation (basic tastes is affected strongly by the olfaction; when participants tasted solutions containing odors without any tastants, they reported there were some tastes. Odors of the foods and beverages show interaction with (potentiate and/or inhibit basic tastes, and determined the flavor of them. Here, some experiments exploring about the role of the vision in the sense of taste are shown: The color of sushi distorted (enhanced or eliminated the perception of fishy, the color of the packages of chocolate distorted the perception of taste, the color of syrup determined the participants' ability of identification of the flavor, and so on. These results show the vision is an important component of the sense of taste. These visual effects on taste are supposed to be mediated by the olfaction. It is because there are many studies showing the vision affects the olfaction, but studies showing the vision affects gustation are very little and inconsistent with each other.

  9. The Role of Cholecystokinin in Peripheral Taste Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Ryusuke Yoshida

    2017-10-01

    Full Text Available Cholecystokinin (CCK is a gut hormone released from enteroendocrine cells. CCK functions as an anorexigenic factor by acting on CCK receptors expressed on the vagal afferent nerve and hypothalamus with a synergistic interaction between leptin. In the gut, tastants such as amino acids and bitter compounds stimulate CCK release from enteroendocrine cells via activation of taste transduction pathways. CCK is also expressed in taste buds, suggesting potential roles of CCK in taste signaling in the peripheral taste organ. In the present study, we focused on the function of CCK in the initial responses to taste stimulation. CCK was coexpressed with type II taste cell markers such as Gα-gustducin, phospholipase Cβ2, and transient receptor potential channel M5. Furthermore, a small subset (~30% of CCK-expressing taste cells expressed a sweet/umami taste receptor component, taste receptor type 1 member 3, in taste buds. Because type II taste cells are sweet, umami or bitter taste cells, the majority of CCK-expressing taste cells may be bitter taste cells. CCK-A and -B receptors were expressed in both taste cells and gustatory neurons. CCK receptor knockout mice showed reduced neural responses to bitter compounds compared with wild-type mice. Consistently, intravenous injection of CCK-Ar antagonist lorglumide selectively suppressed gustatory nerve responses to bitter compounds. Intravenous injection of CCK-8 transiently increased gustatory nerve activities in a dose-dependent manner whereas administration of CCK-8 did not affect activities of bitter-sensitive taste cells. Collectively, CCK may be a functionally important neurotransmitter or neuromodulator to activate bitter nerve fibers in peripheral taste tissues.

  10. A comparison of English and Japanese taste languages: taste descriptive methodology, codability and the umami taste.

    Science.gov (United States)

    O'Mahony, M; Ishii, R

    1986-05-01

    Everyday taste descriptions for a range of stimuli were obtained from selected groups of American and Japanese subjects, using a variety of stimuli, stimulus presentation procedures and response conditions. In English there was a tendency to use a quadrapartite classification system: 'sweet', 'sour', 'salty' and 'bitter'. The Japanese had a different strategy, adding a fifth label: 'Ajinomoto', referring to the taste of monosodium glutamate. This label was generally replaced by umami--the scientific term--by Japanese who were workers or trained tasters involved with glutamate manufacture. Cultural differences in taste language have consequences for taste psychophysicists who impose a quadrapartite restriction on allowable taste descriptions. Stimulus presentation by filter-paper or aqueous solution elicited the same response trends. Language codability was only an indicator of degree of taste mixedness/singularity if used statistically with samples of sufficient size; it had little value as an indicator for individual subjects.

  11. Bottled vs. Canned Beer: Do They Really Taste Different?

    Directory of Open Access Journals (Sweden)

    Andrew Barnett

    2016-09-01

    Full Text Available People often say that beer tastes better from a bottle than from a can. However, one can ask how reliable this perceived difference is across consumers. And, if reliable, one can further ask whether it is a purely psychological phenomenon (associated with the influence of packaging on taste perception, or whether instead it reflects some more mundane physico-chemical interaction between the packaging material (or packing procedure/process and the contents. Two experiments were conducted in order to address these questions. In the main experiment, 151 participants at the 2016 Edinburgh Science Festival were served a special ‘craft beer’ in a plastic cup. The beer was either poured from a bottle or can (a between-participants experimental design was used. The participants were encouraged to pick up the packaging in order to inspect the label before tasting the beer. The participants rated the perceived taste, quality, and freshness of the beer, as well as their likelihood of purchase, and estimated the price. All of the beer came from the same batch (specifically a Session IPA from Barney’s Brewery in Edinburgh. None of the participants were familiar with this particular craft brew. Nevertheless, those who evaluated the beer from the bottle rated it as tasting better than those who rated the beer served from the can. Having demonstrated such a perceptual difference (in terms of taste, we then went on to investigate whether people would prefer one packaging format over the other when the beer from bottle and can was served blind to a new group of participants (i.e., when the participants did not know the packaging material. The participants in this control study (n = 29 were asked which beer they preferred. Alternatively, they could state that the two samples tasted the same. No sign of a consistent preference was obtained under such blind tasting conditions. Explanations for the psychological impact of the packaging format, in terms of

  12. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    Science.gov (United States)

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  13. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Science.gov (United States)

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  14. Highly Sensitive Multi-Channel IDC Sensor Array for Low Concentration Taste Detection

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2015-06-01

    Full Text Available In this study, we designed and developed an interdigitated capacitor (IDC-based taste sensor array to detect different taste substances. The designed taste sensing array has four IDC sensing elements. The four IDC taste sensing elements of the array are fabricated by incorporating four different types of lipids into the polymer, dioctyl phenylphosphonate (DOPP and tetrahydrofuran (THF to make the respective dielectric materials that are individually placed onto an interdigitated electrode (IDE via spin coating. When the dielectric material of an IDC sensing element comes into contact with a taste substance, its dielectric properties change with the capacitance of the IDC sensing element; this, in turn, changes the voltage across the IDC, as well as the output voltage of each channel of the system. In order to assess the effectiveness of the sensing system, four taste substances, namely sourness (HCl, saltiness (NaCl, sweetness (glucose and bitterness (quinine-HCl, were tested. The IDC taste sensor array had rapid response and recovery times of about 12.9 s and 13.39 s, respectively, with highly stable response properties. The response property of the proposed IDC taste sensor array was linear, and its correlation coefficient R2 was about 0.9958 over the dynamic range of the taste sensor array as the taste substance concentration was varied from 1 μM to 1 M. The proposed IDC taste sensor array has several other advantages, such as real-time monitoring capabilities, high sensitivity 45.78 mV/decade, good reproducibility with a standard deviation of about 0.029 and compactness, and the circuitry is based on readily available and inexpensive electronic components. The proposed IDC taste sensor array was compared with the potentiometric taste sensor with respect to sensitivity, dynamic range width, linearity and response time. We found that the proposed IDC sensor array has better performance. Finally, principal component analysis (PCA was applied

  15. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  16. Attempt to develop taste bud models in three-dimensional culture.

    Science.gov (United States)

    Nishiyama, Miyako; Yuki, Saori; Fukano, Chiharu; Sako, Hideyuki; Miyamoto, Takenori; Tomooka, Yasuhiro

    2011-09-01

    Taste buds are the end organs of taste located in the gustatory papillae, which occur on the surface of the oral cavity. The goal of the present study was to establish a culture model mimicking the lingual taste bud of the mouse. To this end, three cell lines were employed: taste bud-derived cell lines (TBD cell lines), a lingual epithelial cell-derived cell line (20A cell line), and a mesenchymal cell-derived cell line (TMD cell line). TBD cells embedded in collagen gel formed three-dimensional clusters, which had an internal cavity equipped with a tight junction-like structure, a microvilluslike structure, and a laminin-positive layer surrounding the cluster. The cells with this epitheliumlike morphology expressed marker proteins of taste cells: gustducin and NCAM. TBD cells formed a monolayer on collagen gel when they were co-cultured with TMD cells. TBD, 20A, and TMD cell lines were maintained in a triple cell co-culture, in which TBD cells were pre-seeded as aggregates or in suspension on the collagen gel containing TMD cells, and 20A cells were laid over the TBD cells. TBD cells in the triple cell co-culture expressed NCAM. This result suggests that co-cultured TBD cells exhibited a characteristic of Type III taste cells. The culture model would be useful to study morphogenesis and functions of the gustatory organ.

  17. Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.

    Science.gov (United States)

    Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan

    2009-01-20

    Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.

  18. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.

    OpenAIRE

    Reutter, K; Boudriot, F; Witt, M

    2000-01-01

    Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct s...

  19. Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens

    OpenAIRE

    Venkatesan, Nandakumar; Rajapaksha, Prasangi; Payne, Jason; Goodfellow, Forrest; Wang, Zhonghou; Kawabata, Fuminori; Tabata, Shoji; Stice, Steven; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustduci...

  20. Modulation of taste sensitivity by GLP-1 signaling in taste buds.

    Science.gov (United States)

    Martin, Bronwen; Dotson, Cedrick D; Shin, Yu-Kyong; Ji, Sunggoan; Drucker, Daniel J; Maudsley, Stuart; Munger, Steven D

    2009-07-01

    Modulation of sensory function can help animals adjust to a changing external and internal environment. Even so, mechanisms for modulating taste sensitivity are poorly understood. Using immunohistochemical, biochemical, and behavioral approaches, we found that the peptide hormone glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) are expressed in mammalian taste buds. Furthermore, we found that GLP-1 signaling plays an important role in the modulation of taste sensitivity: GLP-1R knockout mice exhibit a dramatic reduction in sweet taste sensitivity as well as an enhanced sensitivity to umami-tasting stimuli. Together, these findings suggest a novel paracrine mechanism for the hormonal modulation of taste function in mammals.

  1. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  2. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  3. Acid stimulation (sour taste elicits GABA and serotonin release from mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Several transmitter candidates including serotonin (5-HT, ATP, and norepinephrine (NE have been identified in taste buds. Recently, γ-aminobutyric acid (GABA as well as the associated synthetic enzymes and receptors have also been identified in taste cells. GABA reduces taste-evoked ATP secretion from Receptor cells and is considered to be an inhibitory transmitter in taste buds. However, to date, the identity of GABAergic taste cells and the specific stimulus for GABA release are not well understood. In the present study, we used genetically-engineered Chinese hamster ovary (CHO cells stably co-expressing GABA(B receptors and Gαqo5 proteins to measure GABA release from isolated taste buds. We recorded robust responses from GABA biosensors when they were positioned against taste buds isolated from mouse circumvallate papillae and the buds were depolarized with KCl or a stimulated with an acid (sour taste. In contrast, a mixture of sweet and bitter taste stimuli did not trigger GABA release. KCl- or acid-evoked GABA secretion from taste buds was Ca(2+-dependent; removing Ca(2+ from the bathing medium eliminated GABA secretion. Finally, we isolated individual taste cells to identify the origin of GABA secretion. GABA was released only from Presynaptic (Type III cells and not from Receptor (Type II cells. Previously, we reported that 5-HT released from Presynaptic cells inhibits taste-evoked ATP secretion. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the present results indicate that GABA and 5-HT are inhibitory transmitters in mouse taste buds and both likely play an important role in modulating taste responses.

  4. Taste of Fat: A Sixth Taste Modality?

    Science.gov (United States)

    Besnard, Philippe; Passilly-Degrace, Patricia; Khan, Naim A

    2016-01-01

    An attraction for palatable foods rich in lipids is shared by rodents and humans. Over the last decade, the mechanisms responsible for this specific eating behavior have been actively studied, and compelling evidence implicates a taste component in the orosensory detection of dietary lipids [i.e., long-chain fatty acids (LCFA)], in addition to textural, olfactory, and postingestive cues. The interactions between LCFA and specific receptors in taste bud cells (TBC) elicit physiological changes that affect both food intake and digestive functions. After a short overview of the gustatory pathway, this review brings together the key findings consistent with the existence of a sixth taste modality devoted to the perception of lipids. The main steps leading to this new paradigm (i.e., chemoreception of LCFA in TBC, cell signaling cascade, transfer of lipid signals throughout the gustatory nervous pathway, and their physiological consequences) will be critically analyzed. The limitations to this concept will also be discussed in the light of our current knowledge of the sense of taste. Finally, we will analyze the recent literature on obesity-related dysfunctions in the orosensory detection of lipids ("fatty" taste?), in relation to the overconsumption of fat-rich foods and the associated health risks. Copyright © 2016 the American Physiological Society.

  5. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    Science.gov (United States)

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  6. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    Science.gov (United States)

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.

  7. Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.

    Science.gov (United States)

    Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D

    2008-06-15

    Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.

  8. Taste sensing FET (TSFET)

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K.; Yasuda, R.; Ezaki, S. [Kyushu University, Fukuoka (Japan); Fujiyoshi, T. [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1997-12-20

    Taste can be quantified using a multichannel taste sensor with lipid/polymer membranes. Its sensitivity and stability are superior to those of humans. A present study is concerned with the first step of miniaturization and integration of the taste sensor with lipid/polymer membranes using FET. As a result, it was found that gate-source voltage of the taste sensing FET showed the same behaviors as the conventional taste sensor utilizing the membrane-potential change due to five kinds of taste substances. Discrimination of foodstuffs was very easy. A thin lipid membrane formed using LB technique was also tried. These results will open doors to fabrication of a miniaturized, integrated taste sensing system. 12 refs., 6 figs.

  9. Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation*

    Science.gov (United States)

    Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142

  10. Pragmatically on the sense of taste - a short treatise based on culinary art.

    Science.gov (United States)

    Waluga, Marek; Jonderko, Krzysztof; Buschhaus, Magdalena

    2013-01-01

    The sense of taste is essential for proper functioning of the organism. The authors describe, in an accessible way, the complex mechanisms of taste perception. The structure of particular taste receptors, variants of their activation, as well as physical and chemical factors modifying the sensation of taste, are presented. Exquisite culinary examples are given in order to facilitate the reader with the understanding of why, at the level of the cerebral cortex, a virtually infinite number of combinations of taste sensations can be perceived. The discourse is spiced up by reflections of the eminent philosopher of taste, J.A. Brillat-Savarin, who convinces us that food intake should be not only a physiological act, but also a refined pleasure.

  11. Evolution of taste and solitary chemoreceptor cell systems.

    Science.gov (United States)

    Finger, T E

    1997-01-01

    Vertebrates possess four distinct chemosensory systems distinguishable on the basis of structure, innervation and utilization: olfaction, taste, solitary chemoreceptor cells (SCC) and the common chemical sense (free nerve endings). Of these, taste and the SCC sense rely on secondary receptor cells situated in the epidermis and synapsing on sensory nerve fibers innervating them near their base. The SCC sense occurs in anamniote aquatic craniates, including hagfish, and may be used for feeding or predator avoidance. The sense of taste occurs only in vertebrates and is always utilized for feeding. The SCC system achieves a high degree of specialization in two teleosts: sea robins (Prionotus) and rocklings (Ciliata). In sea robins, SCCs are abundant on the three anterior fin rays of the pectoral fin which are free of fin webbing and are used in active exploration of the substrate. Behavioral and physiological studies show that this SCC system responds to feeding cues and drives feeding behavior. It is connected centrally like a somatosensory system. In contrast, the specialized SCC system of rocklings occurs on the anterior dorsal fin which actively samples the surrounding water. This system responds to mucus substances and may serve as a predator detector. The SCC system in rocklings is connected centrally like a gustatory system. Taste buds contain multiple receptor cell types, including a serotonergic Merkel-like cell. Taste receptor cells respond to nutritionally relevant substances. Due to similarities between SCCs and one type of taste receptor cell, the suggestion is made that taste buds may be compound sensory organs that include some cells related to SCCs and others related to cutaneous Merkel cells. The lack of taste buds in hagfish and their presence in all vertebrates may indicate that the phylogenetic development of taste buds coincided with the elaboration of head structures at the craniate-vertebrate transition.

  12. Taste disorders: A review

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ambaldhage

    2014-01-01

    Full Text Available For maintenance of the health of an individual, taste sensation is very important. It is an important sensation that serves to assess the nutritious content of food, support oral intake, and prevent ingestion of potentially toxic substances. Disturbances in the perception of taste can lead to loss of appetite, causing malnutrition and thus distressing both the physical and psychological well-being of the patient. Oral physicians are often the first clinicians who hear complaints about alteration in taste from the patients. In spite of the effect of taste changes on health, literature on the diagnosis, pathogenesis, and precise treatment of taste disorders are less. Taste changes may lead patients to seek inappropriate dental treatments. Proper diagnosis of the etiology is the foremost step in the treatment of taste disorders. Thus, it is important that dental clinicians to be familiar with the various causes and proper management of taste changes. In this article, we have reviewed related articles focusing on taste disorders and their management, to provide a quick sketch for the clinicians. A detailed search was performed to identify the systematic reviews and research articles on taste disorders, using PUBMED and Cochrane. All the authors independently extracted data for analysis and review. Ultimately, 26 articles underwent a full text review. In conclusion, the research to date certainly offers us valid management strategies for taste disorders. Meanwhile, practical strategies with the highest success are needed for further intervention.

  13. A permeability barrier surrounds taste buds in lingual epithelia

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa

    2014-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003–1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. PMID:25209263

  14. A permeability barrier surrounds taste buds in lingual epithelia.

    Science.gov (United States)

    Dando, Robin; Pereira, Elizabeth; Kurian, Mani; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2015-01-01

    Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste. Copyright © 2015 the American Physiological Society.

  15. Interactions between Flavor and Taste: Using Dashi Soup as a Taste Stimulus

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sakai

    2011-10-01

    Full Text Available There are many researches showing interactions between olfaction and taste. Many of them supported that the interactions are not innate, but are learned through our daily eating experiences. Stevenson (2009 called this phenomenon as “learned synesthesia”. The authors also showed the interactions between flavor and taste are learned and processed by higher cognitive systems in rats and humans (Sakai et al., 2001; Sakai and Imada, 2003. Here the interactions between umami taste and dashi flavors are developed by the daily eating experience of Japanese traditional cuisine. Twenty flavors (such as sea weed, bonito, onion, garlic, ginger etc. by courtesy of YAMAHO CO. Ltd. were used as flavor stimuli. Taste stimuli are monosodium glutamate (umami substance, MSG, miso soup, and Katsuo Dashi (bonito soup stock. Participants tasted these stimuli, 12∼20 stimuli in a day, and evaluated the strength of umami taste, the palatability, congruity between taste and flavor with 100 mm visual analogue scales. The results of evaluations analyzed with the participants' daily eating experience showed the interactions between taste and flavor are developed by their own daily intake of traditional Japanese cuisine, especially dashi soup.

  16. When music is salty: The crossmodal associations between sound and taste.

    Science.gov (United States)

    Guetta, Rachel; Loui, Psyche

    2017-01-01

    Here we investigate associations between complex auditory and complex taste stimuli. A novel piece of music was composed and recorded in four different styles of musical articulation to reflect the four basic tastes groups (sweet, sour, salty, bitter). In Experiment 1, participants performed above chance at pairing the music clips with corresponding taste words. Experiment 2 uses multidimensional scaling to interpret how participants categorize these musical stimuli, and to show that auditory categories can be organized in a similar manner as taste categories. Experiment 3 introduces four different flavors of custom-made chocolate ganache and shows that participants can match music clips with the corresponding taste stimuli with above-chance accuracy. Experiment 4 demonstrates the partial role of pleasantness in crossmodal mappings between sound and taste. The present findings confirm that individuals are able to make crossmodal associations between complex auditory and gustatory stimuli, and that valence may mediate multisensory integration in the general population.

  17. Discrete innervation of murine taste buds by peripheral taste neurons.

    Science.gov (United States)

    Zaidi, Faisal N; Whitehead, Mark C

    2006-08-09

    The peripheral taste system likely maintains a specific relationship between ganglion cells that signal a particular taste quality and taste bud cells responsive to that quality. We have explored a measure of the receptoneural relationship in the mouse. By injecting single fungiform taste buds with lipophilic retrograde neuroanatomical markers, the number of labeled geniculate ganglion cells innervating single buds on the tongue were identified. We found that three to five ganglion cells innervate a single bud. Injecting neighboring buds with different color markers showed that the buds are primarily innervated by separate populations of geniculate cells (i.e., multiply labeled ganglion cells are rare). In other words, each taste bud is innervated by a population of neurons that only connects with that bud. Palate bud injections revealed a similar, relatively exclusive receptoneural relationship. Injecting buds in different regions of the tongue did not reveal a topographic representation of buds in the geniculate ganglion, despite a stereotyped patterned arrangement of fungiform buds as rows and columns on the tongue. However, ganglion cells innervating the tongue and palate were differentially concentrated in lateral and rostral regions of the ganglion, respectively. The principal finding that small groups of ganglion cells send sensory fibers that converge selectively on a single bud is a new-found measure of specific matching between the two principal cellular elements of the mouse peripheral taste system. Repetition of the experiments in the hamster showed a more divergent innervation of buds in this species. The results indicate that whatever taste quality is signaled by a murine geniculate ganglion neuron, that signal reflects the activity of cells in a single taste bud.

  18. Orosensory and Homeostatic Functions of the Insular Taste Cortex.

    Science.gov (United States)

    de Araujo, Ivan E; Geha, Paul; Small, Dana M

    2012-03-01

    The gustatory aspect of the insular cortex is part of the brain circuit that controls ingestive behaviors based on chemosensory inputs. However, the sensory properties of foods are not restricted to taste and should also include salient features such as odor, texture, temperature, and appearance. Therefore, it is reasonable to hypothesize that specialized circuits within the central taste pathways must be involved in representing several other oral sensory modalities in addition to taste. In this review, we evaluate current evidence indicating that the insular gustatory cortex functions as an integrative circuit, with taste-responsive regions also showing heightened sensitivity to olfactory, somatosensory, and even visual stimulation. We also review evidence for modulation of taste-responsive insular areas by changes in physiological state, with taste-elicited neuronal responses varying according to the nutritional state of the organism. We then examine experimental support for a functional map within the insular cortex that might reflect the various sensory and homeostatic roles associated with this region. Finally, we evaluate the potential role of the taste insular cortex in weight-gain susceptibility. Taken together, the current experimental evidence favors the view that the insular gustatory cortex functions as an orosensory integrative system that not only enables the formation of complex flavor representations but also mediates their modulation by the internal state of the body, playing therefore a central role in food intake regulation.

  19. Bringing the immigrant back into the sociology of taste.

    Science.gov (United States)

    Ray, Krishnendu

    2017-12-01

    The sociology of food consumption has emerged as a robust field with rich empirical material and engaged theorization about taste, omnivorousness, distinction, and practice theory. Nevertheless, there are continuing empirical and conceptual lacunae. Although transnational and rural-to-urban migrants play a crucial role in food businesses in many global cities, they are mostly unaccounted for in the sociology of taste. Taking the American case, in particular based on data from New York City, this article provides reasons for that gap and shows what might be gained if migrants were accounted for in the urban sociology of taste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    Science.gov (United States)

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Lean production of taste improved lipidic sodium benzoate formulations.

    Science.gov (United States)

    Eckert, C; Pein, M; Breitkreutz, J

    2014-10-01

    Sodium benzoate is a highly soluble orphan drug with unpleasant taste and high daily dose. The aim of this study was to develop a child appropriate, individually dosable, and taste masked dosage form utilizing lipids in melt granulation process and tableting. A saliva resistant coated lipid granule produced by extrusion served as reference product. Low melting hard fat was found to be appropriate as lipid binder in high-shear granulation. The resulting granules were compressed to minitablets without addition of other excipients. Compression to 2mm minitablets decreased the dissolved API amount within the first 2 min of dissolution from 33% to 23%. The Euclidean distances, calculated from electronic tongue measurements, were reduced, indicating an improved taste. The reference product showed a lag time in dissolution, which is desirable for taste masking. Although a lag time was not achieved for the lipidic minitablets, drug release in various food materials was reduced to 2%, assuming a suitable taste masking for oral sodium benzoate administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Association between Salivary Leptin Levels and Taste Perception in Children

    Directory of Open Access Journals (Sweden)

    Lénia Rodrigues

    2017-01-01

    Full Text Available The satiety inducing hormone leptin acts not only at central nervous system but also at peripheral level. Leptin receptors are found in several sense related organs, including the mouth. A role of leptin in sweet taste response has been suggested but, until now, studies have been based on in vitro experiments, or in assessing the levels of the hormone in circulation. The present study investigated whether the levels of leptin in saliva are related to taste perception in children and whether Body Mass Index (BMI affects such relationship. Sweet and bitter taste sensitivity was assessed for 121 children aged 9-10 years and unstimulated whole saliva was collected for leptin quantification, using ELISA technique. Children females with lower sweet taste sensitivity presented higher salivary leptin levels, but this is only in the normal weight ones. For bitter taste, association between salivary leptin and caffeine threshold detection was observed only in preobese boys, with higher levels of salivary hormone in low sensitive individuals. This study is the first presenting evidences of a relationship between salivary leptin levels and taste perception, which is sex and BMI dependent. The mode of action of salivary leptin at taste receptor level should be elucidated in future studies.

  3. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    OpenAIRE

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240?360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and ?-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us t...

  4. Quantitative analysis of taste bud cell numbers in fungiform and soft palate taste buds of mice.

    Science.gov (United States)

    Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2011-01-07

    Mammalian taste bud cells (TBCs) consist of several cell types equipped with different taste receptor molecules, and hence the ratio of cell types in a taste bud constitutes the taste responses of the taste bud. Here we show that the population of immunohistochemically identified cell types per taste bud is proportional to the number of total TBCs in the taste bud or the area of the taste bud in fungiform papillae, and that the proportions differ among cell types. This result is applicable to soft palate taste buds. However, the density of almost all cell types, the population of cell types divided by the area of the respective taste buds, is significantly higher in soft palates. These results suggest that the turnover of TBCs is regulated to keep the ratio of each cell type constant, and that taste responsiveness is different between fungiform and soft palate taste buds. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    International Nuclear Information System (INIS)

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds

  6. X-ray microanalysis of Zn in the taste organ of the teleost Ameiurus nebulosus

    International Nuclear Information System (INIS)

    Reutter, K.

    1983-01-01

    The trace metal Zn seems to be essential for the normal functioning of the gustatory sense. It was tried to localize Zn within the peripheral and central parts of the bullhead's gustatory system by the use of scanning electron microscopy and X-ray microanalysis. In freeze dried preparations of the bullhead's barbel taste buds (and the taste buds of rabbits) Zn is found in randomly distributed granules, which cannot be related to distinct taste bud regions. Furthermore, Zn occurs in subunits of the central gustatory nuclei, the vagal and facial lobe of the rhombencephalon. Therefore Zn appears to be essential for intact peripheral as well as central gustatory processes, at least in lower vertebrates. (author)

  7. Food Science of Dashi and Umami Taste.

    Science.gov (United States)

    Ninomiya, Kumiko

    2016-01-01

    Umami is a basic tastes, along with sweet, salty, bitter and sour, which is imparted by glutamate, one of the free amino acids in foods. Since its discovery of umami by a Japanese scientist in 1908, umami is now perceived globally a basic taste. Recent collaboration among chefs and researchers on traditional soup stocks showed a difference in taste profiles of Japanese soup stock 'dashi' and Western style soup stock. The free amino acids profile's in dashi and soup stock showed how Japanese have traditionally adopted a simple umami taste. The exchange of knowledge on cooking methods and diverse types of umami rich foods in different countries displays the blending of the culinary arts, food science and technology for healthy and tasty solutions. Since Japanese cuisine 'WASHOKU' was listed in the 'Intangible Heritage of UNESCO' in 2013, many people in the world now have great interest in Japanese cuisine. One of the unique characteristics of this cuisine is that 'dashi' is an indispensable material for cooking a variety of Japanese dishes. Many chefs from Europe, US and South America have come to Japan to learn Japanese cuisine in the last 10 years, and umami has become recognized as a common taste worldwide. Researchers and culinary professionals have begun to pay attention to the traditional seasonings and condiments rich in glutamate available throughout the world.

  8. "Turn Up the Taste": Assessing the Role of Taste Intensity and Emotion in Mediating Crossmodal Correspondences between Basic Tastes and Pitch.

    Science.gov (United States)

    Wang, Qian Janice; Wang, Sheila; Spence, Charles

    2016-05-01

    People intuitively match basic tastes to sounds of different pitches, and the matches that they make tend to be consistent across individuals. It is, though, not altogether clear what governs such crossmodal mappings between taste and auditory pitch. Here, we assess whether variations in taste intensity influence the matching of taste to pitch as well as the role of emotion in mediating such crossmodal correspondences. Participants were presented with 5 basic tastants at 3 concentrations. In Experiment 1, the participants rated the tastants in terms of their emotional arousal and valence/pleasantness, and selected a musical note (from 19 possible pitches ranging from C2 to C8) and loudness that best matched each tastant. In Experiment 2, the participants made emotion ratings and note matches in separate blocks of trials, then made emotion ratings for all 19 notes. Overall, the results of the 2 experiments revealed that both taste quality and concentration exerted a significant effect on participants' loudness selection, taste intensity rating, and valence and arousal ratings. Taste quality, not concentration levels, had a significant effect on participants' choice of pitch, but a significant positive correlation was observed between individual perceived taste intensity and pitch choice. A significant and strong correlation was also demonstrated between participants' valence assessments of tastants and their valence assessments of the best-matching musical notes. These results therefore provide evidence that: 1) pitch-taste correspondences are primarily influenced by taste quality, and to a lesser extent, by perceived intensity; and 2) such correspondences may be mediated by valence/pleasantness. © The Author 2016. Published by Oxford University Press.

  9. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    Science.gov (United States)

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    Science.gov (United States)

    Gaillard, Dany; Bowles, Spencer G; Salcedo, Ernesto; Xu, Mingang; Millar, Sarah E; Barlow, Linda A

    2017-08-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  11. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    Science.gov (United States)

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  12. Amiloride-sensitive channels in type I fungiform taste cells in mouse

    Directory of Open Access Journals (Sweden)

    Clapp Tod R

    2008-01-01

    Full Text Available Abstract Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs. In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling

  13. Polycose taste pre-exposure fails to influence behavioral and neural indices of taste novelty.

    Science.gov (United States)

    Barot, Sabiha K; Bernstein, Ilene L

    2005-12-01

    Taste novelty can strongly modulate the speed and efficacy of taste aversion learning. Novel sweet tastes enhance c-Fos-like immunoreactivity (FLI) in the central amygdala and insular cortex. The present studies examined whether this neural correlate of novelty extends to different taste types by measuring FLI signals after exposure to novel and familiar polysaccharide (Polycose) and salt (NaCl) tastes. Novel Polycose not only failed to elevate FLI expression in central amygdala and insular cortex, but also failed to induce stronger taste aversion learning than familiar Polycose. Novel NaCl, on the other hand, showed patterns of FLI activation and aversion learning similar to that of novel sweet tastes. Possible reasons for the resistance of Polycose to typical pre-exposure effects are discussed. Copyright (c) 2006 APA, all rights reserved.

  14. Polycose Taste Pre-Exposure Fails to Influence Behavioral and Neural Indices of Taste Novelty

    OpenAIRE

    Barot, Sabiha K.; Bernstein, Ilene L.

    2005-01-01

    Taste novelty can strongly modulate the speed and efficacy of taste aversion learning. Novel sweet tastes enhance c-Fos-like immunoreactivity (FLI) in the central amygdala and insular cortex. The present studies examined whether this neural correlate of novelty extends to different taste types by measuring FLI signals after exposure to novel and familiar polysaccharide (Polycose®) and salt (NaCl) tastes. Novel Polycose not only failed to elevate FLI expression in central amygdala and insular ...

  15. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice.

    Directory of Open Access Journals (Sweden)

    Dany Gaillard

    2017-08-01

    Full Text Available Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds.

  16. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice

    Science.gov (United States)

    Gaillard, Dany; Xu, Mingang; Millar, Sarah E.

    2017-01-01

    Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. PMID:28846687

  17. Taste buds: cells, signals and synapses.

    Science.gov (United States)

    Roper, Stephen D; Chaudhari, Nirupa

    2017-08-01

    The past decade has witnessed a consolidation and refinement of the extraordinary progress made in taste research. This Review describes recent advances in our understanding of taste receptors, taste buds, and the connections between taste buds and sensory afferent fibres. The article discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the transmitters involved in taste processing and new studies that address longstanding arguments about taste coding.

  18. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    Science.gov (United States)

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  19. TRPs in Taste and Chemesthesis

    Science.gov (United States)

    2015-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca2+ release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa. PMID:24961971

  20. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    Science.gov (United States)

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  1. The number of taste buds is related to bitter taste sensitivity in layer and broiler chickens.

    Science.gov (United States)

    Kudo, Ken-ichi; Shiraishi, Jun-ichi; Nishimura, Shotaro; Bungo, Takashi; Tabata, Shoji

    2010-04-01

    The relationship between taste sensitivity and the number of taste buds using a bitter tastant, quinine hydrochloride, was investigated in White Leghorn, Rhode Island Red, and broiler chickens. The White Leghorn and Rhode Island Red strains were able to perceive 2.0 mmol/L quinine hydrochloride, but the taste sensitivity of Rhode Island Red chickens was higher than that of White Leghorn chickens. Broiler chickens perceived 0.5 mmol/L quinine hydrochloride. The number of taste buds in the White Leghorn strain was the lowest, then the Rhode Island Red strain, with the number of taste buds highest in the broiler chickens. The number of taste buds was well correlated with bitter taste sensitivity. Therefore, we suggest that the number of taste buds is a vital factor in the perception of bitter taste and may be useful in selecting appropriate feeds for chickens.

  2. Organic optoelectronic materials

    CERN Document Server

    Li, Yongfang

    2015-01-01

    This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.

  3. Learning through the taste system

    Directory of Open Access Journals (Sweden)

    Thomas R. Scott

    2011-11-01

    Full Text Available Taste is the final arbiter of which chemicals from the environment will be admitted to the body. The action of swallowing a substance leads to a physiological consequence of which the taste system should be informed. Accordingly, taste neurons in the central nervous system are closely allied with those that receive input from the viscera so as to monitor the impact of a recently ingested substance. There is behavioral, anatomical, electrophysiological, gene expression, and neurochemical evidence that the consequences of ingestion influence subsequent food selection through development of either a conditioned taste aversion (if illness ensues or a conditioned taste preference (if satiety. This ongoing communication between taste and the viscera permits the animal to tailor its taste system to its individual needs over a lifetime.

  4. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    Science.gov (United States)

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  5. Subtype-dependent postnatal development of taste receptor cells in mouse fungiform taste buds.

    Science.gov (United States)

    Ohtubo, Yoshitaka; Iwamoto, Masafumi; Yoshii, Kiyonori

    2012-06-01

    Taste buds contain two types of taste receptor cells, inositol 1,4,5-triphosphate receptor type 3-immunoreactive cells (type II cells) and synaptosomal-associating protein-25-immunoreactive cells (type III cells). We investigated their postnatal development in mouse fungiform taste buds immunohistochemically and electrophysiologically. The cell density, i.e. the number of cells per taste bud divided by the maximal area of the horizontal cross-section of the taste bud, of type II cells increased by postnatal day (PD)49, where as that of type III cells was unchanged throughout the postnatal observation period and was equal to that of the adult cells at PD1. The immunoreactivity of taste bud cell subtypes was the same as that of their respective subtypes in adult mice throughout the postnatal observation period. Almost all type II cells were immunoreactive to gustducin at PD1, and then the ratio of gustducin-immunoreactive type II cells to all type II cells decreased to a saturation level, ∼60% of all type II cells, by PD15. Type II and III cells generated voltage-gated currents similar to their respective adult cells even at PD3. These results show that infant taste receptor cells are as excitable as those of adults and propagate in a subtype-dependent manner. The relationship between the ratio of each taste receptor cell subtype to all cells and taste nerve responses are discussed. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Disorders of saliva production and taste sensation after oropharyngeal irradiation

    International Nuclear Information System (INIS)

    Herrmann, T.; Adamski, K.; Stefan, M.

    1984-01-01

    Salivary secretion and disorders of taste sensation during and after radiotherapy of the oropharyngeal region were investigated in 20 patients. Salivary glands and tongue were exposed to radiation in different extent. Telecobalt irradiations were given in daily doses of 1.8 - 2.0 Gy, the total dose being 55 - 60 Gy in the salivary glands (1,590 - 1,760 ret). The patients were asked for subjective statements on salivary secretion, taste disorders were measured by semiquantitative gustometry with different dilution ratios for the four basis qualities of taste. 2 weeks after the onset of irradiation (20.0 Gy) a reduction of saliva production appeared without tendency of recovery. A statistically significant increase of the taste threshold appeared for all qualities of taste after 20 - 30 Gy. The criterion 'bitter' was primarily affected. This radiogen disorder, apparently caused on the cellular level of the taste buds, seems to be reversible also for doses of 60 Gy (1,760 ret) while radiogen functional disorders of the salivary glands are irreversible from 45 Gy (1,500 ret). Considering all sensual and organic effects of xerostomy (dental caries, osteoradionecrosis) it is advisable to keep the dose for at least one third of the salivary gland tissue below this critical value. (author)

  7. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells

    Directory of Open Access Journals (Sweden)

    Brand Joseph

    2010-06-01

    Full Text Available Abstract Background The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Results Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF-α, interferon (IFN-γ, and interleukin (IL-6, in mouse circumvallate and foliate papillae. TNF-α and IFN-γ immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds

  8. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells.

    Science.gov (United States)

    Cohn, Zachary J; Kim, Agnes; Huang, Liquan; Brand, Joseph; Wang, Hong

    2010-06-10

    The mammalian taste bud, a complex collection of taste sensory cells, supporting cells, and immature basal cells, is the structural unit for detecting taste stimuli in the oral cavity. Even though the cells of the taste bud undergo constant turnover, the structural homeostasis of the bud is maintained by balancing cell proliferation and cell death. Compared with nongustatory lingual epithelial cells, taste cells express higher levels of several inflammatory receptors and signalling proteins. Whether inflammation, an underlying condition in some diseases associated with taste disorders, interferes with taste cell renewal and turnover is unknown. Here we report the effects of lipopolysaccharide (LPS)-induced inflammation on taste progenitor cell proliferation and taste bud cell turnover in mouse taste tissues. Intraperitoneal injection of LPS rapidly induced expression of several inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and interleukin (IL)-6, in mouse circumvallate and foliate papillae. TNF-alpha and IFN-gamma immunoreactivities were preferentially localized to subsets of cells in taste buds. LPS-induced inflammation significantly reduced the number of 5-bromo-2'-deoxyuridine (BrdU)-labeled newborn taste bud cells 1-3 days after LPS injection, suggesting an inhibition of taste bud cell renewal. BrdU pulse-chase experiments showed that BrdU-labeled taste cells had a shorter average life span in LPS-treated mice than in controls. To investigate whether LPS inhibits taste cell renewal by suppressing taste progenitor cell proliferation, we studied the expression of Ki67, a cell proliferation marker. Quantitative real-time RT-PCR revealed that LPS markedly reduced Ki67 mRNA levels in circumvallate and foliate epithelia. Immunofluorescent staining using anti-Ki67 antibodies showed that LPS decreased the number of Ki67-positive cells in the basal regions surrounding circumvallate taste buds, the niche for taste progenitor

  9. Clofibrate inhibits the umami-savory taste of glutamate.

    Science.gov (United States)

    Kochem, Matthew; Breslin, Paul A S

    2017-01-01

    In humans, umami taste can increase the palatability of foods rich in the amino acids glutamate and aspartate and the 5'-ribonucleotides IMP and GMP. Umami taste is transduced, in part, by T1R1-T1R3, a heteromeric G-protein coupled receptor. Umami perception is inhibited by sodium lactisole, which binds to the T1R3 subunit in vitro. Lactisole is structurally similar to the fibrate drugs. Clofibric acid, a lipid lowering drug, also binds the T1R3 subunit in vitro. The purpose of this study was to determine whether clofibric acid inhibits the umami taste of glutamate in human subjects. Ten participants rated the umami taste intensity elicited by 20 mM monosodium glutamate (MSG) mixed with varying concentrations of clofibric acid (0 to 16 mM). In addition, fourteen participants rated the effect of 1.4 mM clofibric acid on umami enhancement by 5' ribonucleotides. Participants were instructed to rate perceived intensity using a general Labeled Magnitude Scale (gLMS). Each participant was tested in triplicate. Clofibric acid inhibited umami taste intensity from 20 mM MSG in a dose dependent manner. Whereas MSG neat elicited "moderate" umami taste intensity, the addition of 16 mM clofibric acid elicited only "weak" umami intensity on average, and in some subjects no umami taste was elicited. We further show that 1.4 mM clofibric acid suppressed umami enhancement from GMP, but not from IMP. This study provides in vivo evidence that clofibric acid inhibits glutamate taste perception, presumably via T1R1-T1R3 inhibition, and lends further evidence that the T1R1-T1R3 receptor is the principal umami receptor in humans. T1R receptors are expressed extra-orally throughout the alimentary tract and in regulatory organs and are known to influence glucose and lipid metabolism. Whether clofibric acid as a lipid-lowering drug affects human metabolism, in part, through T1R inhibition warrants further examination.

  10. Quantification of taste of green tea with taste sensor; Aji sensor wo mochiita ryokucha no aji no teiryoka

    Energy Technology Data Exchange (ETDEWEB)

    Ikezaki, H.; Taniguchi, A. [Anritsu Corp., Tokyo (Japan); Toko, K. [Kyushu University, Fukuoka (Japan)

    1997-08-20

    We have developed a multichannel taste sensor with artificial lipid membranes and have applied it to quantification of taste of green tea. We used multiple regression analysis and found high correlations of outputs of the taste sensor with the results of sensory test (taste, flavor and color) and chemical analyses (amino acids and tannin that are main taste substances in green tea). It is concluded that the taste sensor has a potential for quantification of taste of green tea. The taste sensor responds not only to amino acids and tannin, but also to many other taste substances, and hence it contains much more taste information than conventional chemical analyses. 12 refs., 5 figs., 6 tabs.

  11. Distribution of α-Gustducin and Vimentin in premature and mature taste buds in chickens.

    Science.gov (United States)

    Venkatesan, Nandakumar; Rajapaksha, Prasangi; Payne, Jason; Goodfellow, Forrest; Wang, Zhonghou; Kawabata, Fuminori; Tabata, Shoji; Stice, Steven; Beckstead, Robert; Liu, Hong-Xiang

    2016-10-14

    The sensory organs for taste in chickens (Gallus sp.) are taste buds in the oral epithelium of the palate, base of the oral cavity, and posterior tongue. Although there is not a pan-taste cell marker that labels all chicken taste bud cells, α-Gustducin and Vimentin each label a subpopulation of taste bud cells. In the present study, we used both α-Gustducin and Vimentin to further characterize chicken taste buds at the embryonic and post-hatching stages (E17-P5). We found that both α-Gustducin and Vimentin label distinct and overlapping populations of, but not all, taste bud cells. A-Gustducin immunosignals were observed as early as E18 and were consistently distributed in early and mature taste buds in embryos and hatchlings. Vimentin immunoreactivity was initially sparse at the embryonic stages then became apparent in taste buds after hatch. In hatchlings, α-Gustducin and Vimentin immunosignals largely co-localized in taste buds. A small subset of taste bud cells were labeled by either α-Gustducin or Vimentin or were not labeled. Importantly, each of the markers was observed in all of the examined taste buds. Our data suggest that the early onset of α-Gustducin in taste buds might be important for enabling chickens to respond to taste stimuli immediately after hatch and that distinctive population of taste bud cells that are labeled by different molecular markers might represent different cell types or different phases of taste bud cells. Additionally, α-Gustducin and Vimentin can potentially be used as molecular markers of all chicken taste buds in whole mount tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Fgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.

    Science.gov (United States)

    Kapsimali, Marika; Kaushik, Anna-Lila; Gibon, Guillaume; Dirian, Lara; Ernest, Sylvain; Rosa, Frederic M

    2011-08-01

    Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm for formation of Calb2b(+) cells and reveal miR-200 and Delta-Notch signaling as key factors in this process. miR-200 knock down shows that miR-200 activity is required for taste bud formation and in particular for Calb2b(+) cell formation. Compromised delta activity in mib(-/-) dramatically reduces the number of Calb2b(+) cells and increases the number of 5HT(+) cells. Conversely, larvae with increased Notch activity and ascl1a(-/-) mutants are devoid of 5HT(+) cells, but have maintained and increased Calb2b(+) cells, respectively. These results show that Delta-Notch signaling is required for intact taste bud organ formation. Consistent with this, Notch activity restores Calb2b(+) cell formation in pharyngeal endoderm with compromised Fgf signaling, but fails to restore the formation of these cells after miR-200 knock down. Altogether, this study provides genetic evidence that supports a novel model where Fgf regulates Delta-Notch signaling, and subsequently miR-200 activity, in order to promote taste bud cell type differentiation.

  13. Oxytocin signaling in mouse taste buds.

    Science.gov (United States)

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite

  14. Longitudinal analysis of calorie restriction on rat taste bud morphology and expression of sweet taste modulators.

    Science.gov (United States)

    Cai, Huan; Daimon, Caitlin M; Cong, Wei-Na; Wang, Rui; Chirdon, Patrick; de Cabo, Rafael; Sévigny, Jean; Maudsley, Stuart; Martin, Bronwen

    2014-05-01

    Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.

  15. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    Science.gov (United States)

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  16. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    Directory of Open Access Journals (Sweden)

    Yi-ke Li

    2015-01-01

    Full Text Available The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  17. Is wine savory? Umami taste in wine

    OpenAIRE

    Alice, Vilela; António, Inês; Fernanda, Cosme

    2016-01-01

    Umami is an important taste element in natural products like wine. The umami taste has distinctive properties that differentiate it from other tastes, including a taste-enhancing synergism between two umami compounds, L-glutamate and 5’-ribonulceotides, and a prolonged aftertaste. In human taste cells, taste buds transduce the chemicals that elicit the umami tastes into membrane depolarization, which triggers release of transmitter to activate gustatory afferent nerve fibers. Umami taste stim...

  18. Using Sound-Taste Correspondences to Enhance the Subjective Value of Tasting Experiences

    Directory of Open Access Journals (Sweden)

    Felipe eReinoso Carvalho

    2015-09-01

    Full Text Available The soundscapes of those places where we eat and drink can influence our perception of taste. Here, we investigated whether contextual sound would enhance the subjective value of a tasting experience. The customers in a chocolate shop were invited to take part in an experiment in which they had to evaluate a chocolate’s taste while listening to an auditory stimulus. Four different conditions were presented to four different groups in a between-participants design. Envisioning a more ecological approach, a pre-recorded piece of popular music and the shop’s own soundscape were used as the sonic stimuli. The results revealed that not only did the customers report having a significantly better tasting experience when the sounds were presented as part of the food’s identity, but they were also willing to pay significantly more for the experience. The method outlined here paves a new approach to dealing with the design of multisensory tasting experiences, and gastronomic situations.

  19. Alteration in salivary properties and taste perception in OSMF

    Directory of Open Access Journals (Sweden)

    Sujatha Dyasanoor

    2016-01-01

    Full Text Available Objective: To assess and compare the salivary flow rate (SFR, pH and taste perception among oral submucous fibrosis (OSMF and apparently healthy subjects. Materials and Methods: Ninety subjects (45 OSMF + 45 controls were enrolled in the study for estimating and analogizing the SFR, pH, and taste perception executing modified Schirmer, pH, and taste strips. The SFR, pH, and taste perception were evaluated and compared between 14 Stage I and 31 Stage II OSMF subjects. The entered data were analyzed using SPSS 21.0 software. Results: A statistically significant decrease in SFR among OSMF group (23.4 mm at 3rd min and hypogeusia to salty (62.2%, and dysgeusia to sour taste (40% when compared to apparently healthy subjects (30.7 mm at 3rd min was noted. Statistical significance (P < 0.05% inferring hyposalivation in Stage II OSMF (24.1 mm at 3rd min juxtaposing with Stage I OSMF (31.4 mm at 3rd min. Statistically significant hypogeusia to salty (n = 23 and sweet (n = 16 and dysgeusia (n = 14 to sour among Stage II OSMF when differentiated with Stage I OSMF. The mean pH among the OSMF and control groups demonstrated no statistical significance. Conclusion: The findings from the study demonstrated marked decrease of SFR and taste perception to salty and sour among Stage II OSMF when compared to Stage I OSMF subjects.

  20. Oxytocin signaling in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Michael S Sinclair

    2010-08-01

    Full Text Available The neuropeptide, oxytocin (OXT, acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout overconsume salty and sweet (i.e. sucrose, saccharin solutions. We asked if OXT might also act on taste buds via its receptor, OXTR.Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM. OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II nor Presynaptic (Type III cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene.We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of

  1. The chemistry of sour taste and the strategy to reduce the sour taste of beer.

    Science.gov (United States)

    Li, Hong; Liu, Fang

    2015-10-15

    The contributions of free hydrogen ions, undissociated hydrogen ions in protonated acid species, and anionic acid species to sour taste were studied through sensory experiments. According to tasting results, it can be inferred that the basic substance producing a sour taste is the hydrogen ion, including free hydrogen ions and undissociated hydrogen ions. The intensity of a sour taste is determined by the total concentration of free hydrogen ions and undissociated hydrogen ions. The anionic acid species (without hydrogen ions) does not produce a sour taste but can intensify or weaken the intensity of a sour taste. It seems that hydroxyl or conjugated groups in anionic acid species can intensify the sour taste produced by hydrogen ions. The following strategy to reduce the sensory sourness is advanced: not only reduce free hydrogen ions, namely elevate pH value, but also reduce the undissociated hydrogen ions contained in protonated acid species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo.

    Science.gov (United States)

    Ren, Wenwen; Lewandowski, Brian C; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A; Margolskee, Robert F; Jiang, Peihua

    2014-11-18

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5(+)) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5(+) or Lgr6(+) cells from taste tissue can generate continuously expanding 3D structures ("organoids"). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2'-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5(+) cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6(+) cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5(+) or Lgr6(+) cells, validating the use of this model for the study of taste cell generation.

  3. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    Science.gov (United States)

    Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946

  4. Video: Taste - no waste

    DEFF Research Database (Denmark)

    Kamuk, Anette; Mortensen, Birthe Kofoed; Mithril, Charlotte Elisabeth

    2017-01-01

    of different foods. In addition, the aim was to create experiences which could show how taste and taste courage are influenced by social interactions and relations. A final aim was to bring awareness of how you can reduce waste with the example of how to use all parts of fruits and vegetables. In total......, approximately 120 children aged 10-12 years participated. In one workshop, children experimented with making juice to explore the basic tastes and worked with the pulp as an example of how to reduce food waste. In another workshop, the children prepared and tasted roasted insects as an example of a future novel...

  5. Abstract: Taste - no waste

    DEFF Research Database (Denmark)

    Mithril, Charlotte Elisabeth; Kamuk, Anette; Hoffmeyer, Agnete

    of different foods. In addition, the aim was to create experiences which could show how taste and taste courage are influenced by social interactions and relations. A final aim was to bring awareness of how you can reduce waste with the example of how to use all parts of fruits and vegetables. In total......, approximately 120 children aged 10-12 years participated. In one workshop, children experimented with making juice to explore the basic tastes and worked with the pulp as an example of how to reduce food waste. In another workshop, the children prepared and tasted roasted insects as an example of a future novel...

  6. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium

    Science.gov (United States)

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J.; Klein, Ophir D.; Barlow, Linda A.

    2014-01-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. PMID:24993944

  7. Expression of the synaptic exocytosis-regulating molecule complexin 2 in taste buds and its participation in peripheral taste transduction.

    Science.gov (United States)

    Kurokawa, Azusa; Narukawa, Masataka; Ohmoto, Makoto; Yoshimoto, Joto; Abe, Keiko; Misaka, Takumi

    2015-06-01

    Taste information from type III taste cells to gustatory neurons is thought to be transmitted via synapses. However, the molecular mechanisms underlying taste transduction through this pathway have not been fully elucidated. In this study, to identify molecules that participate in synaptic taste transduction, we investigated whether complexins (Cplxs), which play roles in regulating membrane fusion in synaptic vesicle exocytosis, were expressed in taste bud cells. Among four Cplx isoforms, strong expression of Cplx2 mRNA was detected in type III taste cells. To investigate the function of CPLX2 in taste transduction, we observed taste responses in CPLX2-knockout mice. When assessed with electrophysiological and behavioral assays, taste responses to some sour stimuli in CPLX2-knockout mice were significantly lower than those in wild-type mice. These results suggested that CPLX2 participated in synaptic taste transduction from type III taste cells to gustatory neurons. A part of taste information is thought to be transmitted via synapses. However, the molecular mechanisms have not been fully elucidated. To identify molecules that participate in synaptic taste transduction, we investigated complexins (Cplxs) expression in taste bud cells. Strong expression of Cplx2 mRNA was detected in taste bud cells. Furthermore, taste responses to some sour stimuli in CPLX2- knockout mice were significantly lower than those in wild-type mice. These suggested that CPLX2 participated in synaptic taste transduction. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.

  8. Drugs and taste aversion

    International Nuclear Information System (INIS)

    Rondeau, D.B.; Jolicoeur, F.B.; Merkel, A.D.; Wayner, M.J.

    1981-01-01

    The literature on the effects of drugs on the acquisition and the magnitude of taste aversion is reviewed and discussed. Then, the results of a series of experiments on the effects of phenobarbital and related drugs on taste aversion are reported. A standard taste aversion model was used in all experiments; test drugs were injected prior to drinking in a one bottle situation on the first test day following the taste aversion treatment. Phenobarbital in doses ranging from 20 to 80 mg/kg significantly attenuated taste aversion induced by lithium chloride (LiCl) and x-radiation, the maximal effect occurred with the 60 mg/kg dose. The attenuating effect was found to be dependent upon the magnitude of the aversion to the sapid solution. Phenobarbital completely abolished aversion produced by 0.375 mEq LiCl while the attenuation effect decreased linearly with higher doses of LiCl. Results also indicate that phenobarbital's attenuating effect cannot be solely attributed to its dipsogenic characteristic or to its state dependent learning effect. Attenuation of LiCl aversion to a saccharin solution was also observed following single doses of amobarbital, 30 mg/kg, pentobarbital, 15 mg/kg, and chloropromazine, 0.75 mg/kg. Taste aversion was not affected by other doses of those drugs or by hexobarbital, barbital, and chlordiazepoxide. Phenobarbital's attenuating effect on taste aversion is discussed in relation to other known behavioral and neurophysiological effects of the drug

  9. De Gustibus: time scale of loss and recovery of tastes caused by radiotherapy

    International Nuclear Information System (INIS)

    Maes, Annelies; Huygh, Ingrid; Weltens, Caroline; Vandevelde, Guy; Delaere, Pierre; Evers, Georges; Bogaert, Walter van den

    2002-01-01

    Purpose: To quantify the prevalence and distress of taste loss at different intervals after radiotherapy (RT) for head and neck cancer. Materials and methods: In four different groups of head and neck cancer patients (73 patients in total), taste loss and distress due to taste loss were evaluated by taste acuity tests and taste questionnaires. Group 1 (n=17) was analyzed prior to RT. Groups 2 (n=17), 3 (n=17) and 4 (n=22) were at 2, 6 and 12-24 months after treatment, respectively. A cross-sectional analysis was performed between these four groups. Results: Prior to initiation of RT (group 1), partial taste loss was observed in 35, 18 and 6% of patients for bitter, salt and sweet, respectively. At 2 months after RT (group 2), taste loss (partial or total) was seen in 88, 82, 76 and 53% for bitter, salt, sweet and sour, respectively. At 6 months (group 3), partial taste loss was seen in 71, 65, 41 and 41% (bitter, salt, sweet, sour) and after 1-2 years (group 4) in 41, 50, 27 and 27% (bitter, salt, sweet, sour). Distress caused by taste loss was most frequent in group 2 (82%). Conclusions: In this study, loss of taste after RT was found to be most pronounced after 2 months. Bitter and salt qualities were most impaired. Gradual recovery was seen during the first year after treatment. Partial taste loss still persisted 1-2 years after treatment and was responsible for slight to moderate discomfort

  10. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance.

    Science.gov (United States)

    Liu, Hong Xiang; Ermilov, Alexandre; Grachtchouk, Marina; Li, Libo; Gumucio, Deborah L; Dlugosz, Andrzej A; Mistretta, Charalotte M

    2013-10-01

    The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste

  11. "What's Your Taste in Music?" A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes.

    Science.gov (United States)

    Wang, Qian Janice; Woods, Andy T; Spence, Charles

    2015-12-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.

  12. Genetics of sweet taste preferences†

    OpenAIRE

    Bachmanov, Alexander A; Bosak, Natalia P; Floriano, Wely B; Inoue, Masashi; Li, Xia; Lin, Cailu; Murovets, Vladimir O; Reed, Danielle R; Zolotarev, Vasily A; Beauchamp, Gary K

    2011-01-01

    Sweet taste is a powerful factor influencing food acceptance. There is considerable variation in sweet taste perception and preferences within and among species. Although learning and homeostatic mechanisms contribute to this variation in sweet taste, much of it is genetically determined. Recent studies have shown that variation in the T1R genes contributes to within- and between-species differences in sweet taste. In addition, our ongoing studies using the mouse model demonstrate that a sign...

  13. The relationships between phenylthiocarbamide taste perception and smoking, work out habits and susceptibility to depression

    Directory of Open Access Journals (Sweden)

    Sevgi Durna Daştan

    2015-03-01

    Full Text Available Phenylthiocarbamide (PTC is known as phenylthiourea and it is an organic compound that has the phenyl ring. Ability to perceive the tastes of PTC chemical is related to the dominance of taste genes. There are a large number of population studies regarding the PTC taste perception and different personal characteristics or disease conditions. The purpose of this study is to reveal and compare the relation between the PTC taste perception and work-out habits, smoking, alcohol consumption and tendency to the depression of people. A total of 2500 adults were volunteered to be included in this study. PTC taste perception was measured by tasting with PTC solution (10 mg/L filtered in a paper. It showed that tasters were significantly more frequent (81.8% than nontasters (18.2% in all population. And in some parameters analyzed in this study, there are significant differences. The taste genetics show up with environmental factors and create the sense of taste, which develops the feeding behaviors. The taste perception resulting from food and beverages diversifies by genetic and environmental effects and the nervous system interprets this perception. This study is enlightening in terms of presenting that the taste perception of people affects their lifestyles and lead them to start and either continue or discontinue some habits.

  14. E-tongue: a tool for taste evaluation.

    Science.gov (United States)

    Gupta, Himanshu; Sharma, Aarti; Kumar, Suresh; Roy, Saroj K

    2010-01-01

    Taste has an important role in the development of oral pharmaceuticals. With respect to patient acceptability and compliance, taste is one of the prime factors determining the market penetration and commercial success of oral formulations, especially in pediatric medicine. Taste assessment is one important quality-control parameter for evaluating taste-masked formulations. Hence, pharmaceutical industries invest time, money and resources into developing palatable and pleasant-tasting products. The primary method for the taste measurement of a drug substance or a formulation is by human sensory evaluation, in which tasting a sample is relayed to inspectors. However, this method is impractical for early stage drug development because the test in humans is expensive and the taste of a drug candidate may not be important to the final product. Therefore, taste-sensing analytical devices, which can detect tastes, have been replacing the taste panelists. In the present review we are presenting different aspect of electronic tongue. The review article also discussed some useful patents and instrument with respect to E-tongue.

  15. Taste in holon paradigm

    Directory of Open Access Journals (Sweden)

    Klimova G. P.

    2016-07-01

    Full Text Available in this research the authors tried to investigate and generalize theoretic and applied studies of aesthetic taste, as well as, opportunities of its productivity distribution in terms of socio-cultural, person-professional and psychological levels. The article deals with traditional outlooks upon the origin of taste and its relationship with art and its current situation of taste functioning in terms of increasing globalization, virtualization and informatization of modern society.

  16. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium.

    Science.gov (United States)

    Castillo, David; Seidel, Kerstin; Salcedo, Ernesto; Ahn, Christina; de Sauvage, Frederic J; Klein, Ophir D; Barlow, Linda A

    2014-08-01

    Taste buds are assemblies of elongated epithelial cells, which are innervated by gustatory nerves that transmit taste information to the brain stem. Taste cells are continuously renewed throughout life via proliferation of epithelial progenitors, but the molecular regulation of this process remains unknown. During embryogenesis, sonic hedgehog (SHH) negatively regulates taste bud patterning, such that inhibition of SHH causes the formation of more and larger taste bud primordia, including in regions of the tongue normally devoid of taste buds. Here, using a Cre-lox system to drive constitutive expression of SHH, we identify the effects of SHH on the lingual epithelium of adult mice. We show that misexpression of SHH transforms lingual epithelial cell fate, such that daughter cells of lingual epithelial progenitors form cell type-replete, onion-shaped taste buds, rather than non-taste, pseudostratified epithelium. These SHH-induced ectopic taste buds are found in regions of the adult tongue previously thought incapable of generating taste organs. The ectopic buds are composed of all taste cell types, including support cells and detectors of sweet, bitter, umami, salt and sour, and recapitulate the molecular differentiation process of endogenous taste buds. In contrast to the well-established nerve dependence of endogenous taste buds, however, ectopic taste buds form independently of both gustatory and somatosensory innervation. As innervation is required for SHH expression by endogenous taste buds, our data suggest that SHH can replace the need for innervation to drive the entire program of taste bud differentiation. © 2014. Published by The Company of Biologists Ltd.

  17. Understanding taste dysfunction in patients with cancer.

    Science.gov (United States)

    McLaughlin, Laura; Mahon, Suzanne M

    2012-04-01

    Taste dysfunction is a significant but underestimated issue for patients with cancer. Impaired taste results in changes in diet and appetite, early satiety, and impaired social interactions. Nurses can play a key role in educating patients and families on the pathophysiology of taste dysfunction by suggesting interventions to treat the consequences of taste dysfunction, when available, and offering psychosocial support as patients cope with this often devastating consequence of treatment. Taste recognition helps humans identify the nutritional quality of food and signals the digestive tract to begin secreting enzymes. Spoiled or tainted foods typically are recognized by their bad taste. Along with the other sensory systems, taste is crucial for helping patients treated for cancer feel normal. This article will review the anatomy and physiology of taste; define the different types of taste dysfunction, including the underlying pathophysiologic basis related to cancer treatment; and discuss potential nursing interventions to manage the consequences of taste dysfunction.

  18. Taste bud cells and nerves

    OpenAIRE

    武田,正子/内田,暢彦/鈴木,裕子; タケダ,マサコ/ウチダ,ノブヒコ/スズキ,ユウコ; TAKEDA,Masako/UCHIDA,Nobuhiko/SUZUKI,Yuko

    2002-01-01

    Sectioning of glossopharyngeal nerves which innervate the taste buds in the circumvallate papillae caused apoptosis of taste buds, the numbers decreasing and the taste buds disappearing after 11 days. This indicates that gustatory nerves may release a trophic substance that induces and maintains taste buds. Taste bud cells contain neurotrophins, NCAM, NSE, PGP9.5, and NeuroD which are specific markers of neurons. The BDNF and GDNF of neurotrophins, and Trk B and GFRαl of their receptors were ...

  19. What is the role of metabolic hormones in taste buds of the tongue.

    Science.gov (United States)

    Cai, Huan; Maudsley, Stuart; Martin, Bronwen

    2014-01-01

    Gustation is one of the important chemical senses that guides the organism to identify nutrition while avoiding toxic chemicals. An increasing number of metabolic hormones and/or hormone receptors have been identified in the taste buds of the tongue and are involved in modulating taste perception. The gustatory system constitutes an additional endocrine regulatory locus that affects food intake, and in turn whole-body energy homeostasis. Here we provide an overview of the main metabolic hormones known to be present in the taste buds of the tongue; discuss their potential functional roles in taste perception and energy homeostasis and how their functional integrity is altered in the metabolic imbalance status (obesity and diabetes) and aging process. Better understanding of the functional roles of metabolic hormones in flavor perception as well as the link between taste perception and peripheral metabolism may be vital for developing strategies to promote healthier eating and prevent obesity or lifestyle-related disorders. © 2014 S. Karger AG, Basel.

  20. DEVELOPING A SENSE OF TASTE

    Science.gov (United States)

    Kapsimali, Marika; Barlow, Linda A.

    2012-01-01

    Taste buds are found in a distributed array on the tongue surface, and are innervated by cranial nerves that convey taste information to the brain. For nearly a century, taste buds were thought to be induced by nerves late in embryonic development. However, this view has shifted dramatically. A host of studies now indicate that taste bud development is initiated and proceeds via processes that are nerve-independent, occur long before birth, and governed by cellular and molecular mechanisms intrinsic to the developing tongue. Here we review the state of our understanding of the molecular and cellular regulation of taste bud development, incorporating important new data obtained through the use of two powerful genetic systems, mouse and zebrafish. PMID:23182899

  1. Lost in processing? Perceived healthfulness, taste and caloric content of whole and processed organic food.

    Science.gov (United States)

    Prada, Marília; Garrido, Margarida V; Rodrigues, David

    2017-07-01

    The "organic" claim explicitly informs consumers about the food production method. Yet, based on this claim, people often infer unrelated food attributes. The current research examined whether the perceived advantage of organic over conventional food generalizes across different organic food types. Compared to whole organic foods, processed organic foods are less available, familiar and prototypical of the organic food category. In two studies (combined N = 258) we investigated how both organic foods types were perceived in healthfulness, taste and caloric content when compared to their conventional alternatives. Participants evaluated images of both whole (e.g., lettuce) and processed organic food exemplars (e.g., pizza), and reported general evaluations of these food types. The association of these evaluations with individual difference variables - self-reported knowledge and consumption of organic food, and environmental concerns - was also examined. Results showed that organically produced whole foods were perceived as more healthful, tastier and less caloric than those produced conventionally, thus replicating the well-established halo effect of the organic claim in food evaluation. The organic advantage was more pronounced among individuals who reported being more knowledgeable about organic food, consumed it more frequently, and were more environmentally concerned. The advantage of the organic claim for processed foods was less clear. Overall, processed organic (vs. conventional) foods were perceived as tastier, more healthful (Study 1) or equally healthful (Study 2), but also as more caloric. We argue that the features of processed food may modulate the impact of the organic claim, and outline possible research directions to test this assumption. Uncovering the specific conditions in which food claims bias consumer's perceptions and behavior may have important implications for marketing, health and public-policy related fields. Copyright © 2017 Elsevier

  2. Bortezomib alters sour taste sensitivity in mice

    Directory of Open Access Journals (Sweden)

    Akihiro Ohishi

    Full Text Available Chemotherapy-induced taste disorder is one of the critical issues in cancer therapy. Bortezomib, a proteasome inhibitor, is a key agent in multiple myeloma therapy, but it induces a taste disorder. In this study, we investigated the characteristics of bortezomib-induced taste disorder and the underlying mechanism in mice. Among the five basic tastes, the sour taste sensitivity of mice was significantly increased by bortezomib administration. In bortezomib-administered mice, protein expression of PKD2L1 was increased. The increased sour taste sensitivity induced by bortezomib returned to the control level on cessation of its administration. These results suggest that an increase in protein expression of PKD2L1 enhances the sour taste sensitivity in bortezomib-administered mice, and this alteration is reversed on cessation of its administration. Keywords: Taste disorder, Bortezomib, Sour taste, Chemotherapy, Adverse effect

  3. Taste didactic reflection theory

    DEFF Research Database (Denmark)

    Wistoft, Karen; Qvortrup, Lars

    and gastrophysicists), and social sciences (anthropologists) as well as educators (preschool, elementary, secondary and vocational schools, colleges and universities) and chefs. Through interdisciplinary research collaboration and communication we attempt to span the perceived chasm separating food-sensory science......, high schools and vocational educations. By integrating research, taste, learning, didactics and communication, our projects focus on three main areas: sensory sciences and didactics; gastrophysics and the integration of scientific disciplines; and innovation and honing of culinary skills. While we...... teach pupils, students and the broader public in educational institutions and festivals about and through taste, we also study their use of taste, taste preferences, and learning processes by gathering empirical data for anthropological, sensory and pedagogical research. At the conference, we wish...

  4. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    Directory of Open Access Journals (Sweden)

    Huan Cai

    Full Text Available Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT, ghrelin knockout (ghrelin(-/-, and GOAT knockout (GOAT(-/- mice. Ghrelin(-/- mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/- mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/- and GOAT(-/- mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/- mice, yet potentiated in GOAT(-/- mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/- mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/- and GOAT(-/- mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  5. NaCl responsive taste cells in the mouse fungiform taste buds.

    Science.gov (United States)

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  6. Taste bud homeostasis in health, disease, and aging.

    Science.gov (United States)

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  7. Taste Bud Homeostasis in Health, Disease, and Aging

    Science.gov (United States)

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  8. Rewiring the taste system.

    Science.gov (United States)

    Lee, Hojoon; Macpherson, Lindsey J; Parada, Camilo A; Zuker, Charles S; Ryba, Nicholas J P

    2017-08-17

    In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.

  9. Central mechanisms of taste: Cognition, emotion and taste-elicited behaviors

    Directory of Open Access Journals (Sweden)

    Takashi Yamamoto

    2008-10-01

    Full Text Available Taste is unique among sensory systems in its innate association with mechanisms of reward and aversion in addition to its recognition of quality, e.g., sucrose is sweet and preferable, and quinine is bitter and aversive. Taste information is sent to the reward system and feeding center via the prefrontal cortices such as the mediodorsal and ventrolateral prefrontal cortices in rodents and the orbitofrontal cortex in primates. The amygdala, which receives taste inputs, also influences reward and feeding. In terms of neuroactive substances, palatability is closely related to benzodiazepine derivatives and β-endorphin, both of which facilitate consumption of food and fluid. The reward system contains the ventral tegmental area, nucleus accumbens and ventral pallidum and finally sends information to the lateral hypothalamic area, the feeding center. The dopaminergic system originating from the ventral tegmental area mediates the motivation to consume palatable food. The actual ingestive behavior is promoted by the orexigenic neuropeptides from the hypothalamus. Even palatable food can become aversive and avoided as a consequence of a postingestional unpleasant experience such as malaise. The neural mechanisms of this conditioned taste aversion will also be elucidated.

  10. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    International Nuclear Information System (INIS)

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-01-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial

  11. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds

    Science.gov (United States)

    Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525

  12. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

    Directory of Open Access Journals (Sweden)

    Bradley T Biggs

    Full Text Available Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2 were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R, were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14 promoter (K14-Cre::Igf1rlox/lox. While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox, this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2 and carbonic anhydrase 4- (Car4 positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.

  13. Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

    Science.gov (United States)

    Biggs, Bradley T; Tang, Tao; Krimm, Robin F

    2016-01-01

    Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.

  14. The Importance of Taste for Food Demand and the Experienced Taste Effect of Healthy Labels

    DEFF Research Database (Denmark)

    Thunström, Linda; Nordström, Leif Jonas

    findings imply a large positive effect on demand for potato chips from higher taste scores: when consumers’ experienced taste from potato chips improves by one unit, the average WTP for a 150 gram bag of chips increases by 20 euro cents. The effect from taste on bread demand seems smaller, but may...

  15. Salt taste adaptation: the psychophysical effects of adapting solutions and residual stimuli from prior tastings on the taste of sodium chloride.

    Science.gov (United States)

    O'Mahony, M

    1979-01-01

    The paper reviews how adaptation to sodium chloride, changing in concentration as a result of various experimental procedures, affects measurements of the sensitivity, intensity, and quality of the salt taste. The development of and evidence for the current model that the salt taste depends on an adaptation level (taste zero) determined by the sodium cation concentration is examined and found to be generally supported, despite great methodological complications. It would seem that lower adaptation levels elicit lower thresholds, higher intensity estimates, and altered quality descriptions with predictable effects on psychophysical measures.

  16. The Miracle Fruit: An Undergraduate Laboratory Exercise in Taste Sensation and Perception.

    Science.gov (United States)

    Lipatova, Olga; Campolattaro, Matthew M

    2016-01-01

    "Miracle Fruit" is a taste-altering berry that causes sour foods to be perceived as sweet. The present paper describes a laboratory exercise that uses Miracle Fruit to educate students about the sensation and perception of taste. This laboratory exercise reinforces course material pertaining to the function of sweet taste receptors covered in a Sensation and Perception course at Christopher Newport University. Here we provide a step-by-step explanation of the methodology, and an example of data collected and analyzed by one group of students who participated in this laboratory exercise. The origins of the Miracle Fruit, the structure and the physiological function of miraculin (the glycoprotein responsible for the taste-modifying effect found in the pulp of the Miracle Fruit) were discussed before the laboratory exercise. Students then sampled foods known to target different types of tastes (i.e., sweet, sour, bitter and salty) and rated their perception of taste intensity for each food item. Next, students each consumed Miracle Fruit berries, then resampled each original food item and again recorded their perception of taste intensity ratings for these foods. The data confirmed that the sour food items were perceived sweeter after the Miracle Fruit was consumed. The students also completed a written assignment to assess what they learned about the origins, structure, and physiological function of Miracle Fruit. This hands-on laboratory exercise received positive feedback from students. The exercise can be used by other neuroscience educators to teach concepts related to the sensory system of taste.

  17. Taste and hypertension in humans

    DEFF Research Database (Denmark)

    Roura, Eugeni; Foster, Simon; Winklebach, Anja

    2016-01-01

    The association between salty taste and NaCl intake with hypertension is well-established, although it is far from completely understood. Other taste types such as sweet, umami or bitter have also been related to alterations in blood pressure. Here, we review the mutual relationship between taste...... and hypertension to identify potential avenues to better control blood pressure. This review focuses on published data involving humans, with the exception of a section on molecular mechanisms. There is compelling evidence to suggest that changes in salty taste sensitivity can be used to predict the onset...... of hypertension. This goes hand in hand with the medical concept of sodium sensitivity, which also increases with age, particularly in hypertensive patients. The association of hypertension with the loss of taste acuity less definitive with some data/conclusions masked by the use of anti-hypertensive drugs...

  18. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    Science.gov (United States)

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  19. What Are Taste Buds?

    Science.gov (United States)

    ... Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español What Are Taste Buds? KidsHealth / For Kids / What Are Taste Buds? ...

  20. Taste, terroir, and technology

    Directory of Open Access Journals (Sweden)

    Pinder RM

    2016-03-01

    Full Text Available Roger M PinderInternational Journal of Wine Research, York, UKWine drinkers have long acknowledged the link between taste and terroir, the often unmistakable connection between the flavor of a wine and the particular patch of ground in which the vines were grown. But the science behind the connection, indeed the whole concept of taste and terroir, has long been disputed. New technological developments in both "neuroenology" – how the brain creates the taste of wine1 – and in wine chemistry2 have offered more insight into the science.

  1. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds.

    Science.gov (United States)

    Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki

    2013-09-01

    Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.

  2. Light and electron microscopic observation of regenerated fungiform taste buds in patients with recovered taste function after severing chorda tympani nerve.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Narita, Norihiko; Yamada, Takechiyo; Manabe, Yasuhiro

    2011-11-01

    The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 +/- 1.4 per papilla; p taste buds. Nerve fibers and nerve terminals were also found in the taste buds. It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.

  3. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

    Science.gov (United States)

    Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C

    2017-10-31

    Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.

    Science.gov (United States)

    Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2018-01-01

    It has been reported that a functional fat-taste receptor, GPR120, is present in chicken oral tissues, and that chickens can detect fat taste in a behavioral test. However, although triglycerides need to be digested to free fatty acids to be recognized by fat-taste receptors such as GPR120, it remains unknown whether lipase activities exist in chicken oral tissues. To examine this question, we first cloned another fat-taste receptor candidate gene, CD36, from the chicken palate. Then, using RT-PCR, we determined that GPR120 and CD36 were broadly expressed in chicken oral and gastrointestinal tissues. Also by RT-PCR, we confirmed that several lipase genes were expressed in both oral and gastrointestinal tissues. Finally, we analyzed the lipase activities of oral tissues by using a fluorogenic triglyceride analog as a lipase substrate. We found there are functional lipases in oral tissues as well as in the stomach and pancreas. These results suggested that chickens have a basic fat-taste reception system that incorporates a triglycerides/oral-lipases/free fatty acids/GPR120 axis and CD36 axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    International Nuclear Information System (INIS)

    Hwang, P.M.; Verma, A.; Bredt, D.S.; Snyder, S.H.

    1990-01-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of 45 Ca 2+ , inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of [ 3 H]cytidine diphosphate diacylglycerol formed from [ 3 H]cytidine. Accumulated 45 Ca 2+ , inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited by low concentrations of denatonium, a potently bitter tastant

  6. Water as an Independent Taste Modality

    Directory of Open Access Journals (Sweden)

    Andrew M Rosen

    2010-10-01

    Full Text Available To qualify as a basic taste quality or modality, defined as a group of chemicals that taste alike, three empirical benchmarks have commonly been used. The first is that a candidate group of tastants must have a dedicated transduction mechanism in the peripheral nervous system. The second is that the tastants evoke physiological responses in dedicated afferent taste nerves innervating the oropharyngeal cavity. Last, the taste stimuli evoke activity in central gustatory neurons, some of which may respond only to that group of tastants. Here we argue that water may also be an independent taste modality. This argument is based on the identification of a water dedicated transduction mechanism in the peripheral nervous system, water responsive fibers of the peripheral taste nerves and the observation of water responsive neurons in all gustatory regions within the central nervous system. We have described electrophysiological responses from single neurons in nucleus of the solitary tract (NTS and parabrachial nucleus of the pons (PbN, respectively the first two central relay nuclei in the rodent brainstem, to water presented as a taste stimulus in anesthetized rats. Responses to water were in some cases as robust as responses to other taste qualities and sometimes occurred in the absence of responses to other tastants. Both excitatory and inhibitory responses were observed. Also, the temporal features of the water response resembled those of other taste responses. We argue that water may constitute an independent taste modality that is processed by dedicated neural channels at all levels of the gustatory neuraxis. Water-dedicated neurons in the brainstem may constitute key elements in the regulatory system for fluid in the body, i.e. thirst, and as part of the swallowing reflex circuitry.

  7. Sweet taste of prosocial status signaling: When eating organic foods makes you happy and hopeful.

    Science.gov (United States)

    Puska, Petteri; Kurki, Sami; Lähdesmäki, Merja; Siltaoja, Marjo; Luomala, Harri

    2018-02-01

    As the current research suggests that there are links between prosocial acts and status signaling (including sustainable consumer choices), we empirically study (with three experiments) whether food consumers go green to be seen. First, we examine how activating a motive for status influences prosocial organic food preferences. Then, we examine how the social visibility of the choice (private vs. public) affects these preferences. We found that when consumers' desire for status was elicited, they preferred organic food products significantly over their nonorganic counterparts; making the choice situation visible created the same effect. Finally, we go beyond consumers' evaluative and behavioral domains that have typically been addressed to investigate whether this (nonconscious) "going green to be seen" effect is also evident at the level of more physiologically-driven food responses. Indeed, status motives and reputational concerns created an improved senso-emotional experience of organic food. Specifically, when consumers were led to believe that they have to share their organic food taste experiences with others, an elevation could be detected not only in the pleasantness ratings but also in how joyful and hopeful they felt after eating a food sample. We claim that the reason for this is that a tendency to favor organic foods can be viewed as a costly signaling trait, leading to flaunting about one's prosocial tendencies. According to these findings, highlighting socially disapproved consumption motives, such as reputation management, may be an effective way to increase the relatively low sales of organic foods and thereby promote sustainable consumer behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Olfaction, taste, and cognition

    National Research Council Canada - National Science Library

    Rouby, Catherine

    2002-01-01

    .... The book is conveniently divided into sections, including linguistic representations, emotion, memory, neural bases, and individual variation. Leading experts have written chapters on many facets of taste and smell, including odor memory, cortical representations, psychophysics and functional imaging studies, genetic variation in taste, and ...

  9. Acquiring taste in home economics?

    DEFF Research Database (Denmark)

    Stenbak Larsen, Christian

    Objective: To explore how home economics was taught in Denmark before the recent Danish school reform, which also revised the objectives and content of home economics, naming it Food Knowledge (Madkundskab) Methods: Participant observation was done in home economic lessons in two case schools...... appreciated by the group of boys, and others again learned to stick with their idiosyncrasies when pressured by the teacher. Conclusions: Children were acquiring taste in the home economic lessons, but not only the kind of tastes that the teacher had planned for. This leads to reflections on the very complex...... process of taste acquiring and to a call for further research into taste acquiring in complex real life contexts as home economics lessons....

  10. Enhancement of Retronasal Odors by Taste

    OpenAIRE

    Green, Barry G.; Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun

    2011-01-01

    Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste (“sweet,” “sour,” “salty,” and “bitter”) and odor (“ot...

  11. Taste characteristics of Chinese bayberry juice characterized by sensory evaluation, chromatography analysis, and an electronic tongue.

    Science.gov (United States)

    Yu, Haiyan; Zhang, Yan; Zhao, Jie; Tian, Huaixiang

    2018-05-01

    To evaluate the taste characteristics of Chinese bayberry juice, four types of bayberry juice sourced from different origins and varieties were analysed using sensory evaluation, chromatography, spectroscopy analysis and an electronic tongue (E-tongue). Nine organic acids and three sugars were assessed using high performance liquid chromatography. Total polyphenols were measured by spectrophotometry. The overall taste profile was collected using the E-tongue. The four types of bayberry juice differed in the sensory attributes of sour, sweet, bitter, and astringent. The E-tongue responses combined with discriminant analysis were able to characterise the taste profiles of the juices. The relationships between the taste compounds and the sensory panel scores established by partial least squares showed that total polyphenols, quininic acid, maleic acid, fructose, citric acid, lactic acid, succinic acid and sucrose made significant contributions to the taste characteristics of the Chinese bayberry juice.

  12. The Insula and Taste Learning

    Directory of Open Access Journals (Sweden)

    Adonis Yiannakas

    2017-11-01

    Full Text Available The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC, among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII, transcription factors (CREB, Elk-1 and immediate early genes (c-fos, Arc, has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.

  13. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  14. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    Directory of Open Access Journals (Sweden)

    Hofmann Thomas

    2007-07-01

    Full Text Available Abstract Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells. In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.

  15. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells.

    Science.gov (United States)

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.

  16. Insights on consciousness from taste memory research.

    Science.gov (United States)

    Gallo, Milagros

    2016-01-01

    Taste research in rodents supports the relevance of memory in order to determine the content of consciousness by modifying both taste perception and later action. Associated with this issue is the fact that taste and visual modalities share anatomical circuits traditionally related to conscious memory. This challenges the view of taste memory as a type of non-declarative unconscious memory.

  17. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    Directory of Open Access Journals (Sweden)

    Sbarbati Andrea

    2011-01-01

    Full Text Available Abstract Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs. The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. Methods We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP. Results Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Conclusions Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and

  18. Expression of taste receptors in solitary chemosensory cells of rodent airways.

    Science.gov (United States)

    Tizzano, Marco; Cristofoletti, Mirko; Sbarbati, Andrea; Finger, Thomas E

    2011-01-13

    Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determine the elements of the chemosensory transduction cascade expressed in these SCCs. We utilized a combination of immunohistochemistry and molecular techniques (rtPCR and in situ hybridization) on rats and transgenic mice where the Tas1R3 or TRPM5 promoter drives expression of green fluorescent protein (GFP). Epithelial SCCs specialized for chemoreception are distributed throughout much of the respiratory tree of rodents. These cells express elements of the taste transduction cascade, including Tas1R and Tas2R receptor molecules, α-gustducin, PLCβ2 and TrpM5. The Tas2R bitter taste receptors are present throughout the entire respiratory tract. In contrast, the Tas1R sweet/umami taste receptors are expressed by numerous SCCs in the nasal cavity, but decrease in prevalence in the trachea, and are absent in the lower airways. Elements of the taste transduction cascade including taste receptors are expressed by SCCs distributed throughout the airways. In the nasal cavity, SCCs, expressing Tas1R and Tas2R taste receptors, mediate detection of irritants and foreign substances which trigger trigeminally-mediated protective airway reflexes. Lower in the respiratory tract, similar chemosensory cells are not related to the trigeminal nerve but may still trigger local epithelial responses to irritants. In total, SCCs should be considered chemoreceptor cells that help in preventing damage to the respiratory tract caused by inhaled irritants and pathogens.

  19. Exploring taste hyposensitivity in Japanese senior high school students.

    Science.gov (United States)

    Ohnuki, Mari; Shinada, Kayoko; Ueno, Masayuki; Zaitsu, Takashi; Wright, Fredrick Allan Clive; Kawaguchi, Yoko

    2012-02-01

    The main objective of this study was to investigate the prevalence of taste hyposensitivity and the relationships between sex, oral health status, and eating habits with taste hyposensitivity in Japanese senior high school students. Oral examinations, sweet and salt whole-mouth taste tests, and a questionnaire about eating habits were conducted on 234 senior high school students. Factors affecting taste hyposensitivity were investigated using a multivariate analysis. Sweet-taste hyposensitivity was observed in 7.3% of the students, and salt-taste hyposensitivity in 22.2%. Approximately 3% of the students had both sweet- and salt-taste hyposensitivity, and 22.6% had either sweet- or salt-taste hyposensitivity. In total, 26% had a taste hyposensitivity. There were significant relationships between the intake of instant noodles with sweet-taste hyposensitivity, and the intake of vegetables or isotonic drinks with salt-taste hyposensitivity. There was a significant association between eating habits and taste hyposensitivity in Japanese senior high school students. Taste tests would be a helpful adjunct for students to recognize variations in taste sensitivity, and a questionnaire about their eating habits might provide an effective self-review of their eating habits, and therefore, provide motivation to change. © 2011 Blackwell Publishing Asia Pty Ltd.

  20. The semantic basis of taste-shape associations

    Directory of Open Access Journals (Sweden)

    Carlos Velasco

    2016-02-01

    Full Text Available Previous research shows that people systematically match tastes with shapes. Here, we assess the extent to which matched taste and shape stimuli share a common semantic space and whether semantically congruent versus incongruent taste/shape associations can influence the speed with which people respond to both shapes and taste words. In Experiment 1, semantic differentiation was used to assess the semantic space of both taste words and shapes. The results suggest a common semantic space containing two principal components (seemingly, intensity and hedonics and two principal clusters, one including round shapes and the taste word “sweet,” and the other including angular shapes and the taste words “salty,” “sour,” and “bitter.” The former cluster appears more positively-valenced whilst less potent than the latter. In Experiment 2, two speeded classification tasks assessed whether congruent versus incongruent mappings of stimuli and responses (e.g., sweet with round versus sweet with angular would influence the speed of participants’ responding, to both shapes and taste words. The results revealed an overall effect of congruence with congruent trials yielding faster responses than their incongruent counterparts. These results are consistent with previous evidence suggesting a close relation (or crossmodal correspondence between tastes and shape curvature that may derive from common semantic coding, perhaps along the intensity and hedonic dimensions.

  1. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A.

    2012-01-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519

  2. Extinction, Spontaneous Recovery and Renewal of Flavor Preferences Based on Taste-Taste Learning

    Science.gov (United States)

    Diaz, Estrella; De la Casa, L. G.

    2011-01-01

    This paper presents evidence of extinction, spontaneous recovery and renewal in a conditioned preferences paradigm based on taste-taste associations. More specifically, in three experiments rats exposed to a simultaneous compound of citric acid-saccharin solution showed a preference for the citric solution when the preference was measured with a…

  3. “What’s Your Taste in Music?” A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes

    Directory of Open Access Journals (Sweden)

    Qian (Janice Wang

    2015-12-01

    Full Text Available We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks, whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks, compared with chance (choosing any specific taste 25% of the time. In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences.

  4. “What’s Your Taste in Music?” A Comparison of the Effectiveness of Various Soundscapes in Evoking Specific Tastes

    Science.gov (United States)

    Woods, Andy T.; Spence, Charles

    2015-01-01

    We report on the results of two online experiments designed to compare different soundtracks that had been composed (by various researchers and sound designers) in order to evoke/match different basic tastes. In Experiment 1, 100 participants listened to samples from 24 soundtracks and chose the taste (sweet, sour, salty, or bitter) that best matched each sample. Overall, the sweet soundtracks most effectively evoked the taste intended by the composer (participants chose sweet 56.9% of the time for the sweet soundtracks), whereas the bitter soundtracks were the least effective (participants chose bitter 31.4% of the time for the bitter soundtracks), compared with chance (choosing any specific taste 25% of the time). In Experiment 2, 50 participants rated their emotional responses (in terms of pleasantness and arousal) to the same 24 soundtrack samples and also to imaginary sweet/sour/salty/bitter-tasting foods. Associations between soundtracks and tastes were partly mediated by pleasantness for the sweet and bitter tastes and partly by arousal for the sour tastes. These results demonstrate how emotion mediation may be an additional mechanism behind sound-taste correspondences. PMID:27551365

  5. Taste as feeling

    OpenAIRE

    Highmore, Ben

    2016-01-01

    This article is premised on two presumptions. The first is, I think, uncontroversial, the second less so. The first presumption is that today, serious discussions about taste usually start out by rehearsing Pierre Bourdieu’s contribution to our understanding of how taste preferences operate in society. This, then, is merely to recognize that when Bourdieu first published books such as The Love of Art (1969, written with Alain Darbel) and Distinctions: A Social Critique of the Judgement of Tas...

  6. Late taste disorders in bone marrow transplantation: clinical evaluation with taste solutions in autologous and allogeneic bone marrow recipients.

    Science.gov (United States)

    Marinone, M G; Rizzoni, D; Ferremi, P; Rossi, G; Izzi, T; Brusotti, C

    1991-01-01

    The aim of this work was to determine the type and the significance of taste disorders in allogeneic bone marrow transplanted patients. In a retrospective study the taste threshold of a cohort of 15 allogeneic bone marrow transplanted patients, 4-51 months after transplantation (mean: 30.6 +/- 15.8), was compared to the taste threshold of 8 autologous bone marrow recipients, 4-48 months after transplantation (mean: 24.12 +/- 12.18), and to the taste threshold of a group of 20 consecutive normal subjects. Allogeneic bone marrow transplanted patients showed a significant hypogeusia for salt (Pearson's chi square p = 0.0002; Yates' correction p = 0.0007) and sour (Pearson's chi square p = 0.001; Yates' correction p = 0.008). No significant variations were observed for sweet and bitter. Autologous bone marrow recipients did not show any significant variation of taste acuity for sweet, salt or sour; a constant reduction of the taste threshold for bitter was observed, but the values were not significantly different from normal (Pearson's chi square p = 0.47; Yates' correction p = 0.83). So, late and selective taste disorders are observed in allogeneic bone marrow transplanted patients. Since the severity of the disorders is not strictly related to the severity of chronic oral G.V.H.D., taste analysis could discover the slightest, clinically undetectable cases of chronic oral G.V.H.D. The mechanism of immune aggression on the sensorial taste cells is poorly understood. Further trials are needed to define variations of taste acuity not only after allogeneic bone marrow transplantation, but also in systemic immune diseases.

  7. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate

    Science.gov (United States)

    Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F.; Mistretta, Charlotte M.; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC. PMID:26741369

  8. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    Directory of Open Access Journals (Sweden)

    Kristin Boggs

    Full Text Available Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC. Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5 and young postnatal (P1-10 mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1 P0-Cre/R26-tdTomato (RFP to label NC, NC derived Schwann cells and derivatives; (2 Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3 Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  9. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    Science.gov (United States)

    Boggs, Kristin; Venkatesan, Nandakumar; Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F; Mistretta, Charlotte M; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  10. Tasting in mundane practices

    DEFF Research Database (Denmark)

    Mann, Anna

    2015-01-01

    This thesis presents an ethnographic investigation into practices of tasting. Based on ethnographic fieldwork in various Western Europe settings in which people sensually engaged with food and drinks, the chapters show how tasting is done by research subjects in sensory science laboratories; guests...... response to a food object, leading on to a multi-sensory experience of its qualities, that do not just emerge from the food but are co-shaped by the context and that give rise to sensorial knowledge. By investigating specificities, articulating alternatives, showing construction processes, and typecasting...... particular practices, the chapters unpack each of these assumptions. What emerges is an alternative, composite understanding of tasting as variously done in varied mundane practices....

  11. Enhancement of retronasal odors by taste.

    Science.gov (United States)

    Green, Barry G; Nachtigal, Danielle; Hammond, Samuel; Lim, Juyun

    2012-01-01

    Psychophysical studies of interactions between retronasal olfaction and taste have focused most often on the enhancement of tastes by odors, which has been attributed primarily to a response bias (i.e., halo dumping). Based upon preliminary evidence that retronasal odors could also be enhanced by taste, the present study measured both forms of enhancement using appropriate response categories. In the first experiment, subjects rated taste ("sweet," "sour," "salty," and "bitter") and odor ("other") intensity for aqueous samples of 3 tastants (sucrose, NaCl, and citric acid) and 3 odorants (vanillin, citral, and furaneol), both alone and in taste-odor mixtures. The results showed that sucrose, but not the other taste stimuli, significantly increased the perceived intensity of all 3 odors. Enhancement of tastes by odors was inconsistent and generally weaker than enhancement of odors by sucrose. A second experiment used a flavored beverage and a custard dessert to test whether the findings from the first experiment would hold for the perception of actual foods. Adding sucrose significantly enhanced the intensity of "cherry" and "vanilla" flavors, whereas adding vanillin did not significantly enhance the intensity of sweetness. It is proposed that enhancement of retronasal odors by a sweet stimulus results from an adaptive sensory mechanism that serves to increase the salience of the flavor of nutritive foods. © The Author 2011. Published by Oxford University Press. All rights reserved.

  12. Taste dysfunction in irradiated patients with head and neck cancer

    International Nuclear Information System (INIS)

    Zheng, Wen-Kai; Yamamoto, Tomoya; Komiyama, Sohtaro

    2002-01-01

    Taste disorders caused by radiation therapy for head and neck cancer are common. This prospective study of 40 patients with head and neck cancer assessed changes in taste sensations during radiation therapy. The relationship between the time course and the degree of taste disorder was studied. The taste recognition threshold and supra-threshold taste intensity performance for the four basic tastes were measured using the whole-mouth taste method before, during, and after radiation therapy. Bitter taste was affected most. An increase in threshold for sweet taste depended upon whether the tip of tongue was included within the radiation field. The slope of the taste intensity performance did not change during or after radiotherapy. The pattern of salivary dysfunction was different from that of taste dysfunction. The main cause of taste disorders during radiation support the hypothesis that taste dysfunction is due to damage to the taste buds in the radiation field. (author)

  13. Taste dysfunction in irradiated patients with head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wen-Kai; Yamamoto, Tomoya; Komiyama, Sohtaro [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine; Inokuchi, Akira [Saga Medical School (Japan)

    2002-04-01

    Taste disorders caused by radiation therapy for head and neck cancer are common. This prospective study of 40 patients with head and neck cancer assessed changes in taste sensations during radiation therapy. The relationship between the time course and the degree of taste disorder was studied. The taste recognition threshold and supra-threshold taste intensity performance for the four basic tastes were measured using the whole-mouth taste method before, during, and after radiation therapy. Bitter taste was affected most. An increase in threshold for sweet taste depended upon whether the tip of tongue was included within the radiation field. The slope of the taste intensity performance did not change during or after radiotherapy. The pattern of salivary dysfunction was different from that of taste dysfunction. The main cause of taste disorders during radiation support the hypothesis that taste dysfunction is due to damage to the taste buds in the radiation field. (author)

  14. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells.

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A

    2011-04-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.

  15. Differences in taste between two polyethylene glycol preparations.

    Science.gov (United States)

    Szojda, Maria M; Mulder, Chris J J; Felt-Bersma, Richelle J F

    2007-12-01

    Polyethylene glycol preparations (PEG) are increasingly used for chronic constipation in both adults and children. There are some suggestions that PEG 4000 with orange flavour (Forlax) tastes better than PEG 3350 which contains salt (Movicolon). Poor taste is an important factor for non-compliance and is one of the leading causes of therapy failure. The aim of the study was to compare the taste of two commonly used PEG preparations, PEG 4000 and PEG 3350. A double-blind, cross over randomised trial. A hundred people were recruited by advertisement. All tasted both preparations without swallowing and after tasting each of the preparations, they rinsed their mouths. Then a score, on a 5-point scale, was given for both preparations. 100 volunteers were included (27 males and 73 females, mean age 36). The taste score for PEG 4000 (mean 3.9, SD 0.7) was significantly better than for PEG 3350 (mean 2.7, SD 0.7) (pPEG 3350 liked it more, when they tasted it first rather than when they tasted it after PEG 4000 (pPEG 4000 had no influence on the taste results. PEG 4000 tastes better than PEG 3350. This may have implications for patient compliance and effectiveness of treatment in patients with chronic constipation.

  16. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  17. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  18. Change of Taste Sensitivity of Clove Cigarette Smokers in Medan

    Directory of Open Access Journals (Sweden)

    Marlina Simamora

    2013-07-01

    Full Text Available Tongue has taste buds that contain taste receptor which affected by many factors, including smoking habit. Objective: To analyze the differences of sweet and bitter taste sensitivity in the pedicab driver clove cigarette smokers compared to non-smokers in Medan Padang Bulan. Methods: This study was conducted by placing the sweet taste strips and bitter taste strips on four taste receptors of the tongue, with increasing solution concentration in 74 subjects. This was a cross sectional study on pedicab driver population in Medan Padang Bulan. Results: There were differences between clove cigarette smokers and non-smokers on sweet taste examination (p<0.005. There was a difference between clove cigarette smokers and non-smokers on examination bitter taste receptors (p<0.005. On the clove cigarette smokers, there was no significant difference between sweet taste and bitter taste on the receptors itself. Conclusion: Non-smokers are more sensitive to sweet taste than the clove cigarette smokers. Bitter taste sensitivity is greater in cigarettes smokers than in non-smokers. Taste receptors on all location of the tongue could taste sweet and bitter substances, but a certain location of taste receptors were more sensitive compared to others.

  19. Taste Disturbance After Palatopharyngeal Surgery for Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Han-Ren Hsiao

    2007-04-01

    Full Text Available Taste disorder is a rare complication of uvulopalatopharyngoplasty, and may have a significant impact on quality of life. Herein, we report a case of obstructive sleep apnea syndrome in a 51- year-old man who experienced taste disturbance after palatopharyngeal surgery using electrocautery for developing a uvulopalatal flap. Gustatory function test using three-drop-method with solutions of highest concentration was implemented to assess the deficiency of four basic tastes. The results showed deficit of sweet taste associated with phantom of bitter taste. The patient reported constant spontaneous bitter taste and dysgeusia in sweet taste with poor quality of life at the 2-year follow-up. We suggest that patients are informed of the potential for taste impairment from palatopharyngeal surgery, as well as reducing the use of electrocautery in developing uvulopalatal flap to reduce damage to taste function.

  20. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

    Directory of Open Access Journals (Sweden)

    Pavel Masek

    Full Text Available Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.

  1. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    OpenAIRE

    Li, Yi-ke; Yang, Juan-mei; Huang, Yi-bo; Ren, Dong-dong; Chi, Fang-lu

    2015-01-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: co...

  2. Radiation effects on bovine taste bud membranes

    International Nuclear Information System (INIS)

    Shatzman, A.R.; Mossman, K.L.

    1982-01-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enriched fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy

  3. Glutamate: Tastant and Neuromodulator in Taste Buds.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Kinnamon, Sue C

    2016-07-01

    In taste buds, glutamate plays a double role as a gustatory stimulus and neuromodulator. The detection of glutamate as a tastant involves several G protein-coupled receptors, including the heterodimer taste receptor type 1, member 1 and 3 as well as metabotropic glutamate receptors (mGluR1 and mGluR4). Both receptor types participate in the detection of glutamate as shown with knockout animals and selective antagonists. At the basal part of taste buds, ionotropic glutamate receptors [N-methyl-d-aspartate (NMDA) and non-NMDA] are expressed and participate in the modulation of the taste signal before its transmission to the brain. Evidence suggests that glutamate has an efferent function on taste cells and modulates the release of other neurotransmitters such as serotonin and ATP. This short article reviews the recent developments in the field with regard to glutamate receptors involved in both functions as well as the influence of glutamate on the taste signal. © 2016 American Society for Nutrition.

  4. Music influences hedonic and taste ratings in beer

    Directory of Open Access Journals (Sweden)

    Felipe eReinoso Carvalho

    2016-05-01

    Full Text Available The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231. The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song.In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting.These results provide support for the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food events. Here we also suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction towards a song can have for the ensuing tasting experience.

  5. Music Influences Hedonic and Taste Ratings in Beer.

    Science.gov (United States)

    Reinoso Carvalho, Felipe; Velasco, Carlos; van Ee, Raymond; Leboeuf, Yves; Spence, Charles

    2016-01-01

    The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231). The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song). In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting. These results support the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food) events. We suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction toward a song can have for the ensuing tasting experience.

  6. Music Influences Hedonic and Taste Ratings in Beer

    Science.gov (United States)

    Reinoso Carvalho, Felipe; Velasco, Carlos; van Ee, Raymond; Leboeuf, Yves; Spence, Charles

    2016-01-01

    The research presented here focuses on the influence of background music on the beer-tasting experience. An experiment is reported in which different groups of customers tasted a beer under three different conditions (N = 231). The control group was presented with an unlabeled beer, the second group with a labeled beer, and the third group with a labeled beer together with a customized sonic cue (a short clip from an existing song). In general, the beer-tasting experience was rated as more enjoyable with music than when the tasting was conducted in silence. In particular, those who were familiar with the band that had composed the song, liked the beer more after having tasted it while listening to the song, than those who knew the band, but only saw the label while tasting. These results support the idea that customized sound-tasting experiences can complement the process of developing novel beverage (and presumably also food) events. We suggest that involving musicians and researchers alongside brewers in the process of beer development, offers an interesting model for future development. Finally, we discuss the role of attention in sound-tasting experiences, and the importance that a positive hedonic reaction toward a song can have for the ensuing tasting experience. PMID:27199862

  7. Norepinephrine is coreleased with serotonin in mouse taste buds.

    Science.gov (United States)

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  8. Analysis of taste qualities and ingredients of beer by taste sensing system; Mikaku sensor ni yoru beer no ajishitsu to seibun no bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Ezaki, S.; Yuki, T. [Kinki University, Osaka (Japan); Toko, K. [Kyushu University, Fukuoka (Japan); Tsuda, Y.; Nakatani, K. [Suntory Ltd., Osaka (Japan)

    1997-08-20

    The taste of beer was measured using a taste sensing system with eight kinds of lipid membrane. The output from the sensor has high discriminating power and high correlation with taste substances in beer and sensory test by human. The estimation of the concentration of taste substances by multiple regression analysis was fairly well. The taste sensor also well estimated the result of sensory test of many keywords concerning beer taste. 16 refs., 8 figs., 1 tab.

  9. Immunohistochemical Analysis of Human Vallate Taste Buds.

    Science.gov (United States)

    Tizzano, Marco; Grigereit, Laura; Shultz, Nicole; Clary, Matthew S; Finger, Thomas E

    2015-11-01

    The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  11. A nanohybrid system for taste masking of sildenafil

    Directory of Open Access Journals (Sweden)

    Lee JH

    2012-03-01

    Full Text Available Ji-Hee Lee1,*, Goeun Choi1,*, Yeon-Ji Oh1, Je Won Park1, Young Bin Choy3, Mung Chul Park1, Yeo Joon Yoon1, Hwa Jeong Lee2, Hee Chul Chang4, Jin-Ho Choy1 1Center for Intelligent Nano-Bio Materials (CINBM, Department of Bioinspired Science and Department of Chemistry and Nano Science, 2Division of Life and Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea; 3Department of Biomedical Engineering, College of Medicine and Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea; 4Global Strategy Center and Pharmaceutical Research Institute, Daewoong Pharmaceutical Co., Ltd., Seoul, Korea*These authors contributed equally to this workAbstract: A nanohybrid was prepared with an inorganic clay material, montmorillonite (MMT, for taste masking of sildenafil (SDN. To further improve the taste-masking efficiency and enhance the drug-release rate, we coated the nanohybrid of SDN–MMT with a basic polymer, polyvinylacetal diethylaminoacetate (AEA. Powder X-ray diffraction and Fourier transform infrared experiments showed that SDN was successfully intercalated into the interlayer space of MMT. The AEA-coated SDN–MMT nanohybrid showed drug release was much suppressed at neutral pH (release rate, 4.70 ± 0.53%, suggesting a potential for drug taste masking at the buccal cavity. We also performed in vitro drug release experiments in a simulated gastric fluid (pH = 1.2 and compared the drug-release profiles of AEA-coated SDN–MMT and Viagra®, an approved dosage form of SDN. As a result, about 90% of SDN was released from the AEA-coated SDN–MMT during the first 2 hours while almost 100% of drug was released from Viagra®. However, an in vivo experiment showed that the AEA-coated SDN–MMT exhibited higher drug exposure than Viagra®. For the AEA-coated SDN–MMT, the area under the plasma concentration–time curve from 0 hours to infinity (AUC0-∞ and maximum

  12. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining structural integrity of mouse taste buds.

    Science.gov (United States)

    Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong

    2014-02-12

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.

  13. Gustatory papillae and taste bud development and maintenance in the absence of TrkB ligands BDNF and NT-4.

    Science.gov (United States)

    Ito, Akira; Nosrat, Christopher A

    2009-09-01

    Taste buds and the peripheral nerves innervating them are two important components of the peripheral gustatory system. They require appropriate connections for the taste system to function. Neurotrophic factors play crucial roles in the innervation of peripheral sensory organs and tissues. Both brain-derived neurotrophic factor (BDNF) null-mutated and neurotrophin-4 (NT-4) null-mutated mice exhibit peripheral gustatory deficits. BDNF and NT-4 bind to a common high affinity tyrosine kinase receptor, TrkB (NTRK-2), and a common p75 neurotrophin receptor (NGFR). We are currently using a transgenic mouse model to study peripheral taste system development and innervation in the absence of both TrkB ligands. We show that taste cell progenitors express taste cell markers during early stages of taste bud development in both BDNF(-/-)xNT-4(-/-) and wild-type mice. At early embryonic stages, taste bud progenitors express Troma-1, Shh, and Sox2 in all mice. At later stages, lack of innervation becomes a prominent feature in BDNF(-/-)xNT-4(-/-) mice leading to a decreasing number of fungiform papillae and morphologically degenerating taste cells. A total loss of vallate taste cells also occurs in postnatal transgenic mice. Our data indicate an initial independence but a later permissive and essential role for innervation in taste bud development and maintenance.

  14. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    Science.gov (United States)

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  15. Volumetry of human taste buds using laser scanning microscopy.

    Science.gov (United States)

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  16. Accuracy of self-report in detecting taste dysfunction.

    Science.gov (United States)

    Soter, Ana; Kim, John; Jackman, Alexis; Tourbier, Isabelle; Kaul, Arti; Doty, Richard L

    2008-04-01

    To determine the sensitivity, specificity, and positive and negative predictive value of responses to the following questionnaire statements in detecting taste loss: "I can detect salt in chips, pretzels, or salted nuts," "I can detect sourness in vinegar, pickles, or lemon," "I can detect sweetness in soda, cookies, or ice cream," and "I can detect bitterness, in coffee, beer, or tonic water." Responses to an additional item, "I can detect chocolate in cocoa, cake or candy," was examined to determine whether patients clearly differentiate between taste loss and flavor loss secondary to olfactory dysfunction. A total of 469 patients (207 men, mean age = 54 years, standard deviation = 15 years; and 262 women, mean age = 54 years, standard deviation = 14 years) were administered a questionnaire containing these questions with the response categories of "easily," "somewhat," and "not at all," followed by a comprehensive taste and smell test battery. The questionnaire items poorly detected bona fide taste problems. However, they were sensitive in detecting persons without such problems (i.e., they exhibited low positive but high negative predictive value). Dysfunction categories of the University of Pennsylvania Smell Identification Test (UPSIT) were not meaningfully related to subjects' responses to the questionnaire statements. Both sex and age influenced performance on most of the taste tests, with older persons performing more poorly than younger ones and women typically outperforming men. Although it is commonly assumed that straight-forward questions concerning taste may be useful in detecting taste disorders, this study suggests this is not the case. However, patients who specifically report having no problems with taste perception usually do not exhibit taste dysfunction. The difficulty in detecting true taste problems by focused questionnaire items likely reflects a combination of factors. These include the relatively low prevalence of taste deficits in the

  17. Humans Can Taste Glucose Oligomers Independent of the hT1R2/hT1R3 Sweet Taste Receptor.

    Science.gov (United States)

    Lapis, Trina J; Penner, Michael H; Lim, Juyun

    2016-08-23

    It is widely accepted that humans can taste mono- and disaccharides as sweet substances, but they cannot taste longer chain oligo- and polysaccharides. From the evolutionary standpoint, the ability to taste starch or its oligomeric hydrolysis products would be highly adaptive, given their nutritional value. Here, we report that humans can taste glucose oligomer preparations (average degree of polymerization 7 and 14) without any other sensorial cues. The same human subjects could not taste the corresponding glucose polymer preparation (average degree of polymerization 44). When the sweet taste receptor was blocked by lactisole, a known sweet inhibitor, subjects could not detect sweet substances (glucose, maltose, and sucralose), but they could still detect the glucose oligomers. This suggests that glucose oligomer detection is independent of the hT1R2/hT1R3 sweet taste receptor. Human subjects described the taste of glucose oligomers as "starchy," while they describe sugars as "sweet." The dose-response function of glucose oligomer was also found to be indistinguishable from that of glucose on a molar basis. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Inflammation activates the interferon signaling pathways in taste bud cells.

    Science.gov (United States)

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  19. The taste of desserts' packages.

    Science.gov (United States)

    Overbeeke, C J; Peters, M E

    1991-10-01

    This article reports an experiment on expressing the behavioural meaning of designed objects. Can a designer express the taste of a desert in the form of its packaging and can consumers match these forms when tasting the desserts? Analysis of responses of 12 adults indicates positive answers to these questions.

  20. Mechanical microencapsulation: The best technique in taste masking for the manufacturing scale - Effect of polymer encapsulation on drug targeting.

    Science.gov (United States)

    Al-Kasmi, Basheer; Alsirawan, Mhd Bashir; Bashimam, Mais; El-Zein, Hind

    2017-08-28

    Drug taste masking is a crucial process for the preparation of pediatric and geriatric formulations as well as fast dissolving tablets. Taste masking techniques aim to prevent drug release in saliva and at the same time to obtain the desired release profile in gastrointestinal tract. Several taste masking methods are reported, however this review has focused on a group of promising methods; complexation, encapsulation, and hot melting. The effects of each method on the physicochemical properties of the drug are described in details. Furthermore, a scoring system was established to evaluate each process using recent published data of selected factors. These include, input, process, and output factors that are related to each taste masking method. Input factors include the attributes of the materials used for taste masking. Process factors include equipment type and process parameters. Finally, output factors, include taste masking quality and yield. As a result, Mechanical microencapsulation obtained the highest score (5/8) along with complexation with cyclodextrin suggesting that these methods are the most preferable for drug taste masking. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Taste Receptor Signaling-- From Tongues to Lungs

    Science.gov (United States)

    Kinnamon, Sue C.

    2013-01-01

    Taste buds are the transducing endorgans of gustation. Each taste bud comprises 50–100 elongated cells, which extend from the basal lamina to the surface of the tongue, where their apical microvilli encounter taste stimuli in the oral cavity. Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami (glutamate) stimuli utilize G protein coupled receptors (GPCRs) and second messenger signaling mechanisms. This review will focus on GPCR signaling mechanisms. Two classes of taste GPCRs have been identified, the T1Rs for sweet and umami (glutamate) stimuli, and the T2Rs for bitter stimuli. These low affinity GPCRs all couple to the same downstream signaling effectors that include Gβγ activation of PLCβ2, IP3-mediated release of Ca2+ from intracellular stores, and Ca2+-dependent activation of the monovalent selective cation channel, TrpM5. These events lead to membrane depolarization, action potentials, and release of ATP as a transmitter to activate gustatory afferents. The Gα subunit, α-gustducin, activates a phosphodiesterase to decrease intracellular cAMP levels, although the precise targets of cAMP have not been identified. With the molecular identification of the taste GPCRs, it has become clear that taste signaling is not limited to taste buds, but occurs in many cell types of the airways. These include solitary chemosensory cells, ciliated epithelial cells, and smooth muscle cells. Bitter receptors are most abundantly expressed in the airways, where they respond to irritating chemicals and promote protective airway reflexes, utilizing the same downstream signaling effectors as taste cells. PMID:21481196

  2. The glossopharyngeal nerve controls epithelial expression of Sprr2a and Krt13 around taste buds in the circumvallate papilla.

    Science.gov (United States)

    Miura, Hirohito; Kusakabe, Yuko; Hashido, Kento; Hino, Akihiro; Ooki, Makoto; Harada, Shuitsu

    2014-09-19

    Tastants reach the tip of taste bud cells through taste pores which are openings in the epithelium. We found Sprr2a is selectively expressed in the upper layer of the epithelium surrounding taste buds in the circumvallate papilla (CV) where the epithelium is organized into taste pores. Sprr2a is a member of a small proline-rich protein family, which is suggested to be involved in the restitution/migration phase of epithelial wound healing. The expression of Sprr2a was restricted to the upper layer and largely segregated with Ptch1 expression that is restricted to the basal side of the epithelium around the taste buds. Denervation resulted in the gradual loss of Sprr2a-expressing cells over 10 days similarly to that of taste bud cells which is in contrast to the rapid loss of Ptch1 expression. We also found that denervation caused an increase of Keratin (Krt)13 expression around taste buds that corresponded with the disappearance of Sprr2a and Ptch1 expression. Taste buds were surrounded by Krt13-negative cells in the CV in control mice. However, at 6 days post-denervation, taste buds were tightly surrounded by Krt13-positive cells. During taste bud development, taste bud cells emerged together with Krt13-negtive cells, and Sprr2a expression was increased along with the progress of taste bud development. These results demonstrate that regional gene expression surrounding taste buds is associated with taste bud formation and controlled by the innervating taste nerve. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Cellular mechanisms of cyclophosphamide-induced taste loss in mice

    Science.gov (United States)

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008

  4. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    Directory of Open Access Journals (Sweden)

    Nabanita Mukherjee

    Full Text Available Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  5. Anatomy, physiology and diagnostic considerations of taste and smell disorders

    NARCIS (Netherlands)

    A. Visser; R. van Weissenbruch; A. Vissink; A. van Nieuw Amerongen; F.K.L. Spijkervet; Dr. Harriët Jager-Wittenaar

    2013-01-01

    Taste and smell perception are closely related. The taste perception is performed by taste buds which can distinguish salt, sour, sweet, bitter, and umami. Moreover, 2,000-4,000 smells can be recognized. Many taste disorders are in fact smell disorders. Saliva affects taste perception because it

  6. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    Science.gov (United States)

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. Taste responses to monosodium glutamate after alcohol exposure.

    Science.gov (United States)

    Wrobel, Elzbieta; Skrok-Wolska, Dominika; Ziolkowski, Marcin; Korkosz, Agnieszka; Habrat, Boguslaw; Woronowicz, Bohdan; Kukwa, Andrzej; Kostowski, Wojciech; Bienkowski, Przemyslaw; Scinska, Anna

    2005-01-01

    The aim of the present study was to evaluate the effects of acute and chronic exposure to alcohol on taste responses to a prototypic umami substance, monosodium glutamate (MSG). The rated intensity and pleasantness of MSG taste (0.03-10.0%) was compared in chronic male alcoholics (n = 35) and control subjects (n = 25). In a separate experiment, the effects of acute exposure of the oral mucosa to ethanol rinse (0.5-4.0%) on MSG taste (0.3-3.0%) were studied in 10 social drinkers. The alcoholic and control group did not differ in terms of the rated intensity and pleasantness of MSG taste. Electrogustometric thresholds were significantly (P alcohol-dependent subjects. The difference remained significant after controlling for between-group differences in cigarette smoking and coffee drinking. Rinsing with ethanol did not alter either intensity or pleasantness of MSG taste in social drinkers. The present results suggest that: (i) neither acute nor chronic alcohol exposure modifies taste responses to MSG; (ii) alcohol dependence may be associated with deficit in threshold taste reactivity, as assessed by electrogustometry.

  8. Functional cell types in taste buds have distinct longevities.

    Directory of Open Access Journals (Sweden)

    Isabel Perea-Martinez

    Full Text Available Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  9. Functional cell types in taste buds have distinct longevities.

    Science.gov (United States)

    Perea-Martinez, Isabel; Nagai, Takatoshi; Chaudhari, Nirupa

    2013-01-01

    Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8-12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2'-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.

  10. Organic light emitting device architecture for reducing the number of organic materials

    Science.gov (United States)

    D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  11. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl and sour (citric acid tastants.

    Directory of Open Access Journals (Sweden)

    Yu-Kyong Shin

    2010-09-01

    Full Text Available The gustatory system plays a critical role in determining food preferences, food intake and energy balance. The exact mechanisms that fine tune taste sensitivity are currently poorly defined, but it is clear that numerous factors such as efferent input and specific signal transduction cascades are involved.Using immunohistochemical analyses, we show that ghrelin, a hormone classically considered to be an appetite-regulating hormone, is present within the taste buds of the tongue. Prepro-ghrelin, prohormone convertase 1/3 (PC 1/3, ghrelin, its cognate receptor (GHSR, and ghrelin-O-acyltransferase (GOAT , the enzyme that activates ghrelin are expressed in Type I, II, III and IV taste cells of mouse taste buds. In addition, ghrelin and GHSR co-localize in the same taste cells, suggesting that ghrelin works in an autocrine manner in taste cells. To determine a role for ghrelin in modifying taste perception, we performed taste behavioral tests using GHSR null mice. GHSR null mice exhibited significantly reduced taste responsivity to sour (citric acid and salty (sodium chloride tastants.These findings suggest that ghrelin plays a local modulatory role in determining taste bud signaling and function and could be a novel mechanism for the modulation of salty and sour taste responsivity.

  12. Quantitative analysis of developing epiglottal taste buds in sheep.

    OpenAIRE

    Bradley, R M; Cheal, M L; Kim, Y H

    1980-01-01

    Epiglottal taste buds of the sheep increase in number during development, and continue to increase until the epiglottis has reached its adult size. However, since the increase in taste bud numbers is paralleled by increase in the surface area of the epiglottis, the density of taste buds decreases progressively in the fetus and newborn. After birth the density remains relatively constant. From examination of the morphological stages of epiglottal taste bud development, we conclude that taste b...

  13. Tasting Wine: A Learning Experience

    Science.gov (United States)

    King, Tanya J.; Donaldson, Jilleen A.; Harry, Emma

    2012-01-01

    This paper describes a field trip by senior undergraduate anthropology students to a local winery, where they participated in a wine-tasting class with winery staff. In response to explicit hints from a wine-tasting facilitator, and more subtle cues from the cultural capital embedded in their surroundings and the winery staff, the students…

  14. Exploring the Musical Taste of Expert Listeners: Musicology Students reveal Tendency towards Omnivorous Taste

    Directory of Open Access Journals (Sweden)

    Paul eElvers

    2015-08-01

    Full Text Available The current study examined the musical taste of musicology students as compared to a control student group. Participants (n=1003 completed an online survey regarding the frequency with which they listened to 22 musical styles. A factor analysis revealed six underlying dimensions of musical taste. A hierarchical cluster analysis then grouped all participants, regardless of their status, according to their similarity on these dimensions. The employed exploratory approach was expected to reveal potential differences between musicology students and controls. A three-cluster solution was obtained. Comparisons of the clusters in terms of musical taste revealed differences in the listening frequency and variety of appreciated music styles: The first cluster (51% musicology students / 27% controls showed the greatest musical engagement across all dimensions although with a tendency towards »sophisticated« musical styles. The second cluster (36% musicology students / 46% controls exhibited an interest in »conventional« music, while the third cluster (13% musicology students / 27% controls showed a strong liking of rock music. The results provide some support for the notion of specific tendencies in the musical taste of musicology students and the contribution of familiarity and knowledge towards musical omnivorousness.

  15. Pharyngeal arch deficiencies affect taste bud development in the circumvallate papilla with aberrant glossopharyngeal nerve formation.

    Science.gov (United States)

    Okubo, Tadashi; Takada, Shinji

    2015-07-01

    The pharyngeal arches (PAs) generate cranial organs including the tongue. The taste placodes, formed in particular locations on the embryonic tongue surface, differentiate into taste buds harbored in distinct gustatory papillae. The developing tongue also has a complex supply of cranial nerves through each PA. However, the relationship between the PAs and taste bud development is not fully understood. Ripply3 homozygous mutant mice, which have impaired third/fourth PAs, display a hypoplastic circumvallate papilla and lack taste buds, although the taste placode is normally formed. Formation of the glossopharyngeal ganglia is defective and innervation toward the posterior tongue is completely missing in Ripply3 mutant embryos at E12.5. Moreover, the distribution of neuroblasts derived from the epibranchial placode is severely, but not completely, atenuated, and the neural crest cells are diminished in the third PA region of Ripply3 mutant embryos at E9.5-E10.5. In Tbx1 homozygous mutant embryos, which exhibit another type of deficiency in PA development, the hypoplastic circumvallate papilla is observed along with abnormal formation of the glossopharyngeal ganglia and severely impaired innervation. PA deficiencies affect multiple aspects of taste bud development, including formation of the cranial ganglia and innervation to the posterior tongue. © 2015 Wiley Periodicals, Inc.

  16. Metallic taste from electrical and chemical stimulation.

    Science.gov (United States)

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.

  17. Taste Bud Homeostasis in Health, Disease, and Aging

    OpenAIRE

    Feng, Pu; Huang, Liquan; Wang, Hong

    2013-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature...

  18. Molecular materials for organic field-effect transistors

    International Nuclear Information System (INIS)

    Mori, T

    2008-01-01

    Organic field-effect transistors are important applications of thin films of molecular materials. A variety of materials have been explored for improving the performance of organic transistors. The materials are conventionally classified as p-channel and n-channel, but not only the performance but also even the carrier polarity is greatly dependent on the combinations of organic semiconductors and electrode materials. In this review, particular emphasis is laid on multi-sulfur compounds such as tetrathiafulvalenes and metal dithiolates. These compounds are components of highly conducting materials such as organic superconductors, but are also used in organic transistors. The charge-transfer complexes are used in organic transistors as active layers as well as electrodes. (topical review)

  19. Tachykinins stimulate a subset of mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Jeff Grant

    Full Text Available The tachykinins substance P (SP and neurokinin A (NKA are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1. These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+-imaging on isolated taste cells, it was observed that SP induces Ca(2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like and umami-responsive Type II (Receptor cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+ responses evoked by umami stimuli in Type II (Receptor cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.

  20. [Molecular logic of alcohol and taste].

    Science.gov (United States)

    Matsumoto, Ichiro; Abe, Keiko; Arai, Soichi

    2006-10-01

    Ethanol, a main constituent of every alcohol beverage, has long been calling our attention to its gustatory effect. Recent molecular dynamics studies have suggested that ethanol as well as other tastants in foods, when taken in the oral cavity, gives rise to a taste signal which is expressed via reception at taste cells in the taste bud, intracellular signal transduction in collaboration with G proteins and effecters, and signal transmission to synapsed taste neurons, and/or simultaneous reception at and signal transduction in somatosensory neurons. The taste of ethanol and its acceptability are then recognized and judged at the higher center, with generation of various physiological phenomena in the body. We have tried to make an all-inclusive DNA microarray analysis, demonstrating that when a rat tongue is stimulated with a drop of aqueous ethanol in vivo, several particular genes are specifically up- or down-regulated in trigeminal ganglions. These initial gene expression changes at peripheral neurocytes might in whole or in part trigger some of the ethanol-associated gustatory and bodily response. The importance of defining a related molecular logic is emphasized to understand academic and industrial significances of this unique food constituent, ethanol.

  1. Taste avoidance induced by wheel running: effects of backward pairings and robustness of conditioned taste aversion.

    Science.gov (United States)

    Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C

    2004-09-15

    Rats repeatedly exposed to a distinctive novel solution (conditioned stimulus, CS) followed by the opportunity to run in a wheel subsequently drink less of this solution. Investigations on this phenomenon indicate that wheel running is an effective unconditioned stimulus (US) for establishing conditioned taste aversion (CTA) when using a forward conditioning procedure (i.e., the US-wheel running follows the CS-taste). However, other studies show that wheel running produces reliable preference for a distinctive place when pairings are backward (i.e., the CS-location follows the US-wheel running). One possibility to account for these results is that rewarding aftereffects of wheel running conditioned preference to the CS. The main objective of the present study was to assess the effects of backward conditioning using wheel running as the US and a distinctive taste as the CS. In a between-groups design, two experimental groups [i.e., forward (FC) and backward conditioning (BC)] and two control groups [CS-taste alone (TA) and CS-US unpaired (UNP)] were compared. Results from this experiment indicated that there is less suppression of drinking when a CS-taste followed a bout of wheel running. In fact, rats in the BC group drank more of the paired solution than all the other groups.

  2. Metallic taste in cancer patients treated with chemotherapy.

    Science.gov (United States)

    IJpma, I; Renken, R J; Ter Horst, G J; Reyners, A K L

    2015-02-01

    Metallic taste is a taste alteration frequently reported by cancer patients treated with chemotherapy. Attention to this side effect of chemotherapy is limited. This review addresses the definition, assessment methods, prevalence, duration, etiology, and management strategies of metallic taste in chemotherapy treated cancer patients. Literature search for metallic taste and chemotherapy was performed in PubMed up to September 2014, resulting in 184 articles of which 13 articles fulfilled the inclusion criteria: English publications addressing metallic taste in cancer patients treated with FDA-approved chemotherapy. An additional search in Google Scholar, in related articles of both search engines, and subsequent in the reference lists, resulted in 13 additional articles included in this review. Cancer patient forums were visited to explore management strategies. Prevalence of metallic taste ranged from 9.7% to 78% among patients with various cancers, chemotherapy treatments, and treatment phases. No studies have been performed to investigate the influence of metallic taste on dietary intake, body weight, and quality of life. Several management strategies can be recommended for cancer patients: using plastic utensils, eating cold or frozen foods, adding strong herbs, spices, sweetener or acid to foods, eating sweet and sour foods, using 'miracle fruit' supplements, and rinsing with chelating agents. Although metallic taste is a frequent side effect of chemotherapy and a much discussed topic on cancer patient forums, literature regarding metallic taste among chemotherapy treated cancer patients is scarce. More awareness for this side effect can improve the support for these patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Interactions between radiation and amphetamine in taste aversion learning and the role of the area postrema in amphetamine-induced conditioned taste aversions

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    Three experiments were run to assess the role of the area postrema in taste aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning in intact rats and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste aversion learning may involve area postrema-mediated mechanisms, particularly at the lower doses, but that an intact area postrema is not a necessary condition for the acquisition of an amphetamine-induced taste aversion

  4. Private and Shared Taste in Art and Face Appreciation

    Directory of Open Access Journals (Sweden)

    Helmut eLeder

    2016-04-01

    Full Text Available Whether beauty is in the eye of the beholder or shared among individuals is a longstanding question in empirical aesthetics. By decomposing the variance structure of data for facial attractiveness, it has been previously shown that beauty evaluations comprise a similar amount of private and shared taste (Hönekopp, 2006. Employing the same methods, we found that, for abstract artworks, components that vary between individuals and relate to personal taste are particularly strong. Moreover, we instructed half of our participants to disregard their own taste and judge stimuli according to the taste of others instead. Ninety-five women rated 100 abstract artworks for liking and 100 faces for attractiveness. We found that the private taste proportion was much higher in abstract artworks, accounting for 75% of taste compared to 40% in the face condition. Abstract artworks were also less affected than faces by the instruction to rate according to others’ taste and therefore less susceptible to incorporation of external beauty standards. Together, our findings support the notion that art—and especially abstract art—crystallizes private taste.

  5. A nanohybrid system for taste masking of sildenafil

    Science.gov (United States)

    Lee, Ji-Hee; Choi, Goeun; Oh, Yeon-Ji; Park, Je Won; Choy, Young Bin; Park, Mung Chul; Yoon, Yeo Joon; Lee, Hwa Jeong; Chang, Hee Chul; Choy, Jin-Ho

    2012-01-01

    A nanohybrid was prepared with an inorganic clay material, montmorillonite (MMT), for taste masking of sildenafil (SDN). To further improve the taste-masking efficiency and enhance the drug-release rate, we coated the nanohybrid of SDN–MMT with a basic polymer, polyvinylacetal diethylaminoacetate (AEA). Powder X-ray diffraction and Fourier transform infrared experiments showed that SDN was successfully intercalated into the interlayer space of MMT. The AEA-coated SDN–MMT nanohybrid showed drug release was much suppressed at neutral pH (release rate, 4.70 ± 0.53%), suggesting a potential for drug taste masking at the buccal cavity. We also performed in vitro drug release experiments in a simulated gastric fluid (pH = 1.2) and compared the drug-release profiles of AEA-coated SDN–MMT and Viagra®, an approved dosage form of SDN. As a result, about 90% of SDN was released from the AEA-coated SDN–MMT during the first 2 hours while almost 100% of drug was released from Viagra®. However, an in vivo experiment showed that the AEA-coated SDN–MMT exhibited higher drug exposure than Viagra®. For the AEA-coated SDN–MMT, the area under the plasma concentration– time curve from 0 hours to infinity (AUC0-∞) and maximum concentration (Cmax) were 78.8 ± 2.32 μg · hour/mL and 12.4 ± 0.673 μg/mL, respectively, both of which were larger than those obtained with Viagra® (AUC0-∞ = 69.2 ± 3.19 μg · hour/mL; Cmax = 10.5 ± 0.641 μg/mL). Therefore, we concluded that the MMT-based nanohybrid is a promising delivery system for taste masking of SDN with possibly improved drug exposure. PMID:22619517

  6. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  7. Role of the ectonucleotidase NTPDase2 in taste bud function.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Parnes, Jason; Enjyoji, Keiichi; Robson, Simon C; Finger, Thomas E; Kinnamon, Sue C

    2013-09-03

    Taste buds are unusual in requiring ATP as a transmitter to activate sensory nerve fibers. In response to taste stimuli, taste cells release ATP, activating purinergic receptors containing the P2X2 and P2X3 subunits on taste nerves. In turn, the released ATP is hydrolyzed to ADP by a plasma membrane nucleoside triphosphate previously identified as nucleoside triphosphate diphosphohydrolase-2 (NTPDase2). In this paper we investigate the role of this ectonucleotidase in the function of taste buds by examining gene-targeted Entpd2-null mice globally lacking NTPDase2. RT-PCR confirmed the absence of NTPDase2, and ATPase enzyme histochemistry reveals no reaction product in taste buds of knockout mice, suggesting that NTPDase2 is the dominant form in taste buds. RT-PCR and immunocytochemistry demonstrated that in knockout mice all cell types are present in taste buds, even those cells normally expressing NTPDase2. In addition, the overall number and size of taste buds are normal in Entpd2-null mice. Luciferin/luciferase assays of circumvallate tissue of knockout mice detected elevated levels of extracellular ATP. Electrophysiological recordings from two taste nerves, the chorda tympani and glossopharyngeal, revealed depressed responses to all taste stimuli in Entpd2-null mice. Responses were more depressed in the glossopharyngeal nerve than in the chorda tympani nerve and involved all taste qualities; responses in the chorda tympani were more depressed to sweet and umami stimuli than to other qualities. We suggest that the excessive levels of extracellular ATP in the Entpd2-knockout animals desensitize the P2X receptors associated with nerve fibers, thereby depressing taste responses.

  8. Learning Consumer Tastes Through Dynamic Assortments

    NARCIS (Netherlands)

    Ulu, C.; Honhon, D.B.L.P.; Alptekinoglu, A.

    2012-01-01

    How should a firm modify its product assortment over time when learning about consumer tastes? In this paper, we study dynamic assortment decisions in a horizontally differentiated product category for which consumers' diverse tastes can be represented as locations on a Hotelling line. We presume

  9. The taste in a polyparadigmal system

    Directory of Open Access Journals (Sweden)

    Klimova G. P.

    2016-09-01

    Full Text Available modern spiritual situation is determined as a transfer from a united cultural paradigm to a poliparadigmal cultural space. It is characterized by an unlimited diversity of unlinked spiritual structures, ideas, theories, styles and direction. Polyphony, eclecticism, subjective assembling, inlaid, and omnivorous are perceived as a norm today. Total impact of cultural specimen, intensified by an industry of informational technologies deform valuable aesthetic orientations of a personality, including taste. Individual experience in the taste becomes unified and social. Tastes differentiated before (aesthetic, artistic, mass, elite, etc. became homogenous. Cultural reflection may be a purposeful preservation of elite valuable cultural orientation.

  10. Zizyphin modulates calcium signalling in human taste bud cells and fat taste perception in the mouse.

    Science.gov (United States)

    Murtaza, Babar; Berrichi, Meryem; Bennamar, Chahid; Tordjmann, Thierry; Djeziri, Fatima Z; Hichami, Aziz; Leemput, Julia; Belarbi, Meriem; Ozdener, Hakan; Khan, Naim A

    2017-10-01

    Zizyphin, isolated from Zizyphus sps. leaf extracts, has been shown to modulate sugar taste perception, and the palatability of a sweet solution is increased by the addition of fatty acids. We, therefore, studied whether zizyphin also modulates fat taste perception. Zizyphin was purified from edible fruit of Zizyphus lotus L. Zizyphin-induced increases in [Ca 2+ ]i in human taste bud cells (hTBC). Zizyphin shared the endoplasmic reticulum Ca 2+ pool and also recruited, in part, Ca 2+ from extracellular environment via the opening of store-operated Ca 2+ channels. Zizyphin exerted additive actions on linoleic acid (LA)-induced increases in [Ca 2+ ]i in these cells, indicating that zizyphin does not exert its action via fatty acid receptors. However, zizyphin seemed to exert, at least in part, its action via bile acid receptor Takeda-G-protein-receptor-5 in hTBC. In behavioural tests, mice exhibited preference for both LA and zizyphin. Interestingly, zizyphin increased the preference for a solution containing-LA. This study is the first evidence of the modulation of fat taste perception by zizyphin at the cellular level in hTBC. Our study might be helpful for considering the synthesis of zizyphin analogues as 'taste modifiers' with a potential in the management of obesity and lipid-mediated disorders. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  11. Conditioned taste aversion, drugs of abuse and palatability.

    Science.gov (United States)

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2014-09-01

    We consider conditioned taste aversion to involve a learned reduction in the palatability of a taste (and hence in amount consumed) based on the association that develops when a taste experience is followed by gastrointestinal malaise. The present article evaluates the well-established finding that drugs of abuse, at doses that are otherwise considered rewarding and self-administered, cause intake suppression. Our recent work using lick pattern analysis shows that drugs of abuse also cause a palatability downshift and, therefore, support conditioned taste aversion learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Radiogenic damage to the sense of taste

    International Nuclear Information System (INIS)

    Schulz-Freywald, G.

    1975-01-01

    In order to determine radiogenic impairment of taste and the natural laws it obeys, gustometric investigations were carried out on 11 patients under radiation treatment. From the investigations it could be seen that the first measurable impairment is present after about 2,000 rad and the climax of the sensory radiation injury occurs after 4,000 rad. The individual taste qualities are damaged in the sequence bitter, sweet, salty and sour. Then the taste surprisingly improves somewhat although irradiation continues. Our observation that the interval between sensation threshold and recognition threshold during radiotherapy grows indicating an apparently stronger damage to the recognition threshold and only later goes back to the standard, is also new and has so far no explanation. It was seen in all posttherapeutical taste tests that the taste function was only fully normalized with a few patients, while in most cases a more or less large function defect remained. This result contradicts the general opinion that there is a complete restitution at the latest 3 months after terminating the irradiation. The present result is fully confirmed by the post-investigation of 55 patients whose irradiation went back up to 13 years. A significant, remaining reduction of the average taste function can also be found here. As the extent of the remaining taste impairment is measurable but very small, it is hardly ever noticed by the patients. Similar to in the course investigations, one could see here, too, that the sensation thresholds on the long run are less damaged than the recognition thresholds. (orig./MG) [de

  13. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    Science.gov (United States)

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. PMID:26525674

  14. Effectiveness of Taste Lessons with and without additional experiential learning activities on children's willingness to taste vegetables

    NARCIS (Netherlands)

    Battjes-Fries, Marieke C.E.; Haveman-Nies, Annemien; Zeinstra, Gertrude G.; Dongen, van Ellen J.I.; Meester, Hante J.; Top, van den Rinelle; Veer, van 't Pieter; Graaf, de Kees

    2017-01-01

    This study assessed the effectiveness of the Dutch school programme Taste Lessons with and without additional experiential learning activities on children's willingness to taste unfamiliar vegetables. Thirty-three primary schools (877 children in grades 6-7 with a mean age of 10.3 years)

  15. Umami taste components and their sources in Asian foods.

    Science.gov (United States)

    Hajeb, P; Jinap, S

    2015-01-01

    Umami, the fifth basic taste, is the inimitable taste of Asian foods. Several traditional and locally prepared foods and condiments of Asia are rich in umami. In this part of world, umami is found in fermented animal-based products such as fermented and dried seafood, and plant-based products from beans and grains, dry and fresh mushrooms, and tea. In Southeast Asia, the most preferred seasonings containing umami are fish and seafood sauces, and also soybean sauces. In the East Asian region, soybean sauces are the main source of umami substance in the routine cooking. In Japan, the material used to obtain umami in dashi, the stock added to almost every Japanese soups and boiled dishes, is konbu or dried bonito. This review introduces foods and seasonings containing naturally high amount of umami substances of both animal and plant sources from different countries in Asia.

  16. High mobility high efficiency organic films based on pure organic materials

    Science.gov (United States)

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  17. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development.

    Science.gov (United States)

    Thirumangalathu, Shoba; Barlow, Linda A

    2015-12-15

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of β-catenin signaling was not explored. Here, we define discrete spatiotemporal functions of β-catenin in fungiform taste bud development. Specifically, we show that early epithelial activation of β-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, β-catenin activation a day later within Shh(+) placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of β-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh(+) precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find that it is dispensable for the accelerated Type I cell differentiation induced by β-catenin. © 2015. Published by The Company of Biologists Ltd.

  18. Using Single Colors and Color Pairs to Communicate Basic Tastes

    Directory of Open Access Journals (Sweden)

    Andy T. Woods

    2016-07-01

    Full Text Available Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty with specific colors (e.g., red, green, black, and white. In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  19. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    Science.gov (United States)

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  20. Radiation-induced changes in taste acuity in cancer patients

    International Nuclear Information System (INIS)

    Mossman, K.L.; Henkin, R.I.

    1978-01-01

    Changes in taste acuity were measured in 27 patients with various forms of cancer who received radiation to the head and neck region. In 9 of these patients (group I), measurements of taste acuity were made more than 1 year after completion of radiation therapy. In the other 18 patients (group II), taste measurements were made before, during, and approximately 1 month after radiation therapy. Taste acuity was measured for four taste qualities (salt, sweet, sour, and bitter) by a forced choice-three stimulus drop technique which measured detection and recognition thresholds and by a forced scaling technique which measured taste intensity responsiveness. In group II patients, impaired acuity, as indicated by elevated detection and recognition thresholds, was observed approximately 3 weeks after initiation of radiotherapy. The bitter and salt qualities showed the earliest and greatest impairment and the sweet quality the least. Taste intensity responsiveness also was impaired in group II patients. As for thresholds, scaling impairment was most severe for bitter and salt taste qualities. Scaling impairment occurred before changes in either detection or recognition thresholds. Detection and recognition thresholds determined in group I patients also showed salt and bitter qualities were affected more severely than either sweet or sour qualities. Zinc administration to group I patients in an uncontrolled study suggested that zinc therapy may be useful in ameliorating taste impairment in some patients. These results suggest that taste loss may be a factor in the anorexia and weight loss that is observed commonly in patients who have undergone radiation treatment. Correction of this abnormality may be useful in aiding the nutritional status of these patients

  1. Whole transcriptome profiling of taste bud cells.

    Science.gov (United States)

    Sukumaran, Sunil K; Lewandowski, Brian C; Qin, Yumei; Kotha, Ramana; Bachmanov, Alexander A; Margolskee, Robert F

    2017-08-08

    Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.

  2. Clinical observation of taste disturbance induced by radiation therapy

    International Nuclear Information System (INIS)

    Murakami, Yuzuru; Sera, Koshi; Nagasawa, Hiroshi; Fukushima, Noriyuki; Yajin, Koji; Harada, Yasuo

    1984-01-01

    Qualitative gustometry (filter paper disc method) was performed in six patients who underwent radiation therapy. Following results were obtained. 1) Subjective taste disturbance appeared when irradiation dosage amounted to 1000-2000 rad. Whereas, it disappeared in 1 to 3 months after the termination of irradiation. 2) The longer the period of irradiation, the more slowly taste disturbance recovered. 3) Disgeusia was noticed in 44.3% of S, 66.7% of N, 70% of T and 36.2% of Q tests. 4) Taste thresholds in the apical tongue region improved almost parallel to subjective recovery of the taste. Occasionally taste disturbance was prolonged over a month. This is possibly due to delayed regeneration of the gustatory buds. Furthermore, conditions of the oral cavity, such as infection, or mechanical stimulation, may well influence degree of taste disturbance and the process of regeneration. (author)

  3. Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior circumvallate taste buds of mice

    Directory of Open Access Journals (Sweden)

    Barlow Linda A

    2010-10-01

    Full Text Available Abstract Background Bone Morphogenetic Protein 4 (BMP4 is a diffusible factor which regulates embryonic taste organ development. However, the role of BMP4 in taste buds of adult mice is unknown. We utilized transgenic mice with LacZ under the control of the BMP4 promoter to reveal the expression of BMP4 in the tongues of adult mice. Further we evaluate the pattern of BMP4 expression with that of markers of specific taste bud cell types and cell proliferation to define and compare the cell populations expressing BMP4 in anterior (fungiform papillae and posterior (circumvallate papilla tongue. Results BMP4 is expressed in adult fungiform and circumvallate papillae, i.e., lingual structures composed of non-taste epithelium and taste buds. Unexpectedly, we find both differences and similarities with respect to expression of BMP4-driven ß-galactosidase. In circumvallate papillae, many fusiform cells within taste buds are BMP4-ß-gal positive. Further, a low percentage of BMP4-expressing cells within circumvallate taste buds is immunopositive for markers of each of the three differentiated taste cell types (I, II and III. BMP4-positive intragemmal cells also expressed a putative marker of immature taste cells, Sox2, and consistent with this finding, intragemmal cells expressed BMP4-ß-gal within 24 hours after their final mitosis, as determined by BrdU birthdating. By contrast, in fungiform papillae, BMP4-ß-gal positive cells are never encountered within taste buds. However, in both circumvallate and fungiform papillae, BMP4-ß-gal expressing cells are located in the perigemmal region, comprising basal and edge epithelial cells adjacent to taste buds proper. This region houses the proliferative cell population that gives rise to adult taste cells. However, perigemmal BMP4-ß-gal cells appear mitotically silent in both fungiform and circumvallate taste papillae, as we do not find evidence of their active proliferation using cell cycle immunomarkers

  4. Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior circumvallate taste buds of mice.

    Science.gov (United States)

    Nguyen, Ha M; Barlow, Linda A

    2010-10-13

    Bone Morphogenetic Protein 4 (BMP4) is a diffusible factor which regulates embryonic taste organ development. However, the role of BMP4 in taste buds of adult mice is unknown. We utilized transgenic mice with LacZ under the control of the BMP4 promoter to reveal the expression of BMP4 in the tongues of adult mice. Further we evaluate the pattern of BMP4 expression with that of markers of specific taste bud cell types and cell proliferation to define and compare the cell populations expressing BMP4 in anterior (fungiform papillae) and posterior (circumvallate papilla) tongue. BMP4 is expressed in adult fungiform and circumvallate papillae, i.e., lingual structures composed of non-taste epithelium and taste buds. Unexpectedly, we find both differences and similarities with respect to expression of BMP4-driven ß-galactosidase. In circumvallate papillae, many fusiform cells within taste buds are BMP4-ß-gal positive. Further, a low percentage of BMP4-expressing cells within circumvallate taste buds is immunopositive for markers of each of the three differentiated taste cell types (I, II and III). BMP4-positive intragemmal cells also expressed a putative marker of immature taste cells, Sox2, and consistent with this finding, intragemmal cells expressed BMP4-ß-gal within 24 hours after their final mitosis, as determined by BrdU birthdating. By contrast, in fungiform papillae, BMP4-ß-gal positive cells are never encountered within taste buds. However, in both circumvallate and fungiform papillae, BMP4-ß-gal expressing cells are located in the perigemmal region, comprising basal and edge epithelial cells adjacent to taste buds proper. This region houses the proliferative cell population that gives rise to adult taste cells. However, perigemmal BMP4-ß-gal cells appear mitotically silent in both fungiform and circumvallate taste papillae, as we do not find evidence of their active proliferation using cell cycle immunomarkers and BrdU birthdating. Our data suggest that

  5. Exploring the musical taste of expert listeners: musicology students reveal tendency toward omnivorous taste.

    Science.gov (United States)

    Elvers, Paul; Omigie, Diana; Fuhrmann, Wolfgang; Fischinger, Timo

    2015-01-01

    Musicology students are engaged with music on an academic level and usually have an extensive musical background. They have a considerable knowledge of music history and theory and listening to music may be regarded as one of their primary occupations. Taken together, these factors qualify them as ≫expert listeners≪, who may be expected to exhibit a specific profile of musical taste: interest in a broad range of musical styles combined with a greater appreciation of ≫sophisticated≪ styles. The current study examined the musical taste of musicology students as compared to a control student group. Participants (n = 1003) completed an online survey regarding the frequency with which they listened to 22 musical styles. A factor analysis revealed six underlying dimensions of musical taste. A hierarchical cluster analysis then grouped all participants, regardless of their status, according to their similarity on these dimensions. The employed exploratory approach was expected to reveal potential differences between musicology students and controls. A three-cluster solution was obtained. Comparisons of the clusters in terms of musical taste revealed differences in the listening frequency and variety of appreciated music styles: the first cluster (51% musicology students/27% controls) showed the greatest musical engagement across all dimensions although with a tendency toward ≫sophisticated≪ musical styles. The second cluster (36% musicology students/46% controls) exhibited an interest in ≫conventional≪ music, while the third cluster (13% musicology students/27% controls) showed a strong liking of rock music. The results provide some support for the notion of specific tendencies in the musical taste of musicology students and the contribution of familiarity and knowledge toward musical omnivorousness. Further differences between the clusters in terms of social, personality, and sociodemographic factors are discussed.

  6. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate.

    Science.gov (United States)

    Okubo, Tadashi; Clark, Cheryl; Hogan, Brigid L M

    2009-02-01

    The epithelium of the mouse tongue and soft palate consists of at least three distinct epithelial cell populations: basal cells, keratinized cells organized into filiform and fungiform papillae, and taste receptor cells present in tight clusters known as taste buds in the fungiform and circumvallate papillae and soft palate. All three cell types develop from the simple epithelium of the embryonic tongue and palate, and are continually replaced in the adult by cell turnover. Previous studies using pulse-chase tritiated thymidine labeling in the adult mouse provided evidence for a high rate of cell turnover in the keratinocytes (5-7 days) and taste buds (10 days). However, little is known about the localization and phenotype of the long-term stem or progenitor cells that give rise to the mature taste bud cells and surrounding keratinocytes in these gustatory tissues. Here, we make use of a tamoxifen-inducible K14-CreER transgene and the ROSA26 LacZ reporter allele to lineage trace the mature keratinocytes and taste bud cells of the early postnatal and adult mouse tongue and soft palate. Our results support the hypothesis that both the pore keratinocytes and receptor cells of the taste bud are derived from a common K14(+)K5(+)Trp63(+)Sox2(+) population of bipotential progenitor cells located outside the taste bud. The results are also compatible with models in which the keratinocytes of the filiform and fungiform papillae are derived from basal progenitor cells localized at the base of these structures.

  7. Analysis of Facial Expression by Taste Stimulation

    Science.gov (United States)

    Tobitani, Kensuke; Kato, Kunihito; Yamamoto, Kazuhiko

    In this study, we focused on the basic taste stimulation for the analysis of real facial expressions. We considered that the expressions caused by taste stimulation were unaffected by individuality or emotion, that is, such expressions were involuntary. We analyzed the movement of facial muscles by taste stimulation and compared real expressions with artificial expressions. From the result, we identified an obvious difference between real and artificial expressions. Thus, our method would be a new approach for facial expression recognition.

  8. The role of soil biogeochemistry in wine taste: Soil factors influencing grape elemental composition, photosynthetic biomarkers and Cu/Zn isotopic signature of Vitis vinifera

    Science.gov (United States)

    Blotevogel, Simon; Oliva, Priscia; Darrozes, José; Viers, Jérôme; Audry, Stéphane; Courjault-Radé, Pierre; Orgogozo, Laurent; Le Guedard, Marina; Schreck, Eva

    2015-04-01

    Understanding the influence of soil composition in wine taste is of great economic and environmental interest in France and around the world. Nevertheless the impact of soil composition on wine taste is still controversially discussed. Since inorganic soil components do not have a proper taste and do not enter the plant anyway, their influence needs to be induced by nutrient absorption and its impact on plant functioning and grape composition. Indeed recent development of geological tracers of origin proof the existence of soil chemical and isotopic signatures in wine. However, type and scale of the impact of soil composition on wine taste are not well understood yet, and little experimental evidence exists due to the complexity of mechanisms involved. Thus, to provide evidence for the impact of soil composition on grape composition and potentially wine taste, we studied soil and plant material from two relevant vineyards (Soave, Italia). On those two directly adjacent vineyards, two different wines are produced with the same plant material and cultivation techniques. The vineyards only differ by their underlying bedrock - limestone versus basaltic rock - and thus present suitable conditions for investigating the impact of soil composition on grapes and wine. Pedological and mineralogical parameters were analyzed for the two vineyards whereas chemical extractions (citrate, CaCl2) were performed to determine nutrient bioavailability in both soils. Elemental compositions were determined by ICP-MS analyses in different compartments (soils, vine leaves and grapes). Isotopic fractionation of Cu and Zn was investigated in various samples as source tracers and in order to better understand fractionation mechanisms involved. Finally, plant health was studied using the Omega-3 biomarker which determines the fatty acid composition in vine leaves, directly involved in photosynthetic processes. Results show that the vineyards are characterized by two different soil types due

  9. A crossmodal role for audition in taste perception.

    Science.gov (United States)

    Yan, Kimberly S; Dando, Robin

    2015-06-01

    Our sense of taste can be influenced by our other senses, with several groups having explored the effects of olfactory, visual, or tactile stimulation on what we perceive as taste. Research into multisensory, or crossmodal perception has rarely linked our sense of taste with that of audition. In our study, 48 participants in a crossover experiment sampled multiple concentrations of solutions of 5 prototypic tastants, during conditions with or without broad spectrum auditory stimulation, simulating that of airline cabin noise. Airline cabins are an unusual environment, in which food is consumed routinely under extreme noise conditions, often over 85 dB, and in which the perceived quality of food is often criticized. Participants rated the intensity of solutions representing varying concentrations of the 5 basic tastes on the general Labeled Magnitude Scale. No difference in intensity ratings was evident between the control and sound condition for salty, sour, or bitter tastes. Likewise, panelists did not perform differently during sound conditions when rating tactile, visual, or auditory stimulation, or in reaction time tests. Interestingly, sweet taste intensity was rated progressively lower, whereas the perception of umami taste was augmented during the experimental sound condition, to a progressively greater degree with increasing concentration. We postulate that this effect arises from mechanostimulation of the chorda tympani nerve, which transits directly across the tympanic membrane of the middle ear. (c) 2015 APA, all rights reserved).

  10. Musical taste, employment, education, and global region.

    Science.gov (United States)

    North, Adrian C; Davidson, Jane W

    2013-10-01

    Sociologists have argued that musical taste should vary between social groups, but have not considered whether the effect extends beyond taste into uses of music and also emotional reactions to music. Moreover, previous research has ignored the culture in which participants are located. The present research employed a large sample from five post-industrial global regions and showed that musical taste differed between regions but not according to education and employment; and that there were three-way interactions between education, employment, and region in the uses to which participants put music and also their typical emotional reactions. In addition to providing partial support for existing sociological theory, the findings highlight the potential of culture as a variable in future quantitative research on taste. © 2013 The Scandinavian Psychological Associations.

  11. Bitter taste – cheese failure

    Directory of Open Access Journals (Sweden)

    Slavko Kirin

    2001-10-01

    Full Text Available Bitter taste is serous and very often cheese failure in modern cheesemaking process. In this paper the sources and bitter taste development in cheese will be presented. Bitterness in cheese is linked to bitter compounds development during cheese ripening. Most of the bitter compounds come from bitter peptides, the mechanism of theirs development being due to proteasepeptidase system of the cured enzymes and the milk cultures as well as other proteases present in cheese. By the action of curd enzymes, the milk protein - casein - is firstly degraded into high molecular weight compounds possessing no bitter taste. Those compounds are then degraded, by milk protease cultures, to hydrophobic bitter peptides of low molecular weight further degraded, by bacterial endopeptidase during cheese ripening, to bitter peptides and amino acids. In the case when no balance exists, between bitter compounds development and breakdown by lactic acid bacteria peptidase, an accumulation of bitter peptides occurs thus having an influence on cheese bitterness. During cheese ripening naturally occurring milk protease – plasmin, and thermostable proteases of raw milk microflora are also involved in proteolytic process. Fat cheese lipases, initiated by lipase originating from psychrotrophic bacteria in raw milk as well as other cheese lipases, are also associated with bitter taste generation. The other sources of bitterness come from the forages, the medicament residues as well as washing and disinfecting agents. In order to eliminate these failures a special care should be taken in milk quality as well as curd and milk culture selection. At this point technological norms and procedures, aimed to maintain the proteolysis balance during cheese ripening, should be adjusted, thus eliminating the bitter taste of the cheese.

  12. Evaluation of changes in the taste of cooked meat products during curing using an artificial taste sensor.

    Science.gov (United States)

    Nodake, Kazumasa; Numata, Masahiro; Kosai, Kiichi; Kim, Yun-Jung; Nishiumi, Tadayuki

    2013-08-01

    The purpose of this study was to assess an evaluation method using an artificial taste sensor, in comparison with chemical analysis and sensory evaluation of the taste of meat during curing. Samples of Canadian pork were treated with salt, nitrite and phosphate. Curing time ranged from 0 to 168 h. In the sensory evaluation, there were no significant differences in the all characteristic items at 72-h cured sample compared to the 0-h sample. Some of the characteristic items for the 168-h sample (umami, overall taste, richness and overall palatability) showed significant difference (P meat products. © 2013 Japanese Society of Animal Science.

  13. Research progress of the bitter taste receptor genes in primates.

    Science.gov (United States)

    Feng, Ping; Luo, Rui-Jian

    2018-02-20

    Among the five basic tastes (umami, sweet, bitter, salty and sour), the perception of bitterness is believed to protect animals from digesting toxic and harmful substances, thus it is vital for animal survival. The taste of bitterness is triggered by the interaction between bitter substances and bitter taste receptors, which are encoded by Tas2rs. The gene numbers vary largely across species to meet different demands. So far, several ligands of bitter receptors have been identified in primates. They also discovered that the selective pressure of certain bitter taste receptor genes vary across taxa, genes or even different functional regions of the gene. In this review, we summarize the research progress of bitter taste receptor genes in primates by introducing the functional diversity of bitter receptors, the specific interaction between bitter taste receptors and ligands, the relationship between the evolutionary pattern of bitter taste receptors and diets, and the adaptive evolution of bitter taste receptor genes. We aim to provide a reference for further research on bitter receptor genes in primates.

  14. Food branding and young children's taste preferences: a reassessment.

    Science.gov (United States)

    Elliott, Charlene D; Carruthers Den Hoed, Rebecca; Conlon, Martin J

    2013-08-20

    This study examines the effects of branding and packaging on young children's taste preferences. Preschool children aged 3 to 5 (n=65) tasted five pairs of identical foods in packaging from McDonald's and in matched packaging that was either plain, Starbucks-branded, or colourful (but unbranded). Children were asked if the foods tasted the same or if one tasted better. Children preferred the taste of foods wrapped in decorative wrappings, relying more on aesthetics than on familiar branding when making their choices. The findings suggest the need to explore questions beyond commercial advertising (and brand promotion) on television and other media platforms. More attention should be directed at the important role of packaging in directing children's food preferences.

  15. Taste perception, associated hormonal modulation, and nutrient intake

    Science.gov (United States)

    Loper, Hillary B.; La Sala, Michael; Dotson, Cedrick

    2015-01-01

    It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as “flavor.” It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension. PMID:26024495

  16. Mixing methods, tasting fingers

    DEFF Research Database (Denmark)

    Mann, Anna; Mol, Annemarie; Satalkar, Priya

    2011-01-01

    This article reports on an ethnographic experiment. Four finger eating experts and three novices sat down for a hot meal and ate with their hands. Drawing on the technique of playing with the familiar and the strange, our aim was not to explain our responses, but to articulate them. As we seek...... words to do so, we are compelled to stretch the verb "to taste." Tasting, or so our ethnographic experiment suggests, need not be understood as an activity confined to the tongue. Instead, if given a chance, it may viscously spread out to the fingers and come to include appreciative reactions otherwise...

  17. β-Catenin signaling regulates temporally discrete phases of anterior taste bud development

    OpenAIRE

    Thirumangalathu, Shoba; Barlow, Linda A.

    2015-01-01

    The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor sonic hedgehog (Shh) and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary induct...

  18. Organic optoelectronics:materials,devices and applications

    Institute of Scientific and Technical Information of China (English)

    LIU Yi; CUI Tian-hong

    2005-01-01

    The interest in organic materials for optoelectronic devices has been growing rapidly in the last two decades. This growth has been propelled by the exciting advances in organic thin films for displays, low-cost electronic circuits, etc. An increasing number of products employing organic electronic devices have become commercialized, which has stimulated the age of organic optoelectronics. This paper reviews the recent progress in organic optoelectronic technology. First, organic light emitting electroluminescent materials are introduced. Next, the three kinds of most important organic optoelectronic devices are summarized, including light emitting diode, organic photovoltaic cell, and photodetectors. The various applications of these devices are also reviewed and discussed in detail. Finally, the market and future development of optoelectronic devices are also demonstrated.

  19. Mechanisms of taste bud cell loss after head and neck irradiation.

    Science.gov (United States)

    Nguyen, Ha M; Reyland, Mary E; Barlow, Linda A

    2012-03-07

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of x-ray irradiation to the head and neck, and analyzed taste epithelium at 1-21 d postirradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1-3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5-7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5-6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using 5-bromo-2-deoxyuridine birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1-2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. In contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement, underlies taste loss after irradiation.

  20. Mechanisms of taste bud cell loss after head and neck irradiation

    Science.gov (United States)

    Nguyen, Ha M.; Reyland, Mary E.; Barlow, Linda A.

    2012-01-01

    Taste loss in human patients following radiotherapy for head and neck cancer is a common and significant problem, but the cellular mechanisms underlying this loss are not understood. Taste stimuli are transduced by receptor cells within taste buds, and like epidermal cells, taste cells are regularly replaced throughout adult life. This renewal relies on a progenitor cells adjacent to taste buds, which continually supply new cells to each bud. Here we treated adult mice with a single 8 Gy dose of X-ray irradiation to the head and neck, and analyzed taste epithelium at 1–21 days post-irradiation (dpi). We found irradiation targets the taste progenitor cells, which undergo cell cycle arrest (1–3 dpi) and apoptosis (within 1 dpi). Taste progenitors resume proliferation at 5–7 dpi, with the proportion of cells in S and M phase exceeding control levels at 5–6 and 6 dpi, respectively, suggesting that proliferation is accelerated and/or synchronized following radiation damage. Using BrdU birthdating to identify newborn cells, we found that the decreased proliferation following irradiation reduces the influx of cells at 1–2 dpi, while the robust proliferation detected at 6 dpi accelerates entry of new cells into taste buds. By contrast, the number of differentiated taste cells was not significantly reduced until 7 dpi. These data suggest a model where continued natural taste cell death, paired with temporary interruption of cell replacement underlies taste loss after irradiation. PMID:22399770

  1. Bioelectronic tongue of taste buds on microelectrode array for salt sensing.

    Science.gov (United States)

    Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping

    2013-02-15

    Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Progress and renewal in gustation: new insights into taste bud development.

    Science.gov (United States)

    Barlow, Linda A

    2015-11-01

    The sense of taste, or gustation, is mediated by taste buds, which are housed in specialized taste papillae found in a stereotyped pattern on the surface of the tongue. Each bud, regardless of its location, is a collection of ∼100 cells that belong to at least five different functional classes, which transduce sweet, bitter, salt, sour and umami (the taste of glutamate) signals. Taste receptor cells harbor functional similarities to neurons but, like epithelial cells, are rapidly and continuously renewed throughout adult life. Here, I review recent advances in our understanding of how the pattern of taste buds is established in embryos and discuss the cellular and molecular mechanisms governing taste cell turnover. I also highlight how these findings aid our understanding of how and why many cancer therapies result in taste dysfunction. © 2015. Published by The Company of Biologists Ltd.

  3. Qualitative and quantitative differences between taste buds of the rat and mouse

    Directory of Open Access Journals (Sweden)

    Ma Huazhi

    2007-01-01

    Full Text Available Abstract Background Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCβ2, α-gustducin, serotonin (5-HT, PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. We also determined the numbers of taste cells in the taste buds as well as taste bud volume. Results There are significant differences (p 3 is smaller than a rat taste bud (64,200 μm3. The numerical density of taste cells in mouse circumvallate taste buds (2.1 cells/1000 μm3 is significantly higher than that in the rat (1.2 cells/1000 μm3. Conclusion These results suggest that rats and mice differ significantly in the percentages of taste cells expressing signaling molecules. We speculate that these observed dissimilarities may reflect differences in their gustatory processing.

  4. Clareの'Shadows of Taste'をめぐって

    OpenAIRE

    鈴木, 蓮一; スズキ, レンイチ; Suzuki, Renichi; Suzuki, Ren-ichi

    1987-01-01

    According to Tim Chilcott, Clare's poetry can be divided into two types: one is poetry of self-suppression, the other is that of self-expression. I've tried to grasp the meanings of Clare's "taste". concentrating on 'Shadows of Taste'. 'The Pleasures of Spring'. 'To the Rural Muse', and other poems. I've also tried to research into his conceptions of "genius" and "fancy", for they are intimately related with "taste". "Taste" as the instinct to "choose for joy" is inherited by all living thing...

  5. Taste disorders after tonsillectomy: a long-term follow-up.

    Science.gov (United States)

    Heiser, Clemens; Landis, Basile N; Giger, Roland; Cao Van, Helene; Guinand, Nils; Hörmann, Karl; Stuck, Boris A

    2012-06-01

    In a former study, taste disturbances after tonsillectomy seemed to be more frequent than expected. Eight percent of patients reported subjective taste disorders 6 months after tonsillectomy. Fifteen patients from the initial trial, who reported taste disorders after tonsillectomy, were contacted again for this long-term follow-up. A telephone interview using the same questionnaire addressing the current self-estimate of taste function was performed. At 32 ± 10 months following surgery, two (0.9%) patients still reported suffering from taste disturbance. This long-term follow-up study shows that dysgeusia following tonsillectomy occurs in approximately 1% of patients. These data should be considered when patients are informed about complications after tonsillectomy. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  6. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    Science.gov (United States)

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice. © FASEB.

  7. Regulation of bitter taste responses by tumor necrosis factor.

    Science.gov (United States)

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of radiotherapy on the sense of taste

    Energy Technology Data Exchange (ETDEWEB)

    Umeyama, Masayoshi; Suzaki, Harumi [Showa Univ., Tokyo (Japan). School of Medicine

    2001-07-01

    The adverse effects of radiotherapy for cancer in the head and neck region include impairment of the sense of taste and smell and dry mouth. The present study was conducted to examine the effects of such radiotherapy on the sense of taste, in view of its influence on the quality of life of patients with malignant tumors of the head and neck following treatment. In 18 patients with malignant tumors of the head and neck (mean age, 59.9 years) the sense of taste was tested using the filter-paper disc method, serially before and after radiotherapy with {sup 60}Co {gamma} rays, in order to analyze the changes in gustatory threshold after radiotherapy. The patients were also observed for subjective symptoms, including dry mouth and impairment of the sense of taste, and changes in the lingual surface over the course of radiotherapy. No increase in the gustatory threshold or subjective impairment of the sense of taste was noted after radiotherapy when the field of irradiation did not include the tongue (4 cases of laryngeal cancer). When the field of irradiation included a part of the tongue (3 cases of maxillary cancer, 3 cases of hypopharyngeal cancer, 1 case of epipharyngeal cancer) or the entire tongue (2 cases of lingual cancer, 2 cases of cancer of the floor of the mouth, 3 cases of mesopharyngeal cancer), dry mouth was noted after irradiation at 7.2-39.6 Gy, and the gustatory threshold increased after irradiation at 12-40 Gy. Subjective impairment of the sense of taste was also reported after irradiation at 10-25.2 Gy, which was restored to normal within 2-3 months after the end of radiotherapy. In relation to the quality of taste, the gustatory threshold for sweet tastes increased the slowest, and was restored rapidly. In contrast, the gustatory threshold for sour tastes increased most rapidly, and was restored slowly. The relationship between the serum zinc level and the increase in gustatory threshold was unclear. There was a tendency for the lingual surface to

  9. Effects of radiotherapy on the sense of taste

    International Nuclear Information System (INIS)

    Umeyama, Masayoshi; Suzaki, Harumi

    2001-01-01

    The adverse effects of radiotherapy for cancer in the head and neck region include impairment of the sense of taste and smell and dry mouth. The present study was conducted to examine the effects of such radiotherapy on the sense of taste, in view of its influence on the quality of life of patients with malignant tumors of the head and neck following treatment. In 18 patients with malignant tumors of the head and neck (mean age, 59.9 years) the sense of taste was tested using the filter-paper disc method, serially before and after radiotherapy with 60 Co γ rays, in order to analyze the changes in gustatory threshold after radiotherapy. The patients were also observed for subjective symptoms, including dry mouth and impairment of the sense of taste, and changes in the lingual surface over the course of radiotherapy. No increase in the gustatory threshold or subjective impairment of the sense of taste was noted after radiotherapy when the field of irradiation did not include the tongue (4 cases of laryngeal cancer). When the field of irradiation included a part of the tongue (3 cases of maxillary cancer, 3 cases of hypopharyngeal cancer, 1 case of epipharyngeal cancer) or the entire tongue (2 cases of lingual cancer, 2 cases of cancer of the floor of the mouth, 3 cases of mesopharyngeal cancer), dry mouth was noted after irradiation at 7.2-39.6 Gy, and the gustatory threshold increased after irradiation at 12-40 Gy. Subjective impairment of the sense of taste was also reported after irradiation at 10-25.2 Gy, which was restored to normal within 2-3 months after the end of radiotherapy. In relation to the quality of taste, the gustatory threshold for sweet tastes increased the slowest, and was restored rapidly. In contrast, the gustatory threshold for sour tastes increased most rapidly, and was restored slowly. The relationship between the serum zinc level and the increase in gustatory threshold was unclear. There was a tendency for the lingual surface to become dry

  10. Effect of ionizing radiation on the taste function of patients submitted to head and neck radiotherapy

    International Nuclear Information System (INIS)

    Silva, Amaro Ilidio Vespasiano; Galante, Celio

    2011-01-01

    Objective: to evaluate the effects of ionizing radiation on the taste function in patients submitted to radiotherapy in the head and neck region. Materials and methods: twenty patients diagnosed with head and neck tumors and undergoing treatment in the Division of Radiotherapy at Santa Casa de Misericordia de Belo Horizonte, MG, Brazil, were selected. For their taste function testing, four solutions were manipulated with salt (NaCl), sugar (sucrose), citric acid (for acidity), and urea (for bitterness), at three different (low, medium and high) concentrations. Weekly tests were performed during the first three weeks of radiotherapy, with random administration of the solutions (three drops each) respecting the order of their concentration levels (low, medium and high). After the application of each solution, the patient reported which flavor he/she tasted. Results: a statistically significant difference was observed in the loss of taste function as the results in the 1st and 4th weeks of treatment were compared, with salty solution at the three concentration levels, with the sweet solution at low and medium concentrations, and with the sour and bitter solutions, only at low concentration. Conclusion: ionizing radiation alters the taste function of patients submitted to head and neck radiotherapy. (author)

  11. Effect of ionizing radiation on the taste function of patients submitted to head and neck radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amaro Ilidio Vespasiano [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Galante, Celio [Santa Casa de Misericordia de Belo Horizonte, MG (Brazil). Div. de Radioterapia; Manzi, Flavio Ricardo, E-mail: manzi@pucminas.b [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte, MG (Brazil)

    2011-09-15

    Objective: to evaluate the effects of ionizing radiation on the taste function in patients submitted to radiotherapy in the head and neck region. Materials and methods: twenty patients diagnosed with head and neck tumors and undergoing treatment in the Division of Radiotherapy at Santa Casa de Misericordia de Belo Horizonte, MG, Brazil, were selected. For their taste function testing, four solutions were manipulated with salt (NaCl), sugar (sucrose), citric acid (for acidity), and urea (for bitterness), at three different (low, medium and high) concentrations. Weekly tests were performed during the first three weeks of radiotherapy, with random administration of the solutions (three drops each) respecting the order of their concentration levels (low, medium and high). After the application of each solution, the patient reported which flavor he/she tasted. Results: a statistically significant difference was observed in the loss of taste function as the results in the 1st and 4th weeks of treatment were compared, with salty solution at the three concentration levels, with the sweet solution at low and medium concentrations, and with the sour and bitter solutions, only at low concentration. Conclusion: ionizing radiation alters the taste function of patients submitted to head and neck radiotherapy. (author)

  12. Immunocytochemical analysis of syntaxin-1 in rat circumvallate taste buds.

    Science.gov (United States)

    Yang, Ruibiao; Ma, Huazhi; Thomas, Stacey M; Kinnamon, John C

    2007-06-20

    Mammalian buds contain a variety of morphological taste cell types, but the type III taste cell is the only cell type that has synapses onto nerve processes. We hypothesize that taste cell synapses utilize the SNARE protein machinery syntaxin, SNAP-25, and synaptobrevin, as is used by synapses in the central nervous system (CNS) for Ca2+-dependent exocytosis. Previous studies have shown that taste cells with synapses display SNAP-25- and synaptobrevin-2-like immunoreactivity (LIR) (Yang et al. [2000a] J Comp Neurol 424:205-215, [2004] J Comp Neurol 471:59-71). In the present study we investigated the presynaptic membrane protein, syntaxin-1, in circumvallate taste buds of the rat. Our results indicate that diffuse cytoplasmic and punctate syntaxin-1-LIR are present in different subsets of taste cells. Diffuse, cytoplasmic syntaxin-1-LIR is present in type III cells while punctate syntaxin-1-LIR is present in type II cells. The punctate syntaxin-1-LIR is believed to be associated with Golgi bodies. All of the synapses associated with syntaxin-1-LIR taste cells are from type III cells onto nerve processes. These results support the proposition that taste cell synapses use classical SNARE machinery such as syntaxin-1 for neurotransmitter release in rat circumvallate taste buds. (c) 2007 Wiley-Liss, Inc.

  13. GABA, its receptors, and GABAergic inhibition in mouse taste buds.

    Science.gov (United States)

    Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene; Chaudhari, Nirupa; Roper, Stephen D

    2011-04-13

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.

  14. Taste and smell changes in cancer patients

    NARCIS (Netherlands)

    IJpma, Irene

    2017-01-01

    Patients with cancer often experience changes in taste and smell perception during chemotherapy. The aim of this dissertation was to investigate taste and smell changes and short- and long-term effects of chemotherapy in a homogeneous population of testicular cancer patients treated with

  15. Expression of sulfonylurea receptors in rat taste buds.

    Science.gov (United States)

    Liu, Dian-Xin; Liu, Xiao-Min; Zhou, Li-Hong; Feng, Xiao-Hong; Zhang, Xiao-Juan

    2011-07-01

    To test the possibility that a fast-onset promoting agent repaglinide may initiate prandial insulin secretion through the mechanism of cephalic-phase insulin release, we explored the expression and distribution character of sulfonylurea receptors in rat taste buds. Twenty male Wistar rats aged 10 weeks old were killed after general anesthesia. The circumvallate papillae, fungiform papillae and pancreas tissues were separately collected. Immunohistochemical staining was used to detect the expression and distribution of sulfonylurea receptor 1 (SUR1) or sulfonylurea receptor 2 (SUR2) in rat taste buds. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the expression of SUR1 or SUR2 mRNA. The pancreatic tissues from the same rat were used as positive control. This is the first study to report that SUR1 is uniquely expressed in the taste buds of fungiform papillae of each rat tongue, while the expression of SUR1 or SUR2 was not detected in the taste buds of circumvallate papillae. SUR1 is selectively expressed in rat taste buds, and its distribution pattern may be functionally relevant, suggesting that the rapid insulin secretion-promoting effect of repaglinide may be exerted through the cephalic-phase secretion pathway mediated by taste buds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  16. New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet.

    Science.gov (United States)

    Karunanayaka, Kasun; Johari, Nurafiqah; Hariri, Surina; Camelia, Hanis; Bielawski, Kevin Stanley; Cheok, Adrian David

    2018-04-01

    Today's virtual reality (VR) applications such as gaming, multisensory entertainment, remote dining, and online shopping are mainly based on audio, visual, and touch interactions between humans and virtual worlds. Integrating the sense of taste into VR is difficult since humans are dependent on chemical-based taste delivery systems. This paper presents the 'Thermal Taste Machine', a new digital taste actuation technology that can effectively produce and modify thermal taste sensations on the tongue. It modifies the temperature of the surface of the tongue within a short period of time (from 25°C to 40 °C while heating, and from 25°C to 10 °C while cooling). We tested this device on human subjects and described the experience of thermal taste using 20 known (taste and non-taste) sensations. Our results suggested that rapidly heating the tongue produces sweetness, fatty/oiliness, electric taste, warmness, and reduces the sensibility for metallic taste. Similarly, cooling the tongue produced mint taste, pleasantness, and coldness. By conducting another user study on the perceived sweetness of sucrose solutions after the thermal stimulation, we found that heating the tongue significantly enhances the intensity of sweetness for both thermal tasters and non-thermal tasters. Also, we found that faster temperature rises on the tongue produce more intense sweet sensations for thermal tasters. This technology will be useful in two ways: First, it can produce taste sensations without using chemicals for the individuals who are sensitive to thermal taste. Second, the temperature rise of the device can be used as a way to enhance the intensity of sweetness. We believe that this technology can be used to digitally produce and enhance taste sensations in future virtual reality applications. The key novelties of this paper are as follows: 1. Development of a thermal taste actuation technology for stimulating the human taste receptors, 2. Characterization of the thermal taste

  17. Is Sweet Taste Perception Associated with Sweet Food Liking and Intake?

    Science.gov (United States)

    Jayasinghe, Shakeela N; Kruger, Rozanne; Walsh, Daniel C I; Cao, Guojiao; Rivers, Stacey; Richter, Marilize; Breier, Bernhard H

    2017-07-14

    A range of psychophysical taste measurements are used to characterize an individual's sweet taste perception and to assess links between taste perception and dietary intake. The aims of this study were to investigate the relationship between four different psychophysical measurements of sweet taste perception, and to explore which measures of sweet taste perception relate to sweet food intake. Forty-four women aged 20-40 years were recruited for the study. Four measures of sweet taste perception (detection and recognition thresholds, and sweet taste intensity and hedonic liking of suprathreshold concentrations) were assessed using glucose as the tastant. Dietary measurements included a four-day weighed food record, a sweet food-food frequency questionnaire and a sweet beverage liking questionnaire. Glucose detection and recognition thresholds showed no correlation with suprathreshold taste measurements or any dietary intake measurement. Importantly, sweet taste intensity correlated negatively with total energy and carbohydrate (starch, total sugar, fructose, glucose) intakes, frequency of sweet food intake and sweet beverage liking. Furthermore, sweet hedonic liking correlated positively with total energy and carbohydrate (total sugar, fructose, glucose) intakes. The present study shows a clear link between sweet taste intensity and hedonic liking with sweet food liking, and total energy, carbohydrate and sugar intake.

  18. Evaluation of Taste Properties of Commercially Available Salts

    OpenAIRE

    ISHIKAWA, Kyoko; SUGIMOTO, Maho; KUMAGAI, Masanori; MATSUNAGA, Ryuji

    2006-01-01

    This study examined commercially available salts'taste properties. The salts were used in preparation of four dishes: asazuke of cucumber, asazuke of Chinese cabbage, clear soup, and green soybean rice. The respective tastes of the salts in those prepared foods differed from those of the salts alone. We evaluated the parameters: saltiness, mildness, unpleasantness, and palatability. Differences of the salt samples affected the perception of saltiness. Results of taste sensor analyses showed t...

  19. Taste disturbance following tonsillectomy--a prospective study.

    Science.gov (United States)

    Heiser, Clemens; Landis, Basile N; Giger, Roland; Cao Van, Helene; Guinand, Nils; Hörmann, Karl; Stuck, Boris A

    2010-10-01

    Persistent taste disturbance is a rare complication after tonsillectomy and mainly documented by case reports or a few retrospective and prospective trials with a limited number of patients. None could clarify frequency, time course, or prognosis of long-lasting dysgeusia after tonsillectomy. The aim of the study was to provide a symptom-based follow-up after tonsillectomy to assess postoperative taste disorders. Prospective clinical trial. From December 2007 to June 2009 adult patients undergoing tonsillectomy were asked to take part in the trial. Two hundred twenty-three patients (119 female, 104 male; mean age, 33 ± 13 years) were included. The day prior to surgery, and 2 weeks and 6 months after tonsillectomy a standardized questionnaire was completed by patients. The questionnaire focused on taste function, taste disorders, pain, foreign body sensation, and bleeding episodes after tonsillectomy. One hundred eighty-eight (2 weeks) and 181 (6 months) patients returned the questionnaires. Thirty-two percent (n = 60) of patients reported taste disorders after tonsillectomy 2 weeks postoperatively and 15 patients (8%) at 6-month follow-up. Metallic and bitter parageusia were most frequently reported. The mean ratings of gustatory function were significantly lower 2 weeks after surgery (P < .001) and reached preoperative values 6 months after surgery. Almost 30% of patients reported postoperative bleeding, 10% long-lasting postoperative pain, and 20% foreign body sensation. Long-lasting taste disturbance (metallic and bitter parageusia) after tonsillectomy is more frequent than previously reported. Long-lasting pain and foreign body sensation seem to be common symptoms. With regard to these results, a thorough preoperative explanation is mandatory.

  20. Organic electrode materials for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yanliang; Tao, Zhanliang; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Chemistry College, Nankai University, Tianjin (China)

    2012-07-15

    Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    OpenAIRE

    Gutiérrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition memory using attenuation of neophobia as an index. In addition, learned taste aversion in both short- and long-term memory tests was exclusively impa...

  2. Taste-active compounds in a traditional Italian food: 'lampascioni'.

    Science.gov (United States)

    Borgonovo, Gigliola; Caimi, Sara; Morini, Gabriella; Scaglioni, Leonardo; Bassoli, Angela

    2008-06-01

    Nature is a rich source of taste-active compounds, in particular of plant origin, many of which have unusual tastes. Many of these are found in traditional food, where spontaneous plants are used as ingredients. Some taste-active compounds were identified in the bulbs of Muscari comosum, a spontaneous plant belonging to the family of the Liliaceae, very common in the Mediterranean area, and used in traditional gastronomy (called 'lampascioni' in South Italy). The bulbs were extracted with a series of solvents of different polarity. The different fractions were submitted to a preliminary sensory evaluation, and the most interesting ones, characterized by a strong bitter taste and some chemestetic properties, were submitted to further purification and structural analysis. From the ethereal extract, several 3-benzyl-4-chromanones and one stilbene derivative were isolated. Pure compounds were examined for their taste activity by means of sensory evaluation, and proved to be responsible for the characteristic taste of this food. Some of these compounds have been synthesized de novo to confirm their structure.

  3. Modulation of taste responsiveness by the satiation hormone peptide YY

    Science.gov (United States)

    La Sala, Michael S.; Hurtado, Maria D.; Brown, Alicia R.; Bohórquez, Diego V.; Liddle, Rodger A.; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D.

    2013-01-01

    It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.—La Sala, M. S., Hurtado, M. D., Brown, A. R., Bohórquez, D. V., Liddle, R. A., Herzog, H., Zolotukhin, S., Dotson, C. D. Modulation of taste responsiveness by the satiation hormone peptide YY. PMID:24043261

  4. Evolution of the composition of a selected bitter Camembert cheese during ripening: release and migration of taste-active compounds.

    Science.gov (United States)

    Engel, E; Tournier, C; Salles, C; Le Quéré, J L

    2001-06-01

    The aim of this study was to add to the understanding of changes in taste that occur during the ripening of a bitter Camembert cheese by the evolution of its composition. Physicochemical analyses were performed on rind, under-rind, and center portions of a Camembert cheese selected for its intense bitterness. At each of the six steps of ripening studied organic acids, sugars, total nitrogen, soluble nitrogen, phosphotungstic acid soluble nitrogen, non-protein nitrogen, Na, K, Ca, Mg, Pi, Cl, and biogenic amines were quantified in each portion. Changes in cheese composition seemed to mainly result from the development of Penicillium camemberti on the cheese outer layer. Migration phenomena and the release of potentially taste-active compounds allowed for the evolution of saltiness, sourness, and bitterness throughout ripening to be better understood. Apart from taste-active compounds, the impact of the cheese matrix on its taste development is discussed.

  5. Leptin's effect on taste bud calcium responses and transmitter secretion.

    Science.gov (United States)

    Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D

    2015-05-01

    Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Detection of bitterness-Suppression using a taste sensor

    International Nuclear Information System (INIS)

    Iiyama, Satoru; Ezaki, Shu; Toko, Kiyoshi

    2008-01-01

    We tried to detect the suppression of bitterness with a taste sensor. Quinine hydrochloride, which has a positive charge usually cause large potential change of negatively, charged membranes of the sensor. The potential change was decreased by sour substances such as acetic acid. The decrease of the potential change of response implies a decrease in the intensity of bitterness. Contrary to this, response of the sensor to sodium picrate, which has a negative charge, was diminished by sodium salts of organic acids. As the hydrophobicity of organic acids increased, the suppression of bitterness also increased. The present study is expected to provide a new quantitative technique to measure the strength of bitterness of foods and drugs in place of sensory evaluation. (author)

  7. Inflammation Activates the Interferon Signaling Pathways in Taste Bud Cells

    OpenAIRE

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-01-01

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-γ rece...

  8. Corticosterone and propranolol's role on taste recognition memory.

    Science.gov (United States)

    Ruetti, E; Justel, N; Mustaca, A; Boccia, M

    2014-12-01

    Taste recognition is a robust procedure to study learning and memory processes, as well as the different stages involved in them, i.e. encoding, storage and recall. Considerable evidence indicates that adrenal hormones and the noradrenergic system play an important role in aversive and appetitive memory formation in rats and humans. The present experiments were designed to characterize the effects of immediate post training corticosterone (Experiment 1) and propranolol administration (Experiment 2 and 3) on taste recognition memory. Administration of a high dose of corticosterone (5mg/kg, sc) impairs consolidation of taste memory, but the low and moderate doses (1 and 3mg/kg, sc) didn't affect it. On the other hand, immediate post-training administration of propranolol (1 and 2mg/kg, ip) impaired taste recognition memory. These effects were time-dependent since no effects were seen when drug administration was delayed 3h after training. These findings support the importance of stress hormones and noradrenergic system on the modulation of taste memory consolidation. Copyright © 2014. Published by Elsevier Inc.

  9. Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1

    Directory of Open Access Journals (Sweden)

    Perna Marla K

    2011-04-01

    and tissue disruption seen in certain developing p27Kip1-null sensory organs, and may reflect a compensatory capability inherent in the regenerative taste system.

  10. The insular taste cortex contributes to odor quality coding

    Directory of Open Access Journals (Sweden)

    Maria G Veldhuizen

    2010-07-01

    Full Text Available Despite distinct peripheral and central pathways, stimulation of both the olfactory and the gustatory systems may give rise to the sensation of sweetness. Whether there is a common central mechanism producing sweet quality sensations or two discrete mechanisms associated independently with gustatory and olfactory stimuli is currently unknown. Here we used fMRI to determine whether odor sweetness is represented in the piriform olfactory cortex, which is thought to code odor quality, or in the insular taste cortex, which is thought to code taste quality. Fifteen participants sampled two concentrations of a pure sweet taste (sucrose, two sweet food odors (chocolate and strawberry, and two sweet floral odors (lilac and rose. Replicating prior work we found that olfactory stimulation activated the piriform, orbitofrontal and insular cortices. Of these regions, only the insula also responded to sweet taste. More importantly, the magnitude of the response to the food odors, but not to the non-food odors, in this region of insula was positively correlated with odor sweetness rating. These findings demonstrate that insular taste cortex contributes to odor quality coding by representing the taste-like aspects of food odors. Since the effect was specific to the food odors, and only food odors are experienced with taste, we suggest this common central mechanism develops as a function of experiencing flavors.

  11. Sweet and sour taste preferences of children

    NARCIS (Netherlands)

    Liem, D.G.

    2004-01-01

    In the industrialized countries children have many foods to choose from, both healthy and unhealthy products, these choices mainly depend on children's taste preferences. The present thesis focused on preferences for sweet and sour taste of young children (4- to 12-years of age) living in the US and

  12. Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium.

    Science.gov (United States)

    Rashwan, Ahmed; Konishi, Hiroyuki; El-Sharaby, Ashraf; Kiyama, Hiroshi

    2016-01-01

    We investigated the relationship between mouse taste bud development and innervation of the soft palate. We employed scanning electron microscopy and immunohistochemistry using antibodies against protein gene product 9.5 and peripherin to detect sensory nerves, and cytokeratin 8 and α-gustducin to stain palatal taste buds. At E14, nerve fibers were observed along the medial border of the palatal shelves that tracked toward the epithelium. At E15.5, primordial stages of taste buds in the basal lamina of the soft palate first appeared. At E16, the taste buds became large spherical masses of columnar cells scattered in the soft palate basal lamina. At E17, the morphology and also the location of taste buds changed. At E18-19, some taste buds acquired a more elongated shape with a short neck, extending a variable distance from the soft palate basal lamina toward the surface epithelium. At E18, mature taste buds with taste pores and perigemmal nerve fibers were observed on the surface epithelium of the soft palate. The expression of α-gustducin was demonstrated at postnatal day 1 and the number of pored taste buds increased with age and they became pear-shaped at 8 weeks. The percent of pored fungiform-like papillae at birth was 58.3% of the whole palate; this increased to 83.8% at postnatal day 8 and reached a maximum of 95.7% at 12 weeks. The innervation of the soft palate was classified into three types of plexuses in relation to taste buds: basal nerve plexus, intragemmal and perigemmal nerve fibers. This study reveals that the nerve fibers preceded the development of taste buds in the palate of mice, and therefore the nerve fibers have roles in the initial induction of taste buds in the soft palate. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The effect of imiquimod on taste bud calcium transients and transmitter secretion.

    Science.gov (United States)

    Huang, Anthony Y; Wu, Sandy Y

    2016-11-01

    Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell-cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste-evoked ATP secretion from mouse taste buds. Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca 2+ concentrations. These Ca 2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca 2 + -ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca 2 + mobilization elicited by imiquimod was dependent on release from internal Ca 2 + stores. Moreover, combining studies of Ca 2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5-HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste-evoked ATP secretion. Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5-HT signalling. © 2016 The British Pharmacological Society.

  14. Siwonhan-mat: The third taste of Korean foods

    OpenAIRE

    Soon Ah Kang; Hyun Ji Oh; Dai Ja Jang; Min Jung Kim; Dae Young Kwon

    2016-01-01

    Background: Smell and taste are frequently referenced senses when describing flavors of food. In addition to these two senses, Koreans have regarded that there is another sense of taste experienced through the body. This third sense, siwonhan-mat (시원한 맛), describes the sensation of the body including the tongue, stomach, and intestines when eating. While smell and taste play an important role in the enjoyment of food, it is also crucial to evaluate what your body can experience from eating. I...

  15. Further evidence for conditioned taste aversion induced by forced swimming.

    Science.gov (United States)

    Masaki, Takahisa; Nakajima, Sadahiko

    2005-01-31

    A series of experiments with rats reported that aversion to a taste solution can be established by forced swimming in a water pool. Experiment 1 demonstrated that correlation of taste and swimming is a critical factor for this phenomenon, indicating associative (i.e., Pavlovian) nature of this learning. Experiment 2 showed that this learning obeys the Pavlovian law of strength, by displaying a positive relationship between the duration of water immersion in training and the taste aversion observed in subsequent testing. Experiment 3 revealed that swimming rather than being wet is the critical agent, because a water shower did not endow rats with taste aversion. Experiment 4 found that taste aversion was a positive function of water level of the pools in training (0, 12 or 32 cm). These results, taken together, suggest that energy expenditure caused by physical exercise might be involved in the development of taste aversion.

  16. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III taste bud cells (∼50% respond to 100 µM glutamate, NMDA, or kainic acid (KA with an increase in intracellular Ca(2+. In contrast, Receptor (Type II taste cells rarely (4% responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  17. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Science.gov (United States)

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  18. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    Science.gov (United States)

    Takeda, Norifumi; Jain, Rajan; Li, Deqiang; Li, Li; Lu, Min Min; Epstein, Jonathan A

    2013-01-01

    Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  19. Physiological responses to taste signals of functional food components.

    Science.gov (United States)

    Narukawa, Masataka

    2018-02-01

    The functions of food have three categories: nutrition, palatability, and bioregulation. As the onset of lifestyle-related diseases has increased, many people have shown interest in functional foods that are beneficial to bioregulation. We believe that functional foods should be highly palatable for increased acceptance from consumers. In order to design functional foods with a high palatability, we have investigated about the palatability, especially in relation to the taste of food. In this review, we discuss (1) the identification of taste receptors that respond to functional food components; (2) an analysis of the peripheral taste transduction system; and (3) the investigation of the relationship between physiological functions and taste signals.

  20. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    Science.gov (United States)

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  1. Perception of basic tastes and threshold sensitivity during testing of selected judges

    Directory of Open Access Journals (Sweden)

    Peter Zajác

    Full Text Available Normal 0 false false false SK JA X-NONE The sense of taste is one of the most important human senses. Alteration in taste perception can greately interfere to our lives, because it influences our dietary habits and consequently general human health. Many physiological and external factors can cause the loss of taste perception. These factors include for example certain diseases, the side effect of the use of certain medicaments, head trauma, gender, dietary habbits, smoking, role of saliva, age, stress and many more. In this paper we are discussing perception of basic tastes and treshold sensitivity during testing of selected groupe of 500 sensory judges. A resolution taste test and sensitivity treshold test were performed using basic tastes (sour, bitter, salty, sweet, umami, astringent, metallic. We have found that the perception of basic tastes decreese with human age. Smoking leads to significant errors in the determination of basic tastes. Different mistakes occures in different age categories. This study suggests further researches, investigating various factors influencing taste perception.  doi:10.5219/259

  2. 5-HT3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste?

    Science.gov (United States)

    Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E

    2017-07-01

    Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT 3 receptors on the gustatory nerves. We show here, using 5-HT 3A GFP mice, that 5-HT 3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT 3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT 3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT 3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.

  3. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    Directory of Open Access Journals (Sweden)

    Norifumi Takeda

    Full Text Available Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5 identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  4. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid.

    Science.gov (United States)

    Aihara, Eitaro; Mahe, Maxime M; Schumacher, Michael A; Matthis, Andrea L; Feng, Rui; Ren, Wenwen; Noah, Taeko K; Matsu-ura, Toru; Moore, Sean R; Hong, Christian I; Zavros, Yana; Herness, Scott; Shroyer, Noah F; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A; Montrose, Marshall H

    2015-11-24

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5(+)) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5(+) cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration.

  5. BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section.

    Science.gov (United States)

    Meng, Lingbin; Huang, Tao; Sun, Chengsan; Hill, David L; Krimm, Robin

    2017-07-01

    Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Isolation of chicken taste buds for real-time Ca2+ imaging.

    Science.gov (United States)

    Kudo, Ken-ichi; Kawabata, Fuminori; Nomura, Toumi; Aridome, Ayumi; Nishimura, Shotaro; Tabata, Shoji

    2014-10-01

    We isolated chicken taste buds and used a real-time Ca2+ imaging technique to investigate the functions of the taste cells. With RT-PCR, we found that isolated chicken taste bud-like cell subsets express chicken gustducin messenger RNA. Immunocytochemical techniques revealed that the cell subsets were also immunopositive for chicken gustducin. These results provided strong evidence that the isolated cell subsets contain chicken taste buds. The isolated cell subsets were spindle-shaped and approximately 61-75 μm wide and 88-98 μm long, and these characteristics are similar to those of sectional chicken taste buds. Using Ca2+ imaging, we observed the buds' response to 2 mmol/L quinine hydrochloride (a bitter substance) and their response to a mixture of 25 mmol/L L-glutamic acid monopotassium salt monohydrate and 1 mmol/L inosine 5'-monophosphate disodium salt, umami substances. The present study is the first morphological demonstration of isolated chicken taste buds, and our results indicate that the isolated taste buds were intact and functional approaches for examining the taste senses of the chicken using Ca2+ imaging can be informative. © 2014 Japanese Society of Animal Science.

  7. Noncovalent Interactions in Organic Electronic Materials

    KAUST Repository

    Ravva, Mahesh Kumar

    2017-06-29

    In this chapter, we provide an overview of how noncovalent interactions, determined by the chemical structure of π-conjugated molecules and polymers, govern essential aspects of the electronic, optical, and mechanical characteristics of organic semiconductors. We begin by describing general aspects of materials design, including the wide variety of chemistries exploited to control the electronic and optical properties of these materials. We then discuss explicit examples of how the study of noncovalent interactions can provide deeper chemical insights that can improve the design of new generations of organic electronic materials.

  8. Changes in taste preference after colorectal surgery: A longitudinal study.

    Science.gov (United States)

    Welchman, Sophie; Hiotis, Perryhan; Pengelly, Steven; Hughes, Georgina; Halford, Jason; Christiansen, Paul; Lewis, Stephen

    2015-10-01

    Nutrition is a key component of surgical enhanced recovery programmes. However, alterations in food preferences are often reported as reasons for patients not eating in the early postoperative period. We hypothesised that taste preferences are altered in the early postoperative period and this dysgeusia affects patients' food choices during this critical time. This is a longitudinal study looking at taste preferences of patients recovering from surgery. Patients undergoing colonic resections were recruited. Using visual analogue scales participants completed a questionnaire, taste tests and preference scoring of food images for the 6 groups of taste (bitter, salty, savoury, sour, spicy and sweet) preoperatively and on postoperative days 1-3. Patients were also offered snacks postoperatively, which represented foods from the six groups and consumption was measured. Differences from baseline were assessed using the Friedman's and Wilcoxon tests. 31 patients were studied. In the immediate postoperative period participants reported deterioration in their sense of taste (p ≤ 0.001), increased nausea (p palatability for salty taste increased (p = 0.001) following surgery. The highest rated images were for savoury food with only the ratings for salty food increasing after surgery (p foods in the postoperative period. Bitter, sour and spicy foods were the least frequently consumed. This is the first study to investigate postsurgical patients' food preferences. A consistent change in all the individual tastes with the exception of salty in the postoperative period was observed. The most desirable tastes were for savoury and sweet, reflecting patients' preoperative preferences. An improved understanding of taste may improve the resumption of eating after colonic surgery. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Investigation on pyrolysis of some organic raw materials

    Directory of Open Access Journals (Sweden)

    Purevsuren B

    2017-02-01

    Full Text Available We have been working on pyrolysis of some organic raw materials including different rank coals, oil shale, wood waste, animal bone, cedar shell, polypropylene waste, milk casein and characterization of obtained hard residue, tar and pyrolytic water and gas after pyrolysis. The technical characteristics of these organic raw materials have been determined and the thermal stability characteristics such as thermal stability indices (T5% and T25% determined by using thermogravimetric analysis. The pyrolysis experiments were performed at different heating temperatures and the yields of hard residue, tar, pyrolysis water and gaseous products were determined and discussed. The main technical characteristics of hard residue of organic raw materials after pyrolysis have been determined and the adsorption ability of pyrolysis hard residue and its activated carbon of organic raw materials also determined. The pyrolysis tars of organic raw materials were distilled in air condition and determined the yields of obtained light, middle and heavy fractions and bitumen like residue with different boiling temperature. This is the first time to investigate the curing ability of pyrolysis tars of organic raw materials for epoxy resin and the results of these experiments showed that only tar of milk casein has the highest (95.0%, tar of animal bone has certain (18.70% and tars of all other organic raw materials have no curing ability for epoxy resin.

  10. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

    Science.gov (United States)

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina

    2008-12-01

    Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.

  11. Wine Expertise Predicts Taste Phenotype.

    Science.gov (United States)

    Hayes, John E; Pickering, Gary J

    2012-03-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance - with appropriate caveats about populations tested, outcomes measured and psychophysical methods used - an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli.

  12. Network model of chemical-sensing system inspired by mouse taste buds.

    Science.gov (United States)

    Tateno, Katsumi; Igarashi, Jun; Ohtubo, Yoshitaka; Nakada, Kazuki; Miki, Tsutomu; Yoshii, Kiyonori

    2011-07-01

    Taste buds endure extreme changes in temperature, pH, osmolarity, so on. Even though taste bud cells are replaced in a short span, they contribute to consistent taste reception. Each taste bud consists of about 50 cells whose networks are assumed to process taste information, at least preliminarily. In this article, we describe a neural network model inspired by the taste bud cells of mice. It consists of two layers. In the first layer, the chemical stimulus is transduced into an irregular spike train. The synchronization of the output impulses is induced by the irregular spike train at the second layer. These results show that the intensity of the chemical stimulus is encoded as the degree of the synchronization of output impulses. The present algorithms for signal processing result in a robust chemical-sensing system.

  13. Transformation of Bread Industry Structure by Consumer Tastes and Innovation

    OpenAIRE

    丸山, 泰広; 豊, 智行; 福田, 晋; 甲斐, 諭

    2003-01-01

    Bread industry is classfied two types of business. One type is Bread manufacturer which makes bread and sells them to retailer and supermarket. Another type is Bread self-making bakery which makes bread by themselves and directly sells them to consumer. Bread consumer tastes are freshness and diversification. Bread manufacturar copes with diversification by naking many items. Bread self-making bakery copes with freshness by directly providing consumer. But by a innovation a new group is organ...

  14. Amorphous electron-accepting materials for organic optoelectronics

    NARCIS (Netherlands)

    Ganesan, P.

    2007-01-01

    The importance of organic materials for use in electronic devices such as OLEDs, OFETs and photovoltaic cells has increased significantly over the past decade. Organic materials have been attractive candidates for such electronic devices because of their compatibility with high-throughput,

  15. A proteome-based design of bitter peptide digestion regime to attenuate cod-bone soup bitterness: comparison with a rainbow trout extract-mediated bitter taste masking approach

    OpenAIRE

    Jin, Feng; Yan, Zhengyu; Zhang, Zhizhou; Jiang, Jie; Han, Ying; Guo, Changlu

    2018-01-01

    BACKGROUND: The fresh bones (with some meat on them; frequently discarded as a large quantity of industry garbage) of marine fish such as cod and salmon are good materials for manufacture of food additives (taste adjusters). However, such fish-bone originated additives often have apparent bitter taste and need additional debittering regime. RESULTS: In this study, 46 known bitter peptides in the cod proteome were targeted for specific protease digestion to eliminate bitter taste from the cod ...

  16. Dimensions of taste qualifying didactic reflections on home economics education

    DEFF Research Database (Denmark)

    Wistoft, Karen; Qvortrup, Lars

    Aim: Traditionally and worldwide home economics education has been concerned with taste and flavorings based training associated with students cooking in the school kitchen. In contrast new educational research on food knowledge in the Danish public school shows that taste is used as a didactic...... review on children, learning, food and taste followed by analyses in a value reflective pedagogy perspective as well as quantitative and qualitative research in home economic education. This has been combined with systems theory developed by the German sociologist Niklas Luhmann providing concepts...... element and "overtakes" more traditional didactic elements like motivation and active participation. The purpose of this proposal is to present a systematic model for qualifying reflections on taste in home economics and food education. The objective is to identify four dimensions of taste that can...

  17. Tasting the World

    DEFF Research Database (Denmark)

    Eriksson, Birgit

    2011-01-01

    Recent research in sociology of art indicates an increasing heterogeneity and openness in cultural taste and consumption. This tendency also appears to be sanctified by developments in the arts and aesthetic theory of the last decades. Compared to former more exclusive and elitist cultures of tas...

  18. Characterization of Chinese rice wine taste attributes using liquid chromatographic analysis, sensory evaluation, and an electronic tongue.

    Science.gov (United States)

    Yu, HaiYan; Zhao, Jie; Li, Fenghua; Tian, Huaixiang; Ma, Xia

    2015-08-01

    To evaluate the taste characteristics of Chinese rice wine, wine samples sourced from different vintage years were analyzed using liquid chromatographic analysis, sensory evaluation, and an electronic tongue. Six organic acids and seventeen amino acids were measured using high performance liquid chromatography (HPLC). Five monosaccharides were measured using anion-exchange chromatography. The global taste attributes were analyzed using an electronic tongue (E-tongue). The correlations between the 28 taste-active compounds and the sensory attributes, and the correlations between the E-tongue response and the sensory attributes were established via partial least square discriminant analysis (PLSDA). E-tongue response data combined with linear discriminant analysis (LDA) were used to discriminate the Chinese rice wine samples sourced from different vintage years. Sensory evaluation indicated significant differences in the Chinese rice wine samples sourced from 2003, 2005, 2008, and 2010 vintage years in the sensory attributes of harmony and mellow. The PLSDA model for the taste-active compounds and the sensory attributes showed that proline, fucose, arabinose, lactic acid, glutamic acid, arginine, isoleucine, valine, threonine, and lysine had an influence on the taste characteristic of Chinese rice wine. The Chinese rice wine samples were all correctly classified using the E-tongue and LDA. The electronic tongue was an effective tool for rapid discrimination of Chinese rice wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Magnetic Characterization of Organic Materials

    Science.gov (United States)

    2016-12-12

    full doughnut. • 3D organization of these doughnuts are currently under study. • A nano doughnut formation requires 2D bending of the lamella...AFRL-AFOSR-JP-TR-2017-0005 Magnetic Characterization of Organic Materials Dongho Kim YONSEI UNIVERSITY UNIVERSITY- INDUSTRY FOUNDATION Final Report 12...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) YONSEI UNIVERSITY UNIVERSITY- INDUSTRY FOUNDATION 50 Yonsei-ro, Seodaemun-g SEOUL, 120-749 KR

  20. Verbal priming and taste sensitivity make moral transgressions gross.

    Science.gov (United States)

    Herz, Rachel S

    2014-02-01

    The aims of the present study were to assess whether: (a) visceral and moral disgust share a common oral origin (taste); (b) moral transgressions that are also viscerally involving are evaluated accordingly as a function of individual differences in taste sensitivity; (c) verbal priming interacts with taste sensitivity to alter how disgust is experienced in moral transgressions; and (d) whether gender moderates these effects. Standard tests of disgust sensitivity, a questionnaire developed for this research assessing different types of moral transgressions (nonvisceral, implied-visceral, visceral) with the terms "angry" and "grossed-out," and a taste sensitivity test of 6-n-propylthiouracil (PROP) were administered to 102 participants. Results confirmed past findings that the more sensitive to PROP a participant was the more disgusted they were by visceral, but not moral, disgust elicitors. Importantly, the findings newly revealed that taste sensitivity had no bearing on evaluations of moral transgressions, regardless of their visceral nature, when "angry" was the emotion primed. However, when "grossed-out" was primed for evaluating moral violations, the more intense PROP tasted to a participant the more "grossed-out" they were by all transgressions. Women were generally more disgust sensitive and morally condemning than men, but disgust test, transgression type, and priming scale modulated these effects. The present findings support the proposition that moral and visceral disgust do not share a common oral origin, but show that linguistic priming can transform a moral transgression into a viscerally repulsive event and that susceptibility to this priming varies as a function of an individual's sensitivity to the origins of visceral disgust-bitter taste.

  1. (Re)tasting places

    DEFF Research Database (Denmark)

    Hedegaard, Liselotte

    2015-01-01

    What does geographical origin mean? It is an expression that associates food and wine with a specific place, an association embedded in the concept ‘terroir’ that refers to the complex interaction between a physical environment and local craftsmanship. It is a claim protected through labelling......-schemes and a claim that adds value to the place-related foods. However, viewing the connection between food and place as a question of proving a relationship or as a matter of protecting commercial claims does not seem to provide a satisfactory account for the status of geographically designated foods as being...... particularly attractive Central to the interest of this paper is to approach an understanding of geographical origin as a point of reference for taste. In terms of being sensory experience, taste is subjective. It is difficult to describe verbally and yet at the same time it is a trigger of the memory of past...

  2. Taste and odor recognition memory: the emotional flavor of life.

    Science.gov (United States)

    Miranda, Maria Isabel

    2012-01-01

    In recent years, our knowledge of the neurobiology of taste and smell has greatly increased; by using several learning models, we now have a better understanding of the behavioral and neurochemical basis of memory recognition. Studies have provided new evidence of some processes that depend on prior experience with the specific combination of sensory stimuli. This review contains recent research related to taste and odor recognition memory, and the goal is to highlight the role of two prominent brain structures, the insular cortex and the amygdala. These structures have an important function during learning and memory and have been associated with the differences in learning induced by the diverse degrees of emotion during taste/odor memory formation, either aversive or appetitive or when taste and odor are combined and/or potentiated.Therefore, this review includes information about certain neurochemical transmitters and their interactions during appetitive or aversive taste memory formation,taste-potentiated odor aversion memory, and conditioned odor aversion, which might be able to maintain the complex processes necessary for flavor recognition memory.

  3. EDITORIAL Light-induced material organization Light-induced material organization

    Science.gov (United States)

    Vainos, Nikos; Rode, Andrei V.

    2010-12-01

    Light-induced material organization extends over a broad area of research, from photon momentum transfer to atoms, molecules and particles, serving the basis for optical trapping, and expands into the laser-induced changes of material properties through photopolymerization, photodarkening, and materials ablation. Relevant phenomena are observed over many orders of magnitude of light intensity, from a few kW cm-2 for the optical trapping of living cells to 1014 W cm-2 encountered in femtosecond laser micromachining and micro-explosion. Relevant interactions reveal a rich palette of novel phenomena in the solid state, from subtle excitations and material organization to phase transformations, non-equilibrium and transient states. The laser-induced material modifications relate to changes in the crystal structure and the molecular bonding, phase transitions in liquid state, ablation and plasma production associated with extreme pressure and temperature conditions towards entirely new states of matter. The underlying physical mechanisms form the foundations for micro-engineering photonic and other functional devices and lead the way to relevant applications. At the same time, they hold the potential for creating non-equilibrium material states and a range of fundamentally new products not available by other means. The fundamental understanding of both materials nature and functional behaviour will ultimately yield novel devices and improved performance in several fields. The far reaching goals of these studies relate to the development of new methods and technologies for micro- and nano-fabrication, not only offering a significant reduction of cost, but also expanding the fabrication capabilities into unexplored areas of biophotonics and nanotechnology. This special issue of Journal of Optics presents some very recent and exciting advances in the field of materials manipulation by laser beams, aiming to underline its current trends. In optical trapping research we

  4. Substance P as a putative efferent transmitter mediates GABAergic inhibition in mouse taste buds.

    Science.gov (United States)

    Huang, Anthony Y; Wu, Sandy Y

    2018-04-01

    Capsaicin-mediated modulation of taste nerve responses is thought to be produced indirectly by the actions of neuropeptides, for example, CGRP and substance P (SP), on taste cells implying they play a role in taste sensitivity. During the processing of gustatory information in taste buds, CGRP shapes peripheral taste signals via serotonergic signalling. The underlying assumption has been that SP exerts its effects on taste transmitter secretion in taste buds of mice. To test this assumption, we investigated the net effect of SP on taste-evoked ATP secretion from mouse taste buds, using functional calcium imaging with CHO cells expressing high-affinity transmitter receptors as cellular biosensors. Our results showed that SP elicited PLC activation-dependent intracellular Ca 2+ transients in taste cells via neurokinin 1 receptors, most likely on glutamate-aspartate transporter-expressing Type I cells. Furthermore, SP caused Type I cells to secrete GABA. Combined with the recent findings that GABA depresses taste-evoked ATP secretion, the current results indicate that SP elicited secretion of GABA, which provided negative feedback onto Type II (receptor) cells to reduce taste-evoked ATP secretion. These findings are consistent with a role for SP as an inhibitory transmitter that shapes the peripheral taste signals, via GABAergic signalling, during the processing of gustatory information in taste buds. Notably, the results suggest that SP is intimately associated with GABA in mammalian taste signal processing and demonstrate an unanticipated route for sensory information flow within the taste bud. © 2018 The British Pharmacological Society.

  5. Effect of spatial distribution of tastants on taste intensity, fluctuation of taste intensity and consumer preference of (semi-)solid food products

    NARCIS (Netherlands)

    Mosca, A.C.; Bult, J.H.F.; Stieger, M.A.

    2013-01-01

    Two sensory studies were carried out to compare the taste intensity, the perceived fluctuation of taste intensity and the consumer preference of food products with homogeneous and inhomogeneous distributions of tastants using 2-alternative forced choice tests. The first study evaluated pairs of

  6. Loss of Smell and Taste After General Anesthesia

    DEFF Research Database (Denmark)

    Baker, Jason Joe; Öberg, Stina; Rosenberg, Jacob

    2017-01-01

    This case report describes a patient, who lost the ability to smell and taste after receiving a propofol-based general anesthesia for a laparoscopic inguinal hernia repair. Immediately after the procedure, the patient had anosmia (loss of smell), ageusia (loss of taste), and light dysphagia...

  7. Pre-Treatment with Amifostine Protects against Cyclophosphamide-Induced Disruption of Taste in Mice

    Science.gov (United States)

    Mukherjee, Nabanita; Carroll, Brittany L.; Spees, Jeffrey L.; Delay, Eugene R.

    2013-01-01

    Cyclophosphamide (CYP), a commonly prescribed chemotherapy drug, has multiple adverse side effects including alteration of taste. The effects on taste are a cause of concern for patients as changes in taste are often associated with loss of appetite, malnutrition, poor recovery and reduced quality of life. Amifostine is a cytoprotective agent that was previously shown to be effective in preventing chemotherapy-induced mucositis and nephrotoxicity. Here we determined its ability to protect against chemotherapy-induced damage to taste buds using a mouse model of CYP injury. We conducted detection threshold tests to measure changes in sucrose taste sensitivity and found that administration of amifostine 30 mins prior to CYP injection protected against CYP-induced loss in taste sensitivity. Morphological studies showed that pre-treatment with amifostine prevented CYP-induced reduction in the number of fungiform taste papillae and increased the number of taste buds. Immunohistochemical assays for markers of the cell cycle showed that amifostine administration prevented CYP-induced inhibition of cell proliferation and also protected against loss of mature taste cells after CYP exposure. Our results indicate that treatment of cancer patients with amifostine prior to chemotherapy may improve their sensitivity for taste stimuli and protect the taste system from the detrimental effects of chemotherapy. PMID:23626702

  8. Pre-treatment with amifostine protects against cyclophosphamide-induced disruption of taste in mice.

    Directory of Open Access Journals (Sweden)

    Nabanita Mukherjee

    Full Text Available Cyclophosphamide (CYP, a commonly prescribed chemotherapy drug, has multiple adverse side effects including alteration of taste. The effects on taste are a cause of concern for patients as changes in taste are often associated with loss of appetite, malnutrition, poor recovery and reduced quality of life. Amifostine is a cytoprotective agent that was previously shown to be effective in preventing chemotherapy-induced mucositis and nephrotoxicity. Here we determined its ability to protect against chemotherapy-induced damage to taste buds using a mouse model of CYP injury. We conducted detection threshold tests to measure changes in sucrose taste sensitivity and found that administration of amifostine 30 mins prior to CYP injection protected against CYP-induced loss in taste sensitivity. Morphological studies showed that pre-treatment with amifostine prevented CYP-induced reduction in the number of fungiform taste papillae and increased the number of taste buds. Immunohistochemical assays for markers of the cell cycle showed that amifostine administration prevented CYP-induced inhibition of cell proliferation and also protected against loss of mature taste cells after CYP exposure. Our results indicate that treatment of cancer patients with amifostine prior to chemotherapy may improve their sensitivity for taste stimuli and protect the taste system from the detrimental effects of chemotherapy.

  9. C60 ion sputtering of layered organic materials

    International Nuclear Information System (INIS)

    Shard, Alexander G.; Green, Felicia M.; Gilmore, Ian S.

    2008-01-01

    Two different organic materials, Irganox1010 and Irganox3114, were vacuum deposited as alternating layers. The layers of Irganox3114 were thin (∼2.5 nm) in comparison to the Irganox1010 (∼55 or ∼90 nm); we call these 'organic delta layers'. Both materials are shown to have identical sputtering yields and the alternating layers may be used to determine some of the important metrological parameters for cluster ion beam depth profiling of organic materials. The sputtering yield for C 60 ions is shown to diminish with ion dose. Comparison with atomic force microscopy data from films of pure Irganox1010, demonstrates that the depth resolution is limited by the development of topography. Secondary ion intensities are a well-behaved function of sputtering yield and may be employed to obtain useful analytical information. Organic delta layers are shown to be valuable reference materials for comparing the capabilities of different cluster ion sources and experimental arrangements for the depth profiling of organic materials.

  10. The complex network of musical tastes

    Science.gov (United States)

    Buldú, Javier M.; Cano, P.; Koppenberger, M.; Almendral, Juan A.; Boccaletti, S.

    2007-06-01

    We present an empirical study of the evolution of a social network constructed under the influence of musical tastes. The network is obtained thanks to the selfless effort of a broad community of users who share playlists of their favourite songs with other users. When two songs co-occur in a playlist a link is created between them, leading to a complex network where songs are the fundamental nodes. In this representation, songs in the same playlist could belong to different musical genres, but they are prone to be linked by a certain musical taste (e.g. if songs A and B co-occur in several playlists, an user who likes A will probably like also B). Indeed, playlist collections such as the one under study are the basic material that feeds some commercial music recommendation engines. Since playlists have an input date, we are able to evaluate the topology of this particular complex network from scratch, observing how its characteristic parameters evolve in time. We compare our results with those obtained from an artificial network defined by means of a null model. This comparison yields some insight on the evolution and structure of such a network, which could be used as ground data for the development of proper models. Finally, we gather information that can be useful for the development of music recommendation engines and give some hints about how top-hits appear.

  11. Effects of Visual Food Texture on Taste Perception

    Directory of Open Access Journals (Sweden)

    Katsunori Okajima

    2011-10-01

    Full Text Available Food color affects taste perception. However, the possible effects of the visual texture of a foodstuff on taste and flavor, without associated changes to color, are currently unknown. We conducted a series of experiments designed to investigate how the visual texture and appearance of food influences its perceived taste and flavor by developing an Augmented Reality system. Participants observed a video of tomato ketchup as a food stimulus on a white dish placed behind a flat LC-display on which was mounted a video camera. The luminance distribution of the ketchup in the dynamic video was continuously and quantitatively modified by tracking specified colors in real-time. We changed the skewness of the luminance histogram of each frame in the video keeping the xy-chromaticity values intact. Participants watched themselves dip a spoon into the ketchup from the video feed (which could be altered, but then ate it with their eyes closed. They reported before and after tasting the ketchup on the perceived consistency (a liquid to solid continuum the food looked and felt and how tasty it looked or felt. The experimental results suggest that visual texture, independent of color, affects the taste and flavor as well as the appearance of foods.

  12. Taste learning and memory: a window to the study of brain aging.

    Directory of Open Access Journals (Sweden)

    Fernando eGámiz

    2011-11-01

    Full Text Available Taste learning exhibits advantages for research on memory brain systems and its reorganization along the life. A review of the effects of aging on taste memory abilities offers a complex picture showing preserved, impaired and enhanced functions. Some of the age-related changes in taste memory seem to be associated with an altered temporal processing. Longer taste-illness delays can be introduced for acquisition of conditioned taste aversions and the modulation of taste learning by the temporal context is absent in naïve aged rats. Evidence is presented suggesting that hippocampal-dependent taste memory can be reactivated by previous learning experiences in old rats. As long as temporary hipocampal inactivation might represent a better model than permanent damage of the aged hippocampus, reversion inactivation of the dorsal Hippocampus by tetrotodoxin (TTX has been applied in aged rats. Results are reported indicating the need of taking into account the interactions between the previous experiences and acute brain intervention when applying taste learning and memory tasks at advanced ages.

  13. Gli3 is a negative regulator of Tas1r3-expressing taste cells

    Science.gov (United States)

    Jyotaki, Masafumi; Redding, Kevin; Jiang, Peihua

    2018-01-01

    Mouse taste receptor cells survive from 3–24 days, necessitating their regeneration throughout adulthood. In anterior tongue, sonic hedgehog (SHH), released by a subpopulation of basal taste cells, regulates transcription factors Gli2 and Gli3 in stem cells to control taste cell regeneration. Using single-cell RNA-Seq we found that Gli3 is highly expressed in Tas1r3-expressing taste receptor cells and Lgr5+ taste stem cells in posterior tongue. By PCR and immunohistochemistry we found that Gli3 was expressed in taste buds in all taste fields. Conditional knockout mice lacking Gli3 in the posterior tongue (Gli3CKO) had larger taste buds containing more taste cells than did control wild-type (Gli3WT) mice. In comparison to wild-type mice, Gli3CKO mice had more Lgr5+ and Tas1r3+ cells, but fewer type III cells. Similar changes were observed ex vivo in Gli3CKO taste organoids cultured from Lgr5+ taste stem cells. Further, the expression of several taste marker and Gli3 target genes was altered in Gli3CKO mice and/or organoids. Mirroring these changes, Gli3CKO mice had increased lick responses to sweet and umami stimuli, decreased lick responses to bitter and sour taste stimuli, and increased glossopharyngeal taste nerve responses to sweet and bitter compounds. Our results indicate that Gli3 is a suppressor of stem cell proliferation that affects the number and function of mature taste cells, especially Tas1r3+ cells, in adult posterior tongue. Our findings shed light on the role of the Shh pathway in adult taste cell regeneration and may help devise strategies for treating taste distortions from chemotherapy and aging. PMID:29415007

  14. A randomized phase III prospective trial of bethanechol to prevent mucositis, candidiasis, and taste loss in patients with head and neck cancer undergoing radiotherapy. A secondary analysis

    International Nuclear Information System (INIS)

    Jham, B.C.; Chen, H.; Carvalho, A.L.; Freire, A.R.

    2009-01-01

    The aim of this study was to determine the impact of bethanechol administration concomitant to radiotherapy (RT) on oral mucositis, candidiasis and taste loss. We performed a secondary analysis of a previously conducted prospective randomized trial which evaluated the effect of bethanechol on salivary gland dysfunction before, during, and after RT for head and neck cancer (HNC), in comparison to artificial saliva. Mucositis, candidiasis and taste loss were analyzed in 36 patients. Mucositis was scored using the World Health Organization (WHO) method; candidiasis was diagnosed by means of clinical examination, whereas taste loss was assessed by the patients' subjective report of absence of taste. No significant differences were observed between groups in relation to frequency and severity of mucositis or frequency of candidiasis and taste loss. In conclusion, bethanechol does not appear to reduce the incidence of mucositis, candidiasis, and taste loss when administered during RT. (author)

  15. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics.

    Science.gov (United States)

    Li, Jennifer X; Yoshida, Takashi; Monk, Kevin J; Katz, Donald B

    2013-05-29

    The taste of foods, in particular the palatability of these tastes, exerts a powerful influence on our feeding choices. Although the lateral hypothalamus (LH) has long been known to regulate feeding behavior, taste processing in LH remains relatively understudied. Here, we examined single-unit LH responses in rats subjected to a battery of taste stimuli that differed in both chemical composition and palatability. Like neurons in cortex and amygdala, LH neurons produced a brief epoch of nonspecific responses followed by a protracted period of taste-specific firing. Unlike in cortex, however, where palatability-related information only appears 500 ms after the onset of taste-specific firing, taste specificity in LH was dominated by palatability-related firing, consistent with LH's role as a feeding center. Upon closer inspection, taste-specific LH neurons fell reliably into one of two subtypes: the first type showed a reliable affinity for palatable tastes, low spontaneous firing rates, phasic responses, and relatively narrow tuning; the second type showed strongest modulation to aversive tastes, high spontaneous firing rates, protracted responses, and broader tuning. Although neurons producing both types of responses were found within the same regions of LH, cross-correlation analyses suggest that they may participate in distinct functional networks. Our data shed light on the implementation of palatability processing both within LH and throughout the taste circuit, and may ultimately have implications for LH's role in the formation and maintenance of taste preferences and aversions.

  16. Effects of fast food branding on young children's taste preferences.

    Science.gov (United States)

    Robinson, Thomas N; Borzekowski, Dina L G; Matheson, Donna M; Kraemer, Helena C

    2007-08-01

    To examine the effects of cumulative, real-world marketing and brand exposures on young children by testing the influence of branding from a heavily marketed source on taste preferences. Experimental study. Children tasted 5 pairs of identical foods and beverages in packaging from McDonald's and matched but unbranded packaging and were asked to indicate if they tasted the same or if one tasted better. Preschools for low-income children. Sixty-three children (mean +/- SD age, 4.6 +/- 0.5 years; range, 3.5-5.4 years). Branding of fast foods. A summary total taste preference score (ranging from -1 for the unbranded samples to 0 for no preference and +1 for McDonald's branded samples) was used to test the null hypothesis that children would express no preference. The mean +/- SD total taste preference score across all food comparisons was 0.37 +/- 0.45 (median, 0.20; interquartile range, 0.00-0.80) and significantly greater than zero (Pbranding among children with more television sets in their homes and children who ate food from McDonald's more often. Branding of foods and beverages influences young children's taste perceptions. The findings are consistent with recommendations to regulate marketing to young children and also suggest that branding may be a useful strategy for improving young children's eating behaviors.

  17. Expression of taste receptors in Solitary Chemosensory Cells of rodent airways

    OpenAIRE

    Tizzano, Marco; Cristofoletti, Mirko; Sbarbati, Andrea; Finger, Thomas E

    2011-01-01

    Abstract Background Chemical irritation of airway mucosa elicits a variety of reflex responses such as coughing, apnea, and laryngeal closure. Inhaled irritants can activate either chemosensitive free nerve endings, laryngeal taste buds or solitary chemosensory cells (SCCs). The SCC population lies in the nasal respiratory epithelium, vomeronasal organ, and larynx, as well as deeper in the airway. The objective of this study is to map the distribution of SCCs within the airways and to determi...

  18. Spiers memorial lecture. Organic electronics: an organic materials perspective.

    Science.gov (United States)

    Wudl, Fred

    2014-01-01

    This Introductory Lecture is intended to provide a background to Faraday Discussion 174: "Organic Photonics and Electronics" and will consist of a chronological, subjective review of organic electronics. Starting with "ancient history" (1888) and history (1950-present), the article will take us to the present. The principal developments involved the processes of charge carrier generation and charge transport in molecular solids, starting with insulators (photoconductors) and moving to metals, to semiconductors and ending with the most popular semiconductor devices, such as organic light-emitting diodes (OLEDs), organic field effect transistors (OFETs) and organic photovoltaics (OPVs). The presentation will be from an organic chemistry/materials point of view.

  19. Sweet taste receptor gene variation and aspartame taste in primates and other species.

    Science.gov (United States)

    Li, Xia; Bachmanov, Alexander A; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G; Beauchamp, Gary K; Reed, Danielle R; Thai, Chloe; Floriano, Wely B

    2011-06-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche.

  20. Taste bud regeneration and the search for taste progenitor cells.

    Science.gov (United States)

    Miura, H; Barlow, L A

    2010-06-01

    While the taste periphery has been studied for over a century, we are only beginning to understand how this important sensory system is maintained throughout adult life. With the advent of molecular genetics in rodent models, and the upswing in translational approaches that impact human patients, we expect the field will make significant advances in the near future.

  1. Music Taste Groups and Problem Behavior.

    Science.gov (United States)

    Mulder, Juul; Bogt, Tom Ter; Raaijmakers, Quinten; Vollebergh, Wilma

    2007-04-01

    Internalizing and externalizing problems differ by musical tastes. A high school-based sample of 4159 adolescents, representative of Dutch youth aged 12 to 16, reported on their personal and social characteristics, music preferences and social-psychological functioning, measured with the Youth Self-Report (YSR). Cluster analysis on their music preferences revealed six taste groups: Middle-of-the-road (MOR) listeners, Urban fans, Exclusive Rock fans, Rock-Pop fans, Elitists, and Omnivores. A seventh group of musically Low-Involved youth was added. Multivariate analyses revealed that when gender, age, parenting, school, and peer variables were controlled, Omnivores and fans within the Exclusive Rock groups showed relatively high scores on internalizing YSR measures, and social, thought and attention problems. Omnivores, Exclusive Rock, Rock-Pop and Urban fans reported more externalizing problem behavior. Belonging to the MOR group that highly appreciates the most popular, chart-based pop music appears to buffer problem behavior. Music taste group membership uniquely explains variance in both internalizing and externalizing problem behavior.

  2. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal.

    Science.gov (United States)

    Kaufman, Andrew; Choo, Ezen; Koh, Anna; Dando, Robin

    2018-03-01

    Despite evidence that the ability to taste is weakened by obesity and can be rescued with weight loss intervention, few studies have investigated the molecular effects of obesity on the taste system. Taste bud cells undergo continual turnover even in adulthood, exhibiting an average life span of only a few weeks, tightly controlled by a balance of proliferation and cell death. Recent data reveal that an acute inflammation event can alter this balance. We demonstrate that chronic low-grade inflammation brought on by obesity reduces the number of taste buds in gustatory tissues of mice-and is likely the cause of taste dysfunction seen in obese populations-by upsetting this balance of renewal and cell death.

  3. Molecular analysis of radiation injury in rat taste buds

    International Nuclear Information System (INIS)

    Nakagawa, K.; Abe, K.

    2003-01-01

    Full text: A critical adverse effect of radiation therapy for head and neck cancer is the resulting decreased sense of taste, which greatly impairs patients' quality of life. Irradiation of the head and neck area decreases the sense of taste within one or two weeks and recovery takes about one month. Although taste bud cells are intimately involved in these manifestations, few basic studies in this area have been reported. Here, we investigate the injury and recovery process of taste bud tissue after irradiation, at the molecular and cellular levels. Rat tongues were selectively irradiated once with 15 Gy of 6 MV X-rays. Immediately thereafter and at periods up to 30 days samples were collected for HE staining, BrdU labelling, p21 and p53 immunohistochemistry, and TUNEL staining. Six days after irradiation, morphologically-identified taste bud cells, as well as the surrounding epithelial tissue, were no longer visible. Immature bud cells reappeared ten days after irradiation, and looked morphologically normal at 13 to 15 days.BrdU labelling revealed DNA synthesis arrest in of epithelial cells 10 days after irradiation. Cells in the basal layer expressed p21 four hours after irradiation. Prior to that, it, p53 accumulation was observed in the nucleus. Expression of p21 was no longer detectable by on the sixth day or later, and DNA synthesis resumed around the eighth day. No apoptosis was detected at any time. The disappearance and reappearance of taste bud cells after a single 15-Gy irradiation dose can be explained by temporary cell cycle arrest in taste bud stem cells, which is regulated by p21

  4. The effect of imiquimod on taste bud calcium transients and transmitter secretion

    Science.gov (United States)

    Wu, Sandy Y

    2016-01-01

    Background and Purpose Imiquimod is an immunomodulator approved for the treatment of basal cell carcinoma and has adverse side effects, including taste disturbances. Paracrine transmission, representing cell–cell communication within taste buds, has the potential to shape the final signals that taste buds transmit to the brain. Here, we tested the underlying assumption that imiquimod modifies taste transmitter secretion in taste buds of mice. Experimental Approach Taste buds were isolated from C57BL/6J mice. The effects of imiquimod on transmitter release in taste buds were measured using calcium imaging with cellular biosensors, and examining the net effect of imiquimod on taste‐evoked ATP secretion from mouse taste buds. Key Results Up to 72% of presynaptic (Type III) taste cells responded to 100 μM imiquimod with an increase in intracellular Ca2+ concentrations. These Ca2 + responses were inhibited by thapsigargin, an inhibitor of the sarco/endoplasmic reticulum Ca2 +‐ATPase, and by U73122, a PLC inhibitor, suggesting that the Ca2 + mobilization elicited by imiquimod was dependent on release from internal Ca2 + stores. Moreover, combining studies of Ca2 + imaging with cellular biosensors showed that imiquimod evoked secretion of 5‐HT, which then provided negative feedback onto receptor (Type II) cells to reduce taste‐evoked ATP secretion. Conclusion and Implications Our results provide evidence that there is a subset of taste cells equipped with a range of intracellular mechanisms that respond to imiquimod. The findings are also consistent with a role of imiquimod as an immune response modifier, which shapes peripheral taste responses via 5‐HT signalling. PMID:27464850

  5. Acute infusion of brain-derived neurotrophic factor in the insular cortex promotes conditioned taste aversion extinction.

    Science.gov (United States)

    Rodríguez-Serrano, Luis M; Ramírez-León, Betsabee; Rodríguez-Durán, Luis F; Escobar, Martha L

    2014-12-01

    Brain-derived neurotrophic factor (BDNF) has emerged as one of the most potent molecular mediators not only for synaptic plasticity, but also for the behavioral organism-environment interactions. Our previous studies in the insular cortex (IC), a neocortical region that has been related with acquisition and retention of conditioned taste aversion (CTA), have demonstrated that intracortical microinfusion of BDNF induces a lasting potentiation of synaptic efficacy in the basolateral amygdaloid nucleus (Bla)-IC projection and enhances the retention of CTA memory of adult rats in vivo. The aim of the present study was to analyze whether acute BDNF-infusion in the IC modifies the extinction of CTA. Accordingly, animals were trained in the CTA task and received bilateral IC microinfusions of BDNF before extinction training. Our results showed that taste aversion was significantly reduced in BDNF rats from the first extinction trial. Additionally, we found that the effect of BDNF on taste aversion did not require extinction training. Finally we showed that the BDNF effect does not degrade the original taste aversion memory trace. These results emphasize that BDNF activity underlies memory extinction in neocortical areas and support the idea that BDNF is a key regulator and mediator of long-term synaptic modifications. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Expression analysis of taste signal transduction molecules in the fungiform and circumvallate papillae of the rhesus macaque, Macaca mulatta.

    Directory of Open Access Journals (Sweden)

    Yoshiro Ishimaru

    Full Text Available The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP and circumvallate papillae (CvP of the rhesus macaque, Macaca mulatta, using in situ hybridization. TAS1R1, TAS1R2, TAS2Rs, and PKD1L3 were exclusively expressed in different subsets of taste receptor cells (TRCs in the FuP and CvP. This finding suggests that TRCs sensing different basic taste modalities are mutually segregated in macaque taste buds. Individual TAS2Rs exhibited a variety of expression patterns in terms of the apparent level of expression and the number of TRCs expressing these genes, as in the case of human TAS2Rs. GNAT3, but not GNA14, was expressed in TRCs of FuP, whereas GNA14 was expressed in a small population of TRCs of CvP, which were distinct from GNAT3- or TAS1R2-positive TRCs. These results demonstrate similarities and differences between primates and rodents in the expression profiles of genes involved in taste signal transduction.

  8. 27 CFR 6.95 - Consumer tasting or sampling at retail establishments.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Consumer tasting or sampling at retail establishments. 6.95 Section 6.95 Alcohol, Tobacco Products and Firearms ALCOHOL AND... tasting or sampling at retail establishments. An industry member may conduct tasting or sampling...

  9. Reduced taste sensitivity in congenital blindness

    DEFF Research Database (Denmark)

    Gagnon, Lea; Kupers, Ron; Ptito, Maurice

    2013-01-01

    behavioral results showed that compared with the normal sighted, blind subjects have increased thresholds for taste detection and taste identification. This finding is at odds with the superior performance of congenitally blind subjects in several tactile, auditory and olfactory tasks. Our psychometric data...... thresholds of the 5 basic tastants in 13 congenitally blind and 13 sighted control subjects. Participants also answered several eating habits questionnaires, including the Food Neophobia Scale, the Food Variety Seeking Tendency Scale, the Intuitive Eating Scale, and the Body Awareness Questionnaire. Our...

  10. Acid-sensing ion channels (ASICs) in the taste buds of adult zebrafish.

    Science.gov (United States)

    Viña, E; Parisi, V; Cabo, R; Laurà, R; López-Velasco, S; López-Muñiz, A; García-Suárez, O; Germanà, A; Vega, J A

    2013-03-01

    In detecting chemical properties of food, different molecules and ion channels are involved including members of the acid-sensing ion channels (ASICs) family. Consistently ASICs are present in sensory cells of taste buds of mammals. In the present study the presence of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) was investigated in the taste buds of adult zebrafish (zASICs) using Western blot and immunohistochemistry. zASIC1 and zASIC3 were regularly absent from taste buds, whereas faint zASIC2 and robust zASIC4 immunoreactivities were detected in sensory cells. Moreover, zASIC2 also immunolabelled nerves supplying taste buds. The present results demonstrate for the first time the presence of zASICs in taste buds of teleosts, with different patterns to that occurring in mammals, probably due to the function of taste buds in aquatic environment and feeding. Nevertheless, the role of zASICs in taste remains to be demonstrated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents.

    Science.gov (United States)

    Bigiani, Albertino

    2017-05-01

    Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Lipid-Lowering Pharmaceutical Clofibrate Inhibits Human Sweet Taste

    OpenAIRE

    Kochem, Matthew; Breslin, Paul A.S.

    2016-01-01

    T1R2-T1R3 is a heteromeric receptor that binds sugars, high potency sweeteners, and sweet taste blockers. In rodents, T1R2-T1R3 is largely responsible for transducing sweet taste perception. T1R2-T1R3 is also expressed in non-taste tissues, and a growing body of evidence suggests that it helps regulate glucose and lipid metabolism. It was previously shown that clofibric acid, a blood lipid-lowering drug, binds T1R2-T1R3 and inhibits its activity in vitro. The purpose of this study was to dete...

  13. The Role of the Sweet Taste Receptor in Enteroendocrine Cells and Pancreatic β-Cells

    Directory of Open Access Journals (Sweden)

    Itaru Kojima

    2011-10-01

    Full Text Available The sweet taste receptor is expressed in taste cells located in taste buds of the tongue. This receptor senses sweet substances in the oral cavity, activates taste cells, and transmits the taste signals to adjacent neurons. The sweet taste receptor is a heterodimer of two G protein-coupled receptors, T1R2 and T1R3. Recent studies have shown that this receptor is also expressed in the extragustatory system, including the gastrointestinal tract, pancreatic β-cells, and glucose-responsive neurons in the brain. In the intestine, the sweet taste receptor regulates secretion of incretin hormones and glucose uptake from the lumen. In β-cells, activation of the sweet taste receptor leads to stimulation of insulin secretion. Collectively, the sweet taste receptor plays an important role in recognition and metabolism of energy sources in the body.

  14. Evaluation of taste-masking effects of pharmaceutical sweeteners with an electronic tongue system.

    Science.gov (United States)

    Choi, Du Hyung; Kim, Nam Ah; Nam, Tack Soo; Lee, Sangkil; Jeong, Seong Hoon

    2014-03-01

    Electronic tongue systems have been developed for taste measurement of bitter drug substances in accurate taste comparison to development palatable oral formulations. This study was to evaluate the taste masking effect of conventional pharmaceutical sweeteners such as neohesperidin dihydrochalcone, sucrose, sucralose and aspartame. The model drugs were acetaminophen, ibuprofen, tramadol hydrochloride, and sildenafil citrate (all at 20 mM). The degree of bitterness was measured by a multichannel taste sensor system (an electronic tongue). The data was collected by seven sensors and analyzed by a statistical method of principal components analysis (PCA). The effect of taste masking excipient was dependent on the type of model drug. Changing the concentration of taste masking excipients affected the sensitivity of taste masking effect according to the type of drug. As the excipient concentration increased, the effect of taste masking increased. Moreover, most of the sensors showed a concentration-dependent pattern of the taste-masking agents as higher concentration provided higher selectivity. This might indicate that the sensors can detect small concentration changes of a chemical in solution. These results suggest that the taste masking could be evaluated based on the data of the electronic tongue system and that the formulation development process could be performed in a more efficient way.

  15. Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus.

    Science.gov (United States)

    Varatharasan, Nirupa; Croll, Roger P; Franz-Odendaal, Tamara

    2009-12-01

    In the blind cave-dwelling morph of A. mexicanus, the eye degenerates while other sensory systems, such as gustation, are expanded compared to their sighted (surface-dwelling) ancestor. This study compares the development of taste buds along the jaws of each morph. To determine whether cavefish have an altered onset or rate of taste bud development, we fluorescently labeled basal and receptor cells within taste buds over a developmental series. Our results show that taste bud number increases during development in both morphs. The rate of development is, however, accelerated in cavefish; a small difference in taste bud number exists at 5 dpf reaching threefold by 22 dpf. The expansion of taste buds in cavefish is, therefore, detectable after the onset of eye degeneration. This study provides important insights into the timing of taste bud expansion in cavefish as well as enhances our understanding of taste bud development in teleosts in general. (c) 2009 Wiley-Liss, Inc.

  16. Organic materials for fusion-reactor applications

    International Nuclear Information System (INIS)

    Hurley, G.F.; Coltman, R.R. Jr.

    1983-09-01

    Organic materials requirements for fusion-reactor magnets are described with reference to the temperature, radiation, and electrical and mechanical stress environment expected in these magnets. A review is presented of the response to gamma-ray and neutron irradiation at low temperatures of candidate organic materials; i.e. laminates, thin films, and potting compounds. Lifetime-limiting features of this response as well as needed testing under magnet operating conditions not yet adequately investigated are identified and recomendations for future work are made

  17. Controlling taste and odour levels in water

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, A J

    1980-12-01

    Taste and odor of drinking water supplies act as indicator mechanisms, indicating increased degrees of biological activity, possible contamination of the supply, treatment inadequacies, or contamination of the distribution systems. Disinfection and coagulation are effective preventive measures. Taste and odor problems may arise even with the application of preventive measures, so protective and treatment techniques must be implemented. These include chlorination and activated carbon absorption. (1 photo, 3 references, 1 table)

  18. A composition algorithm based on crossmodal taste-music correspondences

    Directory of Open Access Journals (Sweden)

    Bruno eMesz

    2012-04-01

    Full Text Available While there is broad consensus about the structural similarities between language and music, comparably less attention has been devoted to semantic correspondences between these two ubiquitous manifestations of human culture. We have investigated the relations between music and a narrow and bounded domain of semantics: the words and concepts referring to taste sensations. In a recent work, we found that taste words were consistently mapped to musical parameters. Bitter is associated with low-pitched and continuous music (legato, salty is characterized by silences between notes (staccato, sour is high pitched, dissonant and fast and sweet is consonant, slow and soft (Mesz2011. Here we extended these ideas, in a synergistic dialog between music and science, investigating whether music can be algorithmically generated from taste-words. We developed and implemented an algorithm that exploits a large corpus of classic and popular songs. New musical pieces were produced by choosing fragments from the corpus and modifying them to minimize their distance to the region in musical space that characterizes each taste. In order to test the capability of the produced music to elicit significant associations with the different tastes, musical pieces were produced and judged by a group of non musicians. Results showed that participants could decode well above chance the taste-word of the composition. We also discuss how our findings can be expressed in a performance bridging music and cognitive science.

  19. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  20. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  1. Innervation of taste buds revealed with Brainbow-labeling in mouse.

    Science.gov (United States)

    Zaidi, Faisal N; Cicchini, Vanessa; Kaufman, Daniel; Ko, Elizabeth; Ko, Abraham; Van Tassel, Heather; Whitehead, Mark C

    2016-12-01

    Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones. © 2016 Anatomical Society.

  2. Do Natural Pictures Mean Natural Tastes?

    DEFF Research Database (Denmark)

    Smith, Viktor; Barratt, Daniel; Sørensen, Henrik Selsøe

    2015-01-01

    A widespread assumption in Danish consumer law is that if the package of a food product carries a picture of a potentially taste-giving ingredient (say, a strawberry), then consumers will expect the corresponding taste to stem primarily from that ingredient rather than from artificial flavouring....... However, this is not expected to be the case if the packaging carries only a verbal indication of the potential ingredient (say, the word strawberry). We put these assumptions to experimental test. Our goal was to contribute firmer evidence to the legal decision-making in the present field while...

  3. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Wong, Michael Y; Zysman-Colman, Eli

    2017-06-01

    The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Physiologic Role for Serotonergic Transmission in Adult Rat Taste Buds

    Science.gov (United States)

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the

  5. A physiologic role for serotonergic transmission in adult rat taste buds.

    Directory of Open Access Journals (Sweden)

    Luc Jaber

    Full Text Available Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells and was once thought to be essential to neurotransmission (now understood as purinergic. However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers

  6. A physiologic role for serotonergic transmission in adult rat taste buds.

    Science.gov (United States)

    Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott

    2014-01-01

    Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the

  7. Sweet taste disorder and vascular complications in patients with abnormal glucose tolerance.

    Science.gov (United States)

    Tsujimoto, Tetsuro; Imai, Kenjiro; Kanda, Sayaka; Kakei, Masafumi; Kajio, Hiroshi; Sugiyama, Takehiro

    2016-10-15

    It remains unknown whether taste disorders can be a risk factor for micro- and macro-vascular diseases in patients with abnormal glucose tolerance. A cross-sectional study in a nationally representative samples of 848 and 849 US adults (aged ≥40years) with diabetes or prediabetes who had sweet and salt taste disorders, respectively, from the National Health and Nutrition Examination Survey 2011-2012. Among the study population, 5.7% had sweet taste disorder and 8.6% had salt taste disorder. These data correspond to approximately 1.5 million and 1.8 million individuals with abnormal glucose tolerance aged 40years or older in the US population, respectively. In the adjusted model, sweet taste disorder was significantly associated with complication of ischemic heart disease (adjusted odds ratio [OR], 2.45; 95% confidence interval [CI], 1.03-5.81; P=0.04). Moreover, sweet taste disorder in patients with diabetes was significantly associated with diabetic retinopathy (adjusted OR, 2.89; 95% CI, 1.09-7.69; P=0.03) and diabetic nephropathy (adjusted OR, 3.17; 95% CI, 1.07-9.36; P=0.03). Meanwhile, salt taste disorder was not significantly associated with diabetic retinopathy, diabetic nephropathy, ischemic heart disease, or stroke. Total sugar intake was significantly higher in patients with sweet taste disorder than in those without it, whereas total daily intake of carbohydrate did not differ significantly. No significant association was observed between salt taste disorder and daily intake of sodium after multivariate analysis. Sweet taste disorder in patients with abnormal glucose tolerance was associated with increased sugar intake and vascular complications. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. The bogus taste test: Validity as a measure of laboratory food intake.

    Science.gov (United States)

    Robinson, Eric; Haynes, Ashleigh; Hardman, Charlotte A; Kemps, Eva; Higgs, Suzanne; Jones, Andrew

    2017-09-01

    Because overconsumption of food contributes to ill health, understanding what affects how much people eat is of importance. The 'bogus' taste test is a measure widely used in eating behaviour research to identify factors that may have a causal effect on food intake. However, there has been no examination of the validity of the bogus taste test as a measure of food intake. We conducted a participant level analysis of 31 published laboratory studies that used the taste test to measure food intake. We assessed whether the taste test was sensitive to experimental manipulations hypothesized to increase or decrease food intake. We examined construct validity by testing whether participant sex, hunger and liking of taste test food were associated with the amount of food consumed in the taste test. In addition, we also examined whether BMI (body mass index), trait measures of dietary restraint and over-eating in response to palatable food cues were associated with food consumption. Results indicated that the taste test was sensitive to experimental manipulations hypothesized to increase or decrease food intake. Factors that were reliably associated with increased consumption during the taste test were being male, have a higher baseline hunger, liking of the taste test food and a greater tendency to overeat in response to palatable food cues, whereas trait dietary restraint and BMI were not. These results indicate that the bogus taste test is likely to be a valid measure of food intake and can be used to identify factors that have a causal effect on food intake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Taste perception: Risk factor or protection for dependents during drug use cessation

    Directory of Open Access Journals (Sweden)

    Carla Rosane Paz Arruda Teo

    2014-08-01

    Full Text Available The increase in appetite and, consequently, in body weight, evidenced in the majority of addicts under treatment, may be related to taste, since heavy drug use can lead to changes in taste buds. This study aimed to investigate the association between taste perception and nutritional status of drug addicts under treatment. The study was conducted in two therapeutic communities in the municipality of Chapecó, Santa Catarina state, with 39 male addicts over 18 years old. Primary data on weight and height were collected for assessment of nutritional status, and a taste acuity test was applied; also, secondary data were collected on age, length of stay, types of drugs used, and age of drug use onset, from the addicts’ records. It was possible to observe that 56.5% of dependents were at nutritional risk for being overweight. Taste acuity significantly differed for the basic tastes evaluated (p= 0.014, being higher for salty (94.9%, followed by sweet (89.7%, acid (79.5%, and bitter (38, 5% tastes, but it was not associated with the study variables. We conclude that the drug use cessation can have a similar effect to that of caloric deprivation on the taste acuity of dependents, interfering on excessive weight gain. However, it is suggested that the improvement of taste perception be oriented in the therapeutic setting, so that it becomes, in these conditions, a protection factor for dependents, strengthening them to overcome their condition of vulnerability.

  10. Development of an umami taste sensitivity test and its clinical use.

    Directory of Open Access Journals (Sweden)

    Shizuko Satoh-Kuriwada

    Full Text Available There is a close relationship between perception of umami, which has become recognized as the fifth taste, and the human physical condition. We have developed a clinical test for umami taste sensitivity using a filter paper disc with a range of six monosodium glutamate (MSG concentrations. We recruited 28 patients with taste disorders (45-78 years and 184 controls with no taste disorders (102 young [18-25 years] and 82 older [65-89 years] participants. Filter paper discs (5 mm dia. were soaked in aqueous MSG solutions (1, 5, 10, 50, 100 and 200 mM, then placed on three oral sites innervated by different taste nerves. The lowest concentration participants correctly identified was defined as the recognition threshold (RT for MSG. This test showed good reproducibility for inter- and intra-observer variability. We concluded that: (1 The RT of healthy controls differed at measurement sites innervated by different taste nerves; that is, the RT of the anterior tongue was higher than that of either the posterior tongue or the soft palate in both young and older individuals. (2 No significant difference in RT was found between young adults and older individuals at any measurement site. (3 The RT of patients with taste disorders was higher before treatment than that of the healthy controls at any measurement site. (4 The RT after treatment in these patients improved to the same level as that of the healthy controls. (5 The cutoff values of RT, showing the highest diagnostic accuracy (true positives + true negatives, were 200 mM MSG for AT and 50 mM MSG for PT and SP. The diagnostic accuracy at these cutoff values was 0.92, 0.87 and 0.86 for AT, PT and SP, respectively. Consequently, this umami taste sensitivity test is useful for discriminating between normal and abnormal umami taste sensations.

  11. Limits of selection against cheaters: birds prioritise visual fruit advertisement over taste.

    Science.gov (United States)

    Wang, Zhen; Schaefer, H Martin

    2014-04-01

    The concept of biological markets aims to explain how organisms interact with each other. Market theory predicts that organisms choose the most rewarding partner in mutualisms. However, partner choice may also be influenced by advertisement which may not be reliable. In seed dispersal mutualism, we analysed whether seed dispersers prioritise taste cues over visual advertisement to select the most rewarding fruits and whether they select against partners with unreliable advertisement. We conducted experiments on black elder (Sambucus nigra), a species of which the colours of the peduncles match the sugar content of their fruits. We created infructescences the colours of which matched or mismatched the sugar content of their fruits. There was no selection against cheaters in the field or by captive blackcaps (Sylvia atricapilla) as seed dispersers. Blackcaps were constrained to select against unreliable advertisement because they swallowed fruits entirely and thus did not obtain an immediate feedback by taste. Instead, blackcaps selected fruits according to the colour variation of red peduncles. Overall, we suggest that the concept of constraints should be incorporated into biological markets. We further contend that biological markets can be more complex than currently acknowledged because a moderate degree of reliability occurred in black elder even in the absence of selection against cheaters.

  12. Qualitative and quantitative differences between taste buds of the rat and mouse

    OpenAIRE

    Ma Huazhi; Yang Ruibiao; Thomas Stacey M; Kinnamon John C

    2007-01-01

    Abstract Background Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCβ2, α-gustducin, serotonin ...

  13. Clinical aspects and treatment of taste and smell disorders

    NARCIS (Netherlands)

    F.K.L. Spijkervet; R. Weissenbruch; A. Visser; Dr. Harriët Jager-Wittenaar; A. van Nieuw Amerongen; A. Vissink

    2013-01-01

    Taste and smell perception are closely related. Many chemosensory disorders which result in faulty taste are in fact smell disorders. Causes of chemosensory disorders which call for attention are ageing, medication, natural proteins, burning mouth syndrome, nerve injuries, aerate disorders in the

  14. Neural correlates of taste perception in congenital olfactory impairment

    DEFF Research Database (Denmark)

    Gagnon, Léa; Vestergaard, Martin; Madsen, Kristoffer

    2014-01-01

    taste identification accuracy and its neural correlates using functional magnetic resonance imaging (fMRI) in 12 congenitally olfactory impaired individuals and 8 normosmic controls. Results showed that taste identification was worse in congenitally olfactory impaired compared to control subjects. The fMRI...

  15. The taste-visual cross-modal Stroop effect: An event-related brain potential study.

    Science.gov (United States)

    Xiao, X; Dupuis-Roy, N; Yang, X L; Qiu, J F; Zhang, Q L

    2014-03-28

    Event-related potentials (ERPs) were recorded to explore, for the first time, the electrophysiological correlates of the taste-visual cross-modal Stroop effect. Eighteen healthy participants were presented with a taste stimulus and a food image, and asked to categorize the image as "sweet" or "sour" by pressing the relevant button as quickly as possible. Accurate categorization of the image was faster when it was presented with a congruent taste stimulus (e.g., sour taste/image of lemon) than with an incongruent one (e.g., sour taste/image of ice cream). ERP analyses revealed a negative difference component (ND430-620) between 430 and 620ms in the taste-visual cross-modal Stroop interference. Dipole source analysis of the difference wave (incongruent minus congruent) indicated that two generators localized in the prefrontal cortex and the parahippocampal gyrus contributed to this taste-visual cross-modal Stroop effect. This result suggests that the prefrontal cortex is associated with the process of conflict control in the taste-visual cross-modal Stroop effect. Also, we speculate that the parahippocampal gyrus is associated with the process of discordant information in the taste-visual cross-modal Stroop effect. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  17. [Taste disturbance after general anesthesia with classic laryngeal mask airway (CLM)].

    Science.gov (United States)

    Arimune, Mutsuaki

    2007-07-01

    A 27-year-old man underwent the right knee joint operation under general anesthesia with CLM. After the operation, he complained of taste disturbance of the left side of the tongue. We measured electrical taste threshold and the serum level of zinc, copper and iron. The taste threshold was elevated in the two nerve areas of the left side of the tongue (chorda tympani, N. glossopharyngeus) and the serum levels of zinc and iron were low. We concluded that he had been short of zinc and iron and the insertion of CLM had triggered taste disturbance.

  18. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  19. Knocking out P2X receptors reduces transmitter secretion in taste buds

    Science.gov (United States)

    Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.

    2011-01-01

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456

  20. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

    Science.gov (United States)

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-09-15

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in Bdnf(lacZ/+) mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation

    Science.gov (United States)

    Huang, Tao; Ma, Liqun; Krimm, Robin F

    2015-01-01

    The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656

  2. Knocking out P2X receptors reduces transmitter secretion in taste buds.

    Science.gov (United States)

    Huang, Yijen A; Stone, Leslie M; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E; Kinnamon, Sue C; Roper, Stephen D

    2011-09-21

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.

  3. Taste sensitivity for monosodium glutamate and an increased liking of dietary protein.

    Science.gov (United States)

    Luscombe-Marsh, Natalie D; Smeets, Astrid J P G; Westerterp-Plantenga, Margriet S

    2008-04-01

    The aim of the present study was to determine individuals' taste threshold for monosodium glutamate (MSG) alone and in combination with inosine 5'-monophosphate (IMP-5) and to examine if this threshold was related to an increase in sensory properties (including pleasantness of taste) and/or to one's preference for dietary protein over carbohydrate and fat. Using the triangle tasting method, the taste threshold was determined for thirty-six women and twenty-four men. Thresholds varied from zero to infinite as determined using a clear soup with added MSG in the concentration range of 0.1 to 0.8 % (w/w) MSG. Subjects rated fourteen sensory properties of the soup and also their 'liking', 'eating frequency' and 'preference' of twenty-two common high-protein, high-carbohydrate and high-fat food items. The taste threshold (and therefore sensitivity) of MSG was lowered from 0.33 (sem 0.24) to 0.26 (sem 0.22) % MSG when 0.25 % (w/w) IMP-5 was added. None of the sensory properties assessed was associated with the taste threshold of MSG +/- 0.25 % IMP-5 in the overall study population. However, the taste descriptor 'meatiness' was associated with the threshold data for individuals who could taste concentrations of taste threshold of MSG in combination with IMP-5 does appear to predict one's 'liking' of as well as 'preference' for high-protein foods.

  4. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  5. Development of a Taste-Masked Orodispersible Film Containing Dimenhydrinate

    Directory of Open Access Journals (Sweden)

    Jörg Breitkreutz

    2012-10-01

    Full Text Available Orodispersible dosage forms are promising new approaches for drug delivery. They enable an easy application, as there is no need to drink high amounts of liquids or swallow large solid dosage forms. The aim of the study was to develop an orodispersible film (ODF as an alternative to tablets, syrups or suppositories for the treatment of vomiting and nausea, especially for the pediatric population. Formulations were investigated by X-ray diffraction, scanning electron and polarized light microscopy. Additionally, two commercially available electronic taste sensing systems were used to investigate the applied taste-masking strategies. Results obtained from X-ray-diffraction and polarized light microscopy showed no recrystallization of dimenhydrinate in the formulation when cyclodextrin or maltodextrin were used as solubilizing and complexing agent. All ODFs showed fast disintegration depending on the characterization method. In order to get taste information, the dimenhydrinate formulations were analytically compared to pure drug and drug-free formulations by electronic tongues. Results obtained from both systems are comparable and were used together for the first time. It was possible to develop an ODF of dimenhydrinate that is fast disintegrating even in small volumes of liquid. Furthermore, in vitro taste assessment by two electronic tongues revealed taste-masking effects by the excipients.

  6. The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies

    Science.gov (United States)

    Ye, Qing; Heck, Gerard L.; Desimone, John A.

    1991-11-01

    Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.

  7. A large increase of sour taste receptor cells in Skn-1-deficient mice does not alter the number of their sour taste signal-transmitting gustatory neurons.

    Science.gov (United States)

    Maeda, Naohiro; Narukawa, Masataka; Ishimaru, Yoshiro; Yamamoto, Kurumi; Misaka, Takumi; Abe, Keiko

    2017-05-01

    The connections between taste receptor cells (TRCs) and innervating gustatory neurons are formed in a mutually dependent manner during development. To investigate whether a change in the ratio of cell types that compose taste buds influences the number of innervating gustatory neurons, we analyzed the proportion of gustatory neurons that transmit sour taste signals in adult Skn-1a -/- mice in which the number of sour TRCs is greatly increased. We generated polycystic kidney disease 1 like 3-wheat germ agglutinin (pkd1l3-WGA)/Skn-1a +/+ and pkd1l3-WGA/Skn-1a -/- mice by crossing Skn-1a -/- mice and pkd1l3-WGA transgenic mice, in which neural pathways of sour taste signals can be visualized. The number of WGA-positive cells in the circumvallate papillae is 3-fold higher in taste buds of pkd1l3-WGA/Skn-1a -/- mice relative to pkd1l3-WGA/Skn-1a +/+ mice. Intriguingly, the ratio of WGA-positive neurons to P2X 2 -expressing gustatory neurons in nodose/petrosal ganglia was similar between pkd1l3-WGA/Skn-1a +/+ and pkd1l3-WGA/Skn-1a -/- mice. In conclusion, an alteration in the ratio of cell types that compose taste buds does not influence the number of gustatory neurons that transmit sour taste signals. Copyright © 2017. Published by Elsevier B.V.

  8. Oxytocin decreases sweet taste sensitivity in mice.

    Science.gov (United States)

    Sinclair, Michael S; Perea-Martinez, Isabel; Abouyared, Marianne; St John, Steven J; Chaudhari, Nirupa

    2015-03-15

    Oxytocin (OXT) suppresses food intake and lack of OXT leads to overconsumption of sucrose. Taste bud cells were recently discovered to express OXT-receptor. In the present study we tested whether administering OXT to wild-type mice affects their licking behavior for tastants in a paradigm designed to be sensitive to taste perception. We injected C57BL/6J mice intraperitoneally (i.p.) with 10mg/kg OXT and assayed their brief-access lick responses, motivated by water deprivation, to NaCl (300mM), citric acid (20mM), quinine (0.3mM), saccharin (10mM), and a mix of MSG and IMP (100mM and 0.5mM respectively). OXT had no effect on licking for NaCl, citric acid, or quinine. A possible effect of OXT on saccharin and MSG+IMP was difficult to interpret due to unexpectedly low lick rates to water (the vehicle for all taste solutions), likely caused by the use of a high OXT dose that suppressed licking and other behaviors. A subsequent experiment focused on another preferred tastant, sucrose, and employed a much lower OXT dose (0.1mg/kg). This modification, based on our measurements of plasma OXT following i.p. injection, permitted us to elevate plasma [OXT] sufficiently to preferentially activate taste bud cells. OXT at this low dose significantly reduced licking responses to 0.3M sucrose, and overall shifted the sucrose concentration - behavioral response curves rightward (mean EC50saline=0.362M vs. EC50OXT=0.466M). Males did not differ from females under any condition in this study. We propose that circulating oxytocin is another factor that modulates taste-based behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

    Science.gov (United States)

    Guagliardo, Nick A; Hill, David L

    2007-09-10

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.

  10. Organic materials and devices for detecting ionizing radiation

    Science.gov (United States)

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  11. The taste looks good

    NARCIS (Netherlands)

    Polder, G.; Young, T.; Schrauwers, A.

    2005-01-01

    For over two decades, fruit and other agricultural products have been sorted using the 'electronic eye'. The eye selects purely by such external properties as colour, and cannot judge taste. Dr Gerrit Polder, an electrical engineer at Wageningen University, carried out his doctorate research at

  12. 78 FR 19637 - National Organic Program: Notice of Draft Guidance on Classification of Materials and Materials...

    Science.gov (United States)

    2013-04-02

    ... which are specifically allowed in section 205.601 of the USDA organic regulations, as well as materials..., filing of petitions and applications and agency #0;statements of organization and functions are examples... Classification of Materials and Materials for Organic Crop Production AGENCY: Agricultural Marketing Service...

  13. Taste intensities of ten vegetables commonly consumed in the Netherlands.

    Science.gov (United States)

    van Stokkom, V L; Teo, P S; Mars, M; de Graaf, C; van Kooten, O; Stieger, M

    2016-09-01

    Bitterness has been suggested to be the main reason for the limited palatability of several vegetables. Vegetable acceptance has been associated with preparation method. However, the taste intensity of a variety of vegetables prepared by different methods has not been studied yet. The objective of this study is to assess the intensity of the five basic tastes and fattiness of ten vegetables commonly consumed in the Netherlands prepared by different methods using the modified Spectrum method. Intensities of sweetness, sourness, bitterness, umami, saltiness and fattiness were assessed for ten vegetables (cauliflower, broccoli, leek, carrot, onion, red bell pepper, French beans, tomato, cucumber and iceberg lettuce) by a panel (n=9) trained in a modified Spectrum method. Each vegetable was assessed prepared by different methods (raw, cooked, mashed and as a cold pressed juice). Spectrum based reference solutions were available with fixed reference points at 13.3mm (R1), 33.3mm (R2) and 66.7mm (R3) for each taste modality on a 100mm line scale. For saltiness, R1 and R3 differed (16.7mm and 56.7mm). Mean intensities of all taste modalities and fattiness for all vegetables were mostly below R1 (13.3mm). Significant differences (p<0.05) within vegetables between preparation methods were found. Sweetness was the most intensive taste, followed by sourness, bitterness, fattiness, umami and saltiness. In conclusion, all ten vegetables prepared by different methods showed low mean intensities of all taste modalities and fattiness. Preparation method affected taste and fattiness intensity and the effect differed by vegetable type. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Introduction to organic electronic and optoelectronic materials and devices

    CERN Document Server

    Sun, Sam-Shajing

    2008-01-01

    Introduction to Optoelectronic Materials, N. Peyghambarian and M. Fallahi Introduction to Optoelectronic Device Principles, J. Piprek Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, S.-S. Sun Charge Transport in Conducting Polymers, V.N. Prigodin and A.J. Epstein Major Classes of Organic Small Molecules for Electronic and Optoelectronics, X. Meng, W. Zhu, and H. Tian Major Classes of Conjugated Polymers and Synthetic Strategies, Y. Li and J. Hou Low Energy Gap, Conducting, and Transparent Polymers, A. Kumar, Y. Ner, and G.A. Sotzing Conjugated Polymers, Fullerene C60, and Carbon Nanotubes for Optoelectronic Devices, L. Qu, L. Dai, and S.-S. Sun Introduction of Organic Superconducting Materials, H. Mori Molecular Semiconductors for Organic Field-Effect Transistors, A. Facchetti Polymer Field-Effect Transistors, H.G.O. Sandberg Organic Molecular Light-Emitting Materials and Devices, F. So and J. Shi Polymer Light-Emitting Diodes: Devices and Materials, X. Gong and ...

  15. Fluid consumption and taste novelty determines transcription temporal dynamics in the gustatory cortex.

    Science.gov (United States)

    Inberg, Sharon; Jacob, Eyal; Elkobi, Alina; Edry, Efrat; Rappaport, Akiva; Simpson, T Ian; Armstrong, J Douglas; Shomron, Noam; Pasmanik-Chor, Metsada; Rosenblum, Kobi

    2016-02-09

    Novel taste memories, critical for animal survival, are consolidated to form long term memories which are dependent on translation regulation in the gustatory cortex (GC) hours following acquisition. However, the role of transcription regulation in the process is unknown. Here, we report that transcription in the GC is necessary for taste learning in rats, and that drinking and its consequences, as well as the novel taste experience, affect transcription in the GC during taste memory consolidation. We show differential effects of learning on temporal dynamics in set of genes in the GC, including Arc/Arg3.1, known to regulate the homeostasis of excitatory synapses. We demonstrate that in taste learning, transcription programs were activated following the physiological responses (i.e., fluid consumption following a water restriction regime, reward, arousal of the animal, etc.) and the specific information about a given taste (i.e., taste novelty). Moreover, the cortical differential prolonged kinetics of mRNA following novel versus familiar taste learning may represent additional novelty related molecular response, where not only the total amount, but also the temporal dynamics of transcription is modulated by sensory experience of novel information.

  16. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Cell apoptosis of taste buds in circumvallate papillae in diabetic rats.

    Science.gov (United States)

    Cheng, B; Pan, S; Liu, X; Zhang, S; Sun, X

    2011-09-01

    Diabetes mellitus may result in taste disturbance. The present study has revealed that cell apoptosis of taste buds in circumvallate papillae may contribute to the taste disturbance in a rat model of type2 diabetes. Type2 diabetes was induced in Wistar rats by feeding them with a high-fat diet (30% fat), and a single intraperitoneal injection of streptozotocin (30 mg/kg). The increased cell apoptosis of taste buds in circumvallate papilla sections was detected by TUNEL staining in diabetic rats, and the ultrastructure was further examined by transmission electronic microscopy. Immunohistochemical and Western blot analyses revealed the downregulation of Bcl-2, upregulation of Bax, and increased activation of caspase-9 and -3, in diabetic rats, indicating that the apoptosis of taste bud cells may be mediated via the intrinsic mitochondrial pathway in diabetics. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  18. Acids with an equivalent taste lead to different erosion of human dental enamel.

    Science.gov (United States)

    Beyer, Markus; Reichert, Jörg; Bossert, Jörg; Sigusch, Bernd W; Watts, David C; Jandt, Klaus D

    2011-10-01

    The consumption of acidic soft drinks may lead to demineralization and softening of human dental enamel, known as dental erosion. The aims of this in vitro study were to determine: (i) if different acids with a similar sensorial acidic taste lead to different hardness loss of enamel and (ii) if the fruit acids tartaric, malic, lactic or ascorbic acid lead to less hardness loss of enamel than citric or phosphoric acid when their concentration in solution is based on an equivalent sensorial acidic taste. Enamel samples of non-erupted human third molars were treated with acidic solutions of tartaric (TA), malic (MA), lactic (LA), ascorbic (AA), phosphoric (PA) and citric (CA) acids with a concentration that gave an equivalent sensorial acidic taste. The acidic solutions were characterized by pH value and titratable acidity. Atomic force microscopy (AFM) based nanoindentation was used to study the nano mechanical properties and scanning electron microscopy (SEM) was used to study the morphology of the treated enamel samples and the untreated control areas, respectively. The investigated acids fell into two groups. The nano hardnesses of MA, TA and CA treated enamel samples (group I) were statistically significantly greater (penamel samples (group II). Within each group the nano hardness was not statistically significantly different (p>0.05). The SEM micrographs showed different etch prism morphologies depending on the acid used. In vitro, the acids investigated led to different erosion effects on human dental enamel, despite their equivalent sensorial acidic taste. This has not been reported previously. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.

    Science.gov (United States)

    Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A

    2017-09-01

    The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.

  20. Determinants of food demand and the experienced taste effect of healthy labels

    DEFF Research Database (Denmark)

    Thunström, Linda; Nordström, Leif Jonas

    2015-01-01

    This paper examines the importance of taste and health in food demand, as well as the effect on consumers’ experienced taste of the non-intrinsic value of healthy labels. Our analysis is based on taste experiments and Vickrey second price auctions on potato chips and bread. Our findings imply...

  1. Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue

    Directory of Open Access Journals (Sweden)

    Kim Soochong

    2008-11-01

    Full Text Available Abstract Background "Type II"/Receptor cells express G protein-coupled receptors (GPCRs for sweet, umami (T1Rs and mGluRs or bitter (T2Rs, as well as the proteins for downstream signalling cascades. Transduction downstream of T1Rs and T2Rs relies on G-protein and PLCβ2-mediated release of stored Ca2+. Whereas Gαgus (gustducin couples to the T2R (bitter receptors, which Gα-subunit couples to the sweet (T1R2 + T1R3 receptor is presently not known. We utilized RT-PCR, immunocytochemistry and single-cell gene expression profiling to examine the expression of the Gαq family (q, 11, 14 in mouse taste buds. Results By RT-PCR, Gα14 is expressed strongly and in a taste selective manner in posterior (vallate and foliate, but not anterior (fungiform and palate taste fields. Gαq and Gα11, although detectable, are not expressed in a taste-selective fashion. Further, expression of Gα14 mRNA is limited to Type II/Receptor cells in taste buds. Immunocytochemistry on vallate papillae using a broad Gαq family antiserum reveals specific staining only in Type II taste cells (i.e. those expressing TrpM5 and PLCβ2. This staining persists in Gαq knockout mice and immunostaining with a Gα11-specific antiserum shows no immunoreactivity in taste buds. Taken together, these data show that Gα14 is the dominant Gαq family member detected. Immunoreactivity for Gα14 strongly correlates with expression of T1R3, the taste receptor subunit present in taste cells responsive to either umami or sweet. Single cell gene expression profiling confirms a tight correlation between the expression of Gα14 and both T1R2 and T1R3, the receptor combination that forms sweet taste receptors. Conclusion Gα14 is co-expressed with the sweet taste receptor in posterior tongue, although not in anterior tongue. Thus, sweet taste transduction may rely on different downstream transduction elements in posterior and anterior taste fields.

  2. Radiation damage in organic materials

    International Nuclear Information System (INIS)

    Campbell, F.J.

    1981-01-01

    A surprising number of electrical components and seals are listed as being inside the containment building of a nuclear power plant. The types of radiation and their interaction with organic materials lead to a dosimetry discussion, and then a brief description of the chemical mechanisms which predominate in typical organic materials follows. Relative stability of polymer structures and the types of additives that contribute stabilization to the basic polymer matrix in formulated compounds are reviewed. However, the emphasis must now be directed toward the need to consider the total environment of nuclear plant service on the degradation of these materials if maximum reliability is to be achieved. The degradation mechanisms may be strongly affected by the dose-rate/oxidation effect. Temperature, steam and physical stress, when applied concurrently with the radiation field, can also influence the amount of absorbed dose required to produce a given change in the property being tested. Determining the degree of these influences and developing standardized test procedures to evaluate them have become the objective of several prominent research programs and international committee efforts. (author)

  3. Organic Material in the ISM

    Science.gov (United States)

    Pendleton, Yvonne; Morrison, David (Technical Monitor)

    1994-01-01

    Spectra of objects which lie along several lines of sight through the diffuse interstellar medium (ISM) all contain an absorption feature near 3.4 micrometers which has been attributed to saturated aliphatic hydrocarbons on interstellar grains. The similarity of the absorption bands near 3.4 micrometers along different lines of sight reveal that the carrier of this band lies in the diffuse dust. Several materials have been proposed as "fits" to the 3.4 micrometers feature over the years. A comparison of these identifications is presented. A remarkable similarity between the spectrum of the diffuse dust and an organic extract from the Murchison meteorite suggests that some of the interstellar organic material may be preserved in primitive solar system bodies. The optical depth/extinction tau /A(sub v) ratio for the 3.4 micrometers band is higher toward the Galactic center than toward sources which sample the interstellar medium in the local neighborhood. A similar trend has been observed previously for silicates, indicating that the two materials may be simultaneously enhanced in the Galactic center.

  4. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  5. Alteration in Taste Perception among Young Children during the use of Removable Orthodontic Appliance Therapy.

    Science.gov (United States)

    Razdan, Priyanka; Sakthivel, V S; Naqvi, Zuber A; Goyal, Vinod; Tripathi, Swati; Singh, Smita

    2017-07-01

    The sense of smell is very influential in the taste of foods. If the smell pleases us, we anticipate the taste of the food with a great deal of relish. If our sense of smell is impaired, so is our taste. The effect of appliance on taste perceptions has always had a controversial subject. The present study was designed to analyze the change in taste perception in children using removable orthodontic appliances. All the selected volunteers were given different taste stimuli and were asked to score as per their perception. The verbal score was calculated based on the correct and incorrect taste stimuli given to them. Visual analog scale was used to assess intensity and hedonic (palatability) estimation of the volunteers. The volunteers from both study and control groups scored different values for taste stimuli. The majority of stimuli were estimated correctly by both groups. There was no statistically significant difference between the study and control groups. In different testing sessions, the scoring of the volunteers was nearly constant, indicating that an appliance does not play a major role in the alteration of taste stimuli. The appliance brings about transient change in taste perception, we should educate the patient before delivering the appliance about the transient change in taste perception and encourage full-time wear of the appliance, including during meals, without fear of affecting taste sensations.

  6. Matters of taste: bridging molecular physiology and the humanities.

    Science.gov (United States)

    Rangachari, P K; Rangachari, Usha

    2015-12-01

    Taste perception was the focus of an undergraduate course in the health sciences that bridged the sciences and humanities. A problem-based learning approach was used to study the biological issues, whereas the cultural transmutations of these molecular mechanisms were explored using a variety of resources (novels, cookbooks, and films). Multiple evaluation procedures were used: problem summaries and problem-solving exercises (tripartite problem-solving exercise) for the problem-based learning component and group tasks and individual exercises for the cultural issues. Self-selected groups chose specific tasks from a prescribed list of options (setting up a journal in molecular gastronomy, developing an electronic tongue, designing a restaurant for synesthetes, organizing a farmers' market, marketing a culinary tour, framing hedonic scales, exploring changing tastes through works of art or recipe books, and crafting beers for space travel). Individual tasks were selected from a menu of options (book reviews, film reviews, conversations, creative writing, and oral exams). A few guest lecturers (wine making, cultural anthropology, film analysis, and nutritional epidemiology) added more flavor. The course was rated highly for its learning value (8.5 ± 1.2, n = 62) and helped students relate biological mechanisms to cultural issues (9.0 ± 0.9, n = 62). Copyright © 2015 The American Physiological Society.

  7. Self-organization in irradiated materials

    International Nuclear Information System (INIS)

    Gerasimenko, N.N.; Dzhamanbalin, K.K.; Medetov, N.A.

    2003-01-01

    Full text: By the present time a great deal of experimental material concerning self-organization in irradiated materials is stored. It means that in different materials (single crystal and amorphous semiconductor, metals, polymers) during one process of irradiation with accelerated particles or energetic quanta the structure previously disordered can be reordered to the previous or different order. These processes are considered separately from the processes of radiation-stimulated ordering when the renewal of the structure occurs as the result of extra irradiation, sometimes accompanied with another influence (heating, lighting, application of mechanical tensions). The processes of reordering are divided into two basic classes: the reconstruction of crystalline structure (1) and the formation of space-ordered system (2). The processes of ordering are considered with the use of synergetic approach and are analyzed conformably to the concrete conditions of new order appearance process realization in order to reveal the self-organization factor's role. The concrete experimental results of investigating of the radiation ordering processes are analyzed for different materials: semiconductor, metals, inorganic dielectrics, polymers. The ordering processes are examined from the point of their possible use in the technology of creating nano-dimensional structures general and quantum-dimensional ones in particular

  8. Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue.

    Science.gov (United States)

    Yee, Karen K; Li, Yan; Redding, Kevin M; Iwatsuki, Ken; Margolskee, Robert F; Jiang, Peihua

    2013-05-01

    Until recently, reliable markers for adult stem cells have been lacking for many regenerative mammalian tissues. Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5) has been identified as a marker for adult stem cells in intestine, stomach, and hair follicle; Lgr5-expressing cells give rise to all types of cells in these tissues. Taste epithelium also regenerates constantly, yet the identity of adult taste stem cells remains elusive. In this study, we found that Lgr5 is strongly expressed in cells at the bottom of trench areas at the base of circumvallate (CV) and foliate taste papillae and weakly expressed in the basal area of taste buds and that Lgr5-expressing cells in posterior tongue are a subset of K14-positive epithelial cells. Lineage-tracing experiments using an inducible Cre knockin allele in combination with Rosa26-LacZ and Rosa26-tdTomato reporter strains showed that Lgr5-expressing cells gave rise to taste cells, perigemmal cells, along with self-renewing cells at the bottom of trench areas at the base of CV and foliate papillae. Moreover, using subtype-specific taste markers, we found that Lgr5-expressing cell progeny include all three major types of adult taste cells. Our results indicate that Lgr5 may mark adult taste stem or progenitor cells in the posterior portion of the tongue. Copyright © 2013 AlphaMed Press.

  9. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.; Atoyo, Jonathan; Carnie, Matthew J.; Baran, Derya; Schroeder, Bob C.

    2017-01-01

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  10. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.

    2017-01-29

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  11. Disorders of Smell and Taste

    Science.gov (United States)

    ... RESOURCES Medical Societies Patient Education About this Website Font Size + - Home > CONDITIONS > Disorders of Smell & Taste Adult ... permanent smell loss. Patients who have had this type of loss describe immediate burning sensation when using ...

  12. Synthesis and characterization of a new organic semiconductor material

    Energy Technology Data Exchange (ETDEWEB)

    Tiffour, Imane [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); Dehbi, Abdelkader [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Mourad, Abdel-Hamid I., E-mail: ahmourad@uaeu.ac.ae [Mechanical Engineering Department, Faculty of Engineering, United Arab Emirates University, Al-Ain, P.O. Box 15551 (United Arab Emirates); Belfedal, Abdelkader [Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); LPCMME, Département de Physique, Université d' Oran Es-sénia, 3100 Oran (Algeria)

    2016-08-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε{sub r}, the activation energy E{sub a}, the optical transmittance T and the gap energy E{sub g} have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10{sup −5} S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10{sup −4} S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ{sub max}) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  13. Synthesis and characterization of a new organic semiconductor material

    International Nuclear Information System (INIS)

    Tiffour, Imane; Dehbi, Abdelkader; Mourad, Abdel-Hamid I.; Belfedal, Abdelkader

    2016-01-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε_r, the activation energy E_a, the optical transmittance T and the gap energy E_g have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10"−"5 S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10"−"4 S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ_m_a_x) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  14. A potential sex dimorphism in the relationship between bitter taste and alcohol consumption.

    Science.gov (United States)

    Beckett, Emma Louise; Duesing, Konsta; Boyd, Lyndell; Yates, Zoe; Veysey, Martin; Lucock, Mark

    2017-03-22

    Bitterness is an innate aversive taste important in detecting potentially toxic substances, including alcohol. However, bitter compounds exist in many foods and beverages, and can be desirable, such as in beer. TAS2R38 is a well-studied bitter taste receptor with common polymorphisms. Some have reported relationships between TAS2R38 genotypes, bitter taste phenotype and alcohol intake, however results have been mixed. These mixed results may be explained by the varying taste properties of different alcoholic beverages or a sex dimorphism in responses. Bitter taste phenotype was assessed using PROP taste test and TAS2R38-P49A genotype was assessed by RFLP-PCR. Alcohol intake was assessed by food frequency questionnaire and classified by beverage type (beer, wine, spirits or mixed drinks). The relationships between bitter taste phenotype and carriage of the P allele of the TAS2R38-A49P gene and alcohol intake were assessed adjusted for and stratified by sex, and the interaction between taste and sex was evaluated. The relationship between alcohol intake and bitter taste phenotype varied by beverage type, with significant results for beer, spirits and mixed drinks, but not wine. When stratified, results varied by sex, and were only significant in males. Significant interactions were found for taster phenotype and sex (total alcohol intake and intake of beer and spirits). Results were similar for carriage of the TAS2R38-P49A P allele. Sex-specific interactions between bitter taste phenotype, TAS2R38 genotype and alcohol intake may explain variance in previous studies and may have implications for sex-specific disease risk and public health interventions.

  15. Caffeine May Reduce Perceived Sweet Taste in Humans, Supporting Evidence That Adenosine Receptors Modulate Taste.

    Science.gov (United States)

    Choo, Ezen; Picket, Benjamin; Dando, Robin

    2017-09-01

    Multiple recent reports have detailed the presence of adenosine receptors in sweet sensitive taste cells of mice. These receptors are activated by endogenous adenosine in the plasma to enhance sweet signals within the taste bud, before reporting to the primary afferent. As we commonly consume caffeine, a powerful antagonist for such receptors, in our daily lives, an intriguing question we sought to answer was whether the caffeine we habitually consume in coffee can inhibit the perception of sweet taste in humans. 107 panelists were randomly assigned to 2 groups, sampling decaffeinated coffee supplemented with either 200 mg of caffeine, about the level found in a strong cup of coffee, or an equally bitter concentration of quinine. Participants subsequently performed sensory testing, with the session repeated in the alternative condition in a second session on a separate day. Panelists rated both the sweetened coffee itself and subsequent sucrose solutions as less sweet in the caffeine condition, despite the treatment having no effect on bitter, sour, salty, or umami perception. Panelists were also unable to discern whether they had consumed the caffeinated or noncaffeinated coffee, with ratings of alertness increased equally, but no significant improvement in reaction times, highlighting coffee's powerful placebo effect. This work validates earlier observations in rodents in a human population. © 2017 Institute of Food Technologists®.

  16. Differential involvement of cortical muscarinic and NMDA receptors in short- and long-term taste aversion memory.

    Science.gov (United States)

    Ferreira, G; Gutiérrez, R; De La Cruz, V; Bermúdez-Rattoni, F

    2002-09-01

    In conditioned taste aversion, an animal avoids a taste previously associated with toxic effects, and this aversive memory formation requires an intact insular cortex. In this paper, we investigated the possible differential involvement of cholinergic and glutamatergic receptors in the insular cortex in short-term memory (STM) and long-term memory (LTM) of taste aversion in rats. Taste aversion was induced by intraperitoneal administration of lithium chloride (a malaise-inducing drug) 15 min after experience with an unfamiliar taste. In order to test STM and LTM of taste aversion, taste stimulus was again presented 4 h and 72 h after lithium injection, respectively. During the acquisition, microinjection of the muscarinic antagonist, scopolamine, in the insular cortex before, but not after, the presentation of the new taste, abolished STM as well as LTM. Blockade of the NMDA receptor, in the insular cortex, by AP5 before, but not after, the presentation of the taste stimulus, impaired LTM but left STM intact. Moreover, when injected 1 h after malaise induction (i.e., during taste-illness association), AP5 disrupted both STM and LTM. These results suggest that activation of muscarinic receptors in the insular cortex is involved in the acquisition of taste memory, whereas NMDA receptors participate in taste memory consolidation. These data demonstrate that different neurochemical mechanisms subserve different memory phases. NMDA receptors are also probably involved in processing the visceral input, thus allowing subsequent taste-illness association. This indicates that in the same cortical area the same neurotransmitter system can be involved in distinct processes: taste memory consolidation vs. taste-illness association.

  17. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    Science.gov (United States)

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role

  18. Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness.

    Directory of Open Access Journals (Sweden)

    Daisuke Kohno

    2016-11-01

    Full Text Available The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC: glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanism underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2 and taste type 1 receptor 3 (T1R3 and senses sweet tastes. T1R2 and T1R3 receptors are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5 M-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentage of proopiomelanocortin (POMC neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular

  19. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca 2+ concentration ([Ca 2+ ] i ) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10 -5 -10 -2 M dose dependently increased [Ca 2+ ] i in 12-16% of ARC neurons. The sucralose-induced [Ca 2+ ] i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca 2+ ] i increase was inhibited under an extracellular Ca 2+ -free condition and in the presence of an L-type Ca 2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation

  20. Sodium butyrate into the insular cortex during conditioned taste-aversion acquisition delays aversive taste memory extinction.

    Science.gov (United States)

    Núñez-Jaramillo, Luis; Reyes-López, Julian; Miranda, María Isabel

    2014-04-16

    Histone acetylation is one mechanism that promotes gene expression, and it increases during learning of various tasks. Specifically, novel taste consumption produces an increased acetylation of histone lysine residues in the insular cortex (IC), where protein synthesis is crucial during memory consolidation of conditioned taste aversion (CTA). However, the role of this elevated histone acetylation during CTA learning has not been examined directly. Thus, the present study investigated the effects of sodium butyrate (NaBu), a histone deacetylase inhibitor, injected into the IC during CTA acquisition. Male Wistar rats, IC bilaterally implanted, were injected 60 min before saccharine presentation, with a total volume of 0.5 µl of NaBu solution (100, 500, and 10 µg/0.5 µl) or saline; 30 min later animals were injected intraperitoneally with lithium chloride, a malaise-inducing drug. The next day, CTA retrieval was tested. No effects of NaBu were observed during acquisition or retrieval, but during extinction trials, a significant delay in aversive memory extinction was observed in the group injected with the lowest NaBu dose. This result indicates that NaBu in the IC strengthens CTA and delays aversive memory extinction, and suggests that histone acetylation could increase long-term taste-aversive memory strength.

  1. Studies on the role of central histamine in the acquisition of a radiation-induced conditioned taste aversion

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1982-01-01

    The experiments described in this report were designed to test two hypotheses about how exposure to low-level radiation can affect the behavior of an organism: first, tht radiation effects on behavior are mediated by a radiation-induced release of histamine; and second, that this radiation-induced histamine release can exert relatively direct effects on the central nervous system. The results of the first experiment showed that microinjection of histamine directly into the fourth ventricle of rats produced a taste aversion to a novel sucrose solution. Pretreating rats with intraventricular H 1 or H 2 blockers was not effective in preventing the acquisition of the radiation-induced aversion, although the H 1 blocker did prevent the acquisition of a histamine-induced taste aversion. It also was not possible to establish a cross-tolerance between centrally administered histamine and radiation. The results are interpreted as not supporting the hypothesis that a radiation-induced release of central histamine mediates the acquisition of a conditioned taste aversion following exposure to low-level radiation

  2. Effect of the Dutch school-based education programme ‘Taste Lessons’ on behavioural determinants of taste acceptance and healthy eating: a quasi-experimental study

    NARCIS (Netherlands)

    Battjes-Fries, M.C.E.; Haveman-Nies, A.; Renes, R.J.; Meester, H.J.; Veer, van 't P.

    2015-01-01

    Objective To assess the effect of the Dutch school-based education programme ‘Taste Lessons’ on children’s behavioural determinants towards tasting unfamiliar foods and eating healthy and a variety of foods. Design In a quasi-experimental study design, data on behavioural determinants were collected

  3. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  4. Individual differences in bitter taste preferences are associated with antisocial personality traits.

    Science.gov (United States)

    Sagioglou, Christina; Greitemeyer, Tobias

    2016-01-01

    In two studies, we investigated how bitter taste preferences might be associated with antisocial personality traits. Two US American community samples (total N = 953; mean age = 35.65 years; 48% females) self-reported their taste preferences using two complementary preference measures and answered a number of personality questionnaires assessing Machiavellianism, psychopathy, narcissism, everyday sadism, trait aggression, and the Big Five factors of personality. The results of both studies confirmed the hypothesis that bitter taste preferences are positively associated with malevolent personality traits, with the most robust relation to everyday sadism and psychopathy. Regression analyses confirmed that this association holds when controlling for sweet, sour, and salty taste preferences and that bitter taste preferences are the overall strongest predictor compared to the other taste preferences. The data thereby provide novel insights into the relationship between personality and the ubiquitous behaviors of eating and drinking by consistently demonstrating a robust relation between increased enjoyment of bitter foods and heightened sadistic proclivities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Flexible organic electronic devices: Materials, process and applications

    International Nuclear Information System (INIS)

    Logothetidis, Stergios

    2008-01-01

    The research for the development of flexible organic electronic devices (FEDs) is rapidly increasing worldwide, since FEDs will change radically several aspects of everyday life. Although there has been considerable progress in the area of flexible inorganic devices (a-Si or solution processed Si), there are numerous advances in the organic (semiconducting, conducting and insulating), inorganic and hybrid (organic-inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinary efforts. Furthermore, the development and encapsulation of organic electronic devices onto flexible polymeric substrates by large-scale and low-cost roll-to-roll production processes will allow their market implementation in numerous application areas, including displays, lighting, photovoltaics, radio-frequency identification circuitry and chemical sensors, as well as to a new generation of modern exotic applications. In this work, we report on some of the latest advances in the fields of polymeric substrates, hybrid barrier layers, inorganic and organic materials to be used as novel active and functional thin films and nanomaterials as well as for the encapsulation of the materials components for the production of FEDs (flexible organic light-emitting diodes, and organic photovoltaics). Moreover, we will emphasize on the real-time optical monitoring and characterization of the growing films onto the flexible polymeric substrates by spectroscopic ellipsometry methods. Finally, the potentiality for the in-line characterization processes for the development of organic electronics materials will be emphasized, since it will also establish the framework for the achievement of the future scientific and technological breakthroughs

  6. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example...... investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can...... be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament...

  7. Landfill leachate effects on sorption of organic micropollutants onto aquifer materials

    DEFF Research Database (Denmark)

    Larsen, Thomas; Christensen, Thomas Højlund; Pfeffer, Fred M.

    1992-01-01

    The effect of dissolved organic carbon as present in landfill leachate, on the sorption of organic micropollutants in aquifer materials was studied by laboratory batch and column experiments involving 15 non-polar organic chemicals, 5 landfill leachates and 4 aquifer materials of low organic carbon......, the effect of landfill leachate on retardation of organic micropollutants in aquifer material seems limited....... content. The experiments showed that hydrophobic organic micropollutants do partition into dissolved organic carbon found in landfill leachate potentially increasing their mobility. However, landfill leachate interacted with aquifer materials apparently increases the sorbent affinity for the hydrophobic...

  8. Taste preferences, diet and overweight in European children: An epidemiological perspective

    OpenAIRE

    Lanfer, Anne

    2012-01-01

    This thesis investigated taste preferences of children from eight European countries. It is based on data from the epidemiological IDEFICS study. The methodological part of the thesis revealed that the reproducibility of the IDEFICS taste preference and -sensitivity tests was high while the reproducibility of the IDEFICS food frequency questionnaire (CEHQ-FFQ) was comparable to that of previous FFQs. Etiological analyses showed that country affiliation was the strongest predictor of taste pre...

  9. Measuring taste impairment in epidemiologic studies: the Beaver Dam Offspring Study.

    Science.gov (United States)

    Cruickshanks, K J; Schubert, C R; Snyder, D J; Bartoshuk, L M; Huang, G H; Klein, B E K; Klein, R; Nieto, F J; Pankow, J S; Tweed, T S; Krantz, E M; Moy, G S

    2009-07-01

    Taste or gustatory function may play an important role in determining diet and nutritional status and therefore indirectly impact health. Yet there have been few attempts to study the spectrum of taste function and dysfunction in human populations. Epidemiologic studies are needed to understand the impact of taste function and dysfunction on public health, to identify modifiable risk factors, and to develop and test strategies to prevent clinically significant dysfunction. However, measuring taste function in epidemiologic studies is challenging and requires repeatable, efficient methods that can measure change over time. Insights gained from translating laboratory-based methods to a population-based study, the Beaver Dam Offspring Study (BOSS) will be shared. In this study, a generalized labeled magnitude scale (gLMS) method was used to measure taste intensity of filter paper disks saturated with salt, sucrose, citric acid, quinine, or 6-n-propylthiouracil, and a gLMS measure of taste preferences was administered. In addition, a portable, inexpensive camera system to capture digital images of fungiform papillae and a masked grading system to measure the density of fungiform papillae were developed. Adult children of participants in the population-based Epidemiology of Hearing Loss Study in Beaver Dam, Wisconsin, are eligible for this ongoing study. The parents were residents of Beaver Dam and 43-84 years of age in 1987-1988; offspring ranged in age from 21-84 years in 2005-2008. Methods will be described in detail and preliminary results about the distributions of taste function in the BOSS cohort will be presented.

  10. Hot-melt extrusion microencapsulation of quercetin for taste-masking.

    Science.gov (United States)

    Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai

    2017-02-01

    Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.

  11. Late radiation effects on hearing, vestibular function, and taste in brain tumor patients

    International Nuclear Information System (INIS)

    Johannesen, Tom B.; Rasmussen, Kjell; Winther, Finn Oe.; Halvorsen, Ulf; Lote, Knut

    2002-01-01

    Purpose: To investigate late radiation effects on hearing, vestibular function, and taste after conventional radiotherapy in brain tumor patients. Methods and Materials: Hearing, vestibular function, and taste were assessed in 33 brain tumor patients irradiated unilaterally to the tumor-bearing hemisphere and the temporal bone. Median observation time after completion of radiotherapy was 13 years; the fraction dose was 1.8 Gy, and mean radiation dose was 53.1 Gy. Results: Deep ulceration in the external ear canal and osteoradionecrosis on the irradiated side was seen in three patients. Reduced hearing was found for air and bone conduction of the irradiated side compared to the opposite side (0.25-2 kHz: 6.1 dB, 4 kHz: 10.3 dB, 6 kHz: 15.6 dB, and 8 kHz: 16.5 dB). For bone conduction, the corresponding figures were 0.25-2 kHz: 5.5 dB and 4 kHz: 8.2 dB. Three patients had a canal paresis of the irradiated side, and three patients had affection of the chorda tympani. Conclusion: Irradiation of the temporal bone with doses usually given in the treatment of patients with brain tumors may cause osteoradionecrosis, sensorineural hearing loss, dysfunction of the vestibular inner ear, and loss of taste. Head-and-neck examination should be included in the follow-up of long-term survivors

  12. The effects of polaprezinc on radiation-induced taste alterations

    International Nuclear Information System (INIS)

    Nakamura, Katsumasa; Togao, Osamu; Shikama, Naoto

    2001-01-01

    The effects of polaprezinc (an insoluble zinc complex of L-carnosine) on taste abnormalities were investigated in 22 patients receiving radiation therapy to head and neck malignancies. The total doses to the tongue were 25.5-46.0 Gy (mean, 37.9 Gy). All patients received 75 mg of polaprezinc two times a day with an interval of 0-1,561 days (mean, 305.3 days) after the completion of radiation therapy. The duration of the drug administration was 25-353 days (mean, 96.9 days). Twenty patients (90.9%) were aware of an improv