WorldWideScience

Sample records for tass tunnel aespoe

  1. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    Energy Technology Data Exchange (ETDEWEB)

    Hardenby, Carljohan (Vattenfall Power Consultant AB (Sweden)); Sigurdsson, Oskar (HAskGeokonsult AB (Sweden))

    2010-12-15

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m2. As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories (&apos

  2. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    International Nuclear Information System (INIS)

    Hardenby, Carljohan; Sigurdsson, Oskar

    2010-12-01

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m 2 . As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories ('increased fracturing' and

  3. Examination of the Excavation Damaged Zone in the TASS tunnel, Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Mats (Swebrec, Luleaa Univ. of Technology, Luleaa (Sweden)); Markstroem, Ingemar; Pettersson, Anders; Straeng, Malin (Golder Associates, Uppsala (Sweden))

    2009-10-15

    The question of an existing continuous Excavation Damage Zone (EDZ) is very important for SKB. Is it possible to use drilling and blasting in the planned repository for spent nuclear fuel? Could fractures from blasting form a continuous EDZ? In order to increase the understanding of the EDZ and the possibility of an existing continuous EDZ along the deposition tunnel, SKB decided to examine the fracturing in a selected area of the TASS tunnel and to create a 3D model of the fractures in the investigated area. It was of special interest to study the transition zones between the blast rounds to examine if the EDZ from the bottom charges could form a continuous EDZ from one round to another. The TASS-tunnel is situated at the 450-m level in the Aespoe Hard Rock Laboratory. The tunnel, with a cross-section area of 20 m2, was planned to be 90 m long. In a subproject called Excavation the purpose was to test different plans for drilling, charging and initiation in order to give recommendations on how the final repository of spent fuel should be excavated. The test methodology used in this investigation comprised the following steps: selecting test area, drilling and wire sawing of blocks, surveying the blocks, removal and transportation of the blocks to the surface, cutting the blocks into slabs, fracture identification with penetrants, positioning and photographing the slabs, digitizing and 3D modelling of the fractures. The test area for EDZ consisted of an 8 m long and 1.5 m high section in excavation sequence no 4. The selected section covered the end of round 9, the entire round 10 and the start of round 11. In the contour and the helpers small diameter charges for smooth blasting were used (decoupled charges). These charges also have a relatively low detonation velocity (VOD) and this, together with the decoupling, gives short fracture lengths i.e. a small EDZ. The contour holes and the helpers were initiated with electronic detonators to achieve a simultaneous

  4. Examination of the Excavation Damaged Zone in the TASS tunnel, Aespoe HRL

    International Nuclear Information System (INIS)

    Olsson, Mats; Markstroem, Ingemar; Pettersson, Anders; Straeng, Malin

    2009-10-01

    The question of an existing continuous Excavation Damage Zone (EDZ) is very important for SKB. Is it possible to use drilling and blasting in the planned repository for spent nuclear fuel? Could fractures from blasting form a continuous EDZ? In order to increase the understanding of the EDZ and the possibility of an existing continuous EDZ along the deposition tunnel, SKB decided to examine the fracturing in a selected area of the TASS tunnel and to create a 3D model of the fractures in the investigated area. It was of special interest to study the transition zones between the blast rounds to examine if the EDZ from the bottom charges could form a continuous EDZ from one round to another. The TASS-tunnel is situated at the 450-m level in the Aespoe Hard Rock Laboratory. The tunnel, with a cross-section area of 20 m 2 , was planned to be 90 m long. In a subproject called Excavation the purpose was to test different plans for drilling, charging and initiation in order to give recommendations on how the final repository of spent fuel should be excavated. The test methodology used in this investigation comprised the following steps: selecting test area, drilling and wire sawing of blocks, surveying the blocks, removal and transportation of the blocks to the surface, cutting the blocks into slabs, fracture identification with penetrants, positioning and photographing the slabs, digitizing and 3D modelling of the fractures. The test area for EDZ consisted of an 8 m long and 1.5 m high section in excavation sequence no 4. The selected section covered the end of round 9, the entire round 10 and the start of round 11. In the contour and the helpers small diameter charges for smooth blasting were used (decoupled charges). These charges also have a relatively low detonation velocity (VOD) and this, together with the decoupling, gives short fracture lengths i.e. a small EDZ. The contour holes and the helpers were initiated with electronic detonators to achieve a simultaneous

  5. The injection of TASS-tunnel. Design, implementation and results from the pre-injection; Injekteringen av TASS-tunneln. Design, genomfoerande och resultat fraan foerinjekteringen

    Energy Technology Data Exchange (ETDEWEB)

    Funehag, Johan (Chalmers university of technology, Goeteborg (Sweden)); Emmelin, Ann (Golder Associates (Sweden))

    2011-06-15

    The Swedish repository facility for spent nuclear fuel will be placed in crystalline rock at a depth of 400-500 m. In order to limit groundwater inflow to the facility, grouting is planned. To comply with the stringent material, execution and inflow restrictions, a series of research and development projects concerned with rock characterization for grouting, grouting materials and grouting design have been carried out by the Swedish Nuclear Fuel and Waste Management Co (SKB). The understanding and methods developed were tested in the sealing project carried out at Aespoe Hard Rock Laboratory (Aespoe HRL), Sweden, and presented in this report. The project consisted of the construction of a short tunnel at 450 m depth, the TASS-tunnel. Grouting was conducted as pre-grouting using ordinary grouting fans outside the planned tunnel contour, as well as with grout holes entirely within the planned contour. A cement-based low-pH grout and a silica based grouting agent, silica sol, were used. The methodology used included determination of the fracture transmissivity distribution; identification of the smallest hydraulic aperture that needs to be sealed; grout selection based on fracture aperture and grout penetrability; design of grout hole geometry, grouting pressure and time in order to achieve the penetration length required; and monitoring of the actual execution based on inflow in control holes with subsequent design revision. Special concern was given to equipment and execution due to the high groundwater pressures, 3.5 MPa. Before starting the construction, inflow to core drilled holes along the tunnel position amounted to 45-90 liters/minute. The project showed that it was possible to limit the inflow to the target value 1 liter/minute per 60 m tunnel

  6. Injection sealing of the TASS tunnel. Progress report

    International Nuclear Information System (INIS)

    Funehag, Johan

    2008-12-01

    SKB's disposal facility is planned to be located approx. 400-500 m deep and the demands of its water tightness will be very high. The plant will be located in relatively fault-free rock with limited discharge and sealing will be carried out by injection. Given the very fine cracks that need to be sealed and the strong desire to use an injection material which generate a leachate with a pH lower than 11, SKB performs studies of silica sol and cement-based mortar with low pH in order to be able to use these in the sealing works. In the sealing project a 100 m long tunnel is constructed, the TASS tunnel at a depth of 450 min at SKB's rock laboratory on Aespoe. This report includes the results obtained until September 2008. At this date the injection stages 1, 2, and half of stage 3 have been done and preparation for Stage 3 is ongoing. The tunnel has reached a length of 55.5 m and the results from leaching measurements exist for stage 2 (Section 10-34 m). Both cement-based mortar with low pH and silica sol has been used, but cement-based mortar has been used only in relatively small scale. The cement-based mortar is developed especially for the repository. Silica sol used a particle size of about 25 nm and accelerator in the form of sodium chloride. The limit for inward leakage in the tunnel is 1 l/min and 60 m tunnel. Groundwater pressure was found to be 3.0-3.5 MPa. Past results obtained from Stage 2 indicate that injection shields fulfil the rate requirement over a 23 meter distance. The control holes drilled in the screens have been used to gradually steer the injection and to demonstrate a direct sealing effect of the screens. A controllable gelation time is necessary for efficient and controllable injection. Used mixing procedure has been proven to work and intended gelation times have been achieved. The two cement-based mortar mixtures for crack injection used in the project are robust and have desirable properties. Design methodology linking borehole distance

  7. Injection sealing of the TASS tunnel. Progress report; Injekteringen av TASS-tunneln. Delresultat t o m september 2008

    Energy Technology Data Exchange (ETDEWEB)

    Funehag, Johan (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2008-12-15

    SKB's disposal facility is planned to be located approx. 400-500 m deep and the demands of its water tightness will be very high. The plant will be located in relatively fault-free rock with limited discharge and sealing will be carried out by injection. Given the very fine cracks that need to be sealed and the strong desire to use an injection material which generate a leachate with a pH lower than 11, SKB performs studies of silica sol and cement-based mortar with low pH in order to be able to use these in the sealing works. In the sealing project a 100 m long tunnel is constructed, the TASS tunnel at a depth of 450 min at SKB's rock laboratory on Aespoe. This report includes the results obtained until September 2008. At this date the injection stages 1, 2, and half of stage 3 have been done and preparation for Stage 3 is ongoing. The tunnel has reached a length of 55.5 m and the results from leaching measurements exist for stage 2 (Section 10-34 m). Both cement-based mortar with low pH and silica sol has been used, but cement-based mortar has been used only in relatively small scale. The cement-based mortar is developed especially for the repository. Silica sol used a particle size of about 25 nm and accelerator in the form of sodium chloride. The limit for inward leakage in the tunnel is 1 l/min and 60 m tunnel. Groundwater pressure was found to be 3.0-3.5 MPa. Past results obtained from Stage 2 indicate that injection shields fulfil the rate requirement over a 23 meter distance. The control holes drilled in the screens have been used to gradually steer the injection and to demonstrate a direct sealing effect of the screens. A controllable gelation time is necessary for efficient and controllable injection. Used mixing procedure has been proven to work and intended gelation times have been achieved. The two cement-based mortar mixtures for crack injection used in the project are robust and have desirable properties. Design methodology linking borehole

  8. Final report of the drive of the TASS-tunnel; Slutrapport fraan drivningen av TASS-tunneln

    Energy Technology Data Exchange (ETDEWEB)

    Karlzen, Rickard; Johansson, Emmeli (Svensk Kaernbraenslehantering AB (Sweden))

    2010-05-15

    When building the Final repository for spent Nuclear Fuel it is of importance for Swedish Nuclear Fuel and Waste Management Co (SKB) to be able to show that long term safety can be obtained by the three barriers that are included in the KBS-3 final repository. The backfill refers to the material that will be installed in deposition tunnels in order to backfill them and its purpose is to maintain the multiple barrier function by keeping the buffer at place and minimize the water inflow to the tunnel. This means that it is of importance to achieve good contour with minimal dispersal of excavation damaged zone (EDZ). The hydrological properties of the backfill and the EDZ will affect the large scale hydrological conductivity of the deposition tunnels. From the end of 2007 to the end of 2008 SKB excavated an approximately 90 m long and 19 m2 cross cut tunnel named TASS at the Aespoe Hard rock laboratory. The excavation of the tunnel was made by the project 'Sealing of tunnel at great depth'. The ambition in the two subprojects that controlled the excavation of the tunnel was to excavate a tunnel in the best possible way. Earlier research and experiences in tunnel excavation has been used to place demands on performance and how it should be documented. By doing so it has been possible to ensure that the excavation of the tunnel was done in a controlled and traceable way so it can be repeatable and that it has been possible to estimate contour and minimize EDZ. The system that was developed during the excavation of the tunnel to maintain motivation, ensure traceability within the documentation and quality of performed work has worked well and are recommended to be used in future projects. The parameters that are important for the performance should be follow-up with short intervals and the feedback shall be fast and precise, which will increase the motivation at the same time as mistakes won't be systematic in the production. The administrative work with

  9. Aespoe Hard Rock Laboratory. Annual Report 2008

    International Nuclear Information System (INIS)

    2009-07-01

    Materials is to study clay materials that in laboratory tests have shown to be conceivable buffer materials. Three test parcels with different combinations of clay materials are installed in boreholes at Aespoe HRL; The Backfill and Plug Test is a test of the hydraulic and mechanical function of different backfill materials, emplacement methods and a full-scale plug; The aim of the Canister Retrieval Test was to demonstrate readiness for recovering emplaced canisters even after the time when the surrounding bentonite buffer is fully saturated; The Temperature Buffer Test aims at improving our current understanding of the thermo-hydromechanical behaviour of buffers with a temperature around and above 100 deg C during the water saturation transient. The main goal of the project Sealing of Tunnel at Great Depth is to confirm that silica sol is a useful grout at the water pressures prevailing at repository level. To achieve this, the Tass-tunnel has been constructed at the -450 m level at Aespoe HRL. The objective of the project In situ Corrosion Testing of Miniature Canisters is to obtain a better understanding of the corrosion processes inside a failed canister. In Aespoe HRL in situ experiments are performed with miniature copper canisters with cast iron inserts. The Task Force on Engineered Barrier Systems addresses, in the first phase, two tasks: (1) THM processes and (2) gas migration in buffer material. However, at the end of 2006 it was decided to start a parallel Task Force that deals with geochemical processes in engineered barriers. During 2008, two Task Force meetings have been held. In Benchmark 1 (laboratory tests) the modelling of THM processes and gas breakthrough is finalised. In Benchmark 2 (large scale field tests) the main work has been within modelling of the Canister retrieval test at Aespoe HRL and the finalising of the modelling of the URL tests. Laboratory experiments and results from the experiment Long term test of buffer materials have been used as

  10. Aespoe Hard Rock Laboratory. Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-15

    Buffer Materials is to study clay materials that in laboratory tests have shown to be conceivable buffer materials. Three test parcels with different combinations of clay materials are installed in boreholes at Aespoe HRL; The Backfill and Plug Test is a test of the hydraulic and mechanical function of different backfill materials, emplacement methods and a full-scale plug; The aim of the Canister Retrieval Test was to demonstrate readiness for recovering emplaced canisters even after the time when the surrounding bentonite buffer is fully saturated; The Temperature Buffer Test aims at improving our current understanding of the thermo-hydromechanical behaviour of buffers with a temperature around and above 100 deg C during the water saturation transient. The main goal of the project Sealing of Tunnel at Great Depth is to confirm that silica sol is a useful grout at the water pressures prevailing at repository level. To achieve this, the Tass-tunnel has been constructed at the -450 m level at Aespoe HRL. The objective of the project In situ Corrosion Testing of Miniature Canisters is to obtain a better understanding of the corrosion processes inside a failed canister. In Aespoe HRL in situ experiments are performed with miniature copper canisters with cast iron inserts. The Task Force on Engineered Barrier Systems addresses, in the first phase, two tasks: (1) THM processes and (2) gas migration in buffer material. However, at the end of 2006 it was decided to start a parallel Task Force that deals with geochemical processes in engineered barriers. During 2008, two Task Force meetings have been held. In Benchmark 1 (laboratory tests) the modelling of THM processes and gas breakthrough is finalised. In Benchmark 2 (large scale field tests) the main work has been within modelling of the Canister retrieval test at Aespoe HRL and the finalising of the modelling of the URL tests. Laboratory experiments and results from the experiment Long term test of buffer materials have been

  11. TASS code topical report. V.1 TASS code technical manual

    International Nuclear Information System (INIS)

    Sim, Suk K.; Chang, W. P.; Kim, K. D.; Kim, H. C.; Yoon, H. Y.

    1997-02-01

    TASS 1.0 code has been developed at KAERI for the initial and reload non-LOCA safety analysis for the operating PWRs as well as the PWRs under construction in Korea. TASS code will replace various vendor's non-LOCA safety analysis codes currently used for the Westinghouse and ABB-CE type PWRs in Korea. This can be achieved through TASS code input modifications specific to each reactor type. The TASS code can be run interactively through the keyboard operation. A simimodular configuration used in developing the TASS code enables the user easily implement new models. TASS code has been programmed using FORTRAN77 which makes it easy to install and port for different computer environments. The TASS code can be utilized for the steady state simulation as well as the non-LOCA transient simulations such as power excursions, reactor coolant pump trips, load rejections, loss of feedwater, steam line breaks, steam generator tube ruptures, rod withdrawal and drop, and anticipated transients without scram (ATWS). The malfunctions of the control systems, components, operator actions and the transients caused by the malfunctions can be easily simulated using the TASS code. This technical report describes the TASS 1.0 code models including reactor thermal hydraulic, reactor core and control models. This TASS code models including reactor thermal hydraulic, reactor core and control models. This TASS code technical manual has been prepared as a part of the TASS code manual which includes TASS code user's manual and TASS code validation report, and will be submitted to the regulatory body as a TASS code topical report for a licensing non-LOCA safety analysis for the Westinghouse and ABB-CE type PWRs operating and under construction in Korea. (author). 42 refs., 29 tabs., 32 figs

  12. Sulphate reduction in the Aespoe HRL tunnel

    International Nuclear Information System (INIS)

    Gustafson, G.; Pedersen, K.; Tullborg, E.L.; Wallin, B.; Wikberg, P.

    1995-12-01

    Evidence and indications of sulphate reduction based on geological, hydrogeological, groundwater, isotope and microbial data gathered in and around the Aespoe Hard Rock Laboratory tunnel have been evaluated. This integrated investigation showed that sulphate reduction had taken place in the past but is most likely also an ongoing process. Anaerobic sulphate-reducing bacteria can live in marine sediments, in the tunnel sections under the sea and in deep groundwaters, since there is no access to oxygen. The sulphate-reducing bacteria seem to thrive when the Cl - concentration of the groundwater is 4000-6000 mg/l. Sulphate reduction is an in situ process but the resulting hydrogen-sulphide rich water can be transported to other locations. A more vigorous sulphate reduction takes place when the organic content in the groundwater is high (>10 mg/l DOC) which is the case in the sediments and in the groundwaters under the sea. Some bacteria use hydrogen as an electron donor instead of organic carbon and can therefore live in deep environments where access to organic material is limited. The sulphate-reducing bacteria seem to adapt to changing flow situations caused by the tunnel construction relatively fast. Sulphate reduction seems to have occurred and will probably occur where conditions are favourable for the sulphate-reducing bacteria such as anaerobic brackish groundwater with dissolved sulphate and organic carbon or hydrogen. 59 refs, 37 figs, 6 tabs

  13. Aespoe hard rock laboratory. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2010 is given below

  14. Aespoe Hard Rock Laboratory. Annual Report 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2011 is given below.

  15. Aespoe hard rock laboratory. Annual report 2010

    International Nuclear Information System (INIS)

    2011-02-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2010 is given below

  16. Aespoe Hard Rock Laboratory. Annual Report 2011

    International Nuclear Information System (INIS)

    2012-03-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2011 is given below

  17. Aespoe hard rock laboratory. Annual report 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2010 is given below

  18. Development of TASS-NPA

    International Nuclear Information System (INIS)

    Sim, Suk ku; Kim, Hee Kyung; Kim, Hee Cheol

    1999-03-01

    TASS 1.0 is consisted of two parts. First part analyze the reactor transients and calculates system parameters during the transients. This part comprises the program of the primary and secondary thermal hydraulic model, the core model, the transfer model, the protection and the control system. The second part is the TASS executive routine. This part provides an operating system for TASS. The user can execute TASS with above models interactively through the TASS executive routine. But TASS executive routine is very large and the function is restricted. The development of GRIS( Graphical Routines for Interactive Simulation) was initiated to overcome the limitation of the TASS executive routine. TASS-NPA was developed based on GRIS. TASS-NPA simulation can be performed on Windows 95 and Window Nt of IBM Pc. The verification of the TASS-NPA function was performed with the Feed Water Line Break of Kori 3/4. (Author). 6 refs., 3 tabs., 26 figs

  19. Aespoe Hard Rock Laboratory. Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. The work performed at Aespoe HRL during 2006 is in this report described in six chapters: Geo-science - experiments, analysis and modelling to increase the knowledge of the surrounding rock; Natural barriers - experiments, analysis and modelling to increase the knowledge of the repository barriers under natural conditions; Engineered barriers - demonstration of technology for and function of important engineered parts of the repository barrier system; Aespoe facility - operation, maintenance, data management, monitoring, public relations etc; Environmental research; and finally, International co-operation.

  20. Aespoe Hard Rock Laboratory. Annual Report 2006

    International Nuclear Information System (INIS)

    2006-06-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. The work performed at Aespoe HRL during 2006 is in this report described in six chapters: Geo-science - experiments, analysis and modelling to increase the knowledge of the surrounding rock; Natural barriers - experiments, analysis and modelling to increase the knowledge of the repository barriers under natural conditions; Engineered barriers - demonstration of technology for and function of important engineered parts of the repository barrier system; Aespoe facility - operation, maintenance, data management, monitoring, public relations etc; Environmental research; and finally, International co-operation

  1. Aespoe HRL. Experiences of blasting of the TASQ tunnel

    International Nuclear Information System (INIS)

    Olsson, Mats; Niklasson, Bengt; Wilson, Lasse; Andersson, Christer; Christiansson, Rolf

    2004-11-01

    A new tunnel was developed at the Aespoe Hard Rock Laboratory (AHRL) during the spring and summer 2003. The tunnel was specially designed for a rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). In this pillar experiment there was a high demand to initiate high in-situ stresses and therefore the tunnel was designed with a large height/ width ratio and with a circular floor. There were high requirements on bore hole precision and of a minimized EDZ (Excavation damaged zone) in the pillar area. This included a maximum borehole deviation of 10 mm/m, a maximum overbreak due to the lookout angle of 0.3 m and an EDZ of 0.3 m. To make a charge control feasible cartridged explosives was prescribed. The initiation was made with Nonel. The last three rounds used electronic initiation to enable studies of possibility to further reduce the EDZ. The collar of the tunnel was very close to installations and shaft and it was very important to avoid fly-rock and vibrations. Special types of stemming were used as well as steel plates and rubber mats. The excavation works was divided in three different phases. The first phase of the tunnel was an ordinary 26 m 2 tunnel. After approximately 30 m a ramp separated the tunnel section into a top heading and a bench, total 33 m 2 . After the last top heading round was excavated and the roof had been reinforced with fibre reinforced shotcrete the bench was taken out with horizontal holes as the third phase. The drilling precision was very good and 95% of all half-pipes fulfilled the demands. The total amount of visible half-pipes in the APSE-tunnel was high and indicated a successful smooth blasting. The EDZ was examined further by cutting slots in the wall and roof. Existing cracks appear very clearly when a dye penetrant is sprayed on the cleaned surface. A typical crack pattern consists of blast cracks, induced cracks (cracks from the distressing caused by blasting) and natural cracks. The maximum crack length in

  2. Aespoe HRL. Experiences of blasting of the TASQ tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Mats [Swebrec, Luleaa (Sweden); Niklasson, Bengt [Skanska Teknik, Stockholm (Sweden); Wilson, Lasse [Skanska Stora Projekt, Stockholm (Sweden); Andersson, Christer; Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-11-01

    A new tunnel was developed at the Aespoe Hard Rock Laboratory (AHRL) during the spring and summer 2003. The tunnel was specially designed for a rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). In this pillar experiment there was a high demand to initiate high in-situ stresses and therefore the tunnel was designed with a large height/ width ratio and with a circular floor. There were high requirements on bore hole precision and of a minimized EDZ (Excavation damaged zone) in the pillar area. This included a maximum borehole deviation of 10 mm/m, a maximum overbreak due to the lookout angle of 0.3 m and an EDZ of 0.3 m. To make a charge control feasible cartridged explosives was prescribed. The initiation was made with Nonel. The last three rounds used electronic initiation to enable studies of possibility to further reduce the EDZ. The collar of the tunnel was very close to installations and shaft and it was very important to avoid fly-rock and vibrations. Special types of stemming were used as well as steel plates and rubber mats. The excavation works was divided in three different phases. The first phase of the tunnel was an ordinary 26 m{sup 2} tunnel. After approximately 30 m a ramp separated the tunnel section into a top heading and a bench, total 33 m{sup 2}. After the last top heading round was excavated and the roof had been reinforced with fibre reinforced shotcrete the bench was taken out with horizontal holes as the third phase. The drilling precision was very good and 95% of all half-pipes fulfilled the demands. The total amount of visible half-pipes in the APSE-tunnel was high and indicated a successful smooth blasting. The EDZ was examined further by cutting slots in the wall and roof. Existing cracks appear very clearly when a dye penetrant is sprayed on the cleaned surface. A typical crack pattern consists of blast cracks, induced cracks (cracks from the distressing caused by blasting) and natural cracks. The maximum crack

  3. Aespoe Hard Rock Laboratory. Evaluation of scaling records for TASA access tunnel

    International Nuclear Information System (INIS)

    Ittner, Henrik

    2009-01-01

    This report presents the result of a project accomplished during the summer 2009. It introduces a method to estimate the magnitude, mass distribution and cause of scaled blocks by tunnel mapping and evaluation of scaling data records. These issues are important for understanding the impact of the excavation method on the surrounding rock mass during excavation of the planned underground repository for spent nuclear fuel. The project includes mapping of the 3120 m drill and blast excavated part of the TASA access tunnel in the Aespoe Hard Rock Laboratory (HRL). In addition it includes development of a method for evaluation of the collected material together with scaling data records from the Site Characterization Database (SICADA). An interview has also been held with Erik Gabrielsson, who has been in charge of tunnel maintenance at Aespoe for many years. The mapping focused on to identify size and cause of areas with significant overbreaks in the tunnel roof. By distributing documented scaled volume in a tunnel section on several mapped overbreak areas in the same section it is possible to reconstruct the size of scaled blocks. The observed overbreak areas have been categorized in five different area types, depending on the cause of scaling: two geologically induced, one blast induced, one induced from a combination of geology and blasting and one unable to place in any category. For the calculated mass distribution the number of observations is declining with increasing block mass. 11% of the total blocks exceeding 400 Kg and 75% of the scaled blocks weights under 200 Kg. Most of the blocks are however lighter with 34% weighting 50 Kg or less. There is a relation between the mapped area type and the size distribution among the mapped overbreak areas. For example the areas caused by the end of blasting rounds are more frequently appearing then the other types but most of them are small in relation to the others The impression achieved from the tunnel mapping is

  4. Aespoe Hard Rock Laboratory. Evaluation of scaling records for TASA access tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Ittner, Henrik (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-07-01

    This report presents the result of a project accomplished during the summer 2009. It introduces a method to estimate the magnitude, mass distribution and cause of scaled blocks by tunnel mapping and evaluation of scaling data records. These issues are important for understanding the impact of the excavation method on the surrounding rock mass during excavation of the planned underground repository for spent nuclear fuel. The project includes mapping of the 3120 m drill and blast excavated part of the TASA access tunnel in the Aespoe Hard Rock Laboratory (HRL). In addition it includes development of a method for evaluation of the collected material together with scaling data records from the Site Characterization Database (SICADA). An interview has also been held with Erik Gabrielsson, who has been in charge of tunnel maintenance at Aespoe for many years. The mapping focused on to identify size and cause of areas with significant overbreaks in the tunnel roof. By distributing documented scaled volume in a tunnel section on several mapped overbreak areas in the same section it is possible to reconstruct the size of scaled blocks. The observed overbreak areas have been categorized in five different area types, depending on the cause of scaling: two geologically induced, one blast induced, one induced from a combination of geology and blasting and one unable to place in any category. For the calculated mass distribution the number of observations is declining with increasing block mass. 11% of the total blocks exceeding 400 Kg and 75% of the scaled blocks weights under 200 Kg. Most of the blocks are however lighter with 34% weighting 50 Kg or less. There is a relation between the mapped area type and the size distribution among the mapped overbreak areas. For example the areas caused by the end of blasting rounds are more frequently appearing then the other types but most of them are small in relation to the others The impression achieved from the tunnel mapping is

  5. Subglacial groundwater flow at Aespoe as governed by basal melting and ice tunnels

    International Nuclear Information System (INIS)

    Svensson, Urban

    1999-02-01

    A high resolution three dimensional numerical model of subglacial groundwater flow is described. The model uses conductivity data from the Aespoe region and is thus site specific. It is assumed that the groundwater flow is governed by the basal melting and ice tunnels; ice surface melting is not considered. Results are presented for the meltwater transport time (to the ice margin) and maximum penetration depth. Conditions at repository depth, i.e. about 500 metres, are also analysed. The general conclusion from the study is that the model presented gives plausible results, considering the basic conceptual assumptions made. It is however questioned if the hydraulics of the ice tunnels is well enough understood; this is a topic that is suggested for further studies

  6. Rock mechanical conditions at the Aespoe HRL. A study of the correlation between geology, tunnel maintenance and tunnel shape

    International Nuclear Information System (INIS)

    Andersson, Christer; Soederhaell, Joergen

    2001-12-01

    Maintenance records including scaling, shotcreting and bolting have been kept since the excavation start of Aespoe HRL 1990 together with records of groundwater flow and all other activities taking place in the tunnels. When the facility was constructed one objective was to limit the rock support as much as possible. The reason for this was that it should be possible to go back and easily study the exposed rock surface. Support during the operational phase has only been carried out where and when necessary. This type of maintenance and its location is documented in the digital database each time. The maintenance records have been compiled and areas requiring more maintenance than average noted. An interview has also been held with one of the miners conducting scaling and bolting in the tunnel. His experiences together with the study of the database maintenance records led to the selection of certain areas in the tunnel to be studied by numerical modelling. The probable reason for the need of additional maintenance in all areas, not only these numerically modelled, has been investigated. Almost all maintenance in the main tunnel both during construction and the operational phase has been located in the widened curves of the access tunnel. The maintenance is also located in areas containing veins or intrusions of Smaaland granite or fine-grained granite. These areas are often located in fracture zones of different sizes or show an increasing fracture frequency. The areas numerically modelled indicate stress concentrations or unloaded stress conditions. The stress concentrations are created by the geometry of the niches and side-tunnels in relation to the in situ stress field. The angle between the tunnel and the major principal stress has an impact on the need for maintenance. The areas with the largest angles towards the principal stress direction need more maintenance than the areas almost parallel to the major principal stress direction. The maintenance work in

  7. Toxic Anterior Segment Syndrome (TASS

    Directory of Open Access Journals (Sweden)

    Özlem Öner

    2011-12-01

    Full Text Available Toxic anterior segment syndrome (TASS is a sterile intraocular inflammation caused by noninfectious substances, resulting in extensive toxic damage to the intraocular tissues. Possible etiologic factors of TASS include surgical trauma, bacterial endotoxin, intraocular solutions with inappropriate pH and osmolality, preservatives, denatured ophthalmic viscosurgical devices (OVD, inadequate sterilization, cleaning and rinsing of surgical devices, intraocular lenses, polishing and sterilizing compounds which are related to intraocular lenses. The characteristic signs and symptoms such as blurred vision, corneal edema, hypopyon and nonreactive pupil usually occur 24 hours after the cataract surgery. The differential diagnosis of TASS from infectious endophthalmitis is important. The main treatment for TASS formation is prevention. TASS is a cataract surgery complication that is more commonly seen nowadays. In this article, the possible underlying causes as well as treatment and prevention methods of TASS are summarized. (Turk J Oph thal mol 2011; 41: 407-13

  8. Aespoe Hard Rock Laboratory. Interpretation of conductive features at the -450 m level, Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Markstroem, Ingemar; Bockgaard, Niklas (Golder Associates (Sweden)); Hardenby, Carljohan (Vattenfall Power Consultant, Stockholm (Sweden)); Hultgren, Peter (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-05-15

    The interpretation of conductive features at the -450 m described in this report concerns a part of the tunnel system of the Aespoe Hard Rock Laboratory (Aespoe HRL). The result of the modelling work is presented as an RVS-model (Rock Visualization System). When drilling some bore holes for the Mini-Can Project in the NASA3384A niche at Aespoe HRL some highly transmissive structures were penetrated. This gave a pressure drop response particularly in the Micobe experiment area (the end of TASJ-tunnel) but also in some adjacent areas at the same level. To better understand the complex hydraulic conditions of this part of the tunnel system it was understood that a new interpretation of conductive features was needed. The length axis of the model volume runs along the TASA-tunnel from section 3/260-3/600 m (end of tunnel in the Prototype repository). Laterally the model volume reaches 80 m perpendicular to the length axis in both directions and vertically it reaches to the 350 m and 500 m level respectively. All major water-bearing structures recorded by previously performed geological mapping of the tunnels and drifts (TASF, TASI, TASJ, TASG, TASQ and TASA) at this level of the Aespoe HRL were considered and formed the base for the modelling work. Also some potentially water-bearing open fractures in the tunnels were taken into account. Structures considered as large are those that can be traced over most of a tunnel periphery. No particular concern has been taken about deformation zones unless they were water bearing or acted as hydraulic barriers. A total of 212 cored boreholes penetrated or were identified close to the model volume. 39 of these were intersected by the modelled structures. Various features such as open fractures, fractures identified by bore hole radar, RQD, water inflow etc. were used in the modelling work. A number of earlier RVS-models such as the Geomod, the APSE, the Prototype, the TRUE BS model etc. that have been created within or close to

  9. Aespoe Hard Rock Laboratory. Interpretation of conductive features at the -450 m level, Aespoe

    International Nuclear Information System (INIS)

    Markstroem, Ingemar; Bockgaard, Niklas; Hardenby, Carljohan; Hultgren, Peter

    2010-05-01

    The interpretation of conductive features at the -450 m described in this report concerns a part of the tunnel system of the Aespoe Hard Rock Laboratory (Aespoe HRL). The result of the modelling work is presented as an RVS-model (Rock Visualization System). When drilling some bore holes for the Mini-Can Project in the NASA3384A niche at Aespoe HRL some highly transmissive structures were penetrated. This gave a pressure drop response particularly in the Micobe experiment area (the end of TASJ-tunnel) but also in some adjacent areas at the same level. To better understand the complex hydraulic conditions of this part of the tunnel system it was understood that a new interpretation of conductive features was needed. The length axis of the model volume runs along the TASA-tunnel from section 3/260-3/600 m (end of tunnel in the Prototype repository). Laterally the model volume reaches 80 m perpendicular to the length axis in both directions and vertically it reaches to the 350 m and 500 m level respectively. All major water-bearing structures recorded by previously performed geological mapping of the tunnels and drifts (TASF, TASI, TASJ, TASG, TASQ and TASA) at this level of the Aespoe HRL were considered and formed the base for the modelling work. Also some potentially water-bearing open fractures in the tunnels were taken into account. Structures considered as large are those that can be traced over most of a tunnel periphery. No particular concern has been taken about deformation zones unless they were water bearing or acted as hydraulic barriers. A total of 212 cored boreholes penetrated or were identified close to the model volume. 39 of these were intersected by the modelled structures. Various features such as open fractures, fractures identified by bore hole radar, RQD, water inflow etc. were used in the modelling work. A number of earlier RVS-models such as the Geomod, the APSE, the Prototype, the TRUE BS model etc. that have been created within or close to

  10. Relativistic nuclear collisions: TASS

    International Nuclear Information System (INIS)

    Pugh, H.G.; Schroeder, L.S.; Sandoval, A.

    1985-01-01

    The Two-Arm Spectrometer System (TASS) consists of two fully rotatable magnets with accompanying wire chambers and scintillation hodoscopes for particle identification. It was first operated in July 1980 and the first phase of instrumentation and experiments was completed in mid-1983. The present activities on TASS primarily concern pion and lepton spectrometry

  11. Thermal hydraulic model descrition of TASS/SMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Han Young; Kim, H. C.; Chung, Y. J.; Lim, H. S.; Yang, S. H

    2001-04-01

    The TASS/SMR code has been developed for the safety analysis of SMART. The governing equations were applied only to the primary coolant system in TASS which had been developed at KAERI. In TASS/SMR, the solution method is improved so that the primary and secondary coolant systems are solved simultaneously. Besides the solution method, thermal-hydraulic models are incorporated, in TASS/SMR, such as non-condensible gas model, helical steam generator heat transfer model, and passive residual heat removal system (PRHRS) heat transfer model for the application to SMART. The governing equtions of TASS/SMR are based on the drift-flux model so that the accidents and transients accompaning with two-phase flow can be analized. This report describes the governing equations and solution methods used in TASS/SMR and also includes the description for the thermal hydraulic models for SMART design.

  12. Toxic anterior-segment syndrome (TASS

    Directory of Open Access Journals (Sweden)

    Cetinkaya S

    2014-10-01

    Full Text Available Servet Cetinkaya,1 Zeynep Dadaci,2 Hüsamettin Aksoy,3 Nursen Oncel Acir,2 Halil Ibrahim Yener,4 Ekrem Kadioglu5 1Ophthalmology Clinics, Turkish Red Crescent Hospital, Konya, 2Department of Ophthalmology, Faculty of Medicine, Mevlana University, Konya, 3Ophthalmology Clinics, Karaman State Hospital, Karaman, 4Konya Eye Center Hospital, Konya, 5Ophthalmology Clinics, Beyhekim State Hospital, Konya, Turkey Purpose: To evaluate the clinical findings and courses of five patients who developed toxic anterior-segment syndrome (TASS after cataract surgery and investigate the cause.Materials and methods: In May 2010, on the same day, ten patients were operated on by the same surgeon. Five of these patients developed TASS postoperatively.Results: Patients had blurred-vision complaints on the first day after the operation, but no pain. They had different degrees of diffuse corneal edema, anterior-chamber reaction, fibrin, hypopyon, iris atrophies, and dilated pupils. Their vision decreased significantly, and their intraocular pressures increased. Both anti-inflammatory and antiglaucomatous therapies were commenced. Corneal edema and inflammation resolved in three cases; however, penetrating keratoplasty was needed for two cases and additional trabeculectomy was needed for one case. Although full investigations were undertaken at all steps, we could not find the causative agent.Conclusion: TASS is a preventable complication of anterior-segment surgery. Recognition of TASS, differentiating it from endophthalmitis, and starting treatment immediately is important. Controlling all steps in surgery, cleaning and sterilization of the instruments, and training nurses and other operation teams will help us in the prevention of TASS. Keywords: cataract, phacoemulsification, TASS, corneal edema, inflammation

  13. Structural conceptual models of water-conducting features at Aespoe

    International Nuclear Information System (INIS)

    Bossart, P.; Mazurek, M.; Hermansson, Jan

    1998-01-01

    Within the framework of the Fracture Classification and Characterization Project (FCC), water conducting features (WCF) in the Aespoe tunnel system and on the surface of Aespoe Island are being characterized over a range of scales. The larger-scale hierarchies of WCF are mostly constituted of fault arrays, i.e. brittle structures that accommodated episodes of shear strain. The smaller-scale WCF (contained within blocks 1 m. Structural evidence indicates that the fractures within the TRUE-1 block constitute an interconnected system with a pronounced anisotropy

  14. Aespoe Hard Rock Laboratory. Annual Report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The construction of the laboratory was completed during 1995 and the operating phase has now begun. During the construction data has been collected from the tunnel and boreholes drilled from the tunnel. Results from these investigations have been reported and a comprehensive evaluation is in progress. The results will be used to design the site characterization program for the deep repository. Ten organizations from nine countries participate in the work at the laboratory. An important part of the cooperative work is performed within the framework of the task force on groundwater flow and transport of solutes. An evaluation has been made of the long term pumping test which was performed at Aespoe some years ago. It showed that the modelling tools that exist today have the ability to give a three-dimensional description of groundwater flow at a site like Aespoe. The task force will perform predictive modelling of the tracer experiments performed within the TRUE project. Characterization of the experimental site for TRUE and preparations for the tracer tests were completed during 1995. Tests of the engineering barriers have been started with the test of technology for backfilling of deposition tunnels. 55 refs, 36 figs, 7 tabs.

  15. Aespoe Hard Rock Laboratory. Annual Report 1995

    International Nuclear Information System (INIS)

    1996-04-01

    The construction of the laboratory was completed during 1995 and the operating phase has now begun. During the construction data has been collected from the tunnel and boreholes drilled from the tunnel. Results from these investigations have been reported and a comprehensive evaluation is in progress. The results will be used to design the site characterization program for the deep repository. Ten organizations from nine countries participate in the work at the laboratory. An important part of the cooperative work is performed within the framework of the task force on groundwater flow and transport of solutes. An evaluation has been made of the long term pumping test which was performed at Aespoe some years ago. It showed that the modelling tools that exist today have the ability to give a three-dimensional description of groundwater flow at a site like Aespoe. The task force will perform predictive modelling of the tracer experiments performed within the TRUE project. Characterization of the experimental site for TRUE and preparations for the tracer tests were completed during 1995. Tests of the engineering barriers have been started with the test of technology for backfilling of deposition tunnels. 55 refs, 36 figs, 7 tabs

  16. Aespoe Hard Rock Laboratory. Annual Report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The Aespoe Hard Rock Laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual Report 1993 for the Aespoe Hard Rock Laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are carried out in parallel. As of December 1993, 2760 m of the tunnel had been excavated to a depth of 370 m below the surface. An important and integral part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. Detailed plans have been prepared for several experiments to be conducted after the end of the construction work. Eight organizations from seven countries are now participating in the work at the Aespoe Hard Rock Laboratory and are contributing in different ways to the results being achieved

  17. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva; Nyberg, Goeran (GEOSIGMA, Uppsala (Sweden))

    2009-08-15

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2008. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed.

  18. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva; Nyberg, Goeran (GEOSIGMA, Uppsala (Sweden))

    2010-05-15

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2009. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed

  19. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2008

    International Nuclear Information System (INIS)

    Wass, Eva; Nyberg, Goeran

    2009-08-01

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2008. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed

  20. Aespoe Hard Rock Laboratory. Hydro Monitoring Program. Report for 2009

    International Nuclear Information System (INIS)

    Wass, Eva; Nyberg, Goeran

    2010-05-01

    The Aespoe island is situated close to the nuclear power plant of Simpevarp in southeastern Sweden. As part of the pre-investigations preceding excavation of the Aespoe Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2009. In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report. From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed

  1. 3D laser scanning techniques applying to tunnel documentation and geological mapping at Aespoe hard rock laboratory, Sweden

    International Nuclear Information System (INIS)

    Feng, Q.; Wang, G.; Roeshoff, K.

    2008-01-01

    3D terrestrial laser scanning is nowadays one of the most attractive methods to applying for 3D mapping and documentation of rock faces and tunnels, and shows the most potential to improve the data quality and provide some good solutions in rock engineering projects. In this paper, the state-of-the-art methods are described for different possibility to tunnel documentation and geological mapping based on 3D laser scanning data. Some results are presented from the case study performed at the Hard Rock Laboratory, Aespoe run by SKB, Swedish Nuclear Fuel and Waste Management Co. Comparing to traditional methods, 3D laser scanning techniques can not only provide us with a rapid and 3D digital way for tunnel documentation, but also create a potential chance to achieve high quality data, which might be beneficial to different rock engineering project procedures, including field data acquisition, data processing, data retrieving and management, and also modeling and design. (authors)

  2. Restructuring of the driver for TASS/SMR, SMART analysis code

    International Nuclear Information System (INIS)

    Lee, G. H.; Kim, S. H.; Whang, Y. D.; Kim, H. C.

    2003-01-01

    TASS/SMR is under development by implementing the newly developed thermal hydraulic models for the integral reactor, SMART. The data structure of TASS utilizes external files, which could result in difficulties for the code maintenance and an easy understanding of the code. The driver for TASS/SMR was rewritten for the use of Fortran 90 advanced features, such as dynamic memory management and user defined derived type. The input structure of TASS changed from the interactive method to card numbered system. Also the output process of TASS reformed by removing the utility program. The validation of the TASS/SMR driver was performed by the comparison of results. The use of the revised TASS/SMR driver is expected to accelerate code development process as well as improve user friendliness

  3. Aespoe Hard Rock Laboratory Annual Report 2004

    International Nuclear Information System (INIS)

    2005-08-01

    At Aespoe HRL, methods for characterising a suitable site for a deep repository are being developed and tested. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995. Most of the research is focused on processes of importance for the long-term safety of a future deep repository. To meet the overall time schedule for SKB's RDandD work, the following stage goals were initially defined for the work at the Aespoe HRL. 1. Verify pre-investigation methods. Demonstrate that investigations on the ground surface and in boreholes provide sufficient data on essential safety-related properties of the rock at repository level. 2. Finalise detailed investigation methodology. Refine and verify the methods and the technology needed for characterisation of the rock in the detailed site investigations. 3. Test models for description of the barrier functions at natural conditions. Further develop and at repository depth test methods and models for description of groundwater flow, radionuclide migration, and chemical conditions during operation of a repository and after closure. 4. Demonstrate technology for and function of important parts of the repository system. Test, investigate and demonstrate on full-scale different components of importance for the long-term safety of a deep repository and to show that high quality can be achieved in design, construction, and operation of repository components. Stage goals 1 and 2 have been concluded at Aespoe HRL and the tasks have been transferred to the Site Investigation Department of SKB which performs site investigations at two sites, Simpevarp/Laxemar in the municipality of Oskarshamn and Forsmark in the municipality of Oesthammar. In order to reach present goals the following important tasks are performed at the Aespoe HRL: Develop, test, evaluate and demonstrate

  4. Aespoe Hard Rock Laboratory Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-01

    At Aespoe HRL, methods for characterising a suitable site for a deep repository are being developed and tested. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995. Most of the research is focused on processes of importance for the long-term safety of a future deep repository. To meet the overall time schedule for SKB's RDandD work, the following stage goals were initially defined for the work at the Aespoe HRL. 1. Verify pre-investigation methods. Demonstrate that investigations on the ground surface and in boreholes provide sufficient data on essential safety-related properties of the rock at repository level. 2. Finalise detailed investigation methodology. Refine and verify the methods and the technology needed for characterisation of the rock in the detailed site investigations. 3. Test models for description of the barrier functions at natural conditions. Further develop and at repository depth test methods and models for description of groundwater flow, radionuclide migration, and chemical conditions during operation of a repository and after closure. 4. Demonstrate technology for and function of important parts of the repository system. Test, investigate and demonstrate on full-scale different components of importance for the long-term safety of a deep repository and to show that high quality can be achieved in design, construction, and operation of repository components. Stage goals 1 and 2 have been concluded at Aespoe HRL and the tasks have been transferred to the Site Investigation Department of SKB which performs site investigations at two sites, Simpevarp/Laxemar in the municipality of Oskarshamn and Forsmark in the municipality of Oesthammar. In order to reach present goals the following important tasks are performed at the Aespoe HRL: Develop, test, evaluate and

  5. TASS Signal Specification

    Data.gov (United States)

    National Aeronautics and Space Administration — The Tracking Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a unique mission enabling service that could be provided by the...

  6. A site scale analysis of groundwater flow and salinity distribution in the Aespoe area

    International Nuclear Information System (INIS)

    Svensson, Urban

    1997-10-01

    The objective of the study is to develop, calibrate and apply a numerical simulation model of the Aespoe area. An area of 1.8 x 1.8 km 2 , centred around the Aespoe Hard Rock Laboratory (HRL), gives the horizontal extent of the model. In the vertical direction the model follows the topography at the upper boundary and has a lower boundary at 1000 metres below sea level. The model is based on a mathematical model that includes equations for the Darcy velocities, mass conservation and salinity distribution. Gravitational effects are thus fully accounted for. A regional groundwater model was used to generate boundary conditions for vertical and bottom boundaries. Transmissivities of fracture zones and conductivities for the rock in between, as used in the model, are based on field data. An extensive calibration of the model is carried out, using data for natural conditions (i.e. prior to the construction of the Aespoe HRL), drawdowns from a pump test and data collected during the excavation of the tunnel. A satisfactory agreement with field data is obtained by the calibration. Main results from the model include vertical and horizontal sections of flow, salinity and hydraulic head distributions for natural conditions and for completed tunnel. A sensitivity study, where boundary conditions and material properties are modified, is also carried out. The model is also used to describe some characteristic features of the site like infiltration rates, flux statistics at a depth of 450 metres, salinity of inflows to the tunnel and flow and salinity distributions in fracture zones. The general conclusion of the study is that the model developed can simulate the conditions at Aespoe, both natural and with Aespoe HRL present, in a realistic manner

  7. Aespoe hard rock laboratory. Annual report 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The Aespoe hard rock laboratory is being constructed in preparation for the deep geological repository of spent fuel in Sweden. This Annual report 1992 for the Aespoe hard rock laboratory contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of the detailed investigation methodology. Construction of the facility and investigation of the bedrock are being carried out in parallel. December 1992 1925 m of the tunnel has been excavated to a depth of 255 m below surface. An important and integrated part of the work is further refinement of conceptual and numerical models for groundwater flow and radionuclide migration. This work is carried out in cooperation with seven organizations from six countries that participate in the project. (25 refs.)

  8. Aespoe Hard Rock Laboratory. Annual report 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Aespoe HRL has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. Geoscientific investigations on Aespoe and nearby islands began 1986. Since then, bedrock conditions have been investigated by several deep boreholes. The Aespoe research village has been built and extensive underground construction work has been undertaken in parallel with comprehensive research. This has resulted in a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The objective of the ZEDEX project is to compare the mechanical disturbance to the rock for excavation by tunnel boring and blasting. The results indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The tracer retention understanding experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models. During 1996 a series of tracer experiments in radially converging and dipole flow configuration have been performed. A special borehole probe has been designed for different kinds of retention experiments where data can be obtained representative for the in situ properties of groundwater at repository depth. The prototype repository test is focused on testing and demonstrating repository system function, and includes backfill and plug tests and demonstration of methods for deposition and retrieval of canisters in a new tunnel at the 420 m level. The long term tests of buffer material aim to validate models of buffer performance and at quantifying clay buffer alteration processes at adverse conditions. 80 refs, 53 figs, 16 tabs

  9. Aespoe Hard Rock Laboratory. Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Aespoe HRL has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. Geoscientific investigations on Aespoe and nearby islands began 1986. Since then, bedrock conditions have been investigated by several deep boreholes. The Aespoe research village has been built and extensive underground construction work has been undertaken in parallel with comprehensive research. This has resulted in a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The objective of the ZEDEX project is to compare the mechanical disturbance to the rock for excavation by tunnel boring and blasting. The results indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The tracer retention understanding experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models. During 1996 a series of tracer experiments in radially converging and dipole flow configuration have been performed. A special borehole probe has been designed for different kinds of retention experiments where data can be obtained representative for the in situ properties of groundwater at repository depth. The prototype repository test is focused on testing and demonstrating repository system function, and includes backfill and plug tests and demonstration of methods for deposition and retrieval of canisters in a new tunnel at the 420 m level. The long term tests of buffer material aim to validate models of buffer performance and at quantifying clay buffer alteration processes at adverse conditions. 80 refs, 53 figs, 16 tabs.

  10. Aespoe Hard Rock Laboratory. Annual Report 2001

    International Nuclear Information System (INIS)

    2002-09-01

    and the work within Task 6, Performance Assessment Modelling Using Site Characterisation Data, has started. The Aespoe HRL makes it possible to demonstrate and perform full-scale tests of the function of different components of the repository system that are important for the performance and the long term safety of a repository. It is also important to show that high quality can be achieved in design, construction, and operation of the repository. To fulfil these tasks several projects are performed, e. g. Demonstration of Repository Technology, Prototype Repository, Backfill and Plug Test, Canister Retrieval Test, Long Term Tests of Buffer Material, and Pillar Stability Experiment. The focus of the Task Force on Engineered Barrier Systems during 2001 has been on modelling of THM processes taking place in the bentonite buffer during saturation. This is also the prime modelling objective in the Prototype Repository and the work has therefore been conducted under the umbrella of the Prototype Repository. The operation of the facility has worked smoothly. A number of new projects concerning safety, security and reliability have been initiated, started or completed during 2001. To meet the need for additional office space to host the staff of the site investigation in Oskarshamn a temporary barrack was built and an application for planning permission for additional extension of the Aespoe surface facility has been submitted. An extensive rock reinforcement programme was finalised in February 2001. The programme comprises complementary shotcreting, injections, bolting and mounting of mesh. Replacement of corroded light equipment in the deeper half of the tunnel, 220-450 m level, and replacement of sealing on the water pipes in the shaft, 350-450 m level, have been completed. The main goal for the information group is to create public acceptance for SKB's activities in co-operation with other departments at SKB. This is achieved by presenting information about SKB, the

  11. Aespoe Hard Rock Laboratory. Annual Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    The Aespoe Hard Rock Laboratory (HRL), in the Simpevarp area in the municipality of Oskarshamn constitutes an important part of SKB's work with the design and construction of a deep geological repository for final disposal of spent nuclear fuel. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its associated research, as well as in the development and demonstration tasks. Most of the research is focused on processes of importance for the long-term safety of a final repository for spent nuclear fuel. Demonstration addresses the performance of the engineered barriers and practical means of constructing and operating a repository for spent fuel. To meet the overall time schedule for SKB's RD and D work, the following stage goals were initially defined for the work at the Aespoe HRL: 1. Verify pre-investigation methods. Demonstrate that investigations on the ground surface and in boreholes provide sufficient data on essential safety-related properties of the rock at repository level. 2. Finalise detailed investigation methodology. Refine and verify the methods and the technology needed for characterisation of the rock in the detailed site investigations. 3. Test models for description of the barrier functions at natural conditions. Further develop, and at repository depth, test methods and models for description of groundwater flow, radionuclide migration and chemical conditions during operation of a repository and after closure. 4. Demonstrate technology for and function of important

  12. Aespoe Hard Rock Laboratory. Annual Report 2005

    International Nuclear Information System (INIS)

    2006-06-01

    The Aespoe Hard Rock Laboratory (HRL), in the Simpevarp area in the municipality of Oskarshamn constitutes an important part of SKB's work with the design and construction of a deep geological repository for final disposal of spent nuclear fuel. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its associated research, as well as in the development and demonstration tasks. Most of the research is focused on processes of importance for the long-term safety of a final repository for spent nuclear fuel. Demonstration addresses the performance of the engineered barriers and practical means of constructing and operating a repository for spent fuel. To meet the overall time schedule for SKB's RD and D work, the following stage goals were initially defined for the work at the Aespoe HRL: 1. Verify pre-investigation methods. Demonstrate that investigations on the ground surface and in boreholes provide sufficient data on essential safety-related properties of the rock at repository level. 2. Finalise detailed investigation methodology. Refine and verify the methods and the technology needed for characterisation of the rock in the detailed site investigations. 3. Test models for description of the barrier functions at natural conditions. Further develop, and at repository depth, test methods and models for description of groundwater flow, radionuclide migration and chemical conditions during operation of a repository and after closure. 4. Demonstrate technology for and function of important parts of the

  13. Aespoe Hard Rock Laboratory. Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    during 2001 and the work within Task 6, Performance Assessment Modelling Using Site Characterisation Data, has started. The Aespoe HRL makes it possible to demonstrate and perform full-scale tests of the function of different components of the repository system that are important for the performance and the long term safety of a repository. It is also important to show that high quality can be achieved in design, construction, and operation of the repository. To fulfil these tasks several projects are performed, e. g. Demonstration of Repository Technology, Prototype Repository, Backfill and Plug Test, Canister Retrieval Test, Long Term Tests of Buffer Material, and Pillar Stability Experiment. The focus of the Task Force on Engineered Barrier Systems during 2001 has been on modelling of THM processes taking place in the bentonite buffer during saturation. This is also the prime modelling objective in the Prototype Repository and the work has therefore been conducted under the umbrella of the Prototype Repository. The operation of the facility has worked smoothly. A number of new projects concerning safety, security and reliability have been initiated, started or completed during 2001. To meet the need for additional office space to host the staff of the site investigation in Oskarshamn a temporary barrack was built and an application for planning permission for additional extension of the Aespoe surface facility has been submitted. An extensive rock reinforcement programme was finalised in February 2001. The programme comprises complementary shotcreting, injections, bolting and mounting of mesh. Replacement of corroded light equipment in the deeper half of the tunnel, 220-450 m level, and replacement of sealing on the water pipes in the shaft, 350-450 m level, have been completed. The main goal for the information group is to create public acceptance for SKB's activities in co-operation with other departments at SKB. This is achieved by presenting information about

  14. Aespoe Hard Rock Laboratory. Annual Report 2009

    International Nuclear Information System (INIS)

    2010-12-01

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2009 is given below. Geoscience Geoscientific research is a basic activity at Aespoe HRL. The aim of the current studies is to develop geoscientific models of the Aespoe HRL and increase the understanding of the rock mass properties as well as knowledge of applicable methods of measurement. A main task within the geoscientific field is the development of the Aespoe Site Descriptive Model (SDM) integrating information from the different fields. The main activities in the geoscientific fields have been: (1) Geology evaluation of geological mapping techniques leading to the decision to develop a SKB mapping system and finalization of the mapping of rock surfaces in the new tunnel, (2) Hydrogeology monitoring and storage of data in the computerised Hydro Monitoring System, (3) Geochemistry sampling of groundwater in the yearly campaign and for specific experiments and (4) Rock Mechanics finalised the field tests on thermally-induced spalling in deposition holes and evaluated the effect of counterforce in the deposition holes. Natural barriers At Aespoe HRL, experiments are

  15. Aespoe Hard Rock Laboratory. Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The Aespoe Hard Rock Laboratory (HRL) is an important part of SKB's work with the design and construction of a deep geological repository for the final disposal of spent nuclear fuel. Aespoe HRL is located in the Simpevarp area in the municipality of Oskarshamn. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create opportunities for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. The underground part of the laboratory consists of a tunnel from the Simpevarp peninsula to the southern part of Aespoe where the tunnel continues in a spiral down to a depth of 460 m. Aespoe HRL has been in operation since 1995 and considerable international interest has been shown in its research, as well as in the development and demonstration tasks. A summary of the work performed at Aespoe HRL during 2009 is given below. Geoscience Geoscientific research is a basic activity at Aespoe HRL. The aim of the current studies is to develop geoscientific models of the Aespoe HRL and increase the understanding of the rock mass properties as well as knowledge of applicable methods of measurement. A main task within the geoscientific field is the development of the Aespoe Site Descriptive Model (SDM) integrating information from the different fields. The main activities in the geoscientific fields have been: (1) Geology evaluation of geological mapping techniques leading to the decision to develop a SKB mapping system and finalization of the mapping of rock surfaces in the new tunnel, (2) Hydrogeology monitoring and storage of data in the computerised Hydro Monitoring System, (3) Geochemistry sampling of groundwater in the yearly campaign and for specific experiments and (4) Rock Mechanics finalised the field tests on thermally-induced spalling in deposition holes and evaluated the effect of counterforce in the deposition holes. Natural barriers At Aespoe HRL

  16. Pre-Analysis for Safety-Related Verification Test Using TASS/SMR Code

    Energy Technology Data Exchange (ETDEWEB)

    Ra, I. S.; Kim, H. J.; Jeon, G. H. [ACTS Ltd., Daejeon (Korea, Republic of)

    2010-01-15

    General trends of TASS/SMR simulation were similar to those in both ORNF test and BENNETT test conducted to verify core heat transfer model in TASS/SMR. In high mass flux, however, a CHF location in the analytical result of TASS/SMR was greatly deviated from BENNETT test result. TASS/SMR gave better results in heterogeneous option that in homogeneous option in both KIT test, which was a steady state test with an inlet flow, and GE-LEVEL Swell test, which a transient test without an inlet flow. TASS/SMR simulation for SMD Long and Short test gave a good agreement with the test results in showing a reasonable predictability of critical flow model. But, in the case of Marviken test, the analytical result was not similar to the test result after the timing of vapor generation

  17. Applicability of TASS/SMR using drift flux model for SMART LOCA analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young-Jong, E-mail: chung@kaeri.re.kr; Kim, Soo Hyung; Lee, Gyu Hyeung; Lee, Won Jae

    2013-09-15

    Highlights: • SMART plant and TASS/SMR code have been developed by KAERI. • TASS/SMR code adopts a drift flux model to consider relative velocity under two-phase condition. • Drift flux model in TASS/SMR is validated using separate effect test results. • Applicability of TASS/SMR using drift flux model for SMART LOCA analysis is confirmed. -- Abstract: Small reactors can apply to local power demands or remote areas. SMART, which can produce 90 MWe of electricity and 40,000 tons/day of sea-water desalination for a 100,000 population city, is a promising advanced integral type small reactor. The thermal hydraulic analysis code with a drift flux model, TASS/SMR, was developed for a conservative simulation of a small break loss of coolant accident in SMART. Taking into account SMART-specific inherent characteristics, the code adopts the Chexal–Lellouche correlation for a drift flux model. The capability of TASS/SMR code is validated using the results of the experimental data. The code predicts conservatively the void distribution compared with the experimental data. TASS/SMR calculation predicts reasonably major phenomena for the SBLOCA and is more conservative than or nearly the same as the results of the best estimated realistic system code, MARS. TASS/SMR code can be used for a SBLOCA analysis of SMART.

  18. Applicability of TASS/SMR using drift flux model for SMART LOCA analysis

    International Nuclear Information System (INIS)

    Chung, Young-Jong; Kim, Soo Hyung; Lee, Gyu Hyeung; Lee, Won Jae

    2013-01-01

    Highlights: • SMART plant and TASS/SMR code have been developed by KAERI. • TASS/SMR code adopts a drift flux model to consider relative velocity under two-phase condition. • Drift flux model in TASS/SMR is validated using separate effect test results. • Applicability of TASS/SMR using drift flux model for SMART LOCA analysis is confirmed. -- Abstract: Small reactors can apply to local power demands or remote areas. SMART, which can produce 90 MWe of electricity and 40,000 tons/day of sea-water desalination for a 100,000 population city, is a promising advanced integral type small reactor. The thermal hydraulic analysis code with a drift flux model, TASS/SMR, was developed for a conservative simulation of a small break loss of coolant accident in SMART. Taking into account SMART-specific inherent characteristics, the code adopts the Chexal–Lellouche correlation for a drift flux model. The capability of TASS/SMR code is validated using the results of the experimental data. The code predicts conservatively the void distribution compared with the experimental data. TASS/SMR calculation predicts reasonably major phenomena for the SBLOCA and is more conservative than or nearly the same as the results of the best estimated realistic system code, MARS. TASS/SMR code can be used for a SBLOCA analysis of SMART

  19. Aespoe Hard Rock Laboratory Annual Report 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Aespoe Hard Rock Laboratory is being constructed as part of the preparations for the deep geological repository of spent nuclear fuel in Sweden. The annual report 1994 contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of detailed investigation methodology which is applied during tunnel construction. Construction of the facility and detailed characterization of the bedrock are performed in parallel. Excavation of the main access tunnel was completed during 1994 and at the end of the year only minor excavation work remained. The last 400 m of the main tunnel, which has a total length of 3600 m, was excavated by a 5 m diameter boring machine. The tunnel reaches a depth of 450 m below ground. Preparations for the operating phase have started and detailed plans have been prepared for several experiments. Nine organizations, including SKB, from eight countries are now participating in the work at the laboratory. 50 refs, 28 figs

  20. Aespoe Hard Rock Laboratory Annual Report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Aespoe Hard Rock Laboratory is being constructed as part of the preparations for the deep geological repository of spent nuclear fuel in Sweden. The annual report 1994 contains an overview of the work conducted. Present work is focused on verification of pre-investigation methods and development of detailed investigation methodology which is applied during tunnel construction. Construction of the facility and detailed characterization of the bedrock are performed in parallel. Excavation of the main access tunnel was completed during 1994 and at the end of the year only minor excavation work remained. The last 400 m of the main tunnel, which has a total length of 3600 m, was excavated by a 5 m diameter boring machine. The tunnel reaches a depth of 450 m below ground. Preparations for the operating phase have started and detailed plans have been prepared for several experiments. Nine organizations, including SKB, from eight countries are now participating in the work at the laboratory. 50 refs, 28 figs.

  1. Quality Assurance for Thermal Hydraulic Analysis Code, TASS/SMR-S

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Kim, Soo Hyoung; Chung, Young Jong; Kim, Hyeon Soo

    2012-01-01

    Safety analysis for a System-integrated Modular Advanced Reactor (SMART), a computer code called TASS/SMR-S has been developed by Korea Atomic Energy Research Institute (KAERI). To guarantee the quality of the software, a series of software Quality Assurance (QA) procedures has been developed for the TASS/SMR-S code. These procedures are described herein, from the requirement phase to the Verification and Validation (V and V) phase, and representative results of the TASS/SMR-S QA are presented

  2. Treatment and final disposal of nuclear waste. Aespoe hard rock laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The scientific investigations within SBK's research programme are a part of the work of designing a deep repository and identifying and investigating a suitable site. A balanced appraisal of the facts, requirements and assessments presented in connection with the preparation of R and D-programme 86 led to the proposal to construct an underground research laboratory. This proposal was presented in the aforementioned research programme and was very positively recived by the reviewing bodies. In the autumn of 1986, SKB initiated the field work for the siting of an underground laboratory, the Aespoe hard rock laboratory, in the Simpevarp area in the municipality of Oskarshamn. At the end of 1988, SKB arrived at a decision in principle to site the facility on southern Aespoe about 2 km north of the Oskarshamn nuclear power station. After regulatory review, SKB ordered the excavation of the access tunnel to the Aespoe hard rock laboratory to commence in the autumn of 1990. In conjunction with the tunneling work, which has now (September 1992) reached a depth of more than 200 m, a large number of investigations have been carried out. This background report to SKB's RD and D-programme 92 is based on the previous and 89 /2/. The report provides a general background and presents goals, projects results obtained to date and future work. Compared to the previous background reports, more space is devoted here to experiment planning and the future demonstration programme. (au)

  3. Simulation of Benchmark Cases with the Terminal Area Simulation System (TASS)

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    The hydrodynamic core of the Terminal Area Simulation System (TASS) is evaluated against different benchmark cases. In the absence of closed form solutions for the equations governing atmospheric flows, the models are usually evaluated against idealized test cases. Over the years, various authors have suggested a suite of these idealized cases which have become standards for testing and evaluating the dynamics and thermodynamics of atmospheric flow models. In this paper, simulations of three such cases are described. In addition, the TASS model is evaluated against a test case that uses an exact solution of the Navier-Stokes equations. The TASS results are compared against previously reported simulations of these banchmark cases in the literature. It is demonstrated that the TASS model is highly accurate, stable and robust.

  4. TASS code topical report. V.2 TASS code validation report for the non-LOCA transient analysis of the CE and Westinghouse type plants

    International Nuclear Information System (INIS)

    Sim, Suk K.; Chang, W. P.; Kim, K. D.; Lee, S. J.; Kim, H. C.; Yoon, H. Y.

    1997-02-01

    The development of TASS 1.0 code has been completed and validated its capability in applying for the licensing transient analyses of the CE and Westinghouse type operating reactors as well as the PWR plants under construction in Korea. The validation of the TASS 1.0 code has been achieved through the comparison calculations of the FSAR transients, loss of AC power transient plant data, load rejection and startup test data for the reference plants as well as the BETHSY loop steam generator tube rupture test data. TASS 1.0 calculation agrees well with the best FSAR transient and shows its capability in simulating plant transient analyses. (author). 12 refs., 32 tabs., 132 figs

  5. Aespoe Hard Rock Laboratory. Annual Report 2007

    International Nuclear Information System (INIS)

    2008-04-01

    experiments and supporting activities are therefore carried out at Aespoe HRL. The experiments focus on different aspects of engineering technology and performance testing. An important part of the activities at the Aespoe facility is the administration, operation, and maintenance of instruments as well as the development of investigation methods. The main goal of the operation is to provide a safe and environmentally sound facility for everybody working or visiting the Aespoe HRL. The goal of an operational time of 98% for the underground laboratory was exceeded in both 2006 and 2007. The inauguration of the Bentonite Laboratory took place in March 2007 and the laboratory is now working very well and provides good conditions for studies of buffer and backfill materials. In the laboratory for example different methods and techniques for installation of pellets and blocks in deposition tunnels have been tested. The public relations and visitor services group is responsible for presenting information about SKB and its facilities. During the year 2007 the three facilities in Oskarshamn and the site investigation activities in Oskarshamn were visited by about 15,000 visitors. Aespoe Environmental Research Foundation was founded 1996 on the initiative of local and regional interested parties. The aim was to make the underground laboratory at Aespoe and its resources available for national and international environmental research. The Aespoe Research School started in 2002 and the research carried out focuses on environmental hydrogeochemistry. Current studies focus on the behaviour of selected chemical elements (for example niobium and uranium) in surface and groundwater, on spatial and temporal hydrochemical patterns in streams and lakes in Forsmark and Laxemar, and on the behaviour of elements during litter decomposition. Most of these studies will be included in Ph.D. theses. In addition to SKB, nine organisations from eight countries co-operated on the activities at Aespoe HRL

  6. Aespoe Hard Rock Laboratory. Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    2007-04-15

    experiments and supporting activities are therefore carried out at Aespoe HRL. The experiments focus on different aspects of engineering technology and performance testing. An important part of the activities at the Aespoe facility is the administration, operation, and maintenance of instruments as well as the development of investigation methods. The main goal of the operation is to provide a safe and environmentally sound facility for everybody working or visiting the Aespoe HRL. The goal of an operational time of 98% for the underground laboratory was exceeded in both 2006 and 2007. The inauguration of the Bentonite Laboratory took place in March 2007 and the laboratory is now working very well and provides good conditions for studies of buffer and backfill materials. In the laboratory for example different methods and techniques for installation of pellets and blocks in deposition tunnels have been tested. The public relations and visitor services group is responsible for presenting information about SKB and its facilities. During the year 2007 the three facilities in Oskarshamn and the site investigation activities in Oskarshamn were visited by about 15,000 visitors. Aespoe Environmental Research Foundation was founded 1996 on the initiative of local and regional interested parties. The aim was to make the underground laboratory at Aespoe and its resources available for national and international environmental research. The Aespoe Research School started in 2002 and the research carried out focuses on environmental hydrogeochemistry. Current studies focus on the behaviour of selected chemical elements (for example niobium and uranium) in surface and groundwater, on spatial and temporal hydrochemical patterns in streams and lakes in Forsmark and Laxemar, and on the behaviour of elements during litter decomposition. Most of these studies will be included in Ph.D. theses. In addition to SKB, nine organisations from eight countries co-operated on the activities at Aespoe HRL

  7. Thermal properties at Aespoe HRL. Analysis of distribution and scale factors

    International Nuclear Information System (INIS)

    Sundberg, Jan

    2003-04-01

    A thermal model for the Aespoe HRL as well as a general strategy for thermal modelling is under development. As a part of that work, thermal conductivities have been modelled from reference values of thermal conductivity of different minerals and from the mineral composition of all Aespoe samples in the Sicada database. The produced thermal conductivity database has been analysed in terms of frequency, type of distribution, spatial distribution, variogram etc. A correction factor has been estimated to compensate for discrepancies between measured and calculated values. The calculated values have been corrected according to measured values. The data has been analysed according to different rock types. However, there are uncertainties in the base material of rock classification, mainly due to problem to distinguish between Aespoe diorite and Aevroe granite, but also because of different classification systems. There is a relationship between thermal conductivity and density for the rock types at Aespoe. Equations of the relationship have been developed based on all thermal conductivity, heat capacity and density measurements. The equations have been tested on two bore holes at Aespoe with promising results. It may be possible to evaluate the spatial distribution of the thermal properties from density loggings. However, more work is needed to develop a complete model including the handling of high and low density zones. There is an insufficient knowledge in the variation of thermal properties at different scales. If the whole variation within a rock type is in the cm-m scale the thermal influence on the canister is small. This is due to the fact that the small-scale variation in thermal properties is mainly averaged out in the 5-10 m scale. If the main variation within rock types is in the 5-10 m scale there is probably a significant effect on the canister temperature. However, it is likely that the observed variation occurs in both these scales. Simulation has been

  8. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small particles

  9. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  10. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  11. Bacterial sulphate reduction and mixing processes at the Aespoe Hard Rock Laboratory indicated by groundwater δ34S isotope signatures

    International Nuclear Information System (INIS)

    Wallin, Bill

    2011-04-01

    This report includes data mostly obtained from δ 34 S isotope measurements of groundwater at the Aespoe Island and one sampling from the Laxemar site, southeastern Sweden, during tunnel construction. Early sampling at Aespoe (up to 1992), before tunnel excavation, indicates a groundwater system with multiple sulphur sources. The isotope changes over time in the dissolved sulphate were studied during a sampling campaign in the monitoring phase from 1993 to 1995. A total of 88 samples were collected by SKB between 1992 and 1995 from core-drilled surface boreholes and from boreholes drilled in the tunnel (34 of these samples were collected from the tunnel boreholes). The results of the analyses have been the focus of discussion of the isotope changes with time in the dissolved sulphate (SO 4 2- ). The results indicate that the sulphur isotope signatures in the dissolved sulphate of the groundwater and those from fracture-filling sulphides at Aespoe originate from multiple sulphur sources in the groundwater at Aespoe and Laxemar. The data may be grouped as follows: a) typically homogeneous marine signatures of dissolved SO 4 2- are observed, with δ 34 S values of approximately +21 per mille CDT at intermediate depths of approximately 100-250 m; b) dissolved sulphate in the groundwater at greater depths (below 600 m) with average values of approximately +10 per mille CDT; and c) a dissolved SO 4 2- originating from a mixture of these sulphur sources (100-600m), although there is a difference between a mixture and modification by reduction. Reduced sulphur with low δ 34 S values is also recorded in fracture-filling sulphides, with δ 34 S values of approximately 0 to -10 per mille CDT. This may contribute to small changes in the isotope signature of the dissolved SO 4 2- , probably by sulphide oxidation in the past. The changes in the δ 34 S isotope data for dissolved SO 4 2- over the 1992-1996 period suggest a complex situation, indicating both sulphate reduction by

  12. Validation of groundwater flow model using the change of groundwater flow caused by the construction of AESPOE hard rock laboratory

    International Nuclear Information System (INIS)

    Hasegawa, Takuma; Tanaka, Yasuharu

    2004-01-01

    A numerical model based on results during pre-investigation phases was applied to the groundwater flow change caused by the construction of AEspoe HRL. The drawdowns and chloride concentration during tunnel construction were simulated to validate the numerical model. The groundwater flow was induced by inflow from the Baltic Sea to the tunnel through the hydraulic conductor domain (HCD). The time series of tunnel progress and inflow, boundaries of the Baltic Sea, transmissivity and geometry of HCD are therefore important in representing the groundwater flow. The numerical model roughly represented the groundwater flow during tunnel construction. These simulations were effective in validating the numerical model for groundwater flow and solute transport. (author)

  13. Aespoe Hard Rock Laboratory. Status Report May - August 2009

    International Nuclear Information System (INIS)

    2009-11-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period May to August 2009

  14. Aespoe Hard Rock Laboratory. Status Report October - December 2008

    International Nuclear Information System (INIS)

    2009-03-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2008/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the fourth quarter of 2008

  15. Aespoe Hard Rock Laboratory. Status Report. September - December 2009

    International Nuclear Information System (INIS)

    2010-05-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period September to December 2009

  16. Aespoe Hard Rock Laboratory. Status Report January - April 2009

    International Nuclear Information System (INIS)

    2009-09-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period January to April 2009

  17. Aespoe Hard Rock Laboratory. Status Report. April - June 2007

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2005- 2010 are presented in SKB's RDandD-Programme 2004 /SKB 2004/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2007/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the second quarter 2007

  18. Aespoe Hard Rock Laboratory. Status Report. April - June 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2005- 2010 are presented in SKB's RDandD-Programme 2004 /SKB 2004/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2007/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the second quarter 2007

  19. Aespoe Hard Rock Laboratory. Status Report. July - September 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2008/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the third quarter of 2008

  20. Aespoe Hard Rock Laboratory. Status Report. January - April 2010

    International Nuclear Information System (INIS)

    2010-10-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period January to April 2010

  1. Aespoe Hard Rock Laboratory Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site for a deep repository. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. Aespoe HRL has been in operation since 1995 and the associated research, development, and demonstration tasks, have so far attracted considerable interest. A summary of work performed at Aespoe HRL during 2003 is given below. Seven organisations from six countries participated in the co-operation at Aespoe HRL during 2003 in addition to SKB. Most of the organisations are interested in groundwater flow, radionuclide transport and rock characterisation. Several of the organisations are participating in the experimental work as well as in the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes. SKB is through Repository Technology co-ordinating three EC contracts and takes part in several EC projects of which the representation in five projects is channelled through Repository Technology. SKB takes also part in work within the IAEA framework.

  2. Aespoe Hard Rock Laboratory Annual report 2003

    International Nuclear Information System (INIS)

    2004-09-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site for a deep repository. One of the fundamental reasons behind SKB's decision to construct an underground laboratory was to create an opportunity for research, development and demonstration in a realistic and undisturbed rock environment down to repository depth. Aespoe HRL has been in operation since 1995 and the associated research, development, and demonstration tasks, have so far attracted considerable interest. A summary of work performed at Aespoe HRL during 2003 is given below. Seven organisations from six countries participated in the co-operation at Aespoe HRL during 2003 in addition to SKB. Most of the organisations are interested in groundwater flow, radionuclide transport and rock characterisation. Several of the organisations are participating in the experimental work as well as in the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes. SKB is through Repository Technology co-ordinating three EC contracts and takes part in several EC projects of which the representation in five projects is channelled through Repository Technology. SKB takes also part in work within the IAEA framework

  3. Aespoe Hard Rock Laboratory. Status Report January - April 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-09-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period January to April 2009.

  4. Aespoe Hard Rock Laboratory. Status Report October - December 2008

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2008/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the fourth quarter of 2008.

  5. Aespoe Hard Rock Laboratory. Status Report. September - December 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period September to December 2009

  6. Aespoe Hard Rock Laboratory. Status Report. January - April 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period January to April 2010

  7. Aespoe Hard Rock Laboratory. Status Report May - August 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-11-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2009/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period May to August 2009.

  8. Aespoe Hard Rock Laboratory. Status Report May - August 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RD and D-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2010/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period May to August 2010.

  9. Aespoe Hard Rock Laboratory. Status Report. April - June 2007

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2005- 2010 are presented in SKB's RDandD-Programme 2004 /SKB 2004/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2007/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the second quarter 2007

  10. Aespoe Hard Rock Laboratory. Status Report May - August 2010

    International Nuclear Information System (INIS)

    2011-02-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RD and D-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2010/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period May to August 2010

  11. Aespoe Hard Rock Laboratory. Status Report. July - September 2008

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. The plans for SKB's research and development of technique during the period 2008-2013 are presented in SKB's RDandD-Programme 2007 /SKB 2007/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report /SKB 2008/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the third quarter of 2008.

  12. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [Geopoint AB, Stockholm (Sweden); Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry] (eds.)

    2005-12-15

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel.

  13. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    International Nuclear Information System (INIS)

    Laaksoharju, Marcus; Wold, Susanna

    2005-12-01

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel

  14. Aespoe hard rock laboratory Sweden

    International Nuclear Information System (INIS)

    1992-01-01

    The aim of the new Aespoe hard rock laboratory is to demonstrate state of the art of technology and evaluation methods before the start of actual construction work on the planned deep repository for spent nuclear fuel. The nine country OECD/NEA project in the Stripa mine in Sweden has been an excellent example of high quality international research co-operation. In Sweden the new Aespoe hard rock laboratory will gradually take over and finalize this work. SKB very much appreciates the continued international participation in Aespoe which is of great value for the quality efficiency, and confidence in this kind of work. We have invited a number of leading experts to this first international seminar to summarize the current state of a number of key questions. The contributions show the great progress that has taken place during the years. The results show that there is a solid scientific basis for using this knowledge on site specific preparation and work on actual repositories. (au)

  15. Aespoe modelling task force - experiences of the site specific flow and transport modelling (in detailed and site scale)

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden); Stroem, A.; Wikberg, P. [Swedish Nuclear Fuel and Waste Management Co. , Stockholm (Sweden)

    1998-09-01

    The Aespoe Task Force on modelling of groundwater flow and transport of solutes was initiated in 1992. The Task Force shall be a forum for the organisations supporting the Aespoe Hard Rock Laboratory Project to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Much emphasis is put on building of confidence in the approaches and methods in use for modelling of groundwater flow and nuclide migration in order to demonstrate their use for performance and safety assessment. The modelling work within the Task Force is linked to the experiments performed at the Aespoe Laboratory. As the first Modelling Task, a large scale pumping and tracer experiment called LPT2 was chosen. This was the final part of the characterisation work for the Aespoe site before the construction of the laboratory in 1990. The construction of the Aespoe HRL access tunnel caused an even larger hydraulic disturbance on a much larger scale than that caused by the LPT2 pumping test. This was regarded as an interesting test case for the conceptual and numerical models of the Aespoe site developed during Task No 1, and was chosen as the third Modelling Task. The aim of Task 3 can be seen from two different perspectives. The Aespoe HRL project saw it as a test of their ability to define a conceptual and structural model of the site that can be utilised by independent modelling groups and be transformed to a predictive groundwater flow model. The modelling groups saw it as a means of understanding groundwater flow in a large fractured rock volume and of testing their computational tools. A general conclusion is that Task 3 has served these purposes well. Non-sorbing tracers tests, made as a part of the TRUE-experiments were chosen as the next predictive modelling task. A preliminary comparison between model predictions made by the Aespoe Task Force and the experimental results, shows that most modelling teams predicted breakthrough from

  16. Experimental validation of TASS/SMR-S critical flow model for the integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si Won; Ra, In Sik; Kim, Kun Yeup [ACT Co., Daejeon (Korea, Republic of); Chung, Young Jong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    An advanced integral PWR, SMART (System- Integrated Modular Advanced ReacTor) is being developed in KAERI. It has a compact size and a relatively small power rating (330MWt) compared to a conventional reactor. Because new concepts are applied to SMART, an experimental and analytical validation is necessary for the safety evaluation of SMART. The analytical safety validation is being accomplished by a safety analysis code for an integral reactor, TASS/SMR-S developed by KAERI. TASS/SMR-S uses a lumped parameter one dimensional node and path modeling for the thermal hydraulic calculation and it uses point kinetics for the reactor power calculation. It has models for a general usage such as a core heat transfer model, a wall heat structure model, a critical flow model, component models, and it also has many SMART specific models such as an once through helical coiled steam generator model, and a condensate heat transfer model. To ensure that the TASS/SMR-S code has the calculation capability for the safety evaluation of SMART, the code should be validated for the specific models with the separate effect test experimental results. In this study, TASS/SMR-S critical flow model is evaluated as compared with SMD (Super Moby Dick) experiment

  17. Aespoe Hard Rock Laboratory. Status Report. September - December 2010

    International Nuclear Information System (INIS)

    2011-04-01

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. In September 2010, the plans for SKB's research and development of technique during the period 2011-2016 were presented in SKB's RDandD-Programme 2010 /SKB 2010a/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report and the information valid for 2010 is given in /SKB 2010b/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period September to December 2010

  18. Aespoe Hard Rock Laboratory. Status Report. September - December 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    The Aespoe Hard Rock Laboratory (HRL) constitutes an important part of SKB's work to design and construct a geological repository for spent nuclear fuel and to develop and test methods for characterisation of a suitable site. In September 2010, the plans for SKB's research and development of technique during the period 2011-2016 were presented in SKB's RDandD-Programme 2010 /SKB 2010a/. The information given in the RDandD-Programme related to Aespoe HRL is annually detailed in the Aespoe HRL Planning Report and the information valid for 2010 is given in /SKB 2010b/. This Aespoe HRL Status Report is a collection of the main achievements obtained during the period September to December 2010

  19. Concept of the thorium fuelled accelerator driven subcritical system for both energy production and TRU incineration - 'TASSE'

    International Nuclear Information System (INIS)

    Slessarev, I.; Berthou, V.; Salvatores, M.; Tchistiakov, A.

    1999-01-01

    The TASSE is the concept of the subcritical accelerator driven system with 'TRU-free' fuel cycle and the continuous Th-feed regime. The tightness of Th neutronics call inevitably the subcritical mode of work. Two types of neutron spectra are recommended: fast and super-thermal (well thermalized) ones. TASSE fuel cycle could have the following options: (i) without any fuel recycling and reprocessing (once-through fuel cycle option) for maximum fuel cycle simplicity. However, subcriticality level (1- K eff ) is essential and it requires high power accelerators; (ii) with the partial or, eventually, full U recycling 'on line' including the separation (U + Pa + Th) component from TRU + FP component which can be considered as wastes. Relatively small mass of fuel have to be reprocessed. Moreover, the requirement to separation is very soft. In this case, recycling allows to minimise subcriticality and smaller accelerators can be acceptable. The TASSE is oriented on 'clean' nuclear energy production and TRU burning with the following attractive features: (1) For the long term perspective, TASSEs have a rather limited mass of long-lived radioactive wastes, consisting mostly of Th, U and Pa nuclides. One can see the considerable reduction of waste toxicity by the factor of 1000 (or even more) in the magnitude regarding current PWR's and by the factor of 10-100 regarding (PWR's + dedicated burners) scenario. (2) Relatively low amounts of Th would have to be mined: approximately a factor of 100 lower than the U mined for PWR's. With TASSEs, nuclear power has practically inexhaustible (for a long future) and cheap fuel resources, taking into account that Thorium reserves exceed Uranium PWR fuel reserves by factor of 10 3 . (3) TASSEs are able to burnout all previously accumulated transuraniums as well as weapons grade materials during PWR's replacement over a period of approximately 50 years. No actinide fuel waste is foreseen for this period of time. There is no need to

  20. Gap conductance model validation in the TASS/SMR-S code

    International Nuclear Information System (INIS)

    Ahn, Sang-Jun; Yang, Soo-Hyung; Chung, Young-Jong; Bae, Kyoo-Hwan; Lee, Won-Jae

    2011-01-01

    An advanced integral pressurized water reactor, SMART (System-Integrated Modular Advanced ReacTor) has been developed by KAERI (Korea Atomic Energy Research and Institute). The purposes of the SMART are sea water desalination and an electricity generation. For the safety evaluation and performance analysis of the SMART, TASS/SMR-S (Transient And Setpoint Simulation/System-integrated Modular Reactor) code, has been developed. In this paper, the gap conductance model for the calculation of gap conductance has been validated by using another system code, MARS code, and experimental results. In the validation, the behaviors of fuel temperature and gap width are selected as the major parameters. According to the evaluation results, the TASS/SMR-S code predicts well the behaviors of fuel temperatures and gap width variation, compared to the MARS calculation results and experimental data. (author)

  1. Evaluation of used methodology/methods in Aespoe HRL. Sections 0/700-1/475 and 1/475-2/265

    International Nuclear Information System (INIS)

    Andersson, Kjell; Sundquist, U.; Torssander, P.

    1997-01-01

    Some of the main objectives with the Aespoe Hard Rock Laboratory is reviewing and verifying the suitability of different investigations methods regarding bedrock characterization, test methods for detailed site investigations and to evaluate factors of importance for safety in realistic conditions. The SKB evaluation will result in a strategy planned to be used in the forthcoming site selection of a repository for high level radioactive waste. This report presents an evaluation of the methods used by SKB in the prediction of the bedrock prior to excavation. The prediction was based on the pre investigations carried out during 1986-1990. The review has followed the SKB classification of issue areas: geological/structural model, groundwater flow, groundwater chemistry, transport of solutes and mechanical stability. The review concerns SKB's objectives with the prediction and the different criteria for selection of variables - considering the demands of the performance assessment. This report includes evaluation of two tunnel sections, 0/700 - 1/475 and 1/475 - 2/265, comprising used data, prediction methods and prediction accuracy. By way of comparing predictions before excavation and outcome in the tunnel, a strict validation was performed. Based on the results from the validation, the applicability of different methods was estimated and the predictability of different subjects was assessed. It should be emphasised that the Aespoe predictions have not been directly intended for performance assessment purposes. However, it is of interest to see how the predictions relate to the information needs of performance assessment. By this it is possible to identify areas where more work needs to be done in the future, either in the operational phases at Aespoe or in other parts of the SKB program, thereby setting the predictions in an overall perspective from the point of view of performance assessment

  2. Research on the improvement of nuclear safety -Development of a nuclear power plant system analysis code TASS (Transient and setpoint simulation)

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Suk Koo; Jang, Won Pyo; Kim, Heui Chul; Kim, Kyung Doo; Lee, Sung Jae; Hah, Kyooi Suk; Song, Soon Jah; Um, Kil Sub; Yoon, Han Yung; Kim, Doo Il; Yoo, Hyung Keun; Choi, Jae Don; Lee, Byung Il; Kim, Jung Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    During the third year of the project the development of TASS 1.0 code has been completed and validated its capability in applying for the licensing transient analyses of the Westinghouse and CE type operating reactors as well as the PWR reactors under construction in Korea. The validation of the TASS 1.0 code has been achieved through the comparison calculations of the YGN-3/4 FSAR transients, Kori-3 loss of AC power transient, plant data, Kori-4 load rejection and YGN-3 startup test data as well as the BETHSY loop steam generator tube rupture test data. TASS 1.0 calculation agrees well with the best estimate RELAP5/MOD 3.1 calculation for the YGN-3/4 FASR transients and shows its capability in simulating plant transient and startup data as well as the thermal hydraulic transient test data. Topical reports on TASS 1.0 code have been prepared and will be submitted to Korea Institute of Nuclear Safety for its licensing application to Westinghouse and CE type PWR transient analyses. The development of TASS 2.0 code has been head started in this year to timely utilize the TASS 2.0 code for the KNGR design certification. 65 figs, 30 tabs, 44 refs. (Author).

  3. Assessment of the TASS 1-D neutronics model for the westinghouse and ABB-CE type PWR reactivity induced transients

    International Nuclear Information System (INIS)

    Choi, J.D.; Yoon, H.Y.; Um, K.S.; Kim, H.C.; Sim, S.K.

    1997-01-01

    Best estimate transient analysis code, TASS, has been developed for the normal and transient simulation of the Westinghouse and ABB-CE type PWRs. TASS thermal hydraulic model is based on the non-homogeneous, non-equilibrium two-phase continuity, energy and mixture momentum equations with constitutive relations for closure. Core neutronics model employs both the point kinetics and one-dimensional neutron diffusion model. Semi-implicit numerical scheme is used to solve the discretized finite difference equations. TASS one dimensional neutronics core model has been assessed through the reactivity induced transient analyses for the KORI-3, three loop Westinghouse PWR, and Younggwang-3 (YGN-3), two-loop ABB-CE PWR, nuclear power plants currently operating in Korea. The assessment showed that the TASS one dimensional neutronics core model can be applied for the Westinghouse and ABB-CE type PWRs to gain thermal margin which is necessary for a potential use of the high fuel burnup, extended fuel cycle, power upgrading and for the plant life extension

  4. A laboratory scale analysis of groundwater flow and salinity distribution in the Aespoe area

    International Nuclear Information System (INIS)

    Svensson, Urban

    1999-12-01

    This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. The objective of the study is to develop, calibrate and apply a numerical simulation model of the Aespoe Hard Rock Laboratory (HRL). An area of 800 x 600 centred around the HRL, gives the horizontal extent of the model. In the vertical direction the model covers the depth interval from 200 to 560 metres. The model is based on a mathematical model that includes equations for the Darcy velocities, mass conservation and salinity distribution. Gravitational effects are thus fully accounted for. A site scale groundwater model was used to generate boundary conditions for all boundaries. Transmissivities of major fracture zones are based on field data. Fractures and fracture zones with a length scale between 5 and 320 metres are accounted for by a novel method that is based on a discrete fracture network. A small background conductivity is added to account for fractures smaller than the grid size, which is metres. A calibration of the model is carried out, using field data from the Aespoe HRL. A satisfactory agreement with field data is obtained. Main results from the model include vertical and horizontal sections of flow, salinity and hydraulic head distributions for completed tunnel. A sensitivity study, where the properties of the conductivity field are modified, is also carried out. The general conclusion of the study is that the model developed can simulate the conditions at the Aespoe HRL in a realistic manner

  5. TASS/SMR Code Topical Report for SMART Plant, Vol II: User's Guide and Input Requirement

    International Nuclear Information System (INIS)

    Kim, See Darl; Kim, Soo Hyoung; Kim, Hyung Rae

    2008-10-01

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained

  6. Experiments at the Aespoe Hard Rock Laboratory[Information for the general public

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small

  7. Quantitative determination and monitoring of water distribution in Aespoe granite

    International Nuclear Information System (INIS)

    Zimmer, U.

    1998-01-01

    To identify possible zones of two-phase-flow and the extension of the excavation disturbed zone, geoelectric measurements are conducted in the ZEDEX- and the DEMO-tunnel. The electric resistivity of a hard rock is usually determined by its water content, its water salinity and its porosity structure. By calibration measurements of the resistivity on rocks with well known water content, a relation between resistivity and water content for Aespoe granite is determined. This relation is used to correlate the in-situ resistivity with the water content of the rock. To determine the in-situ resistivity between the ZEDEX- and the DEMO-tunnel an electrode array of nearly 300 electrodes was installed along the tunnel walls and in one borehole. With a semiautomatic recording unit which is operated by a telephone connection from the GRS-office in Braunschweig/Germany, the resistivity is monitored between and around the tunnels. To correlate the resistivity with the water content, the measured apparent resistivity has to be converted into a resistivity model of the underground. Since many thin water bearing fractures complicate this inversion process, the accuracy and resolution of the different inversion programs are checked before their application to the data. It was found that an acceptable quantitative reconstruction of the resistivity requires the integration of geometric information about the fracture zones into the inversion process. For a rough estimation of the position of possible fracture zones, a simple inversion without any geometric boundary conditions can be used. Since the maximum investigation area is limited along a single tunnel for profile measurements, tomographic measurements were also applied to estimate the resistivity distribution between the ZEDEX- and the DEMO-tunnel. These tomographic measurements have a lower resolution than the profile measurements due to the required large computer power, but result in reconstructions that give an estimate of

  8. The Tasse concept (thorium based accelerator driven system with simplified fuel cycle for long term energy production)

    International Nuclear Information System (INIS)

    Berthou, V.; Slessarev, I.; Salvatores, M.

    2001-01-01

    Within the framework of the nuclear waste management studies, the ''one-component''. concept has to be considered as an attractive option in the long-term perspective. This paper proposes a new system called TASSE (''Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production''.), destined to the current French park renewal. The main idea of the TASSE concept is to simplify both the front and the back end of the fuel cycle, and his major goals are to provide electricity with low waste production, and with an economical competitiveness. (author)

  9. The Aespoe Hard Rock Laboratory: Final evaluation of the hydrogeochemical pre-investigations in relation to existing geologic and hydraulic conditions

    International Nuclear Information System (INIS)

    Smellie, J.; Laaksoharju, M.

    1992-11-01

    The Swedish Nuclear Fuel and Management Company (SKB) is currently excavating the access tunnel to an underground experimental laboratory, the Aespoe Hard Rock Laboratory, planned to be located some 500 m below the island of Aespoe which is located in the Simpevarp area, southeast Sweden. The construction of an underground laboratory forms part of the overall SKB strategy to test, not only the construction techniques for deep excavation, but also the various methods and protocols required to obtain a three-dimensional model of the geology and groundwater flow and chemistry, within a fractured crystalline bedrock similar to that envisaged for the final disposal of spent fuel. Aespoe was chosen because it geologically represents a variety of typical crystalline bedrock environments. The hydrogeochemical activities described and interpreted in this report form part of the initial pre-investigation phase (from the surface to around 1000 metres depth) aimed at siting the laboratory, describing the natural hydrogeological and hydrogeochemical conditions in the bedrock and predicting the changes that will occur during excavation and construction of the laboratory. Hydrogeochemical interpretation has therefore been closely integrated with the hydrogeological investigations and other disciplines of major influence, in particular, bedrock geology and geochemistry and fracture mineralogy and chemistry. A large section of this report has been devoted to the detailed investigation of each individual zone hydraulically selected, tested and sampled for hydrogeochemical characterization. The data have been used to describe the chemistry and origin of the Aespoe groundwaters, models have been developed to illustrate groundwater mixing and standard geochemical modelling approaches have been employed to understand rock/water interaction processes. An attempt has been made to integrate the hydrogeochemical information with known geological and hydrogeological parameters to construct a

  10. Aespoe Pillar Stability Experiment. Final 2D coupled thermo-mechanical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Anders; Staub, Isabelle; Outters, Nils [Golder Associates AB, Uppsala (Sweden)

    2004-02-01

    A site scale Pillar Stability Experiment is planned in the Aespoe Hard Rock Laboratory. One of the experiment's aims is to demonstrate the possibilities of predicting spalling in the fractured rock mass. In order to investigate the probability and conditions for spalling in the pillar 'prior to experiment' numerical simulations have been undertaken. This report presents the results obtained from 2D coupled thermo-mechanical numerical simulations that have been done with the Finite Element based programme JobFem. The 2D numerical simulations were conducted at two different depth levels, 0.5 and 1.5 m below tunnel floor. The in situ stresses have been confirmed with convergence measurements during the excavation of the tunnel. After updating the mechanical and thermal properties of the rock mass the final simulations have been undertaken. According to the modelling results the temperature in the pillar will increase from the initial 15.2 deg up to 58 deg after 120 days of heating. Based on these numerical simulations and on the thermal induced stresses the total stresses are expected to exceed 210 MPa at the border of the pillar for the level at 0.5 m below tunnel floor and might reach 180-182 MPa for the level at 1.5 m below tunnel floor. The stresses are slightly higher at the border of the confined hole. Upon these results and according to the rock mechanical properties the Crack Initiation Stress is exceeded at the border of the pillar already after the excavation phase. These results also illustrate that the Crack Damage Stress is exceeded only for the level at 0.5 m below tunnel floor and after at least 80 days of heating. The interpretation of the results shows that the required level of stress for spalling can be reached in the pillar.

  11. Aespoe Hard Rock Laboratory. Studies of factors that affect and controls the Excavation Damaged/Disturbed Zone

    International Nuclear Information System (INIS)

    Jonsson, Martin; Baeckstroem, Ann; Quanhong Feng; Berglund, Johan; Johansson, Malin; Mas Ivars, Diego; Olsson, Mats

    2009-05-01

    A tunnel was developed at the Aespoe Hard Rock Laboratory (HRL) in 2003 purposely for a large in-situ rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). The tunnel had a large height/width ratio with a circular floor, primarily to control the stress situation around the tunnel and concentrate the stresses under the floor. An extensive set of data for understanding the Excavation Damaged Zone (EDZ) was collected within section 47 of the tunnel. It consist of the blast design, blast sequences, convergence measurements during excavation, geological mapping of tunnel and cores, 3D-laser scanning of the tunnel geometry etc. Furthermore, in 2006, ultrasonic measurements along eight boreholes were carried out in order to estimate the extent of the EDZ in the tunnel. The collection of all these different information provides an opportunity to evaluate the mechanical damages caused by the excavation work. The overall aim with this project is to give feed-back to future planning of tunnelling on issues of importance for requirements with respect to minimising the EDZ in crystalline rock from the drill and blast method. A combination of the mapped geological features (tunnel and cores) and the geometry of the blasted tunnel obtained from the 3D-laser scanning were used to build a 3D model of the geology with emphasis on the geometry of the natural fractures. The rock mechanic response to the tunnelling was evaluated in a numerical model including the as-built geometry in combination with the 3D model of the geology. The modelling of the rock mechanical processes of importance for the EDZ could be calibrated against actual measurements. From observed changes in the ultrasonic wave velocity along the boreholes it was found that the locations of the velocity changes corresponded well with the location of the mapped fractures in the drill cores. This indicates that EDZ can be detected using the ultrasonic method with high accuracy. Furthermore, the

  12. Aespoe Hard Rock Laboratory. Studies of factors that affect and controls the Excavation Damaged/Disturbed Zone

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Martin; Baeckstroem, Ann; Quanhong Feng (AaF - Berg och Maetteknik, Stockholm (Sweden)); Berglund, Johan (Vattenfall Power Consultant, Stockholm (Sweden)); Johansson, Malin; Mas Ivars, Diego (Itasca Geomekanik AB, Solna (Sweden)); Olsson, Mats (SweBefo, Stockholm (Sweden))

    2009-07-15

    A tunnel was developed at the Aespoe Hard Rock Laboratory (HRL) in 2003 purposely for a large in-situ rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). The tunnel had a large height/width ratio with a circular floor, primarily to control the stress situation around the tunnel and concentrate the stresses under the floor. An extensive set of data for understanding the Excavation Damaged Zone (EDZ) was collected within section 47 of the tunnel. It consist of the blast design, blast sequences, convergence measurements during excavation, geological mapping of tunnel and cores, 3D-laser scanning of the tunnel geometry etc. Furthermore, in 2006, ultrasonic measurements along eight boreholes were carried out in order to estimate the extent of the EDZ in the tunnel. The collection of all these different information provides an opportunity to evaluate the mechanical damages caused by the excavation work. The overall aim with this project is to give feed-back to future planning of tunnelling on issues of importance for requirements with respect to minimising the EDZ in crystalline rock from the drill and blast method. A combination of the mapped geological features (tunnel and cores) and the geometry of the blasted tunnel obtained from the 3D-laser scanning were used to build a 3D model of the geology with emphasis on the geometry of the natural fractures. The rock mechanic response to the tunnelling was evaluated in a numerical model including the as-built geometry in combination with the 3D model of the geology. The modelling of the rock mechanical processes of importance for the EDZ could be calibrated against actual measurements. From observed changes in the ultrasonic wave velocity along the boreholes it was found that the locations of the velocity changes corresponded well with the location of the mapped fractures in the drill cores. This indicates that EDZ can be detected using the ultrasonic method with high accuracy. Furthermore, the

  13. TASS/SMR Code Topical Report for SMART Plant, Vol. I: Code Structure, System Models, and Solution Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Jong; Kim, Soo Hyoung; Kim, See Darl (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  14. TASS/SMR Code Topical Report for SMART Plant, Vol II: User's Guide and Input Requirement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, See Darl; Kim, Soo Hyoung; Kim, Hyung Rae (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  15. Towards a new generation of flow and transport models for the Aespoe Hard Rock Laboratory. Main results from the project Aespoe models 2005

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (ed.) (Computer-aided Fluid Engineering AB (CFE AB), SE-602 10 Norrkoeping (Sweden)); Vidstrand, Patrik (Bergab AB, Goeteborg (Sweden)); Neretnieks, Ivars (Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)); Wallin, Bill (Geokema, Lidingoe (Sweden))

    2008-05-15

    This report constitutes the outcome of a project called 'Aespoe models 2005'. The main objective of the project has been to provide a first step towards a new generation of numerical models of flow and transport, for the Aespoe HRL. In order to achieve this goal, work has been carried out along three parallel lines; discussion of basic concepts, compilation and analysis of data and model applications. A number of sub tasks are reported as appendices in the report. In fact, these appendices represent the main achievements of the project: an analysis of fracture properties, compilation of isotope and chemical data, dispersion and mixing in fractured rocks and model results. The conclusion of the project is that significant contributions to a new generation of Aespoe models have been obtained. It has further been demonstrated that working numerical simulations are up and running. Recommendations are provided for the continued work

  16. Towards a new generation of flow and transport models for the Aespoe Hard Rock Laboratory. Main results from the project Aespoe models 2005

    International Nuclear Information System (INIS)

    Svensson, Urban; Vidstrand, Patrik; Neretnieks, Ivars; Wallin, Bill

    2008-05-01

    This report constitutes the outcome of a project called 'Aespoe models 2005'. The main objective of the project has been to provide a first step towards a new generation of numerical models of flow and transport, for the Aespoe HRL. In order to achieve this goal, work has been carried out along three parallel lines; discussion of basic concepts, compilation and analysis of data and model applications. A number of sub tasks are reported as appendices in the report. In fact, these appendices represent the main achievements of the project: an analysis of fracture properties, compilation of isotope and chemical data, dispersion and mixing in fractured rocks and model results. The conclusion of the project is that significant contributions to a new generation of Aespoe models have been obtained. It has further been demonstrated that working numerical simulations are up and running. Recommendations are provided for the continued work

  17. Aespoe HRL - Geoscientific evaluation 1997/1. Overview of site characterization 1986-1995

    International Nuclear Information System (INIS)

    Stanfors, R.; Erlstroem, M.; Markstroem, I.

    1997-03-01

    Geological investigations for the Aespoe Hard Rock Laboratory in the region around Aespoe began in 1986. Aespoe was selected as the laboratory site in 1988 and construction of the underground facility started in october 1990. Construction of the laboratory was completed in the summer of 1995. This report gives a comprehensive compilation of the different investigations performed during the pre-investigation phase 1986-1990 and the excavation phase 1990-1995. The information is mainly compiled in CAD-generated maps, tables and illustrations in which the reader can gather information concerning the scope of work as well as references to more detailed reports for further study. 325 refs., 85 figs

  18. Gap Conductance model Validation in the TASS/SMR-S code using MARS code

    International Nuclear Information System (INIS)

    Ahn, Sang Jun; Yang, Soo Hyung; Chung, Young Jong; Lee, Won Jae

    2010-01-01

    Korea Atomic Energy Research Institute (KAERI) has been developing the TASS/SMR-S (Transient and Setpoint Simulation/Small and Medium Reactor) code, which is a thermal hydraulic code for the safety analysis of the advanced integral reactor. An appropriate work to validate the applicability of the thermal hydraulic models within the code should be demanded. Among the models, the gap conductance model which is describes the thermal gap conductivity between fuel and cladding was validated through the comparison with MARS code. The validation of the gap conductance model was performed by evaluating the variation of the gap temperature and gap width as the changed with the power fraction. In this paper, a brief description of the gap conductance model in the TASS/SMR-S code is presented. In addition, calculated results to validate the gap conductance model are demonstrated by comparing with the results of the MARS code with the test case

  19. Aespoe hard rock laboratory. Annual report 2000

    International Nuclear Information System (INIS)

    2001-06-01

    be added and a higher water pressure applied. Still the saturation is expected to take the whole of year 2001 as well. The Long Term Tests of Buffer Material (LOT) aims to validate models of buffer performance at standard KBS-3 repository conditions, and at quantifying clay buffer alteration processes at adverse conditions. In this context adverse conditions have reference to e.g. super saline ground water, high temperatures, high temperature gradient over the buffer, high pH and high potassium concentration in clay pore water. Further, related processes regarding microbiology, radionuclide transport, copper corrosion and gas transport are also studied. On-going activities during year 2000 have been on-line readings of temperature, total pressure, water pressure and water content. Decommissioning of one out of five parcels is scheduled to take place in 2001. The operation of the facility has worked properly and an extensive rock support programme has been carried through covering the whole tunnel. One objective with the Aespoe HRL is to test and develop techniques before they are applied at the candidate sites. In this context efficient techniques are required to handle, interpret and archive the huge amount of data collected during site characterisation. At present the SICADA data structure contains the sciences engineering, geology, geophysics, geotechnics, groundwater chemistry, hydrology, meteorology and rock mechanics. Data have successively been stored in SICADA during the year. On-line recording of groundwater changes (hydraulic and chemical) has been made by the installed Hydro Monitoring System (HMS). Groundwater sampling was performed once in boreholes drilled from the ground surface and from the underground tunnels. Nine organisations from eight countries participated during 2000 in the Aespoe HRL research in addition to SKB

  20. Real-time monitoring of copper corrosion at the Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Rosborg, Bo; Pan, Jinshan [Div. Corrosion Science, Royal Institute of Technology, Drottning Kristinas vaeg 51, SE - 100 44 Stockholm (Sweden); Eden, David [InterCorr International, Inc., 14503 Bammel-N Houston, Suite 300, Houston, TX 77014 (United States); Karnland, Ola [Clay Technology AB, Ideon Research Center, SE - 223 70 Lund (Sweden); Werme, Lars [Svensk Kaernbraenslehantering AB, P.O. Box 5864, SE - 102 40 Stockholm (Sweden)

    2004-07-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 {mu}m/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  1. Real-time monitoring of copper corrosion at the Aespoe HRL

    International Nuclear Information System (INIS)

    Rosborg, Bo; Pan, Jinshan; Eden, David; Karnland, Ola; Werme, Lars

    2004-01-01

    In Sweden the principal strategy for high-level radioactive waste disposal is to enclose the spent nuclear fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bed-rock. Initially, a limited amount of air will be left in a repository after emplacement. The entrapped oxygen will be consumed through reactions with minerals in the rock and the bentonite and also through microbial activity. After the oxygen has been consumed in the repository, after a few hundred years at the very most, corrosion will be controlled completely by the supply of dissolved sulphide to the canister. The present work concerns the oxic period after emplacement. The main hypothesis is that the average corrosion rate of the canister under oxic conditions will be less than 7 μm/year, and that pitting will only be possible under these conditions. The Aespoe Hard Rock Laboratory offers a realistic environment for different experiments and tests under the conditions that will prevail in a deep repository. Real-time monitoring of copper corrosion is presently performed with polarization resistance, harmonic distortion analysis and electrochemical noise techniques. The first two techniques are used to derive information regarding the general corrosion rate and the third to derive information regarding localized corrosion. In order to support these measurements at Aespoe, laboratory work is also performed at the Royal Institute of Technology in Stockholm using the very same corrosion monitoring equipment and also other equipment and techniques. Copper coupons are also exposed at Aespoe. Results from the work at Aespoe and in Stockholm are presented with an emphasis on the gained information concerning localized corrosion. The recorded corrosion rates at Aespoe are well below the value given above, and the recorded localization factors are interpreted as indicating only a slight tendency to local attack. (authors)

  2. Hydrogeological pre-modelling exercises. Assessment of impact of the Aespoe Hard Rock Laboratory. Sensitivities of palaeo-hydrogeology. Development of a local near-surface Hydro-DFN for KLX09B-F. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Shevelan, John; Swift, Ben; Gylling, Bjoern; Marsic, Niko; Hermanson, Jan; Oehman, Johan

    2007-12-01

    Numerical modelling has been used to investigate the potential impact of the Aespoe HRL on regional groundwater flow and hydro-geochemistry in the Laxemar study area. The numerical models have been adapted for this application from the ones use in the site-descriptive modelling (SDM) and SR-Can assessment modelling based on Laxemar version 1.2. In order to test the robustness of the simulation results, sensitivities were studied with respect to different flow boundary conditions and the hydraulic properties of the Quaternary deposits, particularly those beneath the sea around the Aespoe island. The simulations show that the Aespoe HRL has a local effect on the groundwater situation. Typically, in the simulations, the rock under the Aespoe island, the bays around it and the Aevroe area (mainly western part of the islands of Aevroe, Mjaelen and Haaloe) are influenced. In the sensitivity study, visualisations of the drawdown caused by the HRL tunnel system show small differences in the results for head versus flux top boundary conditions, little sensitivity to a change in the surface infiltration rate, but most sensitivity to the contact between the sea and the bedrock beneath the seabed sediments. For all simulation cases considered, results suggest that the Aespoe HRL has not been in operation sufficiently long to have affected the chemistry of samples collected at Laxemar and Simpevarp, though there is some possibility that Aevroe samples have been altered, at least for boreholes in the western part of Aevroe, Mjaelen and Haaloe. The distribution of flow and discharge areas around the bay at Aespoe is clearly affected by the HRL for all cases. Using the drawdown in percussion drilled boreholes around Aespoe as an interference test suggests that there is a partial reduction in the hydraulic contact between the sea and the groundwater system in the bedrock beneath. It is recommended that the conclusions about appropriate hydraulic properties for Quaternary sediments

  3. Hydrogeological pre-modelling exercises. Assessment of impact of the Aespoe Hard Rock Laboratory. Sensitivities of palaeo-hydrogeology. Development of a local near-surface Hydro-DFN for KLX09B-F. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Shevelan, John; Swift, Ben (Serco Assurance, Harwell (GB)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (SE)); Hermanson, Jan; Oehman, Johan (Golders Associates (SE))

    2007-12-15

    Numerical modelling has been used to investigate the potential impact of the Aespoe HRL on regional groundwater flow and hydro-geochemistry in the Laxemar study area. The numerical models have been adapted for this application from the ones use in the site-descriptive modelling (SDM) and SR-Can assessment modelling based on Laxemar version 1.2. In order to test the robustness of the simulation results, sensitivities were studied with respect to different flow boundary conditions and the hydraulic properties of the Quaternary deposits, particularly those beneath the sea around the Aespoe island. The simulations show that the Aespoe HRL has a local effect on the groundwater situation. Typically, in the simulations, the rock under the Aespoe island, the bays around it and the Aevroe area (mainly western part of the islands of Aevroe, Mjaelen and Haaloe) are influenced. In the sensitivity study, visualisations of the drawdown caused by the HRL tunnel system show small differences in the results for head versus flux top boundary conditions, little sensitivity to a change in the surface infiltration rate, but most sensitivity to the contact between the sea and the bedrock beneath the seabed sediments. For all simulation cases considered, results suggest that the Aespoe HRL has not been in operation sufficiently long to have affected the chemistry of samples collected at Laxemar and Simpevarp, though there is some possibility that Aevroe samples have been altered, at least for boreholes in the western part of Aevroe, Mjaelen and Haaloe. The distribution of flow and discharge areas around the bay at Aespoe is clearly affected by the HRL for all cases. Using the drawdown in percussion drilled boreholes around Aespoe as an interference test suggests that there is a partial reduction in the hydraulic contact between the sea and the groundwater system in the bedrock beneath. It is recommended that the conclusions about appropriate hydraulic properties for Quaternary sediments

  4. Aespoe Hard Rock Laboratory. Annual Report 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The Aespoe HRL was opened in 1994 as a research centre and underground laboratory. The experiments performed in Aespoe HRL are related to the rock, its properties, and in situ environmental conditions. Tests of models for groundwater flow, radionuclide migration and chemical/biological processes are some of the main purposes of the Aespoe HRL. The programme includes projects with the aim to evaluate the usefulness and reliability of different models and to develop and test methods for determination of parameters required as input to conceptual and numerical models. The retardation in rock is studied at different experiment scales in a programme called Tracer Retention Understanding Experiments (TRUE). The Long Term Diffusion Experiment constitutes a complement to performed diffusion and sorption laboratory experiments, and is a natural extension of the experiments conducted as part of the TRUE experiments. Radionuclide retention experiments are carried out with the aim to confirm result from laboratory experiments in situ, where conditions representative for the properties of groundwater at repository depth prevail. In CHEMLAB 1 two kinds of experiments to study the influence of radiolysis on the mobility of technetium in bentonite were started in the end of 2002. Experiments to study migration of actinides in natural fractures in drill cores are being carried out in CHELMAB 2. The findings of potential transport of solutes by colloids and access to more sensitive instruments for colloid measurements motivated a Colloid Project at Aespoe HRL. There are presently four specific microbial process areas identified that are of importance for proper repository functions and that are studied in the Microbe Project. The process areas are; biomobilisation of radionuclides, bioimmobilisation of radionuclides, microbial effects on the chemical stability, and microbial corrosion of copper. The main objectives of the Matrix Fluid Chemistry experiment are to understand the

  5. Rock stability considerations for siting and constructing a KBS-3 repository. Based on experiences from Aespoe HRL, AECL's URL, tunnelling and mining

    International Nuclear Information System (INIS)

    Martin, C.D.; Christiansson, Rolf; Soederhaell, J.

    2001-12-01

    Over the past 25 years the international nuclear community has carried out extensive research into the deep geological disposal of nuclear waste in hard rocks. In two cases this research has resulted in the construction of dedicated underground research facilities: SKB's Aespoe Hard Rock Laboratory, Sweden and AECL's Underground Research Laboratory, Canada. Both laboratories are located in hard rocks considered representative of the Fennoscandian and Canadian Shields, respectively. This report is intended to synthesize the important rock mechanics findings from these research programs. In particular the application of these finding to assessing the stability of underground openings. As such the report draws heavily on the published results from the SKB's ZEDEX Experiment in Sweden and AECL's Mine- by Experiment in Canada. The objectives of this report are to: 1. Describe, using the current state of knowledge, the role rock engineering can play in siting and constructing a KBS-3 repository. 2. Define the key rock mechanics parameters that should be determined in order to facilitate repository siting and construction. 3. Discuss possible construction issues, linked to rock stability, that may arise during the excavation of the underground openings of a KBS-3 repository. 4. Form a reference document for the rock stability analysis that has to be carried out as a part of the design works parallel to the site investigations. While there is no unique or single rock mechanics property or condition that would render the performance of a nuclear waste repository unacceptable, certain conditions can be treated as negative factors. Outlined below are major rock mechanics issues that should be addressed during the siting, construction and closure of a nuclear waste repository in Sweden in hard crystalline rock. During the site investigations phase, rock mechanics information will be predominately gathered from examination and testing of the rock core and mapping of the

  6. Rock stability considerations for siting and constructing a KBS-3 repository. Based on experiences from Aespoe HRL, AECL's URL, tunnelling and mining

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.D. [Univ. of Alberta, Edmonton (Canada); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Soederhaell, J. [VBB VIAK AB, Stockholm (Sweden)

    2001-12-01

    Over the past 25 years the international nuclear community has carried out extensive research into the deep geological disposal of nuclear waste in hard rocks. In two cases this research has resulted in the construction of dedicated underground research facilities: SKB's Aespoe Hard Rock Laboratory, Sweden and AECL's Underground Research Laboratory, Canada. Both laboratories are located in hard rocks considered representative of the Fennoscandian and Canadian Shields, respectively. This report is intended to synthesize the important rock mechanics findings from these research programs. In particular the application of these finding to assessing the stability of underground openings. As such the report draws heavily on the published results from the SKB's ZEDEX Experiment in Sweden and AECL's Mine- by Experiment in Canada. The objectives of this report are to: 1. Describe, using the current state of knowledge, the role rock engineering can play in siting and constructing a KBS-3 repository. 2. Define the key rock mechanics parameters that should be determined in order to facilitate repository siting and construction. 3. Discuss possible construction issues, linked to rock stability, that may arise during the excavation of the underground openings of a KBS-3 repository. 4. Form a reference document for the rock stability analysis that has to be carried out as a part of the design works parallel to the site investigations. While there is no unique or single rock mechanics property or condition that would render the performance of a nuclear waste repository unacceptable, certain conditions can be treated as negative factors. Outlined below are major rock mechanics issues that should be addressed during the siting, construction and closure of a nuclear waste repository in Sweden in hard crystalline rock. During the site investigations phase, rock mechanics information will be predominately gathered from examination and testing of the rock core and

  7. Aespoe HRL - Geoscientific evaluation 1997/4. Results from pre-investigation and detailed site characterization. Comparison of predictions and observations. Hydrogeology, groundwater chemistry and transport of solutes

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, I; Gustafson, Gunnar [VBB Viak AB, Goeteborg (Sweden); Wikberg, P [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1997-06-01

    The pre-investigations for the Aespoe Hard Rock Laboratory were started in 1986 and involved extensive field measurements, aimed at characterizing the rock formations with regard to geology, hydrogeology, hydrochemistry and rock mechanics. Prior to the excavation in 1990 predictions were made for the excavation phase concerning: geology, ground water flow and chemistry, transport of solutes and mechanical stability. This report presents a comparison between these predictions and the observations made during the excavation. Also, investigation methods for the 700-2874 m sections of the tunnel are evaluated. 157 refs, 190 figs, 37 tabs.

  8. Aespoe HRL - Geoscientific evaluation 1997/4. Results from pre-investigation and detailed site characterization. Comparison of predictions and observations. Hydrogeology, groundwater chemistry and transport of solutes

    International Nuclear Information System (INIS)

    Rhen, I.; Gustafson, Gunnar; Wikberg, P.

    1997-06-01

    The pre-investigations for the Aespoe Hard Rock Laboratory were started in 1986 and involved extensive field measurements, aimed at characterizing the rock formations with regard to geology, hydrogeology, hydrochemistry and rock mechanics. Prior to the excavation in 1990 predictions were made for the excavation phase concerning: geology, ground water flow and chemistry, transport of solutes and mechanical stability. This report presents a comparison between these predictions and the observations made during the excavation. Also, investigation methods for the 700-2874 m sections of the tunnel are evaluated

  9. Microbial O2 consumption in the Aespoe tunnel

    International Nuclear Information System (INIS)

    Kotelnikova, S.; Pedersen, Karsten

    1998-04-01

    The report presents data on microbial O 2 reduction activities by microorganisms obtained with different techniques: Winkler method, gas chromatography, most probable numbering, enrichment technique, inhibitor analysis and radiotracer measurements. The samples were collected from boreholes and open funnel ponds at Aespoe in 1996-1998. The evaluation of the microbial activities in open ponds predicts the future microbial activities after the O 2 intrusion around the future repository. The metabolic potential of the microbial population inhabiting groundwater was evaluated on the basis of electron donors available and microbial 16S rRNA gene diversity. The contribution of different microbial groups to the O 2 reduction was elucidated using specific inhibitors selectively affecting different microbial groups. Our experiments show that microbial O 2 reduction occurs in deep groundwater. Carbon dioxide was produced concurrently with O 2 reduction confirming the biogenic nature of the reduction. The populations developed O 2 reduction rates and capacity depending on the initial concentration of dissolved O 2 reduction. Rates of O 2 reduction ranged from 0.32 to 4.5 μM/day. Depending on temperature and the type of groundwater the approximate time needed for consumption of 500 μM of dissolved O 2 ranged from 0.31 to 3.99 years. After approximately a 2 weeks period the microbial population in vitro was able to consume O 2 both at 30 deg C and 60 deg C. At 16 deg C no delay in O 2 consumption was observed. Our results demonstrated that methanotrophs survive in deep groundwater and that they were induced by O 2 . Some bacteria use Hg or CH 4 as electron donor instead of organic matter, which means that microbial O 2 reduction will occur also in deep groundwaters where the availability of organic carbon is limited. Specific CH 4 oxidation rates ranged between 3.00 and 220 nM CH 4 per litre per day. Comparison of the total O 2 reducing activities by gas chromatography and

  10. Characterisation, design and execution of two grouting fans at 450 m level, Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Emmelin, Ann [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Eriksson, Magnus [Royal Inst. of Technology, Stockholm (Sweden); Fransson, Aasa [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2004-09-01

    During June 2003 a grouting field experiment was carried out at Aespoe HRL, in connection with the construction of a tunnel (TASQ) for the Aespoe Pillar Stability Experiment (APSE). The tunnel is situated in connection to the elevator shaft landing at 450 m depth and runs in direction N/E. The grouting was carried out as part of the ordinary construction work, but was accompanied by extra investigations and analyses during operations and an active adaptation of a basic grouting design to the encountered conditions. The main objectives of this set-up were to Investigate what can be achieved with best available technology, material and knowledge under the current conditions, i.e. a relatively tight crystalline rock mass at great depth; Collect data and evaluate theories resulting from previous research projects on characterisation and predictions on grout spread; Collect data to further develop those above mentioned theories; Contribute to the achievement of good conditions at the experimental site for the pillar stability experiments. The characterization method is based on analyses of stepwise investigations consisting of investigations in an initially drilled core-drill hole followed by probe and grouting boreholes with pressure-build-up tests and measuring of inflow during drilling, all aiming at identifying the singular fractures that are to be sealed. The decision about grouting design is based on the successively up-dated rock description from the characterization and iterative selection and testing of grouting design and grout in a numeric model, resulting in an expected grout spread and sealing effect. Based on investigations and analysis of results from investigations of a core-drilled hole at the site, a basic design was set up, together with conditions for application. Probe boreholes covering the first anticipated fan gave substantially larger inflows than expected, and subsequently the design was changed. A first round was drilled and grouted, sealing

  11. Characterisation, design and execution of two grouting fans at 450 m level, Aespoe HRL

    International Nuclear Information System (INIS)

    Emmelin, Ann; Eriksson, Magnus; Fransson, Aasa

    2004-09-01

    During June 2003 a grouting field experiment was carried out at Aespoe HRL, in connection with the construction of a tunnel (TASQ) for the Aespoe Pillar Stability Experiment (APSE). The tunnel is situated in connection to the elevator shaft landing at 450 m depth and runs in direction N/E. The grouting was carried out as part of the ordinary construction work, but was accompanied by extra investigations and analyses during operations and an active adaptation of a basic grouting design to the encountered conditions. The main objectives of this set-up were to Investigate what can be achieved with best available technology, material and knowledge under the current conditions, i.e. a relatively tight crystalline rock mass at great depth; Collect data and evaluate theories resulting from previous research projects on characterisation and predictions on grout spread; Collect data to further develop those above mentioned theories; Contribute to the achievement of good conditions at the experimental site for the pillar stability experiments. The characterization method is based on analyses of stepwise investigations consisting of investigations in an initially drilled core-drill hole followed by probe and grouting boreholes with pressure-build-up tests and measuring of inflow during drilling, all aiming at identifying the singular fractures that are to be sealed. The decision about grouting design is based on the successively up-dated rock description from the characterization and iterative selection and testing of grouting design and grout in a numeric model, resulting in an expected grout spread and sealing effect. Based on investigations and analysis of results from investigations of a core-drilled hole at the site, a basic design was set up, together with conditions for application. Probe boreholes covering the first anticipated fan gave substantially larger inflows than expected, and subsequently the design was changed. A first round was drilled and grouted, sealing

  12. Aespoe HRL - Geoscientific evaluation 1997/2. Results from pre-investigation and detailed site characterization. Summary report

    International Nuclear Information System (INIS)

    Rhen, I.; Baeckbom, G.; Stanfors, R.; Wikberg, P.

    1997-05-01

    The work at Aespoe Hard rock laboratory provides an important scientific and technical basis for implementing and operating a future deep repository in Sweden. A milestone has now been reached with the completion of the pre investigation and construction phases at Aespoe HRL. The present data base at Aespoe HRL is one of the most comprehensive data bases in the world for crystalline rock properties, containing data from a large number of investigation methods from the surface down to 1700 m below ground level. Site characterization in conjunction with construction work has basically confirmed the pre-construction models. The site characterization has been a realistic 'dress rehearsal' that is invaluable for planning and execution of surface and underground characterization of sites for the deep repository for spent nuclear fuel in Sweden

  13. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  14. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  15. Microbial O{sub 2} consumption in the Aespoe tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Kotelnikova, S.; Pedersen, Karsten [Goeteborg Univ. (Sweden). Dept. of Cell and Molecular Biology, Microbiology

    1998-04-01

    The report presents data on microbial O{sub 2} reduction activities by microorganisms obtained with different techniques: Winkler method, gas chromatography, most probable numbering, enrichment technique, inhibitor analysis and radiotracer measurements. The samples were collected from boreholes and open funnel ponds at Aespoe in 1996-1998. The evaluation of the microbial activities in open ponds predicts the future microbial activities after the O{sub 2} intrusion around the future repository. The metabolic potential of the microbial population inhabiting groundwater was evaluated on the basis of electron donors available and microbial 16S rRNA gene diversity. The contribution of different microbial groups to the O{sub 2} reduction was elucidated using specific inhibitors selectively affecting different microbial groups. Our experiments show that microbial O{sub 2} reduction occurs in deep groundwater. Carbon dioxide was produced concurrently with O{sub 2} reduction confirming the biogenic nature of the reduction. The populations developed O{sub 2} reduction rates and capacity depending on the initial concentration of dissolved O{sub 2} reduction. Rates of O{sub 2} reduction ranged from 0.32 to 4.5 {mu}M/day. Depending on temperature and the type of groundwater the approximate time needed for consumption of 500 {mu}M of dissolved O{sub 2} ranged from 0.31 to 3.99 years. After approximately a 2 weeks period the microbial population in vitro was able to consume O{sub 2} both at 30 deg C and 60 deg C. At 16 deg C no delay in O{sub 2} consumption was observed. Our results demonstrated that methanotrophs survive in deep groundwater and that they were induced by O{sub 2}. Some bacteria use Hg or CH{sub 4} as electron donor instead of organic matter, which means that microbial O{sub 2} reduction will occur also in deep groundwaters where the availability of organic carbon is limited. Specific CH{sub 4} oxidation rates ranged between 3.00 and 220 nM CH{sub 4} per litre per

  16. Aespoe HRL - Geoscientific evaluation 1997/2. Results from pre-investigation and detailed site characterization. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, I. [VBB Viak, Goeteborg (Sweden); Baeckbom, G. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)] [eds.; Gustafsson, Gunnar [VBB Viak, Goeteborg (Sweden) and Chalmers Univ. of Technology, Goeteborg (Sweden); Stanfors, R. [RS Consulting, Lund (Sweden); Wikberg, P. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1997-05-01

    The work at Aespoe Hard rock laboratory provides an important scientific and technical basis for implementing and operating a future deep repository in Sweden. A milestone has now been reached with the completion of the pre investigation and construction phases at Aespoe HRL. The present data base at Aespoe HRL is one of the most comprehensive data bases in the world for crystalline rock properties, containing data from a large number of investigation methods from the surface down to 1700 m below ground level. Site characterization in conjunction with construction work has basically confirmed the pre-construction models. The site characterization has been a realistic `dress rehearsal` that is invaluable for planning and execution of surface and underground characterization of sites for the deep repository for spent nuclear fuel in Sweden. 502 refs, 114 figs, 30 tabs.

  17. Simple evaluation of groundwater flow and radionuclide transport at Aespoe

    International Nuclear Information System (INIS)

    Dverstorp, B.; Geier, J.; Voss, C.

    1996-12-01

    A simple evaluation of groundwater flux and potential for radionuclide transport at the Aespoe site, from fundamental hydrologic principles, indicates that, based upon data that are available from surface-based investigations, it is not possible to confirm that the bedrock has a high capacity to retard radionuclide release to the surface environment. This result is primarily due to the high spatial variability of hydraulic conductivity, and high uncertainty regarding the relationship among hydrologic and transport parameters within conductive elements of the bedrock. A comparison between Aespoe and seven other study sites in Sweden indicates that it is difficult or impossible to discriminate among these sites in terms of the geologic barrier function, based upon the types of data that are available from present-day methods of site characterization. Groundwater flux is evaluated by a one-dimensional application of Darcy's law to a set of simple, potential pathways for groundwater flow from the repository, which are chosen to yield an appraisal of the wide bounds of possible system behaviour. The configurations of the pathways are specified based on simple assumptions of flow-field structure, and hydraulic driving forces are specified from consideration of regional and local topographic differences. Results are expressed in terms of a parameter group that has been shown to control the barrier function. Comparisons with more detailed hydrological modelling of Aespoe show that, although a reduction in uncertainty is achieved, this reduction is not sufficient to distinguish between good and poor performance of the geologic barrier at the site. 38 refs

  18. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    International Nuclear Information System (INIS)

    Berthou, V.

    2000-01-01

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  19. 2D and 3D modelling of magnetic and resistivity data from Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2011-05-01

    This report presents results from modelling of geophysical data. Ground magnetic and geo electric data were collected in 1988 as part of the pre-investigations carried out before the construction of the Aespoe Hard Rock Laboratory (HRL). The work presented in this report is an evaluation of the magnetic and geo electric data with the focus on estimating variations in geometry and dip of some of the possible deformation zones indicated in lineament interpretations presented earlier. This was done by 2D forward magnetic modelling, 2D forward resistivity modelling and 3D inversion of the magnetic data. The specific aims of this work are: 1. Produce magnetic 2D forward models across 12 selected linked lineaments. 2. Produce a 3D susceptibility model of the entire data set of Aespoe. 3. Use 2D forward resistivity modelling to produce electric anomaly response diagrams for a dipole-dipole survey across low resistivity zones with various dips. The results of the modelling work will mainly be used as supportive information for deterministic geological modelling of deformation zones and rock units in the vicinity of the Aespoe HRL. The results of the 2D forward modelling of magnetic data show geologically reasonable solutions, and in most cases it is possible to make reliable estimates of the width and orientation of the cause of the targeted lineament. The possible deformation zones generally dip steeply (80 deg-90 deg) and have a width of c. 30-50 m. In some cases the modelled lineament has a diffuse character with low amplitude, which makes the model solution uncertain. Two 3D susceptibility models were created by use of inversion of the ground magnetic data; one coarse model of the entire Island of Aespoe and one more detailed model of the south-eastern peninsula of the Island, covering the volume of the Aespoe HRL. The two models fit nicely to the measured data and they are geologically realistic. It is possible to identify well-defined bodies (rock volumes) of

  20. Aespoe Hard Rock Laboratory. Characterisation methods and instruments. Experiences from the construction phase

    International Nuclear Information System (INIS)

    Almen, Karl-Erik; Stenberg, Leif

    2005-12-01

    This report describes the different investigation methods used during the Aespoe HRL construction phase which commenced 1990 and ended 1995. The investigation methods are described with respect to performance, errors, uncertainty and usefulness in determined, analysed and/or calculated parameter values or other kind of geoscientific information. Moreover, other comments of the different methods, like those related to the practical performance of the measurements or tests are given. The practical performance is a major task as most of the investigations were conducted in parallel with the construction work. Much of the wide range of investigations carried out during the tunnelling work required special efforts of the personnel involved. Experiences and comments on these operations are presented in the report. The pre-investigation methods have been evaluated by comparing predictions based on pre-investigation models with data and results from the construction phase and updated geoscientific models. In 1997 a package of reports describe the general results of the pre-investigations. The investigation methods are in this report evaluated with respect to usefulness for underground characterisation of a rock volume, concerning geological, geohydrological, hydrochemical and rock mechanical properties. The report describes out opinion of the methods after the construction phase, i.e. the same platform of knowledge as for the package of reports of 1997. The evaluation of usefulness of the underground investigation methods are structured according to the key issues used for the preinvestigation modelling and predictions, i.e. Geological-structural model, Groundwater flow (hydrogeology), Groundwater chemistry (hydrochemistry), Transport of solutes and Mechanical stability models (or rock mechanics). The investigation methods selected for the different subjects for which the predictions were made are presented. Some of the subjects were slightly modified or adjusted during

  1. Aespoe Hard Rock Laboratory. Characterisation methods and instruments. Experiences from the construction phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    This report describes the different investigation methods used during the Aespoe HRL construction phase which commenced 1990 and ended 1995. The investigation methods are described with respect to performance, errors, uncertainty and usefulness in determined, analysed and/or calculated parameter values or other kind of geoscientific information. Moreover, other comments of the different methods, like those related to the practical performance of the measurements or tests are given. The practical performance is a major task as most of the investigations were conducted in parallel with the construction work. Much of the wide range of investigations carried out during the tunnelling work required special efforts of the personnel involved. Experiences and comments on these operations are presented in the report. The pre-investigation methods have been evaluated by comparing predictions based on pre-investigation models with data and results from the construction phase and updated geoscientific models. In 1997 a package of reports describe the general results of the pre-investigations. The investigation methods are in this report evaluated with respect to usefulness for underground characterisation of a rock volume, concerning geological, geohydrological, hydrochemical and rock mechanical properties. The report describes out opinion of the methods after the construction phase, i.e. the same platform of knowledge as for the package of reports of 1997. The evaluation of usefulness of the underground investigation methods are structured according to the key issues used for the preinvestigation modelling and predictions, i.e. Geological-structural model, Groundwater flow (hydrogeology), Groundwater chemistry (hydrochemistry), Transport of solutes and Mechanical stability models (or rock mechanics). The investigation methods selected for the different subjects for which the predictions were made are presented. Some of the subjects were slightly modified or adjusted during

  2. Aespoe Hard Rock Laboratory. Annual report 1997

    International Nuclear Information System (INIS)

    1998-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The surface and borehole investigations and the research work performed in parallel with construction have provided a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The experimental results of the first tracer test with sorbing radioactive tracers have been obtained. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. The manufacturing of the CHEMLAB probe was completed during 1996, and the first experiments were started early in 1997. During 1997 three experiments on diffusion in bentonite using 57 Co, 114 Cs, 85 Sr, 99 Tc, and 131 I were conducted. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. The characterization of the rock mass in the area of the prototype repository is in progress. The objectives of the Demonstration of Repository Technology are to develop, test, and demonstrate methodology and equipment for encapsulation and deposition of spent nuclear fuel. The demonstration of handling and deposition will be made in a new drift. The Backfill and Plug Test includes tests of backfill materials and emplacement methods and a test of a full scale plug. The backfill and rock will be instrumented with about 230 transducers for measuring the thermo-hydro-mechanical processes. The Retrieval Test is

  3. The interaction of sorbing and non-sorbing tracers with different Aespoe rock types. Sorption and diffusion experiments in the laboratory scale

    International Nuclear Information System (INIS)

    Byegaard, J.; Johansson, Henrik; Skaalberg, M.

    1998-11-01

    Laboratory experiments studying the sorption and diffusivity of different tracers in Aespoe Hard Rock Laboratory (Aespoe HRL) site specific conditions have been performed. The experiments were conducted by applying both the batch sorption and the through diffusion technique. The investigation was focused on slightly sorbing tracers, i e, alkaline metals (Na + , Rb + and Cs + ) and alkaline earth metals (Ca 2+ , Sr 2+ and Ba 2+ ), but some presumed non-sorbing species have also been included. The dominating generic rock material from Aespoe HRL, Aespoe-diorite and fine-grained granite, were used as well as some altered wall rock and mylonite from the Feature A fracture, the fracture where in situ migration studies have been performed. Synthetic groundwater was used; similar to the high saline groundwater found at the 350m level at Aespoe HRL and at the Feature A site. The results of batch experiments show that the sorption of the tracers increase in the order Na + in the order of (4-30)x10 -6 m 3 /kg and for Cs + in the range of (I-400)x10 -3 m 3 /kg. The variations in sorption coefficients are due to differences in the composition of the geological material, contact time and particle size. Sorption is generally stronger for the Aespoe-diorite than for the fine-grained granite which is explained by the much higher concentration of biotite in Aespoe diorite than in fine-grained granite. In the altered material the biotite has been transformed to chlorite and a lower sorptivity is shown for those material compared to the fresh diorite and granite, respectively. Attempts to explain the sorption and desorption results to a surface sorption - diffusion model are presented. The diffusion results show that the tracers were retarded in the same order as was expected from the measured batch sorption coefficients. Furthermore, the largest size fraction was the most representative when comparing batch sorption coefficients with sorption coefficients evaluated from the

  4. Experience gained from the site characterisation strategy used at the Aespoe hard rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Baeckblom, G. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1998-09-01

    The Aespoe Hard Rock Laboratory is a `dress-rehearsal` facility to test, develop and demonstrate technology and models prior to applications at the actual deep repository site in Sweden. Site characterisation methodology has for more than a decade been a main issue at the Aespoe Hard Rock Laboratory (HRL). At the start of site investigations in 1987 the following strategy was adopted: Comprehensive surface and surface-based investigations; Multi-disciplinary data collection in batches; Staged integrated evaluations on selected key issues closely tied to existing knowledge of the geology of the site; Iterative modelling on several geometrical scales based on existing (scarce) data; `Predictive approach` to model updating. During the construction phase of the Aespoe HRL (1990 - 1995), a multitude of data was collected to test and to increase the details of the models made prior to construction. Several things have been learned regarding the appropriateness of the adopted approach to site characterisation. These findings concern e.g. data collection methods from surface and underground, construction/test-integration, choice of useful and feasible model concepts, data flow and document management. The acquired understanding, knowledge, skill and know-how are very valuable for planning useful and feasible site characterisation for the deep repository in Sweden

  5. Experience gained from the site characterisation strategy used at the Aespoe hard rock laboratory

    International Nuclear Information System (INIS)

    Baeckblom, G.

    1998-01-01

    The Aespoe Hard Rock Laboratory is a 'dress-rehearsal' facility to test, develop and demonstrate technology and models prior to applications at the actual deep repository site in Sweden. Site characterisation methodology has for more than a decade been a main issue at the Aespoe Hard Rock Laboratory (HRL). At the start of site investigations in 1987 the following strategy was adopted: Comprehensive surface and surface-based investigations; Multi-disciplinary data collection in batches; Staged integrated evaluations on selected key issues closely tied to existing knowledge of the geology of the site; Iterative modelling on several geometrical scales based on existing (scarce) data; 'Predictive approach' to model updating. During the construction phase of the Aespoe HRL (1990 - 1995), a multitude of data was collected to test and to increase the details of the models made prior to construction. Several things have been learned regarding the appropriateness of the adopted approach to site characterisation. These findings concern e.g. data collection methods from surface and underground, construction/test-integration, choice of useful and feasible model concepts, data flow and document management. The acquired understanding, knowledge, skill and know-how are very valuable for planning useful and feasible site characterisation for the deep repository in Sweden

  6. Strategy for a Rock Mechanics Site Descriptive Model. A test case based on data from the Aespoe HRL

    International Nuclear Information System (INIS)

    Hudson, John A

    2002-06-01

    In anticipation of the SKB Site Investigations for radioactive waste disposal, an approach has been developed for the Rock Mechanics Site Descriptive Model. This approach was tested by predicting the rock mechanics properties of a 600 m x 180 m x 120 m rock volume at the Aespoe Hard Rock Laboratory (HRL) using limited borehole data of the type typically obtained during a site investigation. These predicted properties were then compared with 'best estimate' properties obtained from a study of the test rock volume using additional information, mainly tunnel data. The exercise was known as the Test Case, and is the subject of this Report. Three modelling techniques were used to predict the rock properties: the 'empirical approach' - the rock properties were estimated using rock mass classification schemes and empirical correlation formulae; the 'theoretical approach' - the rock properties were estimated using numerical modelling techniques; and the 'stress approach' - the rock stress state was estimated using primary data and numerical modelling. These approaches are described separately and respectively. Following an explanation of the context for the Test Case within the strategy for developing the Rock Mechanics Site Descriptive Model, conditions at the Aespoe HRL are described in Chapter 2. The Test Case organization and the suite of nine Protocols used to ensure that the work was appropriately guided and co-ordinated are described in Chapter 3. The methods for predicting the rock properties and the rock stress, and comparisons with the 'best estimate' properties of the actual conditions, are presented in Chapters 4 and 5. Finally, the conclusions from this Test Case exercise are given in Chapter 6. General recommendations for the management of this type of Test Case are also included

  7. Strategy for a Rock Mechanics Site Descriptive Model. A test case based on data from the Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, John A (ed.) [Rock Engineering Consultants, Welwyn Garden City (United Kingdom)

    2002-06-01

    In anticipation of the SKB Site Investigations for radioactive waste disposal, an approach has been developed for the Rock Mechanics Site Descriptive Model. This approach was tested by predicting the rock mechanics properties of a 600 m x 180 m x 120 m rock volume at the Aespoe Hard Rock Laboratory (HRL) using limited borehole data of the type typically obtained during a site investigation. These predicted properties were then compared with 'best estimate' properties obtained from a study of the test rock volume using additional information, mainly tunnel data. The exercise was known as the Test Case, and is the subject of this Report. Three modelling techniques were used to predict the rock properties: the 'empirical approach' - the rock properties were estimated using rock mass classification schemes and empirical correlation formulae; the 'theoretical approach' - the rock properties were estimated using numerical modelling techniques; and the 'stress approach' - the rock stress state was estimated using primary data and numerical modelling. These approaches are described separately and respectively. Following an explanation of the context for the Test Case within the strategy for developing the Rock Mechanics Site Descriptive Model, conditions at the Aespoe HRL are described in Chapter 2. The Test Case organization and the suite of nine Protocols used to ensure that the work was appropriately guided and co-ordinated are described in Chapter 3. The methods for predicting the rock properties and the rock stress, and comparisons with the 'best estimate' properties of the actual conditions, are presented in Chapters 4 and 5. Finally, the conclusions from this Test Case exercise are given in Chapter 6. General recommendations for the management of this type of Test Case are also included.

  8. In situ stress measurement with the new LVDT - Cell - method description and verification

    International Nuclear Information System (INIS)

    Hakala, M.; Christiansson, R.; Martin, D.; Siren, T.; Kemppainen, K.

    2013-11-01

    Posiva Oy and SKB (Svensk Kaernbraenslehantering AB) tested the suitability a new LVDT-cell (Linear Variable Differential Transducer cell) to measure the induced stresses in the vicinity of an excavated surface and further to use these results to interpret the in situ state of stress. It utilises the overcoring methodology, measuring the radial convergence of four diameters using eight LVDTs, and is similar in concept to the USBM-gauge. A 127 mm diameter pilot-hole is required and the overcore diameter is 200 mm. The minimum overcoring length is 350 mm, and hence a compact drill can be utilised. Extensive testing of the LVDT-cell shows it to be robust and suitable for use in an underground environment. Sensitivity tests also show that the cell can withstand a range of operating conditions and still provide acceptable results. The in situ stress at the measurement location can be solved by numerical inversion using the results of at least three overcoring measurements around the three-dimensional tunnel section. The large dimensions of the measurement tool and the ability to utilise multiple measurements at various locations in a tunnel section, provides flexibility in selecting an appropriate rock mass volume. Because the inversion technique relies on knowing the exact location of the measurements and the geometry profile of the tunnel, modern survey techniques such as Lidar or photogrammetric technology should be used. Checks using traditional surveying techniques should also be used to ensure adequate survey resolution, specially in case of sidecoring measurements. To evaluate the suitability of the LVDT-cell to provide the in situ state of stress, tests were carried out in the drill-and-blast TASS tunnel and TBM tunnel at the Aespoe Hard Rock Laboratory in Sweden. The state of stress established using the LVDT-cell was in agreement with the state of stress established previously using traditional overcoring and hydraulic fracturing methods. In this study, the

  9. In situ stress measurement with the new LVDT - Cell - method description and verification

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Christiansson, R. [Svensk Kaernbraenslehantering AB, Stockholm (Sweden); Martin, D. [Univ. of Alberta, Edmonton (Canada); Siren, T.; Kemppainen, K.

    2013-11-15

    Posiva Oy and SKB (Svensk Kaernbraenslehantering AB) tested the suitability a new LVDT-cell (Linear Variable Differential Transducer cell) to measure the induced stresses in the vicinity of an excavated surface and further to use these results to interpret the in situ state of stress. It utilises the overcoring methodology, measuring the radial convergence of four diameters using eight LVDTs, and is similar in concept to the USBM-gauge. A 127 mm diameter pilot-hole is required and the overcore diameter is 200 mm. The minimum overcoring length is 350 mm, and hence a compact drill can be utilised. Extensive testing of the LVDT-cell shows it to be robust and suitable for use in an underground environment. Sensitivity tests also show that the cell can withstand a range of operating conditions and still provide acceptable results. The in situ stress at the measurement location can be solved by numerical inversion using the results of at least three overcoring measurements around the three-dimensional tunnel section. The large dimensions of the measurement tool and the ability to utilise multiple measurements at various locations in a tunnel section, provides flexibility in selecting an appropriate rock mass volume. Because the inversion technique relies on knowing the exact location of the measurements and the geometry profile of the tunnel, modern survey techniques such as Lidar or photogrammetric technology should be used. Checks using traditional surveying techniques should also be used to ensure adequate survey resolution, specially in case of sidecoring measurements. To evaluate the suitability of the LVDT-cell to provide the in situ state of stress, tests were carried out in the drill-and-blast TASS tunnel and TBM tunnel at the Aespoe Hard Rock Laboratory in Sweden. The state of stress established using the LVDT-cell was in agreement with the state of stress established previously using traditional overcoring and hydraulic fracturing methods. In this study, the

  10. Aespoe Hard Rock Laboratory. Planning Report for 2011

    International Nuclear Information System (INIS)

    2011-02-01

    This report presents the planned activities for the year 2011. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2010, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Background information on the projects is given in the Annual Report as well as findings and results

  11. The interaction of sorbing and non-sorbing tracers with different Aespoe rock types. Sorption and diffusion experiments in the laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Byegaard, J.; Johansson, Henrik; Skaalberg, M. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Tullborg, E.L. [Terralogica AB, Graabo (Sweden)

    1998-11-01

    Laboratory experiments studying the sorption and diffusivity of different tracers in Aespoe Hard Rock Laboratory (Aespoe HRL) site specific conditions have been performed. The experiments were conducted by applying both the batch sorption and the through diffusion technique. The investigation was focused on slightly sorbing tracers, i e, alkaline metals (Na{sup +}, Rb{sup +} and Cs{sup +}) and alkaline earth metals (Ca{sup 2+}, Sr{sup 2+} and Ba{sup 2+}), but some presumed non-sorbing species have also been included. The dominating generic rock material from Aespoe HRL, Aespoe-diorite and fine-grained granite, were used as well as some altered wall rock and mylonite from the Feature A fracture, the fracture where in situ migration studies have been performed. Synthetic groundwater was used; similar to the high saline groundwater found at the 350m level at Aespoe HRL and at the Feature A site. The results of batch experiments show that the sorption of the tracers increase in the order NaAespoe-diorite than for the fine-grained granite which is explained by the much higher concentration of biotite in Aespoe diorite than in fine-grained granite. In the altered material the biotite has been transformed to chlorite and a lower sorptivity is shown for those material compared to the fresh diorite and granite, respectively. Attempts to explain the sorption and desorption results to a surface sorption - diffusion model are presented. The diffusion results show that the tracers were retarded in the same order as was expected from the measured batch sorption coefficients. Furthermore, the largest size fraction was the most

  12. SITE-94. Discrete-feature modelling of the Aespoe site: 2. Development of the integrated site-scale model

    International Nuclear Information System (INIS)

    Geier, J.E.

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Hydrologic properties of the large-scale structures are initially estimated from cross-hole hydrologic test data, and automatically calibrated by numerical simulation of network flow, and comparison with undisturbed heads and observed drawdown in selected cross-hole tests. The calibrated model is combined with a separately derived fracture network model, to yield the integrated model. This model is partly validated by simulation of transient responses to a long-term pumping test and a convergent tracer test, based on the LPT2 experiment at Aespoe. The integrated model predicts that discharge from the SITE-94 repository is predominantly via fracture zones along the eastern shore of Aespoe. Similar discharge loci are produced by numerous model variants that explore uncertainty with regard to effective semi regional boundary conditions, hydrologic properties of the site-scale structures, and alternative structural/hydrological interpretations. 32 refs

  13. SITE-94. Discrete-feature modelling of the Aespoe site: 2. Development of the integrated site-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J.E. [Golder Associates AB, Uppsala (Sweden)

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Hydrologic properties of the large-scale structures are initially estimated from cross-hole hydrologic test data, and automatically calibrated by numerical simulation of network flow, and comparison with undisturbed heads and observed drawdown in selected cross-hole tests. The calibrated model is combined with a separately derived fracture network model, to yield the integrated model. This model is partly validated by simulation of transient responses to a long-term pumping test and a convergent tracer test, based on the LPT2 experiment at Aespoe. The integrated model predicts that discharge from the SITE-94 repository is predominantly via fracture zones along the eastern shore of Aespoe. Similar discharge loci are produced by numerous model variants that explore uncertainty with regard to effective semi regional boundary conditions, hydrologic properties of the site-scale structures, and alternative structural/hydrological interpretations. 32 refs.

  14. Aespoe HRL - Geoscientific evaluation 1997/5. Models based on site characterization 1986-1995

    International Nuclear Information System (INIS)

    Rhen, I.; Stanfors, R.; Wikberg, P.

    1997-10-01

    The pre-investigations for the Aespoe Hard Rock Laboratory were started in 1986 and involved extensive field measurements, aimed at characterizing the rock formations with regard to geology, geohydrology, hydrochemistry and rock mechanics. Predictions for the excavation phase were made prior to excavation of the laboratory which was started in the autumn of 1990. The predictions concern five key issues: lithology and geological structures, groundwater flow, hydrochemistry, transport of solutes and mechanical stability. During 1996 the results from the pre-investigations and the excavation of the Aespoe Hard Rock Laboratory were evaluated and were compiled in geological, mechanical stability, geohydrological, groundwater chemical and transport-of-solutes models. The model concepts and the models of 1996 are presented in this report. The model developments from the pre-investigation phase up to the models made 1996 are also presented briefly

  15. Aespoe HRL - Geoscientific evaluation 1997/5. Models based on site characterization 1986-1995

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, I. [ed.; Gustafsson, Gunnar [VBB Viak AB, Goeteborg (Sweden); Stanfors, R. [RS Consulting, Lund (Sweden); Wikberg, P. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1997-10-01

    The pre-investigations for the Aespoe Hard Rock Laboratory were started in 1986 and involved extensive field measurements, aimed at characterizing the rock formations with regard to geology, geohydrology, hydrochemistry and rock mechanics. Predictions for the excavation phase were made prior to excavation of the laboratory which was started in the autumn of 1990. The predictions concern five key issues: lithology and geological structures, groundwater flow, hydrochemistry, transport of solutes and mechanical stability. During 1996 the results from the pre-investigations and the excavation of the Aespoe Hard Rock Laboratory were evaluated and were compiled in geological, mechanical stability, geohydrological, groundwater chemical and transport-of-solutes models. The model concepts and the models of 1996 are presented in this report. The model developments from the pre-investigation phase up to the models made 1996 are also presented briefly. 317 refs, figs, tabs.

  16. Aespoe Hard Rock Laboratory. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The surface and borehole investigations and the research work performed in parallel with construction have provided a thorough test of methods for investigation and evaluation of bedrock conditions for construction of a deep repository. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The experimental results of the first tracer test with sorbing radioactive tracers have been obtained. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. The manufacturing of the CHEMLAB probe was completed during 1996, and the first experiments were started early in 1997. During 1997 three experiments on diffusion in bentonite using {sup 57}Co, {sup 114}Cs,{sup 85}Sr, {sup 99}Tc, and {sup 131}I were conducted. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. The characterization of the rock mass in the area of the prototype repository is in progress. The objectives of the Demonstration of Repository Technology are to develop, test, and demonstrate methodology and equipment for encapsulation and deposition of spent nuclear fuel. The demonstration of handling and deposition will be made in a new drift. The Backfill and Plug Test includes tests of backfill materials and emplacement methods and a test of a full scale plug. The backfill and rock will be instrumented with about 230 transducers for measuring the thermo-hydro-mechanical processes. The

  17. Aespoe Hard Rock Laboratory. Planning Report for 2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    This report presents the planned activities for the year 2011. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2010, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Background information on the projects is given in the Annual Report as well as findings and results.

  18. Aespoe Hard Rock Laboratory. Annual Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The Aespoe HRL was opened in 1994 as a research centre and underground laboratory. The experiments performed in Aespoe HRL are related to the rock, its properties, and in situ environmental conditions. Tests of models for groundwater flow, radionuclide migration and chemical/biological processes are some of the main purposes of the Aespoe HRL. The programme includes projects with the aim to evaluate the usefulness and reliability of different models and to develop and test methods for determination of parameters required as input to conceptual and numerical models. The retardation in rock is studied at different experiment scales in a programme called Tracer Retention Understanding Experiments (TRUE). The Long Term Diffusion Experiment constitutes a complement to performed diffusion and sorption laboratory experiments, and is a natural extension of the experiments conducted as part of the TRUE experiments. Radionuclide retention experiments are carried out with the aim to confirm result from laboratory experiments in situ, where conditions representative for the properties of groundwater at repository depth prevail. In CHEMLAB 1 two kinds of experiments to study the influence of radiolysis on the mobility of technetium in bentonite were started in the end of 2002. Experiments to study migration of actinides in natural fractures in drill cores are being carried out in CHELMAB 2. The findings of potential transport of solutes by colloids and access to more sensitive instruments for colloid measurements motivated a Colloid Project at Aespoe HRL. There are presently four specific microbial process areas identified that are of importance for proper repository functions and that are studied in the Microbe Project. The process areas are; biomobilisation of radionuclides, bioimmobilisation of radionuclides, microbial effects on the chemical stability, and microbial corrosion of copper. The main objectives of the Matrix Fluid Chemistry experiment are to understand the

  19. Thermal-hydraulic analysis of SMART steam generator tube rupture using TASS/SMR-S code

    International Nuclear Information System (INIS)

    Kim, Hee-Kyung; Kim, Soo Hyoung; Chung, Young-Jong; Kim, Hyeon-Soo

    2013-01-01

    Highlights: ► The analysis was performed from the viewpoint of primary coolant leakage. ► The thermal hydraulic responses and the maximum leakage have been identified. ► There is no direct release into the atmosphere caused by an SGTR accident. ► SMART safety system works well against an SGTR accident. - Abstract: A steam generator tube rupture (SGTR) accident analysis for SMART was performed using the TASS/SMR-S code. SMART with a rated thermal power of 330 MWt has been developed at the Korea Atomic Energy Research Institute. The TASS/SMR-S code can analyze the thermal hydraulic phenomena of SMART in a full range of reactor operating conditions. An SGTR is one of the most important accidents from a thermal hydraulic and radiological viewpoint. A conservative analysis against a SMART SGTR was performed. The major concern of this analysis is to find the thermal hydraulic responses and maximum leakage amount from a primary to a secondary side caused by an SGTR accident. A sensitivity study searching for the conservative thermal hydraulic conditions, break locations, reactivity and other conditions was performed. The dominant parameters related with the integral leak are the high RCS pressure, low core inlet coolant temperature and low break location of the SG cassette. The largest integral leak comes to 28 tons in the most conservative case during 1 h. But there is no direct release into the atmosphere because the secondary system pressure is maintained with a sufficient margin for the design pressure. All leaks go to the condenser. The analysis results show that the primary and secondary system pressures are maintained below the design pressure and the SMART safety system is working well against an SGTR accident

  20. Measurements of copper corrosion in the LOT Project at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Rosborg, B.; Karnland, O.; Quirk, G.; Werme, L.

    2003-01-01

    Real-time monitoring, of corrosion by means of electrochemical noise and other electrochemical techniques may offer interesting possibilities to estimate the kind and degree of corrosion in a sample or component, and further visualize the corrosion resistance of pure copper in repository environments. As a pilot effort, three cylindrical copper electrodes for such measurements, each of about 100 cm 2 surface area, have been installed in a test parcel in the Aespoe Hard Rock Laboratory and electrochemical measurements using InterCorr's SmartCET system were initiated in May 2001. The first results from real-time monitoring of copper corrosion in the Aespoe HRL under actual repository environment conditions by means of linear polarisation resistance, harmonic distortion analysis and electrochemical noise techniques are presented, and compared with the results obtained from one of the retrieved test parcels. (authors)

  1. Simulations of pressure and salinity fields at Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1997-04-01

    The primary objective of this study was to examine whether the geochemical field data from Aespoe could be interpreted and understood by means of numerical simulations for flow and transport. A site-specific simulation model for groundwater flow and salt transport was developed on the basis of the field investigations. Both steady-state and transient simulations of flow and transport were performed. In the transient simulations, land uplift and the effect of diffusion into/from the matrix blocks with stagnant water were taken into account. The computational results were evaluated on the basis of the experimental values for the pressure and salt concentration.

  2. Simulations of pressure and salinity fields at Aespoe

    International Nuclear Information System (INIS)

    Loefman, J.

    1997-01-01

    The primary objective of this study was to examine whether the geochemical field data from Aespoe could be interpreted and understood by means of numerical simulations for flow and transport. A site-specific simulation model for groundwater flow and salt transport was developed on the basis of the field investigations. Both steady-state and transient simulations of flow and transport were performed. In the transient simulations, land uplift and the effect of diffusion into/from the matrix blocks with stagnant water were taken into account. The computational results were evaluated on the basis of the experimental values for the pressure and salt concentration

  3. SITE-94. Mineralogy of the Aespoe site

    International Nuclear Information System (INIS)

    Andersson, Karin

    1996-12-01

    The water composition has several impacts on the repository. It will influence the behaviour of the engineered materials (e.g. corrosion). It may also determine the possible solubility and speciation of released radionuclides. It also acts as a transport medium for the released elements. The groundwater composition and the potential development of the composition due to the presence of the repository as well as due to external variations is thus an important issue in a safety analysis. The development of the groundwater composition is strongly dependent on reactions with the minerals present in water bearing fractures. Here equilibrium chemistry may be of importance, but also reaction kinetics is important to the long-term behaviour. Within the SITE-94 project, a safety analysis is performed for the conditions at the Aespoe site. The mineralogy of the area has been evaluated from drill cores at various places at the site. In this report a recommendation for selection of mineralogy to be used in geochemical modelling of the repository is given. Calcite and iron containing minerals dominate the fracture filling mineralogy at the Aespoe site. Some typical fracture filling mineralogies may be identified in the fractures: epidote, chlorite, calcite, hematite, some illite/smectite + quartz, fluorite, pyrite and goethite. In addition to these a number of minor minerals are found in the fractures. Uncertainties in the fracture filling data may be due to problems when taking out the drill cores. Drilling water may remove important clay minerals and sealed fractures may be reopened mechanically and treated as water conducting fractures. The problem of determining the variability of the mineralogy along the flow paths also remains. This problem will never be solved when the investigation is performed by drilling investigation holes

  4. SITE-94. Discrete-feature modelling of the Aespoe Site: 3. Predictions of hydrogeological parameters for performance assessment

    International Nuclear Information System (INIS)

    Geier, J.E.

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Predicted parameters for the near field include fracture spacing, fracture aperture, and Darcy velocity at each of forty canister deposition holes. Parameters for the far field include discharge location, Darcy velocity, effective longitudinal dispersion coefficient and head gradient, flow porosity, and flow wetted surface, for each canister source that discharges to the biosphere. Results are presented in the form of statistical summaries for a total of 42 calculation cases, which treat a set of 25 model variants in various combinations. The variants for the SITE-94 Reference Case model address conceptual and parametric uncertainty related to the site-scale hydrogeologic model and its properties, the fracture network within the repository, effective semi regional boundary conditions for the model, and the disturbed-rock zone around the repository tunnels and shafts. Two calculation cases simulate hydrologic conditions that are predicted to occur during future glacial episodes. 30 refs

  5. SITE-94. Discrete-feature modelling of the Aespoe site: 4. Source data and detailed analysis procedures

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J E [Golder Associates AB, Uppsala (Sweden)

    1996-12-01

    Specific procedures and source data are described for the construction and application of discrete-feature hydrological models for the vicinity of Aespoe. Documentation is given for all major phases of the work, including: Statistical analyses to develop and validate discrete-fracture network models, Preliminary evaluation, construction, and calibration of the site-scale model based on the SITE-94 structural model of Aespoe, Simulation of multiple realizations of the integrated model, and variations, to predict groundwater flow, and Evaluation of near-field and far-field parameters for performance assessment calculations. Procedures are documented in terms of the computer batch files and executable scripts that were used to perform the main steps in these analyses, to provide for traceability of results that are used in the SITE-94 performance assessment calculations. 43 refs.

  6. SITE-94. Discrete-feature modelling of the Aespoe site: 4. Source data and detailed analysis procedures

    International Nuclear Information System (INIS)

    Geier, J.E.

    1996-12-01

    Specific procedures and source data are described for the construction and application of discrete-feature hydrological models for the vicinity of Aespoe. Documentation is given for all major phases of the work, including: Statistical analyses to develop and validate discrete-fracture network models, Preliminary evaluation, construction, and calibration of the site-scale model based on the SITE-94 structural model of Aespoe, Simulation of multiple realizations of the integrated model, and variations, to predict groundwater flow, and Evaluation of near-field and far-field parameters for performance assessment calculations. Procedures are documented in terms of the computer batch files and executable scripts that were used to perform the main steps in these analyses, to provide for traceability of results that are used in the SITE-94 performance assessment calculations. 43 refs

  7. Aespoe Hard Rock Laboratory. Annual report 1998

    International Nuclear Information System (INIS)

    1999-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. Experiments with sorbing radioactive tracers have been completed in a single fracture over a distance of about 5 m. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. Breakthrough of sorbing tracers in the TRUE-I tests is retarded more strongly than would be expected based on laboratory data alone. Results are consistent for all tracers and tracer tests. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. The total duration of the project is approximately 4.5 years with a scheduled finish at the end of the year 2000. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. The project Degassing of groundwater and two phase flow was initiated to improve our understanding of observations of hydraulic conditions made in drifts and interpretation of experiments performed close to drifts. The analysis performed so far shows that the experimentally observed flow reductions indeed are consistent with the degassing hypothesis. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and

  8. Aespoe Hard Rock Laboratory. Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. Experiments with sorbing radioactive tracers have been completed in a single fracture over a distance of about 5 m. These tests have been subject to blind predictions by the Aespoe Task Force on groundwater flow and transports of solutes. Breakthrough of sorbing tracers in the TRUE-I tests is retarded more strongly than would be expected based on laboratory data alone. Results are consistent for all tracers and tracer tests. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. The total duration of the project is approximately 4.5 years with a scheduled finish at the end of the year 2000. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. The project Degassing of groundwater and two phase flow was initiated to improve our understanding of observations of hydraulic conditions made in drifts and interpretation of experiments performed close to drifts. The analysis performed so far shows that the experimentally observed flow reductions indeed are consistent with the degassing hypothesis. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and

  9. A regional analysis of groundwater flow and salinity distribution in the Aespoe area

    International Nuclear Information System (INIS)

    Svensson, Urban

    1997-05-01

    A regional groundwater model of the Aespoe area has been formulated and applied. The model is three-dimensional, based on a grid of 100x100x36 cells and covers an area of 10x10 km 2 and a depth of 3 km. Equations are solved for the Darcy velocities and the salinity distribution, gravitational effects are thus fully accounted for. The model is used to simulate the general hydrology of the area as well as the influence of the Aespoe Hard Rock Laboratory (HRL). A specific task of the study is to evaluate relevant boundary conditions for the site-model and to show how these are influenced by Aespoe HRL. Studies of the stochastic conductivity field and the effect of density stratification are also reported. The general conclusion of the study is that the model provides a realistic and consistent picture of the area studied. Main arguments for this statement are: The formulation of the model is based on relevant conservation laws and embodies all physical processes believed to be important for the problem considered. The importance of gravitational forces is emphasised. A high resolution grid, which resolves topographical features and at the same time can simulate the effect of the HRL is used. Transmissivities and conductivities used in the model are based on field data. The model has been calibrated, using measured groundwater levels and salinity distributions with good results. A range of sensitivity studies has been carried out. These demonstrate that the model responds to variations in input data, for example the conductivity field in a realistic way. The model can thus be used to generate boundary conditions for a site scale model. The basic objective, to account for the regional influence in a site model, can hence be achieved. 7 refs, 32 figs

  10. Aespoe Hard Rock Laboratory. Planning Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-15

    This report presents the planned activities for the year 2009. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2007, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Thereby the Status Reports may concentrate on work in progress and refers to this Planning Report for scope of work over the year. Background information on the projects is given in the Annual Report as well as findings and results.

  11. Aespoe Hard Rock Laboratory. Planning Report for 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-15

    This report presents the planned activities for the year 2010. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2007, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Thereby the Status Reports may concentrate on work in progress and refers to this Planning Report for scope of work over the year. Background information on the projects is given in the Annual Report as well as findings and results

  12. Aespoe Hard Rock Laboratory. Planning Report for 2009

    International Nuclear Information System (INIS)

    2009-02-01

    This report presents the planned activities for the year 2009. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2007, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Thereby the Status Reports may concentrate on work in progress and refers to this Planning Report for scope of work over the year. Background information on the projects is given in the Annual Report as well as findings and results

  13. Aespoe Hard Rock Laboratory. Planning Report for 2010

    International Nuclear Information System (INIS)

    2010-05-01

    This report presents the planned activities for the year 2010. The report is revised annually and details the programme carried out in the Aespoe Hard Rock Laboratory as described in SKB's Research, Development and Demonstration Programme 2007, and serves as a basis for the management of the laboratory. The role of the Planning Report is to present the plans and scope of work for each project. Thereby the Status Reports may concentrate on work in progress and refers to this Planning Report for scope of work over the year. Background information on the projects is given in the Annual Report as well as findings and results

  14. A numerical simulation of the origin and composition of the groundwater below Aespoe

    International Nuclear Information System (INIS)

    Svensson, Urban

    1999-02-01

    An attempt is made to calculate the origin (in the time and space) of the waters found below Aespoe. It is assumed that the present water composition is due to the conditions prevailing after the last glaciation (initial conditions) and the hydrological events after this time (resulting in transient boundary conditions). The total time span simulated is from 10,000 years BP to 5 000 years AP. The different water types are tracked by solving an advection/diffusion equation for each of the identified water types. This novel technique is called the 'fluid population method' and is a simple and straightforward computational technique. Results from the simulation include the distribution of different water types in space and time and some detailed results for the conditions at 450 metres below Aespoe (water composition transport time to ground level). The main conclusion from the study is that the simulation model gives plausible results. However, the uncertainties about the basic conceptual model and the boundary conditions do not presently make a direct comparison with field data meaningful

  15. Aespoe Pillar Stability Experiment. Modelling of fracture development of APSE by FRACOD

    International Nuclear Information System (INIS)

    Rinne, Mikael; Baotang Shen; Lee, Hee-Suk

    2004-03-01

    An in-situ experiment has started at Aespoe HRL to investigate the stability of a pillar between two closely located boreholes of deposition hole scale. This full-scale experiment is named the Aespoe Pillar Stability Experiment (APSE). One of the holes will be pressurized with 0.8 MPa water pressure to simulate confinement by backfill. Thermal stresses will be applied in the pillar by the use of electric heaters to reach the spalling conditions. To quantify the degree of damage during the experiment, an Acoustic Emission (AE) system will be used and strain measurements will be installed. FRACOD is a two dimensional BEM/DDM code for fracturing analysis in rock material. Here it has been used to model the rock mass response during the planned sequences of excavation-confinement-heating. The models predict the stress and displacement fields, fracture initiation and propagation, coalescence and the final failure of the rock mass. The presences of pre-existing fractures, which may have significant influence on the pillar behaviour, have also been considered in the modelling. This report summarises the modelling work using FRACOD to simulate the various experimental stages

  16. Backfilling of deposition tunnels, in situ alternative

    International Nuclear Information System (INIS)

    Keto, P.

    2007-04-01

    The backfilling process described in this report is based on in situ compaction of a mixture of bentonite and ballast (30:70) into the deposition tunnel. This method has been tested in practice in various field tests by SKB, most recently in the Prototype repository test performed at Aespoe HRL. The backfill mixture is prepared above ground and transported to the repository level with a tank truck. The material is compacted into layers with an inclination of 35 deg C and a thickness of approximately 20 cm. The compaction is performed with a vibratory plate attached to a boom of an excavator. In order to keep up with the required canister installation rate determined for the Finnish repository, at least 13 layers need to be compacted daily. This means working in 2-3 shifts on the working days that are available for backfilling operations. The dry densities achieved in field tests for the wall/roof section of the backfill have been insufficient compared with the dry density criteria set for the backfill. In theory, it may be possible to reach dry densities that fulfil the criteria, although with a relatively small safety margin. Another open issue is whether the mixture of bentonite and ballast has sufficient self-healing ability to seal-off erosion channels after the tunnels have been closed and the backfill has reached full saturation. (orig.)

  17. Direct fault dating trials at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Maddock, R.H.; Hailwood, E.A.

    1993-10-01

    Over seventy rock samples were collected from fault and fracture zones in the Aespoe Hard Rock Laboratory tunnel for a study of direct fault dating techniques. Following microstructural and mineralogical analysis, isotopic, palaeomagnetic and electron spin resonance (ESR) methods were employed in an attempt to determine the age of the most recent movements on the sampled faults. The larger fracture zones contain faultrock assemblages and microstructures which are consistent with a prolonged and polyphase movement history, although the cumulative displacements involved formation of fault gouge cemented by authigenic 'illite'. Dating studies were targeted particularly at the gouge but also at older fault rock and vein phases. ESR dating of quartz graines, separated from gouge from fracture zones NE-4 and NE-3, strongly indicates that the ESR signals have not been reset by fault movements for a minimum time period of several hundred thousand to one million years. Palaeomagnetic dating of gouge from fracture zone NE-4 shows that a stable component of magnetisation overlaps both Precambrian and Permo-Triassic parts of the apparent polar wander curve. The younger age of magnetisation is preferred on geological grounds and by comparison with the isotopic dating results. The magnetisation may correspond to a diagenetic event following fault movement. Palaeomagnetic ages determined on countryrock and epidote vein samples are largely consistent with independent age constraints. K-Ar dating of clay fractions (<2 to <0.05μm) separated from gouge from four faults, including fracture zones NE-4 and NE-3, gave model ages in the range 706-301Ma. Accounting for the effects of contamination by potassium-bearing porphyroclasts, it is likely that authigenic 'illite' was formed at least 250 million years ago, after the most recent significant fault movements. 100 refs., 60 figs., 26 tabs

  18. Aespoe Hard Rock Laboratory. Overview of the investigations 1986-1990

    International Nuclear Information System (INIS)

    Stanfors, R.; Erlstroem, M.; Markstroem, I.

    1991-06-01

    In order to prepare for the siting and licensing of a spent fuel repository SKB has decided to construct a new underground research laboratory. The pre-investigations for the Aespoe Hard Rock Laboratory started in late 1986. This report gives a comprehensive compilation of the different investigations performed during the pre-investigation phase (1986-1990). The information is mainly compiled in CAD-generated maps and illustrations in which the reader can gather information concerning the scope of work as well as references to more detailed reports for further study. (au)

  19. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  20. Hydraulic Features of the Excavation Disturbed Zone - Laboratory investigations of samples taken from the Q- and S-tunnels at Aespoe HRL

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Lars O.; Brinkhoff, Petra; Gustafson, Gunnar; Kvartsberg, Sara (Div. of GeoEngineering, Dept. of Civil and Environmental Engineering, Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-12-15

    The general aim of the project has been to contribute to the SKB safety and assessment analysis with realistic figures of hydraulic properties in an excavation disturbed zone. The project had the following more detailed objectives: - Develop a laboratory method to determine fracture transmissivity under water-saturated conditions. - Provide magnitudes for realistic values for fracture transmissivity in the disturbed or damaged zone due to excavation. - Map micro cracks radially from the tunnel wall. - Map the spread of matrix porosity radially from the tunnel wall. - Develop single-hole hydraulic testing methodology in tunnel wall for saturated conditions. - Integration of fracture geometries and transmissivity investigations for conceptual hydraulic modelling of the bedrock along a tunnel wall

  1. Structural and neural network analyses of fracture systems at the Aespoe Hard Rock Laboratory, SE Sweden

    International Nuclear Information System (INIS)

    Sirat, M.

    1999-01-01

    The > 10,000 fractures documented in the 450 m deep Aespoe Hard Rock Laboratory (HRL) provide a unique opportunity to study brittle deformation of a Swedish bedrock mass. The fracture population consists of six major sets, one sub-horizontal and five sub-vertical. A classical structural analysis explored the interrelations between geometry and frequency of both dry and wet fractures with respect to depth and in-situ stresses. Three main findings are: In-situ stresses govern frequency distributions of dilated, hence water-bearing fractures. About 68.5% of sub-horizontal fractures are dilated in the thrust regime above a depth of ca. 230 m while 53% of sub-vertical fractures are dilated in the underlying wrench regime. Fractures curve both horizontally and vertically, a finding confirmed by the application of artificial neural networks that included Back-Propagation and Self-Organizing (Kohonen) networks. The asymmetry of the total fracture population and tilts of the sub-Cambrian peneplain demonstrates that multiple reactivations of fractures have tilted the Aespoe rock mass 6 deg to the west. The potential space problem raised by this tilt is negated by systematic curvature of steep fractures, some of which sole out to gently dipping fracture zones. Fractures probably developed their curvature when they formed deep in crystalline crust in Precambrian times but have since reactivated at shallow depths. These findings add significantly to the conceptual model of Aespoe and should be taken into account in future studies regarding the isolation of Sweden's high-grade radioactive waste in crystalline bedrock

  2. ZEDEX - A study of damage and disturbance from tunnel excavation by blasting and tunnel boring

    International Nuclear Information System (INIS)

    Emsley, S.; Olsson, Olle; Stenberg, L.; Alheid, H.J.; Falls, S.

    1997-12-01

    The objectives of the ZEDEX project were to understand the mechanical behaviour of the excavation disturbed zone (EDZ) with respect to its origin, character, magnitude of property change, extent and its dependence on excavation method. Excavation with normal smooth blasting, blasting with low shock explosives and tunnel boring were studied. The drifts are located at Aespoe at a depth of 420 m, the profiles are circular and 5 m in diameter. The results have shown that there is a damaged zone, close to the drift wall dominated by changes in rock properties which are irreversible, and that there is a disturbed zone beyond the damaged zone that is dominated by changes in stress state and mainly reversible. There is no distinct boundary between the two zones. The results from ZEDEX indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The extent of the damaged zone can be limited through application of appropriate excavation methods. By limiting the extent of the damaged zone it should also be feasible to block pathways in the damaged zone by plugs placed at strategic locations

  3. ZEDEX - A study of damage and disturbance from tunnel excavation by blasting and tunnel boring

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, S [Golder Associates, Maidenhead (United Kingdom); Olsson, Olle; Stenberg, L [Swedish Nuclear Fuel and Waste Co., Figeholm (Sweden); Alheid, H J [Federal Inst. for Geosciences and Natural Resources, Hannover (Germany); Falls, S [Queens Univ., Kingston, ON (Canada)

    1997-12-01

    The objectives of the ZEDEX project were to understand the mechanical behaviour of the excavation disturbed zone (EDZ) with respect to its origin, character, magnitude of property change, extent and its dependence on excavation method. Excavation with normal smooth blasting, blasting with low shock explosives and tunnel boring were studied. The drifts are located at Aespoe at a depth of 420 m, the profiles are circular and 5 m in diameter. The results have shown that there is a damaged zone, close to the drift wall dominated by changes in rock properties which are irreversible, and that there is a disturbed zone beyond the damaged zone that is dominated by changes in stress state and mainly reversible. There is no distinct boundary between the two zones. The results from ZEDEX indicate that the role of the EDZ as a preferential pathway to radionuclide transport is limited to the damaged zone. The extent of the damaged zone can be limited through application of appropriate excavation methods. By limiting the extent of the damaged zone it should also be feasible to block pathways in the damaged zone by plugs placed at strategic locations 68 refs, 92 figs, 31 tabs

  4. Construction experiences from underground works at Oskarshamn. Compilation report

    International Nuclear Information System (INIS)

    Carlsson, Anders; Christiansson, Rolf

    2007-12-01

    The main objective with this report is to compile experiences from the underground works carried out at Oskarshamn, primarily construction experiences from the tunnelling of the cooling water tunnels of the Oskarshamn nuclear power units 1,2 and 3, from the underground excavations of Clab 1 and 2 (Central Interim Storage Facility for Spent Nuclear Fuel), and Aespoe Hard Rock Laboratory. In addition, an account is given of the operational experience of Clab 1 and 2 and of the Aespoe HRL on primarily scaling and rock support solutions. This report, as being a compilation report, is in its substance based on earlier published material as presented in the list of references. Approximately 8,000 m of tunnels including three major rock caverns with a total volume of about 550,000 m 3 have been excavated. The excavation works of the various tunnels and rock caverns were carried out during the period of 1966-2000. In addition, minor excavation works were carried out at the Aespoe HRL in 2003. The depth location of the underground structures varies from near surface down to 450 m. As an overall conclusion it may be said that the rock mass conditions in the area are well suited for underground construction. This conclusion is supported by the experiences from the rock excavation works in the Simpevarp and Aespoe area. These works have shown that no major problems occurred during the excavation works; nor have any stability or other rock engineering problems of significance been identified after the commissioning of the Oskarshamn nuclear power units O1, O2 and O3, BFA, Clab 1 and 2, and Aespoe Hard Rock Laboratory. The underground structures of these facilities were built according to plan, and since than been operated as planned. Thus, the quality of the rock mass within the construction area is such that it lends itself to excavation of large rock caverns with a minimum of rock support

  5. Construction experiences from underground works at Oskarshamn. Compilation report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Anders (Vattenfall Power Consultant AB, Stockholm (SE)); Christiansson, Rolf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-12-15

    The main objective with this report is to compile experiences from the underground works carried out at Oskarshamn, primarily construction experiences from the tunnelling of the cooling water tunnels of the Oskarshamn nuclear power units 1,2 and 3, from the underground excavations of Clab 1 and 2 (Central Interim Storage Facility for Spent Nuclear Fuel), and Aespoe Hard Rock Laboratory. In addition, an account is given of the operational experience of Clab 1 and 2 and of the Aespoe HRL on primarily scaling and rock support solutions. This report, as being a compilation report, is in its substance based on earlier published material as presented in the list of references. Approximately 8,000 m of tunnels including three major rock caverns with a total volume of about 550,000 m3 have been excavated. The excavation works of the various tunnels and rock caverns were carried out during the period of 1966-2000. In addition, minor excavation works were carried out at the Aespoe HRL in 2003. The depth location of the underground structures varies from near surface down to 450 m. As an overall conclusion it may be said that the rock mass conditions in the area are well suited for underground construction. This conclusion is supported by the experiences from the rock excavation works in the Simpevarp and Aespoe area. These works have shown that no major problems occurred during the excavation works; nor have any stability or other rock engineering problems of significance been identified after the commissioning of the Oskarshamn nuclear power units O1, O2 and O3, BFA, Clab 1 and 2, and Aespoe Hard Rock Laboratory. The underground structures of these facilities were built according to plan, and since than been operated as planned. Thus, the quality of the rock mass within the construction area is such that it lends itself to excavation of large rock caverns with a minimum of rock support

  6. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D. [Atomic Energy of Canada Limited, Chalk River (Canada); Jonsson, E. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hansen, J. [Posiva Oy, Olkiluoto (Finland); Hedin, M. [Aangpannefoereningen, Stockholm (Sweden); Ramqvist, G. [Eltekno AB, Figeholm (Sweden)

    2011-04-15

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill

  7. Effect of localized water uptake on backfill hydration and water movement in a backfilled tunnel: half-scale tests at Aespoe Bentonite Laboratory

    International Nuclear Information System (INIS)

    Dixon, D.; Jonsson, E.; Hansen, J.; Hedin, M.; Ramqvist, G.

    2011-04-01

    The report describes the outcome of the work within the project 'SU508.20 Impact of water inflow in deposition tunnels'. Project decision SKB doc 1178871 Version 3.0. Two activity plans have been used for the field work: AP TD SU50820-09-019 and AP TD SU 50820-09-071. SKB and Posiva have been examining those processes that may have particularly strong effects on the evolution of a newly backfilled deposition tunnel in a KBS-3V repository. These assessments have involved the conduct of increasingly large and complex laboratory tests and simulations of a backfilled tunnel section. In this series of four tests, the effect of water inflow into a backfilled tunnel section via an intersecting fracture feature was evaluated. The tests included the monitoring of mock-ups where water entered via the simulated fractures as well as evaluation of what the effect of isolated tunnel sections caused by localized water inflow would have on subsequent evolution of these isolated sections. It was found that even a slowly seeping fracture can have a substantial effect on the backfill evolution as it will cause development of a gasket-like feature that effectively cuts of air and water movement from inner to outer regions of the backfilled tunnel. Water entering via these fractures will ultimately move out of the tunnel via a single discrete flow path, in a manner similar to what was observed in previous 1/2-scale and smaller simulations. If the low-rate of water inflow from fracture is the only source of water inflow to the tunnel this will result in hydraulic behaviour similar to that observed for a single inflow point in previous tests. The presence of a fracture feature will however result in a larger proportion of water uptake by the process of suction than might occur in a point inflow situation and hence a more uniform water distribution will be present in the pellet fill. This also results in a greater tendency for water to be absorbed into the adjacent block fill material and

  8. Aespoe Hard Rock Laboratory. Backfill and Plug test. Hydraulic testing of core drilled boreholes in the ZEDEX drift

    Energy Technology Data Exchange (ETDEWEB)

    Ludvigson, Jan-Erik; Nordqvist, Rune; Ekman, Lennart; Hansson, Kent (GEOSIGMA AB, Uppsala (Sweden))

    2009-07-01

    The present report documents the performance and results of hydraulic testing in selected core boreholes in the Zedex drift. The holes will be used as rock instrumentation boreholes during the Backfill and Plug Test at Aespoe HRL. The testing involves both 1 m long boreholes with 56 mm diameter as well as longer boreholes c. 5 m, 8 m and 25 m long with 56 mm or 76 mm diameter. Only single-hole tests were performed. The tests were carried out as short-time constant head injection tests since all boreholes tested (except one) were non-flowing before tests. The injection phase was followed by a pressure recovery phase. Furthermore, the tests were carried out as single-packer tests. A specially designed test system was used for the tests. The main evaluation of the tests was performed on data from the recovery phase by a new approach based on a non-linear regression technique combined with a flow simulation model (SUTRA). The tests in the 1 m-holes (testing the interval c. 0.3-0.7 m in the rock perpendicular to the tunnel face) show that the hydraulic conductivity of the superficial rock around the Zedex drift in general is low. However, during testing in some boreholes, visible leakage in the rock occurred through superficial fractures into the tunnel. These fractures were mainly located in the floor of the Zedex drift and are probably blast-induced. These fractures have a high hydraulic conductivity. The tests in the longer boreholes show that the hydraulic conductivity further into the rock in general is below c. 1x10-10 m/s. Increased hydraulic conductivity (c.1.5x10-8 m/s) was only observed in the flowing borehole KXZSD8HL.

  9. Mechanisms for redox control and their effects upon modelled properties of Aespoe groundwaters

    International Nuclear Information System (INIS)

    Emren, A.T.

    1996-01-01

    In the literature, one finds several models for control of redox properties in groundwater. The proposals for redox controlling substances include iron oxides, chlorites, methane, pyrite and polysulphides. The CRACKER program, which has been successful in modelling of observed Aespoe groundwaters has been used to investigate the influence of several redox control models on the modelled properties of present and possible future Aespoe groundwaters. In the simulations, one or more of the possible redox reactions have been prevented from occurring. The groundwater has then been assumed to react with minerals distributed in the fracture walls. Due to the discreteness of mineral grains, a certain amount of fluctuations in groundwater properties is occurring. The process of sampling water for measurement has been simulated by letting about 900 waters from different locations mix. It has been found that some of the models have difficulties in explaining important groundwater properties, while other models perform quite well. With identical mineral sets, the properties of future groundwaters have been simulated. It is found that some changes in groundwater properties at elevated temperatures may be of importance for assessment of the safety of a future repository for spent nuclear fuel. The difference in behaviour is caused mostly by the fact that the solubility increases with temperature for some minerals, while it decreases for other minerals. (author)

  10. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P D; Voss, C I [US Geological Survey, Reston, VA (United States)

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO{sub 3} composition at shallow depth to a CaCl{sub 2}-rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E{sub H} values are generally near -300 mV, and on average are only about 50 mV lower than E{sub H} values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m{sup 2} per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the

  11. Numerical simulations and analysis for the Aespoe pillar stability experiment. Part 1. Continuum based approaches using finite element method and comparison with other analysis model

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Koyama, Tomofumi; Shimizu, Hiroyuki; Nakama, Shigeo; Fujita, Tomoo

    2013-01-01

    DECOVALEX-2011 is an international cooperation project for enhancing the numerical models of radioactive waste repositories. In DECOVALEX-2011 project, the failure mechanism during excavation and heating processes observed in the Aespoe pillar stability experiment, which was carried out at the Aespoe Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company, were simulated using Finite Element Method. When the calibrated parameters were used, simulation results agree qualitatively well with the experimental results. Therefore, it can be said that the spalling phenomenon is expressible even by the application with the continuum model by the use of the suitable parameters. (author)

  12. Sealing of 300 mm boreholes KXTT3 and KXTT4 at Aespoe HRL. Report of Subproject 3 of Borehole sealing Project

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Drawrite AB, Lund (Sweden); Luleaa Technical Univ., Luleaa (Sweden); Ramqvist, Gunnar [Eltekno AB, Figeholm (Sweden)

    2011-11-15

    Sealing of two moderately dipping 300 mm diameter holes that had been bored from a niche adjacent to the ramp in the Aespoe URL in conjunction with earlier geohydrological investigations (TRUE Project, Winberg et al. 2000) was successfully completed in early 2010. The work was preceded by a pilot test on the ground surface for investigating if a simple version of sealing by pressing down clay pellets into clay mud is feasible. The borehole was simulated by a steel tube that was filled with smectite mud in which a cage filled with clay pellets was moved down. The experience from this experiment was that the mud used was somewhat too stiff and that strong vibration significantly reduced its viscosity but not sufficiently much. The predicted average density at water saturation was 1,780 kg/m{sup 3} (dry density 1,240 kg/m{sup 3}). The finally selected sealing method comprised casting of concrete plugs where the inflow of water was significant (up to 30 l/min), and to install precompacted blocks of smectite-rich clay where the rock was 'dry'. The finally matured clay plugs will have a density of around 2,000 kg/m{sup 3} (dry density 1,580 kg/m{sup 3}) and a hydraulic conductivity of less than E-12 m/s, which is estimated to be at least one order of magnitude lower than the bulk conductivity of the surrounding rock mass (Pusch 2008). This provides excellent sealing of all parts of the holes deeper than about 1-2 m below the tunnel floor. Groundwater flow in the rock around the clay plugs can cause some minor erosion but this effect is deemed negligible considering the coagulating effect on released clay particles by the brackish Aespoe water. Inspection of the closed upper borehole ends showed accumulation of some very dilute mineral suspension after a few days. A careful analysis of the mineral content showed that it did not contain smectite particles, hence certifying that erosion of the clay plugs in the holes had not taken place. The particles were

  13. Sealing of 300 mm boreholes KXTT3 and KXTT4 at Aespoe HRL. Report of Subproject 3 of Borehole sealing Project

    International Nuclear Information System (INIS)

    Pusch, Roland; Ramqvist, Gunnar

    2011-11-01

    Sealing of two moderately dipping 300 mm diameter holes that had been bored from a niche adjacent to the ramp in the Aespoe URL in conjunction with earlier geohydrological investigations (TRUE Project, Winberg et al. 2000) was successfully completed in early 2010. The work was preceded by a pilot test on the ground surface for investigating if a simple version of sealing by pressing down clay pellets into clay mud is feasible. The borehole was simulated by a steel tube that was filled with smectite mud in which a cage filled with clay pellets was moved down. The experience from this experiment was that the mud used was somewhat too stiff and that strong vibration significantly reduced its viscosity but not sufficiently much. The predicted average density at water saturation was 1,780 kg/m 3 (dry density 1,240 kg/m 3 ). The finally selected sealing method comprised casting of concrete plugs where the inflow of water was significant (up to 30 l/min), and to install precompacted blocks of smectite-rich clay where the rock was 'dry'. The finally matured clay plugs will have a density of around 2,000 kg/m 3 (dry density 1,580 kg/m 3 ) and a hydraulic conductivity of less than E-12 m/s, which is estimated to be at least one order of magnitude lower than the bulk conductivity of the surrounding rock mass (Pusch 2008). This provides excellent sealing of all parts of the holes deeper than about 1-2 m below the tunnel floor. Groundwater flow in the rock around the clay plugs can cause some minor erosion but this effect is deemed negligible considering the coagulating effect on released clay particles by the brackish Aespoe water. Inspection of the closed upper borehole ends showed accumulation of some very dilute mineral suspension after a few days. A careful analysis of the mineral content showed that it did not contain smectite particles, hence certifying that erosion of the clay plugs in the holes had not taken place. The particles were concluded to represent fracture

  14. Discrete-feature modelling of the Aespoe Site: 1. Discrete-fracture network models for the repository scale

    International Nuclear Information System (INIS)

    Geier, J.E.; Thomas, A.L.

    1996-08-01

    This report describes the statistical derivation and partial validation of discrete-fracture network (DFN) models for the rock beneath the island of Aespoe in southeastern Sweden. The purpose was to develop DFN representations of the rock mass within a hypothetical, spent-fuel repository, located under Aespoe. Analyses are presented for four major lithologic types, with separate analyses of the rock within fracture zones, the rock excluding fracture zones, and all rock. Complete DFN models are proposed as descriptions of the rock mass in the near field. The procedure for validation, by comparison between actual and simulated packer tests, was found to be useful for discriminating among candidate DFN models. In particular, the validation approach was shown to be sensitive to a change in the fracture location (clustering) model, and to a change in the variance of single-fracture transmissivity. The proposed models are defined in terms of stochastic processes and statistical distributions, and thus are descriptive of the variability of the fracture system. This report includes discussion of the numerous sources of uncertainty in the models, including uncertainty that results from the variability of the natural system. 62 refs

  15. Validation of the TASS/SMR-S Code for the PRHRS Condensation Heat Transfer Model

    International Nuclear Information System (INIS)

    Jun, In Sub; Yang, Soo Hyoung; Chung, Young Jong; Lee, Won Jae

    2011-01-01

    When some accidents or events are occurred in the SMART, the secondary system is used to remove the core decay heat for the long time such as a feedwater system. But if the feedwater system can't remove the residual core heat because of its malfunction, the core decay heat is removed using the Passive Residual Heat Removal System (PRHRS). The PRHRS is passive type safety system adopted to enhance the safety of the SMART. It can fundamentally eliminate the uncertainty of operator action. TASS/SMR-S (Transient And Setpoint Simulation/ System-integrated Modular Reactor-Safety) code has various heat transfer models reflecting the design features of the SMART. One of the heat transfer models is the PRHRS condensation heat transfer model. The role of this model is to calculate the heat transfer coefficient in the heat exchanger (H/X) tube side using the relevant heat transfer correlations for all of the heat transfer modes. In this paper, the validation of the condensation heat transfer model was carried out using the POSTECH H/X heat transfer test

  16. Aespoe Hard Rock Laboratory. Final report of the first stage of the tracer retention understanding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Winberg, A. [Conterra AB, Uppsala (Sweden); Andersson, Peter [Geosigma AB, Uppsala (Sweden); Hermanson, Jan [Golder Grundteknik, Solna (Sweden); Byegaard, Johan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Cvetkovic, V. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Water Resources Engineering; Birgersson, Lars [Kemakta Konsult AB, Stockholm (Sweden)

    2000-03-15

    from its surrounding. The near proximity of the experimental array to the tunnel (10-15 m) implies a strong gradient (approximately 10%) in the structure, which has to be overcome and controlled during the experiments. A methodology for characterising fracture pore space using resin injection, excavation using large diameter coring and subsequent analysis with photo-microscopic and image analysis techniques was developed and tested at a separate site. The results show that epoxy resin can be injected over several hours, and that the estimated areal spread is in the order of square metres. The mean apertures of the two investigated samples were 239 and 266 microns, respectively. Assessment of spatial correlation show practical ranges in the order of a few millimetres. Performed tracer tests with conservative tracers in Feature A show that the feature is connected between its interpreted intercepts in the array. The parameters evaluated from the conservative tests; flow porosity, dispersivity and fracture conductivity are similar, indicating a relative homogeneity. Previous work has identified cationic tracers, featured by sorption through ion exchange, as the most suitable tracers for sorbing tracer experiments at ambient Aespoe conditions. Laboratory experiments on generic Aespoe material and site-specific material included batch sorption experiments on various size fractions of the geological material, and through diffusion experiments on core samples of variable length on a centimetre length scale. The sorbtivity was found to be strongly affected by the biotite content and the sorption was also found to increase with contact time. The sorbtivity was found to follow the relative order; {sup 22}Na{sup +} < {sup 47}Ca{sup 2+} {approx_equal} {sup 85}Sr{sup 2+} << {sup 86}Rb{sup +} {approx_equal} {sup 133}Ba{sup 2+} The field tracer tests, using essentially the same cocktail of sorbing tracers as in the laboratory, were found to show the same relative sorbtivity as seen

  17. Aespoe Pillar Stability Experiment. Acoustic emission and ultrasonic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Pettitt, Will; Young, R. Paul [Applied Seismology Consultants Ltd., Shrewsbury (United Kingdom)

    2005-12-15

    This report describes the results from acoustic emission (AE) and ultrasonic monitoring of the Aespoe Pillar Stability Experiment (APSE) at SKB's Hard Rock Laboratory (HRL), Sweden. The APSE is being undertaken to demonstrate the current capability to predict spalling in a fractured rock mass using numerical modelling techniques, and to demonstrate the effect of backfill and confining pressure on the propagation of micro-cracks in rock adjacent to deposition holes within a repository. An ultrasonic acquisition system has provided acoustic emission and ultrasonic survey monitoring throughout the various phases of the experiment. Results from the entire data set are provided with this document so that they can be effectively compared to several numerical modelling studies, and to mechanical and thermal measurements conducted around the pillar volume, in an 'integrated analysis' performed by SKB staff. This document provides an in-depth summary of the AE and ultrasonic survey results for future reference. The pillar has been produced by excavating two 1.8 m diameter deposition holes 1 m apart. These were bored in 0.8 m steps using a Tunnel Boring Machine specially adapted for vertical drilling. The first deposition hole was drilled in December 2003. Preceding this a period of background monitoring was performed so as to obtain a datum for the results. The hole was then confined to 0.7 MPa internal over pressure using a specially designed water-filled bladder. The second deposition hole was excavated in March 2004. Heating of the pillar was performed over a two month period between ending in July 2004, when the confined deposition hole was slowly depressurised. Immediately after depressurisation the pillar was allowed to cool with cessation of monitoring occurring a month later. A total of 36,676 AE triggers were recorded over the reporting period between 13th October 2003 and 14th July 2004. Of these 15,198 have produced AE locations. The AE data set

  18. Aespoe Pillar Stability Experiment. Acoustic emission and ultrasonic monitoring

    International Nuclear Information System (INIS)

    Haycox, Jon; Pettitt, Will; Young, R. Paul

    2005-11-01

    This report describes the results from acoustic emission (AE) and ultrasonic monitoring of the Aespoe Pillar Stability Experiment (APSE) at SKB's Hard Rock Laboratory (HRL), Sweden. The APSE is being undertaken to demonstrate the current capability to predict spalling in a fractured rock mass using numerical modelling techniques, and to demonstrate the effect of backfill and confining pressure on the propagation of micro-cracks in rock adjacent to deposition holes within a repository. An ultrasonic acquisition system has provided acoustic emission and ultrasonic survey monitoring throughout the various phases of the experiment. Results from the entire data set are provided with this document so that they can be effectively compared to several numerical modelling studies, and to mechanical and thermal measurements conducted around the pillar volume, in an 'integrated analysis' performed by SKB staff. This document provides an in-depth summary of the AE and ultrasonic survey results for future reference. The pillar has been produced by excavating two 1.8 m diameter deposition holes 1 m apart. These were bored in 0.8 m steps using a Tunnel Boring Machine specially adapted for vertical drilling. The first deposition hole was drilled in December 2003. Preceding this a period of background monitoring was performed so as to obtain a datum for the results. The hole was then confined to 0.7 MPa internal over pressure using a specially designed water-filled bladder. The second deposition hole was excavated in March 2004. Heating of the pillar was performed over a two month period between ending in July 2004, when the confined deposition hole was slowly depressurised. Immediately after depressurisation the pillar was allowed to cool with cessation of monitoring occurring a month later. A total of 36,676 AE triggers were recorded over the reporting period between 13th October 2003 and 14th July 2004. Of these 15,198 have produced AE locations. The AE data set shows an intense

  19. Real Time Grouting Control Method. Development and application using Aespoe HRL data

    International Nuclear Information System (INIS)

    Kobayashi, Shinji; Stille, Haakan; Gustafson, Gunnar; Stille, Bjoern

    2008-10-01

    theories for grout spread. The stop criterion can with this method be related to achieved grout spread such as the fact that grouting is completed when the grout penetration for the smallest fracture that has to be sealed is above a certain minimum value (target value) or before the grout penetration for the largest fracture aperture reaches a certain maximum value (limiting value). Based on the calculated penetration length it might be possible to add certain other options to the method, such as estimation of joint aperture, prediction of grout flow and grout penetration, calculation of the risk of uplift, and prediction of water leakage to the tunnel. In order to verify the 'Real Time Grouting Control Method', the field data from the grouting field experiment at the 450 m level in the Aespoe HRL has been used. The calculated flow dimensionality, the calculated fracture apertures and the calculated grout flows were quite close to those measured. This indicates that the 'Real Time Grouting Control Method' may be applicable to real grouting design and control

  20. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  1. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    International Nuclear Information System (INIS)

    Bossart, P.; Hermanson, Jan; Mazurek, M.

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features

  2. Overall evaluation of the modelling of the TRUE-1 tracer tests - Task 4. The Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes

    International Nuclear Information System (INIS)

    Marschall, Paul; Elert, Mark

    2003-09-01

    The Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. The task was carried out in 1995-2000 and consisted of several modelling exercises in support of the TRUE-1 tracer tests, including predictive modelling where experimental results were not available beforehand. This report presents an overall evaluation of the achievements of Task 4. The specific objectives of the overall evaluation were to highlight innovative and successful modelling approaches developed, to assess the stages of the task which proved most beneficial for conceptual understanding of transport processes at the TRUE-1 site and to assess the success of various steering tools. A concise summary of scientific achievements is given and conclusions drawn with respect to unresolved technical issues. Recommendations are presented that can optimise the management of future modelling tasks

  3. Aespoe Hard Rock Laboratory Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The TRUE -1 experiment including tests with sorbing radioactive tracers in a single fracture over a distance of about 5 m has been completed. Diffusion and sorption in the rock matrix is the dominant retention mechanism over the time scales of the experiments. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. In total six boreholes have been drilled into the experimental volume located at the 450 m level. The Long-Term Diffusion Experiment is intended as a complement to the dynamic in-situ experiments and the laboratory experiments performed in the TRUE Programme. Diffusion from a fracture into the rock matrix will be studied in situ. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. A new site for the CHEMLAB experiments was selected and prepared during 1999. All future experiment will be conducted in the J niche at 450 m depth. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. Characterisation of the rock mass in the area of the Prototype repository is completed and the six deposition holes have been drilled. The Backfill and

  4. Aespoe Hard Rock Laboratory Annual Report 1999

    International Nuclear Information System (INIS)

    2000-08-01

    The Aespoe Hard Rock Laboratory has been constructed as part of the preparations for the deep geological repository for spent nuclear fuel in Sweden. The Tracer Retention Understanding Experiments are made to gain a better understanding of radionuclide retention in the rock and create confidence in the radionuclide transport models that are intended to be used in the licensing of a deep repository for spent fuel. The TRUE -1 experiment including tests with sorbing radioactive tracers in a single fracture over a distance of about 5 m has been completed. Diffusion and sorption in the rock matrix is the dominant retention mechanism over the time scales of the experiments. The main objective of the TRUE Block Scale Experiment is to increase understanding and our ability to predict tracer transport in a fracture network over spatial scales of 10 to 50 m. In total six boreholes have been drilled into the experimental volume located at the 450 m level. The Long-Term Diffusion Experiment is intended as a complement to the dynamic in-situ experiments and the laboratory experiments performed in the TRUE Programme. Diffusion from a fracture into the rock matrix will be studied in situ. The REX project focuses on the reduction of oxygen in a repository after closure due to reactions with rock minerals and microbial activity. Results show that oxygen is consumed within a few days both for the field and laboratory experiments. A new site for the CHEMLAB experiments was selected and prepared during 1999. All future experiment will be conducted in the J niche at 450 m depth. The Prototype Repository Test is focused on testing and demonstrating repository system function. A full-scale prototype including six deposition holes with canisters with electric heaters surrounded by highly compacted bentonite will be built and instrumented. Characterisation of the rock mass in the area of the Prototype repository is completed and the six deposition holes have been drilled. The Backfill and

  5. Estimation of effective block conductivities based on discrete network analyses using data from the Aespoe site

    International Nuclear Information System (INIS)

    La Pointe, P.R.; Wallmann, P.; Follin, S.

    1995-09-01

    Numerical continuum codes may be used for assessing the role of regional groundwater flow in far-field safety analyses of a nuclear waste repository at depth. The focus of this project is to develop and evaluate one method based on Discrete Fracture Network (DFN) models to estimate block-scale permeability values for continuum codes. Data from the Aespoe HRL and surrounding area are used. 57 refs, 76 figs, 15 tabs

  6. HRL Aespoe - two-phase flow experiment - gas and water flow in fractured crystalline rock

    International Nuclear Information System (INIS)

    Kull, H.; Liedtke, L.

    1998-01-01

    (The full text of the contribution follows:) Gas generated from radioactive waste may influence the hydraulic and mechanical properties of the man-made barriers and the immediate surroundings of the repository. Prediction of alteration in fractured crystalline rock is difficult. There is a lack of experimental data, and calibrated models are not yet available. Because of the general importance of this matter the German Federal Ministry for Education, Science, Research and Technology decided to conduct a two-phase flow study at HRL Aespoe within the scope of the co-operation agreement with SKB. Within the presentation an overview of field experiments and modelling studies scheduled until end of '99 are given. Conceptual models for one- and two-phase flow, methodologies and with respect to numerical calculations necessary parameter set-ups are discussed. Common objective of in-situ experiments is to calibrate flow models to improve the reliability of predictions for gas migration through fractured rock mass. Hence, in a defined dipole flow field in niche 2/715 at HRL Aespoe effective hydraulic parameters are evaluated. Numerical modelling of non-isothermal, two-phase, two-component processes is feasible only for two-dimensional representation of a porous medium. To overcome this restriction a computer program will be developed to model three-dimensional, fractured, porous media. Rational aspects of two-phase flow studies are for the designing of geotechnical barriers and for the long-term safety analysis of potential radionuclide transport in a future repository required for the licensing process

  7. Integrated Validation System for a Thermal-hydraulic System Code, TASS/SMR-S

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Kyung; Kim, Hyungjun; Kim, Soo Hyoung; Hwang, Young-Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Hyeon-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    Development including enhancement and modification of thermal-hydraulic system computer code is indispensable to a new reactor, SMART. Usually, a thermal-hydraulic system code validation is achieved by a comparison with the results of corresponding physical effect tests. In the reactor safety field, a similar concept, referred to as separate effect tests has been used for a long time. But there are so many test data for comparison because a lot of separate effect tests and integral effect tests are required for a code validation. It is not easy to a code developer to validate a computer code whenever a code modification is occurred. IVS produces graphs which shown the comparison the code calculation results with the corresponding test results automatically. IVS was developed for a validation of TASS/SMR-S code. The code validation could be achieved by a comparison code calculation results with corresponding test results. This comparison was represented as a graph for convenience. IVS is useful before release a new code version. The code developer can validate code result easily using IVS. Even during code development, IVS could be used for validation of code modification. The code developer could gain a confidence about his code modification easily and fast and could be free from tedious and long validation work. The popular software introduced in IVS supplies better usability and portability.

  8. Aespoe hard rock laboratory. Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The Aespoe Hard Rock Laboratory constitutes an important component of SKB's work to design, construct, and implement a deep geological repository for spent nuclear fuel and to develop and test methods for characterisation of selected repository sites. The retention effect of the rock has been studied by tracer tests in the Tracer Retention Understanding Experiments (TRUE) and the TRUE Block Scale (TRUE BS). These tests are supplemented by the new Long Term Diffusion Experiment (LTDE). During year 2000 the field experiments of TRUE BS (50 m scale) were completed and preparations made for the LTDE (migration through a fracture wall and into the rock), including boring of approximately 10 m deep hole with 300 mm diameter. Laboratory investigations have difficulties in simulating natural conditions and need supplementary field studies to support validation exercises. A special borehole probe, CHEMLAB, has therefore been designed for different kinds of validation experiments where data can be obtained representative for the in-situ properties of groundwater at repository depth. During 2000 migration experiments were made with actinides (Am, Np and Pu) in CHEMLAB 2, the simplified supplement to CHEMLAB 1. Colloids of nuclides as well as of bentonite might affect the migration of released radionuclides and a separate project was planned during 2000 to assess the existence, stability and mobility of colloids. The development of numerical modelling tools continues with the general objective to improve the numerical models in terms of flow and transport and to update the site-scale and laboratory scale models for the Aespoe HRL. The Matrix Fluid Chemistry project aims at determining the origin and age of matrix fluids and the experiment has been designed to sample matrix fluids from predetermined, isolated borehole sections by specialised equipment. The Aespoe HRL also has the task to demonstrate and perform full scale tests of the function of different components of

  9. Preliminary results from water content and density measurements of the backfill and buffer in the prototype repository at Aespoe HRL

    International Nuclear Information System (INIS)

    Johannesson, Lars-Erik; Grahm, Paer; Hagman, Patrik

    2012-01-01

    Document available in extended abstract form only. Since 2001 the Prototype Repository at Aespoe Hard Rock Laboratory has been carried out as a large-scale experimental installation of the KBS-3 Swedish/Finnish concept for final disposal of spent nuclear fuel. The Prototype Repository consists of a total of six full-scale deposition holes with a centre distance of 6 m, located in a TBM tunnel at a depth of 450 m. Each deposition hole is fitted with a full-scale bentonite buffer, consisting of altogether 14 blocks and a full-scale canister, Figure 1. The canisters are equipped with heaters to simulate the heat from spent nuclear fuel. There are two sections of the installation; The inner section (I) consisting of four deposition holes (no. 1-4) with buffer and canister, and the outer section (II) consisting of two deposition holes (no. 5-6). The deposition tunnel is filled with a mixture of crushed rock and bentonite (30% of bentonite). A massive concrete plug, designed to withstand full water and swelling pressures, separates the test area from the open tunnel system and a second plug separates the two sections. This layout provides two more or less independent test sections. The outer section was opened and retrieved during 2011. The backfill was excavated with a back-hoe loader in layers of two metres. Samples were taken in these layers with the object of determining density and water content. Important items of the backfill to examine were the contact between backfill and the tunnel wall and the contact between the buffer and backfill in the deposition holes. The water content of the backfill was determined by drying samples in an oven at a temperature of 105 C for 24 h and the density was determined by weighting the sample both in air and merged into paraffin oil with known density. Altogether more than 900 tons of backfill material was excavated from the tunnel and more than 1100 samples, distributed over 11 sections, were taken for determining the water

  10. Measurements of colloid concentrations in the fracture zone, Aespoe Hard Rock Laboratory, Sweden

    International Nuclear Information System (INIS)

    Ledin, A.; Dueker, A.; Karlsson, Stefan; Allard, B.

    1995-06-01

    The applicability of light scattering in combination with photon correlation spectroscopy (PCS) for determination of concentration and size distribution of colloidal matter in a deep groundwater was tested in situ and on-line. Well-defined reference colloids of Fe 2 O 3 , Al(OH) 3 , SiO 2 , kaolinite, illite and a high molecular humic acid in aqueous media were used as model substances for calibration of the PCS instrument. The intensity of scattered light was found to be dependent on the composition of the colloids. The colloid concentration in the rather saline groundwater was below the detection limit for the PCS equipment used, which corresponds to a colloid concentration not higher than 0.5 mg/l and probably below 0.1 mg/l according to the measurements on-line and in situ at Aespoe and in comparison to the calibrations performed with reference colloids. The results clearly demonstrated that the stability, concentration and composition of a colloid-size suspended phase in the anoxic groundwater with high content of Fe(II), like the one in Aespoe, is extremely sensitive to exposure to atmospheric conditions during sample handling and preparation. Diffusion of air into the closed measuring cuvette was enough to alter the colloid content significantly within 6 hours. A particle fraction with the size distribution in the range 170-700 nm was formed within 45 min when air was allowed to diffuse into the aqueous phase from the air filled upper part of the cuvette. The corresponding time to generate a significant colloid precipitate was less than 1 min when a stream of air was bubbled through the water samples. The precipitated colloid phase consisted of a mixture of ferric (hydr)oxide and calcium carbonate in all three cases. 53 refs, 8 figs, 2 tabs

  11. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jaana; Gustafsson, Christer (Malaa Geoscience AB (Sweden))

    2010-01-15

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  12. Aespoe Hard Rock Laboratory. BIPS logging in borehole KAS09

    International Nuclear Information System (INIS)

    Gustafsson, Jaana; Gustafsson, Christer

    2010-01-01

    This report includes the data gained in BIPS logging performed at the Aespoe Hard Rock Laboratory. The logging operation presented here includes BIPS logging in the core drilled borehole KAS09. The objective for the BIPS logging was to observe the condition of KAS09 in order to restore the borehole in the hydrogeological monitoring programme.All measurements were conducted by Malaa Geoscience AB on October 9th 2009. The objective of the BIPS logging is to achieve information of the borehole including occurrence of rock types as well as determination of fracture distribution and orientation. This report describes the equipment used as well as the measurement procedures and data gained. For the BIPS survey, the result is presented as images. The basic conditions of the BIPS logging for geological mapping and orientation of structures are satisfying for borehole KAS09, although induced affects from the drilling on the borehole walls limit the visibility

  13. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  14. Comparison of the SKI, SKB, and SKN geological and structural models of the Aespoe area

    International Nuclear Information System (INIS)

    Tiren, S.A.

    1996-06-01

    Three sets of geological and structural models produced by three different groups are compared. The same set of basic data has been available to each of the groups. The models, all of which are 2 by 2 km by 1 km deep - or smaller, are based entirely on surface-based investigations. The modelled area is centered on the island of Aespoe, where SKB has built the Hard Rock Laboratory (HRL) in plutonic bedrock at a depth of 500 m. SKB (Swedish Nuclear Fuel and Waste Management Co) has recorded the basic data during the period 1986 to 1991, before starting the underground work. One of the main tasks in the SKB characterization of the HRL rock mass was to predict which of the geological structures will have the greatest rock-mechanical and hydraulic significance. The National Board for Spent Nuclear Fuel (SKN) constructed alternative models in 1992 to verify the SKB model. However, the SKN models were subsequently modified and converted into a hydrogeological model. The Swedish Nuclear Inspectorate (SKI) chose Aespoe as a hypothetical site for storage of nuclear waste in their SITE 94 project. The objective of the project is to assist SKI in their future review of SKB's application for a license to dispose of spent nuclear fuel underground. The agreement of the three models is found to be best where the density of information is greatest. The main difference between the two geological models is related to the inferred effects of block faulting on the rock type distribution. The correlation of moderately to gently inclined zones between the models is relatively poor at depth

  15. Comparison of the SKI, SKB, and SKN geological and structural models of the Aespoe area

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, S.A. [Geosigma AB, Uppsala (Sweden)

    1996-06-01

    Three sets of geological and structural models produced by three different groups are compared. The same set of basic data has been available to each of the groups. The models, all of which are 2 by 2 km by 1 km deep - or smaller, are based entirely on surface-based investigations. The modelled area is centered on the island of Aespoe, where SKB has built the Hard Rock Laboratory (HRL) in plutonic bedrock at a depth of 500 m. SKB (Swedish Nuclear Fuel and Waste Management Co) has recorded the basic data during the period 1986 to 1991, before starting the underground work. One of the main tasks in the SKB characterization of the HRL rock mass was to predict which of the geological structures will have the greatest rock-mechanical and hydraulic significance. The National Board for Spent Nuclear Fuel (SKN) constructed alternative models in 1992 to verify the SKB model. However, the SKN models were subsequently modified and converted into a hydrogeological model. The Swedish Nuclear Inspectorate (SKI) chose Aespoe as a hypothetical site for storage of nuclear waste in their SITE 94 project. The objective of the project is to assist SKI in their future review of SKB`s application for a license to dispose of spent nuclear fuel underground. The agreement of the three models is found to be best where the density of information is greatest. The main difference between the two geological models is related to the inferred effects of block faulting on the rock type distribution. The correlation of moderately to gently inclined zones between the models is relatively poor at depth. 46 refs, 30 figs, 18 tabs.

  16. Aespoe hard rock laboratory. Field investigation methodology and instruments used in the preinvestigation phase, 1986-1990

    International Nuclear Information System (INIS)

    Almen, K.E.; Zellman, O.

    1991-12-01

    The Aespoe hard rock laboratory project started in 1986. The pre-investigation phase, 1986-1990, involved extensive field measurements from the surface as well as from boreholes, aimed at characterizing the rock formation with regard to geology, geohydrology, hydrochemistry and rock mechanics. The field investigation methodology used in the project was based on experience from and developments during the previous SKB study site investigation programme. However, in some respects the techniques were changed or modified. Major changes have been possible due to a new drilling technique, telescope-type drilling. This report describes the logistics of the investigation programme, characterized to a large extent by multi-purpose planning and performance of the activities in order to optimize the use of available resources; time, personnel and equipment. Preliminary hydraulic testing and groundwater sampling were conducted during the drilling of each borehole. When the drilling was completed an extensive set of singlehole investigations were carried out: geophysical logging, borehole radar, hydraulic tests of different kinds, water sampling and rock stress measurements. Multipackers were installed in the boreholes as soon as possible after the borehole investigations. The system enables monitoring of groundwater pressure, water sampling and groundwater flow measurements to be performed by means of dilution tests and tracer injection. Boreholes with such equipment were used as observation holes during interference pumping tests and long term hydraulic and tracer tests. The monitoring programme will continue during the subsequent phases of construction and operation of the Aespoe hard rock laboratory. (83 refs., 94 figs.) (au)

  17. Application of the multi-rate diffusion approach in tracer test studies at Aespoe HRL. Final report

    International Nuclear Information System (INIS)

    Haggerty, R.

    1999-11-01

    This report summarizes an investigation into heterogeneous diffusivity and associated parameters within granitic rocks at the Aespoe Hard Rock Laboratory (HRL). Our tasks for this investigation were: (1) to assess the potential for either anomalous or multi-rate diffusion within Aespoe rocks; (2) to evaluate existing data relating to anomalous and multi-rate diffusion within Aespoe rocks; (3) to perform scoping calculations in support of a Long Term Diffusion Experiment (LTDE) design; and (4) to begin developing a mathematical and computer model for solute advection in the presence of anomalous matrix diffusion. In addition to carrying out these tasks, we also report on (5) the late-time behavior of breakthrough curves. First, in regard to the potential for anomalous and multi-rate diffusion and analyses of existing data, we find that (1) in a literature review of 100 column experiments in various types of rock and sediment, rate coefficients decrease with experimental observation time. This is precisely what would be expected of both multi-rate and anomalous diffusion. (2) Three sets of through-diffusion experiments in Fenno-Scandian granitic rock found decreasing effective diffusivity, D e , with sample length, while one set did not. (3) Based on diffusivity and sorption data, and speculation on matrix block size variability, the total variability of D a /a 2 may reasonably be expected to exceed 4 orders of magnitude. (4) Analyses of two-well tracer data completed to date are ambiguous with respect to multi-rate diffusion. Analyses of TRUE data are currently underway and may support multi-rate diffusion. Second, in regard to the potential consequences of multi-rate and anomalous diffusion on nuclear waste disposal, we found the following key points: (1) No single value of diffusivity can represent the diffusion process at all time- or length-scales if diffusion is truly anomalous, while a single value of diffusivity will represent diffusion adequately for some

  18. Application of the multi-rate diffusion approach in tracer test studies at Aespoe HRL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, R. [Oregon State Univ., Corvallis, OR (United States). Dept. of Geosciences

    1999-11-01

    This report summarizes an investigation into heterogeneous diffusivity and associated parameters within granitic rocks at the Aespoe Hard Rock Laboratory (HRL). Our tasks for this investigation were: (1) to assess the potential for either anomalous or multi-rate diffusion within Aespoe rocks; (2) to evaluate existing data relating to anomalous and multi-rate diffusion within Aespoe rocks; (3) to perform scoping calculations in support of a Long Term Diffusion Experiment (LTDE) design; and (4) to begin developing a mathematical and computer model for solute advection in the presence of anomalous matrix diffusion. In addition to carrying out these tasks, we also report on (5) the late-time behavior of breakthrough curves. First, in regard to the potential for anomalous and multi-rate diffusion and analyses of existing data, we find that (1) in a literature review of 100 column experiments in various types of rock and sediment, rate coefficients decrease with experimental observation time. This is precisely what would be expected of both multi-rate and anomalous diffusion. (2) Three sets of through-diffusion experiments in Fenno-Scandian granitic rock found decreasing effective diffusivity, D{sub e}, with sample length, while one set did not. (3) Based on diffusivity and sorption data, and speculation on matrix block size variability, the total variability of D{sub a}/a{sup 2} may reasonably be expected to exceed 4 orders of magnitude. (4) Analyses of two-well tracer data completed to date are ambiguous with respect to multi-rate diffusion. Analyses of TRUE data are currently underway and may support multi-rate diffusion. Second, in regard to the potential consequences of multi-rate and anomalous diffusion on nuclear waste disposal, we found the following key points: (1) No single value of diffusivity can represent the diffusion process at all time- or length-scales if diffusion is truly anomalous, while a single value of diffusivity will represent diffusion

  19. Holocene sediment accumulation in the Aespoe area. A study of a sediment core

    International Nuclear Information System (INIS)

    Risberg, Jan

    2002-12-01

    A sediment core was collected in 1993 in the archipelago above the tunnel between the Aespoe Island and Simpevarp nuclear power plant. The sediment sequence consists of four types of accumulations: brownish clay, bluish clay, sand mixed with gravel and gyttja. The sequence was studied according to its content of siliceous microfossils (mainly diatoms), mineral magnetic characteristics, clay mineralogy and it was dated by the AMS technique on bulk sediment samples. According to the diatom content, both types of clay were probably deposited during the brackish water Yoldia Sea stage. The clay is relatively uniform, except an abrupt increase in the mineral magnetic parameters HIRM and S-ratio at around 810 cm depth, which probably is the result from a change in the material source. The clay mineralogy, with enhanced chlorite values, indicates a relatively uniform material. A major change occurs at the transition from the bluish to brownish clay, where all magnetic concentrations drop dramatically as the result from a major shift in material source and/or sedimentation environment. The thin layer of sand and gravel is indicative of a major hiatus in the stratigraphy. Mineral magnetic concentrations increase slightly as the result from mixing with single domain ground surface generated particles. Based on a Yoldia Sea age for the underlying clay and deposition in the Litorina Sea 3000 years BP for the superimposed gyttja, it is suggested that the length of the hiatus is about 7000 years. It is not until the studied site became protected enough by rising land areas, that organic rich gyttja started to accumulate.It is likely that this scenario was established when sea level was situated at around 10 m above present day. Since then it seems, as determined from the mineral magnetic graphs, that the sedimentary conditions have been relatively uniform. More pronounced fluctuations in mineral magnetic concentrations (especially ARM/SIRM ratios)in the upper 2 m of the core

  20. Holocene sediment accumulation in the Aespoe area. A study of a sediment core

    Energy Technology Data Exchange (ETDEWEB)

    Risberg, Jan [Stockholm Univ. (Sweden). Dept. of Quaternary Research

    2002-12-01

    A sediment core was collected in 1993 in the archipelago above the tunnel between the Aespoe Island and Simpevarp nuclear power plant. The sediment sequence consists of four types of accumulations: brownish clay, bluish clay, sand mixed with gravel and gyttja. The sequence was studied according to its content of siliceous microfossils (mainly diatoms), mineral magnetic characteristics, clay mineralogy and it was dated by the AMS technique on bulk sediment samples. According to the diatom content, both types of clay were probably deposited during the brackish water Yoldia Sea stage. The clay is relatively uniform, except an abrupt increase in the mineral magnetic parameters HIRM and S-ratio at around 810 cm depth, which probably is the result from a change in the material source. The clay mineralogy, with enhanced chlorite values, indicates a relatively uniform material. A major change occurs at the transition from the bluish to brownish clay, where all magnetic concentrations drop dramatically as the result from a major shift in material source and/or sedimentation environment. The thin layer of sand and gravel is indicative of a major hiatus in the stratigraphy. Mineral magnetic concentrations increase slightly as the result from mixing with single domain ground surface generated particles. Based on a Yoldia Sea age for the underlying clay and deposition in the Litorina Sea 3000 years BP for the superimposed gyttja, it is suggested that the length of the hiatus is about 7000 years. It is not until the studied site became protected enough by rising land areas, that organic rich gyttja started to accumulate.It is likely that this scenario was established when sea level was situated at around 10 m above present day. Since then it seems, as determined from the mineral magnetic graphs, that the sedimentary conditions have been relatively uniform. More pronounced fluctuations in mineral magnetic concentrations (especially ARM/SIRM ratios)in the upper 2 m of the core

  1. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  2. Aespoe hard rock laboratory. Evaluation and conceptual modelling based on the pre-investigations 1986-1990

    International Nuclear Information System (INIS)

    Wikberg, P.; Gustafson, G.; Rhen, I.; Stanfors, R.

    1991-06-01

    The investigations have been grouped to several geometric scales under the disciplines of geology, geohydrology and groundwater chemistry, transport of solutes and mechanical stability. Geological mapping and geophysical measurements have been made both on a regional and on a site scale. On the site scale additional surface measurements, drilling of 35 percussion boreholes and 19 cored boreholes was made. The results of the geological investigations show that the Aespoe bedrock is a complex mixture between Smaaland granite, Aespoe diorite and fine grained granite. Hydraulic and chemical data was collected from existing well records within the Kalmar County. Hydraulic conductivity measurement and interference pumping tests were made in the core drilled holes and to some extent in the percussion holes. The hydraulic conductors are basically the fracture zones, but one of the most important is a NNW striking system of single fractures which is difficult to distinguish geologically. The chemical conditions of the groundwater and the fracture minerals form water bearing sections of the core drilled holes have been examined. Water samples were collected from percussion boreholes. The groundwater can be divided into three categories. Fresh water down to approximately 50 m depth. Mixed fresh and seawater 50-100 m, present and/or relict seawater 100-500 m and old (relict) seawater below a depth of 500 m. An important task in the evaluations is to set up 'conceptual models'. These models are the basis for calculation of the ambient groundwater situation and the way in which the hydrological regime will change during the excavation of the laboratory. In order to allow for different levels of detail the conceptual models are established on different scales. The geometrical scales chosen are 500 m, 50 m and 5 m. (au)

  3. Ion sorption onto hydrous ferric oxides: Effect on major element fluid chemistry at Aespoe, Sweden

    International Nuclear Information System (INIS)

    Bruton, C.J.; Viani, B.E.

    1996-06-01

    The observed variability of fluid chemistry at the Aespoe Hard Rock Laboratory is not fully described by conservative fluid mixing models. Ion exchange may account for some of the observed discrepancies. It is also possible that variably charged solids such as oxyhydroxides of Fe can serve as sources and sinks of anions and cations through surface complexation. Surface complexation reactions on hydrous ferric oxides involve sorption of both cations and anions. Geochemical modeling of the surface chemistry of hydrous ferric oxides (HFOs) in equilibrium with shallow HBH02 and deep KA0483A waters shows that HFOs can serve as significant, pH-sensitive sources and sinks for cations and anions. Carbonate sorption is favored especially at below-neutral pH. A greater mass of carbonate is sorbed onto HFO surfaces than is contained in the fluid when 10 g goethite, used as a proxy for HFOs, is in contact with 1 kg H 2 O. The masses of sorbent required to significantly impact fluid chemistry through sorption/desorption reactions seem to be reasonable when compared to the occurrences of HFOs at Aespoe. Thus, it is possible that small changes in fluid chemistry can cause significant releases of cations or anions from HFOs into the fluid phase or, alternately, result in uptake of aqueous species onto HFO surfaces. Simulations of the mixing of shallow HBH02 and native KA0483A waters in the presence of a fixed mass of goethite show that surface complexation does not cause the concentrations of Ca, Sr, and SO 4 to deviate from those that are predicted using conservative mixing models. Results for HCO 3 are more difficult to interpret and cannot be addressed adequately at this time

  4. Palaeohydrological implications in the Baltic area and its relation to the groundwater at Aespoe, south-eastern Sweden - A literature study

    International Nuclear Information System (INIS)

    Wallin, B.

    1995-03-01

    A literature study of different groundwaters in the circum Baltic region is presented in this work. The study is mainly focused on the isotopic signatures observed in different groundwaters in Sweden and Finland. Several saline groundwaters in the Baltic region at depth of 150 to 500m depth show stable (δD, δ 13 C, δ 18 O) and radiogenic (δ 87 Sr) isotope assembly which is suggestive of a marine origin. However, a discrepancy is sometimes observed between the stable as well as radiogenic isotopes of the intermediate groundwater, which suggest a mixture of fossil marine water and a post-glacial runoff of melt water. In order to explain this phenomenon, the initial setting in δ 18 O may have been depleted due to large input of high latitude marine water or cold melt waters. A solution to the contradiction between the strontium (δ 87 Sr) and stable isotope (δD, δ 13 C, δ 18 O) signatures of the groundwater and of the calcite fracture fillings at Aespoe and other places is attained, if it is assumed that the strontium in Baltic Sea water has undergone a significant decrease in δ 87 Sr since the last glaciation. A scenario can be constructed to suggest that the Baltic Sea during the initial stage of the Litorina sea (8000 to 5000 Y B.P.) contained strontium with much larger δ 87 Sr values. Another explanation for the positive δ 87 Sr values may be due to water/rock interaction between the groundwater and the abundant fracture clay minerals, which are observed at Aespoe. Typically most of the saline groundwaters occur both in Sweden and Finland below the highest marine shore line during the Holocene. Almost all inland groundwaters show a totally different pattern which is typically non marine, meteoric in origin. This study also summarises the stable isotope (δ 13 C,δ 18 O) geochemistry dependence of the important global and regional environmental changes which may have influenced of the palaeohydrology as well as groundwater formation and in the Baltic

  5. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle [Golder Associates AB, Uppsala (Sweden); Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    An extensive characterization programme has been performed in the drift, TASQ, excavated for the Aespoe Pillar Stability Experiment, APSE, including the rock volume that will host the experiment pillar between the two deposition holes. The two major objectives with the characterization has been to 1) derive material properties for the final numerical modelling of the experiment and 2) to ensure that the pillar location is suitable from a structural and rock mechanical point of view. In summary the following activities have been performed: Geological mapping of the drift, the pilot holes cores and deposition hole DQ0066G01. 3D-visualisation of the geological mapping in the experiment (pillar) volume of TASQ. Convergence measurements during the excavation and back calculation of the results for determination of the stress tensor and the rock mass Young's modulus. Laboratory tests on core samples from the 15{phi}76 mm core boreholes drilled around the pillar volume for determination of: compressive strength, thermal properties and fracture properties. P-wave velocity measurements on core samples and between boreholes for estimation of the excavation damaged zone and rock mass properties. The geological mapping and the 3D-visualisation gives a good description of the TASQ drift in general and the experiment volume in the drift in particular. The fracturing of the drift follows the pattern of the rest of Aespoe. Three fracture sets have been mapped in TASQ. The major fracture set is sub-vertical and trending NW, in principle parallel to {sigma}{sub 1}. This set is the most conductive at Aespoe and is the only water bearing set in TASQ. A second less pronounced set is trending NE, parallel to TASQ, and is also sub-vertical. The third set is sub-horizontal. It is interesting to note that the third set is the only one that almost completely consists of sealed fractures. The first two sets have mostly open fractures. One unique feature in the drift is a heavily

  6. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    International Nuclear Information System (INIS)

    Staub, Isabelle; Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    An extensive characterization programme has been performed in the drift, TASQ, excavated for the Aespoe Pillar Stability Experiment, APSE, including the rock volume that will host the experiment pillar between the two deposition holes. The two major objectives with the characterization has been to 1) derive material properties for the final numerical modelling of the experiment and 2) to ensure that the pillar location is suitable from a structural and rock mechanical point of view. In summary the following activities have been performed: Geological mapping of the drift, the pilot holes cores and deposition hole DQ0066G01. 3D-visualisation of the geological mapping in the experiment (pillar) volume of TASQ. Convergence measurements during the excavation and back calculation of the results for determination of the stress tensor and the rock mass Young's modulus. Laboratory tests on core samples from the 15Φ76 mm core boreholes drilled around the pillar volume for determination of: compressive strength, thermal properties and fracture properties. P-wave velocity measurements on core samples and between boreholes for estimation of the excavation damaged zone and rock mass properties. The geological mapping and the 3D-visualisation gives a good description of the TASQ drift in general and the experiment volume in the drift in particular. The fracturing of the drift follows the pattern of the rest of Aespoe. Three fracture sets have been mapped in TASQ. The major fracture set is sub-vertical and trending NW, in principle parallel to σ 1 . This set is the most conductive at Aespoe and is the only water bearing set in TASQ. A second less pronounced set is trending NE, parallel to TASQ, and is also sub-vertical. The third set is sub-horizontal. It is interesting to note that the third set is the only one that almost completely consists of sealed fractures. The first two sets have mostly open fractures. One unique feature in the drift is a heavily oxidized brittle

  7. SITE-94. The SKN conceptual model of Aespoe. Based on pre-investigations 1986-1990

    International Nuclear Information System (INIS)

    Sundquist, U.; Torssander, P.

    1996-12-01

    The present report describes the SKN (National Board for Spent Nuclear Fuel) conceptual model, which is a combined structural, hydrogeological and geochemical model. The development of the model has been carried out by stages with commencement in 1990. This report summarizes the main parts of the work performed. Initially, the development of the model was part of the program of SKN regarding review of SKB R and D work at Aespoe Hard Rock Laboratory. At a later stage, the SKN model was further developed and integrated into SITE-94. This development comprised evaluation of additional hydrogeological and geochemical data in order to strengthen the model. This report summarizes two earlier reports by SKN written in Swedish. Furthermore, a comprehensive description of the hydrogeological and geochemical evaluation is presented. 58 refs

  8. SITE-94. The SKN conceptual model of Aespoe. Based on pre-investigations 1986-1990

    Energy Technology Data Exchange (ETDEWEB)

    Sundquist, U.; Torssander, P. [Bergab, Goeteborg (Sweden)

    1996-12-01

    The present report describes the SKN (National Board for Spent Nuclear Fuel) conceptual model, which is a combined structural, hydrogeological and geochemical model. The development of the model has been carried out by stages with commencement in 1990. This report summarizes the main parts of the work performed. Initially, the development of the model was part of the program of SKN regarding review of SKB R and D work at Aespoe Hard Rock Laboratory. At a later stage, the SKN model was further developed and integrated into SITE-94. This development comprised evaluation of additional hydrogeological and geochemical data in order to strengthen the model. This report summarizes two earlier reports by SKN written in Swedish. Furthermore, a comprehensive description of the hydrogeological and geochemical evaluation is presented. 58 refs.

  9. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  10. Aespoe Hard Rock Laboratory. Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Haakan (GeoVista AB (Sweden))

    2012-01-15

    This report presents survey description and results of ground magnetic measurements carried out by GeoVista AB at Aespoe in December, 2011. The purpose of the ground magnetic measurement was to measure variations in the earth magnetic field and to gain knowledge of the magnetization of the bedrock in an area where SKB plan to build a facility for calibration of equipment for measurements of borehole orientation. A total of 312 data points were collected along three survey lines, 104 points/profile. The data show nice and smooth variations that appear to be natural. There is a clear consistency of the magnetic field variations between the three survey lines, which indicates that the variations in the magnetic field reflect geological variations related to lithology and content of magnetic minerals. There are no indications of artifacts or erroneous data. The anomaly field averages at -32 nT with peak values of Min = -1,016 nT and Max = +572 nT. The strongest anomalies occur at profile length c. 130-140 m. Adding the background field of 50,823 nT, measured at a base station located close to the survey area, the total magnetic field averages at 50,791+-226 nT. The ground magnetic measurement gives background information before the construction of the calibration facility. The magnetic anomaly at c. 130-140 m give possibilities to control disturbances of magnetic-accelerometer based instruments. The magnetic measurements show that it is possible to construct the facility at the site

  11. Aespoe Hard Rock Laboratory. Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2012-01-01

    This report presents survey description and results of ground magnetic measurements carried out by GeoVista AB at Aespoe in December, 2011. The purpose of the ground magnetic measurement was to measure variations in the earth magnetic field and to gain knowledge of the magnetization of the bedrock in an area where SKB plan to build a facility for calibration of equipment for measurements of borehole orientation. A total of 312 data points were collected along three survey lines, 104 points/profile. The data show nice and smooth variations that appear to be natural. There is a clear consistency of the magnetic field variations between the three survey lines, which indicates that the variations in the magnetic field reflect geological variations related to lithology and content of magnetic minerals. There are no indications of artifacts or erroneous data. The anomaly field averages at -32 nT with peak values of Min = -1,016 nT and Max = +572 nT. The strongest anomalies occur at profile length c. 130-140 m. Adding the background field of 50,823 nT, measured at a base station located close to the survey area, the total magnetic field averages at 50,791±226 nT. The ground magnetic measurement gives background information before the construction of the calibration facility. The magnetic anomaly at c. 130-140 m give possibilities to control disturbances of magnetic-accelerometer based instruments. The magnetic measurements show that it is possible to construct the facility at the site

  12. Aespoe Hard Rock Laboratory - feasibility and usefulness of site investigation methods. Experiences from the pre-investigation phase

    Energy Technology Data Exchange (ETDEWEB)

    Almen, K E [ed.; KEA GEO-Konsult (Sweden); Olsson, Paer [SKANSKA, (Sweden); Rhen, I [VBB VIAK AB, Malmoe (Sweden); Stanfors, R [RS Consulting, (Sweden); Wikberg, P [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1994-08-01

    One of the main goals set up by SKB for the Aespoe HRL project is to `test the quality and appropriateness of different methods for characterizing the bedrock with respect to conditions of importance for a final repository`. An extensive investigation programme was carried out during the projects pre-investigation phase that in part was based in experience from SKBs previous site investigations and in part entailed the testing of new or other unestablished methods. Previous technical reports have described the methods that have been used and the results, models and predictions that have been produced. All the methods used are discussed in the present report in terms of how they have contributed in different analysis stages to the total geoscientific characterization of the rock at Aespoe. The usefulness of each method for modelling and prediction in different scales is evaluated, and aspects of the practical execution of the methods under different conditions are discussed. The report sheds light on the importance of dividing large investigation programmes such as this one into suitable stages to get an opportunity to evaluate the results obtained and plan in detail the investigations in the next stage. Furthermore, the way in which the characterization/modelling work in different geometric scales has been done for the different investigation stages is discussed, along with whether this has been found to be a suitable approach. The importance of pursuing an interdisciplinary strategy throughout the pre-investigation process cannot be overemphasized. For the planning, execution, analysis and reporting of the results of the pre-investigations, this has been guaranteed by an organization in which an interdisciplinary group has been in charge of the investigations, together with the project manager. 52 refs, numerous tabs and figs.

  13. Aespoe Pillar Stability Experiment. Summary of preparatory work and predictive modelling

    International Nuclear Information System (INIS)

    Andersson, J. Christer

    2004-11-01

    The Aespoe Pillar Stability Experiment, APSE, is a large scale rock mechanics experiment for research of the spalling process and the possibility for numerical modelling of it. The experiment can be summarized in three objectives: Demonstrate the current capability to predict spalling in a fractured rock mass; Demonstrate the effect of backfill (confining pressure) on the rock mass response; and Comparison of 2D and 3D mechanical and thermal predicting capabilities. This report is a summary of the works that has been performed in the experiment prior to the heating of the rock mass. The major activities that have been performed and are discussed herein are: 1) The geology of the experiment drift in general and the experiment volume in particular. 2) The design process of the experiment and thoughts behind some of the important decisions. 3) The monitoring programme and the supporting constructions for the instruments. 4) The numerical modelling, approaches taken and a summary of the predictions. In the end of the report there is a comparison of the results from the different models. Included is also a comparison of the time needed for building, realizing and make changes in the different models

  14. Interactions of Microbes found at Aespoe Underground Lab with Actinides such as Curium, Plutonium and Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Moll, H.; Merroun, M.; Geipel, G.; Rossberg, A.; Hennig, C.; Selenska-Pobell , S.; Bernhard, G. [Forschungszentrum Dresden-Rossendorf e.V., Inst. fuer Radioc hemie, 01314 Dresden (Germany)]. e-mail: h.moll@fzd.de; Stumpf, Th. [Forschungszentru m Karlsruhe, Inst. fuer Nukleare Entsorgung, 76021 Karlsruhe (Germany)

    2007-06-15

    Sulfate-reducing bacteria (SRB) frequently occur in the deep granitic rock aquifers at the Aespoe Hard Rock Laboratory (Aespoe HRL), Sweden. The new SRB strain Desulfovibrio aespoeensis could be isolated. Results describing the basic interaction mechanisms of uranium, curium, and plutonium with cells of D. aespoeensis DSM 10631T will be presented. The interaction experiments with the actinides showed that the cells are able to remove all three actinides from the surrounding solution. The amount of removed actinide and the interaction mechanism varied among the different actinides. The main U(VI) removal occurred after the first 24 h. The contact time, pH and [U(VI)]initial influence the U removal efficiency. The presence of uranium caused a damaging of the cell membranes. TEM revealed an accumulation of U inside the bacterial cell. D. aespoeensis are able to form U(IV). A complex interaction mechanism takes place consisting of biosorption, bioreduction and bioaccumulation. In the case of {sup 242}Pu, solvent extractions, UV-vis- and XANES spectroscopy were used to determine the speciation of the Pu oxidation states. In the first step, the Pu(VI) and Pu(IV)-polymers are bound to the biomass. Solvent extractions showed that 97 % of the initially present Pu(VI) is reduced to Pu(V) due to the activity of the cells within the first 24 h. Most of the formed Pu(V) dissolves from the cell envelope back to the aqueous solution due to the weak complexing properties of this plutonium oxidation state. In the case of curium at a much lower metal concentration of 3x10{sup -7} M, a pure biosorption of Cm(III) on the cell envelope forming an inner-sphere surface complex most likely with organic phosphate groups was detected. To summarize, the strength of the interaction of D. aespoeensis with the selected actinides at pH 5 and actinide concentrations = 10 mg/L ([Cm] 0.07 mg/L) follows the pattern: Cm > U > Pu >> Np.

  15. New developments of the Integrated Stress Determination Method and application to the Aespoe Hard Rock Laboratory, Sweden

    International Nuclear Information System (INIS)

    Ask, Daniel

    2004-04-01

    This thesis presents new developments of the Integrated Stress Determination Method (ISDM) with application to the Aespoe Hard Rock Laboratory (HRL), Oskarshamn, Sweden. The new developments involve a 12-parameter representation of the regional stress field in the rock mass. The method is applicable to data from hydraulic fracturing, hydraulic tests on pre-existing fractures (HTPF), and overcoring data from CSIR- and CSIRO-type of devices. When hydraulic fracturing/HTPF data are combined with overcoring data, the former may be used to constrain the elastic parameters, i.e. the problem involves 14 model parameters. The Swedish Nuclear Fuel and Waste Management Co. (SKB), have conducted a vast amount of rock stress measurements at the Aespoe HRL since the late 1980s. However, despite the large number of stress measurement data collected in this limited rock volume, variability in the stress field exists. Not only does the result vary depending on measuring technique, e.g. overcoring data indicated larger stress magnitudes compared to hydraulic fracturing data; the results are also affected by existing discontinuities, indicated by non-linear stress magnitudes and orientations versus depth. The objectives for this study are therefore threefold: (1) find explanations to the observed differences between existing hydraulic and overcoring stress data at the Aspo HRL; (2) explain the non-linear stress distribution indicated by existing stress data; and (3) apply the ISDM, including the new developments, based on the results obtained in step 1 and 2. To evaluate the observed differences between existing hydraulic and overcoring stress data, a detailed re-interpretation was conducted. Several measurement-related uncertainties were identified and corrected for when possible, which effectively reduced the discrepancies between the hydraulic and overcoring measuring results. Modeling studies managed by SKB have shown that the redistribution of the stresses at Aespoe HRL to a

  16. Aespoe Pillar Stability Experiment. Final experiment design, monitoring results and observations

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Eng, Anders [Acuo Engineering AB, Linkoeping (Sweden)

    2005-12-15

    The field part of the Aespoe Pillar Stability Experiment at the Aespoe Hard Rock Laboratory (HRL) was finished in 2004. The experiment was designed to induce and monitor the process of brittle failure, spalling, in a fractured rock mass under controlled conditions. The field part was successfully conducted and a large data set was obtained. This report presents the final design of the experiment, the results of the monitoring, and the observations made during the spalling process and when the spalled rock was removed. When heating of the rock was initiated the rock responded quickly. After only a few days the spalling process was activated in the notch, as indicated by the acoustic emission system, and shortly thereafter displacement readings were recorded. Contraction (radial expansion) of the rock was recorded by several instruments before the notch reached the instrument levels. This contraction is probably the result of a 3D re-distribution of the stresses. The temperature increase in the system was both slower and reached a steady state much earlier than predicted by the numerical models. The propagation of the notch was therefore halted after approximately one month of heating. The power to the electrical heaters was therefore doubled. Spalling then started up again, and in one month's time it had propagated to a depth of approximately five metres in the hole. A second steady state was now reached, but this time the heater power was kept constant for a while to let the rock settle before the confinement pressure was reduced from 700 kPa to 0 in decrements of 50 kPa. The rock mass response to the pressure drop was very limited until the pressure was lowered to approximately 200 kPa (the atmospheric pressure is not included in the given pressure values). Large displacements and a high acoustic emission hit frequency were then measured in the open hole. After the de-pressurization of the confined hole, the heaters were left on for approximately one week

  17. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Johansson, Aasa [SWECO, Stockholm (Sweden)

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours.

  18. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    International Nuclear Information System (INIS)

    Andersson, Christer; Johansson, Aasa

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours

  19. Tunnel - history of

    International Nuclear Information System (INIS)

    1998-11-01

    This book introduces history of tunnel in ancient times, the middle ages and modern times, survey of tunnel and classification of bedrock like environment survey of position, survey of the ground, design of tunnel on basic thing of the design, and design of tunnel of bedrock, analysis of stability of tunnel and application of the data, construction of tunnel like lattice girder and steel fiber reinforced shot crete, and maintenance control and repair of tunnel.

  20. Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies

    Directory of Open Access Journals (Sweden)

    Kairong Hong

    2017-12-01

    Full Text Available In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels—the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel—and issues related to these great strait-crossing tunnels that need further study are proposed. Keywords: Underwater tunnel, Strait-crossing tunnel, Shield-bored tunnel, Immersed tunnel, Drill and blast

  1. Use of site specific data from Aespoe - preliminary results from the on-going safety analysis SR 97

    International Nuclear Information System (INIS)

    Stroem, A.; Selroos, J.O.; Andersson, Johan

    1998-01-01

    This paper discusses an on-going safety assessment study of SKB as well as the use of field data from Aespoe for obtaining input parameters for flow and radionuclide transport modelling in the geosphere. In the on-going Safety Assessment study SR 97, three individual sites in Sweden are used for exemplifying site specific conditions on overall repository performance. Thus, models capable of reproducing site specific characteristics are utilised. This is primarily obtained by implementing the geologic structural models in suitable conceptual models for groundwater flow on both regional and local scales. The models for flow incorporate observed and/or inferred water conducting features as well as other site-specific characteristics necessary for realistic descriptions of flow at the sites. The flow modelling thus aims at realism; the results obtained for present day conditions should not in any serious aspect conflict with observations at the site. Agreement between observed and modelled entities provides confidence in that a sound understanding of the site is obtained. Aespoe is one of the three sites providing site-specific conditions in SR 97. Transport is subsequently modelled using a stream tube approach where the 'travel times', for non-sorbing species, and discharge locations of a set of one-dimensional stream tubes are obtained from particle tracking in the flow model. The resulting distribution of 'travel times' in a single model realisation reflects the spatial variability and spatial extent of the repository, whereas the ensemble travel time distribution (over several realisations) for a given canister location reflects the uncertainty in travel time. The actual transport paths used in the transport modelling are thus dependent on site specific information such as e.g. existence of water conductive features. Other input parameters to the transport model are based on more generic and/or conservative arguments. However, the goal in a safety assessment

  2. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  3. Monitoring pilot projects on bored tunnelling : The Second Heinenoord Tunnel and the Botlek Rail Tunnel

    NARCIS (Netherlands)

    Bakker, K.J.; De Boer, F.; Admiraal, J.B.M.; Van Jaarsveld, E.P.

    1999-01-01

    Two pilot projects for bored tunnelling in soft soil have been undertaken in the Netherlands. The monitoring was commissioned under the authority of the Centre for Underground Construction (COB). A description of the research related to the Second Heinenoord Tunnel and the Botlek Rail Tunnel will be

  4. Analysis of rock stress and rock stress measurements with application to Aespoe HRL

    International Nuclear Information System (INIS)

    Lundholm, Beatrice

    2000-11-01

    The process of choosing a site for a nuclear waste repository means that many aspects have to be taken into consideration. One of these is that the repository has to be mechanically stable for a long time. The mechanical stability of the rock is very difficult to determine. One of several factors, which determine the mechanical stability, is the virgin state of stress. The thesis project consists of two parts. In the first part the state of stress at Aespoe Hard Rock Laboratory had to be defined. This was done based on earlier rock stress measurements conducted during the years 1988 to 1997. Two different measurement techniques have been used, hydraulic fracturing and overcoring. During the overcoring two types of cells have been used, CSIRO HI-cell and a cell developed by the Swedish State Power Board (SSPB). In the second part of the project, investigation of the correlation between the stress and geological structures are made using numerical modelling tools such as FLAC, UDEC and 3DEC. The rock stress measurements using the hydraulic fracturing gave orientations of the horizontal stress that coincide with earlier hydraulic fracturing measurements conducted in Scandinavia. The magnitudes of rock stresses are slightly lower than the earlier reported stress magnitudes for the Scandinavian part of the earth crust. The rock stresses obtained from the overcoring resulted in higher stresses than what was predicted by the hydraulic fracturing measurements. However, the orientation of the maximum horizontal stresses coincides well between the two techniques. The orientation is also more or less constant with respect to increasing depth. The state of stress at Aespoe is defined by using the results from the hydraulic fracturing and the measurements conducted by SSPB-cell. The measurements from the SSPB-cell are used since these have a Poisson's ratio that corresponds well with the uniaxial tests of rock samples and since the measurements have been done at a distance from

  5. Tunnel magnetoresistance in asymmetric double-barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Useinov, N.Kh.; Petukhov, D.A.; Tagirov, L.R.

    2015-01-01

    The spin-polarized tunnel conductance and tunnel magnetoresistance (TMR) through a planar asymmetric double-barrier magnetic tunnel junction (DBMTJ) have been calculated using quasi-classical model. In DBMTJ nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic electrodes. The transmission coefficients of an electron to pass through the barriers have been calculated in terms of quantum mechanics. The dependencies of tunnel conductance and TMR on the applied voltage have been calculated in case of non-resonant transmission. Estimated in the framework of our model, the difference between the spin-channels conductances at low voltages was found relatively large. This gives rise to very high magnitude of TMR. - Highlights: • The spin-polarized conductance through the junction is calculated. • Dependencies of the tunnel conductance vs applied bias are shown. • Bias voltage dependence of tunnel magnetoresistance for the structure is shown

  6. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  7. Variability in ACL tunnel placement: observational clinical study of surgeon ACL tunnel variability.

    Science.gov (United States)

    Wolf, Brian R; Ramme, Austin J; Wright, Rick W; Brophy, Robert H; McCarty, Eric C; Vidal, Armando R; Parker, Richard D; Andrish, Jack T; Amendola, Annunziato

    2013-06-01

    Multicenter and multisurgeon cohort studies on anterior cruciate ligament (ACL) reconstruction are becoming more common. Minimal information exists on intersurgeon and intrasurgeon variability in ACL tunnel placement. Purpose/ The purpose of this study was to analyze intersurgeon and intrasurgeon variability in ACL tunnel placement in a series of The Multicenter Orthopaedic Outcomes Network (MOON) ACL reconstruction patients and in a clinical cohort of ACL reconstruction patients. The hypothesis was that there would be minimal variability between surgeons in ACL tunnel placement. Cross-sectional study; Level of evidence, 3. Seventy-eight patients who underwent ACL reconstruction by 8 surgeons had postoperative imaging with computed tomography, and ACL tunnel location and angulation were analyzed using 3-dimensional surface processing and measurement. Intersurgeon and intrasurgeon variability in ACL tunnel placement was analyzed. For intersurgeon variability, the range in mean ACL femoral tunnel depth between surgeons was 22%. For femoral tunnel height, there was a 19% range. Tibial tunnel location from anterior to posterior on the plateau had a 16% range in mean results. There was only a small range of 4% for mean tibial tunnel location from the medial to lateral dimension. For intrasurgeon variability, femoral tunnel depth demonstrated the largest ranges, and tibial tunnel location from medial to lateral on the plateau demonstrated the least variability. Overall, surgeons were relatively consistent within their own cases. Using applied measurement criteria, 85% of femoral tunnels and 90% of tibial tunnels fell within applied literature-based guidelines. Ninety-one percent of the axes of the femoral tunnels fell within the boundaries of the femoral footprint. The data demonstrate that surgeons performing ACL reconstructions are relatively consistent between each other. There is, however, variability of average tunnel placement up to 22% of mean condylar depth

  8. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  9. Tests to determine water uptake behaviour of tunnel backfill

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David (Atomic Energy of Canada Limited (AECL) (Canada)); Anttila, S.; Viitanen, M. (Poeyry InfRa Oy (Finland)); Keto, Paula (Saanio and Riekkola Oy, Helsinki (Finland))

    2008-12-15

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it

  10. Tests to determine water uptake behaviour of tunnel backfill

    International Nuclear Information System (INIS)

    Dixon, David; Anttila, S.; Viitanen, M.; Keto, Paula

    2008-12-01

    A series of 27 large-scale tests have been completed at the 420 level of SKB's Aespoe Hard Rock Laboratory. These tests have examined the influence of natural Aespoe fracture zone water on the movement of water into and through assemblies of Friedland clay blocks and bentonite pellets/ granules. These tests have established the manner in which groundwater may influence backfill and backfilling operations at the repository-scale. Tests have established that it is critical to provide a clay block backfilling system with lateral support and confinement as quickly as possible following block installation. Exposure of the blocks to even low rates of water ingress can result in rapid loss of block cohesion and subsequent slumping of the block materials into the spaces between the blocks and the tunnel walls. Installation of granular or pelletized bentonite clay between the blocks and the walls resulted in a system that was generally stable and not prone to unacceptable short-term strains as water entered. Inflow of water into a backfilled volume does not result in uniform wetting of the pellet/granule filled volume and as a result there is the potential for rapid movement of water from the point(s) of ingress to the downstream face of the backfill. Depending on the inflow rate and flow path(s) developed this flow can be via discrete flow channels that are essentially non-erosive or else they can develop highly erosive flow paths through the clay block materials. Erosion generally tends to be highest in the period immediately following first water exit from the backfill and then decreases as preferential flow paths develop to channel the water directly through the backfill, bypassing large volumes of unsaturated backfill. At the scale examined in this study inflow rates of 0.1 l/min or less do not tend to be immediately problematic when the source is 0.6 m distant from the downstream face of the backfill. At larger scales or longer distances from the working face, it is

  11. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Casanova, Fèlix; Hueso, Luis E.

    2016-01-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al 2 O 3 /NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  12. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Bedoya-Pinto, Amilcar [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Sun, Xiangnan [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); National Center for Nanoscience and Technology, 100190 Beijing (China); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  13. Carpal Tunnel Syndrome

    Science.gov (United States)

    ... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...

  14. Theory of superconducting tunneling without the tunneling Hamiltonian

    International Nuclear Information System (INIS)

    Arnold, G.B.

    1987-01-01

    When a tunneling barrier is nearly transparent, the standard tunneling (or transfer) Hamiltonian approximation fails. The author describes the theory which is necessary for calculating the tunneling current in these cases, and illustrate it by comparing theory and experiment on superconductor/insulator/superconductor (SIS) junctions have ultra-thin tunnel barriers. This theory accurately explains the subgap structure which appears in the dynamical resistance of such SIS junctions, including many observed details which no previous theory has reproduced. The expression for the current through an SIS junction with an ultrathin barrier is given by I(t) = Re{Sigma/sub n/ J/sub n/ (omega/sub o/)e/sup in omega/o/sup t/} where omega/sub o/ = 2eV/h is the Josephson frequency, V is the bias voltage, and the J/sub n/ are voltage dependent coefficients, one for each positive or negative integer, n, and n=0. The relative sign of the terms involving cos(n omega/sub o/t) and sin(n omega/sub o/t) agrees with experiment, in contrast to previous theories of Josephson tunneling

  15. Tunneling works. Tunnel koji

    Energy Technology Data Exchange (ETDEWEB)

    Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)

    1991-10-25

    A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.

  16. Tunneling junction as an open system. Normal tunneling

    International Nuclear Information System (INIS)

    Ono, Y.

    1978-01-01

    The method of the tunneling Hamiltonian is reformulated in the case of normal tunneling by introducing two independent particle baths. Due to the baths, it becomes possible to realize a final stationary state where the electron numbers of the two electrodes in the tunneling system are maintained constant and where there exists a stationary current. The effect of the bath-system couplings on the current-voltage characteristics of the junction is discussed in relation to the usual expression of the current as a function of voltage. (Auth.)

  17. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Emren, A.T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry

    1999-02-01

    of the groundwater appears to be mostly a consequence of chemical reactions between water and fracture filling minerals. This has been studied in simulations where rain has been allowed to enter a fracture. Although there are some differences, the results found in this modelling generally are similar to the observed values. The deviations suggest that the fracture filling minerals alone are not enough to explain the observed groundwater chemistry. This should not be expected, since the old waters found hundreds of meters below the surface have been able to react with other mineral sets as well. In the CRACKER simulations it has been found that the simulated waters are similar to observations with respect to redox properties. The Aespoe groundwaters have iron concentrations which are low compared to those found in other deep Swedish groundwaters. By inhibiting reactions in the simulations, it has been found unlikely that the Fe(II) - Fe(III) redox couple is the main controller of the redox properties in Aespoe groundwaters. Rather, it appears that the redox properties can be maintained even if reactions with this couple are inhibited. According to the simulation results, reactions in which dissolved hydrogen, carbonates and methane are participating are important. This does not mean that iron species and minerals are not involved in redox processes. The simulation methods have been applied to possible future events and processes. As examples of such, the effects of elevated temperature on the groundwater properties have been investigated as well as a prediction on possible effects of Baltic Sea water intrusion 58 refs, figs

  18. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Emren, A.T.

    1999-02-01

    of the groundwater appears to be mostly a consequence of chemical reactions between water and fracture filling minerals. This has been studied in simulations where rain has been allowed to enter a fracture. Although there are some differences, the results found in this modelling generally are similar to the observed values. The deviations suggest that the fracture filling minerals alone are not enough to explain the observed groundwater chemistry. This should not be expected, since the old waters found hundreds of meters below the surface have been able to react with other mineral sets as well. In the CRACKER simulations it has been found that the simulated waters are similar to observations with respect to redox properties. The Aespoe groundwaters have iron concentrations which are low compared to those found in other deep Swedish groundwaters. By inhibiting reactions in the simulations, it has been found unlikely that the Fe(II) - Fe(III) redox couple is the main controller of the redox properties in Aespoe groundwaters. Rather, it appears that the redox properties can be maintained even if reactions with this couple are inhibited. According to the simulation results, reactions in which dissolved hydrogen, carbonates and methane are participating are important. This does not mean that iron species and minerals are not involved in redox processes. The simulation methods have been applied to possible future events and processes. As examples of such, the effects of elevated temperature on the groundwater properties have been investigated as well as a prediction on possible effects of Baltic Sea water intrusion

  19. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    International Nuclear Information System (INIS)

    Teeny, Nicolas

    2016-01-01

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  20. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Teeny, Nicolas

    2016-10-18

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  1. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    International Nuclear Information System (INIS)

    Wanne, Toivo; Johansson, Erik; Potyondy, David

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  2. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wanne, Toivo; Johansson, Erik; Potyondy, David [Saanio and Riekkola Oy, Helsinki (Finland)

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  3. Quantum theory of tunneling

    CERN Document Server

    Razavy, Mohsen

    2014-01-01

    In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...

  4. Palaeohydrological implications in the Baltic area and its relation to the groundwater at Aespoe, south-eastern Sweden - A literature study

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, B [Geokema AB, Lidingoe (Sweden)

    1995-03-01

    A literature study of different groundwaters in the circum Baltic region is presented in this work. The study is mainly focused on the isotopic signatures observed in different groundwaters in Sweden and Finland. Several saline groundwaters in the Baltic region at depth of 150 to 500m depth show stable ({delta}D, {delta}{sup 13}C, {delta}{sup 18}O) and radiogenic ({delta}{sup 87}Sr) isotope assembly which is suggestive of a marine origin. However, a discrepancy is sometimes observed between the stable as well as radiogenic isotopes of the intermediate groundwater, which suggest a mixture of fossil marine water and a post-glacial runoff of melt water. In order to explain this phenomenon, the initial setting in {delta}{sup 18}O may have been depleted due to large input of high latitude marine water or cold melt waters. A solution to the contradiction between the strontium ({delta}{sup 87}Sr) and stable isotope ({delta}D, {delta}{sup 13}C, {delta}{sup 18}O) signatures of the groundwater and of the calcite fracture fillings at Aespoe and other places is attained, if it is assumed that the strontium in Baltic Sea water has undergone a significant decrease in {delta}{sup 87}Sr since the last glaciation. A scenario can be constructed to suggest that the Baltic Sea during the initial stage of the Litorina sea (8000 to 5000 Y B.P.) contained strontium with much larger {delta}{sup 87}Sr values. Another explanation for the positive {delta}{sup 87}Sr values may be due to water/rock interaction between the groundwater and the abundant fracture clay minerals, which are observed at Aespoe. Typically most of the saline groundwaters occur both in Sweden and Finland below the highest marine shore line during the Holocene. Almost all inland groundwaters show a totally different pattern which is typically non marine, meteoric in origin. (Abstract Truncated)

  5. Spin-dependent tunnelling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Tsymbal, Evgeny Y; Mryasov, Oleg N; LeClair, Patrick R

    2003-01-01

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)

  6. Tunnel fire dynamics

    CERN Document Server

    Ingason, Haukur; Lönnermark, Anders

    2015-01-01

    This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.

  7. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  8. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  9. Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Naaman, O.; Teizer, W.; Dynes, R. C.

    2001-01-01

    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory

  10. The ISI Tunnel

    Science.gov (United States)

    1993-10-01

    DP /etc/tunnelvisa p zephyr dark -star TCP /etc/tunnelvisa p zephyr dak’star ICMP /etc/tunnelvisa p zephyr quark MDP /etc/tunnelvisa p zephyr quark ...drax-net-yp 128.9.32.2 1 route add quark -net-yp 128.9.32.3 1 route add vlsi-net-yp 128.9.32.4 1 route add darkstar-net-yp 128.9.32.3 1 route add rocky...TCP /etc/tunnel-visa p zephyr quark ICMP /etc/tunnel-visa p zephyr drax tTI)P /etc/tunnel-visa p zephyr drax TCP /etc/tunnel_visa p zephyr drax ICMP

  11. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur; Useinov, Niazbeck Kh H; Tagirov, Lenar R.; Kosel, Jü rgen

    2011-01-01

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can

  12. Evaluation of modelling of the TRUE-1 radially converging and dipole tests with conservative tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4C and 4D

    International Nuclear Information System (INIS)

    Elert, M.

    1999-05-01

    The 'Aespoe task force on modelling of groundwater flow and transport of solutes' is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4C and 4D is evaluated, which comprised predictive modelling of the radially converging tracer tests and dipole tracer tests performed within the TRUE-1 tests using non-sorbing tracers. The tests were performed between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). These tests are to a great extent preparatory steps for the subsequent tests with sorbing radioactive tracers. In Tasks 4E and 4F of the Aespoe Modelling Task Force predictive modelling of the sorbing tracer tests is performed. Eight modelling teams representing seven organisations have performed predictive modelling using different modelling approaches and models. The modelling groups were initially given data from the site characterisation and data on the experimental set-up of the tracer tests. Based on this information model predictions were performed of drawdown, tracer mass recovery and tracer breakthrough. The performed predictions shows that the concept of Feature A as a singular well-connected feature with limited connectivity to its surroundings is quite adequate for predictions of drawdown in boreholes and conservative tracer breakthrough. Reasonable estimates were obtained using relatively simple models. However, more elaborate models with calibration or conditioning of transmissivities and transport apertures are required for more accurate predictions. The general flow and transport processes are well understood, but the methodology to derive the

  13. Evaluation of modelling of the TRUE-1 radially converging and dipole tests with conservative tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4C and 4D

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-05-01

    The `Aespoe task force on modelling of groundwater flow and transport of solutes` is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4C and 4D is evaluated, which comprised predictive modelling of the radially converging tracer tests and dipole tracer tests performed within the TRUE-1 tests using non-sorbing tracers. The tests were performed between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). These tests are to a great extent preparatory steps for the subsequent tests with sorbing radioactive tracers. In Tasks 4E and 4F of the Aespoe Modelling Task Force predictive modelling of the sorbing tracer tests is performed. Eight modelling teams representing seven organisations have performed predictive modelling using different modelling approaches and models. The modelling groups were initially given data from the site characterisation and data on the experimental set-up of the tracer tests. Based on this information model predictions were performed of drawdown, tracer mass recovery and tracer breakthrough. The performed predictions shows that the concept of Feature A as a singular well-connected feature with limited connectivity to its surroundings is quite adequate for predictions of drawdown in boreholes and conservative tracer breakthrough. Reasonable estimates were obtained using relatively simple models. However, more elaborate models with calibration or conditioning of transmissivities and transport apertures are required for more accurate predictions. The general flow and transport processes are well understood, but the methodology to derive the

  14. Tunneling through landsliding zone; Jisuberi chitainai no tunnel seko

    Energy Technology Data Exchange (ETDEWEB)

    Konbu, A; Hatabu, K; Kano, T [Tekken Corp., Tokyo (Japan)

    1994-08-01

    At the new tunnel construction site of the Shirakata tunnel on the Obama line in Yamaguchi Prefecture, a landsliding occurred at about 60 meters to the upper portion obliquely to the right hand side of the shaft when the excavation progressed to about 10 meters from the starting side. The landslide caused displacement at the shaft opening and change in the supports. As a result of the re-investigation, it was confirmed that the slide face went through the tunnel cross section. The measures taken were removal of the upper soil and an adoption of the all ground fastening (AGF) method (injection type long tip fastening method) as an auxiliary construction to stop loosening of the natural ground associated with the tunnel excavation. The result was a completion of tunneling the landsliding zone without a problem. This paper reports the AGF method adopted in the above construction, together with the construction works and natural ground conditions. The AGF method is about the same as the pipe roof method with regard to the natural ground accepting mechanism and the materials used. The difference is building an improved body in a limited area in the natural ground around the steel pipes by injecting the fixing material. The use of this method caused no problems in subsidence and displacement in the surrounding ground, and completed the tunneling construction without an unusual event. 1 ref., 7 figs., 2 tabs.

  15. Development of the tunneling junction simulation environment for scanning tunneling microscope evaluation

    International Nuclear Information System (INIS)

    Gajewski, Krzysztof; Piasecki, Tomasz; Kopiec, Daniel; Gotszalk, Teodor

    2017-01-01

    Proper configuration of scanning tunneling microscope electronics plays an important role in the atomic scale resolution surface imaging. Device evaluation in the tunneling contact between scanning tip and sample may be prone to the surface quality or mechanical disturbances. Thus the use of tunneling junction simulator makes electronics testing more reliable and increases its repeatability. Here, we present the theoretical background enabling the proper selection of electronic components circuitry used as a tunneling junction simulator. We also show how to simulate mechanics related to the piezoelectric scanner, which is applied in real experiments. Practical use of the proposed simulator and its application in metrological characterization of the developed scanning tunneling microscope is also shown. (paper)

  16. Canister positioning. Influence of fracture system on deposition hole stability

    International Nuclear Information System (INIS)

    Hoekmark, Harald

    2003-11-01

    The study concerns the mechanical behaviour of rock surrounding tunnels and deposition holes in a nuclear waste repository. The mechanical effects of tunnel excavation and deposition hole excavation are investigated by use of a tunnel scale numerical model representing a part of a KBS-3 type repository. The excavation geometry, the initial pre-mining state of stress, and the geometrical features of the fracture system are defined according to conditions that prevail in the TBM tunnel rock mass in Aespoe HRL. Comparisons are made between results obtained without consideration of fractures and results obtained with inclusion of the fracture system. The focus is on the region around the intersection of a tunnel and a deposition hole. A general conclusion is that a fracture system of the type found in the TBM rock mass does not have a decisive influence on the stability of the deposition holes. To estimate the expected extent of spalling, information about other conditions, e.g. the orientation of the initial stresses and the strength properties of the intact rock, is more important than detailed information about the fracture system

  17. Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier

    Science.gov (United States)

    Krishna Narayananellore, Sai; Doko, Naoki; Matsuo, Norihiro; Saito, Hidekazu; Yuasa, Shinji

    2018-04-01

    We fabricated Fe/LiF/Fe magnetic tunnel junctions (MTJs) by molecular beam epitaxy on a MgO(001) substrate, where LiF is an insulating tunnel barrier with the same crystal structure as MgO (rock-salt type). Crystallographical studies such as transmission electron microscopy and nanobeam electron diffraction observations revealed that the LiF tunnel barrier is single-crystalline and has a LiF(001)[100] ∥ bottom Fe(001)[110] crystal orientation, which is constructed in the same manner as MgO(001) on Fe(001). Also, the in-plane lattice mismatch between the LiF tunnel barrier and the Fe bottom electrode was estimated to be small (about 0.5%). Despite such advantages for the tunnel barrier of the MTJ, the observed tunnel magnetoresistance (MR) ratio was low (˜6% at 20 K) and showed a significant decrease with increasing temperature (˜1% at room temperature). The results imply that indirect tunneling and/or thermally excited carriers in the LiF tunnel barrier, in which the current basically is not spin-polarized, play a major role in electrical transport in the MTJ.

  18. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  19. Quantum tunneling time

    International Nuclear Information System (INIS)

    Wang, Z.S.; Lai, C.H.; Oh, C.H.; Kwek, L.C.

    2004-01-01

    We present a calculation of quantum tunneling time based on the transition duration of wave peak from one side of a barrier to the other. In our formulation, the tunneling time comprises a real and an imaginary part. The real part is an extension of the phase tunneling time with quantum corrections whereas the imaginary time is associated with energy derivatives of the probability amplitudes

  20. Measuring fire size in tunnels

    International Nuclear Information System (INIS)

    Guo, Xiaoping; Zhang, Qihui

    2013-01-01

    A new measure of fire size Q′ has been introduced in longitudinally ventilated tunnel as the ratio of flame height to the height of tunnel. The analysis in this article has shown that Q′ controls both the critical velocity and the maximum ceiling temperature in the tunnel. Before the fire flame reaches tunnel ceiling (Q′ 1.0), Fr approaches a constant value. This is also a well-known phenomenon in large tunnel fires. Tunnel ceiling temperature shows the opposite trend. Before the fire flame reaches the ceiling, it increases very slowly with the fire size. Once the flame has hit the ceiling of tunnel, temperature rises rapidly with Q′. The good agreement between the current prediction and three different sets of experimental data has demonstrated that the theory has correctly modelled the relation among the heat release rate of fire, ventilation flow and the height of tunnel. From design point of view, the theoretical maximum of critical velocity for a given tunnel can help to prevent oversized ventilation system. -- Highlights: • Fire sizing is an important safety measure in tunnel design. • New measure of fire size a function of HRR of fire, tunnel height and ventilation. • The measure can identify large and small fires. • The characteristics of different fire are consistent with observation in real fires

  1. Microwave-induced co-tunneling in single electron tunneling transistors

    DEFF Research Database (Denmark)

    Ejrnaes, M.; Savolainen, M.; Manscher, M.

    2002-01-01

    on rubber bellows. Cross-talk was minimized by using individual coaxial lines between the sample and the room temperature electronics: The co-tunneling experiments were performed at zero DC bias current by measuring the voltage response to a very small amplitude 2 Hz current modulation with the gate voltage......The influence of microwaves on the co-tunneling in single electron tunneling transistors has been investigated as function of frequency and power in the temperature range from 150 to 500 mK. All 20 low frequency connections and the RF line were filtered, and the whole cryostat was suspended...

  2. Evaluation of modelling of the TRUE-1 radially converging tests with sorbing tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4E and 4F

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M.; Svensson, Haakan [Kemakta Konsult AB, Stockholm (Sweden)

    2001-05-01

    The Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4E and 4F is evaluated, which comprised predictive modelling of the tracer tests (STT-1, STT-1b and STT-2) performed within the TRUE-1 project using sorbing and non-sorbing tracers. The tests were made between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). Nine modelling teams representing eight organisations have performed predictive modelling of the tracer tests using different modelling approaches and models. The modelling groups were initially given data from the site characterisation, data from preliminary tracer tests performed with non-sorbing tracers and data on the experimental set-up of the sorbing tracer tests. Based on this information, model predictions were made of drawdown, tracer mass recovery and tracer breakthrough. For the predictions of the STT-1b and STT-2 tests results from previous tracer tests with sorbing tracer were also available. The predictions of the sorbing tracer breakthrough in the initial tracer test (STT-1) generally underestimated the breakthrough time, suggesting the need to include additional processes and evaluate the application of the laboratory data. As a result of model calibration and modification the predictions were considerably improved for the latter tracer tests (STT-1b and STT-2). Task 4E and 4F have proved to be very valuable in increasing the understanding of non-sorbing tracer transport in fractured rock. There is a general consensus on the major processes responsible for

  3. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Jiang Zhi; Zhuang Yi-Qi; Li Cong; Wang Ping; Liu Yu-Qi

    2016-01-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (D it ) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. (paper)

  4. Thermovoltages in vacuum tunneling investigated by scanning tunneling microscopy

    OpenAIRE

    Hoffmann, D. H.; Rettenberger, Armin; Grand, Jean Yves; Läuger, K.; Leiderer, Paul; Dransfeld, Klaus; Möller, Rolf

    1995-01-01

    By heating the tunneling tip of a scanning tunneling microscope the thermoelectric properties of a variable vacuum barrier have been investigated. The lateral variation of the observed thermovoltage will be discussed for polycrystalline gold, stepped surfaces of silver, as well as for copper islands on silver.

  5. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  6. About tunnelling times

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.

    1991-08-01

    In this paper, first we critically analyse the main theoretical definitions and calculations of the sub-barrier tunnelling and reflection times. Secondly, we propose a new, physically sensible definition of such durations, on the basis of a recent general formalism (already tested for other types of quantum collisions). At last, we discuss some results regarding temporal evolution of the tunnelling processes, and in particular the ''particle'' speed during tunnelling. (author). 36 refs, 1 fig

  7. Tunneling current between graphene layers

    OpenAIRE

    Poklonski, Nikolai A.; Siahlo, Andrei I.; Vyrko, Sergey A.; Popov, Andrey M.; Lozovik, Yurii E.

    2013-01-01

    The physical model that allows to calculate the values of the tunneling current be-tween graphene layers is proposed. The tunneling current according to the pro-posed model is proportional to the area of tunneling transition. The calculated value of tunneling conductivity is in qualitative agreement with experimental data.

  8. Project JADE. Geo scientific studies

    International Nuclear Information System (INIS)

    Munier, R.; Follin, S.; Rhen, I.; Gustafson, Gunnar; Pusch, R.

    2001-08-01

    In the present report an evaluation of the geological impact on various deposition methods is presented. The studied methods are KBS-3 V (vertical deposition), KBS-3 H (horizontal deposition) and MLH (medium long holes).The investigation has been subdivided into three separate studies concerning rock mechanics, hydrogeology and structural geology. These are included as appendices. Various methods have been used for the analyses for example DFN-models (Discrete Fracture Networks), DFN, FEM (Finite Element Method), BEM (Boundary Element Method), DEM (Discrete Element Method) and BayMar (Bayesian-Markov). The prerequisites used for these investigations are based on earlier investigations of the TBM tunnel at the Aespoe Hard Rock Laboratory. As a consequence thereof, the results presented here are specific to the locale but some conclusions of general character still can be made. In short the results of the investigations can be concluded as follows: If the rock mass exhibits a hydraulic anisotropy, the level of acceptance is strongly correlated to the direction of the deposition tunnels (applies to MLH and KBS-3 H). Differences between the methods concerning mechanical stability have been identified. The final choice of method will depend on the possibility to place the deposition tunnels in a favorable orientation. However, engineering can solve the problems associated to instability in the tunnels. KBS-3 (bored deposition tunnels) is recommended for rock masses in which the stress field has a moderate variation in magnitude and orientation. KBS-3 V (drilled and blasted deposition tunnels) and MLH are considered more robust and therefore recommended for rock masses in which the stress field has a large variation in magnitude or orientation. The impact of the fracture array differs for the studied methods. The level of acceptance differs but the differences are considered to be of no practical importance. For the studied rock mass (Aespoe), KBS-3 is recommended. MLH

  9. Preliminary assessment of potential underground stability (wedge and spalling) at Forsmark, Simpevarp and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Derek [Univ. of Alberta, Edmonton (Canada). Geotechnical Engineering

    2005-12-15

    In SKB's Underground Design Premises the objective in the early design phase is to estimate if there is sufficient space for the repository at a site. One of the conditions that could limit the space available is stability of the underground openings, i.e., deposition tunnels and deposition boreholes. The purpose of this report is to provide a preliminary assessment of the potential for wedge instability and spalling that may be encountered at the Forsmark, Simpevarp and Laxemar sites based on information from the site investigations program up to July 30, 2004. The rock mass spalling strength was defined using the in-situ results from SKB's Aespoe Pillar Stability Experiment and AECL's Mine-by Experiment. These experiments suggest that the rock mass spalling strength for crystalline rocks can be estimated as 0.57 of the mean laboratory uniaxial compressive strength. A probability-based methodology utilizing this in-situ rock mass spalling strength has been developed for assessing the risk for spalling in a repository at the Forsmark, Simpevarp and Laxemar sites. The in-situ stresses and the uniaxial compressive strength data from these sites were used as the bases for the analyses. Preliminary findings from all sites suggest that, generally, the risk for spalling increases as the depth of the repository increases, simply because the stress magnitudes increase with depth. The depth at which the risk for spalling is significant, depends on the individual sites which are discussed below. The greatest uncertainty in the spalling analyses for Forsmark is related to the uncertainty in the horizontal stress magnitudes and associated stress gradients with depth. The confidence in these analyses can only be increased by increasing the confidence in the stress and geology model for the site. From the analyses completed it appears that spalling in the deposition tunnels can be controlled by orienting the tunnels approximately parallel to the maximum horizontal

  10. Mild toxic anterior segment syndrome mimicking delayed onset toxic anterior segment syndrome after cataract surgery

    Directory of Open Access Journals (Sweden)

    Su-Na Lee

    2014-01-01

    Full Text Available Toxic anterior segment syndrome (TASS is an acute sterile postoperative anterior segment inflammation that may occur after anterior segment surgery. I report herein a case that developed mild TASS in one eye after bilateral uneventful cataract surgery, which was masked during early postoperative period under steroid eye drop and mimicking delayed onset TASS after switching to weaker steroid eye drop.

  11. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  12. Drill and blast tunnelling; Konvensjonell drift av tunneler

    Energy Technology Data Exchange (ETDEWEB)

    Roenn, Paal-Egil

    1997-12-31

    This thesis treats drill and blast tunnelling. The rapid technological advance necessitates revised and updated design criteria, quality requirements and quality control. In situ blast experiments were carried out in order to test new methods and improve the basis for calculation and design. The main topics of the experiments were (1) longer rounds and increased drillhole diameter, (2) emulsion slurry as explosives in tunnelling, and (3) electronic detonators in contour blasting. The experiments show that it is technically feasible to blast rounds of up to 8.6 m length. Using current technology, the economical optimum round length is substantially shorter. Dust, low visibility, noise and toxic fumes are occupational environmental strains for the tunnel workers. Several of the environmental factors are strongly influenced by the type of explosives used. For example, emulsion slurry resulted in 4 to 5 times better visibility than Anolit and the concentration of respirable dust and total dust was reduced by 30-50 %. Electronic detonators were tested and found to give a higher percentage of remaining drillholes in the contour than Nonel detonators. The thesis includes a chapter on economic design of hydropower tunnels. 42 refs., 83 figs., 45 tabs.

  13. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.

    2011-08-24

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  14. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.; Kosel, Jü rgen; Useinov, N. Kh.; Tagirov, L. R.

    2011-01-01

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  15. O2 depletion in granitic media. The Rex project

    International Nuclear Information System (INIS)

    Puigdomenech, I.; Ambrosi, J.P.; Eisenlohr, L.; Lartigue, J.E.; Banwart, S.A.; Bateman, K.; Milodowski, A.E.; West, J.M.; Griffault, L.; Gustafsson, E.; Hama, K.; Yoshida, H.; Michaud, V.; Trotignon, L.; Rivas Perez, J.; Tullborg, E.L.

    2001-02-01

    The redox conditions are of consequence for the performance of nuclear repositories. The presence of molecular oxygen (O 2 ) would affect the corrosion of canisters and the migration of radionuclides eventually released from a damaged canister. The rate of disappearance of O 2 left in voids at repository closure is therefore an important information when evaluating repository designs. The REX project (Redox Experiment in Detailed Scale) has been carried out within the frame of SKB Aespoe Hard Rock Laboratory in Sweden. The aim was to determine how O 2 trapped in the closed repository would react with the rock minerals in the tunnel and deposition holes and in the water conducting fractures. The REX project consisted of the following sections: Field investigations at Aespoe: Microbial O 2 consumption at several sites in the Aespoe tunnel. The in situ experiment: Injection of oxygen and monitoring of O 2 uptake in a confined fracture surface. The Replica Experiment: a laboratory study using the other half of the fracture surface used for the in situ experiment. Laboratory experiments: needed to support the interpretation of the field and replica experiments. Conducted with groundwaters, bacteria, and mineral samples from Aespoe. The results from the in-situ experiment were confirmed by those of the replica experiment performed in the CEA laboratory in France. Both were concordant in showing time scales for O 2 uptake in the order of days. The agreement was remarkable when taking into account the differences in experimental conditions. For example, different microbial processes took place in the two experiments. Laboratory studies with rock samples demonstrated that microbial activity induced increased chemical weathering, with the formation of clay minerals. Rates of O 2 uptake by fracture filling minerals were determined under laboratory conditions. These rates were faster than those reported in literature studies of pure mineral systems, and supported the fast O 2

  16. Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode

    OpenAIRE

    Saffarzadeh, Alireza; Daqiq, Reza

    2009-01-01

    We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...

  17. Aespoe Task Force on modelling of groundwater flow and transport of solutes. Review of Tasks 6b, 6b and 6b

    Energy Technology Data Exchange (ETDEWEB)

    Hodgkinson, David [Quintessa, Henley-on-Thames (United Kingdom); Black, John [In Situ Solutions, East Bridgford (United Kingdom)

    2005-03-01

    This report forms part of an independent review of the specifications, execution and results of Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, which is seeking to provide a bridge between site characterization and performance assessment approaches to solute transport in fractured rock. The present report is concerned solely with Tasks 6b, 6b and 6b which relate to the transport of tracers on a 5-metre scale in Feature A at the TRUE-1 site. The task objectives, specifications and individual modelling team results are summarised and reviewed, and an evaluation of the overall exercise is presented. The report concludes with assessments of what has been learnt, the implications for the Task 6 objectives, and some possible future directions.

  18. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    Science.gov (United States)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  19. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    Science.gov (United States)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  20. Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.

    Science.gov (United States)

    Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J

    2015-01-01

    In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.

  1. Challenges in planning and performing the retrieval of the prototype repository at Aespoe HRL- Project management's reflections and practical experiences from field work

    International Nuclear Information System (INIS)

    Grahm, Paer; Hagman, Patrik; Johannesson, Lars-Erik

    2012-01-01

    Document available in extended abstract form only. Since 2001 the Prototype Repository at Aespoe Hard Rock Laboratory has been carried out as a large-scale experimental installation of the KBS-3 Swedish/Finnish concept for final disposal of spent nuclear fuel. The overall objective of the trial 'Prototype Repository' is to test and demonstrate the integrated function of sub-components in a final repository under realistic full-scale conditions. Data from the experiment shall also be compared to results from modelling based on site conditions. Opening of the outer section for the Prototype Repository was recognized as substantial operation. No trial of this size has been made earlier with regard to removal of buffer and backfilling. Experience was available only from retrieval of the buffer in Canister Retrieval Test at Aespoe HRL where samples of the buffer were taken, down to the mid-height of the canister. It was expected that sampling of the buffer in the deposition holes of the Prototype Repository would be very difficult, especially deep down in the holes. No significant experience regarding the breaching of such a concrete plug or removing backfill was available. The lack of experience together with the size of the project made extensive planning essential before the opening and removal could begin. It was decided that SKB (Sweden) and Posiva Oy (Finland) should run the project in a co-operation, where SKB is responsible for managing the project. In addition, a wide international interest was observed and accordingly waste management organisations were invited by SKB and Posiva to be a party to the Retrieval of the Prototype Repository. Six individual project agreements were signed with Andra (France), NUMO (Japan), NDA (United Kingdom), NAGRA (Switzerland), BMWi (Germany) and NWMO (Canada). The planning of the Retrieval of the Prototype Repository (section II) started at the beginning of 2010. The planning phase was successful meaning that the breaching of

  2. Electrical installations of the Channel tunnel; Installations electriques du Tunnel sous la Manche

    Energy Technology Data Exchange (ETDEWEB)

    Kersabiec, G. de [Eurotunnel, Folkestone (United Kingdom)

    2002-08-01

    Like an underground factory, the railway and auxiliary equipments of the Channel tunnel between France and UK, need a reliable and redundant power supply with a high quality maintenance. This article presents: the design criteria of the power distribution systems, the installation itself and the organisation of its exploitation: 1 - transportation system of the Channel tunnel (loads to supply, exploitation imperatives, fundamental criteria); 2 - external power sources (connection to the UK and French grids, values used by the national grids); 3 - exploitation criteria, tunnel design; 4 - description (main UK and French power stations, 25 kV traction network, 21 kV distribution network, tunnels, lighting in railway tunnels, supply of terminals, earthing network); 5 - exploitation; 6 - maintenance and quality. (J.S.)

  3. Heavy-Atom Tunneling Calculations in Thirteen Organic Reactions: Tunneling Contributions are Substantial, and Bell's Formula Closely Approximates Multidimensional Tunneling at ≥250 K.

    Science.gov (United States)

    Doubleday, Charles; Armas, Randy; Walker, Dana; Cosgriff, Christopher V; Greer, Edyta M

    2017-10-09

    Multidimensional tunneling calculations are carried out for 13 reactions, to test the scope of heavy-atom tunneling in organic chemistry, and to check the accuracy of one-dimensional tunneling models. The reactions include pericyclic, cycloaromatization, radical cyclization and ring opening, and S N 2. When compared at the temperatures that give the same effective rate constant of 3×10 -5  s -1 , tunneling accounts for 25-95 % of the rate in 8 of the 13 reactions. Values of transmission coefficients predicted by Bell's formula, κ Bell  , agree well with multidimensional tunneling (canonical variational transition state theory with small curvature tunneling), κ SCT . Mean unsigned deviations of κ Bell vs. κ SCT are 0.08, 0.04, 0.02 at 250, 300 and 400 K. This suggests that κ Bell is a useful first choice for predicting transmission coefficients in heavy-atom tunnelling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  5. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    Science.gov (United States)

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  6. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  7. Breaking through the tranfer tunnel

    CERN Document Server

    Laurent Guiraud

    2001-01-01

    This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.

  8. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    Directory of Open Access Journals (Sweden)

    Jimy Encomendero

    2017-10-01

    Full Text Available For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs, the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  9. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  10. Histological Observation of Regions around Bone Tunnels after Compression of the Bone Tunnel Wall in Ligament Reconstruction

    International Nuclear Information System (INIS)

    Maeda, Shintaro; Ishikawa, Hiroki; Tanigawa, Naoaki; Miyazaki, Kyosuke; Shioda, Seiji

    2012-01-01

    The objectives of this study were to investigate the time-course of influence of compression of bone tunnel wall in ligament reconstruction on tissue around the bone tunnel and to histologically examine the mechanism of preventing the complication of bone tunnel dilation, using rabbit tibia. A model in which the femoral origin of the extensor digitorum longus tendon was cut and inserted into a bone tunnel made proximal to the tibia was prepared in the bilateral hind legs of 20 Japanese white rabbits. In each animal, a tunnel was made using a drill only in the right leg, while an undersized bone tunnel was made by drilling and then dilated by compression using a dilator to the same tunnel size as that in the right leg. Animals were sacrificed at 0, 2, 4, 8 and 12 weeks after surgery (4 animals at each time point). Observation of bone tunnels by X-ray radiography showed osteosclerosis in the 2- and 4-week dilation groups. Osteosclerosis appeared as white lines around the bone tunnel on X-ray radiography. This suggests that dilation promotes callus formation in the bone tunnel wall and prevents the complication of bone tunnel enlargement after ligament reconstruction

  11. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  12. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    International Nuclear Information System (INIS)

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-01-01

    Oxidation of an AlO x insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer

  13. Quantum mechanical tunneling in chemical physics

    CERN Document Server

    Nakamura, Hiroki

    2016-01-01

    Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems. The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical...

  14. Tunneling into quantum wires: regularization of the tunneling Hamiltonian and consistency between free and bosonized fermions

    OpenAIRE

    Filippone, Michele; Brouwer, Piet

    2016-01-01

    Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a delta function in position space. Whereas the leading order contribution to the tunneling current is independent of the way this delta function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the delta function in the tunneling Hamiltonian, one may also obta...

  15. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  16. Influence of quasiparticle multi-tunneling on the energy flow through the superconducting tunnel junction

    International Nuclear Information System (INIS)

    Samedov, V. V.; Tulinov, B. M.

    2011-01-01

    Superconducting tunnel junction (STJ) detector consists of two layers of superconducting material separated by thin insulating barrier. An incident particle produces in superconductor excess nonequilibrium quasiparticles. Each quasiparticle in superconductor should be considered as quantum superposition of electron-like and hole-like excitations. This duality nature of quasiparticle leads to the effect of multi-tunneling. Quasiparticle starts to tunnel back and forth through the insulating barrier. After tunneling from biased electrode quasiparticle loses its energy via phonon emission. Eventually, the energy that equals to the difference in quasiparticle energy between two electrodes is deposited in the signal electrode. Because of the process of multi-tunneling, one quasiparticle can deposit energy more than once. In this work, the theory of branching cascade processes was applied to the process of energy deposition caused by the quasiparticle multi-tunneling. The formulae for the mean value and variance of the energy transferred by one quasiparticle into heat were derived. (authors)

  17. Aespoe Task Force on modelling of groundwater flow and transport of solutes. Review of Tasks 6A, 6B and 6B2

    International Nuclear Information System (INIS)

    Hodgkinson, David; Black, John

    2005-03-01

    This report forms part of an independent review of the specifications, execution and results of Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, which is seeking to provide a bridge between site characterization and performance assessment approaches to solute transport in fractured rock. The present report is concerned solely with Tasks 6b, 6b and 6b which relate to the transport of tracers on a 5-metre scale in Feature A at the TRUE-1 site. The task objectives, specifications and individual modelling team results are summarised and reviewed, and an evaluation of the overall exercise is presented. The report concludes with assessments of what has been learnt, the implications for the Task 6 objectives, and some possible future directions

  18. Enhanced MRI in carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Hayakawa, Katsuhiko; Nakane, Takashi; Kobayashi, Shigeru; Asai, Takahiro; Wada, Kunio; Yoshizawa, Hidezo

    1998-01-01

    In this study, we performed contrast-enhanced MRI in patients with idiopathic carpal tunnel syndrome and examined the morphologic change in the carpal tunnel. In the transverse section of the opening of carpal tunnel where scaphoid and pisiform bones are figured out, we measured and examined 4 items, viz. the soft carpal tunnel volume, flat rate of median nerve, position of median nerve and thickness of palmer ligaments composing the base of carpal tunnel, with an image analyzer attached to the MRI apparatus. Whereas the average carpal tunnel volume in 12 hands of normal controls was 166.8 mm 2 , that in 74 hands of carpal tunnel syndrome was 207.2 mm 2 , a significant increase compared with the normal controls. The flat rate of median nerve was 46% in the controls, but that was 37.5% in the carpal tunnel syndrome, a significant flattening was noted. We connected the peaks of the scaphoid node and pisiform bone with a line and named it standard line. When we observed the position of median nerve in the carpal tunnel, the nerve in 9 of 12 hands, 75%, lay below the standard line in the controls, but the nerve in 65 of 74 hands, 87.8%, lay above the standard line in the carpal tunnel syndrome, clearly showing that the median nerve had shifted to the palmar side. Regarding these morphologic changes of the carpal tunnel, the internal pressure of the carpal tunnel is considered to be raised with swelling of the soft tissues mainly composing the inside of carpal tunnel, thus the area of cross section of carpal tunnel to be increased, the median nerve to be shifted to the palmar side and the median nerve to be compressed by the transverse carpal ligament at that time. Although we can observe these morphological changes readily in MRI images, these images show only the results of carpal tunnel syndrome after all, and do not specify the direct causes. However, we believe that these facts are important factors in the manifestation of idiopathic carpal tunnel syndrome. (author)

  19. Josephson tunneling and nanosystems

    OpenAIRE

    Ovchinnikov, Yurii; Kresin, Vladimir

    2010-01-01

    Josephson tunneling between nanoclusters is analyzed. The discrete nature of the electronic energy spectra, including their shell ordering, is explicitly taken into account. The treatment considers the two distinct cases of resonant and non-resonant tunneling. It is demonstrated that the current density greatly exceeds the value discussed in the conventional theory. Nanoparticles are shown to be promising building blocks for nanomaterials-based tunneling networks.

  20. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  1. Control of tunneling in heterostructures

    International Nuclear Information System (INIS)

    Volokhov, V M; Tovstun, C A; Ivlev, B

    2007-01-01

    A tunneling current between two rectangular potential wells can be effectively controlled by applying an external ac field. A variation of the ac frequency by 10% may lead to the suppression of the tunneling current by two orders of magnitude, which is a result of quantum interference under the action of the ac field. This effect of destruction of tunneling can be used as a sensitive control of tunneling current across nanosize heterostructures

  2. Tunnelling in Soft Soil : Tunnel Boring Machine Operation and Soil Response

    NARCIS (Netherlands)

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    Constructing tunnels in soft soil with the use of Tunnel Boring Machines may induce settlements including soil movements ahead of the face, soil relaxation into the tail void, possible heave due to grouting, long lasting consolidation processes, and potentially several other mechanisms. A

  3. Seismic prediction ahead of tunnel constructions

    Science.gov (United States)

    Jetschny, S.; Bohlen, T.; Nil, D. D.; Giese, R.

    2007-12-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. Within the \\it OnSite project founded by the BMBF (German Ministry of Education and Research) within \\it GeoTechnologien a new forward looking seismic imaging technique is developed to e.g. determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of \\it tunnel surface waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the front face they generate body waves (mainly S-waves) propagating further ahead. Reflected S-waves are back- converted into tunnel surface waves. For a theoretical description of the conversion process and for finding optimal acquisition geometries it is of importance to study the propagation characteristics of tunnel surface waves. 3D seismic finite difference modeling and analytic solutions of the wave equation in cylindric coordinates revealed that at higher frequencies, i.e. if the tunnel diameter is significantly larger than the wavelength of S-waves, these surface waves can be regarded as Rayleigh-waves circulating the tunnel. For smaller frequencies, i.e. when the S-wavelength approaches the tunnel diameter, the propagation characteristics of these surface waves are then similar to S- waves. Field measurements performed by the GeoForschungsZentrum Potsdam, Germany at the Gotthard Base Tunnel (Switzerland) show both effects, i.e. the propagation of Rayleigh- and body-wave like waves along the tunnel. To enhance our understanding of the excitation and propagation characteristics of tunnel surface waves the transition of Rayleigh to tube-waves waves is investigated both analytically and by numerical simulations.

  4. Gap anisotropy and tunneling currents. [MPS3

    DEFF Research Database (Denmark)

    Lazarides, N.; Sørensen, Mads Peter

    1996-01-01

    The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to......The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to...

  5. Magnetic Fluxtube Tunneling

    Science.gov (United States)

    Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.

    1996-01-01

    We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.

  6. Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors

    Science.gov (United States)

    Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard

    2018-05-01

    Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .

  7. Lowest order in inelastic tunneling approximation : efficient scheme for simulation of inelastic electron tunneling data

    NARCIS (Netherlands)

    Rossen, E.T.R.; Flipse, C.F.J.; Cerda, J.I.

    2013-01-01

    We have developed an efficient and accurate formalism which allows the simulation at the ab initio level of inelastic electron tunneling spectroscopy data under a scanning tunneling microscope setup. It exploits fully the tunneling regime by carrying out the structural optimization and vibrational

  8. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  9. Ivar Giaever, Tunneling, and Superconductors

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Ivar Giaever, Tunneling, and Superconductors Resources with in Superconductors Measured by Electron Tunneling; Physical Review Letters, Vol. 5 Issue 4: 147 - 148 ; August 15, 1960 Electron Tunneling Between Two Superconductors; Physical Review Letters, Vol. 5 Issue 10

  10. Physics of optimal resonant tunneling

    NARCIS (Netherlands)

    Racec, P.N.; Stoica, T.; Popescu, C.; Lepsa, M.I.; Roer, van de T.G.

    1997-01-01

    The optimal resonant tunneling, or the complete tunneling transparence of a biased double-barrier resonant-tunneling (DBRT) structure, is discussed. It is shown that its physics does not rest on the departure from the constant potential within the barriers and well, due to the applied electric

  11. Spin-polarized tunneling with GaAs tips in scanning tunneling microscopy

    NARCIS (Netherlands)

    Prins, M.W.J.; Jansen, R.; Kempen, van H.

    1996-01-01

    We describe a model as well as experiments on spin-polarized tunneling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate

  12. Submucosal tunneling techniques: current perspectives.

    Science.gov (United States)

    Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu

    2014-01-01

    Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.

  13. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  14. The comparison between limited open carpal tunnel release using direct vision and tunneling technique and standard open carpal tunnel release: a randomized controlled trial study.

    Science.gov (United States)

    Suppaphol, Sorasak; Worathanarat, Patarawan; Kawinwongkovit, Viroj; Pittayawutwinit, Preecha

    2012-04-01

    To compare the operative outcome of carpal tunnel release between limited open carpal tunnel release using direct vision and tunneling technique (group A) with standard open carpal tunnel release (group B). Twenty-eight patients were enrolled in the present study. A single blind randomized control trial study was conducted to compare the postoperative results between group A and B. The study parameters were Levine's symptom severity and functional score, grip and pinch strength, and average two-point discrimination. The postoperative results between two groups were comparable with no statistical significance. Only grip strength at three months follow up was significantly greater in group A than in group B. The limited open carpal tunnel release in the present study is effective comparable to the standard open carpal tunnel release. The others advantage of this technique are better cosmesis and improvement in grip strength at the three months postoperative period.

  15. 13th Australian tunnelling conference. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The theme of the conference was 'Engineering in a changing environment'. Topics covered include Australian tunnelling projects, design and development of ground support, tunnelling, international projects, fire and life safety, mining projects, risk management in tunnelling, and tunnel boring machine tunnelling. Papers of particular interest to the coal industry are: improving roadway development in underground coal mine (G. Lewis and G. Gibson), and polymer-based alternative to steel mesh for coal mine strata reinforcement (C. Lukey and others).

  16. Does flexible tunnel drilling affect the femoral tunnel angle measurement after anterior cruciate ligament reconstruction?

    Science.gov (United States)

    Muller, Bart; Hofbauer, Marcus; Atte, Akere; van Dijk, C Niek; Fu, Freddie H

    2015-12-01

    To quantify the mean difference in femoral tunnel angle (FTA) as measured on knee radiographs between rigid and flexible tunnel drilling after anatomic anterior cruciate ligament (ACL) reconstruction. Fifty consecutive patients that underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a flexible reamer were included in this study. The control group was comprised of 50 patients all of who underwent primary anatomic ACL reconstruction with a single femoral tunnel drilled with a rigid reamer. All femoral tunnels were drilled through a medial portal to ensure anatomic tunnel placement. The FTA was determined from post-operative anterior-to-posterior (AP) radiographs by two independent observers. A 5° difference between the two mean FTA was considered clinically significant. The average FTA, when drilled with a rigid reamer, was 42.0° ± 7.2°. Drilling with a flexible reamer resulted in a mean FTA of 44.7° ± 7.0°. The mean difference of 2.7° was not statistically significant. The intraclass correlation coefficient for inter-tester reliability was 0.895. The FTA can be reliably determined from post-operative AP radiographs and provides a useful and reproducible metric for characterizing femoral tunnel position after both rigid and flexible femoral tunnel drilling. This has implications for post-operative evaluation and preoperative treatment planning for ACL revision surgery. IV.

  17. Large scale gas injection test (Lasgit) performed at the Aespoe Hard Rock Laboratory. Summary report 2008

    International Nuclear Information System (INIS)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J.

    2010-02-01

    This report describes the set-up, operation and observations from the first 1,385 days (3.8 years) of the large scale gas injection test (Lasgit) experiment conducted at the Aespoe Hard Rock Laboratory. During this time the bentonite buffer has been artificially hydrated and has given new insight into the evolution of the buffer. After 2 years (849 days) of artificial hydration a canister filter was identified to perform a series of hydraulic and gas tests, a period that lasted 268 days. The results from the gas test showed that the full-scale bentonite buffer behaved in a similar way to previous laboratory experiments. This confirms the up-scaling of laboratory observations with the addition of considerable information on the stress responses throughout the deposition hole. During the gas testing stage, the buffer was continued to artificially hydrate. Hydraulic results, from controlled and uncontrolled events, show that the buffer continues to mature and has yet to reach full maturation. Lasgit has yielded high quality data relating to the hydration of the bentonite and the evolution in hydrogeological properties adjacent to the deposition hole. The initial hydraulic and gas injection tests confirm the correct working of all control and data acquisition systems. Lasgit has been in successful operation for in excess of 1,385 days

  18. Large scale gas injection test (Lasgit) performed at the Aespoe Hard Rock Laboratory. Summary report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cuss, R.J.; Harrington, J.F.; Noy, D.J. (British Geological Survey (United Kingdom))

    2010-02-15

    This report describes the set-up, operation and observations from the first 1,385 days (3.8 years) of the large scale gas injection test (Lasgit) experiment conducted at the Aespoe Hard Rock Laboratory. During this time the bentonite buffer has been artificially hydrated and has given new insight into the evolution of the buffer. After 2 years (849 days) of artificial hydration a canister filter was identified to perform a series of hydraulic and gas tests, a period that lasted 268 days. The results from the gas test showed that the full-scale bentonite buffer behaved in a similar way to previous laboratory experiments. This confirms the up-scaling of laboratory observations with the addition of considerable information on the stress responses throughout the deposition hole. During the gas testing stage, the buffer was continued to artificially hydrate. Hydraulic results, from controlled and uncontrolled events, show that the buffer continues to mature and has yet to reach full maturation. Lasgit has yielded high quality data relating to the hydration of the bentonite and the evolution in hydrogeological properties adjacent to the deposition hole. The initial hydraulic and gas injection tests confirm the correct working of all control and data acquisition systems. Lasgit has been in successful operation for in excess of 1,385 days

  19. Derivation of the tunnelling exchange time for the model of trap-assisted tunnelling

    International Nuclear Information System (INIS)

    Racko, J.; Ballo, P.; Benko, P.; Harmatha, L.; Grmanova, A.; Breza, J.

    2014-01-01

    We present derivation of the tunnelling exchange times that play the key role in the model of trap assisted tunnelling (TAT) considering the electron and hole exchange processes between the trapping centre lying in the forbidden band of the semiconductor and the conduction band, valence band or a metal. All exchange processes are quantitatively described by respective exchange times. The reciprocal values of these exchange times represent the frequency with which the exchange processes contribute to the probability of occupation of the trap by free charge carriers. The crucial problem in any model of TAT is the calculation of the occupation probability. In our approach this probability is expressed in terms of only thermal and tunnelling exchange times. The concept of tunnelling exchange times presents a dominant contribution to our model of TAT. The new approach allows to simply calculate the probability of occupation of the trapping centre by a free charge carrier and subsequently to get the thermal and tunnelling generation-recombination rates occurring in the continuity equations. This is why the TAT model based on thermal and tunnelling exchange times is suitable for simulating the electrical properties of semiconductor nanostructures in which quantum mechanical phenomena play a key role. (authors)

  20. Nos dlja shpiona odolzhili u majora militsii / Aleksandra Ovikova

    Index Scriptorium Estoniae

    Ovikova, Aleksandra

    2004-01-01

    Kuidas sündis vene nõukogude populaarne spiooniseriaal "TASS on volitatud teatama..." ("TASS upolnomotshen zajavit...") : stsenarist Julian Semjonov : režissöör Vladimir Fokin : Nõukogude Liit 1984

  1. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  2. Tunneling of Atoms, Nuclei and Molecules

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    2015-01-01

    This is a brief review of few relevant topics on tunneling of composite particles and how the coupling to intrinsic and external degrees of freedom affects tunneling probabilities. I discuss the phenomena of resonant tunneling, different barriers seen by subsystems, damping of resonant tunneling by level bunching and continuum effects due to particle dissociation. (author)

  3. Geosciences research: cooperation with Swedish Nuclear Fuel and Waste Management Co. (SKB)

    International Nuclear Information System (INIS)

    1993-01-01

    PNC has been participating in the research program of the Construction Phase in Aespoe Hard Rock Laboratory project (HRL project), an underground research laboratory project initiated by Swedish Nuclear Fuel and Waste Management Company (SKB), since 1991. The main purpose of participating in the HRL project is to apply site characterization, prediction and validation methodology of geological environment in the project to R and D program on geological disposal in Japan. The outcome from investigations for the 0-700 m section in the access tunnel has been evaluated to compare with predictions on geological-structure. This report gives the summary of R and D program on the HRL project and preliminary results on evaluation of geological-structural predictions for the 0-700 m section in the access tunnel. (author)

  4. Chaos regularization of quantum tunneling rates

    International Nuclear Information System (INIS)

    Pecora, Louis M.; Wu Dongho; Lee, Hoshik; Antonsen, Thomas; Lee, Ming-Jer; Ott, Edward

    2011-01-01

    Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.

  5. Excavation of the Surikamigawa dam diversion tunnel. Surikamigawa dam karihaisui tunnel kantsu

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T.; Konno, T. (Ministry of Construction, Tokyo (Japan))

    1994-04-01

    A bypass tunnel construction has been completed at the Surikamigawa dam (Japan). This paper describes the summary of the construction. The full-swing dam construction work is scheduled to begin in 1995. The soils distributed near the dam site consist of lapillus tuff containing andesite-based light stones and tuff-based conglomerates containing large gravels. Excavation of the dam diversion tunnel has used a blasting method, and the tunnel construction has adopted an automatic tunnel cross section marking system and a non-electric explosion method. This marking system is a system to irradiate a laser beam onto the facing to depict excavation lines that realizes labor saving and high-accuracy excavation. The error at the tunnel completion was found 20 mm. The non-electric explosion method ignites a coated explosive layer with an impact wave, which is electrostatically safe, and reduces blasting vibration. Electric detonators have also been used because of using ANFO explosives. The result obtained from measurements of inner space displacement necessary for the blasting process has indicated that the area near the dam site consists of stable mountains. 6 figs., 4 tabs.

  6. Charge Islands Through Tunneling

    Science.gov (United States)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  7. Tunneling progress on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Hansmire, W.H.; Munzer, R.J.

    1996-01-01

    The current status of tunneling progress on the Yucca Mountain Project (YMP) is presented in this paper. The Exploratory Studies Facility (ESF), a key part of the YMP, has been long in development and construction is ongoing. This is a progress report on the tunneling aspects of the ESF as of January 1, 1996. For purposes of discussion in this summary, the tunneling has progressed in four general phases. The paper describes: tunneling in jointed rock under low stress; tunneling through the Bow Ridge Fault and soft rock; tunneling through the Imbricate Fault Zone; and Tunneling into the candidate repository formation

  8. Peak stresses shift from femoral tunnel aperture to tibial tunnel aperture in lateral tibial tunnel ACL reconstructions: a 3D graft-bending angle measurement and finite-element analysis.

    Science.gov (United States)

    Van Der Bracht, Hans; Tampere, Thomas; Beekman, Pieter; Schepens, Alexander; Devriendt, Wouter; Verdonk, Peter; Victor, Jan

    2018-02-01

    To investigate the effect of tibial tunnel orientation on graft-bending angle and stress distribution in the ACL graft. Eight cadaveric knees were scanned in extension, 45°, 90°, and full flexion. 3D reconstructions with anatomically placed anterior cruciate ligament (ACL) grafts were constructed with Mimics 14.12 ® . 3D graft-bending angles were measured for classic medial tibial tunnels (MTT) and lateral tibial tunnels (LTT) with different drill-guide angles (DGA) (45°, 55°, 65°, and 75°). A pivot shift was performed on 1 knee in a finite-element analysis. The peak stresses in the graft were calculated for eight different tibial tunnel orientations. In a classic anatomical ACL repair, the largest graft-bending angle and peak stresses are seen at the femoral tunnel aperture. The use of a different DGA at the tibial side does not change the graft-bending angle at the femoral side or magnitude of peak stresses significantly. When using LTT, the largest graft-bending angles and peak stresses are seen at the tibial tunnel aperture. In a classic anatomical ACL repair, peak stresses in the ACL graft are found at the femoral tunnel aperture. When an LTT is used, peak stresses are similar compared to classic ACL repairs, but the location of the peak stress will shift from the femoral tunnel aperture towards the tibial tunnel aperture. the risk of graft rupture is similar for both MTTs and LTTs, but the location of graft rupture changes from the femoral tunnel aperture towards the tibial tunnel aperture, respectively. I.

  9. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  10. Klein tunneling phenomenon with pair creation process

    Science.gov (United States)

    Wu, G. Z.; Zhou, C. T.; Fu, L. B.

    2018-01-01

    In this paper, we study the Klein tunneling phenomenon with electron-positron pair creation process. Pairs can be created from the vacuum by a supercritical single-well potential (for electrons). In the time region, the time-dependent growth pattern of the created pairs can be characterized by four distinct regimes which can be considered as four different statuses of the single well. We find that if positrons penetrate the single well by Klein tunneling in different statuses, the total number of the tunneling positrons will be different. If Klein tunneling begins at the initial stage of the first status i.e. when the sing well is empty, the tunneling process and the total number of tunneling positrons are similar to the traditional Klein tunneling case without considering the pair creation process. As the tunneling begins later, the total tunneling positron number increases. The number will finally settle to an asymptotic value when the tunneling begins later than the settling-down time t s of the single well which has been defined in this paper.

  11. Aespoe Task Force on modelling of groundwater flow and transport of solutes. Review of Task 6C

    International Nuclear Information System (INIS)

    Black, John; Hodgkinson, David

    2005-03-01

    This report forms part of an independent review of the specifications, execution and results of Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, which is seeking to provide a bridge between site characterization (SC) and performance assessment (PA) approaches to solute transport in fractured rock. The present report is concerned solely with Task 6C, which relates to the construction and parametrisation of a block-scale hydrostructural model of the TRUE Block Scale region of the Aespoe Hard Rock laboratory. The task objectives, specifications and outcome are summarised and reviewed. Also, consideration is given to how the hydrostructural model might affect the outcomes of Task 6D and 6E. The main conclusions of this review are summarised below: The Task 6C hydrostructural model is a more comprehensive approach to quantitatively describing a volume of fractured rock than has been achieved hitherto. The idea of including solute retention characteristics as indices attached to individual fractures is an efficient device resulting in a whole volume of fractured rock described by a few spreadsheets. The hydrostructural model is clearly defined and provides a useful test bed for Tasks 6D and 6E. It would have been beneficial if the specifications for Task 6C had been more clearly defined as a hierarchy of requirements, and performance measures had been defined and evaluated to allow comparison of alternative approaches. The device used to reduce connectivity, namely reducing the average size of background fractures, has the effect of producing a final model with an 'unnatural' gap in the overall distribution of fracture sizes. It appears that the exploratory boreholes could be important conductive structures within the region of the 200 m block even though they are segmented into shorter sections by packers. If correct, this implies that the boreholes should be included explicitly in the model if close replication of TRUE Block

  12. Tunneling time, what is its meaning?

    International Nuclear Information System (INIS)

    McDonald, C R; Orlando, G; Vampa, G; Brabec, T

    2015-01-01

    The tunnel time ionization dynamics for bound systems in laser fields are investigated. Numerical analysis for a step function switch-on of the field allows for the tunnel time to be defined as the time it takes the ground state to develop the under-barrier wavefunction components necessary to achieve the static field ionization rate. A relation between the tunnel time and the Keldysh time is established. The definition of the tunnel time is extended to time varying fields and experimental possibilities for measuring the tunnel time are discussed

  13. Transonic Dynamics Tunnel (TDT)

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...

  14. Effects of neglecting carrier tunneling on electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs

    OpenAIRE

    Hakim, MMA; Haque, A

    2002-01-01

    We investigate the validity of the assumption of neglecting carrier tunneling effects on self-consistent electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs. Comparison between simulated and experimental results shows that for accurate modeling of direct tunneling current, tunneling effects on potential profile need to be considered. The relative error in gate current due to neglecting carrier tunneling is higher at higher gate voltages and increases...

  15. Road and Railroad Tunnels

    Data.gov (United States)

    Department of Homeland Security — Tunnels in the United States According to the HSIP Tiger Team Report, a tunnel is defined as a linear underground passageway open at both ends. This dataset is based...

  16. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report

  17. Electrically tunable tunneling rectification magnetoresistance in magnetic tunneling junctions with asymmetric barriers.

    Science.gov (United States)

    Wang, Jing; Huang, Qikun; Shi, Peng; Zhang, Kun; Tian, Yufeng; Yan, Shishen; Chen, Yanxue; Liu, Guolei; Kang, Shishou; Mei, Liangmo

    2017-10-26

    The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.

  18. Scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Binnig, G.; Rohrer, H.

    1983-01-01

    Based on vacuum tunneling, a novel type of microscope, the scanning tunneling microscope (STM) was developed. It has an unprecedented resolution in real space on an atomic scale. The authors review the important technical features, illustrate the power of the STM for surface topographies and discuss its potential in other areas of science and technology. (Auth.)

  19. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  20. Superconducting tunneling with the tunneling Hamiltonian. II. Subgap harmonic structure

    International Nuclear Information System (INIS)

    Arnold, G.B.

    1987-01-01

    The theory of superconducting tunneling without the tunneling Hamiltonian is extended to treat superconductor/insulator/superconductor junctions in which the transmission coefficient of the insulating barrier approaches unity. The solution for the current in such junctions is obtained by solving the problem of a particle hopping in a one-dimensional lattice of sites, with forward and reverse transfer integrals that depend on the site. The results are applied to the problem of subgap harmonic structure in superconducting tunneling. The time-dependent current at finite voltage through a junction exhibiting subgap structure is found to have terms that oscillate at all integer multiples of the Josephson frequency, n(2eV/h). The amplitudes of these new, and as yet unmeasured, ac current contributions as a function of voltage are predicted

  1. Toxic anterior segment syndrome caused by autoclave reservoir wall biofilms and their residual toxins.

    Science.gov (United States)

    Sorenson, Andrew L; Sorenson, Robert L; Evans, David J

    2016-11-01

    To identify etiology of toxic anterior segment syndrome (TASS) after uneventful phacoemulsification. EyeMD Laser and Surgery Center, Oakland, California. Retrospective case series. Patient charts with TASS were reviewed. Reservoirs of 2 autoclaves associated with these cases were cultured for bacterial contamination. Cultures were performed on 23 other autoclave reservoirs at surgery centers in the local area. The main outcome measures were the incidence of TASS and prevalence of bacterial biofilm contamination of autoclave reservoirs. From 2010 to 2013, 11 935 consecutive cataract surgeries were performed at 1 center by multiple surgeons with no reported TASS. Between January 1, 2014, and January 15, 2015, 10 cases of TASS occurred out of 3003 cataract surgeries; these patients' charts were reviewed. Cultures of 2 Statim autoclave reservoir walls grew Bacillus species, Williamsia species, Mycobacterium mucogenicum, and Candida parapsilosis. Scanning electron microscopy of reservoir wall sections showed prominent biofilm. The 2 autoclaves were replaced in January 2015. Subsequently, 2875 cataract surgeries were performed with no reported TASS (P autoclaves were also contaminated with bacterial biofilms. Toxic anterior segment syndrome was strongly associated with bacterial biofilm contamination of autoclave reservoirs. An etiological mechanism might involve transport of heat-stable bacterial cell antigens in the steam with deposition on surgical instrumentation. Data suggest widespread prevalence of bacterial biofilms on fluid-reservoir walls, despite adherence to manufacturer guidelines for cleaning and maintenance. Prevention or elimination of autoclave fluid-reservoir biofilms might reduce the risk for postoperative TASS. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Dirac particle tunneling from black rings

    International Nuclear Information System (INIS)

    Jiang Qingquan

    2008-01-01

    Recent research shows that Hawking radiation can be treated as a quantum tunneling process, and Hawking temperatures of Dirac particles across the horizon of a black hole can be correctly recovered via the fermion tunneling method. In this paper, motivated by the fermion tunneling method, we attempt to apply the analysis to derive Hawking radiation of Dirac particles via tunneling from black ring solutions of 5-dimensional Einstein-Maxwell-dilaton gravity theory. Finally, it is interesting to find that, as in the black hole case, fermion tunneling can also result in correct Hawking temperatures for the rotating neutral, dipole, and charged black rings.

  3. Engineers win award for Swiss tunnel

    CERN Multimedia

    2003-01-01

    A Derby engineering consultancy has won the Tunnelling Industry Award 2003 for Excellence in Tunnel Design, offered by the British Tunnelling Society, for its work on the LHC in Geneva, Switzerland (1/2 page).

  4. Semiclassical description of resonant tunneling

    International Nuclear Information System (INIS)

    Bogomolny, E.B.; Rouben, D.C.

    1996-01-01

    A semiclassical formula is calculated for the tunneling current of electrons trapped in a potential well which can tunnel into and across a wide quantum well. The tunneling current is measured at the second interface of this well and the calculations idealized an experimental situation where a strong magnetic field tilted with respect to an electric field was used. It is shown that the contribution to the tunneling current, due to trajectories which begin at the first interface and end on the second, is dominant for periodic orbits which hit both walls of the quantum well. (author)

  5. A Top Pilot Tunnel Preconditioning Method for the Prevention of Extremely Intense Rockbursts in Deep Tunnels Excavated by TBMs

    Science.gov (United States)

    Zhang, Chuanqing; Feng, Xiating; Zhou, Hui; Qiu, Shili; Wu, Wenping

    2012-05-01

    The headrace tunnels at the Jinping II Hydropower Station cross the Jinping Mountain with a maximum overburden depth of 2,525 m, where 80% of the strata along the tunnels consist of marble. A number of extremely intense rockbursts occurred during the excavation of the auxiliary tunnels and the drainage tunnel. In particular, a tunnel boring machine (TBM) was destroyed by an extremely intense rockburst in a 7.2-m-diameter drainage tunnel. Two of the four subsequent 12.4-m-diameter headrace tunnels will be excavated with larger size TBMs, where a high risk of extremely intense rockbursts exists. Herein, a top pilot tunnel preconditioning method is proposed to minimize this risk, in which a drilling and blasting method is first recommended for the top pilot tunnel excavation and support, and then the TBM excavation of the main tunnel is conducted. In order to evaluate the mechanical effectiveness of this method, numerical simulation analyses using the failure approaching index, energy release rate, and excess shear stress indices are carried out. Its construction feasibility is discussed as well. Moreover, a microseismic monitoring technique is used in the experimental tunnel section for the real-time monitoring of the microseismic activities of the rock mass in TBM excavation and for assessing the effect of the top pilot tunnel excavation in reducing the risk of rockbursts. This method is applied to two tunnel sections prone to extremely intense rockbursts and leads to a reduction in the risk of rockbursts in TBM excavation.

  6. Tunneling Ionization of Diatomic Molecules

    DEFF Research Database (Denmark)

    Svensmark, Jens Søren Sieg

    2016-01-01

    When a molecule is subject to a strong laser field, there is a probability that an electron can escape, even though the electrons are bound by a large potential barrier. This is possible because electrons are quantum mechanical in nature, and they are therefore able to tunnel through potential...... barriers, an ability classical particles do not possess. Tunnelling is a fundamental quantum mechanical process, a process that is distinctly non-classical, so solving this tunnelling problem is not only relevant for molecular physics, but also for quantum theory in general. In this dissertation the theory...... of tunneling ionizaion of molecules is presented and the results of numerical calculations are shown. One perhaps surprising result is, that the frequently used Born-Oppenheimer approximation breaks down for weak fields when describing tunneling ionization. An analytic theory applicable in the weak-field limit...

  7. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  8. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2012-01-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  9. Tunneling magnetoresistance and electroresistance in Fe/PbTiO3/Fe multiferroic tunnel junctions

    International Nuclear Information System (INIS)

    Dai, Jian-Qing

    2016-01-01

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO 3 /Fe multiferroic tunnel junction with asymmetric TiO 2 - and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p z orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing to the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.

  10. Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes

    International Nuclear Information System (INIS)

    Tabe, Michiharu; Tan, Hoang Nhat; Mizuno, Takeshi; Muruganathan, Manoharan; Anh, Le The; Mizuta, Hiroshi; Nuryadi, Ratno; Moraru, Daniel

    2016-01-01

    We study low-temperature transport properties of two-dimensional (2D) Si tunnel diodes, or Si Esaki diodes, with a lateral layout. In ordinary Si Esaki diodes, interband tunneling current is severely limited because of the law of momentum conservation, while nanoscale Esaki diodes may behave differently due to the dopants in the narrow depletion region, by atomistic effects which release such current limitation. In thin-Si lateral highly doped pn diodes, we find clear signatures of interband tunneling between 2D-subbands involving phonon assistance. More importantly, the tunneling current is sharply enhanced in a narrow voltage range by resonance via a pair of a donor- and an acceptor-atom in the pn junction region. Such atomistic behavior is recognized as a general feature showing up only in nanoscale tunnel diodes. In particular, a donor-acceptor pair with deeper ground-state energies is likely to be responsible for such a sharply enhanced current peak, tunable by external biases.

  11. Quantum tunneling with friction

    Science.gov (United States)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  12. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  13. In-mine (tunnel-to-tunnel) electrical resistance tomography in South African platinum mines

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2009-12-01

    Full Text Available The applicability of tunnel-to-tunnel electrical resistance tomography (ERT) for imaging disruptive geological structures ahead of mining, in an igneous platinum mining environment is assessed. The geophysical targets of interest are slump...

  14. Destructive quantum interference in spin tunneling problems

    OpenAIRE

    von Delft, Jan; Henley, Christopher L.

    1992-01-01

    In some spin tunneling problems, there are several different but symmetry-related tunneling paths that connect the same initial and final configurations. The topological phase factors of the corresponding tunneling amplitudes can lead to destructive interference between the different paths, so that the total tunneling amplitude is zero. In the study of tunneling between different ground state configurations of the Kagom\\'{e}-lattice quantum Heisenberg antiferromagnet, this occurs when the spi...

  15. Fault Rock Zones Characterisation - Final report. TRUE-1 Continuation Project

    International Nuclear Information System (INIS)

    Winberg, Anders

    2010-11-01

    At the conclusion of the TRUE-1 and TRUE Block Scale experimental programmes at the Aespoe Hard Rock Laboratory one remaining identified uncertainty was the in situ internal structure of conductive structures, and in particular the in situ material properties of unconsolidated fault gouge of such conductive structures. With the aim of reducing these uncertainties an experimental program has been conducted at depth in the Aespoe Hard Rock Laboratory. Four conductive structures in the immediate vicinity of the Aespoe tunnel were identified for further study. Following basic geometrical and geological modelling based on tunnel observations, geological/ mineralogical and hydrogeological investigations in four boreholes at each site, epoxy resin was injected in selected packed off borehole sections containing the structure. Following a sufficient time for curing of the epoxy, the injected borehole 72 mm sections were overcored with a 300 mm core barrel. Customised techniques were employed to section the core in the borehole and for its retrieval out of the borehole. Following basic geological mapping, selected overcores were sectioned and were subject to image analysis to assess the pore structure using a variety of different descriptive geometrical attributes. In addition, an attempt was made to infer the porosity of the fault rock (including fault gouge) using binary images. Since analysis has been made on multiple slices of impregnated rock it is also possible to crudely map the 3D variability of a given entity. It was furthermore identified that porosity estimates, which range from some 10-70% are, apart from being dependent on the penetration of the epoxy, dependent on the resolution of the given image, the size of the averaging window, and the porosity components contained therein. The obtained quantifications of porosity can therefore only be regarded as ball-park relative porosities of a complete fault rock zones. It does not, however, provide firm

  16. O{sub 2} depletion in granitic media. The Rex project

    Energy Technology Data Exchange (ETDEWEB)

    Puigdomenech, I. [Royal Inst. of Technology, Stockholm (Sweden); Ambrosi, J.P.; Eisenlohr, L.; Lartigue, J.E. [CNRS, Aix-en-Provence (France); Banwart, S.A. [Univ. of Sheffield (United Kingdom); Bateman, K.; Milodowski, A.E.; West, J.M. [British Geological Survey, Nottingham (United Kingdom); Griffault, L. [ANDRA (France); Gustafsson, E. [Geosigma AB, Uppsala (Sweden); Hama, K.; Yoshida, H. [JNC, Gifu (Japan). Tono Geoscience Centre; Kotelnikova, S.; Pedersen, K. [Goeteborg Univ. (Sweden); Michaud, V.; Trotignon, L. [CEA, Cadarache (France); Rivas Perez, J. [Univ. of Bradford (United Kingdom); Tullborg, E.L. [Terralogica AB, Graabo (Sweden)

    2001-02-01

    The redox conditions are of consequence for the performance of nuclear repositories. The presence of molecular oxygen (O{sub 2}) would affect the corrosion of canisters and the migration of radionuclides eventually released from a damaged canister. The rate of disappearance of O{sub 2} left in voids at repository closure is therefore an important information when evaluating repository designs. The REX project (Redox Experiment in Detailed Scale) has been carried out within the frame of SKB Aespoe Hard Rock Laboratory in Sweden. The aim was to determine how O{sub 2} trapped in the closed repository would react with the rock minerals in the tunnel and deposition holes and in the water conducting fractures. The REX project consisted of the following sections: Field investigations at Aespoe: Microbial O{sub 2} consumption at several sites in the Aespoe tunnel. The in situ experiment: Injection of oxygen and monitoring of O{sub 2} uptake in a confined fracture surface. The Replica Experiment: a laboratory study using the other half of the fracture surface used for the in situ experiment. Laboratory experiments: needed to support the interpretation of the field and replica experiments. Conducted with groundwaters, bacteria, and mineral samples from Aespoe. The results from the in-situ experiment were confirmed by those of the replica experiment performed in the CEA laboratory in France. Both were concordant in showing time scales for O{sub 2} uptake in the order of days. The agreement was remarkable when taking into account the differences in experimental conditions. For example, different microbial processes took place in the two experiments. Laboratory studies with rock samples demonstrated that microbial activity induced increased chemical weathering, with the formation of clay minerals. Rates of O{sub 2} uptake by fracture filling minerals were determined under laboratory conditions. These rates were faster than those reported in literature studies of pure mineral

  17. Fault Rock Zones Characterisation - Final report. TRUE-1 Continuation Project

    Energy Technology Data Exchange (ETDEWEB)

    Winberg, Anders (ed.) (Conterra AB (Sweden))

    2010-11-15

    At the conclusion of the TRUE-1 and TRUE Block Scale experimental programmes at the Aespoe Hard Rock Laboratory one remaining identified uncertainty was the in situ internal structure of conductive structures, and in particular the in situ material properties of unconsolidated fault gouge of such conductive structures. With the aim of reducing these uncertainties an experimental program has been conducted at depth in the Aespoe Hard Rock Laboratory. Four conductive structures in the immediate vicinity of the Aespoe tunnel were identified for further study. Following basic geometrical and geological modelling based on tunnel observations, geological/ mineralogical and hydrogeological investigations in four boreholes at each site, epoxy resin was injected in selected packed off borehole sections containing the structure. Following a sufficient time for curing of the epoxy, the injected borehole 72 mm sections were overcored with a 300 mm core barrel. Customised techniques were employed to section the core in the borehole and for its retrieval out of the borehole. Following basic geological mapping, selected overcores were sectioned and were subject to image analysis to assess the pore structure using a variety of different descriptive geometrical attributes. In addition, an attempt was made to infer the porosity of the fault rock (including fault gouge) using binary images. Since analysis has been made on multiple slices of impregnated rock it is also possible to crudely map the 3D variability of a given entity. It was furthermore identified that porosity estimates, which range from some 10-70% are, apart from being dependent on the penetration of the epoxy, dependent on the resolution of the given image, the size of the averaging window, and the porosity components contained therein. The obtained quantifications of porosity can therefore only be regarded as ball-park relative porosities of a complete fault rock zones. It does not, however, provide firm

  18. Snow and ice blocking of tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Leif

    1998-12-31

    Hydroelectric power development in cold regions causes much concern about operational reliability and dam safety. This thesis studies the temperature distribution in tunnels by means of air temperature measurements in six tunnel spillways and five diversion tunnels. The measurements lasted for two consecutive winters. The air through flow tunnel is used as it causes cooling of both rock and water. In open spillway tunnels, frost reaches the entire tunnel. In spillway tunnels with walls, the frost zones reach about 100 m from the downstream end. In mildly-inclined diversion tunnels, a frost free zone is located in the middle of the tunnel and snow and ice problems were only observed in the inlet and outlet. Severe aufeis is accumulation is observed in the frost zones. The heat transfer from rock to air, water and ice is calculated and used in a prediction model for the calculation of aufeis build-up together with local field observation data. The water penetration of snow plugs is also calculated, based on the heat balance. It takes 20 to 50 days for water to enter the blocked tunnel. The empirical values are 30 to 60 days, but only 1 day if the temperature of the snow pack is 0{sup o}C. Sensitivity analyses are carried out for temperature variations in rock, snow, water and ice. Systematic field observation shows that it is important for hydropower companies to know about the effects of snow and ice blocking in an area. A risk analysis of dam safety is presented for a real case. Finally, the thesis proposes solutions which can reduce the snow and ice problems. 79 refs., 63 figs., 11 tabs.

  19. Investigation of Corner Effect and Identification of Tunneling Regimes in L-Shaped Tunnel Field-Effect-Transistor.

    Science.gov (United States)

    Najam, Faraz; Yu, Yun Seop

    2018-09-01

    Corner-effect existing in L-shaped tunnel field-effect-transistor (LTFET) was investigated using numerical simulations and band diagram analysis. It was found that the corner-effect is caused by the convergence of electric field in the sharp source corner present in an LTFET, thereby increasing the electric field in the sharp source corner region. It was found that in the corner-effect region tunneling starts early, as a function of applied bias, as compared to the rest of the channel not affected by corner-effect. Further, different tunneling regimes as a function of applied bias were identified in the LTFET including source to channel and channel to channel tunneling regimes. Presence of different tunneling regimes in LTFET was analytically justified with a set of equations developed to model source to channel, and channel to channel tunneling currents. Drain-current-gate-voltage (Ids-Vgs) characteristics obtained from the equations is in reasonable qualitative agreement with numerical simulation.

  20. Scanning Tunneling Optical Resonance Microscopy

    Science.gov (United States)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically tunneling current

  1. Fiber coupled ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1997-01-01

    We report on a scanning tunneling microscope with a photoconductive gate in the tunneling current circuit. The tunneling tip is attached to a coplanar transmission line with an integrated photoconductive switch. The switch is illuminated through a fiber which is rigidly attached to the switch...... waveguide. The measurements show that the probe works as a transient voltage detector in contact and a capacitively coupled transient field detector in tunneling mode. We do not measure the transient voltage change in the ohmic tunneling current. In this sense, the spatial resolution for propagating...... substrate. By using a firmly attached fiber we achieve an excellent reproducibility and unconstrained positioning of the tip. We observe a transient signal with 2.9 ps pulse width in tunneling mode and 5 ps in contact mode. The instrument is applied to investigating the mode structure on a coplanar...

  2. Experimental Evidence for Quantum Tunneling Time

    Science.gov (United States)

    Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z.; Pfeifer, Thomas; Keitel, Christoph H.; Moshammer, Robert

    2017-07-01

    The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

  3. Tunneling from the past horizon

    Science.gov (United States)

    Kang, Subeom; Yeom, Dong-han

    2018-04-01

    We investigate a tunneling and emission process of a thin-shell from a Schwarzschild black hole, where the shell was initially located beyond the Einstein-Rosen bridge and finally appears at the right side of the Penrose diagram. In order to obtain such a solution, we should assume that the areal radius of the black hole horizon increases after the tunneling. Hence, there is a parameter range such that the tunneling rate is exponentially enhanced, rather than suppressed. We may have two interpretations regarding this. First, such a tunneling process from the past horizon is improbable by physical reasons; second, such a tunneling is possible in principle, but in order to obtain a stable Einstein-Rosen bridge, one needs to restrict the parameter spaces. If such a process is allowed, this can be a nonperturbative contribution to Einstein-Rosen bridges as well as eternal black holes.

  4. Molecular series-tunneling junctions.

    Science.gov (United States)

    Liao, Kung-Ching; Hsu, Liang-Yan; Bowers, Carleen M; Rabitz, Herschel; Whitesides, George M

    2015-05-13

    Charge transport through junctions consisting of insulating molecular units is a quantum phenomenon that cannot be described adequately by classical circuit laws. This paper explores tunneling current densities in self-assembled monolayer (SAM)-based junctions with the structure Ag(TS)/O2C-R1-R2-H//Ga2O3/EGaIn, where Ag(TS) is template-stripped silver and EGaIn is the eutectic alloy of gallium and indium; R1 and R2 refer to two classes of insulating molecular units-(CH2)n and (C6H4)m-that are connected in series and have different tunneling decay constants in the Simmons equation. These junctions can be analyzed as a form of series-tunneling junctions based on the observation that permuting the order of R1 and R2 in the junction does not alter the overall rate of charge transport. By using the Ag/O2C interface, this system decouples the highest occupied molecular orbital (HOMO, which is localized on the carboxylate group) from strong interactions with the R1 and R2 units. The differences in rates of tunneling are thus determined by the electronic structure of the groups R1 and R2; these differences are not influenced by the order of R1 and R2 in the SAM. In an electrical potential model that rationalizes this observation, R1 and R2 contribute independently to the height of the barrier. This model explicitly assumes that contributions to rates of tunneling from the Ag(TS)/O2C and H//Ga2O3 interfaces are constant across the series examined. The current density of these series-tunneling junctions can be described by J(V) = J0(V) exp(-β1d1 - β2d2), where J(V) is the current density (A/cm(2)) at applied voltage V and βi and di are the parameters describing the attenuation of the tunneling current through a rectangular tunneling barrier, with width d and a height related to the attenuation factor β.

  5. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  6. Structure and use of conceptual models in the Aespoe site investigations

    International Nuclear Information System (INIS)

    Gustafsson, Gunnar

    1998-01-01

    Early in the Aespoe project a need for structuring and clarification of the models used for different purposes was identified. The problem lied not in the numerical codes or the data base used for the modelling but rather in the process of how the real world was conceptualized into descriptive and predictive models. A proposal on how to structure these conceptual assumptions was made on which a standardised representation of used models was worked out. An essential objective has been to condensate the model descriptions to one page and still present the essential aspects of each model. It is hoped that in this way it is easier to obtain an overview of the assumptions underlying each model and facilitate comparison between different models. The base for the description is the 'intended use of the model'. Based on the intended use the next step is to identify what 'physical' processes should be included in the model. In some cases these processes can be represented by constitutive equations. The next step is to define the 'concepts' needed to solve the problem. The concepts may be separated into four groups. Firstly, the type of 'geometrical framework' and the framework-related parameters have to be defined. Secondly, the type of 'material properties' to be assigned to the domains defined by the geometrical framework must be decided. Thirdly, the 'spatial assignment method' of the material properties within a domain has to be described. Finally, the model normally has a limited extent and the 'boundary conditions' have to be defined to compute or judge the effects within the model. For a real case the data can now be defined for the four groups of concepts by analysing measurements representing the actual case. If needed a 'numerical or mathematical tool' that handles the processes and concepts should the be chosen. 'Output parameters' of interest for model purposes must then be defined

  7. FUNDAMENTAL TUNNELING PROCESSES IN MOSa SOLAR CELLS

    OpenAIRE

    Balberg , I.; Hanak , J.; Weakliem , H.; Gal , E.

    1981-01-01

    In previous studies of tunneling through a MOSa tunnel junction, where Sa was a-Si : H, it was shown that their characteristics resemble those of MOSc devices where Sc was crystalline silicon. In the present work we would like to report a demonstration of fundamental tunneling processes in such tunnel junctions. In particular, the transition from semiconductor controlled regime to tunneling controlled regime can be clearly distinguished. The present results represent one of the rare cases whe...

  8. Distribution of tunnelling times for quantum electron transport

    International Nuclear Information System (INIS)

    Rudge, Samuel L.; Kosov, Daniel S.

    2016-01-01

    In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junction. The tunnelling time distribution is exponential, which indicates that Markovian quantum tunnelling is a Poissonian statistical process. The tunnelling time distribution is used not only to study the quantum statistics of tunnelling along the average electric current but also to analyse extreme quantum events where an electron jumps against the applied voltage bias. The average tunnelling time shows distinctly different temperature dependence for p- and n-type molecular junctions and therefore provides a sensitive tool to probe the alignment of molecular orbitals relative to the electrode Fermi energy.

  9. Een systeem voor classificatie van korte tunnels.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1985-01-01

    The most difficult problems in the lighting of tunnels occur in daylight and in particular in the entrance of the tunnel, while drivers approaching the tunnel must be able to look into the tunnel from the outside to detect the road course and eventual obstacles. A classification should The made on

  10. Effects of the finite duration of quantum tunneling in laser-assisted scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hagmann, M.J.

    1994-01-01

    Previous measurements of tunnel conductance in heterostructures and experiments with Josephson junctions suggest quantum tunneling has a definite duration. The authors use semiclassical methods to determine the effects of this delay on the tunneling current in a laser-assisted STM. A planar-planar STM model is used with the exact multiple image potential, and the energy distribution for a free-electron metal. It is necessary to average over the phase at barrier entry, and iteration with back propagated solutions is required to obtain the transmission coefficients for evenly spaced phases and specified energies at barrier entry. The simulations suggest that the dependence of the tunneling current on the wavelength of illumination can serve as a basis for determining the duration of barrier traversal. A power flux density of 10 11 W/m 2 would be required at several wavelengths from 1 to 10 μm. It is possible that thermal effects could be separated from the modeled phenomena by determining the time dependence of the tunneling current with a pulsed laser

  11. Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

    Science.gov (United States)

    Esmaeili, A. M.; Useinov, A. N.; Useinov, N. Kh.

    2018-01-01

    Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.

  12. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 98 August. Tunneling reaction and its theory

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-10-01

    Present report is the proceedings of the 4th Meeting on Tunneling Reaction and Low Temperature Chemistry held in August 3 and 4, 1998. The main subject of the meeting is `Tunneling Reaction and Its Theory`. In the present meeting the theoretical aspects of tunneling phenomena in the chemical reaction were discussed intensively as the main topics. Ten reports were presented on the quantum diffusion of muon and proton in the metal and H{sub 2}{sup -} anion in the solid para-hydrogen, the theory of tunnel effect in the nuclear reaction and the tunneling reaction in the organic compounds. One special lecture was presented by Prof. J. Kondo on `Proton Tunneling in Solids`. The 11 of the presented papers are indexed individually. (J.P.N.)

  13. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions.

    Science.gov (United States)

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S; Saeys, Mark; Yang, Hyunsoo

    2014-09-30

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.

  14. Trap assisted tunneling and its effect on subthreshold swing of tunnel field effect transistors

    OpenAIRE

    Sajjad, Redwan N.; Chern, Winston; Hoyt, Judy L.; Antoniadis, Dimitri A.

    2016-01-01

    We provide a detailed study of the interface Trap Assisted Tunneling (TAT) mechanism in tunnel field effect transistors to show how it contributes a major leakage current path before the Band To Band Tunneling (BTBT) is initiated. With a modified Shockley-Read-Hall formalism, we show that at room temperature, the phonon assisted TAT current always dominates and obscures the steep turn ON of the BTBT current for common densities of traps. Our results are applicable to top gate, double gate and...

  15. 78 FR 46117 - National Tunnel Inspection Standards

    Science.gov (United States)

    2013-07-30

    ... busiest vehicular tunnel in the world. The Fort McHenry Tunnel handles a daily traffic volume of more than... vehicular, transit, and rail tunnels in the New York City metropolitan area. Although it is still too early... congestion along alternative routes, and save users both dollars and fuel. If these tunnels were closed due...

  16. Tunneling magnetoresistance and electroresistance in Fe/PbTiO{sub 3}/Fe multiferroic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jian-Qing, E-mail: djqkust@sina.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-08-21

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction with asymmetric TiO{sub 2}- and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p{sub z} orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing to the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.

  17. Tunnel nitrogen spill experiment

    International Nuclear Information System (INIS)

    Ageyev, A.I.; Alferov, V.N.; Mulholland, G.T.

    1983-01-01

    The Energy Saver Safety Analysis Report (SAR) found the tunnel oxygen deficiency considerations emphasized helium spills. These reports concluded the helium quickly warms and because of its low denisty, rises to the apex of the tunnel. The oxygen content below the apex and in all but the immediate vicinity of the helium spill is essentially unchanged and guarantees an undisturbed source of oxygen especially important to fallen personnel. In contrast nitrogen spills warm slower than helium due to the ratio of the enthalpy changes per unit volume spilled spread more uniformly across the tunnel cross-section when warmed because of the much smaller density difference with air, and generally provides a greater hazard than helium spills as a result. In particular there was concern that personnel that might fall to the floor for oxygen deficiency or other reasons might find less, and not more, oxygen with dire consequences. The SAR concluded tunnel nitrogen spills were under-investigated and led to this work

  18. New generation of free-piston shock tunnels

    Science.gov (United States)

    Morrison, W. R. B.; Stalker, R. J.; Duffin, J.

    1990-01-01

    Consideration is given to three free-piston driven hypersonic tunnels under construction that will greatly enhance existing test capabilities. The tunnel being built at Caltech will feature energy capabilities about 40 percent higher than those of the world's largest operational free-piston tunnel to date. The second tunnel under construction will allow full-size engine hardware at near-orbital speeds. The third facility is a high-performance expansion tube that will be capable of generating high enthalpy flows at speeds of up to 9 km/sec. It will provide flows with dissociation levels much lower than are attainable with a reflected shock tunnel, approaching actual flight conditions. A table shows the tunnels' characteristics.

  19. Geological Prediction Ahead of Tunnel Face in the Limestone Formation Tunnel using Multi-Modal Geophysical Surveys

    Science.gov (United States)

    Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.

  20. D Modelling of Tunnel Excavation Using Pressurized Tunnel Boring Machine in Overconsolidated Soils

    Science.gov (United States)

    Demagh, Rafik; Emeriault, Fabrice

    2013-06-01

    The construction of shallow tunnels in urban areas requires a prior assessment of their effects on the existing structures. In the case of shield tunnel boring machines (TBM), the various construction stages carried out constitute a highly three-dimensional problem of soil/structure interaction and are not easy to represent in a complete numerical simulation. Consequently, the tunnelling- induced soil movements are quite difficult to evaluate. A 3D simulation procedure, using a finite differences code, namely FLAC3D, taking into account, in an explicit manner, the main sources of movements in the soil mass is proposed in this paper. It is illustrated by the particular case of Toulouse Subway Line B for which experimental data are available and where the soil is saturated and highly overconsolidated. A comparison made between the numerical simulation results and the insitu measurements shows that the 3D procedure of simulation proposed is relevant, in particular regarding the adopted representation of the different operations performed by the tunnel boring machine (excavation, confining pressure, shield advancement, installation of the tunnel lining, grouting of the annular void, etc). Furthermore, a parametric study enabled a better understanding of the singular behaviour origin observed on the ground surface and within the solid soil mass, till now not mentioned in the literature.

  1. Aespoe Hard Rock Laboratory. Sensor Data Report No 23

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Johannesson, Lars-Erik

    2010-11-01

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 20010917-20100601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements. Section 1. The following measurements are made in the bentonite in each of the two instrumented deposition holes in Section 1 (1 and 3): Temperature is measured in 32 points, total pressure in 27 points, pore water pressure in 14 points and relative humidity in 37 points. Temperature is also measured by all relative humidity gauges. Every measuring point is related to a local coordinate system in the deposition hole. The following measurements are made in the backfill in Section 1. Temperature is measured in 20 points, total pressure in 18 points, pore water pressure in 23 points and relative humidity in 45 points. Temperature is also measured by all relative humidity gauges. Furthermore, water content is measured by an electric chain in one section. Every measuring point is related to a local coordinate system in the tunnel. The following measurements are made on the surface of the canisters in Section 1: Temperature is measured every meter along two fiber optic cables. Furthermore, displacements of the canister in hole 3 are measured with 6 gauges. The following measurements are made in the rock in Section 1: Temperature is measured in 37 points in boreholes in the floor. Water

  2. Tunneling Flight Time, Chemistry, and Special Relativity.

    Science.gov (United States)

    Petersen, Jakob; Pollak, Eli

    2017-09-07

    Attosecond ionization experiments have not resolved the question "What is the tunneling time?". Different definitions of tunneling time lead to different results. Second, a zero tunneling time for a material particle suggests that the nonrelativistic theory includes speeds greater than the speed of light. Chemical reactions, occurring via tunneling, should then not be considered in terms of a nonrelativistic quantum theory calling into question quantum dynamics computations on tunneling reactions. To answer these questions, we define a new experimentally measurable paradigm, the tunneling flight time, and show that it vanishes for scattering through an Eckart or a square barrier, irrespective of barrier length or height, generalizing the Hartman effect. We explain why this result does not lead to experimental measurement of speeds greater than the speed of light. We show that this tunneling is an incoherent process by comparing a classical Wigner theory with exact quantum mechanical computations.

  3. Tunnel Face Stability & New CPT Applications

    NARCIS (Netherlands)

    Broere, W.

    2001-01-01

    Nearly all tunnels bored in soft soils have encountered problems with the stability of the tunnel face. In several cases these problems led to an extended stand-still of the boring process. A better understanding of the face stability, and of the soil conditions around the tunnel boring machine, can

  4. Shaft and tunnel sealing considerations

    International Nuclear Information System (INIS)

    Kelsall, P.C.; Shukla, D.K.

    1980-01-01

    Much of the emphasis of previous repository sealing research has been placed on plugging small diameter boreholes. It is increasingly evident that equal emphasis should now be given to shafts and tunnels which constitute more significant pathways between a repository and the biosphere. The paper discusses differences in requirements for sealing shafts and tunnels as compared with boreholes and the implications for seal design. Consideration is given to a design approach for shaft and tunnel seals based on a multiple component design concept, taking into account the requirements for retrievability of the waste. A work plan is developed for the future studies required to advance shaft and tunnel sealing technology to a level comparable with the existing technology for borehole sealing

  5. Computational Multiqubit Tunnelling in Programmable Quantum Annealers

    Science.gov (United States)

    2016-08-25

    ARTICLE Received 3 Jun 2015 | Accepted 26 Nov 2015 | Published 7 Jan 2016 Computational multiqubit tunnelling in programmable quantum annealers...state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational ...qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational

  6. Evaluation of the Influence Caused by Tunnel Construction on Groundwater Environment: A Case Study of Tongluoshan Tunnel, China

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2015-01-01

    Full Text Available Problems related to water inflow during tunnel construction are challenging to designers, workers, and management departments, as they can threaten tunneling project from safety, time, and economic aspects. Identifying the impacts on groundwater environment resulting from tunnel drainage and making a correct assessment before tunnel construction is essential to better understand troubles that would be encountered during tunnel excavation and helpful to adopt appropriate countermeasures to minimize the influences. This study presents an indicator system and quantifies each indicator of Tongluoshan tunnel, which is located in southwest China with a length of 5.2 km and mainly passes through carbonate rocks and sandstones, based on field investigation and related technological reports. Then, an evaluation is made using fuzzy comprehensive assessment method, with a result showing that it had influenced the local groundwater environment at a moderate degree. Information fed back from environmental investigation and hydrologic monitoring carried out during the main construction period proves the evaluation, as the flow of some springs and streams located beside the tunnel route was found experiencing an apparent decline.

  7. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  8. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru [eds.

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is `Tunneling Reaction and Quantum Medium`. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  9. Proceedings of the meeting on tunneling reaction and low temperature chemistry, 97 October. Tunneling reaction and quantum medium

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo; Aratono, Yasuyuki; Ichikawa, Tsuneki; Shiotani, Masaru

    1998-02-01

    Present report is the proceedings of the 3rd Meeting on Tunneling Reaction and Low Temperature Chemistry held in Oct. 13 and 14, 1997. The main subject of the meeting is 'Tunneling Reaction and Quantum Medium'. In the meeting, the physical and chemical phenomena in the liquid helium such as quantum nucleation, spectroscopy of atoms and molecules, and tunneling abstraction reaction of tritium atom were discussed as the main topics as well as the tunneling reactions in the solid hydrogen and organic compounds. Through the meetings held in 1995, 1996, and 1997, the tunneling phenomena proceeding at various temperatures (room temperature to mK) in the wide fields of chemistry, biology, and physics were discussed intensively and the importance of the tunneling phenomena in the science has been getting clear. The 12 of the presented papers are indexed individually. (J.P.N.)

  10. Tunneling anisotropic magnetoresistance in Co/AIOx/Al tunnel junctions with fcc Co (111) electrodes

    NARCIS (Netherlands)

    Wang, Kai; Tran, T. Lan Ahn; Brinks, Peter; Brinks, P.; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2013-01-01

    Tunneling anisotropic magnetoresistance (TAMR) has been characterized in junctions comprised of face-centered cubic (fcc) Co (111) ferromagnetic electrodes grown epitaxially on sapphire substrates, amorphous AlOx tunnel barriers, and nonmagnetic Al counterelectrodes. Large TAMR ratios have been

  11. Mechanical stability of repository tunnels and factors to be considered for determining tunnel spacing

    International Nuclear Information System (INIS)

    Takeuchi, Kunifumi

    1994-01-01

    Kristallin-1 organized by Nagra is currently advanced as a synthetic project regarding a high level radioactive waste (HLW) repository in Switzerland. Its host rock is granitic rocks, and the potential siting area is located in northern Switzerland. The objective of this project is to demonstrate the long term safety of a HLW repository under more site-specific conditions than before. As the detailed geological data were investigated, the average size of undisturbed crystalline rock blocks is limited horizontally to about several hundred meter, therefore, the HLW repository area must be divided into several panels to avoid fracture zones. It is necessary to make tunnel spacing as small as possible for the purpose of reasonably designing the entire layout of repository tunnels. The main factors to be considered for determining repository tunnel spacing are listed. Rock mass modeling, rock mass material properties, the analysis model and parameters, the numerical analysis of repository tunnel stability and its main conclusion are reported. The numerical analysis of the temperature distribution in near field was carried out. Tunnel spacing should be set more than 20 m in view of the maximum temperature. (K.I.)

  12. Resonance tunneling electron-vibrational spectroscopy of polyoxometalates.

    Science.gov (United States)

    Dalidchik, F I; Kovalevskii, S A; Balashov, E M

    2017-05-21

    The tunneling spectra of the ordered monolayer films of decamolybdodicobaltate (DMDC) compounds deposited from aqueous solutions on HOPG were measured by scanning tunnel microscopy in air. The DMDC spectra, as well as the tunneling spectra of other polyoxometalates (POMs), exhibit well-defined negative differential resistances (NDRs). The mechanism of formation of these spectral features was established from the collection of revealed NDR dependences on the external varying parameters and found to be common to all systems exhibiting Wannier-Stark localization. A model of biresonance tunneling was developed to provide an explanation for the totality of experimental data, both the literature and original, on the tunneling POM probing. A variant of the tunneling electron-vibrational POM spectroscopy was proposed allowing the determination of the three basic energy parameters-energy gaps between the occupied and unoccupied states, frequencies of the vibrational transitions accompanying biresonance electron-tunneling processes, and electron-vibrational interaction constants on the monomolecular level.

  13. Current noise in tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Moritz; Grabert, Hermann [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104, Freiburg (Germany)

    2017-06-15

    We study current fluctuations in tunnel junctions driven by a voltage source. The voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. We use circuit theory to relate the fluctuations of the current flowing in the leads of the junction with the voltage fluctuations generated by the environmental impedance and the fluctuations of the tunneling current. The spectrum of current fluctuations is found to consist of three parts: a term arising from the environmental Johnson-Nyquist noise, a term due to the shot noise of the tunneling current and a third term describing the cross-correlation between these two noise sources. Our phenomenological theory reproduces previous results based on the Hamiltonian model for the dynamical Coulomb blockade and provides a simple understanding of the current fluctuation spectrum in terms of circuit theory and properties of the average current. Specific results are given for a tunnel junction driven through a resonator. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    Science.gov (United States)

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-01-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature. PMID:26681336

  15. A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance

    Science.gov (United States)

    Dash, S.; Mishra, G. P.

    2015-09-01

    A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed.

  16. A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance

    International Nuclear Information System (INIS)

    Dash, S; Mishra, G P

    2015-01-01

    A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed. (paper)

  17. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    International Nuclear Information System (INIS)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens; Starsec, Peter

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is established

  18. Study of tunnelling through water-bearing fracture zones. Baseline study on technical issues with NE-1 as reference

    Energy Technology Data Exchange (ETDEWEB)

    Yanting Chang; Swindell, Robert; Bogdanoff, Ingvar; Lindstroem, Beatrice; Termen, Jens [WSP Sweden, Stockholm (Sweden) ; Starsec, Peter [SGI, Linkoeping (Sweden)

    2005-04-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for the management of Sweden's nuclear waste. SKB is investigating various designs for the construction of an underground deep repository for spent nuclear fuel at 500-600 m depths. For the construction of an access tunnel for such a deep repository, the possibility of encountering a water-bearing fracture zone cannot be discounted. Such a zone named NE-1 (deformation zone in accordance to SKB's terminology) was encountered during the construction of the Aespoe Hard Rock Laboratory (HRL) and difficulties with large water inflows were reported. With the aim to assess the feasibility of different technical solutions, SKB commissioned a baseline study into the passage of an access tunnel through a water-bearing fracture zone at three different depths (200 m, 400 m and 600 m). The objectives of this baseline study are to: Increase the knowledge of possible technical solutions for tunnelling through water-bearing fractures zones with the characteristics of the brittle deformation zone NE-1 at different depths, namely 200, 400 and 600 metres; Form a reference document to assist the engineering design and construction work for the passage through such a water-bearing fracture zone; To highlight the engineering parameters that should be obtained to facilitate design for the passage through water-bearing fracture zones.The study has been carried out in the following five stages: A. Compilation of the relevant data for deformation zone NE-1; B. Problem identification and proposal of technical solutions; C. Identification of hazards to be involved in the tunnel excavation; D. Recommendations and conclusions for further investigations; E. Documentation of the results in a final report. The analyses will be expressed in statistical/probabilistic terms where appropriate. In order to specify the precondition that will be valid for this study, a descriptive model of the water-bearing fracture zone is

  19. Instabilities in thin tunnel junctions

    International Nuclear Information System (INIS)

    Konkin, M.K.; Adler, J.G.

    1978-01-01

    Tunnel junctions prepared for inelastic electron tunneling spectroscopy are often plagued by instabilities in the 0-500-meV range. This paper relates the bias at which the instability occurs to the barrier thickness

  20. Task force on modelling of groundwater flow and transport of solutes. Task 5 Summary report

    International Nuclear Information System (INIS)

    Rhen, Ingvar; Smellie, John

    2003-02-01

    The Aespoe Hard Rock Laboratory is located in the Simpevarp area, southeast Sweden, some 35 km north of Oskarshamn. Construction of the underground laboratory commenced in 1990 and was completed in 1995, consisting of a 3.6 km. long tunnel excavated in crystalline rock to a depth of approximately 460 m. Prior to, during and subsequent to completion, research concerning the deep geological disposal of nuclear waste in fractured crystalline rock has been carried out. Central to this research has been the characterisation of the groundwater flow system and the chemistry of the groundwaters at Aespoe prior to excavation (Pre-investigation Phase) and subsequently to monitor changes in these parameters during the evolution of laboratory construction (Construction Phase). The principle aim of the Aespoe Task 5 modelling exercise has been to compare and ultimately integrate hydrogeochemistry and hydrogeology using the input data from the pre-investigation and construction phases. The main objectives were: to assess the consistency of groundwater-flow models and hydrogeochemical mixing-reaction models through integration and comparison of hydraulic and hydrogeochemical data obtained before and during tunnel construction, and to develop a procedure for integration of hydrological and hydrogeochemical information which could be used for disposal site assessments. Task 5 commenced in 1998 and was finalised in 2002. Participating modelling teams in the project represented ANDRA (France; three modelling teams - ANTEA, ITASCA, CEA), BMWi/BGR (Germany), ENRESA (Spain), JNC (Japan), CRIEPI (Japan), Posiva (Finland) and SKB (Sweden; two modelling teams - CFE and Intera (now GeoPoint)). Experience from Task 5 has highlighted several important aspects for site investigations facilitating the possibilities for mathematically integrated modelling and consistency checks that should be taken into account for future repository performance assessments. Equally important is that Task 5 has

  1. Task force on modelling of groundwater flow and transport of solutes. Task 5 Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, Ingvar [SWECO VIAK AB, Goeteborg (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden)

    2003-02-01

    The Aespoe Hard Rock Laboratory is located in the Simpevarp area, southeast Sweden, some 35 km north of Oskarshamn. Construction of the underground laboratory commenced in 1990 and was completed in 1995, consisting of a 3.6 km. long tunnel excavated in crystalline rock to a depth of approximately 460 m. Prior to, during and subsequent to completion, research concerning the deep geological disposal of nuclear waste in fractured crystalline rock has been carried out. Central to this research has been the characterisation of the groundwater flow system and the chemistry of the groundwaters at Aespoe prior to excavation (Pre-investigation Phase) and subsequently to monitor changes in these parameters during the evolution of laboratory construction (Construction Phase). The principle aim of the Aespoe Task 5 modelling exercise has been to compare and ultimately integrate hydrogeochemistry and hydrogeology using the input data from the pre-investigation and construction phases. The main objectives were: to assess the consistency of groundwater-flow models and hydrogeochemical mixing-reaction models through integration and comparison of hydraulic and hydrogeochemical data obtained before and during tunnel construction, and to develop a procedure for integration of hydrological and hydrogeochemical information which could be used for disposal site assessments. Task 5 commenced in 1998 and was finalised in 2002. Participating modelling teams in the project represented ANDRA (France; three modelling teams - ANTEA, ITASCA, CEA), BMWi/BGR (Germany), ENRESA (Spain), JNC (Japan), CRIEPI (Japan), Posiva (Finland) and SKB (Sweden; two modelling teams - CFE and Intera (now GeoPoint)). Experience from Task 5 has highlighted several important aspects for site investigations facilitating the possibilities for mathematically integrated modelling and consistency checks that should be taken into account for future repository performance assessments. Equally important is that Task 5 has

  2. Tunneling time in fluctuating symmetric double wells: Suppression and enhancement of tunneling by spatial symmetry-preserving perturbations

    International Nuclear Information System (INIS)

    Kar, Susmita; Bhattacharyya, S.P.

    2011-01-01

    Graphical abstract: Spatial symmetry-preserving sinusoidal fluctuations of symmetric double-well parameters cause enhancement of tunneling at ω ∼ ω 0 while rectified sinusoidal fluctuations suppress it at ω∼(ω 0 )/2 . Research highlights: → Spatial symmetry-preserving sinusoidal and rectified sinusoidal fluctuations of symmetrical double-well parameters have contrasting effects on tunneling. → Sinusoidal fluctuations at frequency ω ∼ ω 0 causes resonance enhancement of tunneling, ω 0 being the 0 + ↔ 1 + transition frequency. → Under rectified sinusoidal fluctuations at a frequency ω∼1/2 ω 0 suppression or coherent destruction of tunneling is observed due to barrier localization. → The observations are explained by energy-gain analysis and analysis of the time-dependent overlap amplitudes. - Abstract: We investigate how tunneling-time gets affected by spatial symmetry preserving fluctuations in the parameters determining the width, barrier height and well-depth of a symmetric double-well potential. Sinusoidal and rectified sinusoidal fluctuations of the well-parameters are shown to have contrasting effects. Significant enhancement of tunneling is noticed when the well-parameters fluctuate sinusoidally with frequency ω ∼ ω 0 while under rectified sinusoidal perturbation, quenching of tunneling takes place at a fluctuation frequency ω∼1/2 ω 0 ,ω 0 , being the frequency of the lowest transition allowed by the fluctuation induced spatial perturbation of even parity. Time-dependent Hellmann-Feynman theorem is invoked to analyze the energy changes induced by fluctuations. It turns out that the enhancement of tunneling in the sinusoidally fluctuating double well at frequency ω ∼ ω 0 is caused by transition to 1 ± levels under the barrier while in the rectified sinusoidal field at ω∼1/2 ω 0 , a two-photon like process suppresses the tunneling by inducing barrier localization.

  3. Tunnelling in Dante's Inferno

    Energy Technology Data Exchange (ETDEWEB)

    Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University, Dr.T.M.A. Pai Planetarium Building, Madhav Nagar, Manipal, Karnataka 576104 (India); Sperling, Marcus, E-mail: kazuyuki.furuuchi@manipal.edu, E-mail: marcus.sperling@univie.ac.at [Fakultät für Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien (Austria)

    2017-05-01

    We study quantum tunnelling in Dante's Inferno model of large field inflation. Such a tunnelling process, which will terminate inflation, becomes problematic if the tunnelling rate is rapid compared to the Hubble time scale at the time of inflation. Consequently, we constrain the parameter space of Dante's Inferno model by demanding a suppressed tunnelling rate during inflation. The constraints are derived and explicit numerical bounds are provided for representative examples. Our considerations are at the level of an effective field theory; hence, the presented constraints have to hold regardless of any UV completion.

  4. Fire safety assessment of tunnel structures

    DEFF Research Database (Denmark)

    Gkoumas, Konstantinos; Giuliani, Luisa; Petrini, Francesco

    2011-01-01

    .g. structural and non structural, organizational, human behavior). This is even more truth for the fire safety design of such structures. Fire safety in tunnels is challenging because of the particular environment, bearing in mind also that a fire can occur in different phases of the tunnel’s lifecycle. Plans...... for upgrading fire safety provisions and tunnel management are also important for existing tunnels. In this study, following a brief introduction of issues regarding the above mentioned aspects, the structural performance of a steel rib for a tunnel infrastructure subject to fire is assessed by means...

  5. Tunnelling in Dante's Inferno

    International Nuclear Information System (INIS)

    Furuuchi, Kazuyuki; Sperling, Marcus

    2017-01-01

    We study quantum tunnelling in Dante's Inferno model of large field inflation. Such a tunnelling process, which will terminate inflation, becomes problematic if the tunnelling rate is rapid compared to the Hubble time scale at the time of inflation. Consequently, we constrain the parameter space of Dante's Inferno model by demanding a suppressed tunnelling rate during inflation. The constraints are derived and explicit numerical bounds are provided for representative examples. Our considerations are at the level of an effective field theory; hence, the presented constraints have to hold regardless of any UV completion.

  6. Tunneling path toward spintronics

    International Nuclear Information System (INIS)

    Miao Guoxing; Moodera, Jagadeesh S; Muenzenberg, Markus

    2011-01-01

    The phenomenon of quantum tunneling, which was discovered almost a century ago, has led to many subsequent discoveries. One such discovery, spin polarized tunneling, was made 40 years ago by Robert Meservey and Paul Tedrow (Tedrow and Meservey 1971 Phys. Rev. Lett. 26 192), and it has resulted in many fundamental observations and opened up an entirely new field of study. Until the mid-1990s, this field developed at a steady, low rate, after which a huge increase in activity suddenly occurred as a result of the unraveling of successful spin tunneling between two ferromagnets. In the past 15 years, several thousands of papers related to spin polarized tunneling and transport have been published, making this topic one of the hottest areas in condensed matter physics from both fundamental science and applications viewpoints. Many review papers and book chapters have been written in the past decade on this subject. This paper is not exhaustive by any means; rather, the emphases are on recent progress, technological developments and informing the reader about the current direction in which this topic is moving.

  7. Aespoe Hard Rock Laboratory. Sensor Data Report No 23

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Johannesson, Lars-Erik (Clay Technology AB (Sweden))

    2010-11-15

    The Prototype Repository Test consists of two sections. The installation of the first Section of Prototype Repository was made during summer and autumn 2001 and Section 2 was installed in spring and summer 2003. This report presents data from measurements in the Prototype Repository during the period 20010917-20100601. The report is organized so that the actual measured results are shown in Appendix 1-10, where Appendix 8 deals with measurements of canister displacements (by AITEMIN), Appendix 9 deals with geo-electric measurements in the backfill (by GRS), Appendix 10 deals with stress and strain measurement in the rock (by AaF) and Appendix 11 deals with measurement of water pressure in the rock (by VBB/VIAK). The main report and Appendix 1-7 deal with the rest of the measurements. Section 1. The following measurements are made in the bentonite in each of the two instrumented deposition holes in Section 1 (1 and 3): Temperature is measured in 32 points, total pressure in 27 points, pore water pressure in 14 points and relative humidity in 37 points. Temperature is also measured by all relative humidity gauges. Every measuring point is related to a local coordinate system in the deposition hole. The following measurements are made in the backfill in Section 1. Temperature is measured in 20 points, total pressure in 18 points, pore water pressure in 23 points and relative humidity in 45 points. Temperature is also measured by all relative humidity gauges. Furthermore, water content is measured by an electric chain in one section. Every measuring point is related to a local coordinate system in the tunnel. The following measurements are made on the surface of the canisters in Section 1: Temperature is measured every meter along two fiber optic cables. Furthermore, displacements of the canister in hole 3 are measured with 6 gauges. The following measurements are made in the rock in Section 1: Temperature is measured in 37 points in boreholes in the floor. Water

  8. A New Potential Cause in the Development of Toxic Anterior Segment Syndrome: Fibrin Glue

    Directory of Open Access Journals (Sweden)

    Selçuk Sızmaz

    2014-08-01

    Full Text Available Objectives: To present a potential cause for toxic anterior segment syndrome (TASS. Materials and Methods: We report 4 cases of TASS that occurred following uneventful phacoemulsification and intraocular lens implantation. Results: The 4 cases were the first consecutive 2 cases of 2 different surgery days, 5 months apart. The most prominent sign of TASS was limbus-to-limbus corneal edema. Pain and/or intraocular pressure rise were also common. All surgical and presurgical procedures were checked after the first outbreak, whereas the second outbreak required further investigation. Fibrin glue remnants from preceding pterygium surgery with conjunctival autografting were found to be the potential cause. Despite intensive corticosteroid therapy, corneal edema did not resolve in 2 patients who underwent keratoplasty. Conclusion: TASS is a sight-threatening condition which requires thorough investigation for prevention of new cases. All steps must be carefully revised. (Turk J Ophthalmol 2014; 44: 280-3

  9. Utilization of geothermal energy in tunnels driven by tunnel drilling machines; Nutzung von Geothermie in TBM vorgetriebenen Tunneln

    Energy Technology Data Exchange (ETDEWEB)

    Pralle, Norbert; Franzius, Jan-Niklas [Ed. Zueblin AG, Stuttgart (Germany). Zentrale Technik; Liebel, Volker [Rehau AG und Co, Erlangen (Germany)

    2009-07-01

    Tunnels are nowadays more and more often constructed by means of tunnel boring machines rather than by conventional tunnel excavation. This is because tunnel boring provides a greater degree of safety for neighbouring structures, especially when it takes place in near-surface unconsolidated rock. However, bored tunnels offer less favourable framework conditions for the exploitation of geothermal energy because they are usually lined with concrete tubbings. Depending on the tunnel's diameter this normally involves rings of 1 to 2 metres width made up of several concrete elements. Adapting this type of design for geothermal energy production requires the use of an absorber piping system which permits coupling between the individual concrete elements while at the same time meeting the strict geometric tolerances required for its installation. A system of this type has been developed in a cooperation between the Rehau AG +Co. and Ed. Zueblin AG (Central Technology Services). These energy tubbings have already been installed in two tunnel structures and have also been examined in laboratory tests. An extensive measurement programme is under preparation which is aimed at gaining insights for the further optimisation of energy tubbings.

  10. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  11. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  12. Signatures of unstable semiclassical trajectories in tunneling

    International Nuclear Information System (INIS)

    Levkov, D G; Panin, A G; Sibiryakov, S M

    2009-01-01

    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is a substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using a modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the 'phase transition' between the cases of stable and unstable trajectories across certain 'critical' values of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory

  13. Navigation Architecture for a Space Mobile Network

    Science.gov (United States)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  14. Toxic Anterior Segment Syndrome Related to Viscoelastic Substance

    Directory of Open Access Journals (Sweden)

    Ayşe Gül Altıntaş

    2014-10-01

    Full Text Available Objectives: To evaluate the etiologic factors of toxic anterior segment syndrome (TASS outbreak after uneventful cataract surgery, to discuss the treatment plan, and to assess the response to medical therapy. Materials and Methods: Clinical features in twenty-two eyes of 22 patients who had TASS outbreak after uneventful cataract surgery were evaluated. Visual acuity (VA, intraocular pressure (IOP measurements, biomicroscopic and B-mode ultrasound evaluations were performed. To establish the differential diagnosis from infectious endophthalmitis, cultures were taken from different subjects such as surgical equipment, solutions, medical devices. All patients were treated as having endophthalmitis until the culture results were obtained. Results: Based on the negative culture results, absence of any symptoms of TASS in other patients who underwent different intraocular surgeries rather than cataract surgery in the same day and same surgical condition in which VES was not used, and the fact that postoperative inflammation occurred only in eyes in which the new VES made of rooster comb was used, we assume that the recently used VES is most likely responsible for the TASS outbreak. As soon as another VES was replaced with the suspected one, no other cases with TASS occurred. Conclusion: Even though the chemical compositions of VES are in physiological limits for viability to the anterior segment tissue, the suboptimal or inappropriate storage conditions may cause loss of the original chemical integrity which can be the reason of TASS. Close monitoring of each patient, early diagnosis, and correct treatment can prevent its complications. (Turk J Ophthalmol 2014; 44: 341-6

  15. Disc Bit Abrasion Parameters in TBM Tunnelling regarded exemplarily for the Gotthard Base Tunnel

    Directory of Open Access Journals (Sweden)

    Edmund a Wax

    2005-11-01

    Full Text Available In this article the author presents Amund Bruland’s empirical approach to determine the disc bit abrasion of TBMs (Tunnel Boring Machines, transforms the respective empirical dependencies into approximated mathematical relations and verifies them exemplarily for the currently constructed Gotthard Base Tunnel.

  16. Magnetic reconstruction induced magnetoelectric coupling and spin-dependent tunneling in Ni/KNbO_3/Ni multiferroic tunnel junctions

    International Nuclear Information System (INIS)

    Zhang, Hu; Dai, Jian-Qing; Song, Yu-Min

    2016-01-01

    We investigate the magnetoelectric coupling and spin-polarized tunneling in Ni/KNbO_3/Ni multiferroic tunnel junctions with asymmetric interfaces based on density functional theory. The junctions have two stable polarization states. We predict a peculiar magnetoelectric effect in such junctions originating from the magnetic reconstruction of Ni near the KO-terminated interface. This reconstruction is induced by the reversal of the ferroelectric polarization of KNbO_3. Furthermore, the change in the magnetic ordering filters the spin-dependent current. This effect leads to a change in conductance by about two orders of magnitude. As a result we obtain a giant tunneling electroresistance effect. In addition, there exist sizable tunneling magnetoresistance effects for two polarization states. - Highlights: • We study the ME coupling and electron tunneling in Ni/KNbO_3/Ni junctions. • There is magnetic reconstruction of Ni atoms near the KO-terminated interface. • A peculiar magnetoelectric coupling effect is obtained. • Predicted giant tunneling electroresistance effects.

  17. Unified time analysis of photon and particle tunnelling

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, Erasmo; Jakiel, Jacek

    2004-01-01

    A unified time analysis of photon and nonrelativistic particle tunnellings is presented, in which time is regarded as a quantum observable, canonically conjugated to energy. Within this approach, one can introduce self-consistent definitions of the tunnelling times, on the basis of conventional quantum mechanics (or one-dimensional quantum electrodynamics) only. The validity of the Hartman effect [which states the tunnelling duration to be independent of the (opaque) barrier width, with superluminal group velocities of the tunnelling packet as a consequence] is verified for all the known expressions of the mean tunnelling time. However, some noticeable generalizations of (and deviations from) the Hartman effect are, as well, briefly investigated. Moreover, the analogy between particle and photon tunnelling is suitably exploited; on the basis of such an analogy, an explanation of some recent interesting microwave and optical experimental results on tunnelling times is proposed. Attention is devoted, at last, to some aspects of the causality problem for particle and photon tunnelling

  18. The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction

    Science.gov (United States)

    Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng

    2018-05-01

    Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.

  19. Improved multidimensional semiclassical tunneling theory.

    Science.gov (United States)

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  20. Superconducting tunnel-junction refrigerator

    International Nuclear Information System (INIS)

    Melton, R.G.; Paterson, J.L.; Kaplan, S.B.

    1980-01-01

    The dc current through an S 1 -S 2 tunnel junction, with Δ 2 greater than Δ 1 , when biased with eV 1 +Δ 2 , will lower the energy in S 1 . This energy reduction will be shared by the phonons and electrons. This device is shown to be analogous to a thermoelectric refrigerator with an effective Peltier coefficient π* approx. Δ 1 /e. Tunneling calculations yield the cooling power P/sub c/, the electrical power P/sub e/ supplied by the bias supply, and the cooling efficiency eta=P/sub c//P/sub e/. The maximum cooling power is obtained for eV= +- (Δ 2 -Δ 1 ) and t 1 =T 1 /T/sub c/1 approx. 0.9. Estimates are made of the temperature difference T 2 -T 1 achievable in Al-Pb and Sn-Pb junctions with an Al 2 O 3 tunneling barrier. The performance of this device is shown to yield a maximum cooling efficiency eta approx. = Δ 1 /(Δ 2 -Δ 1 ) which can be compared with that available in an ideal Carnot refrigerator of eta=T 1 /(T 2 -T 1 ). The development of a useful tunnel-junction refrigerator requires a tunneling barrier with an effective thermal conductance per unit area several orders of magnitude less than that provided by the A1 2 O 3 barrier in the Al-Pb and Sn-Pb systems

  1. TunnelVision: LHC Tunnel Photogrammetry System for Structural Monitoring

    CERN Document Server

    Fallas, William

    2014-01-01

    In this document an algorithm to detect deformations in the LHC Tunnel of CERN is presented. It is based on two images, one represents the ideal state of the tunnel and the other one the actual state. To find the differences between both, the algorithm is divided in three steps. First, an image enhancement is applied to make easier the detection. Second, two different approaches to reduce noise are applied to one or both images. And third, it is defined a group of characteristics about the type of deformation desired to detect. Finally, the conclusions show the effectiveness of the algorithm in the experimental results.

  2. Electric and VLF-MT survey of Tegatayama tunnel; Tegatayama tunnel no denki tansa oyobi VLF tansa

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, T [Akita University, Akita (Japan). Mining College

    1997-05-27

    To survey the structure at the depth between 20 and 30 m, field tests were conducted by means of vertical electric and VFL-MT (magnetotelluric) survey. Tegatayama tunnel has a total length of 276 m, width of 7.5 m, and height of 4.7 m, and the depth from the surface is about 28 m near the top of mountain. Near the tunnel, the thickness of surface soil is about 60 cm, which consists of clay soil including soft mudstone gravel. It was found that terrace deposit is distributed up to the depth of 8 m, and that mudstone is distributed below the depth of 8 m. Weighted four-electrode method was adopted for the vertical electrical survey. Measurements were conducted at the immediately above the tunnel, 10 m apart from the center of tunnel in the right and left, and 20 m apart from the center in the east. For the VLF-MT method, component of frequency 22.2 kHz was used. As a result of the tests, it was difficult to illustrate the existence of tunnel from the vertical electrical survey only at one point. Feature of the tunnel could be well illustrated by means of the VLF-MT method. 3 refs., 9 figs.

  3. Characterization of the influence of building a road on the stability of the tunnel lining in a Banska Bystrica railway tunnel

    Directory of Open Access Journals (Sweden)

    Vavrek Pavol

    2001-06-01

    Full Text Available This paper deals with solving the problem of tunnel lining stability in a railway tunnel. The road cut was made into the overburden of the tunnel. I investigated the effect of the road cut on the stability of tunnel lining. The FLAC3D mathematical modelling technique was used for this purpose. The solution consist of: - - - - - - - - - - - -modelling the initial situation before building the intervention,Determing the internal characteristics of the tunnel lining in its original state,modelling the situation after making the road cut,Determing the internal characteristics of the tunnel lining after the building intervention,Comparison of the internal characteristics of the tunnel lining before and after the building intervention.In the model, I used these general geotechnical properties of the rock environment and the tunnel lining:Material Youngus modulus [MPa] Poissons RatioClay 8 0,42Weakly wheathered calcite 3 000 0,25Hard wheathered calcite 600 0,30Fill 300 0,25Lining 20 000 0,20The arbitration of the tunnel lining stability was executed on the basis of the Mohr – Coulomb limit of the state. Building the road cut does not lead to loss of stability in the tunnel a at Station 1.225 00 or at Station 1.300 00.

  4. Electron tunneling in proteins program.

    Science.gov (United States)

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-05

    We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  6. Relativistic tunneling through two successive barriers

    International Nuclear Information System (INIS)

    Lunardi, Jose T.; Manzoni, Luiz A.

    2007-01-01

    We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive electrostatic barriers. Our aim is to study the emergence of the so-called generalized Hartman effect, an effect observed in the context of nonrelativistic tunneling as well as in its counterparts and which is often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behavior of both the phase (or group) tunneling time and the dwell time, and show that in the limit of opaque barriers the relativistic theory also allows the emergence of the generalized Hartman effect. We compare our results with the nonrelativistic ones and discuss their interpretation

  7. Thermodynamics of phonon-modulated tunneling centers

    International Nuclear Information System (INIS)

    Junker, W.; Wagner, M.

    1989-01-01

    In recent years tunneling centers have frequently been used to explain the unusual thermodynamic properties of disordered materials; in these approaches, however, the effect of the tunneling-phonon interaction is neglected. The present study considers the archetype model of phono-assisted tunneling, which is well known from other areas of tunneling physics (quantum diffusion, etc.). It is shown that the full thermodynamic information can be rigorously extracted from a single Green function. An extended factorization procedure beyond Hartree-Fock is introduced, which is checked by sum rules as well as by exact Goldberger-Adams expansions. The phonon-modulated internal energy and specific heat are calculated for different power-law coupling setups

  8. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer

    2015-01-01

    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...

  9. Franck-Condon fingerprinting of vibration-tunneling spectra.

    Science.gov (United States)

    Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin

    2013-08-15

    We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.

  10. Hawking temperature from tunnelling formalism

    OpenAIRE

    Mitra, P.

    2007-01-01

    It has recently been suggested that the attempt to understand Hawking radiation as tunnelling across black hole horizons produces a Hawking temperature double the standard value. It is explained here how one can obtain the standard value in the same tunnelling approach.

  11. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  12. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  13. Does flexible tunnel drilling affect the femoral tunnel angle measurement after anterior cruciate ligament reconstruction?

    NARCIS (Netherlands)

    Muller, Bart; Hofbauer, Marcus; Atte, Akere; van Dijk, C. Niek; Fu, Freddie H.

    2015-01-01

    To quantify the mean difference in femoral tunnel angle (FTA) as measured on knee radiographs between rigid and flexible tunnel drilling after anatomic anterior cruciate ligament (ACL) reconstruction. Fifty consecutive patients that underwent primary anatomic ACL reconstruction with a single femoral

  14. A review on all-perovskite multiferroic tunnel junctions

    Directory of Open Access Journals (Sweden)

    Yuewei Yin

    2017-12-01

    Full Text Available Although the basic concept was proposed only about 10 years ago, multiferroic tunnel junctions (MFTJs with a ferroelectric barrier sandwiched between two ferromagnetic electrodes have already drawn considerable interests, driven mainly by its potential applications in multi-level memories and electric field controlled spintronics. The purpose of this article is to review the recent progress of all-perovskite MFTJs. Starting from the key functional properties of the tunneling magnetoresistance, tunneling electroresistance, and tunneling electromagnetoresistance effects, we discuss the main origins of the tunneling electroresistance effect, recent progress in achieving multilevel resistance states in a single device, and the electrical control of spin polarization and transport through the ferroelectric polarization reversal of the tunneling barrier.

  15. Unified time analysis of photon and particle tunnelling

    International Nuclear Information System (INIS)

    Olkhovsky, Vladislav S.; Recami, Erasmo; Jakiel, Jacek

    2001-07-01

    A unified approach to the time analysis of tunnelling of nonrelativistic particles is presented, in which Time is regarded as a quantum-mechanical observable, canonically conjugated to Energy. The validity of the Hartman effect (independence of the Tunnelling Time of the opaque barrier width, with superluminal group velocities as a consequence) is verified for all the known expressions of the mean tunnelling time. Moreover, the analogy between particle and photon tunnelling is suitably exploited. On the basic of such an analogy, an explanation of some recent microwave and optics experimental results on tunnelling time is proposed. Attention is devoted to some aspects of the causality problem for particle and photon tunnelling. (author)

  16. Time evolution of tunneling in a thermal medium: Environment-driven excited tunneling

    International Nuclear Information System (INIS)

    Matsumoto, Sh.; Yoshimura, M.

    2004-01-01

    Time evolution of tunneling phenomena proceeding in a thermal medium is studied using a standard model of environmental interaction. A semiclassical probability formula for the particle motion in a metastable state of a one-dimensional system put in a thermal medium is combined with the formula of the quantum penetration factor through a potential barrier to derive the tunneling rate in the medium. The effect of environment, its influence on time evolution in particular, is clarified in our real-time formalism. A nonlinear resonance effect is shown to enhance the tunneling rate at finite times of order 2/η, with η the friction coefficient unless η is too small. In the linear approximation this effect has relevance to the parametric resonance. This effect enhances the possibility of early termination of the cosmological phase transition much prior to the typical Hubble time

  17. Development of a nuclear power plant system analysis code

    International Nuclear Information System (INIS)

    Sim, Suk K.; Jeong, J. J.; Ha, K. S.; Moon, S. K.; Park, J. W.; Yang, S. K.; Song, C. H.; Chun, S. Y.; Kim, H. C.; Chung, B. D.; Lee, W. J.; Kwon, T. S.

    1997-07-01

    During the period of this study, TASS 1.0 code has been prepared for the non-LOCA licensing and reload safety analyses of the Westinghouse and the Korean Standard Nuclear Power Plants (KSNPP) type reactors operating in Korea. TASS-NPA also has been developed for a real time simulation of the Kori-3/4 transients using on-line graphical interactions. TASS 2.0 code has been further developed to timely apply the TASS 2.0 code for the design certification of the KNGR. The COBRA/RELAP5 code, a multi-dimensional best estimate system code, has been developed by integrating the realistic three-dimensional reactor vessel model with the RELAP5 /MOD3.2 code, a one-dimensional system code. Also, a 3D turbulent two-phase flow analysis code, FEMOTH-TF, has been developed using finite element technique to analyze local thermal hydraulic phenomena in support of the detailed design analysis for the development of the advanced reactors. (author). 84 refs., 27 tabs., 83 figs

  18. Quantum Electron Tunneling in Respiratory Complex I1

    Science.gov (United States)

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. One-electron tunneling approximation is found to hold in electron tunneling between the anti-ferromagnetic binuclear and tetranuclear Fe/S clusters with moderate induced polarization of the core electrons. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A distinct signature of the wave properties of electrons is observed as quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included are in good agreement with a reported phenomenological relation. PMID:21495666

  19. Development of the safety control framework for shield tunneling in close proximity to the operational subway tunnels: case studies in mainland China.

    Science.gov (United States)

    Li, Xinggao; Yuan, Dajun

    2016-01-01

    China's largest cities like Beijing and Shanghai have seen a sharp increase in subway network development as a result of the rapid urbanization in the last decade. The cities are still expanding their subway networks now, and many shield tunnels are being or will be constructed in close proximity to the existing operational subway tunnels. The execution plans for the new nearby shield tunnel construction calls for the development of a safety control framework-a set of control standards and best practices to help organizations manage the risks involved. Typical case studies and relevant key technical parameters are presented with a view to presenting the resulting safety control framework. The framework, created through collaboration among the relevant parties, addresses and manages the risks in a systematic way based on actual conditions of each tunnel crossing construction. The framework consists of six parts: (1) inspecting the operational subway tunnels; (2) deciding allowed movements of the existing tunnels and tracks; (3) simulating effects of the shield tunneling on the existing tunnels; (4) doing preparation work; (5) monitoring design and information management; and (6) measures and activation mechanism of the countermeasures. The six components are explained and demonstrated in detail. In the end, discussions made involve construction and post-construction settlement of the operational tunnel, application of the remedial grouting to rectify excessive settlements of the operational tunnel, and use of the innovative tool of the optical fiber measurement for tunnel movement monitoring. It is concluded that the construction movement of the tunnel can be controlled within 15 mm when the shield machine is <7 m in excavation diameter. The post-construction settlement of the tunnel buried in the very soft ground is much greater than its construction settlement, and last several years until reaching a final stable state. Two cases are outlined to demonstrate the

  20. Time-resolved scanning tunnelling microscopy

    NARCIS (Netherlands)

    van Houselt, Arie; Zandvliet, Henricus J.W.

    2010-01-01

    Scanning tunneling microscopy has revolutionized our ability to image, study, and manipulate solid surfaces on the size scale of atoms. One important limitation of the scanning tunneling microscope (STM) is, however, its poor time resolution. Recording a standard image with a STM typically takes

  1. Apparent tunneling in chemical reactions

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing; Billing, G. D.

    2000-01-01

    A necessary condition for tunneling in a chemical reaction is that the probability of crossing a barrier is non-zero, when the energy of the reactants is below the potential energy of the barrier. Due to the non-classical nature (i.e, momentum uncertainty) of vibrational states this is, however......, not a sufficient condition in order to establish genuine tunneling as a result of quantum dynamics. This proposition is illustrated for a two-dimensional model potential describing dissociative sticking of N-2 on Ru(s). It is suggested that the remarkable heavy atom tunneling, found in this system, is related...

  2. Quantum dot resonant tunneling diode single photon detector with aluminum oxide aperture defined tunneling area

    DEFF Research Database (Denmark)

    Li, H.W.; Kardynal, Beata; Ellis, D.J.P.

    2008-01-01

    Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality res...

  3. Unidirectional magnetoelectric-field multiresonant tunneling

    International Nuclear Information System (INIS)

    Kamenetskii, E O; Hollander, E; Joffe, R; Shavit, R

    2015-01-01

    Unidirectional multi-resonant tunneling of the magnetoelectric (ME) field excitations through a subwavelength (regarding the scales of regular electromagnetic radiation) vacuum or isotropic-dielectric regions has been observed in two-port microwave structures having a quasi-2D ferrite disk with magnetic dipolar mode (MDM) oscillations. The excitations manifest themselves as Fano-resonance peaks in the scattering-matrix parameters at the stationary states of the MDM spectrum. The ME near-field excitations are quasimagnetostatic fields ∇-vector × H-vector =0 with non-zero helicity parameter: F=(1/(16π))Im{ E-vector ⋅( ∇-vector × E-vector ) ∗ }. Topological phase properties of ME fields are determined by edge chiral currents of MDM oscillations. We show that while for a given direction of a bias magnetic field (in other words, for a given direction of time), the ME field excitations are considered as ‘forward’ tunneling processes, in the opposite direction of a bias magnetic field (the opposite direction of time), there are ‘backward’ tunneling processes. Unidirectional ME field resonant tunneling is observed due to the distinguishable topology of the ‘forward’ and ‘backward’ ME field excitations. We establish a close connection between the Fano-resonance unidirectional tunneling and the topology of the ME fields in different microwave structures. (paper)

  4. MR imaging of the carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Elias, D.; Lind, J.; Blair, S.; Light, T.; Wisniewski, R.; Moncado, R.

    1987-01-01

    MR is an ideal noninvasive means to image the structures forming the carpal tunnel in both normal and pathologic conditions. The carpal tunnel syndrome is a frequently encountered entity caused by compression of the median nerve as it passes through the carpal tunnel. This may result from a variety of conditions including edema from acute chronic trauma, rheumatoid tenosynovitis, degenerative joint disease or soft-tissue masses. This exhibit demonstrates the optimal MR imaging techniques to display the structures of the carpal tunnel. The normal anatomy is reviewed and variations in normal anatomy that may predispose to disease are included. Examples of the morphologic changes demonstrated in 20 patients diagnosed with carpal tunnel syndrome are displayed. The exhibit also reviews the findings in 20 postoperative cases

  5. Concept development for HLW disposal research tunnel

    International Nuclear Information System (INIS)

    Queon, S. K.; Kim, K. S.; Park, J. H.; Jeo, W. J.; Han, P. S.

    2003-01-01

    In order to dispose high-level radioactive waste in a geological formation, it is necessary to assess the safety of a disposal concept by excavating a research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, analysis of the characteristics of the disposal research tunnel, which is planned to be constructed at KAERI site, calculation of the influence of basting impact on neighbor facilities, and computer simuation for mechanical stability analysis using a three-dimensional code, FLAC3D, had been carried out to develop the design concept of the research tunnel

  6. Seismic Response of Tunnel Lining for Shallow-Bias Tunnel with a Small Clear Distance under Wenchuan Earthquake

    Directory of Open Access Journals (Sweden)

    Yang Hui

    2018-01-01

    Full Text Available In order to study the internal force characteristics of shallow-bias tunnel with a small clear distance in earthquake, a large-scale shaking table slope model test was designed, and the geometric scale was 1 : 10. In the model test, the Wenchuan (WC seismic wave was used as the excitation wave. Then, the three-dimensional numerical model was established by using MIDAS-NX, and the reliability of the numerical model was verified by comparing the acceleration of the test results. The axial force, bending moment, and shear force of the tunnel cross section and longitudinal direction were calculated by the numerical model under different excitation directions included the horizontal direction (X, the vertical direction (Z, and the horizontal and vertical direction (XZ. The results show the following. (1 The internal force of right arch foot of left hole and the left arch foot of right hole is larger than other part of the tunnels because the distance between the two tunnels is smaller and they interact with each other. (2 The loading direction of single direction loading method is different and the variation trend of tunnel force are different, so the loading direction of seismic wave has a significant influence on the seismic force response of the tunnel. (3 All of the internal force values of tunnel lining under the seismic wave action in bidirection are larger than those in single direction. The value is not a simple superposition of two directions and has some coupling effect. The influence of the vertical seismic wave cannot be ignored in dynamic response research. These results improve the understanding of the rock slope with small spacing tunnel under seismic action.

  7. DNS Tunneling Detection Method Based on Multilabel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Ahmed Almusawi

    2018-01-01

    Full Text Available DNS tunneling is a method used by malicious users who intend to bypass the firewall to send or receive commands and data. This has a significant impact on revealing or releasing classified information. Several researchers have examined the use of machine learning in terms of detecting DNS tunneling. However, these studies have treated the problem of DNS tunneling as a binary classification where the class label is either legitimate or tunnel. In fact, there are different types of DNS tunneling such as FTP-DNS tunneling, HTTP-DNS tunneling, HTTPS-DNS tunneling, and POP3-DNS tunneling. Therefore, there is a vital demand to not only detect the DNS tunneling but rather classify such tunnel. This study aims to propose a multilabel support vector machine in order to detect and classify the DNS tunneling. The proposed method has been evaluated using a benchmark dataset that contains numerous DNS queries and is compared with a multilabel Bayesian classifier based on the number of corrected classified DNS tunneling instances. Experimental results demonstrate the efficacy of the proposed SVM classification method by obtaining an f-measure of 0.80.

  8. Seepage into PEP tunnel

    International Nuclear Information System (INIS)

    Weidner, H.

    1990-01-01

    The current rate of seepage into the PEP tunnel in the vicinity of IR-10 is very low compared to previous years. Adequate means of handling this low flow are in place. It is not clear whether the reduction in the flow is temporary, perhaps due to three consecutive dry years, or permanent due to drainage of a perched water table. During PEP construction a large amount of effort was expended in attempts to seal the tunnel, with no immediate effect. The efforts to ''manage'' the water flow are deemed to be successful. By covering equipment to protect it from dripping water and channeling seepage into the drainage gutters, the seepage has been reduced to a tolerable nuisance. There is no sure, safe procedure for sealing a leaky shotcreted tunnel

  9. Tunneling Plasmonics in Bilayer Graphene.

    Science.gov (United States)

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  10. Tunneling with dissipation in open quantum systems

    International Nuclear Information System (INIS)

    Adamyan, G.G.; Antonenko, N.V.; Scheid, W.

    1997-01-01

    Based on the general form of the master equation for open quantum systems the tunneling is considered. Using the path integral technique a simple closed form expression for the tunneling rate through a parabolic barrier is obtained. The tunneling in the open quantum systems strongly depends on the coupling with environment. We found the cases when the dissipation prohibits tunneling through the barrier but decreases the crossing of the barrier for the energies above the barrier. As a particular application, the case of decay from the metastable state is considered

  11. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...

  12. Analysis of different tunneling mechanisms of InxGa1−xAs/AlGaAs tunnel junction light-emitting transistors

    International Nuclear Information System (INIS)

    Wu, Cheng-Han; Wu, Chao-Hsin

    2014-01-01

    The electrical and optical characteristics of tunnel junction light-emitting transistors (TJLETs) with different indium mole fractions (x = 5% and 2.5%) of the In x Ga 1−x As base-collector tunnel junctions have been investigated. Two electron tunneling mechanisms (photon-assisted or direct tunneling) provide additional currents to electrical output and resupply holes back to the base region, resulting in the upward slope of I-V curves and enhanced optical output under forward-active operation. The larger direct tunneling probability and stronger Franz-Keldysh absorption for 5% TJLET lead to higher collector current slope and less optical intensity enhancement when base-collector junction is under reverse-biased.

  13. Taking advantage of ground data systems attributes to achieve quality results in testing software

    Science.gov (United States)

    Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.

    1994-01-01

    During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.

  14. Experimental Evidence for Wigner’s Tunneling Time

    Science.gov (United States)

    Camus, N.; Yakaboylu, E.; Fechner, L.; Klaiber, M.; Laux, M.; Mi, Y.; Hatsagortsyan, K. Z.; Pfeifer, T.; Keitel, C. H.; Moshammer, R.

    2018-04-01

    Tunneling of a particle through a barrier is one of the counter-intuitive properties of quantum mechanical motion. Thanks to advances in the generation of strong laser fields, new opportunities to dynamically investigate this process have been developed. In the so-called attoclock measurements the electron’s properties after tunneling are mapped on its emission direction. We investigate the tunneling dynamics and achieve a high sensitivity thanks to two refinements of the attoclock principle. Using near-IR wavelength we place firmly the ionization process in the tunneling regime. Furthermore, we compare the electron momentum distributions of two atomic species of slightly different atomic potentials (argon and krypton) being ionized under absolutely identical conditions. Experimentally, using a reaction microscope, we succeed in measuring the 3D electron momentum distributions for both targets simultaneously. Theoretically, the time resolved description of tunneling in strong-field ionization is studied using the leading quantum-mechanical Wigner treatment. A detailed analysis of the most probable photoelectron emission for Ar and Kr allows testing the theoretical models and a sensitive check of the electron initial conditions at the tunnel exit. The agreement between experiment and theory provides a clear evidence for a non-zero tunneling time delay and a non-vanishing longitudinal momentum at this point.

  15. Design for rock grouting based on analysis of grout penetration. Verification using Aespoe HRL data and parameter analysis

    International Nuclear Information System (INIS)

    Kobayashi, Shinji; Stille, Haakan

    2007-01-01

    Grouting as a method to reduce the inflow of water into underground facilities will be important in both the construction and operation of the deep repository. SKB has been studying grouting design based on characterization of fractured rock and prediction of grout spread. However, as in other Scandinavian tunnels, stop criteria have been empirically set so that grouting is completed when the grout flow is less than a certain value at maximum pressure or the grout take is above a certain value. Since empirically based stop criteria are determined without a theoretical basis and are not related to grout penetration, the grouting result may be inadequate or uneconomical. In order to permit the choice of adequate and cost-effective grouting methods, stop criteria can be designed based on a theoretical analysis of grout penetration. The relationship between grout penetration and grouting time has been studied at the Royal Institute of Technology and Chalmers University of Technology. Based on these studies, the theory has been further developed in order to apply to real grouting work. Another aspect is using the developed method for parameter analysis. The purpose of parameter analysis is to evaluate the influence of different grouting parameters on the result. Since the grouting strategy is composed of many different components, the selection of a grouting method is complex. Even if the theoretically most suitable grouting method is selected, it is difficult to carry out grouting exactly as planned because grouting parameters such as grout properties can easily vary during the grouting operation. In addition, knowing the parameters precisely beforehand is impossible because there are uncertainties inherent in the rock mass. Therefore, it is important to asses the effects of variations in grouting parameters. The parameter analysis can serve as a guide in choosing an effective grouting method. The objectives of this report are to: Further develop the theory concerning

  16. Quantum tunneling in the adiabatic Dicke model

    International Nuclear Information System (INIS)

    Chen Gang; Chen Zidong; Liang Jiuqing

    2007-01-01

    The Dicke model describes N two-level atoms interacting with a single-mode bosonic field and exhibits a second-order phase transition from the normal to the superradiant phase. The energy levels are not degenerate in the normal phase but have degeneracy in the superradiant phase, where quantum tunneling occurs. By means of the Born-Oppenheimer approximation and the instanton method in quantum field theory, the tunneling splitting, inversely proportional to the tunneling rate for the adiabatic Dicke model, in the superradiant phase can be evaluated explicitly. It is shown that the tunneling splitting vanishes as exp(-N) for large N, whereas for small N it disappears as √(N)/exp(N). The dependence of the tunneling splitting on the relevant parameters, especially on the atom-field coupling strength, is also discussed

  17. Fermion tunneling from higher-dimensional black holes

    International Nuclear Information System (INIS)

    Lin Kai; Yang Shuzheng

    2009-01-01

    Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.

  18. High Surface Area Tunnels in Hexagonal WO₃.

    Science.gov (United States)

    Sun, Wanmei; Yeung, Michael T; Lech, Andrew T; Lin, Cheng-Wei; Lee, Chain; Li, Tianqi; Duan, Xiangfeng; Zhou, Jun; Kaner, Richard B

    2015-07-08

    High surface area in h-WO3 has been verified from the intracrystalline tunnels. This bottom-up approach differs from conventional templating-type methods. The 3.67 Å diameter tunnels are characterized by low-pressure CO2 adsorption isotherms with nonlocal density functional theory fitting, transmission electron microscopy, and thermal gravimetric analysis. These open and rigid tunnels absorb H(+) and Li(+), but not Na(+) in aqueous electrolytes without inducing a phase transformation, accessing both internal and external active sites. Moreover, these tunnel structures demonstrate high specific pseudocapacitance and good stability in an H2SO4 aqueous electrolyte. Thus, the high surface area created from 3.67 Å diameter tunnels in h-WO3 shows potential applications in electrochemical energy storage, selective ion transfer, and selective gas adsorption.

  19. Apparatus and method for large tunnel excavation in hard rock

    International Nuclear Information System (INIS)

    Altseimer, J.H.; Hanold, R.J.

    1975-01-01

    A tunneling machine is described for producing large tunnels in rock by progressive detachment of the tunnel core by thermal melting a boundary kerf into the tunnel face and simultaneously forming an initial tunnel wall support by deflecting the molten materials against the tunnel walls to provide, when solidified, a continuous liner; and fragmenting the tunnel core circumscribed by the kerf by thermal stress fracturing and in which the heat required for such operations is supplied by a compact nuclear reactor. (U.S.)

  20. Complex use of heat-exchange tunnels

    Directory of Open Access Journals (Sweden)

    А. Ф. Галкин

    2017-04-01

    Full Text Available The paper presents separate results of complex research (experimental and theoretical on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

  1. Hoosac tunnel geothermal heat source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-10

    The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

  2. Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers

    Science.gov (United States)

    Wang, K.; Sanderink, J. G. M.; Bolhuis, T.; van der Wiel, W. G.; de Jong, M. P.

    2015-01-01

    A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the rotation of antiferromagnetic moments of an insulating CoO layer, incorporated into a tunnel junction consisting of sapphire(substrate)/fcc-Co/CoO/AlOx/Al. The ferromagnetic Co layer is exchange coupled to the AFM CoO layer and drives rotation of the AFM moments in an external magnetic field. The results may help pave the way towards the development of spintronic devices based on AFM insulators. PMID:26486931

  3. Monitoring and Analysis of Ground Settlement Induced by Tunnelling with Slurry Pressure-Balanced Tunnel Boring Machine

    Directory of Open Access Journals (Sweden)

    Hyunku Park

    2018-01-01

    Full Text Available A case study of monitoring and analysis of ground settlement caused by tunnelling of stacked twin tunnels for underground metro line construction through the densely populated area using the slurry pressure-balanced TBM is presented. Detailed ground settlement monitoring was carried out for the initial stage of down-track tunnelling in order to estimate trough width factor and volume losses including face, shield, and tail losses. In addition, using the gap model, prediction of volume loss and ground settlement was carried out with consideration of the ground condition, TBM configurations, and actual operation data. The predictions of the gap model were compared with the observed results, and adjustment factors were determined for volume loss estimation. The adjusted factors were applied to predict ground settlement of the up-track tunnel, and its results were compared with the field measurements.

  4. Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Palomares, A. [Departamento de Matemática Aplicada, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2016-01-28

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinement holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.

  5. Perpendicular magnetic tunnel junction with tunneling magnetoresistance ratio of 64% using MgO (100) barrier layer prepared at room temperature

    International Nuclear Information System (INIS)

    Ohmori, Hideto; Hatori, Tomoya; Nakagawa, Shigeki

    2008-01-01

    MgO (100) textured films can be prepared by reactive facing targets sputtering at room temperature without postdeposition annealing process when they were deposited on (100) oriented Fe buffer layers. This method allows fabrication of perpendicular magnetic tunnel junction (p-MTJ) with MgO (100) tunneling barrier layer and rare-earth transition metal (RE-TM) alloy thin films as perpendicularly magnetized free and pinned layers. The 3-nm-thick MgO tunneling barrier layer in p-MTJ multilayer prepared on glass substrate revealed (100) crystalline orientation. Extraordinary Hall effect measurement clarified that the perpendicular magnetic components of 3-nm-thick Fe buffer layers on the two ends of MgO tunneling barrier layer were increased by exchange coupling with RE-TM alloy layers. The RA of 35 kΩ μm 2 and tunneling magnetoresistance ratio of 64% was observed in the multilayered p-MTJ element by current-in-plane-tunneling

  6. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  7. Modeling of inter-ribbon tunneling in graphene

    OpenAIRE

    Van de Put, Maarten L.; Vandenberghe, William G.; Sorée, Bart; Magnus, Wim; Fischetti, Massimo

    2015-01-01

    The tunneling current between two crossed graphene ribbons is described invoking the empirical pseudopotential approximation and the Bardeen transfer Hamiltonian method. Results indicate that the density of states is the most important factor determining the tunneling current between small (nm) ribbons. The quasi-one dimensional nature of graphene nanoribbons is shown to result in resonant tunneling.

  8. Design of Intelligent Power Supply System for Expressway Tunnel

    Science.gov (United States)

    Wang, Li; Li, Yutong; Lin, Zimian

    2018-01-01

    Tunnel lighting program is one of the key points of tunnel infrastructure construction. As tunnels tend to handle remote locations, power supply line construction generally has been having the distance, investment, high cost characteristics. To solve this problem, we propose a green, environmentally friendly, energy-efficient lighting system. This program uses the piston-wind which cars within tunnel produce as the power and combines with solar energy, physical lighting to achieve it, which solves the problem of difficult and high cost of highway tunnel section, and provides new ideas for the future construction of tunnel power supply.

  9. LEP tunnel monorail

    CERN Multimedia

    1985-01-01

    A monorail from CERN's Large Electron Positron collider (LEP, for short). It ran around the 27km tunnel, transporting equipment and personnel. With its 27-kilometre circumference, LEP was the largest electron-positron accelerator ever built and ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel.

  10. Energy Efficiency of Tunnel Boring Machines.

    OpenAIRE

    Grishenko, Vitaly

    2014-01-01

    Herrenknecht AG is a German world-leading Tunnel Boring Machines manufacturer showing strong awareness and concern regarding environmental issues. The company supports research on the Energy Efficiency (EE) of their products, aimed at the development of intelligent design for a green Tunnel Boring Machine. The aim of this project is to produce a ’status quo’ report on EE of three types of Tunnel Boring Machines (Hardrock, EPB and Mixshield TBM). In the framework of this research 39 projects a...

  11. Automatic control of cryogenic wind tunnels

    Science.gov (United States)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  12. Large magnetocurrents in double-barrier tunneling transistors

    International Nuclear Information System (INIS)

    Lee, J.H.; Jun, K.-I.; Shin, K.-H.; Park, S.Y.; Hong, J.K.; Rhie, K.; Lee, B.C.

    2005-01-01

    Magnetic tunneling transistors (MTT) with double tunneling barriers are fabricated. The structure of the transistor is AFM/FM/I/FM/I/FM/AFM, and ferromagnetic layers serve as the emitter, base and collector. This double-barrier tunneling transistor (DBTT) has an advantage of controlling the potential between the base and collector, compared to the Schottky-barrier-based base and collector of MTT. We found that the collector current density of DBTT is at least 10 3 times larger than that of conventional MTT, since tunneling through AlO x barrier provides much larger current density than that through Schottky barrier

  13. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  14. Quantum tunneling of Bose-Einstein condensates in optical lattices

    CERN Document Server

    Fan Wen Bin

    2003-01-01

    In quantum tunneling a particle with energy E can pass through a high potential barrier V(>E) due to the wave character of the particle. Bose-Einstein condensates can display very strong tunneling depending on the structure of the trap, which may be a double-well or optical lattices. The employed for the first time to our knowledge the periodic instanton method to investigate tunneling of Bose-Einstein condensates in optical lattices. The results show that there are two kinds of tunneling in this system, Landau-Zener tunneling between extended states of the system and Wannier-Stark tunneling between localized states of the system, and that the latter is 1000 times faster than the former. The also obtain the total decay rate for a wide range of temperature, including classical thermal activation, thermally assisted tunneling and quantum tunneling. The results agree with experimental data in references. Finally, the propose an experimental protocol to observe this new phenomenon in future experiments

  15. Resonant tunneling through double-barrier structures on graphene

    International Nuclear Information System (INIS)

    Deng Wei-Yin; Zhu Rui; Deng Wen-Ji; Xiao Yun-Chang

    2014-01-01

    Quantum resonant tunneling behaviors of double-barrier structures on graphene are investigated under the tight-binding approximation. The Klein tunneling and resonant tunneling are demonstrated for the quasiparticles with energy close to the Dirac points. The Klein tunneling vanishes by increasing the height of the potential barriers to more than 300 meV. The Dirac transport properties continuously change to the Schrödinger ones. It is found that the peaks of resonant tunneling approximate to the eigen-levels of graphene nanoribbons under appropriate boundary conditions. A comparison between the zigzag- and armchair-edge barriers is given. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Concurrent myotomy and tunneling after establishment of a half tunnel instead of myotomy after establishment of a full tunnel: a more efficient method of peroral endoscopic myotomy.

    Science.gov (United States)

    Philips, George M; Dacha, Sunil; Keilin, Steve A; Willingham, Field F; Cai, Qiang

    2016-04-01

    Peroral endoscopic myotomy (POEM) is a time-consuming and challenging procedure. Traditionally, the myotomy is done after the submucosal tunnel has been completed. Starting the myotomy earlier, after submucosal tunneling is half completed (concurrent myotomy and tunneling), may be more efficient. This study aims to assess if the method of concurrent myotomy and tunneling may decrease the procedural time and be efficacious. This is a retrospective case series of patients who underwent modified POEM (concurrent myotomy and tunneling) or traditional POEM at a tertiary care medical center. Modified POEM or traditional POEM was performed at the discretion of the endoscopist in patients presenting with achalasia. The total procedural duration, myotomy duration, myotomy length, and time per unit length of myotomy were recorded for both modified and traditional POEM. Modified POEM was performed in 6 patients whose mean age (± standard deviation [SD]) was 58 ± 13.3 years. Of these, 5 patients had type II achalasia and 1 patient had esophageal dysmotility. The mean Eckardt score (± SD) before the procedure was 8.8 ± 1.3. The modified technique was performed in 47 ± 8 minutes, with 6 ± 1 minutes required per centimeter of myotomy and 3 ± 1 minutes required per centimeter of submucosal space. The Eckardt score was 3 ± 1.1 at 1 month and 3 ± 2.5 at 3 months. The procedure time for modified POEM was significantly shorter than that for traditional POEM. Modified POEM with short submucosal tunneling may be more efficient than traditional POEM with long submucosal tunneling, and outcomes may be equivalent over short-term follow-up. Long-term data and randomized controlled studies are needed to compare the clinical efficacy of modified POEM with that of the traditional method.

  17. Tunnel magnetoresistance in thermally robust Mo/CoFeB/MgO tunnel junction with perpendicular magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    B. Fang

    2015-06-01

    Full Text Available We report on tunnel magnetoresistance and electric-field effect in the Mo buffered and capped CoFeB/MgO magnetic tunnel junctions (MTJs with perpendicular magnetic anisotropy. A large tunnel magnetoresistance of 120% is achieved. Furthermore, this structure shows greatly improved thermal stability and stronger electric-field-induced modulation effect in comparison with the Ta/CoFeB/MgO-based MTJs. These results suggest that the Mo-based MTJs are more desirable for next generation spintronic devices.

  18. Insertion of a straight peritoneal catheter in an arcuate subcutaneous tunnel by a tunneler: long-term experience.

    Science.gov (United States)

    Favazza, A; Petri, R; Montanaro, D; Boscutti, G; Bresadola, F; Mioni, G

    1995-01-01

    This study describes the results of the insertion of a straight Tenckhoff peritoneal catheter (PC) in an arcuate, caudally concave tunnel using a tunneler designed by the authors. It has a semicircular shape and a bending radius of 4.5 cm. A hospital renal unit. From June 1988 to February 1994, 112 straight Tenckhoff PCs, 62 with one deep cuff (single-cuff PC) and 50 with two cuffs (double-cuff PC), were inserted as first catheters in 112 patients (mean age 62 +/- 13 years), who underwent continuous ambulatory peritoneal dialysis (CAPD). The follow-up was 1099 months (mean 18 +/- 13 months) for single-cuff PCs and 1264 months (mean 25 +/- 15 months) for double-cuff PCs, respectively. After intraperitoneal placement of the PCs by median laparotomy, a 180 degrees arc bend tunnel, with both external and peritoneal exits directed downwards, was created by means of the tunneler. The rate of exit-site infection (ESI) was 0.27 episodes/year (epis/year). The probability of remaining ESI-free was 76%, 60%, and 55% at 1, 2, and 3 years. The rate of tunnel infection (TI) was 0.046 epis/year. The incidence of the double-cuff PC-related ESI and TI tended to be lower than the incidence observed with the single-cuff PC. Episodes of peritonitis were 60 (0.30 epis/year), where 6 were subsequent to ESI and/or TI. Two PCs were lost due to ESI, 3 due to TI, and 11 due to peritonitis. Drainage failure, due to displacement of the PC caused by straightening, involved 3 PCs; 2 were lost. PC survival was 92%, 82%, and 74% at 1, 2 and 3 years, respectively. By an easily used semicircular tunneler, the standard straight Tenckhoff PC can be stably positioned in an arcuate tunnel with both inner and outer exits directed downwards. This tunnel shape, as already suggested by some authors, appears to be an effective technical solution to reducing the PC-related complication rates.

  19. Theory of tunneling and photoemission spectroscopy for high-temperature superconductors

    International Nuclear Information System (INIS)

    Kouznetsov, K.; Coffey, L.

    1996-01-01

    A comprehensive analysis is presented of the tunneling conductance and angle-resolved photoemission spectra in high-temperature superconductors. It is shown that unexplained features of the tunneling and photoemission spectra such as broad backgrounds, dips, and asymmetry of the tunneling conductance can arise in a model of spin-fluctuation mediated inelastic tunneling. Effects of directionality in tunneling play an important role in determining the behavior of the tunneling conductance. copyright 1996 The American Physical Society

  20. CURRENT ASSET TUNNELING AND FIRM PERFORMANCE IN AN EMERGING MARKET

    OpenAIRE

    Ratna Candra Sari; Zaki Baridwan

    2014-01-01

    This study examines the effect of current asset tunneling on firm performance from the emerging market perspective. Although tunneling activities is a common practices by businesses especially in Indonesia, there exist obstacles in the measurement of tunneling activity because it is difficult to proof the existence of such practices. In this study, we measure tunneling by using accounts receivables and develop tunneling detection criteria. In addition, this study examines the effect of tunnel...