WorldWideScience

Sample records for targets separation technologies

  1. Separation science and technology

    International Nuclear Information System (INIS)

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-01-01

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO 2 thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO 2 films in reaction with chlorophenol

  2. Development of RI Target Production Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Ko, Kwang Hoon; Kim, Cheol Jung; Kim, Taek Soo; Rho, Si Pyo; Park, Hyun Min; Lim, Gwon; Cha, Yong Ho; Han, Jae Min

    2010-04-01

    This project was accomplished with an aim of productive technical development on the 'enriched target' which is used essentially in radioisotope production. The research was advanced systematically with target production pilot system configuration and core technical development. We composed Yb-176 productive pilot system which equip the chemical purification technique of medical treatment level and proved its capability. Possibilities to separate Zn-67 by the method of using the polarizing light in principle and to separate Zn-70 by the method of using the double optical pumping in theory were also proved. RI target production technologies are recognized excessively with monopolistic techniques of part atomic energy advanced nations such as Russia and US and they are come, but we prepared the opportunity will be able to complete a full cycle of like (RI material production -> RI target production -> RI application) with this project accomplishment. When considering only the direct demand of stable isotope which is used in various industrial, we forecast with the fact that RI target markets will become larger with the approximately 5 billion dollars in 2020 and this technology will contribute in the domestic rising industry creation with high value added

  3. Separators - Technology review: Ceramic based separators for secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C. [Technische Universität Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Str. 23, 09596 Freiberg (Germany); Schilm, Jochen [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Winterbergstraße 28, 01277 Dresden (Germany); Leisegang, Tilmann [Fraunhofer-Technologiezentrum Halbleitermaterialien THM, Am St.-Niclas-Schacht 13, 09599 Freiberg (Germany)

    2014-06-16

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic

  4. Separators - Technology review: Ceramic based separators for secondary batteries

    Science.gov (United States)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  5. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  6. New Fragment Separation Technology for Superheavy Element Research

    International Nuclear Information System (INIS)

    Shaughnessy, D A; Moody, K J; Henderson, R A; Kenneally, J M; Landrum, J H; Lougheed, R W; Patin, J B; Stoyer, M A; Stoyer, N J; Wild, J F; Wilk, P A

    2008-01-01

    This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physically separate the products from nuclear reactions based on their isotopic masses rather than their decay characteristics. The separator was designed to have a separation between isotopic masses of ±0.25 amu, which would enable the mass of element 114 isotopes to be measured with outstanding resolution, thereby confirming their discovery. In order to increase the production rate of element 114 nuclides produced via the 244 Pu+ 48 Ca reaction, a new target technology was required. Instead of a traditional thin actinide target, the MASHA separator required a thick, ceramic-based Pu target that was thick enough to increase element 114 production while still being porous enough to allow reaction products to migrate out of the target and travel through the separator to the detector array located at the back end. In collaboration with UNLV, we began work on development of the Pu target for MASHA. Using waste-form synthesis technology, we began by creating zirconia-based matrices that would form a ceramic with plutonium oxide. We used samarium oxide as a surrogate for Pu and created ceramics that had varying amounts of the starting materials in order to establish trends in material density and porosity. The results from this work are described in more detail in Refs. [1,4,10]. Unfortunately, work on MASHA was delayed in Russia because it was found that

  7. Development of Radiochemical Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Kim, K. W.; Yang, H. B. (and others)

    2007-06-15

    This project of the second phase was aimed at the development of basic unit technologies for advanced partitioning, and the application tests of pre-developed partitioning technologies for separation of actinides by using a simulated multi-component radioactive waste containing Am, Np, Tc, U and so on. The goals for recovery yield of TRU, and for purity of Tc are high than 99% and about 99%, respectively. The work scopes and contents were as follows. 1). For the development of basic unit technologies for advanced partitioning. 1. Development of technologies for co-removal of TRU and for mutual separation of U and TRU with a reduction-complexation reaction. 2. Development of extraction system for high-acidity co-separation of An(+3) and Ln(+3) and its radiolytic evaluation. 3. Synthesis of extractants for the selective separation of An(+3) and its relevant extraction system development. 4. Development of a hybrid system for the recovery of noble metals and its continuous separation tests. 5. Development of electrolytic system for the decompositions of N-NO3 and N-NH3 compounds to nitrogen gas. 2). For the application test of pre-developed partitioning technologies for the separation of actinide elements in a simulated multi-component solution equivalent to HLW level. 1. Co-separation of Tc, Np and U by a (TBP-TOA)/NDD system. 2. Mutual-separation of Am, Cm and RE elements by a (Zr-DEHPA)/NDD system. All results will be used as the fundamental data for the development of advanced partitioning process in the future.

  8. Cesium and Strontium Separation Technologies Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  9. Separation technology 2005; Separasjonsteknologi 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The conference comprises 13 presentations on the topics of separation technology aspects with emphasis on technology assessment. Some topics of particular interest are emulsion stabilization, sand technology and handling, water handling and reservoir injection, technical equipment and compression and pressure aspects.

  10. Separation science and technology. Semiannual progress report, October 1993 - March 1994

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Aase, S.B.; Buchholz, B.

    1997-12-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of 99 Mo for nuclear medicine uses

  11. Separation Science and Technology. Semiannual progress report, April 1993--September 1993

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.

    1996-01-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April-September 1993. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process, (2) treatment schemes for liquid wastes stored or being generated at Argonne, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of 99 Mo for nuclear medicine uses

  12. Separation Science and Technology. Semiannual progress report, April 1993--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C. [and others

    1996-01-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April-September 1993. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process, (2) treatment schemes for liquid wastes stored or being generated at Argonne, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.

  13. Separation science and technology: an ORNL perspective

    International Nuclear Information System (INIS)

    Pruett, D.J.

    1986-05-01

    This report was prepared as a summary of a fourfold effort: (1) to examine schemes for defining and categorizing the field of separation science and technology; (2) to review several of the major categories of separation techniques in order to determine the most recent developments and future research needs; (3) to consider selected problems and programs that require advances in separation science and technology as a part of their solution; and (4) to propose suggestions for new directions in separation research at Oak Ridge National Laboratory (ORNL)

  14. Innovative Separations Technologies

    International Nuclear Information System (INIS)

    Tripp, J.; Soelberg, N.; Wigeland, R.

    2011-01-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR and D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  15. Innovative Separations Technologies

    Energy Technology Data Exchange (ETDEWEB)

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  16. Binary electrokinetic separation of target DNA from background DNA primers.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D.; Derzon, Mark Steven

    2005-10-01

    This report contains the summary of LDRD project 91312, titled ''Binary Electrokinetic Separation of Target DNA from Background DNA Primers''. This work is the first product of a collaboration with Columbia University and the Northeast BioDefense Center of Excellence. In conjunction with Ian Lipkin's lab, we are developing a technique to reduce false positive events, due to the detection of unhybridized reporter molecules, in a sensitive and multiplexed detection scheme for nucleic acids developed by the Lipkin lab. This is the most significant problem in the operation of their capability. As they are developing the tools for rapidly detecting the entire panel of hemorrhagic fevers this technology will immediately serve an important national need. The goal of this work was to attempt to separate nucleic acid from a preprocessed sample. We demonstrated the preconcentration of kilobase-pair length double-stranded DNA targets, and observed little preconcentration of 60 base-pair length single-stranded DNA probes. These objectives were accomplished in microdevice formats that are compatible with larger detection systems for sample pre-processing. Combined with Columbia's expertise, this technology would enable a unique, fast, and potentially compact method for detecting/identifying genetically-modified organisms and multiplexed rapid nucleic acid identification. Another competing approach is the DARPA funded IRIS Pharmaceutical TIGER platform which requires many hours for operation, and an 800k$ piece of equipment that fills a room. The Columbia/SNL system could provide a result in 30 minutes, at the cost of a few thousand dollars for the platform, and would be the size of a shoebox or smaller.

  17. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  18. Innovative developments in uranium separation and concentration technology abroad

    International Nuclear Information System (INIS)

    Liang Jinlong; Zhou Mingsheng; Fang Wei; Sun Yuxiang

    2014-01-01

    Significance of deeply study the innovative developments in Uranium separation and concentration technology abroad was discussed. Development history and innovativeness of eight species of key equipments for separation and concentration were summarized for the first time. Principle and application of seven Uranium separation and concentration technology were analyzed systematically. It is expounded in the paper that high parameter, intelligent and low carbon were three development trends of Uranium separation and concentration technology. (authors)

  19. Research on preventive technologies for bed-separation water hazard in China coal mines

    Science.gov (United States)

    Gui, Herong; Tong, Shijie; Qiu, Weizhong; Lin, Manli

    2018-03-01

    Bed-separation water is one of the major water hazards in coal mines. Targeted researches on the preventive technologies are of paramount importance to safe mining. This article studied the restrictive effect of geological and mining factors, such as lithological properties of roof strata, coal seam inclination, water source to bed separations, roof management method, dimensions of mining working face, and mining progress, on the formation of bed-separation water hazard. The key techniques to prevent bed-separation water-related accidents include interception, diversion, destructing the buffer layer, grouting and backfilling, etc. The operation and efficiency of each technique are corroborated in field engineering cases. The results of this study will offer reference to countries with similar mining conditions in the researches on bed-separation water burst and hazard control in coal mines.

  20. Center for Advanced Separation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  1. Radiochemical separations of target-like reaction products from Au-, Pt-, and Th-targets after irradiation with GeV protons

    International Nuclear Information System (INIS)

    Szweryn, B.; Bruechle, W.; Schausten, B.; Schaedel, M.

    1988-08-01

    Chemical separation procedures for separations of reaction products after spallation reactions with 2.6 GeV protons and heavy element targets are presented. To determine independent cross sections of individual isotopes the elements Au, Pt, Ir, Os, Re, W, Ta, Hf, (Lu, Yb, Tm, Er), (Gd, Eu, Sm), were separated from gold targets, Pt, Ir, Os, W, Ta, Hf, (Lu, Yb, Tm, Er), (Gd, Eu, Sm) from a platinum target and Au, Tl from a thorium target. (orig.)

  2. Dry separation technology of transuranic elements

    International Nuclear Information System (INIS)

    Inoue, Tadashi

    1999-01-01

    The separation principle of transuranic elements (TRU) by a dry method, the separation technique of TRU from a high level waste solution and a dry recycle technology of LWR and FBR fuel cycle are explained. The dry method used molten salt and liquid metal. TRU and the rare earth elements in the molten salt (LiCl-KCl, LiCl-KCl/Cd and LiCl-KCl/Bi system) were separated by two methods such as the electrolytic refining and the reduction-extraction method. The former method separated 98% U, Np and Pu, but low Am. The latter method was able to separate more than 99.9% Np and Pu and 99.7% Am. (S.Y.)

  3. Development of a plutonium ceramic target for the MASHA separator

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, D.A.; Moody, K.J.; Kenneally, J.M.; Wild, J.F.; Stoyer, M.A.; Lougheed, R.W.; Yeremin, A.V.; Oganessian, Yu.Ts

    2004-04-05

    We are participating in the development of the target for the MASHA (Mass Analyzer of Super Heavy Atoms) on-line mass separator in Dubna. Along with recent upgrades of the U400 cyclotron, MASHA will provide for at least a ten-fold increase in the production- and-detection rate for element 114 atoms, and will allow us to measure their atomic masses precisely. The MASHA separator will employ a thick Pu ceramic target capable of tolerating temperatures in the vicinity of 2000 C without vaporizing the actinide compound. Reaction products will diffuse out of the target and will drift to an ECR ion source after which they will be transported through the separator and will impinge on a position-sensitive focal-plane detector array. Furthermore, operation of the MASHA hot target/ion source combination will provide chemical volatility information that will support our assignment of an atomic number of 114 to these nuclei. Taken together, these experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments in which the chemical properties of the heaviest elements are studied.

  4. Development of a Plutonium Ceramic Target for the MASHA Separator

    Science.gov (United States)

    Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Lougheed, R. W.; Yeremin, A. V.; Oganessian, Yu. Ts.

    2004-04-01

    We are participating in the development of the target for the MASHA (Mass Analyzer of Super Heavy Atoms) on-line mass separator in Dubna. Along with recent upgrades of the U400 cyclotron, MASHA will provide for at least a ten-fold increase in the production- and-detection rate for element 114 atoms, and will allow us to measure their atomic masses precisely. The MASHA separator will employ a thick Pu ceramic target capa- ble of tolerating temperatures in the vicinity of 2000 C without vaporizing the actinide compound. Reaction products will diffuse out of the target and will drift to an ECR ion source after which they will be transported through the separator and will impinge on a position-sensitive focal-plane detector array. Furthermore, operation of the MASHA hot target/ion source combination will provide chemical volatility information that will support our assignment of an atomic number of 114 to these nuclei. Taken together, these experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments in which the chemical properties of the heaviest elements are studied.

  5. Development of a plutonium ceramic target for the MASHA separator

    International Nuclear Information System (INIS)

    Shaughnessy, D.A.; Moody, K.J.; Kenneally, J.M.; Wild, J.F.; Stoyer, M.A.; Lougheed, R.W.; Yeremin, A.V.; Oganessian, Yu.Ts.

    2004-01-01

    We are participating in the development of the target for the MASHA (Mass Analyzer of Super Heavy Atoms) on-line mass separator in Dubna. Along with recent upgrades of the U400 cyclotron, MASHA will provide for at least a ten-fold increase in the production- and-detection rate for element 114 atoms, and will allow us to measure their atomic masses precisely. The MASHA separator will employ a thick Pu ceramic target capable of tolerating temperatures in the vicinity of 2000 C without vaporizing the actinide compound. Reaction products will diffuse out of the target and will drift to an ECR ion source after which they will be transported through the separator and will impinge on a position-sensitive focal-plane detector array. Furthermore, operation of the MASHA hot target/ion source combination will provide chemical volatility information that will support our assignment of an atomic number of 114 to these nuclei. Taken together, these experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments in which the chemical properties of the heaviest elements are studied

  6. Efficient Separations and Processing Integrated Program (ESP-IP): Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Efficient Separations and Processing Integrated Program (ESPIP) was created in 1991 to identify, develop and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. These wastes and environmental problems, located at more than 100 contaminated installations in 36 states and territories, are the result of half a century of nuclear processing activities by DOE and its predecessor organizations. The cost of cleaning up this legacy has been estimated to be of the order of hundreds of billions of dollars, and ESPIP's origin came with the realization that if new separations and processes can produce even a marginal reduction in cost then billions of dollars will be saved. The ultimate mission for ESPIP, as outlined in the ESPIP Strategic Plan, is: to provide Separations Technologies and Processes (STPS) to process and immobilize a wide spectrum of radioactive and hazardous defense wastes; to coordinate STP research and development efforts within DOE; to explore the potential uses of separated radionuclides; to transfer demonstrated separations and processing technologies developed by DOE to the US industrial sector, and to facilitate competitiveness of US technology and industry in the world market. Technology research and development currently under investigation by ESPIP can be divided into four broad areas: cesium and strontium removal; TRU and other HLW separations; sludge technology, and other technologies

  7. Factors influencing adoption of manure separation technology in the Netherlands

    NARCIS (Netherlands)

    Gebrezgabher, Solomie; Meuwissen, M.P.M.; Kruseman, G.; Lakner, D.; Oude Lansink, A.G.J.M.

    2015-01-01

    Manure separation technologies are essential for sustainable livestock operations in areas with high livestock density as these technologies result in better utilization of manure and reduced environmental impact. Technologies for manure separation have been well researched and are ready for use.

  8. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  9. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    K. C. CHONG

    2016-07-01

    Full Text Available The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA. Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology in gas separation as it requires low energy consumption and relatively moderate production volume, if compared to the conventional gas production techniques. These advantages have spurred much interest from industries and academics to speed up the commercial viability of the O2/N2 separation via membrane technology. In this review, the conventional and membrane technologies in O2/N2 separation, as well as recent development of membrane fabrication techniques and materials are reviewed. The latest membrane performance in O2/N2 separation is also tabulated and discussed.

  10. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  11. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    Science.gov (United States)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-03-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ~100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s-1, recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells.

  12. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  13. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  14. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  15. Simulated Target Preparation and Separation of Cd (II) - In (III) Matrices Using 8-Hydroxyquinoline Reagent for Producing Indium - III Radioisotope

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Swasono R Tamat; Lukiyawati; Lintang Maharani

    2002-01-01

    The potency of production and application of 111 In in Indonesia is not supported yet by capability in required processing technology. The presented paper is a preliminary study on processing technology of 111 In production from 112 Cd target covering simulated target preparation and separation of Cd(II)-In(III) matrices. The target preparation was performed by means of electroplating of CdSO 4 solution prepared from reaction of CdO and sulphuric acid. The separation of Cd(II)-In(III) matrices was proceeded by means of solvent extraction in the presence of 8-hydroxyquinoline as In(III)-complexing agent. The Cd-electroplating deposit was satisfactorily found by using 40-60 mA currents with an electroplating time of 5-7 hours. Simulated matrix solution containing mixture of Cd(II) and In(III) was extracted into chloroform with the presence of 8-hydroxyquinoline. The chloroform phase being assumed to contain In(III)-8-hydroxyquinoline complex was then re-extracted with 1 M HCl or saline solution. Each extraction fraction was spectrophotometrically identified in the region of 200-400 nm. From the resulting absorption spectra, it can be shown that the In(III) species is selectively separated from the Cd(II)-matrix. The use of saline in the re-extraction process is better then 1 M HCl solution due to solubility of 8-hydroxyquinoline in HCl. (author)

  16. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    International Nuclear Information System (INIS)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-01-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ∼100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s −1 , recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells. (paper)

  17. Environmental Consequences of Future Biogas Technologies based on Separated Slurry

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik

    2011-01-01

    different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate......This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving...... the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises...

  18. Preparation of calcium-separated isotope targets using small samples

    International Nuclear Information System (INIS)

    Thomas, G.E.

    1975-01-01

    Targets are routinely evaporated using a few milligram quantities of separated isotopes of calcium with reducing agents. The source to target distance is 3.0 cm with the substrate, if necessary, as thin as 15 μg/cm 2 carbon or 100 μg/cm 2 of gold. A tantalum closed boat, heat shield, and special collimator system are used

  19. Separation of a target substance from a fluid or mixture using encapsulated sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D; Spadaccini, Christopher M; Stolaroff, Joshuah K; Bourcier, William L; Lewis, Jennifer A; Duoss, Eric B; Vericella, John J

    2014-09-16

    Method and apparatus for separating a target substance from a fluid or mixture. Capsules having a coating and stripping solvents encapsulated in the capsules are provided. The coating is permeable to the target substance. The capsules having a coating and stripping solvents encapsulated in the capsules are exposed to the fluid or mixture. The target substance migrates through the coating and is taken up by the stripping solvents. The target substance is separated from the fluid or mixture by driving off the target substance from the capsules.

  20. The value function as a criterion of analysis in separation technologies

    International Nuclear Information System (INIS)

    Peculea, Marius

    2005-01-01

    Production costs of heavy water are described by two functions: φ(ε), the energy function which represents the variable costs and φ(τ), the technologic function which represents the stable costs. The Dirac value function related to the circulation in the separation cascade allows calculating φ(ε) and consequently the technologic function may be represented in relation to the specific separation process. This representation allows the qualitative analysis of different separation processes or, for a given process, provides the analysis of different technological solutions which were worked out. An example is given referring to the analysis of heavy water technologies of separation through the dual temperature process of H 2 O-H 2 S isotopic exchange

  1. Nuclear Wastes: Technologies for Separations and Transmutation

    National Research Council Canada - National Science Library

    .... The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted...

  2. Efficient Separations and Processing Crosscutting Program. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems

  3. Separation by electrostatic equipments; Separacion por medios electrostaticos

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Larrauri, E.; Arnaiz, S.; Cacho, S.; Robertson, C.; Smallwood, J.; Coilt, J.; Ufer, R.; Kohnlecher, R.

    2000-07-01

    Development of automated separation technologies is essential in increasing recovery rates, particularly from highly mixed sources such municipal solid wastes and wastes from electric and electronic equipment, and in reducing recycling costs. This frame moved GAIKER Technological Centre to look for new technologies that allow to recover materials such metals, plastics, papers from those waste sources. Electrostatic separation technology has been successfully applied to separate these materials collaborating to get the targets specified by legislation. (Author)

  4. Sixth symposium on separation science and technology for energy applications

    International Nuclear Information System (INIS)

    Bell, J.T.; Watson, J.S.

    1990-01-01

    This meeting contained sessions on: membranes: liquid-phase and low-temperature gas-phase separations; separations in hazardous waste management; solvent extraction; membranes: high-temperature gas-phase separations; adsorption and chromatography; and novel separations in nuclear and isotope technologies

  5. X-RAYS SEPARATOR: FORWARD STEP IN TECHNOLOGY OF OPTICAL SEPARATION

    Directory of Open Access Journals (Sweden)

    N. N. Potrakhov

    2017-01-01

    Full Text Available Presently the X-ray separation is used not only for research program, but it is also elaborated and applied for different sectors of economy. The seeds as biological objects that possess the complicated microstructure are very difficult to be exanimated by x-ray technology. The application of x-rays and further elaboration of optical  separators, principle  of action, basic specifications, way of their use and their efficiency was shown in the article. The x-ray separator may distinguish all hidden seed defects as it was described by a programmer, where owing to the use of the optical separating block in visual range it is possible to add some more details as a shape, brightness and a color of object surface being exanimated. The elaboration of such separation equipment is scientifically hard work requiring time and expenses. Last year researchers of ‘LETI’ developed the working model of industrial x-ray separator for examination of grains and nuts in different crops. This model was made on the basis of photoseparator F-5 manufactured at OAO ‘Voronezhselmash’. The instrument state and its mechanism operation are highlighted on monitor. In the regime of processing (separation and examination of each controlled batch, the passport is produced with  following  information on identification  code,  time of material receiving, time of test passed, number of grains or seeds tested. The code of receiver of material is given to each of established characteristics when working the regime of separation, determination of number of objects with characteristics tested and number of unidentified objects. The application of x-ray separators constructed on the basis of photoseparator F-5 enables to carry out the complex estimation on seed quality and separation in only instrument with the development of electronic protocol with many characteristics.

  6. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    Science.gov (United States)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents

  7. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  8. Proceedings of DAE-BRNS biennial symposium on emerging trends in separation science and technology

    International Nuclear Information System (INIS)

    Pathak, P.N.; Mohapatra, P.K.; Goswami, A.

    2012-01-01

    The symposium on emerging trends in separation science and technology was held during 27 February -1 March, 2012. An attempt has been made to cover a wide range of topics in the symposium including design and synthesis of solvents/resins, development of separation equipment's, separation the nuclear fuel cycle, emerging separation technologies, electrochemical and pyrochemical separations, treatment of industrial effluents, isotope separations, membrane science and technology, radiochemical separations, water treatment and recycling, bioremediation and speciation. Papers relevant to INIS are indexed separately

  9. Evaluation of a novel ultra small target technology supporting on-product overlay measurements

    Science.gov (United States)

    Smilde, Henk-Jan H.; den Boef, Arie; Kubis, Michael; Jak, Martin; van Schijndel, Mark; Fuchs, Andreas; van der Schaar, Maurits; Meyer, Steffen; Morgan, Stephen; Wu, Jon; Tsai, Vincent; Wang, Cathy; Bhattacharyya, Kaustuve; Chen, Kai-Hsiung; Huang, Guo-Tsai; Ke, Chih-Ming; Huang, Jacky

    2012-03-01

    Reducing the size of metrology targets is essential for in-die overlay metrology in advanced semiconductor manufacturing. In this paper, μ-diffraction-based overlay (μDBO) measurements with a YieldStar metrology tool are presented for target-sizes down to 10 × 10 μm2. The μDBO technology enables selection of only the diffraction efficiency information from the grating by efficiently separating it from product structure reflections. Therefore, μDBO targets -even when located adjacent to product environment- give excellent correlation with 40 × 160 μm2 reference targets. Although significantly smaller than standard scribe-line targets, they can achieve total-measurement-uncertainty values of below 0.5 nm on a wide range of product layers. This shows that the new μDBO technique allows for accurate metrology on ultra small in-die targets, while retaining the excellent TMU performance of diffraction-based overlay metrology.

  10. The Investigation of Separability of Particles Smaller Than 5 mm by Eddy Current Separation Technology. Part I : Rotating Type Eddy Current Separators

    NARCIS (Netherlands)

    Zhang, S.; Rem, P.C.; Forssberg, E.

    1999-01-01

    Owing to the growing emergence of the end-of-life electrical and electronic products with complex material structures and an ever-diminishing particle size of the valuable metals involved, development of eddy current separators (ECS) has been targeting selective separation of small non-ferrous metal

  11. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    Science.gov (United States)

    Fassbender, Michael E.; Radchenko, Valery

    2018-04-24

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fraction of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.

  12. Progress in ISOL target-ion source systems

    Energy Technology Data Exchange (ETDEWEB)

    Koester, U. [Institut Laue Langevin, 6 Rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France); ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland)], E-mail: koester@ill.fr; Arndt, O. [HGF VISTARS and Institut fuer Kernchemie, Johannes-Gutenberg Universitaet Mainz, D-55128 Mainz (Germany); Bouquerel, E.; Fedoseyev, V.N. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Franberg, H. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Laboratory for Radio- and Environmental Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Joinet, A. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Centre d' Etude Spatiale des Rayonnements, 9 Av. du Colonel Roche, F-31028 Toulouse Cedex 4 (France); Jost, C. [HGF VISTARS and Institut fuer Kernchemie, Johannes-Gutenberg Universitaet Mainz, D-55128 Mainz (Germany); Kerkines, I.S.K. [Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, Department of Chemistry, Zografou 157 71, GR (Greece); Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Kirchner, R. [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt (Germany)

    2008-10-15

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  13. Progress in ISOL target-ion source systems

    International Nuclear Information System (INIS)

    Koester, U.; Arndt, O.; Bouquerel, E.; Fedoseyev, V.N.; Franberg, H.; Joinet, A.; Jost, C.; Kerkines, I.S.K.; Kirchner, R.

    2008-01-01

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  14. Environmental consequences of future biogas technologies based on separated slurry.

    Science.gov (United States)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  15. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    Venneri, F.; Arthur, E.; Bowman, C.

    1996-01-01

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  16. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  17. Separation of heavier rare earths from neutron irradiated uranium targets

    International Nuclear Information System (INIS)

    Bhargava, V.K.; Rao, V.K.; Marathe, S.G.; Sahakundu, S.M.; Iyer, R.H.

    1978-01-01

    A radiochemical method is described for the separation of heavier rare earths from the fission of uranium. The method is particularly suitable for the separation of low yield (10sup(-5)%-10sup(-7)%), highly asymmetric rare earth fission products viz. sup(179,177)Lu, sup(175)Yb, sup(173)Tm, sup(172,171)Er, sup(167)Ho and sup(161,160)Tb in the neutron induced fission of natural and depleted uranium targets. Additional separation steps have been incorporated for decontamination from sup(239)Np (an activation product) and sup(93-90)Y (a high fission-yield product) which show similar chemical behaviour to rare earths. Separation of individual rare earths is achieved by a cation exchange method performed at 80 deg C by elution with α-hydroxyisobutyric acid (α-HIBA). (author)

  18. Relevance of separation science and technology to nuclear fuel complex operations

    International Nuclear Information System (INIS)

    Rao, S.M.; Ojha, P.B.; Rajashri, M.; Mirji, K.V.; Kalidas, R.

    2004-01-01

    During the last three decades at Nuclear Fuel Complex (NFC), Hyderabad, the Science and Technology of separation to produce various reactor grade materials in tonnage quantity is being practiced in the fields of Zr/Hf, U and Nb/Ta. Apart from this, the separation science is also being used in the production of various high purity materials and in the analytical field. The separation science and technology that is used in the production and characterisation of reactor grade materials has many striking differences from that of the common metals. The relevance and significance of separation science in the field of nuclear materials arises mainly due to the harmful effects w.r.t corrosion property and absorption of neutron caused by the presence of impurities, that are to be brought down to ppm or sub ppm level. In many cases low separation factors, that too from a multi component system call for effective process control at every stage of the bulk production so as to get quality product consistently. This article brings out the importance of separation science and technology and various process standardisations/developments that have been carried out at NFC, starting from laboratory scale to pilot scale and up to industrial scale production in the case of (i) Uranium refining (ii) Zr-Hf separation (iii) Ta-Nb separation and (iv) High purity materials production. (author)

  19. Technological aspects of cryogenic laser-fusion targets

    International Nuclear Information System (INIS)

    Musinski, D.L.; Henderson, T.M.; Simms, R.J.; Pattinson, T.R.; Jacobs, R.B.

    1980-01-01

    Most current laser-fusion targets consist of hollow spherical glass shells which have been filled with a mixture of gaseous deuterium-tritium fuel. Theoretical considerations suggest that optimum yields can be obtained from these targets if the fuel is condensed as a uniform liquid or solid layer on the inner surface of the glass shell at the time it is irradiated. In principle, this can be accomplished in a straightforward way by cooling the target below the condensation or freezing point of the fuel. In practice, cryogenic targets can appear in routine laser experiments only when the necessary cryogenic technology is reliably integrated into experimental target chambers. Significant progress has been made recently in this field. The authors will discuss the scientific basis and the various technological features of a system which has allowed the successful irradiation of uniform solid-fuel-layer targets

  20. Freeze-drying technology: A separation technique for liquid nuclear materials

    International Nuclear Information System (INIS)

    Musgrave, J.A.; Efurd, D.W.; Banar, J.C.

    1997-01-01

    Freeze-drying technology (FDT) has been around for several decades as a separation technology. Most commonly, FDT is associated with the processing of food, but the largest industrial-scale use of FDT is in the pharmaceutical industry. Through a Cooperative Research and Development Agreement (CRADA) with BOC Edwards Calumatic, we are demonstrating the feasibility of FDT as a waste minimization and pollution prevention technology. This is a novel and innovative application of FDT. In addition, we plan to demonstrate that the freeze-dried residue is an ideal feed material for ceramic stabilization of radioactive waste and excess fissile material. The objective of this work is to demonstrate the feasibility of FDT for the separation of complex radioactive and nonradioactive materials, including liquids, slurries, and sludges containing a wide variety of constituents in which the separation factors are >10 8 . This is the first application of FDT in which the condensate is of primary importance. Our focus is applying this technology to the elimination of radioactive liquid discharges from facilities at Los Alamos National Laboratory (LANL) and within the U.S. Department of Energy complex; however, successful demonstration will lead to nuclear industry-wide applications

  1. Tail gas treatment of SEWGS technology. Literature review on CO2 and H2S separation

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, E.N.; Van Dijk, H.A.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2011-12-15

    This literature review is the result of an investigation of the most important way to remove sulphur for the last decades. We will discuss Claus and Claus tail gas process options to solve the problem. Next to solutions which come from membranes, direct oxidation catalysis, from acid gas removal technology, sorbent technology, and liquid oxidation. Each field will be described and explained to understand in which way it could be suitable to separate CO2 and H2S and reach our goals with regard to CO2 transport and storage conditions. Finally, the target of this work will be to propose some interesting and promising solutions in view of future experiments.

  2. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  3. Tightening water quality regulations produces an innovative separation technology

    International Nuclear Information System (INIS)

    Welther, P.B.; Broussard, P.C.

    1994-01-01

    The impact of the recent proposed changes in the water quality standards for offshore producing platforms is having a far reaching effect on the oil and gas industry. At a time when oil companies are cutting back their work forces and reducing capital outlays in order to stay competitive in the market, water treatment equipment manufacturing companies are aggressively seeking innovative and cost effective solutions to meet the environmental requirements. Necessity drives advancements in technology, so Monosep Corporation has accepted the challenge to improve induced gas flotation technology and to develop enhanced gravity separation. This system of improved gas flotation and enhanced gravity separation can be used to consistently meet the proposed new guideline of an ''oil and grease'' maximum monthly average of 29 mg/l (milligrams per liter) in the discharged water from offshore platforms. The results demonstrated in the field suggest that adding enhanced gravity separation upstream of existing gas flotation units can improve performance sufficient to meet the Proposed stricter discharge limits. For platforms that do not have efficient gas flotation units, the old units can be replaced or modified to include the new features improved gas flotation technology like the Veirsep. For those few platforms are having difficulty meeting the current discharge requirements, both a new improved gas flotation unit, as well as a more sophisticated upstream gravity separator like the Cyclosep, may need to be installed. Chemical additives are sometimes a required necessity, but must be used sparingly due to the potential for creating soluble oil problems

  4. Future technological developments to fulfill AG2020 targets

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Østergård, Hanne; Borch, Kristian

    2010-01-01

    This report constitute an analysis of selected technologies that are anticipated to underpin the images described in Giaoutzi et al (2008) and it proposes policy measures to promote these technologies. It builds on Borch et al (2008) where a more detailed description of technologies can be found....... as the threats for development of the technology in the respective images. Finally policies for promoting and spreading technologies are proposed.......This report constitute an analysis of selected technologies that are anticipated to underpin the images described in Giaoutzi et al (2008) and it proposes policy measures to promote these technologies. It builds on Borch et al (2008) where a more detailed description of technologies can be found....... Based on the technological narratives and imperatives, we select a set of present available technologies that are able to support the society in reaching the targets set up by AG2020. For each of these technologies, we evaluate the strengths and weaknesses of the technology to reach the target as well...

  5. New separation method of no-carrier-added {sup 47}Sc from titanium targets

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, B.; Majkowska, A.; Kasperek, A.; Krajewski, S.; Bilewicz, A. [Institute of Nuclear Chemistry and Technology, Warszawa (Poland). Nuclear Chemistry and Radiochemistry Center

    2012-07-01

    Radionuclides with medium energy beta emission and a several day half-life are attractive candidates for radioimmunotherapy. Among the most promising in this category is {sup 47}Sc produced by fast neutron irradiation (E{sub n} > 1 MeV) of titanium target with high energy neutrons in {sup 47}Ti(n,p){sup 47}Sc nuclear reaction. In the previously reported production scheme the dissolution of the TiO{sub 2} target in hot concentrated H{sub 2}SO{sub 4} and evaporation of the resulting solution were the most time-consuming steps. The present paper describes new, simple and efficient production method of {sup 47}Sc, where the slow dissolution of the target is avoided. After irradiation in fast neutron flux {sup 47}TiO{sub 2} and Li{sub 2}{sup 47}TiF{sub 6} targets were dissolved in HF solutions. Next {sup 47}Sc was separated from the target using anion exchange resin Dowex 1 with 0.4 M HF + 0.06 M HNO{sub 3} solution as eluent. The eluted {sup 47}Sc was adsorbed on cation exchange resin and eluted with 0.5 M of ammonium acetate. The 47Sc separation yield in the proposed procedure is about 90% with the separation time less than 2 h. The obtained no-carrier-added {sup 47}Sc was used to label DOTATATE conjugate with 96% labeling yield. (orig.)

  6. Electroless plating technology of integral hohlraum Cu target

    International Nuclear Information System (INIS)

    Liu Jiguang; Fu Qu; Wan Xiaobo; Zhou Lan; Xiao Jiang

    2005-01-01

    The electroless plating method of making integral hohlraum Cu target and corrosion-resistant technology of target's surface were researched. The actual process was as follows, choosing plexiglass (PMMA) as arbor, taking cationic activation and electroless plating Cu on the arbor surface, taking arbor surface passivation and chemical etching by C 6 H 5 N 3 solution. The technology is easy to realize and its cost is lower, so it is of great reference value for fabricating other integral hohlraum metal or alloy targets used for inertial confinement fusion study. (author)

  7. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  8. Analysis on two technologic errors of color separation grating used for ICF

    International Nuclear Information System (INIS)

    Chen Dewei; Li Yongping

    2003-01-01

    In this paper, the depth of color separation grating applied in ICF system is optimized firstly for good separating effect. After this, duty cycle error and the trapezoid structure are analyzed. A probable scope of technologic error that make the color separation grating have good effect is given in the end

  9. R&D Opportunities for Membranes and Separation Technologies in Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2017-10-01

    This report recommends innovative membrane and separation technologies that can assist the Building Technologies Office in achieving its 2030 goal. This report identifies research and development (R&D) initiatives across several building applications where further investigations could result in impactful savings.

  10. Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

    KAUST Repository

    Bilaus, Rakan

    2014-01-01

    technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic

  11. Ultrasound imaging for quantitative evaluation of magnetic density separation

    NARCIS (Netherlands)

    Sanaee, S.A.

    2013-01-01

    This thesis is dedicated to an investigation of the potential and technological possibilities of an inline ultrasound system as a quality control system for wet recycling of solid waste. The main targeted recycling technology is magnetic density separation (MDS), a novel technique that was

  12. Establishment of the Center for Advanced Separation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  13. Near-term technology policies for long-term climate targets--economy wide versus technology specific approaches

    International Nuclear Information System (INIS)

    Sanden, B.A.; Azar, Christian

    2005-01-01

    The aim of this paper is to offer suggestions when it comes to near-term technology policies for long-term climate targets based on some insights into the nature of technical change. We make a distinction between economy wide and technology specific policy instruments and put forward two key hypotheses: (i) Near-term carbon targets such as the Kyoto protocol can be met by economy wide price instruments (carbon taxes, or a cap-and-trade system) changing the technologies we pick from the shelf (higher energy efficiency in cars, buildings and industry, wind, biomass for heat and electricity, natural gas instead of coal, solar thermal, etc.). (ii) Technology specific policies are needed to bring new technologies to the shelf. Without these new technologies, stricter emission reduction targets may be considered impossible to meet by the government, industry and the general public, and therefore not adopted. The policies required to bring these more advanced technologies to the shelf are more complex and include increased public research and development, demonstration, niche market creation, support for networks within the new industries, standard settings and infrastructure policies (e.g., when it comes to hydrogen distribution). There is a risk that the society in its quest for cost-efficiency in meeting near-term emissions targets, becomes blindfolded when it comes to the more difficult, but equally important issue of bringing more advanced technologies to the shelf. The paper presents mechanisms that cause technology look in, how these very mechanisms can be used to get out of the current 'carbon lock-in' and the risk with premature lock-ins into new technologies that do not deliver what they currently promise. We then review certain climate policy proposals with regards to their expected technology impact, and finally we present a let-a-hundred-flowers-bloom strategy for the next couple of decades

  14. A novel technology coupling extraction and foam fractionation for separating the total saponins from Achyranthes bidentata.

    Science.gov (United States)

    Ding, Linlin; Wang, Yanji; Wu, Zhaoliang; Liu, Wei; Li, Rui; Wang, Yanyan

    2016-10-02

    A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography-mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.

  15. High-temperature method of rapid separation of In-111 from irradiated silver targets

    International Nuclear Information System (INIS)

    Mazgaj, Z.; Kolaczkowski, A.; Mikulski, J.; Novgorodov, A.F.; Zielinski, A.; Joint Inst. for Nuclear Research, Dubna

    1990-01-01

    A high-temperature method of separation of In-111 from α-particle activated silver targets was developed. The separation is carried out under reduced pressure, in the atmosphere of HCl and H 2 O vapours. Indium-111, adsorbed on a quartz collector, is washed out quantitatively with 0.1 N HCl. The contaminant, Cd-109 (product of decay of In-109), is removed from the preparation by means of ion-exchange chromatography. 4 tabs., 6 refs. (author)

  16. Technologies for the treatment of source-separated urine in the ...

    African Journals Online (AJOL)

    Technologies for the treatment of source-separated urine in the eThekwini ... This practice can lead to environmental pollution, since urine contains high amounts of ... produces only distilled water and a small amount of sludge as by-products.

  17. The review of separation technology for fission nuclides 90Sr and 137Cs

    International Nuclear Information System (INIS)

    Zhang Huaming; Li Xingliang; Luo Shunzhong; Peng Shuming; Lei Jiarong

    2010-01-01

    The progress of separation technologies for fission nuclides 90 Sr and 137 Cs, including precipitation method, liquid-liquid extraction process and ion exchanging operation, are mainly reviewed. Crown ether (DtBuCH18C6) and calixarene-crown ether (BOBCalixC6) can be highly selective for 90 Sr and 137 Cs respectively in acidic waste; Ionic liquids extraction and supercritical fluid extraction can be applied for separation 90 Sr and 137 Cs from high level waste. Crystalline silicotitiate (CST) and metal sulfide (KMS-1) have highly selectivity for 90 Sr and 137 Cs separately in basic condition. The prospects of disposal technology for high level waste are also discussed in this review. (authors)

  18. Magneto-plasma separating technologies and their possible application for conversion spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Kovtun, Yu.V.; Skyibenko, Je.Yi.; Yuferov, V.B.

    2007-01-01

    A problem of spent fuel (SF) and radioactive waste (RAW) processing is considered in the views of using magneto-plasma technologies. Basing on this analysis, the block-diagram of RAW processing by the technology using a magneto-plasma separator is offered. The paper describes the device for material element separation, where the main physical mechanism of plasma formation and heating are collective processes involved by the plasma-beam interaction. The dimensions of a pilot-separating device are determined

  19. Animal manure separation technologies diminish the environmental burden of steroid hormones

    DEFF Research Database (Denmark)

    Hansen, Martin; Björklund, Erland; Popovic, Olga

    2015-01-01

    environmental risks associated with the release of steroid hormones to adjacent waterways. To assess the potential benefit of these technologies in reducing the level of release of steroid hormones to adjacent waterways, distribution profiles of nine steroid hormones (pregnenolone, progesterone......Newly developed treatment technologies are capable of separating livestock manure into a liquid fraction and a solid fraction using sedimentation, mechanical, and/or chemical methods. These technologies offer a potential means of distributing nutrients to agricultural lands without the unwanted...

  20. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Hugh W. Rimmer

    2003-07-01

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  1. Chemical technology of the systems, partitioning and separation, disposal

    International Nuclear Information System (INIS)

    Volk, V.I.

    1997-01-01

    A reactor-accelerator reprocessing complex is described. The complex comprises an electronuclear transmutation installation and chemical and technological support units for maintenance of the steady-state of the blanket, separation of short-lived transmutation products to be disposed of from other components of the blanket, chemical conversion to relevant stable species of products to be disposed of for interim storage and disposal

  2. [Study on essential oil separation from Forsythia suspensa oil-bearing water body based on vapor permeation membrane separation technology].

    Science.gov (United States)

    Zhang, Qian; Zhu, Hua-Xu; Tang, Zhi-Shu; Pan, Yong-Lan; Li, Bo; Fu, Ting-Ming; Yao, Wei-Wei; Liu, Hong-Bo; Pan, Lin-Mei

    2018-04-01

    To investigate the feasibility of vapor permeation membrane technology in separating essential oil from oil-water extract by taking the Forsythia suspensa as an example. The polydimethylsiloxane/polyvinylidene fluoride (PDMS/PVDF) composite flat membrane and a polyvinylidene fluoride (PVDF) flat membrane was collected as the membrane material respectively. Two kinds of membrane osmotic liquids were collected by self-made vapor permeation device. The yield of essential oil separated and enriched from two kinds of membrane materials was calculated, and the microscopic changes of membrane materials were analyzed and compared. Meanwhile, gas chromatography-mass spectrometry (GC-MS) was used to compare and analyze the differences in chemical compositions of essential oil between traditional steam distillation, PVDF membrane enriched method and PDMS/PVDF membrane enriched method. The results showed that the yield of essential oil enriched by PVDF membrane was significantly higher than that of PDMS/PVDF membrane, and the GC-MS spectrum showed that the content of main compositions was higher than that of PDMS/PVDF membrane; The GC-MS spectra showed that the components of essential oil enriched by PVDF membrane were basically the same as those obtained by traditional steam distillation. The above results showed that vapor permeation membrane separation technology shall be feasible for the separation of Forsythia essential oil-bearing water body, and PVDF membrane was more suitable for separation and enrichment of Forsythia essential oil than PDMS/PVDF membrane. Copyright© by the Chinese Pharmaceutical Association.

  3. Life Cycle Assessment of pretreatment technologies for anaerobic digestion of source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2013-01-01

    The environmental performance of two pretreatment technologies for source-separated organic waste was compared using life cycle assessment (LCA). An innovative pulping process where source-separated organic waste is pulped with cold water forming a volatile solid rich biopulp was compared to a more...... including a number of non-toxic and toxic impact categories were assessed. No big difference in the overall performance of the two technologies was observed. The difference for the separate life cycle steps was, however, more pronounced. More efficient material transfer in the scenario with waste pulping...

  4. Separation of Plutonium from Irradiated Fuels and Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Leonard W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holliday, Kiel S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Murray, Alice [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thompson, Major [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Thorp, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yarbro, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Venetz, Theodore J. [Hanford Site, Benton County, WA (United States)

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  5. The development of zirconia membrane oxygen separation technology

    International Nuclear Information System (INIS)

    Chiacchi, F.T.; Badwal, S.P.S.; Velizko, V.

    2000-01-01

    The oxygen separation technology based on ceramic membranes constructed from stabilised zirconia is currently under development for applications ranging from oxygen generation or air enrichment for medical use to control of oxygen concentration or oxygen removal from gas streams and enclosures for semiconductor, food packaging and process control instrumentation industries. The technology is based on a rugged tubular design with extensive thermal cycling capability. Several single and three tube devices have been operated for periods up to 5000h. An eight tube module, as a building block for larger scale oxygen production or removal devices, has been constructed and is being evaluated. In this paper, the construction of the device, oxygen generating capacity, life time tests and performance of the ceramic membrane device under development at CSIRO will be discussed. Copyright (2000) The Australian Ceramic Society

  6. Separation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  7. Production and separation of terbium-149 and terbium-152 for targeted cancer therapy

    International Nuclear Information System (INIS)

    Sarkar, S.; Leigh, J.

    1997-01-01

    This work reports the production and separation of useful quantities of 149 , 152 Tb from natural neodymium ( nat Nd) and 141 Pr for in vitro studies by bombarding the targets with 12 C projectiles. The physical, chemical and nuclear properties of radionuclides determine their efficacy in therapy and diagnosis. Tb-149 is an alpha-emitter with a half-life of 4.1h and 152 Tb is a positron emitter with a half-life of 17.5 h. Both of the isotopes have suitable gamma emission with good branching ratio suggesting their application to diagnosis apart from therapy. Alpha-emitters are effective in controlling cancer because of their short range and high Relative Biological Effectiveness. Long-lived positron emitters are effective in studying physiological function in positron emission tomography other than therapy. The aim of this work is to optimise the production and carrier free separation of terbium. Because of the presence of other stable isotopes in nat Nd, a number of other lanthanides are produced by secondary reactions during the production of terbium. In order to remove the secondary products, α-hydroxyisobutyric acid of pH 5 was used as eluent. satisfactory separation of terbium was achieved and demonstrate that useful quantities of 144,152 Tb can be produced by Tandem accelerator from 141 Pr and nat Nd targets

  8. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  9. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  10. Separation of carrier-free rhodium isotopes from ruthenium cyclotron targets by the extraction of nitrosylruthenium from hydrochloric acid solution

    International Nuclear Information System (INIS)

    Haasbroek, F.J.; Strelow, F.W.E.; Van der Walt, T.N.

    1981-01-01

    A method is presented for the separation of rhodium isotopes from ruthenium cyclotron targets. After bombardment with deuterons and dissolution of the target material, the ruthenium is converted into a nitrosyl complex by treatment with hydroxylammonium chloride. Aluminium and other elements which have been introduced in the dissolution step, are separated by cation exchange. Ruthenium is then separated by extraction with a mixture of tri-n-butyl phosphate and hexane (4:1), leaving the rhodium in the aqueous phase. No ruthenium is found in the rhodium fraction and the recovery of rhodium is better than 90 per cent [af

  11. Screening Technologies for Target Identification in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michl, Patrick, E-mail: michlp@med.uni-marburg.de; Ripka, Stefanie; Gress, Thomas; Buchholz, Malte [Department of Gastroenterology and Endocrinology, University Hospital, Philipps-University Marburg, Baldinger Strasse, D-35043 Marburg (Germany)

    2010-12-29

    Pancreatic cancer exhibits an extraordinarily high level of resistance to almost any kind of systemic therapy evaluated in clinical trials so far. Therefore, the identification of novel therapeutic targets is urgently required. High-throughput screens have emerged as an important tool to identify putative targets for diagnosis and therapy in an unbiased manner. More than a decade ago, microarray technology was introduced to identify differentially expressed genes in pancreatic cancer as compared to normal pancreas, chronic pancreatitis and other cancer types located in close proximity to the pancreas. In addition, proteomic screens have facilitated the identification of differentially secreted proteins in body fluids of pancreatic cancer patients, serving as possible biomarkers. Recently, RNA interference-based loss-of-function screens have been used to identify functionally relevant genes, whose knock-down has impact on pancreatic cancer cell viability, thereby representing potential new targets for therapeutic intervention. This review summarizes recent results of transcriptional, proteomic and functional screens in pancreatic cancer and discusses potentials and limitations of the respective technologies as well as their impact on future therapeutic developments.

  12. Screening Technologies for Target Identification in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Michl, Patrick; Ripka, Stefanie; Gress, Thomas; Buchholz, Malte

    2010-01-01

    Pancreatic cancer exhibits an extraordinarily high level of resistance to almost any kind of systemic therapy evaluated in clinical trials so far. Therefore, the identification of novel therapeutic targets is urgently required. High-throughput screens have emerged as an important tool to identify putative targets for diagnosis and therapy in an unbiased manner. More than a decade ago, microarray technology was introduced to identify differentially expressed genes in pancreatic cancer as compared to normal pancreas, chronic pancreatitis and other cancer types located in close proximity to the pancreas. In addition, proteomic screens have facilitated the identification of differentially secreted proteins in body fluids of pancreatic cancer patients, serving as possible biomarkers. Recently, RNA interference-based loss-of-function screens have been used to identify functionally relevant genes, whose knock-down has impact on pancreatic cancer cell viability, thereby representing potential new targets for therapeutic intervention. This review summarizes recent results of transcriptional, proteomic and functional screens in pancreatic cancer and discusses potentials and limitations of the respective technologies as well as their impact on future therapeutic developments

  13. Output optics for Aurora: Beam separation, pulse stacking, and target focusing

    International Nuclear Information System (INIS)

    McLeod, J.

    1987-01-01

    An end-to-end technology demonstration prototype for large-scale ultraviolet laser systems of interest for short wavelength, inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver to ICF targets a stack of pulses with a duration of 5 ns containing several kilojoules at a wavelength of 248 nm. The optical system has been designed in two phases. The first phase carries only through the amplifier train and does not include a target chamber or any demultiplexing. During first-phase design, the system was conceived of as only an amplifier demonstration and not as an end-to-end system demonstration. The design concept for second-phase optics that provides demultiplexing and carries the laser light to target is presented

  14. 75 FR 37860 - Aris Industries, Inc., Bene Io, Inc., Commodore Separation Technologies, Inc., Food Integrated...

    Science.gov (United States)

    2010-06-30

    ...., Commodore Separation Technologies, Inc., Food Integrated Technologies, Inc., Gap Instrument Corp., Skysat Communications Network Corp., and Vicon Fiber Optics Corp.; Order of Suspension of Trading June 28, 2010. It... information concerning the securities of Food Integrated Technologies, Inc. because it has not filed any...

  15. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  16. Pyrochemical separations technologies envisioned for the U.S. accelerator transmutation of waste system

    International Nuclear Information System (INIS)

    Laidler, J. J.

    2000-01-01

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system

  17. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    Science.gov (United States)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  18. A broad look at separator material technology for valve-regulated lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zguris, G.C. [Hollingsworth and Vose, West Groton, MA (United States)

    1998-05-18

    Recent research has proved the importance of a constant force of 40 kPa or greater on the paste solidus-grid interface. This has lead to increased interest in re-examining the microglass separator and the system that the plate-separator interaction forms. This renewed interest has resulted in new separator ideas and the revisiting of concepts tried in the early days of valve-regulated lead/acid (VRLA) technology. The paper is divided into two parts. The first part examines some past separator developments that have been tried but are presently not accepted by the general VRLA community. This is due to the excellent performance of the microglass separator used so successfully during the last 20 years. Many fundamental questions that need to be asked regarding the selection of a new separator system have long ago been forgotten. The second part of the paper reviews some fundamental aspects of separator selection, and some important attributes that the separator must provide based on current knowledge of the separator system. Attributes such as toughness, corrosion resistance, compression, wicking, stratification, porosity and conformability are discussed. (orig.)

  19. Technologies using accelerator-driven targets under development at BNL

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1994-01-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications

  20. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  1. Target and (Astro-)WISE technologies Data federations and its applications

    Science.gov (United States)

    Valentijn, E. A.; Begeman, K.; Belikov, A.; Boxhoorn, D. R.; Brinchmann, J.; McFarland, J.; Holties, H.; Kuijken, K. H.; Kleijn, G. Verdoes; Vriend, W.-J.; Williams, O. R.; Roerdink, J. B. T. M.; Schomaker, L. R. B.; Swertz, M. A.; Tsyganov, A.; van Dijk, G. J. W.

    2017-06-01

    After its first implementation in 2003 the Astro-WISE technology has been rolled out in several European countries and is used for the production of the KiDS survey data. In the multi-disciplinary Target initiative this technology, nicknamed WISE technology, has been further applied to a large number of projects. Here, we highlight the data handling of other astronomical applications, such as VLT-MUSE and LOFAR, together with some non-astronomical applications such as the medical projects Lifelines and GLIMPS; the MONK handwritten text recognition system; and business applications, by amongst others, the Target Holding. We describe some of the most important lessons learned and describe the application of the data-centric WISE type of approach to the Science Ground Segment of the Euclid satellite.

  2. How to trigger low carbon technologies by EU targets for 2030? An assessment of technology needs

    Energy Technology Data Exchange (ETDEWEB)

    Groenenberg, H.; Van Breevoort, P.; Janeiro, L.; Winkel, T.

    2013-04-15

    The current EU framework for energy and climate policies up to 2020 consists of three headline targets: 20% reduction of GHG emissions compared to 2005, a 20% share of renewable energy in final energy consumption, and 20% primary energy savings compared to baseline developments. While progress on these 2020 targets is mixed, discussions in the EU about climate and energy policies and targets for the period after 2020 have started. Given the long cycles associated to energy and climate investments, agreement on a clear longer-term policy framework is critical to improve visibility for investors and avoid lock-in effects in inefficient or polluting technologies. Therefore, the European Commission published a Communication on 6 June 2012 on the need for a long term policy framework for renewable energy, and a Green Paper on the 2030 climate and energy policy framework on 27 March 2013. Against this background, the Dutch Ministries of Infrastructure and Environment and the Ministry of Economic Affairs requested PBL to create input for the European debate on climate targets and policies until and beyond 2030. Ecofys supported PBL by addressing the following two questions: (1) What steps are needed for selected key technology groups to achieve long term GHG emission reductions and what climate and energy policies are likely to trigger these steps?; and (2) What are the pros and cons of a 2030 policy framework with (a) a GHG reduction target only, and (b) targets for GHG reduction, renewable energy, and energy efficiency? The focus of the first question was on four technology groups, namely (1) energy efficiency in the built environment, notably for heat; (2) solar PV and wind energy; (3) advanced biofuels; (4) CO2 carbon capture and storage (CCS). An analysis of the steps needed for the deployment of the full GHG mitigation potential of the discussed technology groups shows that this will largely depend on the adoption of a wide range of policy instruments by EU Member

  3. Separation of carrier-free 181Re produced in 16O-irradiated thulium target

    International Nuclear Information System (INIS)

    Lahiri, Susanta; Mukhopadhyay, Krishnendu; Banerjee, Kakoli; Ramaswami, A.; Manohar, S.B.

    2001-01-01

    Heavy ion activation of natural Tm 2 O 3 with 90 MeV 16 O beam results in the formation of carrier-free short-lived 181 Ir and 181 Os which ultimately decay out to 181 Re in the matrix. The liquid cation exchanger, HDEHP, has effectively been utilized as an extractant for quantitative separation of bulk thulium target matrix from carrier-free rhenium radionuclide

  4. Separations Science and Technology, Semiannual progress report, October 1991--March 1992

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Betts, S.; Chamberlain, D.B.

    1994-01-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1991--March 1992. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Two other projects are underway with the objective of developing (1) a membrane-assisted solvent extraction method for treating natural and process waters contaminated by volatile organic compounds and (2) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process

  5. Separation science and technology. Semiannual progress report, April 1992--September 1992

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Betts, S.; Bowers, D.L.

    1994-09-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April-September 1992. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Two other projects are underway with the objective of developing (1) a membrane-assisted solvent extraction method for treating natural and process waters contaminated by volatile organic compounds and (2) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process

  6. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    Science.gov (United States)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR

  7. Target technologies for laser inertial confinement fusion: state-of-the-art and future perspective

    International Nuclear Information System (INIS)

    Zhang Lin; Du Kai

    2013-01-01

    Targets are physical base of the laser inertial confinement fusion (ICF) researches. The quality of the targets has extremely important influences on the reliabilities and degree of precision of the ICF experimental results. The characteristics of the ICF targets, such as complexity and microscale, high precision, determine that the target fabrication process must be a system engineering. This paper presents progresses on the fabrication technologies of ICF targets. The existing problem and the future needs of ICF target fabrication technologies are also discussed. (authors)

  8. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    Science.gov (United States)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  9. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    Science.gov (United States)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  10. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  11. Direct flow separation strategy, to isolate no-carrier-added {sup 90}Nb from irradiated Mo or Zr targets

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Roesch, Frank [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Filosofov, Dmitry V.; Dadakhanov, Jakhongir [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Karaivanov, Dimitar V. [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy; Marinova, Atanaska [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Sofia Univ. (Bulgaria). Faculty of Chemistry and Pharmacy; Baimukhanova, Ayagoz [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty (Kazakhstan)

    2016-11-01

    {sup 90}Nb has an intermediate half-life of 14.6 h, a high positron branching of 53% and optimal β{sup +} emission energy of only E{sub mean} 0.35 MeV per decay. These favorable characteristics suggest it may be a potential candidate for application in immuno-PET. Our recent aim was to conduct studies on distribution coefficients for Zr{sup IV} and Nb{sup V} in mixtures of HCl/H{sub 2}O{sub 2} and HCl/oxalic acid for anion exchange resin (AG 1 x 8) and UTEVA resin to develop a ''direct flow'' separation strategy for {sup 90}Nb. The direct flow concept refers to a separation accomplished using a single eluent on multiple columns, effectively streamlining the separation process and increasing the time efficiency. Finally, we also demonstrated that this separation strategy is applicable to the production of the positron emitter {sup 90}Nb via the irradiation of molybdenum targets and isolation of {sup 90}Nb from the irradiated molybdenum target.

  12. Co-crystallization as a separation technology: controlling product concentrations by co-crystals

    NARCIS (Netherlands)

    Urbanus, J.; Roelands, C.P.M.; Verdoes, D.; Jansens, P.J.; Horst, J.H. ter

    2010-01-01

    Co-crystallization is known as a product formulation technology, but it can also be used as a tool to solve crystallization problems. Product removal by co-crystallization in fermentations is used as a showcase to demonstrate the potential of co-crystallization as a separation technique. In

  13. Development of a Novel Targeted RNAi Delivery Technology inTherapies for Metabolic Diseases

    Science.gov (United States)

    2017-10-01

    report Impact on other disciplines: Nothing to report Impact on technology transfer: Nothing to report Impact on society : Nothing to report 5. CHANGES...AWARD NUMBER: W81XWH-15-1-0569 TITLE: Development of a Novel Targeted RNAi Delivery Technology in Therapies for Metabolic Diseases PRINCIPAL...COVERED 30Sep2016 - 29Sep2017 4. TITLE AND SUBTITLE Development of a Novel Targeted RNAi Delivery Technology in Therapies for Metabolic Diseases 5a

  14. Reconfiguring global pharmaceutical value networks through targeted technology interventions

    OpenAIRE

    Harrington, Tomas Seosamh; Phillips, MA; Srai, Jagjit Singh

    2016-01-01

    Targeting a series of advanced manufacturing technology (AMT) ‘interventions’ provides the potential for significant step changes across the pharmaceutical value chain, from early stage ‘system discovery’ and clinical trials, through to novel service supply models. This research explores future value network configurations which, when aligned with disruptive shifts in technology (process and digital), may enable alternative routes to medicines production and the delivery of additional value t...

  15. Investigating consumer attitudes towards the new technology of urine separation.

    Science.gov (United States)

    Pahl-Wostl, C; Schönborn, A; Willi, N; Muncke, J; Larsen, T A

    2003-01-01

    The technology of urine separation and the recycling of anthropogenic nutrients as fertilizer in agriculture are considered as major innovations to improve the sustainability of today's urban wastewater management. The acceptance of consumers will be key for the introduction of the new technology. Citizens will have to make important decisions in their role as tenants and owners of houses and as consumers buying products fertilized with urine. Consumer attitudes towards the new technology were explored in a number of citizen focus groups in Switzerland. Focus groups are deliberate, moderated group discussions with informed citizens on a certain topic. The information was provided by a computer based information system specifically designed for this purpose. The acceptance of individual citizens for the new technology proved to be quite high. The majority of the citizens expressed their willingness to move into an apartment with NoMix toilets and to buy food fertilized with urine. However, they were not willing to accept additional financial costs or efforts. Arguments related to long-term sustainability (closing nutrient cycles) were of less importance than arguments that relate directly to the effects of micropollutants on human and ecosystem health. For the introduction of the new technology on a wide scale it will thus be crucial to explore the fate and effects of micropollutants.

  16. Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2010-04-01

    Full Text Available This paper describes the fabrication of novel modified polyethylene (PE membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer batteries. The modified PE membrane via plasma modification process plays a critical role in improving wettability and electrolyte retention, interfacial adhesion between separators and electrodes, and cycle performance of lithium-ion polymer batteries. This paper suggests that the performance of lithium-ion polymer batteries can be greatly enhanced by the plasma modification of commercial separators with proper functional materials for targeted application.

  17. Feasibility evaluation of downhole oil/water separator (DOWS) technology.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Langhus, B. G.; Belieu, S.

    1999-01-31

    The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely

  18. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  19. The Institute for Cryogenics and Isotope Separation - History, Present and Prospective

    International Nuclear Information System (INIS)

    Stefanescu, Ioan

    1998-01-01

    The foundation of plant 'G' at Rm. Valcea on March 1, 1970 has opened a technological prospect within the Romania Program of Nuclear Energy Development and led to formation of a school of experts under supervision of professor Marius Peculea, the Secretary general of Romanian Academy. The fruitful scientific activity of the plant's staff in approaching advanced technologies of heavy water separation resulted in numerous valuable technical solutions, patents and know-hows of national interest as well as a great number of scientific works which today constitutes a useful information basis for all the personnel engaged in the organization and growth of industrial production of heavy water. The research work continued by approaching new methods of hydrogen isotope separation, by initiation of selective physical adsorption of gases in porous materials, in the high vacuum techniques as well as in the technologies of low and very low temperatures. Following this scientific progress and based on the results of scientific research and technological developments, in 1996 the National Institute of Research-Development for Cryogenics and Isotopic Technologies, ICSI, at Rm. Valcea was founded. Research - development activity of ICSI is undertaken within the frames of several research programs at the science-technology interface. A special attention was paid to developing cryogenics, technologies and equipment specific for tritium and deuterium separation as well as the production and turning to account the gases and gas mixtures for industrial or laboratory applications. In ICSI two facilities of national interest operate, one in a stage of maintenance - the heavy water pilot and the other in current operation - the experimental pilot for tritium and deuterium separation. The outstanding target of ICSI is to become an internationally competitive institute in the field of cryogenic equipment and technologies specific to isotope separation, boosting the technological transfer to

  20. Report of the consultants' meeting on target and processing technologies for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    1999-11-01

    Cyclotron produced radionuclides are used routinely for the diagnosis of a wide variety of diseases. Recently a number of radionuclides available from cyclotrons have been proposed for use in radiotherapy. In fact Pd-103 has become routinely available in some parts of the world for incorporation into brachytherapy seeds for treating prostate cancer. The consultants meeting reviewed the status of target and processing technologies associated with cyclotron production of radionuclides. The main topics of discussion included the basic nuclear data that is crucial to the production of the desired radionuclides, gas and solid target systems, the automated chemical processing units, the Good Manufacturing Practices (GMP) required in order to use these radionuclides in human patients in a safe and efficacious manner and a review of possible candidate nuclides that show promise for use in Nuclear Medicine in the near future. Advances in the preparation of solid targets using electroplating technology has created the possibility of preparing targets capable of operating at very high beam currents which would make the production of large quantities of SPECT agents possible at cyclotron facilities throughout the world. Recognising the needs of the developing countries which have established cyclotron facilities, the consultants focussed on how to provide the technology for preparing solid targets that could be used in the existing facilities. While solid target technology can be used for many radionuclides the report concentrated on several key radionuclides, which are of current importance or show potential for use in the near future. Tl-201 is currently used for cardiac profusion studies throughout the world. New target preparation techniques could potentially make many of the member states self sufficient in the production of this nuclide. I-123 has tremendous potential because of the near ideal photon energy for SPECT cameras and its well-understood chemistry. However, it

  1. Emerging trends in separation science and technology as practised by Indian Rare Earths Ltd

    International Nuclear Information System (INIS)

    Mukherjee, T.K.

    2004-01-01

    Although the core business of Indian Rare Earths Ltd. (IREL) is mining of Indian Beach Sand deposits and separation of associated six heavy minerals, the Company is also engaged in a strategic activity like recovery of the mineral monazite from the sand and its chemical processing to recover two important nuclear materials and the rare earths. Separation science and technology plays an important role in this particular activity of IREL to produce, in commercial scale, the mineral monazite in desired purity and its chemical processing to recover products like thorium oxalate concentrate, nuclear grade ammonium diuranate, tri sodium phosphate and host of rare earths salts both mixed and separated. This paper to start with, will deal with bulk separation of monazite itself, which has an important bearing on down stream chemical separation process to be discussed in the later half

  2. Separation of no-carrier-added 107,109Cd from proton induced silver target. Classical chemistry still relevant

    International Nuclear Information System (INIS)

    Moumita Maiti; Susanta Lahiri; Tomar, B.S.

    2011-01-01

    The classical chemistry like precipitation technique is relevant even in modern days trans-disciplinary research from the view point of green chemistry. A definite demand of no-carrier-added (nca) cadmium tracers, namely, 107,109 Cd, has been realized for diverse applications. Development of efficient separation technique is therefore important to address the purity of the tracers for various applications. No-carrier-added 107,109 Cd radionuclides were produced by bombarding natural silver target matrix with 13 MeV protons, which gave ∼15 MBq/μA h yield for nca 107 Cd. The nca cadmium radionuclides were separated from the natural silver target matrix by precipitating Ag as AgCl. The developed method is an example wherein green chemistry is used in trans-disciplinary research. The method is also simple, fast, cost effective and environmentally benign. (author)

  3. Targeted Research and Technology Within NASA's Living With a Star Program

    Science.gov (United States)

    Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael

    2004-01-01

    Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.

  4. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  5. Direct separation of 67Ga citrate from zinc and copper target materials by an ion exchange

    International Nuclear Information System (INIS)

    El-Azony, K.M.; Ferieg, Kh.; Saleh, Z.A.

    2004-01-01

    The separation of 6 7G a from zinc and copper target materials using an anion- f:exchanger (Dowex21K) and 0.1 M citrate buffer at pH 6 is described. The gallium-67 was separated in citrate solution and can be directly used for medical applications. Gallium-67 with a half-life of 78.3 h and gamma-rays with energies of 93, 185 and 300 keV is a cyclotron produced radioisotope for which a considerable demand exists. 6 7G a is frequently produced through proton or deuteron bombardment of natural or enriched Zn targets (Helus and Maier-Borst, 1973). It is usually separated from Zn by ion exchange chromatography (Helus and Maier-Borst, 1973; van der Walt and Strelow, 1983) or by liquid extraction Helus and Maier-Borst, 1973; Hupf and Beaver, 1970). The isotope is usually supplied in citrate solution which is widely used as 6 7G a Gallium citrate which is a well-established radiopharmaceutical for imaging soft tissue tumors and abscesses. Several routes for large scale production of 6 7G a and the development of medical applications have been reported (Silvester and Thakur, 1970; Dahl and Tilbury, 1972; Steyn and Meyer,1973; Vlatkovic et al., 1975; Neirinckx, 1976; Thakur, 1977). Various attempts were carried out to separate gallium-67 by using different ion exchange methods (Strelow et al., 1971; Das and Ramamoorthy, 1995; Boothe et al.,1991) through the labelling of citrate by using 6 7G a was carried out for medical applications

  6. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    CERN Document Server

    Smolyar, V A; Eremin, V V

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well

  7. Distribution of separated energy and injected charge at normal falling of fast electron beam on target

    International Nuclear Information System (INIS)

    Smolyar, V.A.; Eremin, A.V.; Eremin, V.V.

    2002-01-01

    In terms of a kinetic equation diffusion model for a beam of electrons falling on a target along the normal one derived analytical formulae for distributions of separated energy and injected charge. In this case, no empirical adjustable parameters are introduced to the theory. The calculated distributions of separated energy for an electron plate directed source within infinite medium for C, Al, Sn and Pb are in good consistency with the Spencer data derived on the basis of the accurate solution of the Bethe equation being the source one in assumption of a diffusion model, as well [ru

  8. Preparation of 64Cu based on nuclear reaction of 64Ni (p,n) 64Cu: Simulations of target preparation and radionuclidic separation

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2010-01-01

    As a preliminary study for production technology of 64 Cu based on nuclear reaction of 64 Ni (p,n) 64 Cu, the nickel targets were prepared by electroplating method using acidic solution of nickel chloride - boric acid and basic solution of nickel sulphate - nickel chloride mixtures on a silver-surfaced target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel containing radioactive copper. In the presented work the irradiation of nickel target was omitted, while the radioactive copper was obtained from neutron irradiation of CuO target. The separation of radioactive copper was based on anion exchange column chromatography in which the radiocopper was conditioned to form CuCl 4 2- anion complex, while the nickel was kept as Ni 2+ cation. It was found that the electroplating deposit from the acidic solution was better than that form the basic solution. By conditioning the matrix solution in 6 M HCl, the radioactive copper was indicated in the forms of Cu 2+ and CuCl 4 2- while the nickel was in the form of Ni 2+ . In the condition of 9 M HCl, the radioactive copper was in the form of CuCl 4 2- , while the nickel was found as both Ni 2+ and CuCl 4 2- . The best condition of separation was in 8 M HCl in which the radioactive copper was in the form of CuCl 4 2- , while the nickel was in the form of Ni 2+ . The retained CuCl 4 2- was then changed back into Cu 2+ cation and eluted out from the column by using 0.05 M HCl. The γ-spectrometric analysis showed a single strong peak at 511 keV in accordance to γ-annihilation peak coming from positron decay of 64 Cu, and a very weak peak at 1346 keV related to γ-ray from internal energy transition of 64 Cu. (author)

  9. Development of leading technology using reactor produced radioisotope

    International Nuclear Information System (INIS)

    Choi, S. J.; Hong, Y. D.; Choi, K. H.

    2011-01-01

    This project aimed to develop radioimmunotherapeutic candidates for cancer targeting, and production technology for high valued RI(Lu-177) and sealed source for medical application. Major scope and contents are as followed. The development of radiotherapeutic candidates for cancer targeting: Screaning of cancer targeting bioactive materials, Synthesis and radiolabeling of cancer targeting bioactive materials, - Preparation of BFCAs - Highly effective radiolabeling with RI: Validation of therapeutic efficacy of candidate radiopharmaceuticals: in vivo visualization, Development of production technology for RI(Lu-177) and sealed source for medical/industrial application: Separation of Lu-177 using by enriched target: Fabrication of radioactive core for P-32 ophthalmic applicator

  10. Electrochemically Modulated Gas/Liquid Separation Technology for In Situ Resource Utilization Process Streams, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this phase I program MicroCell Technologies, LLC (MCT) proposes to demonstrate the feasibility of an electrochemically modulated phase separator for in situ...

  11. Devices for separation of particle emissions from biofuel plants smaller than 10 MW - Today's technology and potential for development; Stoftreningsteknik foer biobraensleanlaeggningar mindre aen 10 MW - tekniklaege och utvecklingspotential

    Energy Technology Data Exchange (ETDEWEB)

    Roennbaeck, Marie; Gustavsson, Lennart; Martinsson, Lars; Tullin, Claes; Johansson, Linda

    2002-09-01

    The objective of this report is to compile a survey of available technologies for separation of particles and to present research and development in the area of particle separation for biofuel plants smaller than 10 MW. Technical and economical opportunities to transfer the technologies used today in larger plants to smaller ones are discussed. As the health effects of aerosols are under investigation, the issue of separation of particle less than 1 {mu}m is especially scrutinised. Current research concerning the particle size distribution at different load is presented. The project has been realised partly as a literature survey, partly through contacts with scientists in the area and manufacturers of devices for flue gas cleaning and particle separation. The target group is owners of plants, manufacturers of devices and authorities with responsibility for air quality and energy planning. Fabric filters is an established technology that can perform low particle emissions (less than a few mg/m{sup 3}) at a low cost also at smaller plants. Also electrostatic precipitators can perform the same low emissions, but the cost for installation at smaller plants has to be reduced. Both these technologies can, properly designed, separate submicron particles. Cyclones can today as its best perform a little less than 100 mg/m{sup 3} at 13 % CO{sub 2}. Cyclones are used together with other technologies to achieve high separation at a low cost. Cyclones are attractive because of their simplicity and low price, but because they use inertia forces as separation mechanism, they can never separate submicron particles. Conventional scrubbers and flue gas condensers are capable of separation of submicron particles but the efficiency is lower compared with fabric filters and electrostatic precipitators. The emission level after a scrubber/flue gas condenser is about 70 - 80 mg/m{sup 3} at 13 % CO{sub 2}. New technologies for separation of particles oriented towards smaller plants and

  12. Artificial Intelligence In Automatic Target Recognizers: Technology And Timelines

    Science.gov (United States)

    Gilmore, John F.

    1984-12-01

    The recognition of targets in thermal imagery has been a problem exhaustively analyzed in its current localized dimension. This paper discusses the application of artificial intelligence (AI) technology to automatic target recognition, a concept capable of expanding current ATR efforts into a new globalized dimension. Deficiencies of current automatic target recognition systems are reviewed in terms of system shortcomings. Areas of artificial intelligence which show the most promise in improving ATR performance are analyzed, and a timeline is formed in light of how near (as well as far) term artificial intelligence applications may exist. Current research in the area of high level expert vision systems is reviewed and the possible utilization of artificial intelligence architectures to improve low level image processing functions is also discussed. Additional application areas of relevance to solving the problem of automatic target recognition utilizing both high and low level processing are also explored.

  13. Heated uranium tetrafluoride target system to release non-rare gas fission products for the TRISTAN isotope separator

    International Nuclear Information System (INIS)

    Gill, R.L.

    1977-10-01

    Off-line experiments indicated that fluorides of As, Se, Br, Kr, Zr, Nb, Mo, Tc, Ru, Sb, Te, I and Xe could be volatilized, but except for Br, Kr, I and Xe, none of these elements were observed after mass separation in the on-line experiments. The results of the on-line experiments indicated a very low level of hydride contamination at ambient temperature and consequently, uranium tetrafluoride replaced uranyl stearate as the primary gaseous fission product target. Possible reasons for the failure of the heated target system to yield non-rare gas activities are discussed and suggestions for designing a new heated target system are presented

  14. Research on infrared small-target tracking technology under complex background

    Science.gov (United States)

    Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao

    2012-10-01

    In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.

  15. Fusion technologies for Laser Inertial Fusion Energy (LIFE∗

    Directory of Open Access Journals (Sweden)

    Kramer K.J.

    2013-11-01

    Full Text Available The Laser Inertial Fusion-based Energy (LIFE engine design builds upon on going progress at the National Ignition Facility (NIF and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant.

  16. Airborne Separation Assurance and Traffic Management: Research of Concepts and Technology

    Science.gov (United States)

    Ballin, Mark G.; Wing, David J.; Hughes, Monica F.; Conway, Sheila R.

    1999-01-01

    To support the need for increased flexibility and capacity in the future National Airspace System, NASA is pursuing an approach that distributes air traffic separation and management tasks to both airborne and ground-based systems. Details of the distributed operations and the benefits and technical challenges of such a system are discussed. Technology requirements and research issues are outlined, and NASA s approach for establishing concept feasibility, which includes development of the airborne automation necessary to support the concept, is described.

  17. Preliminary survey of separations technology applicable to the pretreatment of Hanford tank waste (1992--1993)

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Kurath, D.E.

    1994-04-01

    The US Department of Energy has established the Tank Waste Remediation System (TWRS) to manage and dispose of radioactive wastes stored at the Hanford Site. Within this program are evaluations of pretreatment system alternatives through literature reviews. The information in this report was collected as part of this project at Pacific Northwest Laboratory. A preliminary survey of literature on separations recently entered into the Hanford electronic databases (1992--1993) that have the potential for pretreatment of Hanford tank waste was conducted. Separation processes that can assist in the removal of actinides (uranium, plutonium, americium), lanthanides, barium, 137 Cs, 90 Sr, 129 I, 63 Ni, and 99 Tc were evaluated. Separation processes of interest were identified through literature searches, journal reviews, and participation in separation technology conferences. This report contains brief descriptions of the potential separation processes, the extent and/or selectivity of the separation, the experimental conditions, and observations. Information was collected on both national and international separation studies to provide a global perspective on recent research efforts

  18. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy

    Directory of Open Access Journals (Sweden)

    Chang WC

    2014-06-01

    Full Text Available Wen-Chung Chang,1,* Chin-Sheng Chen,2,* Hung-Chi Tai,3 Chia-Yuan Liu,4,5 Yu-Jen Chen3 1Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan; 2Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan; 3Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan; 4Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; 5Department of Medicine, Mackay Medical College, New Taipei City, Taiwan  *These authors contributed equally to this work Abstract: The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US and computed tomography (CT scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy. Keywords: ultrasound, computerized tomography

  19. Target and collection optimization for muon colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Noble, R.J.; Van Ginneken, A.

    1996-01-01

    To achieve adequate luminosity in a muon collider it is necessary to produce and collect large numbers of muons. The basic method used in this paper follows closely a proposed scheme which starts with a proton beam impinging on a thick target (∼ one interaction length) followed by a long solenoid which collects muons resulting mainly from pion decay. Production and collection of pions and their decay muons must be optimized while keeping in mind limitations of target integrity and of the technology of magnets and cavities. Results of extensive simulations for 8 GeV protons on various targets and with various collection schemes are reported. Besides muon yields results include-energy deposition in target and solenoid to address cooling requirements for these systems. Target composition, diameter, and length are varied in this study as well as the configuration and field strengths of the solenoid channel. A curved solenoid field is introduced to separate positive and negative pions within a few meters of the target. This permits each to be placed in separate RF buckets for acceleration which effectively doubles the number of muons per bunch available for collisions and increases the luminosity fourfold

  20. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group

    International Nuclear Information System (INIS)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.J.; Laidler, J.J.; McDeavitt, S.M.; Thompson, M.; Toth, L.M.; Williamson, M.; Willit, J.L.

    1999-01-01

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD and D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years

  1. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  2. Review and assessment of technologies for the separation of cesium from acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Orth, R.J.; Brooks, K.P.; Kurath, D.E.

    1994-09-01

    A preliminary literature survey has been conducted to identify and evaluate methods for the separation of cesium from acidic waste. The most promising solvent extraction, precipitation, and ion exchange methods, along with some of the attributes for each method, are listed. The main criteria used in evaluating the separation methods were as follows: (1) good potential for cesium separation must be demonstrated (i.e., cesium decontamination factors on the order of 50 to 100). (2) Good selectivity for cesium over bulk components must be demonstrated. (3) The method must show promise for evolving into a practical and fairly simple process. (4) The process should be safe to operate. (5) The method must be robust (i.e., capable of separating cesium from various acidic waste types). (6) Secondary waste generation must be minimized. (7) The method must show resistance to radiation damage. The most promising separation methods did not necessarily satisfy all of the above criteria, thus key areas requiring further development are suggested for each method. The report discusses in detail these and other areas requiring further development, as well as alternative solvent extraction, precipitation, ion exchange, and {open_quote}other{close_quote} technologies that, based on current information, show less promise for the separation of cesium from acidic wastes because of significant process limitations. When appropriate, the report recommends areas of future development.

  3. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  4. Green methods for the radiochemical separations of no-carrier-added 61Cu, 62Zn from 7Li irradiated cobalt target

    International Nuclear Information System (INIS)

    Moumita Maiti; Kaustab Ghosh; Susanta Lahiri

    2015-01-01

    A nat Co target was irradiated with 47 MeV 7 Li beam to produce no-carrier-added 61 Cu, 62 Zn in the target matrix. Two new green radiochemical methods were developed for separation of 61 Cu and 62 Zn from the target matrix, (i) liquid-liquid extraction (LLX) technique using room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) and ammonium pyrrolidinedithiocarbamate (APDC) (ii) adsorption on calcium alginate beads. (author)

  5. Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

    KAUST Repository

    Bilaus, Rakan

    2014-11-01

    P-xylene is one of the highly influential commodities in the petrochemical industry. It is used to make 90% of the world’s third largest plastic production, polyethylene terephthalate (PET). With a continuously increasing demand, the current technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic microporosity (PIMs) as well as polyimides (PIM-PI), including thermally cross-linked PIM-1, PIM-6FDA-OH and thermally-rearranged PIM-6FDA-OH were investigated as potential candidates. Although they exhibited extremely high permeability to xylenes, selectivity towards p-xylene was poor. This was attributed to the polymers low chemical resistance which was apparent in their strong tendency to swell in xylenes. Consequently, a perfluoro-polymer, Teflon AF 2400, with a high chemical resistance was tested, which resulted in a slightly improved selectivity. A super acid sulfonated perfluoro-polymer (Nafion-H) was used as reactive membrane for xylenes isomerization. The membrane exhibited high catalytic activity, resulting in 19.5% p-xylene yield at 75ᵒC compared to 20% p-xylene yield at 450ᵒC in commercial fixed bed reactors. Nafion-H membrane outperforms the commercial technology with significant energy savings.

  6. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  7. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.

    Science.gov (United States)

    Babinec, Peter; Krafcík, Andrej; Babincová, Melánia; Rosenecker, Joseph

    2010-08-01

    Magnetic nanoparticles for therapy and diagnosis are at the leading edge of the rapidly developing field of bionanotechnology. In this study, we have theoretically studied motion of magnetic nano- as well as micro-particles in the field of cylindrical Halbach array of permanent magnets. Magnetic flux density was modeled as magnetostatic problem by finite element method and particle motion was described using system of ordinary differential equations--Newton law. Computations were done for nanoparticles Nanomag-D with radius 65 nm, which are often used in magnetic drug targeting, as well as microparticles DynaBeads-M280 with radius 1.4 microm, which can be used for magnetic separation. Analyzing snapshots of trajectories of hundred magnetite particles of each size in the water as well as in the air, we have found that optimally designed magnetic circuits of permanent magnets in quadrupolar Halbach array have substantially shorter capture time than simple blocks of permanent magnets commonly used in experiments, therefore, such a Halbach array may be useful as a potential source of magnetic field for magnetic separation and targeting of magnetic nanoparticles as well as microparticles for delivery of drugs, genes, and cells in various biomedical applications.

  8. Biofuels development in China: Technology options and policies needed to meet the 2020 target

    International Nuclear Information System (INIS)

    Chang, Shiyan; Zhao, Lili; Timilsina, Govinda R.; Zhang, Xiliang

    2012-01-01

    China promulgated the Medium and Long-Term Development Plan for Renewable Energy in 2007, which included sub-targets of 2010 and 2020 for various renewable energy technologies. Almost all the 2010 sub-targets have been met and even surpassed except non-grain fuel ethanol. There is debate surrounding the questions of whether and how the country will be able to meet the 2020 biofuels target. This paper provides the assessment of potential technology pathways to achieve the 2020 target regarding their respective resource potential and supply cost. Barriers and policy options are identified based on broad literatures review. And an overview of biofuels projections is presented to provide insight into the comparison of various policy scenarios. The study shows that China can potentially satisfy non-grain fuel ethanol target by 2020 from technology perspective. But she will probably fall far short of this target if current situations continue. Additional policy efforts are needed. Meanwhile, the target of biodiesel production has high probability to be achieved. However, if given support policies, it will develop better. - Highlights: ► I. Non-grain feedstocks such as cassava, sweet sorghum and sweet potato grown in low productive arable lands or unutilized lands have enough potential to meet ethanol targets in 2020. ► II. If current situations continue, China will fall far short of the 2020 target. ► III. The target of biodiesel production has high probability to be achieved, while, if given support policies, it will develop better. ► IV. Supply cost is one of the major barriers faced by all biofuels pathways. ► V. Various policy measures would be necessary to overcome the costs barriers to biofuels in China.

  9. Improvements on heavy water separation technology by isotopic water-hydrogen sulfide exchange

    International Nuclear Information System (INIS)

    Peculea, M.

    1987-01-01

    A series of possible variance is presented for the heavy water separation technology by isotopic H 2 O-H 2 S exchange at dual temperatures. The critical study of these variants, which are considered as characteristic quantities for the isotopes transport (production) and the extraction level is related to a dual temperature plant fed by liquid and cold column, which is the up-to-date technology employed in all heavy water production plants as variants of following plants are studied: dual temperature plant with double feeding; dual-temperature plant with equilibrium column (booster); dual-temperature-dual-pressure plant. Attention is paid to the variant with equilibration column (booster), executed and tested at the State Committee for Nuclear Energy and to the dual-temperature-dual pressure plant which presents the highest efficiency. (author)

  10. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  11. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility

  12. Lamination technology for separation of solid wastes; La tecnologia de la Laminacion para separacion de residuos solidos compuestos

    Energy Technology Data Exchange (ETDEWEB)

    Rocas, J.

    1998-07-01

    The lamination technology has been developed, and introduces a form of separation of solid wastes totally new in its concept and development. No longer will be a problem the economic and ecological efficient separation of wastes like tetra-brick, compound of metals and plastics, aluminum scum, electric or electronic wastes and many other. (Author)

  13. Membrane-based technologies for biogas separations.

    Science.gov (United States)

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  14. Separation of uranium isotopes

    International Nuclear Information System (INIS)

    Ehrfeld, W.; Ehrfeld, U.

    1977-01-01

    In the nuclear fuel cycle, uranium enrichment is not a principal problem of technological feasibility. Several processes exist for producing LWR fuel and the enrichment method can be selected in consideration of economical, environmental, and political aspects. To date, the gaseous diffusion process constitutes the major part of enrichment capacity. This process has been well demonstrated for over 30 years and, as a matter of fact, no major technological and economical progress is to be expected in the future. Because of their comparatively high development potential, the centrifuge and the separation nozzle method may become increasingly favorable in economics. The development of the centrifuge process which is superior by its low specific energy consumption aims at technological improvements. In the separation nozzle process which offers the advantage of a comparatively simple technology a further reduction of the specific energy consumption is to be expected because of the thermodynamically favorable separation mechanism of this process. Laser isotope separation methods are still on the laboratory scale, although large financial funds have been spent. (orig.) [de

  15. Color separation gratings for diverting the unconverted light away from the NIF target

    International Nuclear Information System (INIS)

    Dixit, S.N.; Rushford, M.C.; Thomas, I.M.; Herman, S.M.; Britten, J.A.; Shore, B.W.; Perry, M.D.

    1997-01-01

    Most of the glass laser based inertial confinement fusion systems around the world today employ non-linear frequency conversion for converting the 1.053 micrometer light at the fundamental frequency (referred to as 1ω light) to either its second harmonic (called 2ω) at 527 nm or to its third harmonic (called 3ω) at 351 nm. Shorter wavelengths are preferred for laser fusion because of the improved coupling of the laser light to the fusion targets due to reduced fast electron production at shorter wavelengths. The frequency conversion process, however, is only about 60-70% efficient and the residual 30-40% of the energy remains at 1ω and 2ω frequencies. Color separation gratings (CSGs) offer a versatile approach to reducing and possibly eliminating the unconverted light at the target region. A CSG consists of a three- level lamellar grating designed so that nearly all of the 3ω light passes through undiffracted while the residual 1ω and 2ω energy is diverted into higher diffraction orders. The diffraction angle is determined solely by the grating period. We have demonstrated the concept of using a color separation grating. We fabricated a 345 micrometer period CSG in fused silica using lithographic processes and wet etching. The measured far field indicates that greater than 95% of the incident light is preserved in the 3ω zeroth order while less than 5% of unconverted 1ω and 2ω light is remaining in the zeroth order. We would like to add that diffractive optics fabricated in fused silica by wet etching in hydrofluoric acid should have high damage threshold. Our experience suggests that the damage threshold of the etched substrate is at least as high as the unetched part. 6 refs., 4 figs., 1 tab

  16. The Hurriclon technology; La technique Hurriclon de separation a force centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, M. [PMT Zyclontechnik GmbH, Krems (Austria)

    2000-09-01

    Saving specific energy consumption is a main target in modem cement plants. But reducing pressure loss in cyclone systems results normally in a lesser separation efficiency. These two problems can be overcome by the use of a new system of guided vanes, called vortex finder vanes which can be also installed in existing cyclone systems. The obtained pressure loss reduction is higher than 30 %. Another development is the Hurriclon system which combines the above mentioned device with a double dip tube cyclone system. The advantage is a better separation efficiency at lower pressure losses leading to a higher production rate and therefore lower specific energy consumption as well as smaller filter units. The residual dust particles in the clean gas have also a significantly smaller size leading to less wear in the subsequent installations. The field of application encompasses all dedusting systems of cement plants starting after the mills or after the cooler, but also the preheater cyclones. In the case of upgrading of existing systems, the investment payback periods can be within some months. The paper shows the principles of these systems and several reference projects with guaranteed and obtained values regarding operation parameters. (author)

  17. Realizing Technologies for Magnetized Target Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen A. [Los Alamos National Laboratory

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  18. Vision 2020: 2000 Separations Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Stephen [Center for Waster Reduction Technologies; Beaver, Earl [Practical Sustainability; Bryan, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Robinson, Sharon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2000-01-01

    This report documents the results of four workshops on the technology barriers, research needs, and priorities of the chemical, agricultural, petroleum, and pharmaceutical industries as they relate to separation technologies utilizing adsorbents, crystallization, distillation, extraction, membranes, separative reactors, ion exchange, bioseparations, and dilute solutions.

  19. Magnetic separation for soil decontamination

    International Nuclear Information System (INIS)

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Tolt, T.L.

    1993-01-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology

  20. Evaluation report on the R and D of the membrane separation process introduction technology; Makubunri process donyu gijutsu no kenkyu kaihatsu hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported the R and D of the membrane separation process introduction technology during a period of 1994 through 1998. The membrane separation technology is not associated with the phase change which requires large energy and expected to be an energy saving process. For the production of membranes required of high functions, the vapor deposition polymerization method was considered, and high order structure control of the membrane, control of adhesion and attachment, and control of orientation, and development of the high polymerization technology were required. For the high grade control of vapor polymerization, the substrate surface structure/quality were important. The molecular level analysis of the vapor deposition surface was also needed. Therefore, the paper took notice of STM (scanning tunneling microscopy), AFM (atomic force microscopy) and HREELS (high resolution electron energy loss spectroscopy) as surface atomic/molecular configuration analysis technology, and designed/fabricated and studied the high resolving power and high sensitivity analysis equipment using the analysis equipment which combined HREELS and STM and the analysis equipment using SFG (sum frequency generation) which can detect signals in the low frequency region. Making full use of the highest technology, technology was able to be developed for substrate surface analysis and surface reaction analysis technologies which become the basis of the high performance separation membrane fabrication technology by the vapor deposition polymerization method indispensable for introduction of the membrane separation process. The technology can be the base applicable to a lot of fields where surfaces and interfaces are concerned

  1. Legality, separation of powers, stability of electoral law: The impact of new voting technologies

    OpenAIRE

    Driza Maurer, Ardita

    2016-01-01

    Legality, separation of powers and stability of electoral law are some of the principles of the European constitutional heritage. They should be respected and implemented throughout the electoral process, including when new voting technologies are used. This paper discusses e-voting specific implementations of the principles or challenges to it. Ongoing and proposed improvements in legislation or practice are pinpointed.

  2. Organic separations with membranes

    International Nuclear Information System (INIS)

    Funk, E.W.

    1993-01-01

    This paper presents an overview of present and emerging applications of membrane technology for the separation and purification of organic materials. This technology is highly relevant for programs aimed at minimizing waste in processing and in the treatment of gaseous and liquid effluents. Application of membranes for organic separation is growing rapidly in the petrochemical industry to simplify processing and in the treatment of effluents, and it is expected that this technology will be useful in numerous other industries including the processing of nuclear waste materials

  3. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  4. Solar Europe industry initiative: research technology development and demonstration in support of 2020 and long-term targets

    NARCIS (Netherlands)

    Sinke, W.C.; Fraile Montoro, D.; Despotou, E.; Nowak, S.; Perezagua, E.

    2010-01-01

    The European Union has set an ambitious target for the implementation of renewable energy technologies by 2020, i.e. a share of 20% of the total energy consumption. In support of these targets the Strategic Energy Technology (SET) Plan has been initiated by the European Commission. One of the key

  5. Gas Sensors Based on Molecular Imprinting Technology

    OpenAIRE

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-01-01

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological mac...

  6. Separation, fractionation, concentration and drying of food products: Technology progress report, October 1, 1984-March 3, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Rose, W. W.; Pederson, L. D.; Merlo, C. A.; Brewbaker, P. L.

    1987-11-01

    This report describes the first and second phases of a three phase project, the object of which is to develop energy efficient separation, concentration, and drying processes for food products, especially juice products, in order to reduce energy requirements and their associated costs for processing, preservation, and transportation. Presently in juice processing, much water is eliminated through evaporation. However, there are significant limits to the current evaporation technology. If, however, the juice could be separated, prior to evaporation, into liquid and solid fractions, and the liquid concentrated further, the containerization and transportation costs could be significantly reduced. Separation methods investigated in this project are: vacuum filtration, centrifugation, and crossflow microfiltration.

  7. Decision Analysis and Policy Formulation for Technology-Specific Renewable Energy Targets

    Science.gov (United States)

    Okioga, Irene Teshamulwa

    This study establishes a decision making procedure using Analytic Hierarchy Process (AHP) for a U.S. national renewable portfolio standard, and proposes technology-specific targets for renewable electricity generation for the country. The study prioritizes renewable energy alternatives based on a multi-perspective view: from the public, policy makers, and investors' points-of-view, and uses multiple criteria for ranking the alternatives to generate a unified prioritization scheme. During this process, it considers a 'quadruple bottom-line' approach (4P), i.e. reflecting technical "progress", social "people", economic 'profits", and environmental "planet" factors. The AHP results indicated that electricity generation from solar PV ranked highest, and biomass energy ranked lowest. A "Benefits/Cost Incentives/Mandates" (BCIM) model was developed to identify where mandates are needed, and where incentives would instead be required to bring down costs for technologies that have potential for profitable deployment. The BCIM model balances the development of less mature renewable energy technologies, without the potential for rising near-term electricity rates for consumers. It also ensures that recommended policies do not lead to growth of just one type of technology--the "highest-benefit, least-cost" technology. The model indicated that mandates would be suited for solar PV, and incentives generally for geothermal and concentrated solar power. Development for biomass energy, as a "low-cost, low-benefits" alternative was recommended at a local rather than national level, mainly due to its low resource potential values. Further, biomass energy generated from wastewater treatment plants (WWTPs) had the least resource potential compared to other biomass sources. The research developed methodologies and recommendations for biogas electricity targets at WWTPs, to take advantage of the waste-to-energy opportunities.

  8. Radiochemical Study on the Separation of Chromium-51 from the Irradiated Target by Using Commercial and/or Synthesized Ion Exchanger

    International Nuclear Information System (INIS)

    Aydia, M.I.M.M.

    2012-01-01

    This work involves the following steps:1- Preparation of Triton X-100 Cerium(IV) Phosphate (TX-100CeP) as a surface active ion exchanger or organometallic molecules. 2- Characterization of the TX-100CeP by different methods (i.e. IR, TGA/DTA X-ray diffraction, X-ray fluorescence and elemental analysis). 3- Development a method for separation and quantification of Cr(III) and Cr(VI) by using high pressure liquid chromatography (HPLC). 4- Separation of 51 Cr(III) from Cr(VI) in the target of K 2 CrO 4 on TX-100CeP and Permutit as a commercial ion exchanger. 5- Quality control on the separated 51 Cr(III).

  9. A review on the process technology for Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hoh; Yoo, Jae Hyung; Jung, Won Myung; Lee, Kyoo Il; Woo, Moon Sik; Hwang, Doo Sung; Kim, Yun Koo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    Tc-99m is most frequently used in nuclear medical diagnostics because of its favourable nuclear properties and reasonable prices, and the demand of Tc-99m, is on the increase recently. Mo-99, the parent radionuclide of Tc-99m, is the only source of Tc-99m. This review described overall aspects of process technologies for Mo-99 production. Firstly, the chemical, physical and radioactive properties of Tc-99m, Mo-99 were examined to understand Mo-99 separation process. Also, the technology for Mo-99 production with both the neutron capture and nuclear fission method were examined. But the neutron capture method was scarcely used for large production of Mo-99 because of its low specific activity and high production cost. This review also described mainly process technologies in the nuclear fission method, fabrication and condition for irradiation of targets, transport and dissolution of targets irradiated, separation and purification of Mo-99, etc. Especially, for Mo-99 separation and purification process, the characteristics, merits and demerits of various processes, which have been developed in a few countries, were examined and analyzed. 30 figs., 16 tabs., 60 refs. (Author).

  10. Proceedings of the workshop on polarized targets in storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base

  11. Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale

    Science.gov (United States)

    Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann

    Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti

  12. Separations technologies supporting the development of a deployable ATW system

    International Nuclear Information System (INIS)

    Laidler, J. J.

    2000-01-01

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The first several years of the program will be directed toward an elucidation of related technical issues and to the establishment, by means of comprehensive trade studies, of an optimum configuration of the elements of the chemical processing infrastructure required for support of the total ATW system. By adopting this sort of disciplined systems engineering approach, it is expected that development and demonstration costs can be minimized and that it will be possible to deploy an ATW system that is an environmentally sound and economically viable venture

  13. Innovative sludge pretreatment technology for impurity separation using micromesh.

    Science.gov (United States)

    Mei, Xiaojie; Han, Xiaomeng; Zang, Lili; Wu, Zhichao

    2018-05-23

    In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m 3 /(m 2  min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m 3 /day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m 3 treated sludge and operation cost was 0.6 yuan/m 3 treated sludge.

  14. Elucidating antimalarial drug targets/mode-of-action by application of system biology technologies

    CSIR Research Space (South Africa)

    Becker, J

    2008-11-01

    Full Text Available targets/mode-of-action by application of systems biology technologies J BECKER, L MTWISHA, B CRAMPTON AND D MANCAMA CSIR Biosciences, PO Box 395, Pretoria, 0001, South Africa Email: JBecker@csir.co.za – www.csir.co.za INTRODUCTION Malaria is one... The objective of this study was to use systems biology tools to unravel the drug target/mode-of-action (MoA) of an antimalarial drug (cyclohexylamine) with a known drug target/MoA, by analysing differential expression profiles of drug treated vs untreated...

  15. Future market material recognition and separation; Zukunftsmarkt Stofferkennung und -trennung

    Energy Technology Data Exchange (ETDEWEB)

    Schug, Hartmut; Eickenbusch, Heinz; Zweck, Axel [VDI Technologiezentrum GmbH, Duesseldorf (Germany); Marscheider-Weidemann, Frank [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2007-12-15

    This case study on ''Closed-loop economy, waste, recycling'' which focuses on ''Technologies for material detection and separation'' was done within the scope of the research project ''Future markets - innovative environmental policy in important fields of action''. Material detection and separation processes make it possible to accumulate specific materials based on uniform characteristics. Automatic processes accelerate separation and allow higher levels of purity. The processes are integrated as modules into the sorting plants and designed to be material-specific according to the fractions to be separated or the level of purity or pollution. Automatic processes increase recycling rates (qualitatively and quantitatively): The recovered secondary raw materials can be used as raw materials, materials or energetically as substitute fuels. Residues that are hazardous to nature, the climate or human health can be removed from the cycle using these technologies. The consumption of primary raw materials and fossil energy sources is reduced by the increased use of secondary raw materials which results in avoiding waste and saving resources. Furthermore, the complete and environmentally-compatible recycling of municipal solid waste is supported (''Ziel 2020'', which is the specific strategy of the German government for the future of the municipal solid waste management). Besides optoelectronic, sensor-based sorting processes (e. g. near infrared technology, NIR) large development potentials are attributed to new technologies such as RFID technology. The innovation dynamics are (still) closely linked with political regulations (environmental legislation, recycling/reuse targets). An increased market-driven development can be expected in the wake of price increases of primary raw materials. The turnover on the market for waste and recycling services in the EU is estimated at approx. 55 billion

  16. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  17. Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes

    International Nuclear Information System (INIS)

    Loulou, Richard; Labriet, Maryse; Kanudia, Amit

    2009-01-01

    This article analyzes the feasibility of attaining a variety of climate targets during the 21st century, under alternative cooperation regimes by groups of countries. Five climate targets of increasing severity are analyzed, following the EMF-22 experiment. Each target is attempted under two cooperation regimes, a First Best scenario where all countries fully cooperate from 2012 on, and a Second Best scenario where the World is partitioned into three groups, and each group of countries enters the cooperation at a different date, and implement emission abatement actions in a progressive manner, once in the coalition. The resulting ten combinations are simulated via the ETSAP-TIAM technology based, integrated assessment model. In addition to the 10 separate case analyses, the article proposes a probabilistic treatment of three targets under the First Best scenario, and shows that the three forcing targets may in fact be interpreted as a single target on global temperature change, while assuming that the climate sensitivity C s is uncertain. It is shown that such an interpretation is possible only if the probability distribution of C s is carefully chosen. The analysis of the results shows that the lowest forcing level is unattainable unless immediate coordinated action is undertaken by all countries, and even so only at a high global cost. The middle and the high forcing levels are feasible at affordable global costs, even under the Second Best scenario. Another original contribution of this article is to explain why certain combinations of technological choices are made by the model, and in particular why the climate target clearly supersedes the usually accepted objective of improving energy efficiency. The analysis shows that under some climate targets, it is not optimal to improve energy efficiency, but rather to take advantage of certain technologies that help to reach the climate objective, but that happen to be less energy efficient than even the technologies

  18. A new infiltration method for coating highly permeable matrices with compound materials for high-power isotope-separator-on-line production target applications

    International Nuclear Information System (INIS)

    Kawai, Y.; Bilheux, Jean-Christophe; Stracener, Daniel W; Alton, Gerald D

    2005-01-01

    A new infiltration coating method has been conceived for uniform and controlled thickness deposition of target materials onto highly permeable, complex-structure matrices to form short-diffusion-length isotope-separator-on-line (ISOL) production targets for radioactive ion beam research applications. In this report, the infiltration technique is described in detail and the universal character of the technique illustrated in the form of SEMs of several metal-carbide, metal-oxide and metal-sulfide targets for potential use at present or future radioactive ion beam research facilities

  19. Biodiesel separation and purification: A review

    International Nuclear Information System (INIS)

    Atadashi, I.M.; Aroua, M.K.; Aziz, A. Abdul

    2011-01-01

    Biodiesel as a biodegradable, sustainable and clean energy has worldwide attracted renewed and growing interest in topical years, chiefly due to development in biodiesel fuel and ecological pressures which include climatic changes. In the production of biodiesel from biomass, separation and purification of biodiesel is a critical technology. Conventional technologies used for biodiesel separation such as gravitational settling, decantation, filtration and biodiesel purification such as water washing, acid washing, and washing with ether and absorbents have proven to be inefficient, time and energy consumptive, and less cost effective. The involvement of membrane reactor and separative membrane shows great promise for the separation and purification of biodiesel. Membrane technology needs to be explored and exploited to overcome the difficulties usually encountered in the separation and purification of biodiesel. In this paper both conventional and most recent membrane technologies used in refining biodiesel have been critically reviewed. The effects of catalysts, free fatty acids, water content and oil to methanol ratios on the purity and quality of biodiesel are also examined. (author)

  20. The Efficient Separations and Processing Integrated Program

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Gephart, J.M.

    1994-08-01

    The Efficient Separations and Processing Integrated Program (ESPIP) was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the US Department of Energy (DOE) complex. The ESPIP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESPIP supports applied R ampersand D leading to demonstration or use of these separations technologies by other organizations within DOE's Office of Environmental Restoration and Waste Management. Examples of current ESPIP-funded separations technologies are described here

  1. The integration of innovative technologies into a physical-separation-based soil washing system

    International Nuclear Information System (INIS)

    Krstich, M.A.

    1995-01-01

    An innovative system's approach to the treatment of soils at the Fernald Environmental Management Project (FEMP) has been proposed to effectively and cost competitively treat a significant mass of soil. The use of an integrated soil treatment system to decontaminate FEMP soils is a unique application of the soil washing technology. Due to the unfavorable soil particle size distribution and the ubiquitous distribution of uranium among these particle size fractions, conventional soil washing processes commonly used on predominantly sandy soils alone may not achieve the desirable waste minimization level without the inclusion of innovative technologies. This objective of this paper is to briefly describe the physical separation and chemical extraction process commonly used in soil washing operation and to present the baseline soil washing approach used on FEMP soils. Noting the successful and not-so-successful processes within the soil washing operation at the FEMP, a proposed innovative system's approach to treating FEMP soils will be described. This system's approach will integrate a conventional soil washing operation with proposed innovative technologies

  2. Feasibility study of micro-filtration for algae separation in an innovative nuclear effluents decontamination process

    International Nuclear Information System (INIS)

    Gouvion Saint Cyr, D. de; Wisniewski, C.; Schrive, L.; Farhi, E.; Rivasseau, C.

    2014-01-01

    Bio-remediation technologies often offer efficiency, cost and environmental impact benefits against physico-chemical technologies. Concerning the remediation of radionuclide-containing water, a few bio-based technologies have been proposed but none is currently operational in highly radioactive environments. A new radio-tolerant micro-alga, isolated from a nuclear facility, possesses properties that offer new decontamination prospects for the nuclear industry or for the clean-up of environmental water. A pilot-scale treatment unit based on this alga is currently under development for the decontamination of radioactive water. It includes separation and/or concentration steps relying on membrane filtration. This work aims at verifying the feasibility of micro-filtration as separation step for the targeted algae separation. Recommendations about the choice of operating conditions limiting and/or controlling the membrane fouling are provided with the objective to enhance the separation efficiency. Lab-scale dead-end filtration tests were implemented and the key factors involved in the separation performances were investigated. Membrane characteristics, biomass composition, and hydrodynamic conditions were considered. Organic membranes provided adequate filtration performance. Membrane fouling was essentially induced by a rapid reversible algae deposit and to a lesser extent by irreversible pore blockage caused by smaller particles and dissolved organic matter. To cancel the reversible fouling, hydrodynamic actions such as stirring and back-flush efficiently prevented algae deposit, allowing higher filtration productivity. This study demonstrates the feasibility of membrane separation for micro-algae harvesting at laboratory-scale and specifies the suitable working conditions. (authors)

  3. Summary of the separations breakout group

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The Separations Breakout Group reviewed the wide spectrum of separations technologies available for application to ADTT systems. Separations processes play a key role in areas associated with preparation of feed materials for introduction into ADTT, removal of fission products and other transmutation byproducts that build into the fuel during operation, and in the preparation of wastes ({open_quotes}polishing{close_quotes}) for discharge from ADTT systems so as to meet appropriate waste disposal criteria. General separations technologies addressed by the group included aqueous, fluoride salt, and chloride salt approaches.

  4. Cryo magnetic separation adaptation to environment technologies: application to industrial effluents; Adaptation de la separation cryomagnetique aux technologies de l`environnement: application a l`epuration d`effluents liquides industriels

    Energy Technology Data Exchange (ETDEWEB)

    Bureau, V

    1993-12-20

    Cryomagnetic separation adaptation to environment technologies application to industrial liquid effluents. The performance, obtained by superconducting high filed - high gradient magnetic separation, permitted to foresee the magnetic treatment of heavy metals in rinse waters, derived from the surface finishing industry. The paramagnetic ions, precipitated in basic media as hydroxides, present a very hydrated amorphous structure, which masks their subjacent magnetic properties. Coprecipitation of a `magnetic carrier`, jointly with the heavy metals, has been studied: ferric chloride forms in basic media, an hydrated iron oxide. Its structure is of the goethite type, and it stabilizes as hematite. The magnetic susceptibility of the obtained product is still weak and its crystalline structure is not enough affirmative to utilize magnetic filtration with efficiency. Mixture of ferrous sulphate and ferric chloride forms, in a basic media, an hydrated magnetite. Initial ideal ratio between divalent iron and trivalent iron, varies between 0,5 and 1,2. This mixture, coprecipitated with the heavy metals, permits to optimize the magnetic cleaning of the fluids in a high field - high gradient filter. (author)

  5. Efficient separations & processing crosscutting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

  6. Simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix for production of radioisotope "6"4Cu

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2011-01-01

    The simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix has been carried out as a preliminary study for production of medical radioisotope Cu-64 based on nuclear reaction of "6"4Ni (p,n) "6"4Cu. The nickel target preparation was performed by means of electroplating method using acidic solution of nickel chloride - boric acid mixture and basic solution of nickel sulphate - nickel chloride mixture on a silver - surfaced-target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel target containing both irradiated nickel and radioactive copper, but in the presented work the proton irradiation of nickel target was omitted, while the radioactive copper was originally obtained from neutron irradiation of CuO target. The separation of radioactive copper from the nickel target matrix was based on anion exchange column chromatography in which the radiocopper was conditioned to form anion complex CuCl_4"2"- and retained on the column while the nickel was kept in the form of Ni"2"+ cation and eluted off from the column. The retained radioactive copper was then eluted out the column in the condition of dilute HCl changing back the copper anion complex into Cu"2"+ cation. It was found that the electroplating result from the acidic solution was more satisfied than that from the basic solution. By conditioning the matrix solution at HCl 6 M, the radioactive copper was found in the forms of Cu"2"+ and CuCl_4"2"- while the nickel was totally in the form of Ni"2"+. In the condition of HCl 9 M, the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was found as both Ni"2"+ and NiCl_4"2"-. The best condition of separation was in HCl 8 M in which the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was mostly in the form of Ni"2"+. The retained CuCl_4"2"- was then changed back into Cu_2_+ cation form and eluted out the column by using HCl 0.05 M

  7. Technology Strategy for 'Environmental Technology for the Future'; Technology Target Areas; TTA1 - environmental technology for the future

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The OG21 Technology Target Area 1 (TTA 1) group has produced a strategy for 'Environmental Technology for the Future'. A key aim of this work is to ensure that the operators on the Norwegian Continental Shelf (NCS) remain in a leading position with respect to environmental performance, while contributing to optimised resource recovery and value creation. This strategy focuses on environmental technology, which includes hardware, methods, software and knowledge. The TTA 1 group has agreed on a common vision: 'Norwegian oil and gas activities shall be leading in environmental performance, and Norway shall have the world leading knowledge and technology cluster within environmental technologies to support the zero harmful impact goals of the oil and gas industry.' Priorities have been made with emphasis on gaps that are considered most important to close and that will benefit from public research and development funding either for initialisation (primarily via the Petromaks and Climit programs) or acceleration (via Petromaks / Climit and particularly Demo 2000 where demonstration or piloting is required). The priorities aim to avoid technology gaps that are expected to be closed adequately through existing projects / programs or which are covered in other TTA strategies. The priority areas as identified are: Environmental impact and risk identification / quantification for new areas: Make quality assured environmental baseline data available on the web. Develop competence necessary to quantify and monitor the risks and risk reductions to the marine environment in new area ecosystems; Carbon capture and storage: Quantify environmental risks and waste management issues associated with bi-products from carbon capture processes and storage solutions. Develop and demonstrate effective carbon storage risk management, monitoring and mitigation technologies. Develop more cost and energy efficient power-from-shore solutions to reduce / eliminate CO{sub 2

  8. Acoustic Separation Technology; FINAL

    International Nuclear Information System (INIS)

    Fred Ahrens; Tim Patterson

    2002-01-01

    Today's restrictive environmental regulations encourage paper mills to close their water systems. Closed water systems increase the level of contaminants significantly. Accumulations of solid suspensions are detrimental to both the papermaking process and the final products. To remove these solids, technologies such as flotation using dissolved air (DAF), centrifuging, and screening have been developed. Dissolved Air Flotation systems are commonly used to clarify whitewater. These passive systems use high pressure to dissolve air into whitewater. When the pressure is released, air micro-bubbles form and attach themselves to fibers and particles, which then float to the surface where they are mechanically skimmed off. There is an economic incentive to explore alternatives to the DAF technology to drive down the cost of whitewater processing and minimize the use of chemicals. The installed capital cost for a DAF system is significant and a typical DAF system takes up considerable space. An alternative approach, which is the subject of this project, involves a dual method combining the advantages of chemical flocculation and in-line ultrasonic clarification to efficiently remove flocculated contaminants from a water stream

  9. [Overview of patents on targeted genome editing technologies and their implications for innovation and entrepreneurship education in universities].

    Science.gov (United States)

    Fan, Xiang-yu; Lin, Yan-ping; Liao, Guo-jian; Xie, Jian-ping

    2015-12-01

    Zinc finger nuclease, transcription activator-like effector nuclease, and clustered regularly interspaced short palindromic repeats/Cas9 nuclease are important targeted genome editing technologies. They have great significance in scientific research and applications on aspects of functional genomics research, species improvement, disease prevention and gene therapy. There are past or ongoing disputes over ownership of the intellectual property behind every technology. In this review, we summarize the patents on these three targeted genome editing technologies in order to provide some reference for developing genome editing technologies with self-owned intellectual property rights and some implications for current innovation and entrepreneurship education in universities.

  10. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    Science.gov (United States)

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  11. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Mohammad Songolzadeh

    2014-01-01

    Full Text Available Increasing concentrations of greenhouse gases (GHGs such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  12. Synthesis of Actinide Materials for the Study of Basic Actinide Science and Rapid Separation of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Dorhout, Jacquelyn Marie [Univ. of Nevada, Las Vegas, NV (United States)

    2017-11-28

    This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting from a nuclear device to determine device attributes and information, often depends on the comparison of fission products to a library of known ratios. The expansion of this library is imperative as technology advances. Rapid separation of fission products from a target material, without the need to dissolve the target, is an important technique to develop to improve the library and provide a means to develop samples and standards for testing separations. Several materials were studied as a proof-of-concept that fission products can be extracted from a solid target, including microparticulate (< 10 μm diameter) dUO2, porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organicbased frameworks containing dU. The targets were irradiated with fast neutrons from one of two different neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO2 in contact with the secondary matrix KBr yield higher separation yields than particles without a secondary matrix. It was also discovered that using 0.1 M HNO3 as a contact acid leads to the dissolution of the target material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO3. Different types of frameworks also yield different results.

  13. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation

    International Nuclear Information System (INIS)

    Simpson, Adam P.; Simon, A.J.

    2007-01-01

    To define 2nd law efficiency targets for novel separation technologies, a simplified model of a power plant with two forms of CO 2 capture was developed. In this investigation, oxy-fuel combustion and post-combustion CO 2 separation were compared on an exergetic basis. Using exergy balances and black-box models of power plant components, multiple scenarios were run to determine the impact of plant configuration and separation unit efficiency on overall plant performance. Second law efficiency values from the literature were used to set the baseline performance of various CO 2 separation configurations. Assumed advances in 2nd law efficiency were used to determine the potential for overall system performance improvement. It was found that the 2nd law efficiency of air separation must reach a critical value before the thermodynamics of oxy-fuel combustion become favorable. Changes in operating equivalence ratio significantly move the tipping-point between post-combustion and oxy-fuel strategies

  14. Production of exotic beams by separation of online isotope

    International Nuclear Information System (INIS)

    Hosni, Faouzi; Farah, K.

    2013-01-01

    The studies in physics, concerned until now, approximately two thousand five hundred radioactive nuclide. These nuclides with 263 stable nucleus constitute the current nuclear field. This field is far from being complete because there are more than three thousand radioactive isotopes to be discovered. Materials and Methods: To reach these radio-isotopes there are two complementary methods which are the on-line separation (ISOL) and the fragmentation in times of flight. The latter has the advantage to allow the study of the elements of very short period (lower than 10-3 s). It supplies beams having a big dispersal in energy and in angle. In the case of the separation of on-line isotope, a target is run to produce the radioactive atoms. This allows producing beams much more intense than the fragmentation in times of flight. To obtain radioactive beams in the required intensities or for the research or medical applications, it is essential to end in thick targets or the products of reaction can go out as fast as possible. That is to realize targets which can maintain a porous and sluggish structure counterpart in the produced elements. This is one of the main technological challenges to be solved. The works concerning this domain will be presented as well as the got advantage if the nuclear reactions are led by protons reaching 30 MeV of energy. (Author)

  15. The advanced linked extended reconnaissance and targeting technology demonstration project

    Science.gov (United States)

    Cruickshank, James; de Villers, Yves; Maheux, Jean; Edwards, Mark; Gains, David; Rea, Terry; Banbury, Simon; Gauthier, Michelle

    2007-06-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing key operational needs of the future Canadian Army's Surveillance and Reconnaissance forces by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. We discuss concepts for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as beyond line-of-sight systems such as a mini-UAV and unattended ground sensors. The authors address technical issues associated with the use of fully digital IR and day video cameras and discuss video-rate image processing developed to assist the operator to recognize poorly visible targets. Automatic target detection and recognition algorithms processing both IR and visible-band images have been investigated to draw the operator's attention to possible targets. The machine generated information display requirements are presented with the human factors engineering aspects of the user interface in this complex environment, with a view to establishing user trust in the automation. The paper concludes with a summary of achievements to date and steps to project completion.

  16. Report on the separation and refining technology sub-committee meetings in fiscal 1987; 1987 nendo bunri seisei gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The separation and refining technology sub-committee has held two meetings in this fiscal year. The first sub-committee meeting (October 9, 1987) was held for the major agenda of the research and development of the basic studies; as the summary of the achievements in fiscal 1986, the up-grading by fractions and of the total fraction collectively, up-grading of kerosene and light oil fractions, up-grading of medium to heavy fractions; and as the study plans for fiscal 1987, the up-grading of coal liquefied oil, a technology to separate hetero compounds, development of their applications, and the reports and deliberations thereon. The major agenda of the second sub-committee meeting (February 10, 1988) were the interim report on the achievements in research of up-grading the coal liquefied oil in fiscal 1987, the interim reports on research achievements in the technology to separate hetero compounds and development of its applications, and the reports and deliberations thereon. The conventional up-grading sub-committee was dissolved in fiscal 1987 to form a new organization, whereas the 'separation and refining sub-committee' was founded newly. With respect to the up-grading matters, reports were given on the achievements thereon as a result of using a micro reaction device and a bench reaction device as in the past, and on the achievements in the application development. In addition, on the hetero related matters, directionality of the survey and the result therefrom were reported. (NEDO)

  17. An electroamalgamation approach to separate 47Sc from neutron activated CaO target for use in cancer theranostics

    International Nuclear Information System (INIS)

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2016-01-01

    Over the last few years, 47 Sc has attracted significant attention for potential use in cancer theranostics due to its favorable nuclear decay characteristics (t 1/2 = 3.35 d; average β energy, 162 keV; Eγ, 159 keV). No-carrier-added (NCA) 47 Sc can be produced via the 46 Ca(n,γ)→ 47 Sc reaction in a nuclear reactor. For this purpose, 1 mg of CaO (98 % enrichment of 46 Ca) target was irradiated for 7 d at a flux of 1 × 10 14 n.cm -2 .s -1 at the Dhruva reactor of our research centre. The irradiated target was dissolved in 5 ml of 1 M HCl inside a lead shielded facility. The resultant solution was evaporated to near dryness, reconstituted in 20 ml of 0.15 M lithium citrate solution and transferred to the electrochemical cell. The electrochemical separation involved selective amalgamation of Ca from Ca/Sc mixture into mercury-pool cathode. The influence of different experimental parameters (such as applied potential, pH of the electrolyte, time of electrolysis and amount of Ca 2+ ions in the electrolyte) on the separation process was investigated and optimized for the quantitative electroamalgamation of Ca

  18. Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology.

    Science.gov (United States)

    Moriwaki, Hiroshi; Yamamoto, Hiroki

    2013-01-01

    In recent years, rare earth elements (REEs) have been widely used in various modern technological devices and the global demand for REE has been increasing. The increased demand for REEs has led to environmental exposure or water pollution from rare earth metal mines and various commercial products. Therefore, the development of a safe technology for the separation and adsorption of REEs is very important from the perspective of green chemistry and environmental pollution. In this review, the application and mechanisms of microorganisms for the removal and extraction of REEs from aqueous solutions are described. In addition, the advantages in using microorganisms for REE adsorption and future studies on this topic are discussed.

  19. Separation technologies for the treatment of Idaho National Engineering Laboratory wastes

    Energy Technology Data Exchange (ETDEWEB)

    Todd, T.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-10-01

    Currently about 6.8 million L of acidic, radioactive liquid waste that is not amenable to calcination, and about 3800 m{sup 3} of calcine exist at the ICPP. Legal drivers (court orders) and agreements between the state of Idaho, the U.S. Navy, and DOE exist that obligate INEL to develop, demonstrate, and implement technologies for treatment and interim storage of the radioactive liquid and calcine wastes. Per these agreements, all tank waste must be removed from the underground liquid storage tanks by the year 2012, and high-level radioactive waste must be treated and removed from INEL by 2035. Separation of the radionuclides from the wastes, followed by immobilization of the high-activity and low-activity fractions in glass and grout, respectively, is the approach preferred by INEL. Technologies to remove actinides (U, Np, Pu, and Am), Cs, Sr, and possibly Tc from highly acidic solutions are required to process INEL wastes. Decontamination of the wastes to NRC Class A low-level waste (LLW) is planned. Separation and isolation of Resource Conservation and Recovery Act (RCRA) metals (Hg, Pb, Cd, and Cr) from the highly radioactive waste streams may also be required. Remediation efforts will begin in FY 1997 to remove volatile organic compounds (VOCs) and radionuclides (Cs and Sr) from groundwater located at the Test Area North facility at INEL. A plume of VOCs and radionuclides has spread from the former TSF-05 injection well, and a Comprehensive Environmental Response, Conservation, and Liability Act (CERCLA) remediation action is under way. A Record of Decision was signed in August 1995 that commits INEL to remediate the plume from TSF-05. Removal of Sr and Cs from the groundwater using commercially available ion-exchange resins has been unsuccessful at meeting maximum contaminant levels, which are 119 pCi/L and 8 pCi/L for Cs and Sr, respectively. Cesium and Sr are the major contaminants that must be removed from the groundwater.

  20. FY1998 report on the research on support for practical recycling technologies. Part 1; 1998 nendo recyle gijutsu nado jitsuyoka shien kenkyu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims at development, demonstration and utilization of waste recycling technologies. This report summarizes the fiscal 1998 results. The test/demonstration plant for separation and removal of foreign materials was constructed for effective use of waste building wood, and its optimum operation condition was studied. Although some foreign materials exists, 90% of waste building wood chips were separated and recovered through some improvements for the plant. An advanced separation technology is expected. As for fibering technology, fibers with target compression strength were obtained from cedar chips through a disintegration experiment using a newly developed refiner plate. Although the compression strength of fibers obtained from waste building wood chips was slightly poor, it is attained by increasing the target specific gravity of light- weight wooden materials by nearly 10% from 0.1. As for fiber orientation technology, as the tension of a forming belt was adjusted to achieve sufficient width compression, nearly 90% of the target compression strength was attained. A width compression method remains to be solved. (NEDO)

  1. A uranium enrichment facility safeguards technology based on the separation nozzle process

    International Nuclear Information System (INIS)

    Bahm, W.; Weppner, J.; Didier, H.J.

    1979-01-01

    Under the Trilateral Agreement between Brazil, the Federal Republic of Germany and the IAEA an enrichment plant operating on the basis of the separation nozzle process, will be safeguarded under INFCIRC/66/Rev.2. For nuclear materials balancing purposes the plant has been subdivided into 17 key measuring points to assess the nuclear material flow and the nuclear material inventory. Preliminary studies have indicated that the balancing accuracy required for safeguards purposes cannot be achieved by only using the foreseen in-plant measuring systems, since considerable quantities of enriched uranium cannot be covered in this way. This fraction will merely be estimated by the operator and thus cannot be verified by the inspection authorities. The plant components, whose inventories could not be verified in the first estimate of the balancing accuracy referred to above by means of the in-plant measuring systems, also include the low-temperature separators of the cascade shoulder and the product. Assessing and verifying the inventories of these key measuring points is particularly important because of the enrichment (some 3% 235 U for the product) and the relatively large inventory and, hence, the considerable contribution to the balancing inaccuracy. An estimate of the balancing inaccuracy on the basis of the measuring uncertainties to be expected in the light of the present status of technology indicated values between 0.2 and 0.3% relative to the feed flow with semi-annual inventory-taking. However, this is based on the condition that the experiments planned to determine the inventories of cryogenic separators confirm the measuring uncertainties underlying the calculation

  2. High gradient magnetic separation applied to environmental remediation

    International Nuclear Information System (INIS)

    Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Avens, L.R.; Worl, L.A.; Schake, A.; de Aguero, K.J.; Padilla, D.D.; Tolt, T.L.

    1993-01-01

    High Gradient Magnetic Separation (HGMS) is an application of superconducting magnet technology to the separation of magnetic solids from other solids, liquids, or gases. The production of both high magnetic fields (>4 T) and large field gradients using superconducting magnet technology has made it possible to separate a previously unreachable but large family of paramagnetic materials. This is a powerful technique that can be used to separate widely dispersed contaminants from a host material and may be the only technique available for separating material in the colloidal state. Because it is a physical separation process, no additional waste is generated. We are applying this technology to the treatment of radioactive wastes for environmental remediation. We have conducted tests examining slurries containing nonradioactive, magnetic surrogates. Results from these studies were used to verify our analytical model of the separation process. The model describes the rate process for magnetic separation and is based on a force balance on the paramagnetic species. This model was used to support bench scale experiments and prototype separator design

  3. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Science.gov (United States)

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  4. Strand Invasion Based Amplification (SIBA®: a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Directory of Open Access Journals (Sweden)

    Mark J Hoser

    Full Text Available Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA. SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  5. Petroleum refining. Separation processes; Le raffinage du petrole. Procedes de separation

    Energy Technology Data Exchange (ETDEWEB)

    Wauquier, J.P. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Bonfils, P. [AB Industries (France); Company, J.P. [Compagnie de Raffinage et de Distribution TOTAL France, 75 - Paris (France); Deschamps, A. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Gourlia, J.P. [Elf Aquitaine (France); Gouzien, L. [Compagnie de Raffinage et de Distribution TOTAL France, 75 - Paris (France); Hombourger, T. [Mobil (France); Jullian, S. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Marty, C. [Compagnie de Raffinage et de Distribution TOTAL France, 75 - Paris (France); Mikitenko, P. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Ptak, C. [Technip, 92 - Rueil-Malmaison (France); Rojey, A.; Streicher, C.; Vidal, J. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1998-12-01

    After having given into details the conventional separation processes used in petroleum refining, the author describes the development future prospects: improvement of the existing technologies, introduction of new techniques or separation processes still not used today in this industry. This book is particularly devoted to students and to engineers and technical men who work in refineries. (O.M.) 308 refs.

  6. Rapid ion-exchange separations of actinides

    International Nuclear Information System (INIS)

    Usuda, Shigekazu

    1988-01-01

    For the purpose of studying short-lived actinide nuclides, three methods for rapid ion exchange separation of actinide elements with mineral acid-alcohol mixed media were developed: anion exchange with nitric acid-methyl alcohol mixed media to separate the transplutonium and rare earth elements from target material, U or Pu and Al catcher foils; anion exchange with hydrochloric acid-methyl alcohol media to separate Am+Cm, Bk and Cf+Fm from the target, catcher foils and major fission products; and cation exchange with hydrochloric acid-methyl alcohol media and with concentrated hydrochloric acid to separate the transplutonium elements as a group from the rare earths after eliminating the large amounts of U, Al, Cu, Fe etc. The methods enable one to perform rapid and effective separation at elevated temperature (90 deg C) and immediate source preparation for alpha-ray spectrometry. (author) 47 refs.; 10 figs

  7. FY1998 research report on the R and D on high- temperature CO{sub 2} separation, recovery and recycling technologies; 1998 nendo nisanka tanso koon bunri kaishu sairiyo gijutsu kekyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims to develop high-temperature (over 300 degrees C) CO{sub 2} separation, recovery and recycling technologies. For separation membranes, control technology of micro-pore structure using templates, and that of a permeation gas affinity by metal ion exchange and metallic element addition to separation membrane textures were developed. The result gave the guide to control, design and evaluation of permeation and separation properties. The prototype module was prepared, and improvement of joining technology and evaluation of material fatigue property were also carried out. As for optimization of the developed system and research on its marketability, study was mainly made on the ripple effect of inorganic membranes. The current state and trend of technologies were studied also for power plants. In the concept design of the module, further study was made on high-temperature sealing technology and inorganic membrane technology for H{sub 2} gas separation. Use of CO{sub 2} gas separation technology for steelmaking process was newly studied. The ripple effect was studied for future important fields. (NEDO)

  8. The gas filled separator as a separation method to detect transuranic elements

    International Nuclear Information System (INIS)

    Ninov, V.

    1992-08-01

    The mass spectrometer NASE (NAchSEparator) built as a post-separator and located behind the velocity filter SHIP at the GSI in Darmstadt, was taken into operation as a gas-filled separator, and its separation properties for fusion products from heavy ion reactions were studied. Chapter 2 describes the principle of separation in a gas-filled magnet. The technical specifications of the separator, the detectors and the setup of detection electronics are outlined in chapter 3. The studies of separation properties are described in chapter 4, and chapter 5 deals with preliminary applications of the gas-filled separator to detect isotopes poor in neutrons, with an atomic number Z = 92, 93. Chapter 6 is concerned with preliminary tests to detect heavy nuclei with an atomic number Z > = 100 by means of light radiation and actinide targets. The experimental results of comparative measurements between the velocity filter SHIP and the gas-filled separator are pointed out in chapter 7, and future application possibilities of gas-filled separators for synthesis of heaviest nuclei through asymmetric reactions are discussed. (orig./BBR) [de

  9. Mars Atmospheric Capture and Gas Separation

    Science.gov (United States)

    Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.

  10. Inertial Confinement Fusion Target Component Fabrication and Technology Development report

    International Nuclear Information System (INIS)

    Steinman, D.

    1994-03-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities which took place under this contract during the period of October 1, 1992 through September 30, 1993. During this period, GA was assigned 18 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included ''Capabilities Activation'' and ''Capabilities Demonstration'' to enable us to begin production of glass and composite polymer capsules. Capsule delivery tasks included ''Small Glass Shell Deliveries'' and ''Composite Polymer Capsules'' for Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). We also were asked to provide direct ''Onsite Support'' at LLNL and LANL. We continued planning for the transfer of ''Micromachining Equipment from Rocky Flats'' and established ''Target Component Micromachining and Electroplating Facilities'' at GA. We fabricated over 1100 films and filters of 11 types for Sandia National Laboratory and provided full-time onsite engineering support for target fabrication and characterization. We initiated development of methods to make targets for the Naval Research Laboratory. We investigated spherical interferometry, built an automated capsule sorter, and developed an apparatus for calorimetric measurement of fuel fill for LLNL. We assisted LANL in the ''Characterization of Opaque b-Layered Targets.'' We developed deuterated and UV-opaque polymers for use by the University of Rochester's Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process

  11. The ISOLDE target robots

    CERN Multimedia

    Maximilein Brice

    2002-01-01

    ISOLDE targets need to be changed frequently, around 80 times per year. The high radiation levels do not permit this to be done by human hands and the target changes are effected by 2 industrial robots (picture _01). On the left, in the distance, the front-end of the GPS (General Purpose Separator) is seen, while the HRS (High Resolution Separator) is at the right. Also seen are the doors to the irradiated-target storage.

  12. Supported ionic liquids: versatile reaction and separation media

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic ...... liquid catalysts proved to be more active and selective than common systems. In separation applications the use of supported ionic liquids can facilitate selective transport of substrates across membranes.......The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic...

  13. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.

    Science.gov (United States)

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2012-03-06

    Metal-plated plastics (MPP), which are important from the standpoint of aesthetics or even performance, are increasingly employed in a wide variety of situations in the automotive industry. Serious environmental problems will be caused if they are not treated appropriately. Therefore, recycling of MPP is an important subject not only for resource recycling but also for environmental protection. This work represents a novel attempt to deal with the MPP. A self-designed hammer crusher was used to liberate coatings from the plastic substrate. The size distribution of particles was analyzed and described by the Rosin-Rammler function model. The optimum retaining time of materials in the crusher is 3 min. By this time, the liberation rate of the materials can reach 87.3%. When the density of the suspension is 31,250 g/m(3), the performance of liberation is the best. Two-step magnetic separation was adopted to avoid excessive crushing and to guarantee the quality of products. Concerning both the separation efficiency and grade of products, the optimum rotational speed of the magnetic separator is 50-70 rpm. On the basis of the above studies about the liberating and separating behavior of the materials, a continuous recycling system (the technology of crush-magnetic separation) is developed. This recycling system provides a feasible method for recycling MPP efficiently, economically, and environmentally.

  14. Process for separating nitrogen from methane using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Marysville, OH; Qiu, Dongming [Dublin, OH; Dritz, Terence Andrew [Worthington, OH; Neagle, Paul [Westerville, OH; Litt, Robert Dwayne [Westerville, OH; Arora, Ravi [Dublin, OH; Lamont, Michael Jay [Hilliard, OH; Pagnotto, Kristina M [Cincinnati, OH

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  15. The value of advanced technology in meeting 2050 greenhouse gas emissions targets in the United States

    International Nuclear Information System (INIS)

    Kyle, Page; Clarke, Leon; Pugh, Graham; Wise, Marshall; Calvin, Kate; Edmonds, James; Kim, Son

    2009-01-01

    This paper, a contribution to the EMF 22 subgroup on Transition Scenarios, examines the relationship between technology evolution over the next 40 years and the cost, energy, and greenhouse gas emissions consequences of possible U.S. mitigation goals. The paper explores these issues within the context of cumulative emissions targets based on linear reductions in CO 2 -e emissions of 50% and 80% below 1990 levels by 2050. Six technology futures were constructed within the MiniCAM integrated assessment model and then applied to the emissions targets. The paper explores the influence of technology availability and expectations of future technology availability on the economic consequences of emissions mitigation, on the time path of emissions mitigation, and on the evolution of the U.S. energy system over time. One of the strongest themes to emerge from the scenarios in this study is that near-term decision-making depends on the availability of technology decades into the future, when deep emissions reductions are required to meet the cumulative emissions goals. In the scenarios in this paper, it is the expectations about future technology that have the most dramatic effect on greenhouse gas emissions prices and emissions reductions in 2020, as opposed to near-term technology availability. Moreover, it is the nature of technology 20, 30, and 40 years out, rather than availability and deployment of technology in the next decade, that will largely determine the character of the mid-century energy system.

  16. Rare isotope accelerator—conceptual design of target areas

    Science.gov (United States)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-06-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  17. Rare isotope accelerator - conceptual design of target areas

    International Nuclear Information System (INIS)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas

  18. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  19. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  20. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    Science.gov (United States)

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Latest development on the membrane formation for gas separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The first scientific observation related to gas separation was encountered by J.K Mitchell in 1831. However, the most remarkable and influential contribution to membrane gas separation technology was the systematic study by Thomas Graham in 1860. However only in 1979, membrane based gas separation technology was available and recognized as one of the most recent and advanced unit operations for gas separation processes. Membrane is fabricated by various methods and the parameters involved to a certain extent are very complicated. The phase inversion technique that is normally employed to produce membranes are dry/wet, wet, dry and thermal induced phase separation. Other techniques used to produce membrane are also reviewed. This paper reports the latest development in membrane formation for gas separation. The route to produce defect-free and ultrathin-skinned asymmetric membrane is also presented that represents the cutting edge technology in membrane gas separation process

  2. A novel technology to target adenovirus vectors : application in cells involved in atherosclerosis

    NARCIS (Netherlands)

    Gras, Jan Cornelis Emile

    2007-01-01

    In this thesis a novel technology is described to target adenovirus vectors. Adenovirus vectors are powerful tools to modulate gene expression. The use of these vectors however, is hampered by the fact that many for gene therapy interesting cell types do not, or only at low levels express the CAR

  3. Separating esterase targets of organophosphorus compounds in the brain by preparative chromatography.

    Science.gov (United States)

    Mangas, I; Vilanova, E; Benabent, M; Estévez, J

    2014-02-10

    Low level exposure to organophosphorus esters (OPs) may cause long-term neurological effects and affect specific cognition domains in experimental animals and humans. Action on known targets cannot explain most of these effects by. Soluble carboxylesterases (EC 3.1.1.1) of chicken brain have been kinetically discriminated using paraoxon, mipafox and phenylmethyl sulfonylfluoride as inhibitors and phenyl valerate as a substrate. Three different enzymatic components were discriminated and called Eα, Eβ and Eγ. In this work, a fractionation procedure with various steps was developed using protein native separation methods by preparative HPLC. Gel permeation chromatography followed by ion exchange chromatography allowed enriched fractions with different kinetic behaviors. The soluble chicken brain fraction was fractionated, while total esterase activity, proteins and enzymatic components Eα, Eβ and Eγ were monitored in each subfraction. After the analysis, 13 fractions were pooled and conserved. Preincubation of the soluble chicken brain fraction of with the organophosphorus mipafox gave rise to a major change in the ion exchange chromatography profile, but not in the molecular exchanged chromatography profile, which suggest that mipafox permanently modifies the ionic properties of numerous proteins. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Advanced research technology for discovery of new effective compounds from Chinese herbal medicine and their molecular targets.

    Science.gov (United States)

    Wong, Vincent Kam-Wai; Law, Betty Yuen-Kwan; Yao, Xiao-Jun; Chen, Xi; Xu, Su Wei; Liu, Liang; Leung, Elaine Lai-Han

    2016-09-01

    Traditional biotechnology has been utilized by human civilization for long in wide aspects of our daily life, such as wine and vinegar production, which can generate new phytochemicals from natural products using micro-organism. Today, with advanced biotechnology, diverse applications and advantages have been exhibited not only in bringing benefits to increase the diversity and composition of herbal phytochemicals, but also helping to elucidate the treatment mechanism and accelerate new drug discovery from Chinese herbal medicine (CHM). Applications on phytochemical biotechnologies and microbial biotechnologies have been promoted to enhance phytochemical diversity. Cell labeling and imaging technology and -omics technology have been utilized to elucidate CHM treatment mechanism. Application of computational methods, such as chemoinformatics and bioinformatics provide new insights on direct target of CHM. Overall, these technologies provide efficient ways to overcome the bottleneck of CHM, such as helping to increase the phytochemical diversity, match their molecular targets and elucidate the treatment mechanism. Potentially, new oriented herbal phytochemicals and their corresponding drug targets can be identified. In perspective, tighter integration of multi-disciplinary biotechnology and computational technology will be the cornerstone to accelerate new arena formation, advancement and revolution in the fields of CHM and world pharmaceutical industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Pore-Confined Carriers and Biomolecules in Mesoporous Silica for Biomimetic Separation and Targeting

    Science.gov (United States)

    Zhou, Shanshan

    Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through the membrane is demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic catalysis and biomimetic separations can be combined on this nanostructured composite platform. The successful development of biomimetic nanocomposite membrane can provide for efficient dilute aqueous solute upgrading or separations using engineered carrier/catalyst/support systems. While the carrier-mediated biomimetic membranes hold great potential, fully understanding of the transport processes in composite synthetic membranes is essential for improve the membrane performance. Electrochemical impedance spectroscopy (EIS) technique is demonstrated to be a useful tool for characterizing the thin film pore accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid bilayer with high electrically insulation is essential for detecting activity of proteins or biomimetic carriers in the bilayer. This study provides insights for making better barriers on mesoporous support for carrier-mediated membrane separation process. Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule loading are potential for encapsulating dsRNA within the

  6. Melting, solidification, remelting, and separation of glass and metal

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending

  7. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer and user. This

  8. Technology strategy for gas technologies; Technology Target Areas; TTA8 Gas Technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    TTA8 - Gas technologies points out the various routes Norway can follow to capitalise on the vast resources of natural gas that will be produced in the years to come by developing a strong technology and competence platform. A broad view is taken for the value creation having as basis the continued gas export from NCS to Europe, but also a strong focus on development of gas resources in other parts of the world. The latter can also be seen as part of international positioning for upstream resources and does also include involvements in projects, and export of technology and products. The TTA has structured the analysis into 3 main areas: Gas transport and processing (pipeline, LNG, other); Gas conversion to fuels, chemicals and materials; CO{sub 2} management. In this report, for each of these areas, scenarios based on a gap analysis are presented. One of the key goals has been to identify pacing and emerging technologies for the next 20 years. Based on this, technologies have been mapped according to importance for future competitiveness and technology ambitions. This also includes primary funding responsibilities (public and/or industry). The road map below reflects the key issues in the proposed strategy. The base level of the figure explains areas that will have to be pursued to maintain Norway's role as a key gas and gas technology provider. The second layer represents near term options and possibilities with a reasonable risk profile that could further enhance the Norwegian position given the resources and drive to further develop this industry. As the top layer we have selected some of our 'dreams', what we may achieve if a progressive approach is followed with a strongly innovation based policy. It is acknowledged by the TTA that Norway cannot be a leading technology player in all aspects of the gas value chain. For some technologies we should be an active player and developer, whilst for other technologies we should become a competent buyer

  9. Evaluation of a new pulping technology for pre-treating source-separated organic household waste prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Larsen, Bjarne

    2016-01-01

    A new technology for pre-treating source-separated organic household waste prior to anaerobic digestion was assessed, and its performance was compared to existing alternative pre-treatment technologies. This pre-treatment technology is based on waste pulping with water, using a specially developed...... screw mechanism. The pre-treatment technology rejects more than 95% (wet weight) of non-biodegradable impurities in waste collected from households and generates biopulp ready for anaerobic digestion. Overall, 84-99% of biodegradable material (on a dry weight basis) in the waste was recovered...... in the biopulp. The biochemical methane potential for the biopulp was 469±7mL CH4/g ash-free mass. Moreover, all Danish and European Union requirements regarding the content of hazardous substances in biomass intended for land application were fulfilled. Compared to other pre-treatment alternatives, the screw...

  10. A Very High Uranium Density Fission Mo Target Suitable for LEU Using atomization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Ryu, H. J.; Woo, Y. M.; Jang, S. J.; Park, J. M.; Choi, S. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Currently HEU minimization efforts in fission Mo production are underway in connection with the global threat reduction policy. In order to convert HEU to LEU for the fission Mo target, higher uranium density material could be applied. The uranium aluminide targets used world widely for commercial {sup 99}Mo production are limited to 3.0 g-U/cc in uranium density of the target meat. A consideration of high uranium density using the uranium metal particles dispersion plate target is taken into account. The irradiation burnup of the fission Mo target are as low as 8 at.% and the irradiation period is shorter than 7 days. Pure uranium material has higher thermal conductivity than uranium compounds or alloys. It is considered that the degradation by irradiation would be almost negligible. In this study, using the computer code of the PLATE developed by ANL the irradiation behavior was estimated. Some considerations were taken into account to improve the irradiation performance further. It has been known that some alloying elements of Si, Cr, Fe, and Mo are beneficial for reducing the swelling by grain refinement. In the RERTR program recently the interaction problem could be solved by adding a small amount of Si to the aluminum matrix phase. The fabrication process and the separation process for the proposed atomized uranium particles dispersion target were reviewed

  11. A Plutonium Ceramic Target for MASHA

    International Nuclear Information System (INIS)

    Wilk, P A; Shaughnessy, D A; Moody, K J; Kenneally, J M; Wild, J F; Stoyer, M A; Patin, J B; Lougheed, R W; Ebbinghaus, B B; Landingham, R L; Oganessian, Y T; Yeremin, A V; Dmitriev, S N

    2004-01-01

    We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied

  12. Progress on LEU very high density fuel and target development in Argentina

    International Nuclear Information System (INIS)

    Balart, S.; Cabot, P.; Calzetta, O.; Duran, A.; Garces, J.; Hermida, J.D.; Manzini, A.; Pasqualini, E.; Taboada, H.

    2006-01-01

    Since last RRFM meeting, CNEA has continued on new LEU fuel and target development activities. Main goals are the plan to convert our RA-6 reactor from HEU to a new LEU core, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, to optimize techniques to recover U from silicide scrap samples as cold test for radiowaste separation for final conditioning of silicide spent fuels. and to improve the diffusion of LEU target and radiochemical technology for radioisotope production. Future plans include: - Completion of the RA-6 reactor conversion to LEU; - Improvement on fuel development and production facilities to implement new technologies, including NDT techniques to assess bonding quality; - Irradiation of miniplates and full scale fuel assembly at RA-3 and plans to perform irradiation on higher power and temperature regime reactors; - Optimization of LEU target and radiochemical techniques for radioisotope production. (author)

  13. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  14. Minor actinides transmutation scenario studies with PWRs, FRs and moderated targets

    International Nuclear Information System (INIS)

    Grouiller, J.P.; Pillon, S.; Saint Jean, C. de; Varaine, F.; Leyval, L.; Vambenepe, G.; Carlier, B.

    2003-01-01

    Using current technologies, we have demonstrated in this study that it is theoretically possible to obtain different minor actinide transmutation scenarios with a significant gain on the waste radiotoxicity inventory. The handling of objects with Am+Cm entails the significant increase of penetrating radiation sources (neutron and γ) whatever mixed scenario is envisioned; the PWR and FR scenario involving the recycling of Am + Cm in the form of targets results in the lowest flow. In the light of these outcomes, the detailed studies has allowed to design a target sub assembly with a high fission rate (90%) and define a drawing up of reprocessing diagram with the plant head, the minor actinide separation processes (PUREX, DIAMEX and SANEX). Some technological difficulties appear in manipulating curium, principally in manufacturing where the wet process ('sol-gel') is not acquired for (Am+Cm). (author)

  15. Performance of the multiple target He/PbI sub 2 aerosol jet system for mass separation of neutron-deficient actinide isotopes

    CERN Document Server

    Ichikawa, S; Asai, M; Haba, H; Sakama, M; Kojima, Y; Shibata, M; Nagame, Y; Oura, Y; Kawade, K

    2002-01-01

    A multiple target He/PbI sub 2 aerosol jet system coupled with a thermal ion source was installed in the isotope separator on line (JAERI-ISOL) at the JAERI tandem accelerator facility. The neutron-deficient americium and curium isotopes produced in the sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 U( sup 6 Li, xn) and sup 2 sup 3 sup 7 Np( sup 6 Li, xn) reactions were successfully mass-separated and the overall efficiency including the ionization of Am atoms was evaluated to be 0.3-0.4%. The identification of a new isotope sup 2 sup 3 sup 7 Cm with the present system is reported.

  16. Material review of Li ion battery separators

    Science.gov (United States)

    Weber, Christoph J.; Geiger, Sigrid; Falusi, Sandra; Roth, Michael

    2014-06-01

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m2 mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  17. Material review of Li ion battery separators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christoph J., E-mail: Christoph.Weber@freudenberg-nw.com; Geiger, Sigrid, E-mail: Christoph.Weber@freudenberg-nw.com [Freudenberg Vliesstoffe SE and Co KG, 69465 Weinheim (Germany); Falusi, Sandra; Roth, Michael [Freudenberg Forschungsdienste SE and Co KG, 69465 Weinheim (Germany)

    2014-06-16

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m{sup 2} mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  18. Gas separation using porous cement membrane.

    Science.gov (United States)

    Zhang, Weiqi; Gaggl, Maria; Gluth, Gregor J G; Behrendt, Frank

    2014-01-01

    Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.

  19. Targeted Prostate Biopsy: Lessons Learned Midst the Evolution of a Disruptive Technology.

    Science.gov (United States)

    Nassiri, Nima; Natarajan, Shyam; Margolis, Daniel J; Marks, Leonard S

    2015-09-01

    Lessons learned during a 6-year experience with more than 1200 patients undergoing targeted prostate biopsy via MRI/ultrasound fusion are reported: (1) the procedure is safe and efficient, requiring some 15-20 minutes in an office setting; (2) MRI is best performed by a radiologist with specialized training, using a transabdominal multiparametric approach and preferably a 3T magnet; (3) grade of MRI suspicion is the most powerful predictor of biopsy results, eg, Grade 5 usually represents cancer; (4) some potentially important cancers (15%-30%) are MRI-invisible; (5) Targeted biopsies provide >80% concordance with whole-organ pathology. Early enthusiasm notwithstanding, cost-effectiveness is yet to be resolved, and the technologies remain in evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Rare Isotope Accelerator - Conceptual Design of Target Areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [Michigan State University, East Lansing; Baek, Inseok [Michigan State University, East Lansing; Blideanu, Valentin [CEA, Saclay, France; Lawton, Don [Michigan State University, East Lansing; Mantica, Paul F. [Michigan State University, East Lansing; Morrissey, David J. [Michigan State University, East Lansing; Ronningen, Reginald M. [Michigan State University, East Lansing; Sherrill, Bradley S. [Michigan State University, East Lansing; Zeller, Albert [Michigan State University, East Lansing; Beene, James R [ORNL; Burgess, Tom [Oak Ridge National Laboratory (ORNL); Carter, Kenneth [Oak Ridge National Laboratory (ORNL); Carrol, Adam [Oak Ridge National Laboratory (ORNL); Conner, David [ORNL; Gabriel, Tony A [ORNL; Mansur, Louis K [ORNL; Remec, Igor [ORNL; Rennich, Mark J [ORNL; Stracener, Daniel W [ORNL; Wendel, Mark W [ORNL; Ahle, Larry [Lawrence Livermore National Laboratory (LLNL); Boles, Jason [Lawrence Livermore National Laboratory (LLNL); Reyes, Susana [Lawrence Livermore National Laboratory (LLNL); Stein, Werner [Lawrence Livermore National Laboratory (LLNL); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory (LBNL)

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  1. Rare isotope accelerator-conceptual design of target areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)]. E-mail: bollen@nscl.msu.edu; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner [Lawrence Livermore Laboratory, Livermore, CA 94550 (United States); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-06-23

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  2. Coping with Atmospheric Turbulence in the Selection of Laser Hardening Technology for FCS Targeting Systems

    National Research Council Canada - National Science Library

    Pritchett, Timothy M

    2004-01-01

    ... by frequency-agile battlefield lasers at both long and short range. Evidently, the selection of sensor protection technologies for incorporation into the final targeting system will be based on their optical limiting performance under field conditions...

  3. SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

    2012-09-25

    Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle

  4. Russian separation program

    International Nuclear Information System (INIS)

    Rea, J.L.

    1993-01-01

    A small contract signed in FY92 with the Khlopin Radium Institute marked the beginning of the Russian Separations program. Under this contract the Khlopin Radium Institute performed laboratory and dynamic hot-cell testing using cobalt dicarbollide technology on simulated radioactive wastes similar to those found at DOE sites in the United States. The current scope of investigation has been extended to identify prospective technologies for application to other United States needs. The Khlopin Radium Institute project served as a model for three other pilot scale technology development projects. The premise of the pilot scale projects is to enable Russian scientists to demonstrate their technology in the context of DOE needs, using Russian technical expertise has proven to be a cost-effective means of screening Russian technologies

  5. Alternative polymer separation technology by centrifugal force in a melted state

    International Nuclear Information System (INIS)

    Dobrovszky, Károly; Ronkay, Ferenc

    2014-01-01

    Highlights: • Waste separation should take place at high purity. • Developed a novel, alternative separation method, where the separation occurred in a melted state by centrifugal forces. • Possibility of separation two different plastics into neat fractions. • High purity fractions were established at granulates and also at prefabricated blend. • Results were verified by DSC, optical microscopy and Raman spectroscopy. - Abstract: In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy

  6. Alternative polymer separation technology by centrifugal force in a melted state

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovszky, Károly; Ronkay, Ferenc, E-mail: ronkay@pt.bme.hu

    2014-11-15

    Highlights: • Waste separation should take place at high purity. • Developed a novel, alternative separation method, where the separation occurred in a melted state by centrifugal forces. • Possibility of separation two different plastics into neat fractions. • High purity fractions were established at granulates and also at prefabricated blend. • Results were verified by DSC, optical microscopy and Raman spectroscopy. - Abstract: In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy.

  7. The development of uranium foil farication technology utilizing twin roll method for Mo-99 irradiation target

    CERN Document Server

    Kim, C K; Park, H D

    2002-01-01

    MDS Nordion in Canada, occupying about 75% of global supply of Mo-99 isotope, has provided the irradiation target of Mo-99 using the rod-type UAl sub x alloys with HEU(High Enrichment Uranium). ANL (Argonne National Laboratory) through co-operation with BATAN in Indonesia, leading RERTR (Reduced Enrichment for Research and Test Reactors) program substantially for nuclear non-proliferation, has designed and fabricated the annular cylinder of uranium targets, and successfully performed irradiation test, in order to develop the fabrication technology of fission Mo-99 using LEU(Low Enrichment Uranium). As the uranium foils could be fabricated in laboratory scale, not in commercialized scale by hot rolling method due to significant problems in foil quality, productivity and economic efficiency, attention has shifted to the development of new technology. Under these circumstances, the invention of uranium foil fabrication technology utilizing twin-roll casting method in KAERI is found to be able to fabricate LEU or...

  8. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing.

    Science.gov (United States)

    Quétier, Francis

    2016-01-01

    The first period of plant genome editing was based on Agrobacterium; chemical mutagenesis by EMS (ethyl methanesulfonate) and ionizing radiations; each of these technologies led to randomly distributed genome modifications. The second period is associated with the discoveries of homing and meganuclease enzymes during the 80s and 90s, which were then engineered to provide efficient tools for targeted editing. From 2006 to 2012, a few crop plants were successfully and precisely modified using zinc-finger nucleases. A third wave of improvement in genome editing, which led to a dramatic decrease in off-target events, was achieved in 2009-2011 with the TALEN technology. The latest revolution surfaced in 2013 with the CRISPR-Cas9 system, whose high efficiency and technical ease of use is really impressive; scientists can use in-house kits or commercially available kits; the only two requirements are to carefully choose the location of the DNA double strand breaks to be induced and then to order an oligonucleotide. While this close-to- ultimate toolkit for targeted editing of genomes represents dramatic scientific progress which allows the development of more complex useful agronomic traits through synthetic biology, the social acceptance of genome editing remains regularly questioned by anti-GMO citizens and organizations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. a Plutonium Ceramic Target for Masha

    Science.gov (United States)

    Wilk, P. A.; Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Patin, J. B.; Lougheed, R. W.; Ebbinghaus, B. B.; Landingham, R. L.; Oganessian, Yu. Ts.; Yeremin, A. V.; Dmitriev, S. N.

    2005-09-01

    We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 °C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied.

  10. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    Science.gov (United States)

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. HEU and LEU MTR fuel elements as target materials for the production of fission molybdenum

    International Nuclear Information System (INIS)

    Sameh, A.A.; Bertram-Berg, A.

    1993-01-01

    The processing of irradiated MTR-fuels for the production of fission nuclides for nuclear medicine presents a significantly increasing task in the field of chemical separation technology of high activity levels. By far the most required product is MO-99, the mother nuclide of Tc-99m which is used in over 90% of the organ function tests in nuclear medicine. Because of the short half life of Mo-99 (66 h) the separation has to be carried out from shortly cooled neutron irradiated U-targets. The needed product purity, the extremely high radiation level, the presence of fission gases like xenon-133 and of volatile toxic isotopes such as iodine-131 and its compounds in kCi-scale require a sophisticated process technology

  12. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation

  13. Magnetic separations in biotechnology.

    Science.gov (United States)

    Borlido, L; Azevedo, A M; Roque, A C A; Aires-Barros, M R

    2013-12-01

    Magnetic separations are probably one of the most versatile separation processes in biotechnology as they are able to purify cells, viruses, proteins and nucleic acids directly from crude samples. The fast and gentle process in combination with its easy scale-up and automation provide unique advantages over other separation techniques. In the midst of this process are the magnetic adsorbents tailored for the envisioned target and whose complex synthesis spans over multiple fields of science. In this context, this article reviews both the synthesis and tailoring of magnetic adsorbents for bioseparations as well as their ultimate application. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Ma, En; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2013-12-15

    Highlights: • The vacuum pyrolysis–vacuum chlorinated separation system was proposed to recover the waste LCD panel. • The system can recycle the whole waste LCD panels efficiently without negative effects to environment. • The 82.03% of the organic materials was reclaimed. All pyrolysis products can be utilized by a reasonable way. • The separation of indium was optimized by the central composite design (CCD) under response surface methodology (RSM). • The recovery ratio of indium was further increased to 99.97%. -- Abstract: In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300 °C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH{sub 4}Cl to glass powder is 50 wt% and temperature is 450 °C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly.

  15. Separation Technology - Making a difference in biorefineries

    NARCIS (Netherlands)

    Kiss, Anton Alexandru; Lange, Jean Paul; Schuur, Boelo; Brilman, Derk Willem Frederik; van der Ham, Aloysius G.J.; Kersten, Sascha R.A.

    2016-01-01

    In the quest for a sustainable bio-based economy, biorefineries play a central role as they involve the sustainable processing of biomass into marketable products and energy. This paper aims to provide a perspective on applications of separations that can make a great difference in biorefineries, by

  16. Dramatically improve the Safety Performance of Li ion Battery Separators and Reduce the Manufacturing Cost Using Ultraviolet Curing and High Precision Coating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Voelker, Gary [Miltec UV International, LLC, Stevensville, MD (United States); Arnold, John [Miltec UV International, LLC, Stevensville, MD (United States)

    2017-06-30

    The objective of this project was to improve the safety of operation of Lithium ion batteries (LIB)and at the same time significantly reduce the manufacturing cost of LIB separators. The project was very successful in demonstrating the improved performance and reduced cost attributed to using UV curable binder and high speed printing technology to place a very thin and precisely controlled ceramic layer on the surface of base separators made of polyolefins such as Polyethylene, Polypropylene and combinations of the two as well as cellulosic base separators. The underlying need for this new technology is the recently identified potential of fire in large format Lithium ion batteries used in hybrid, plug-in hybrid and electric vehicles. The primary potential cause of battery fire is thermal runaway caused by several different electrical or mechanical mechanisms; such as, overcharge, puncture, overheating, compaction, and internal short circuit. During thermal runaway, the ideal separator prevents ion flow and continues to physically separate the anode from the cathode. If the temperature of the battery gets higher, the separator may melt and partially clog the pores and help prevent ion flows but it also can shrink which can result in physical contact of the electrodes and accelerate thermal run-away even further. Ceramic coated separators eliminate many of the problems related to the usage of traditional separators. The ceramic coating provides an electrically insulating layer that retains its physical integrity at high temperature, allows for more efficient thermal heat transfer, helps reduce thermal shrinkage, and inhibits dendrite growth that could create a potential short circuit. The use of Ultraviolet (UV) chemistry to bind fine ceramic particles on separators is a unique and innovative approach primarily because of the instant curing of the UV curable binder upon exposure to UV light. This significant reduction in drying/curing time significantly reduces the

  17. Laterally and longitudinally dispersive recoil mass separators

    International Nuclear Information System (INIS)

    Wollnik, H.

    1987-01-01

    Principles of laterally dispersive and time-of-flight mass separators are outlined. Special emphasis is given to separators for very energetic recoils for which electrostatic fields would be technologically impossible. The principle of energy isochronous time-of-flight mass separators is shown to be applicable to storage rings. (orig.)

  18. Separating oil from water

    Energy Technology Data Exchange (ETDEWEB)

    Webb, C

    1991-04-11

    The technology available to deal with oil spills has assumed many new faces in recent years. Methods of dealing with small-scale pollution in the process industries and vast oil slicks such as that in the Gulf have developed in parallel. The progress being made in finding new means of separating oil from water is reported and the relative merits of bioremediation, hydrocylones, horizontal separators and gas flotation are discussed. (author).

  19. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    International Nuclear Information System (INIS)

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-01-01

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge

  20. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making

  1. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre

  2. Radiochemical separation of Tb-149 after tandem accelerator production

    International Nuclear Information System (INIS)

    Sarkar, S.R.

    1996-01-01

    Full text: Terbium-149 is produced by the heavy ion induced reaction of the type 142 Nd( 12 C,5n) 149 Dy→ 149 Tb. This work concerns the separation of terbium from neodymium target, and other lanthanides produced by secondary reactions on neodymium target. Firstly, anion-exchange separation is carried out at room temperature using acid-alcohol media (90% methanol-10% 5M nitric acid) as eluent. But the separation is not satisfactory. To achieve satisfactory separation, cation exchange separation is performed under pressure at room temperature using 0.1 6M α-hydroxyisobutyric acid of pH 5 as eluent. The pressure is exerted from a nitrogen gas cylinder. The simplicity and efficacy of this method for the separation of terbium are discussed in comparison with the commercially available high performance liquid chromatography system

  3. Partitioning the proteome: phase separation for targeted analysis of membrane proteins in human post-mortem brain.

    Directory of Open Access Journals (Sweden)

    Jane A English

    Full Text Available Neuroproteomics is a powerful platform for targeted and hypothesis driven research, providing comprehensive insights into cellular and sub-cellular disease states, Gene × Environmental effects, and cellular response to medication effects in human, animal, and cell culture models. Analysis of sub-proteomes is becoming increasingly important in clinical proteomics, enriching for otherwise undetectable proteins that are possible markers for disease. Membrane proteins are one such sub-proteome class that merit in-depth targeted analysis, particularly in psychiatric disorders. As membrane proteins are notoriously difficult to analyse using traditional proteomics methods, we evaluate a paradigm to enrich for and study membrane proteins from human post-mortem brain tissue. This is the first study to extensively characterise the integral trans-membrane spanning proteins present in human brain. Using Triton X-114 phase separation and LC-MS/MS analysis, we enriched for and identified 494 membrane proteins, with 194 trans-membrane helices present, ranging from 1 to 21 helices per protein. Isolated proteins included glutamate receptors, G proteins, voltage gated and calcium channels, synaptic proteins, and myelin proteins, all of which warrant quantitative proteomic investigation in psychiatric and neurological disorders. Overall, our sub-proteome analysis reduced sample complexity and enriched for integral membrane proteins by 2.3 fold, thus allowing for more manageable, reproducible, and targeted proteomics in case vs. control biomarker studies. This study provides a valuable reference for future neuroproteomic investigations of membrane proteins, and validates the use Triton X-114 detergent phase extraction on human post mortem brain.

  4. Chemical Genomics and Emerging DNA Technologies in the Identification of Drug Mechanisms and Drug Targets

    DEFF Research Database (Denmark)

    Olsen, Louise Cathrine Braun; Færgeman, Nils J.

    2012-01-01

    and validate therapeutic targets and to discover drug candidates for rapidly and effectively generating new interventions for human diseases. The recent emergence of genomic technologies and their application on genetically tractable model organisms like Drosophila melanogaster,Caenorhabditis elegans...... critical roles in the genomic age of biological research and drug discovery. In the present review we discuss how simple biological model organisms can be used as screening platforms in combination with emerging genomic technologies to advance the identification of potential drugs and their molecular...

  5. Production and separation of no-carrier-added 73As and 75Se from 7Li irradiated germanium oxide target

    International Nuclear Information System (INIS)

    Mandal, A.; Lahiri, S.

    2012-01-01

    This work reports for the first time 7 Li-induced accelerator based production of 71,72,73,74 As, 75,76,77 Br and 73,75 Se radionuclides in their no-carrier-added (nca) state. After the decay of all short-lived radionuclides 75 Se and 73 As were only existing radionuclides in germanium oxide target, which were subsequently separated by liquid-liquid extraction (LLX) using trioctylamine (TOA) dissolved in cyclohexane as liquid ion exchanger. The presence of stable germanium in various fractions was examined by Inductively Coupled Plasma Optical Spectrometry (ICP-OES). At 0.1 M TOA and 10 M HCl concentration, 75 Se and stable Ge were extracted into the organic phase leaving 73 As in the aqueous phase. The bulk Ge was stripped back to the aqueous phase by 1 M NaOH, keeping 75 Se in the organic phase. Therefore complete separation between 73 As, 75 Se and bulk Ge was achieved. (orig.)

  6. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion

  7. Production, separation and target preparation of 171Tm an 147Pm for neutron cross section measurements

    CERN Document Server

    Heinitz, S; Schumann, D; Dressler, R; Kivel, N; Guerrero, C; Köster, U; Tessler, M; Paul, M; Halfon, S

    2015-01-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg 171Tm from 240 mg 170Er2O3 and 72 µg 147Pm from 100 mg 146Nd2O3 irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at n_TOF CERN and the SARAF-LiLiT facility.

  8. Resonance ionization laser ion sources for on-line isotope separators (invited)

    International Nuclear Information System (INIS)

    Marsh, B. A.

    2014-01-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented

  9. Application of gas hydrate formation in separation processes: A review of experimental studies

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique; Naidoo, Paramespri; Ramjugernath, Deresh

    2012-01-01

    Highlights: ► Review of gas hydrate technology applied to separation processes. ► Gas hydrates have potential to be a future sustainable separation technology. ► More theoretical, simulation, and economic studies needed. - Abstract: There has been a dramatic increase in gas hydrate research over the last decade. Interestingly, the research has not focussed on only the inhibition of gas hydrate formation, which is of particular relevance to the petroleum industry, but has evolved into investigations on the promotion of hydrate formation as a potential novel separation technology. Gas hydrate formation as a separation technology shows tremendous potential, both from a physical feasibility (in terms of effecting difficult separations) as well as an envisaged lower energy utilization criterion. It is therefore a technology that should be considered as a future sustainable technology and will find wide application, possibly replacing a number of current commercial separation processes. In this article, we focus on presenting a brief description of the positive applications of clathrate hydrates and a comprehensive survey of experimental studies performed on separation processes using gas hydrate formation technology. Although many investigations have been undertaken on the positive application of gas hydrates to date, there is a need to perform more theoretical, experimental, and economic studies to clarify various aspects of separation processes using clathrate/semi-clathrate hydrate formation phenomena, and to conclusively prove its sustainability.

  10. Separation of 103Pd from metal Rhodium by dry distillation

    International Nuclear Information System (INIS)

    Szuecs, Z.; Takacs, S.

    2009-01-01

    Complete text of publication follows. Introduction. The use of Auger emitters as potential radiopharmaceuticals is increasingly investigated. One such radionuclide of interest is 103m Rh. This can be produced from 103 Ru or from 103 Pd in an in vivo generator. It has been proven on theoretical considerations that use of 103 Pd/ 103m Rh in vivo generator will be successful in delivering 103 mRh to a target site when complexed to a tumor selective carrier. 103 Pd is widely used in internal radiotherapy with one of the production routes via the irradiation of Rh by protons in a cyclotron. The charged particle production of 103 Pd is the only way for no-carrier -added production of this radionuclide, which is required for use in nuclear medicine. However, the widely used separation technique to get 103 Pd from the target material (as well as recovery of the Rh) by wet chemistry is a very complicated, labour intensive and expensive procedure, resulting in low yields of 103 Pd and high amounts of radioactive waste. An alternative more efficient separation and production technology can be developed based on differential evaporation. The principle is the following: The produced 103 Pd 'contaminating' new element within the crystal structure of the Rh target can be forced to diffuse out from the deformed crystal lattice by heating up the target. In this process the 103 Pd accumulates on the surface of the target from where it can be evaporated. A prerequisite for this process is that the target metal (Rh) has a different partial pressure than the evaporated metal (Pd). The thick target yield is 6MBq/μ Ah and the activities of potential contaminating radioisotopes produced by side reaction are negligible, if the energy of the irradiating beam will be chosen precisely. The natural abundance of 116 Cd is 7,5%, it means that the price of the enriched material is reasonable. A potential cyclotron facility with α-beam was found at JINR, Dubna, Russia where the radiochemical

  11. Beam splitting to improve target life in neutron generators

    International Nuclear Information System (INIS)

    Farrell, J.P.

    1976-01-01

    In a neutron generator in which a tritium-titanium target is bombarded by a deuterium ion beam, the target half-life is increased by separating the beam with a weak magnetic field to provide three separate beams of atomic, diatomic, and triatomic deuterium ions which all strike the target at different adjacent locations. Beam separation in this manner eliminates the problem of one type ion impairing the neutron generating efficiency of other type ions, thereby effecting more efficient utilization of the target material

  12. Status of technology of uranium recovery from seawater

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Saito, Kyoichi.

    1990-01-01

    By bringing the solid material called adsorbent in contact with seawater, uranium can be collected, therefore, the adsorbent to which uranium was adsorbed in seawater can be regarded as the resource of uranium storing. To the adsorbent, also rare metals are concentrated in addition to uranium. From such viewpoint, the development of the technology for collecting seawater uranium is important for the Japanese energy policy. The uranium concentration in seawater is about 3 mg/m 3 and its form of dissolution is uranyl tricarbonate ions. The technology of collecting seawater uranium is the separation technology for extracting the component of very low concentration from the aqueous solution containing many components. The total amount of uranium in the whole oceans reaches about 4 billion t, which is about 1000 times as much as the uranium commercially mined on land. It is the target of the technology to make artificial uranium ore of as high quality as possible quickly. The process of collecting seawater uranium comprises adsorption, desorption, separation and enrichment. As the adsorbents, hydrated titanium oxide and chelate resin represented by amidoxime are promising. The adsorption system is described. (K.I.)

  13. Physics and technology of inertial fusion energy targets chambers and drivers. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-09-01

    The third IAEA Technical Meeting on Physics and Technology of Inertial Fusion Energy Targets and Chambers took place 11-13 October 2004 in the Yousung Hotel Daejon, Republic of Korea. The first meeting was held in Madrid, Spain, 7-9 June 2000, and the second one in San Diego, California, 17-19 June 2002. Nuclear fusion has the promise of becoming an abundant energy source with good environmental compatibility. Excellent progress has been made in controlled nuclear fusion research on both magnetic and inertial approaches for plasma confinement. The IAEA plays a pro-active role to catalyze innovation and enhance worldwide commitment to fusion. This is done by creating awareness of the different concepts of magnetic as well as inertial confinement. The International Fusion Research Council (IFRC) supports the IAEA in the development of strategies to enhance fusion research in Member States. As part of the recommendations, a technical meeting on the physics and technology of inertial fusion energy (IFE) was proposed in one of the council meetings. The objective of the technical meeting was to contribute to advancing the understanding of targets and chambers for all proposed inertial fusion energy power plant designs. The topics to be covered were: Target design and physics, chamber design and physics, target fabrication injection and Tritium handling, assessment of safety, environment and economy aspect of IFE. It was recognized by the International Advisory Committee that the scope of the meeting should also include fusion drivers. The presentations of the meeting included target and chamber physics and technology for all proposed IFE plant concepts (laser driven, heavy-ion driven, Z-pinches, etc.). The final Research Coordination Meeting of the Coordinated Research Project on Elements of Power Plant Design for Inertial Fusion Energy, including further new results and achievements, followed the technical meeting. Twenty-nine participants from 12 countries participated

  14. Spectrophotometric determination of uranium by previous extraction chromatography separation in polimetalic mineral, phosphorites and technological licours

    International Nuclear Information System (INIS)

    Moreno Bermudez, J.; Cabrera Quevedo, C.; Alfonso Mendez, L.; Rodriguez Aguilera, M.

    1994-01-01

    The development of an analytical procedure for spectrophotometric determination of uranium in polimetalic mineral, phosphorites and technological licours is described. The method is based on the previous separation of interfering elements by extraction chromatography and on spectrophotometric determination of uranium (IV) with arsenazo III in concentrated hydrochloric acid. Tributyl phosphate impregnate on politetrafluoroethylene is used as stationary phase and 5.5 M nitric acid is used as movie phase. The influence of matrix-component elements was studies. The development procedure was applied to real samples, being the results compared with those obtained by other well established analytical methods like gamma-spectrometry, laser fluorimetric, spectrophotometry previous uranium separation by liquid liquid extraction and anion exchange. The reproducibility is evaluated and the detection limited has been established for each studied matrix. A procedure for correcting the thorium interference has been developed for samples with a Th/ 3U8O higher than 0.2

  15. Towards a magnetic field separation in Ion Beam Sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Malobabic, Sina, E-mail: s.malobabic@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Jupé, Marco [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Kadhkoda, Puja [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Ristau, Detlev [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany)

    2015-10-01

    Defects embedded in coatings due to particle contamination are considered as a primary factor limiting the quality of optical coatings in Ion Beam Sputtering. An approach combining the conventional Ion Beam Sputtering process with a magnetic separator in order to remove these particles from film growth is presented. The separator provides a bent axial magnetic field that guides the material flux towards the substrate positioned at the exit of the separator. Since there is no line of sight between target and substrate, the separator prevents that the particles generated in the target area can reach the substrate. In this context, optical components were manufactured that reveal a particle density three times lower than optical components which were deposited using a conventional Ion Beam Sputtering process. - Highlights: • We use bent magnetic fields to guide and separate the sputtered deposition material. • No line of sight between substrate and target prevents thin films from particles. • The transport efficiency of binary and ternary oxides is investigated. • The defect statistics of manufactured dielectric ternary multilayers are evaluated. • The phase separation leads to a drastically reduction of particle contamination.

  16. Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation.

    Science.gov (United States)

    Sun, Hao; Cooper, Bonnie; Lee, Barry B

    2012-03-01

    Vernier thresholds are known to be elevated when a target pair has opposite contrast polarity. Polarity reversal is used to assess the role of luminance and chromatic pathways in hyperacuity performance. Psychophysical hyperacuity thresholds were measured for pairs of gratings of various combinations of luminance (Lum) and chromatic (Chr) contrast polarities, at different ratios of luminance to chromatic contrast. With two red-green gratings of matched luminance and chromatic polarity (+Lum+Chr), there was an elevation of threshold at isoluminance. When both luminance and chromatic polarity were mismatched (-Lum-Chr), thresholds were substantially elevated under all conditions. With the same luminance contrast polarity and opposite chromatic polarity (+Lum-Chr) thresholds were only elevated close to isoluminance; in the reverse condition (-Lum+Chr), thresholds were elevated as in the -Lum-Chr condition except close to equiluminance. Similar data were obtained for gratings isolating the short-wavelength cone mechanism. Further psychophysical measurements assessed the role of target separation with matched or mismatched contrast polarity; similar results were found for luminance and chromatic gratings. Comparison physiological data were collected from parafoveal ganglion cells of the macaque retina. Positional precision of ganglion cell signals was assessed under conditions related to the psychophysical measurements. On the basis of these combined observations, it is argued that both magnocellular, parvocellular, and koniocellular pathways have access to cortical positional mechanisms associated with vernier acuity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Separation of organic ion exchange resins from sludge - engineering study

    International Nuclear Information System (INIS)

    Duncan, J.B.

    1998-01-01

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation

  18. Separation of organic ion exchange resins from sludge -- engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  19. Efficient separations and processing crosscutting program 1996 technical exchange meeting. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This document contains summaries of technology development presented at the 1996 Efficient Separations and Processing Crosscutting Program Technical Exchange Meeting. This meeting is held annually to promote a free exchange of ideas among technology developers, potential users and other interested parties within the EM community. During this meeting the following many separation processes technologies were discussed such as ion exchange, membrane separation, vacuum distillation, selective sorption, and solvent extraction. Other topics discussed include: waste forms; testing or inorganic sorbents for radionuclide and heavy metal removal; selective crystallization; and electrochemical treatment of liquid wastes. This is the leading abstract, individual papers have been indexed separately for the databases.

  20. Efficient separations and processing crosscutting program 1996 technical exchange meeting. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    This document contains summaries of technology development presented at the 1996 Efficient Separations and Processing Crosscutting Program Technical Exchange Meeting. This meeting is held annually to promote a free exchange of ideas among technology developers, potential users and other interested parties within the EM community. During this meeting the following many separation processes technologies were discussed such as ion exchange, membrane separation, vacuum distillation, selective sorption, and solvent extraction. Other topics discussed include: waste forms; testing or inorganic sorbents for radionuclide and heavy metal removal; selective crystallization; and electrochemical treatment of liquid wastes. This is the leading abstract, individual papers have been indexed separately for the databases

  1. Extraction separation of americium and curium. A review

    International Nuclear Information System (INIS)

    Petrzilova, H.

    1976-11-01

    A survey is given of extraction systems suitable for transplutonium element separation and preparation as well as for the practical application of their nuclear properties. Methods are discussed in detail of separating the actinide and the lanthanide fractions from fission and corrosion products and of separating americium from curium. The description is completed with flowsheets showing the separation of transplutonium elements from irradiated targets and waste solutions after spent fuel reprocessing. (L.K.)

  2. Microfluidic curved-channel centrifuge for solution exchange of target microparticles and their simultaneous separation from bacteria.

    Science.gov (United States)

    Bayat, Pouriya; Rezai, Pouya

    2018-05-21

    One of the common operations in sample preparation is to separate specific particles (e.g. target cells, embryos or microparticles) from non-target substances (e.g. bacteria) in a fluid and to wash them into clean buffers for further processing like detection (called solution exchange in this paper). For instance, solution exchange is widely needed in preparing fluidic samples for biosensing at the point-of-care and point-of-use, but still conducted via the use of cumbersome and time-consuming off-chip analyte washing and purification techniques. Existing small-scale and handheld active and passive devices for washing particles are often limited to very low throughputs or require external sources of energy. Here, we integrated Dean flow recirculation of two fluids in curved microchannels with selective inertial focusing of target particles to develop a microfluidic centrifuge device that can isolate specific particles (as surrogates for target analytes) from bacteria and wash them into a clean buffer at high throughput and efficiency. We could process micron-size particles at a flow rate of 1 mL min-1 and achieve throughputs higher than 104 particles per second. Our results reveal that the device is capable of singleplex solution exchange of 11 μm and 19 μm particles with efficiencies of 86 ± 2% and 93 ± 0.7%, respectively. A purity of 96 ± 2% was achieved in the duplex experiments where 11 μm particles were isolated from 4 μm particles. Application of our device in biological assays was shown by performing duplex experiments where 11 μm or 19 μm particles were isolated from an Escherichia coli bacterial suspension with purities of 91-98%. We envision that our technique will have applications in point-of-care devices for simultaneous purification and solution exchange of cells and embryos from smaller substances in high-volume suspensions at high throughput and efficiency.

  3. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology.

    Science.gov (United States)

    Xia, Chun-Fang; Zhang, Yufeng; Zhang, Yun; Boado, Ruben J; Pardridge, William M

    2007-12-01

    The effective delivery of short interfering RNA (siRNA) to brain following intravenous administration requires the development of a delivery system for transport of the siRNA across the brain capillary endothelial wall, which forms the blood-brain barrier in vivo. siRNA was delivered to brain in vivo with the combined use of a receptor-specific monoclonal antibody delivery system, and avidin-biotin technology. The siRNA was mono-biotinylated on either terminus of the sense strand, in parallel with the production of a conjugate of the targeting MAb and streptavidin. Rat glial cells (C6 or RG-2) were permanently transfected with the luciferase gene, and implanted in the brain of adult rats. Following the formation of intra-cranial tumors, the rats were treated with a single intravenous injection of 270 microg/kg of biotinylated siRNA attached to a transferrin receptor antibody via a biotin-streptavidin linker. The intravenous administration of the siRNA caused a 69-81% decrease in luciferase gene expression in the intracranial brain cancer in vivo. Brain delivery of siRNA following intravenous administration is possible with siRNAs that are targeted to brain with the combined use of receptor specific antibody delivery systems and avidin-biotin technology.

  4. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures.

    Science.gov (United States)

    Bogart, Justin A; Cole, Bren E; Boreen, Michael A; Lippincott, Connor A; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J

    2016-12-27

    Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx 3- , featured a size-sensitive aperture formed of its three η 2 -(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)] 2 species. Differences in the equilibrium constants K dimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La-Sm and RE2 = Gd-Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early-late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation.

  5. Target validation for FCV technology development in Japan from energy competition point of view

    International Nuclear Information System (INIS)

    ENDO Eiichi

    2006-01-01

    The objective of this work is to validate the technical targets in the governmental hydrogen energy road-map of Japan by analyzing market penetration of fuel cell vehicle(FCV)s and effects of fuel price and carbon tax on it from technology competition point of view. In this analysis, an energy system model of Japan based on MARKAL is used. The results of the analysis show that hydrogen FCVs could not have cost-competitiveness until 2030 without carbon tax, including the governmental actual plan of carbon tax. However, as the carbon tax rate increases, instead of conventional vehicles including gasoline hybrid electric vehicle, hydrogen FCVs penetrate to the market earlier and more. By assuming higher fuel price and severer carbon tax rate, market share of hydrogen FCVs approaches to the governmental goal. This suggests that cheaper vehicle cost and/or hydrogen price than those targeted in the road-map is required. At the same time, achievement of the technical targets in the road-map also allows to attain the market penetration target of hydrogen FCVs in some possible conditions. (authors)

  6. Development of fluoride reprocessing technology for molten salt transmutation reactor systems in the Czech Republic

    International Nuclear Information System (INIS)

    Uhlir, J.; Hosnedl, P.; Matal, O.

    2000-01-01

    At present, the transmutation of spent nuclear fuel is considered a prospective alternative conception with respect to the current conception based on the non-reprocessed spent fuel disposal into a deep geological repository. The Czech research and development programme in the area of partitioning is directed primarily on the development of the fuel cycle technology for the accelerator - driven subcritical reactor with a liquid fuel based on fluoride melts. The final objective of the research programme is the development of pyrochemical technologies suitable for a continuous or semi-continuous separation process which would allow practically perfect utilization of the transmutation potentialities of the reactor system. The present research is directed particularly on the development of suitable fluoride separation methods the target of which is the removal of the uranium component from spent nuclear fuel and on the research of the electro-separation procedures and further on the development of appropriate construction materials and equipment for the technology of fluoride salt melts. (authors)

  7. [Optimization study on extraction technology of the seed of Ziziphus jujuba var. spinosa by orthogonal design with multi-targets].

    Science.gov (United States)

    Wang, Xiao-liang; Zhang, Yu-jie; Chen, Ming-xia; Wang, Ze-feng

    2005-05-01

    To optimize extraction technology of the seed of Ziziphus jujuba var. spinosa with the targets of the total saponin, total jujuboside A and B and total flavonoids. In the method of one-way and orthogonal tests, ethanol concentration, amount of ethanol, extraction time and extraction times were the factors in orthogonal test, and each factor with three levels. Ethanol concentration and extraction times had significant effect on all the targets, other factors should be selected in accordance with production practice. The best extraction technology is to extract for three times with 8 fold ethanol solution (60%), and 1.5 h each time.

  8. A demonstration of applying ATS thermal screw technology to the processing of separated construction and other waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Golan, A.; Bosschieter, H.A.

    1991-06-01

    A demonstration was carried out by Spider Recycling, a waste haulage company, to determine how to sort, process and recycle or reuse waste disposed of by the company, using a new processing system based on the ATS thermal screw press technology. Selected loads of waste totalling one thousand tonnes from construction, sawmill, landscape and tire industries located around greater Toronto were delivered to a pilot separation and processing site and separated into piles of similar material such as wood, drywall and tires. The separated piles were drawn on as feedstock for processing through the ATS thermal screw press system to produce useable forms of product and raw material. The applications included: turning wood waste into firelogs or wood fuel; yard waste into mulch; waste drywall into gypsum powder; tires into crumb rubber; asphalt shingles into a bitumix; and mixed garbage into densified logs or flakes. Wide ranges of throughput were found depending on the material processed, material size, density, moisture content and model of the ATS thermal screw press used. It was shown that it is practical to separate selected wastes from industry and process them with the ATS machine, and that the system could probably offer recycling and reuse solutions to separable waste where product markets are available and in some cases where the operation could collect the estimated $100/tonne tipping fees available in southern Ontario. 37 figs., 20 tabs.

  9. Infrared images target detection based on background modeling in the discrete cosine domain

    Science.gov (United States)

    Ye, Han; Pei, Jihong

    2018-02-01

    Background modeling is the critical technology to detect the moving target for video surveillance. Most background modeling techniques are aimed at land monitoring and operated in the spatial domain. A background establishment becomes difficult when the scene is a complex fluctuating sea surface. In this paper, the background stability and separability between target are analyzed deeply in the discrete cosine transform (DCT) domain, on this basis, we propose a background modeling method. The proposed method models each frequency point as a single Gaussian model to represent background, and the target is extracted by suppressing the background coefficients. Experimental results show that our approach can establish an accurate background model for seawater, and the detection results outperform other background modeling methods in the spatial domain.

  10. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  11. Separation of {sup 195(m,g),197m}Hg from bulk gold target by liquid-liquid extraction using hydrophobic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaustab; Lahiri, Susanta [Saha Institute of Nuclear Physics, Kolkata (India). Chemical Sciences Div.; Maiti, Moumita [Indian Institute of Technology Roorkee, Roorkee (India). Dept. of Physics

    2017-07-01

    The {sup 195(m,g),197m}Hg radionuclides were produced in accelerator when natural Au foil was irradiated with 23 MeV protons. The no-carrier-added (NCA) Hg radioisotopes were separated from the bulk Au target by liquid-liquid extraction (LLX) employing hydrophobic RTILs 1-butyl-3-methylimidazolium hexafluorophosphate([C{sub 4}mim][PF{sub 6}]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([bmim][Tf{sub 2}N]) as extractant with HNO{sub 3} and HCl. In each case, bulk Au was extracted into the RTIL phase leaving NCA Hg-radionuclides in the aqueous phase. The RTILs were recovered by washing with 1 M K{sub 2}S{sub 2}O{sub 5} and freshly prepared 1 M FeSO{sub 4}. The reported separation methods follow green chemistry approach as it does not involve any volatile reagents.

  12. Generalized Least Energy of Separation for Desalination and Other Chemical Separation Processes

    Directory of Open Access Journals (Sweden)

    Karan H. Mistry

    2013-05-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies driven by different combinations of heat, work, and chemical energy. This paper develops a consistent basis for comparing the energy consumption of such technologies using Second Law efficiency. The Second Law efficiency for a chemical separation process is defined in terms of the useful exergy output, which is the minimum least work of separation required to extract a unit of product from a feed stream of a given composition. For a desalination process, this is the minimum least work of separation for producing one kilogram of product water from feed of a given salinity. While definitions in terms of work and heat input have been proposed before, this work generalizes the Second Law efficiency to allow for systems that operate on a combination of energy inputs, including fuel. The generalized equation is then evaluated through a parametric study considering work input, heat inputs at various temperatures, and various chemical fuel inputs. Further, since most modern, large-scale desalination plants operate in cogeneration schemes, a methodology for correctly evaluating Second Law efficiency for the desalination plant based on primary energy inputs is demonstrated. It is shown that, from a strictly energetic point of view and based on currently available technology, cogeneration using electricity to power a reverse osmosis system is energetically superior to thermal systems such as multiple effect distillation and multistage flash distillation, despite the very low grade heat input normally applied in those systems.

  13. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.

    Science.gov (United States)

    Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong

    2015-04-15

    A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.

  14. Application of gas chromatography in hydrogen isotope separation

    International Nuclear Information System (INIS)

    Ye Xiaoqiu; Sang Ge; Peng Lixia; Xue Yan; Cao Wei

    2008-01-01

    The principle of gas chromatographic separation of hydrogen isotopes was briefly introduced. The main technology and their development of separating hydrogen isotopes, including elution chromatography, hydrogen-displacement chromatography, self-displacement chromatography and frontal chromatography were discussed in detail. The prospect of hydrogen isotope separation by gas chromatography was presented. (authors)

  15. An ISOLDE target unit

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    A good dozen different targets are available for ISOLDE, made of different materials and equipped with different kinds of ion-sources, according to the needs of the experiments. Each separator (GPS: general purpose; HRS: high resolution) has its own target. Because of the high radiation levels, robots effect the target changes, about 80 times per year. In the standard unit shown in picture _01, the target is the cylindrical object in the front. It contains uranium-carbide kept at a temperature of 2200 deg C, necessary for the isotopes to be able to escape. At either end, one sees the heater current leads, carrying 700 A. The Booster beam, some 3E13 protons per pulse, enters the target from left. The evaporated isotope atoms enter a hot-plasma ion source (the black object behind the target). The whole unit sits at 60 kV potential (pulsed in synchronism with the arrival of the Booster beam) which accelerates the ions (away from the viewer) towards one of the 2 separators.

  16. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, M; Kochergin, V; Hess, R; Foust, T; Herbst, R; Mann, N

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, while these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract

  17. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    Science.gov (United States)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  18. 2010 national progress report on R and D on LEU fuel and target technology in Argentina

    International Nuclear Information System (INIS)

    Balart, S.; Blaumann, H.; Cristini, P.; Gonzalez, A.G.; Gonzalez, R.; Hermida, J.D.; Lopez, M.; Mirandou, M.; Taboada, H.

    2010-01-01

    Since last RRFM meeting, CNEA has deployed several related tasks. The RA-6 MTR type reactor, converted its core from HEU to a new LEU silicide one is scaling up the power, according to a protocol requested by the national regulatory body, ARN. CNEA is deploying an intense R and D activity to fabricate both dispersed U-Mo (Al-Si matrix and Al cladding) and monolithic (Zry-4 cladding) miniplates to develop possible solutions to VHD dispersed and monolithic fuels technical problems. Some monolithic 58% enrichment U8%Mo and U10%Mo are being delivered to INL-DoE to be irradiated in ATR reactor core. A conscientious study on compound interphase formation in both cases is being carried out. CNEA, a worldwide leader on LEU technology for fission radioisotope production is providing Brazil with these radiopharmaceutical products and Egypt and Australia with the technology through INVAP SE. CNEA is also committed to improve the diffusion of LEU target and radiochemical technology for radioisotope production and target and process optimization. Future plans include: 1) Fabrication of a LEU dispersed U-Mo fuel prototype following the recommendations of the IAEA's Good Practices document, to be irradiated in a high flux reactor in the frame of the ARG/4/092 IAEA's Technical Cooperation project. 2) Development of LEU very high density monolithic and dispersed U-Mo fuel plates with Zry-4 or Al cladding as a part of the RERTR program. 3) Optimization of LEU target and radiochemical techniques for radioisotope production. (author)

  19. Microbubble Distillation for Ethanol-Water Separation

    Directory of Open Access Journals (Sweden)

    Atheer Al-yaqoobi

    2016-01-01

    Full Text Available In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing.

  20. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  1. The technology benefits of inertial confinement fusion research

    International Nuclear Information System (INIS)

    Powell, H.T.

    1999-01-01

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10 6 J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10 -6 m) with picosecond (10 -12 s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal radioactive by

  2. Chiral separation of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography with biphasic recognition

    Science.gov (United States)

    Tong, Shengqiang

    2010-01-01

    This work concentrates on a novel chiral separation technology named biphasic recognition applied to resolution of α-cyclohexylmandelic acid enantiomers by high-speed counter-current chromatography (HSCCC). The biphasic chiral recognition HSCCC was performed by adding lipophilic (−)-2-ethylhexyl tartrate in the organic stationary phase and hydrophilic hydroxypropyl-β-cyclodextrin in the aqueous mobile phase, which preferentially recognized the (−)-enantiomer and (+)-enantiomer, respectively. The two-phase solvent system composed of n-hexane-methyl tert-butyl ether-water (9:1:10, v/v/v) with the above chiral selectors was selected according to the partition coefficient and separation factor of the target enantiomers. Various parameters involved in the chiral separation were investigated, namely the types of the chiral selector (CS); the concentration of each chiral selector; pH of the mobile phase; and the separation temperature. The mechanism involved in this biphasic recognition chiral separation by HSCCC was discussed. Langmuirian isotherm was employed to estimate the loading limits for each chiral selector. The overall experimental results show that the HSCCC separation of enantiomer based on biphasic recognition is much more efficient than the traditional monophasic recognition chiral separation, since it utilizes the cooperation of both lipophilic and hydrophilic chiral selectors. PMID:20303497

  3. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1995--September 30, 1996

    International Nuclear Information System (INIS)

    Hoppe, M.

    1997-02-01

    On December 30, 1990, the U.S. Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. In September 1995 this contract ended and a second contract was issued for us to continue this ICF target support work. This report documents the technical activities of the period October 1, 1995 through September 30, 1996. During this period, GA and our partners WJ Schafer Associates (WJSA) and Soane Technologies, Inc. (STI) were assigned 14 formal tasks in support of the Inertial Confinement Fusion program and its five laboratories. A portion of the effort on these tasks included providing direct open-quotes Onsite Supportclose quotes at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). We fabricated and delivered over 800 gold-plated hohlraum mandrels to LLNL, LANL and SNLA. We produced nearly 1,200 glass and plastic target capsules for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). We also delivered over 100 flat foil targets for Naval Research Lab (NRL) and SNLA in FY96. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require capsules containing cryogenic layered D 2 or deuterium-tritium (DT) fuel. We are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Substantial progress has been made on ways to both create and characterize viable layers. During FY96, significant progress was made in the design of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA

  4. Isocele I, the Orsay synchrocyclotron on-line separator

    International Nuclear Information System (INIS)

    Caruette, A.; Ferro, A.; Foucher, R.

    1976-01-01

    The main characteristics of the isotope separator Isocele 1 are described. This medium current separator was on line with the Orsay synchrocyclotron (155 MeV p, or 210 MeV 3 He) from March 1974 up to May 1975. Results obtained with different targets (Au, Bi, Er, Pt, Sn, Th) are summarized. They confirm the efficiency of medium current separators of this type [fr

  5. Large-scale separation of amino acids by continuous displacement chromatography

    Energy Technology Data Exchange (ETDEWEB)

    DeCarli, J.P. II; Carta, G.; Byers, C.H.

    1989-10-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. The technology appears, thus, to be very promising for industrial applications.

  6. Target Glint Suppression Technology.

    Science.gov (United States)

    1980-09-01

    Rayleigh for either horizontal or vertical polarization). 2.1.2 Spatial Characterization. Before the effects of diversity on target detection can be...ncs) dRCS T If the lower intergration limit is taken as zero for the Rayleigh targct model of interest, then this quantity is unbounded. In...port wing, inner section Trailing edge of starboard .:ing, inner section Leading edge of horizontal stabilizer, inner section, port side TLeal, -g

  7. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    Science.gov (United States)

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Recycling of WEEE by magnetic density separation

    NARCIS (Netherlands)

    Hu, B.; Giacometti, L.; Di Maio, F.; Rem, P.C.

    2011-01-01

    The paper introduces a new recycling method of WEEE: Magnetic Density Separation. By using this technology, both grade and recovery rate of recycled products are over 90%. Good separations are not only observed in relatively big WEEE samples, but also in samples with smaller sizes or electrical

  9. Production and chemical separation of 48 V radioisotope

    International Nuclear Information System (INIS)

    Szucs, Z.; Dudu, D.; Cimpeanu, C.; Luca, A.; Duta, E.; Sahagia, M.

    2003-01-01

    The positron emitter 48 V isotope (T 1/2 =16 d, γ-lines: 511 keV (100%), 983.5 (100%), 1312 (97.6%)) is of interest in several fields of science. This is valid for transmitting scans in the validation process of PET-camera by positron emission. It can be used as an industrial monitoring isotope by its γ-photons having high energy and intensity. Also, it is suitable for biological study since it is the only radioisotope of the biological trace element vanadium which can be a radiotracer due to its longer half-life. The 48 V was produced by nat Ti (d,xn) 48 V nuclear reaction in the U-120 cyclotron with activity of 6 mCi. The energy of irradiating beam was 13 MeV, its intensity was 5 μA and the metallic Ti target dimensions were 16 x 11 x 2 mm. For target cooling, the water circulation in the back side was used. After 3 cooling days, only 48 V, and some 46 Sc (T 1/2 = 84 d), produced by the side nuclear reaction 48 Ti (d,α) 46 Sc were found in the target. For the preparation of 48 V source, the Ti target was dissolved in HF and sulfuric acid. The ion exchange separation was developed for both dissolving methods. The dissolution of the chemically resistant Ti target is so violent in concentrated (3.5 % m/m) HF, that it is necessary to be carried out in polyethylene tube in order to avoid the splash of the dissolved target. An anion exchange column, Dowex 1-8 (size 100-200 mesh, length 12 cm, ID 10 mm, treated 1 day earlier, prepared fresh), was used for separation in HF media. The reduced ionic form of Ti bonds to resin, therefore the dissolved target was saturated with sulfur-dioxide produced in the Kipp-equipment by the following chemical reaction: Na 2 SO 3 + 2 HCl → 2 NaCl + H 2 SO 3 . The treated solution was diluted to a concentration of 2 mol/l of HF and the same concentration of the HF was used as an eluent for separation. Flow rate of the elution was 1 ml/min. The eluate was cooled fractionally. The fractions were measured by γ-spectrometry, which

  10. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy's Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole

  11. Does linear separability really matter? Complex visual search is explained by simple search

    Science.gov (United States)

    Vighneshvel, T.; Arun, S. P.

    2013-01-01

    Visual search in real life involves complex displays with a target among multiple types of distracters, but in the laboratory, it is often tested using simple displays with identical distracters. Can complex search be understood in terms of simple searches? This link may not be straightforward if complex search has emergent properties. One such property is linear separability, whereby search is hard when a target cannot be separated from its distracters using a single linear boundary. However, evidence in favor of linear separability is based on testing stimulus configurations in an external parametric space that need not be related to their true perceptual representation. We therefore set out to assess whether linear separability influences complex search at all. Our null hypothesis was that complex search performance depends only on classical factors such as target-distracter similarity and distracter homogeneity, which we measured using simple searches. Across three experiments involving a variety of artificial and natural objects, differences between linearly separable and nonseparable searches were explained using target-distracter similarity and distracter heterogeneity. Further, simple searches accurately predicted complex search regardless of linear separability (r = 0.91). Our results show that complex search is explained by simple search, refuting the widely held belief that linear separability influences visual search. PMID:24029822

  12. Efficient Indoor Proximity and Separation Detection for Location Fingerprinting

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Treu, Georg; Ruppel, Peter

    2008-01-01

    the respective building topology. The approach applies efficient strategies to reduce the number of messages transmitted between the mobile targets and a central location server, thus saving the targets' battery power, bandwidth, and other resources. The strategies are evaluated in terms of efficiency......Detecting proximity and separation among mobile targets is a basic mechanism for many location-based services (LBSs) and requires continuous positioning and tracking. However, realizing both mechanisms for indoor usage is still a major challenge. Positioning methods like GPS cannot be applied there......, and for distance calculations the particular building topology has to be taken into account. To address these challenges, this paper presents a novel approach for indoor proximity and separation detection, which uses location fingerprinting for indoor positioning of targets and walking distances for modeling...

  13. Feeling validated yet? A scoping review of the use of consumer-targeted wearable and mobile technology to measure and improve sleep.

    Science.gov (United States)

    Baron, Kelly Glazer; Duffecy, Jennifer; Berendsen, Mark A; Cheung Mason, Ivy; Lattie, Emily G; Manalo, Natalie C

    2017-12-20

    The objectives of this review were to evaluate the use of consumer-targeted wearable and mobile sleep monitoring technology, identify gaps in the literature and determine the potential for use in behavioral interventions. We undertook a scoping review of studies conducted in adult populations using consumer-targeted wearable technology or mobile devices designed to measure and/or improve sleep. After screening for inclusion/exclusion criteria, data were extracted from the articles by two co-authors. Articles included in the search were using wearable or mobile technology to estimate or evaluate sleep, published in English and conducted in adult populations. Our search returned 3897 articles and 43 met our inclusion criteria. Results indicated that the majority of studies focused on validating technology to measure sleep (n = 23) or were observational studies (n = 10). Few studies were used to identify sleep disorders (n = 2), evaluate response to interventions (n = 3) or deliver interventions (n = 5). In conclusion, the use of consumer-targeted wearable and mobile sleep monitoring technology has largely focused on validation of devices and applications compared with polysomnography (PSG) but opportunities exist for observational research and for delivery of behavioral interventions. Multidisciplinary research is needed to determine the uses of these technologies in interventions as well as the use in more diverse populations including sleep disorders and other patient populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  15. Materials separation and enrichment

    International Nuclear Information System (INIS)

    1987-01-01

    This volume supplies information in 16 individual contributions on projects sponsored by the Federal Ministry for Research and Technology (BMFT) with regard to the above mentioned topic, on the state of the art, on new technologies, and on international cooperation; two of the contributions have been recorded separately for the databases INIS and ENERGY. The contributions are supplemented by a survey of the projects sponsored and by a list of publications which have resulted from the sponsored projects. (EF) [de

  16. Manufacturing of Proteins and Antibodies: Chapter Downstream Processing Technologies : Harvest Operations.

    Science.gov (United States)

    Turner, Richard; Joseph, Adrian; Titchener-Hooker, Nigel; Bender, Jean

    2017-08-04

    Cell harvesting is the separation or retention of cells and cellular debris from the supernatant containing the target molecule Selection of harvest method strongly depends on the type of cells, mode of bioreactor operation, process scale, and characteristics of the product and cell culture fluid. Most traditional harvesting methods use some form of filtration, centrifugation, or a combination of both for cell separation and/or retention. Filtration methods include normal flow depth filtration and tangential flow microfiltration. The ability to scale down predictably the selected harvest method helps to ensure successful production and is critical for conducting small-scale characterization studies for confirming parameter targets and ranges. In this chapter we describe centrifugation and depth filtration harvesting methods, share strategies for harvest optimization, present recent developments in centrifugation scale-down models, and review alternative harvesting technologies.

  17. Protein Separation by Capillary Gel Electrophoresis: A Review

    Science.gov (United States)

    Zhu, Zaifang; Lu, Joann J.; Liu, Shaorong

    2011-01-01

    Capillary gel electrophoresis (CGE) has been used for protein separation for more than two decades. Due to the technology advancement, current CGE methods are becoming more and more robust and reliable for protein analysis, and some of the methods have been routinely used for the analysis of protein-based pharmaceuticals and quality controls. In light of this progress, we survey 147 papers related to CGE separations of proteins and present an overview of this technology. We first introduce briefly the early development of CGE. We then review the methodology, in which we specifically describe the matrices, coatings, and detection strategies used in CGE. CGE using microfabricated channels and incorporation of CGE with two-dimensional protein separations are also discussed in this section. We finally present a few representative applications of CGE for separating proteins in real-world samples. PMID:22122927

  18. Experimental and numerical study on free surface behavior of windowless target

    International Nuclear Information System (INIS)

    Su Guanyu; Gu Hanyang; Cheng Xu

    2012-01-01

    The formation and control method of coolant free surface is one of the key technologies for the design of windowless target in accelerator driven sub-critical system (ADS). Experimental and CFD investigations on free surface behavior were performed in a scaled windowless target model by using water as test fluid. Laser induced fluorescence was applied for flow field visualization. The free surface and flow field visualization were obtained at Re=30000-50000. Under high Re conditions, an unsteady vortex pair was obtained. By decreasing Re, the structure of the vortex becomes more turbulent. CFD simulation was performed using LES and kω-SST turbulence models, separately. The numerical results show that LES model can qualitatively reproduce the characteristics of flow field and free surface. (authors)

  19. Experimental study of stable isotope separation

    International Nuclear Information System (INIS)

    Mingsheng Zhou; Chuntong Ying; Yuguang Nie

    1999-01-01

    This paper presents some results of investigation into a gas centrifuge and gas centrifuge cascade. The chemical compounds of osmium - OsO 4 , tungsten - WF 6 and xenon were chosen for centrifugal separation, and the centrifugal technology for the separation of osmium, tungsten and xenon were developed. The separation factors for molar mass differences, γ 0 , were obtained for OsO 4 , Xe, WF 6 in a single gas centrifuge. The separation by gas centrifuge cascade has been done and some results of the investigation are shown. High abundance of 186 W (>90 %), 129 Xe (>65 %) and 192 Os (>99 %) was produced using the short cascade [ru

  20. Examining Engineering & Technology Students' Acceptance of Network Virtualization Technology Using the Technology Acceptance Model

    Science.gov (United States)

    Yousif, Wael K.

    2010-01-01

    This causal and correlational study was designed to extend the Technology Acceptance Model (TAM) and to test its applicability to Valencia Community College (VCC) Engineering and Technology students as the target user group when investigating the factors influencing their decision to adopt and to utilize VMware as the target technology. In…

  1. Evaluating oil/water separators

    International Nuclear Information System (INIS)

    Murdoch, M.A.

    1993-01-01

    Four commercially available oil/water separators were tested at an oil refinery test facility. The separators were the Alfa-Laval OFPX 413 disk-stack centrifuge, the Conoco Vortoil hydrocyclone system, International Separation Technology's Intr-Septor 250, and a modified Flo Trend gravity separator. Each machine was tested against mixtures of salt water and crude oil, and mixtures of salt water and a water-in-oil emulsion. The impact on separator performance from simulated sea motion, and from the addition of emulsion breakers and debris to the influent, were also evaluated. The test equipment, instrumentation, analysis facilities, test plans, and procedures to conduct the tests are described, but test results are not reported. Recommendations for improved test procedures are included. The inability to accurately monitor flow rates was found to have the greatest negative impact on test performance and results. Aspects of the test program that worked well included the use of flexible and semi-rigid hoses for customizing the test setups, the use of modular and leased tanks, and the sea motion simulator swing table design. 3 refs., 2 tabs

  2. Life cycle assessment of biogas from separated slurry

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, L.; Wesnaes, M.; Wenzel, H. (Univ. of Southern Denmark, Odense (Denmark)); Molt Petersen, B. (Aarhus Univ.. Faculty of Agricultural Sciences, Aarhus (Denmark))

    2010-07-01

    The environmental aspects of biogas production based on pre-treated slurry from fattening pigs and dairy cows have been investigated in a life cycle perspective. The pre-treatment consists of concentrating the slurry using a separation technology. Significant environmental benefits, compared to the status quo slurry management, can be obtained for both pig and cow slurry, especially regarding reductions of the contributions to global warming, but the results depend to a large extent on the efficiency of the separation technology. Adding separation after the biogas plant can contribute to a more efficient management of the phosphorus, and this has also been investigated. Based on the results of the study it can be concluded that: 1) The environmental benefits of biogas from separated slurry are very dependent upon the separation efficiency (for carbon, nitrogen and phosphorous). This particularly applies for carbon, as the separation efficiency defines the extent to which the degradable carbon contained in the slurry is transferred to the biogas plant. Efficient separation can be obtained by using polymer, but also by using a suitable separation technology. It could be mentioned that the decanter centrifuge used has a rather high efficiency of transferring volatile solids (VS) to the fibre fraction also without the use of polymer. 2) Biogas production from separated slurry can lead to significant reductions in the contributions to global warming, provided that the 'best available technologies' described in the report are used. That includes, among others: - a covered and short time storage of the fibre fraction before entering the biogas plant, - a 2-step biogas production where the post-digestion tank is covered with air-tight cover, - a covered storage of the degassed fibre fraction The benefits are also highly dependent upon the source of energy substituted by the biogas. 3) Based on evidences from reviewed studies, the cationic polyacrylamide polymer

  3. Target-ion source unit ionization efficiency measurement by method of stable ion beam implantation

    CERN Document Server

    Panteleev, V.N; Fedorov, D.V; Moroz, F.V; Orlov, S.Yu; Volkov, Yu.M

    The ionization efficiency is one of the most important parameters of an on-line used target-ion source system exploited for production of exotic radioactive beams. The ionization efficiency value determination as a characteristic of a target-ion source unit in the stage of its normalizing before on-line use is a very important step in the course of the preparation for an on-line experiment. At the IRIS facility (Petersburg Nuclear Physics Institute, Gatchina) a reliable and rather precise method of the target-ion source unit ionization efficiency measurement by the method of stable beam implantation has been developed. The method worked out exploits an off-line mass-separator for the implantation of the ion beams of selected stable isotopes of different elements into a tantalum foil placed inside the Faraday cup in the focal plane of the mass-separator. The amount of implanted ions has been measured with a high accuracy by the current integrator connected to the Faraday cup. After the implantation of needed a...

  4. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  5. Membrane systems for energy efficient separation of light gases

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Archuleta, T.; Barbero, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separation opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.

  6. An efficient and target-oriented sample enrichment method for preparative separation of minor alkaloids by pH-zone-refining counter-current chromatography.

    Science.gov (United States)

    Feng, Rui-Hong; Hou, Jin-Jun; Zhang, Yi-Bei; Pan, Hui-Qin; Yang, Wenzhi; Qi, Peng; Yao, Shuai; Cai, Lu-Ying; Yang, Min; Jiang, Bao-Hong; Liu, Xuan; Wu, Wan-Ying; Guo, De-An

    2015-08-28

    An efficient and target-oriented sample enrichment method was established to increase the content of the minor alkaloids in crude extract by using the corresponding two-phase solvent system applied in pH-zone-refining counter-current chromatography. The enrichment and separation of seven minor indole alkaloids from Uncaria rhynchophylla (Miq.) Miq. ex Havil(UR) were selected as an example to show the advantage of this method. An optimized two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:1:9, v/v) was used in this study, where triethylamine (TEA) as the retainer and hydrochloric acid (HCl) as the eluter were added at the equimolar of 10mM. Crude alkaloids of UR dissolved in the corresponding upper phase (containing 10mM TEA) were extracted twice with lower phase (containing 10mM TEA) and lower phase (containing 10mM HCl), respectively, the second lower phase extract was subjected to pH-zone-refining CCC separation after alkalization and desalination. Finally, from 10g of crude alkaloids, 4g of refined alkaloids was obtained and the total content of seven target indole alkaloids was increased from 4.64% to 15.78%. Seven indole alkaloids, including 54mg isocorynoxeine, 21mg corynoxeine, 46mg isorhynchophylline, 35mg rhynchophylline, 65mg hirsutine, 51mg hirsuteine and 27mg geissoschizine methylether were all simultaneously separated from 2.5g of refined alkaloids, with the purity of 86.4%, 97.5%, 90.3%, 92.1%, 98.5%, 92.3%, and 92.8%, respectively. The total content and purities of the seven minor indole alkaloids were tested by HPLC and their chemical structures were elucidated by ESI-HRMS and (1)H NMR. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. AIP conference on accelerator driven transmutation technologies and applications, Las Vegas, Nevada, July 25-29, 1994

    International Nuclear Information System (INIS)

    Schriber, S.O.; Arthur, E.; Rodriguez, A.A.

    1995-01-01

    This conference was the first to bring together US and foreign researchers to define Accelerator Driven Transmutation Technology (ADTT) concepts in several important national and international application areas - nuclear waste transmutation, minimizing of world plutonium inventories, and long-term energy production. The conference covered a number of diverse technological areas - accelerators, target/blankets, separations, materials - that make up ADTT systems. The meeting provided one of the first opportunities for specialists in these technologies to meet together and learn about system requirements, components, and interface issues. It was also an opportunity to formulate plans for future developments in ADTT. During the conference over one hundred technical presentations were made describing ADTT system and technology concepts as well as the impact of ADTT on issues related to global plutonium management and the high-level nuclear waste problem areas. Separate abstracts have been entered into the database for articles from this report

  8. AIP conference on accelerator driven transmutation technologies and applications, Las Vegas, Nevada, July 25-29, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Arthur, E.; Rodriguez, A.A.

    1995-07-01

    This conference was the first to bring together US and foreign researchers to define Accelerator Driven Transmutation Technology (ADTT) concepts in several important national and international application areas - nuclear waste transmutation, minimizing of world plutonium inventories, and long-term energy production. The conference covered a number of diverse technological areas - accelerators, target/blankets, separations, materials - that make up ADTT systems. The meeting provided one of the first opportunities for specialists in these technologies to meet together and learn about system requirements, components, and interface issues. It was also an opportunity to formulate plans for future developments in ADTT. During the conference over one hundred technical presentations were made describing ADTT system and technology concepts as well as the impact of ADTT on issues related to global plutonium management and the high-level nuclear waste problem areas. Separate abstracts have been entered into the database for articles from this report.

  9. Nineteenth annual actinide separations conference: Conference program and abstracts

    International Nuclear Information System (INIS)

    Bronson, M.

    1995-01-01

    This report contains the abstracts from the conference presentations. Sessions were divided into the following topics: Waste treatment; Spent fuel treatment; Issues and responses to Defense Nuclear Facility Safety Board 94-1; Pyrochemical technologies; Disposition technologies; and Aqueous separation technologies

  10. Nineteenth annual actinide separations conference: Conference program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M. [ed.

    1995-12-31

    This report contains the abstracts from the conference presentations. Sessions were divided into the following topics: Waste treatment; Spent fuel treatment; Issues and responses to Defense Nuclear Facility Safety Board 94-1; Pyrochemical technologies; Disposition technologies; and Aqueous separation technologies.

  11. Research and development of basic technologies for next generation industries, 'high-efficiency polymeric separation membrane material'. Evaluation on second term final research and development (first report); Jisesdai sangyo kiban gijutsu kenkyu kaihatsu. Kokoritsu bunshi bunrimaku zairyo (dainiki kenkyu kaihatsu hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    This study is intended to establish a basic technology for innovative high-efficiency separation membrane materials that can be used in areas in which application of membrane separation has been impossible. The water/ethanol separation membrane (for water selective permeation) and water/acetic acid separation membrane (for water selective permeation) achieved separation coefficient and permeation velocity of the world's highest level. The water/ethanol separation membrane (for ethanol selective permeation), although its separation coefficient is lower than the world's highest performance, has high permeation velocity, providing the performance of the worldwide level as seen from the comprehensive viewpoint. The carbon monoxide/nitrogen separation membrane achieved separation coefficient and permeation velocity of the world's highest level. The oxygen/nitrogen separation membrane requires further enhancement in the permeation velocity and stability. Establishment has been performed on separation technologies for membrane separation of non-water soluble aqueous solutions, optical division by using chiral crown ether, high-performance liquid separation by means of plasma surface treatment, and particle separation. Basic analysis has been advanced also on evaluation technologies for gaseous body separation membrane and liquid separation membrane, of which future progress is expected. (NEDO)

  12. Development of Decontamination Technology for Separating Radioactive Constituents from Contaminated Concrete Waste

    International Nuclear Information System (INIS)

    Min, B. Y.; Kim, G. N.; Lee, G. W.; Choi, W. K.; Jung, U. S.

    2010-01-01

    The large amount of contaminated concrete produced during decommissioning procedures and available decontamination. In Korea, more than more than 60 tons of concrete wastes contaminated with uranium compounds have been generated from UCP (Uranium Conversion Plant) by dismantling. A recycling or a volume reduction of the concrete wastes through the application of appropriate treatment technologies have merits from the view point of an increase in a resource recycling as well as a decrease in the amount of wastes to be disposed of resulting in a reduction of a disposal cost and an enhancement of the disposal safety. For unconditional release of building and reduction of radioactive concrete waste, mechanical methods and thermal stress methods have been selected. In the advanced countries, such as France, Japan, Germany, Sweden, and Belgium, techniques for reduction and reuse of the decommissioning concrete wastes have applied to minimize the total radioactive concrete waste volume by thermal and mechanical processes. It was found that volume reduction of contaminated concrete can be achieved by separation of the fine cement stone and coarse gravel. Typically, the contaminated layer is only 1∼10mm thick because cementitious materials are porous media, the penetration of radionuclides may occur up to several centimenters from the surface of a material. Most of the dismantled concrete wastes are slightly contaminated rather than activated. This decontamination can be accomplished during the course of a separation of the concrete wastes contaminated with radioactive materials through a thermal treatment step of the radionuclide (e.g. cesium and strontium), transportation of the radionuclide to fine aggregates through a mechanical treatment step. Concrete is a structural material which generally consists of a binder (cement), water, and aggregate. The interaction between highly charged calcium silicate hydrate (C-S-H) particles in the presence of divalent calcium

  13. Experiments with SIRA - the radioactive ion separator

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1998-01-01

    There are two main techniques to obtain radioactive ion beams. One, consisting in the fragmentation of projectile in a thin target followed by a separation carried out with LISE or SISSI type spectrometers or by an alpha spectrometer is used currently at GANIL. The second one, the ISOL (Isotope Separator One-Line) is presently under study on the SIRa benchmark, as part of the SPIRaL (Source de Production d'Ions Radioactifs en Ligne). A high energy light ion beam is stopped by a thick target to produce radioactive nuclei by various reactions in the target. The target, usually of carbon, is heated at around 1800 deg. C in order to accelerate the migration of the atoms produced at the target surface. These atoms are then diffused by a transfer tube up to plasma region where they are ionized and then accelerated. As projectiles the GANIL project makes use of a large variety of heavy ions. A table containing the radioactive ion beam characteristics (charge state and lifetime), the primary beams, the yields and the expected intensities to be obtained with SPIRaL is presented. Also, data concerning the production rates of rare gases obtained during 1993 to 1994 are given

  14. Presentation of words to separate hemispheres prevents interword illusory conjunctions.

    Science.gov (United States)

    Liederman, J; Sohn, Y S

    1999-03-01

    We tested the hypothesis that division of inputs between the hemispheres could prevent interword letter migrations in the form of illusory conjunctions. The task was to decide whether a centrally-presented consonant-vowel-consonant (CVC) target word matched one of four CVC words presented to a single hemisphere or divided between the hemispheres in a subsequent test display. During half of the target-absent trials, known as conjunction trials, letters from two separate words (e.g., "tag" and "cop") in the test display could be mistaken for a target word (e.g., "top"). For the other half of the target-absent trails, the test display did not match any target consonants (Experiment 1, N = 16) or it matched one target consonant (Experiment 2, N = 29), the latter constituting true "feature" trials. Bi- as compared to unihemispheric presentation significantly reduced the number of conjunction, but not feature, errors. Illusory conjunctions did not occur when the words were presented to separate hemispheres.

  15. Selective Photoinitiated Electrophoretic Separator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA Johnson Space Center needs for gas separation and collection technology for lunar in-situ resource utilization, Physical Optics Corporation (POC)...

  16. System Studies for the ADTF: Target and Materials Test Station

    International Nuclear Information System (INIS)

    Cappiello, M.; Pitcher, E.; Pasamehmetoglu, K.

    2002-01-01

    fuels and materials at prototypic flux, temperature and coolant conditions (requires intense source of fast neutrons). - Provide significant throughput of irradiated fuel for separations testing at adequate scale. - Use the target technology demonstrated in the TMT. - Test and demonstrate the safe coupling and operation of an accelerator driven subcritical multiplier. - Perform neutron physics experiments. By its nature, the TMT neutron source is driven by the spallation process. The amount of fuel to be tested is small and will offer little or no multiplication. The SCM however is a 100-MW capable subcritical reactor. The neutron source in this case is derived primarily from the fissioning of fuel. The remainder of this paper focuses on the description of the TMT station and the scoping analyses that have been performed to support the pre-conceptual design. The SCM development is discussed in a separate paper. (authors)

  17. A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing.

    Science.gov (United States)

    Nguyen, Hannah; DeJaco, Robert F; Mittal, Nitish; Siepmann, J Ilja; Tsapatsis, Michael; Snyder, Mark A; Fan, Wei; Saha, Basudeb; Vlachos, Dionisios G

    2017-06-07

    With technological advancement of thermocatalytic processes for valorizing renewable biomass carbon, development of effective separation technologies for selective recovery of bioproducts from complex reaction media and their purification becomes essential. The high thermal sensitivity of biomass intermediates and their low volatility and high reactivity, along with the use of dilute solutions, make the bioproducts separations energy intensive and expensive. Novel separation techniques, including solvent extraction in biphasic systems and reactive adsorption using zeolite and carbon sorbents, membranes, and chromatography, have been developed. In parallel with experimental efforts, multiscale simulations have been reported for predicting solvent selection and adsorption separation. We discuss various separations that are potentially valuable to future biorefineries and the factors controlling separation performance. Particular emphasis is given to current gaps and opportunities for future development.

  18. Methods of thallium-201 preparation from proton irradiated thallium targets

    International Nuclear Information System (INIS)

    Kozlova, M.D.; Sevast'yanova, A.S.; Malinin, A.B.; Kurenkov, N.V.

    1989-01-01

    Two methods of thallium-201 preparation from Tl-targets irradiated by protons: oxidation-extraction (1) and extraction (2) - are developed. At first radioactive lead is separated from the target material - thallium macroquantities during ∼32 hours, then thallium-201 was separated from residual activity of lead radioisotopes and transformed it into the necessary chemical formula. The 1st and 2nd methods differ from each other by the 1st stage of target retreatment; only extraction was used to separate radioactive lead in the 2nd method. The target was solved in H 2 SO 4 . The 1st method permits to separate thallium-201 with chemical yield not less than 90 %, the 2nd one - higher than 95 %. Volumetric activity of thallium-201 prepared is more than 55 MBq/ml. 5 refs

  19. Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, R.; Hazen, T.C.; Joyner, D.C.; Kusel, K.; Singer, M.E.; Sitte, J.; Torok, T.

    2011-04-15

    Immunomagnetic separation (IMS) has proved highly efficient for recovering microorganisms from heterogeneous samples. Current investigation targeted the separation of viable cells of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Streptavidin-coupled paramagnetic beads and biotin labeled antibodies raised against surface antigens of this microorganism were used to capture D. vulgaris cells in both bioreactor grown laboratory samples and from extremely low-biomass environmental soil and subsurface drilling samples. Initial studies on detection, recovery efficiency and viability for IMS were performed with laboratory grown D. vulgaris cells using various cell densities. Efficiency of cell isolation and recovery (i.e., release of the microbial cells from the beads following separation) was followed by microscopic imaging and acridine orange direct counts (AODC). Excellent recovery efficiency encouraged the use of IMS to capture Desulfovibrio spp. cells from low-biomass environmental samples. The environmental samples were obtained from a radionuclide-contaminated site in Germany and the chromium (VI)-contaminated Hanford site, an ongoing bioremediation project of the U.S. Department of Energy. Field deployable IMS technology may greatly facilitate environmental sampling and bioremediation process monitoring and enable transcriptomics and proteomics/metabolomics-based studies directly on cells collected from the field.

  20. The adsorption of Tl(I), Au(III), Cu(II) and the separation of 199Tl from alpha bombardment of gold target with PDB-18C6

    International Nuclear Information System (INIS)

    Zhou Dehai; Zhou Jimeng

    1989-01-01

    The adsorptive behavior of polymer of methyl aldehyde of dibenzo-18-crown-6 (PDB-18C6) in hydrochloric acid medium is studied and it is shown that the adsorption of T1(I), Au(III), and Cu(II) depends on the particle size of the crown ether resins, hydrochloric acid concentration and amount of the crown ether resins used. The difference in the adsorption behavior of different particle sizes of crown ether resins may be used for separating Tl(I), Au(III), and Cu(II) ions. The best eluant of Tl(I) and Au(III) is 0.4 mol/l perchloric acid and 2-ethoxy-ethanol. The recovery for Tl(I) is 82-98.8%. The gold target is bombarded in a 1.2 m cyclotron with 25-27 MeV α-particle with a cumulative beam intensities of 27μA·h, and 199 Tl is separated from the gold target with PDB-18C6. γ-spectrometry has shown that the Tl obtained is 199 Tl of high purity containing only about 0.50% 200 Tl

  1. Development of Stable Isotope Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Han, Jae Min

    2009-03-01

    KAERI has obtained an advanced technology with singular originality for laser stable isotope separation. Objectives for this project are to get production technology of Tl-203 stable isotope used for medical application and are to establish the foundation of the pilot system, while we are taking aim at 'Laser Isotope Separation Technology to make resistance to the nuclear proliferation'. And we will contribute to ensuring a nuclear transparency in the world society by taking part in a practical group of NSG and being collaboration with various international groups related to stable isotope separation technology

  2. Separation of S-wave pseudoscalar and pseudovector amplitudes in π-p→π+π-n reaction on polarized target

    International Nuclear Information System (INIS)

    Kaminski, R.; Lesniak, L.; Rybicki, K.

    1996-06-01

    A new analysis of S-wave production amplitudes for the reaction π - p→π + π - n on a transversely polarized target is performed. It is based on the results obtained by CERN-Cracow-Munich collaboration in the ππ energy range from 600 MeV to 1600 MeV at 17.2 GeV/c π - momentum. Energy-independent separation of the S-wave pseudoscalar amplitude (π exchange) from the pseudovector amplitude (a 1 exchange) is carried out using assumptions much weaker than those in all previous analyses. We show that, especially around 1000 MeV and around 1500 MeV, the a 1 exchange amplitude cannot be neglected. The scalar-isoscalar ππ phase shift are calculated using fairly weak assumptions. Our results are consistent both with the so called ''up'' and the well-known ''down'' solution, provided we choose those in which the S-wave phases increase slower with the effective ππ mass than the P-wave phases. Above 1420 MeV both sets of phase shifts increase with energy faster than in the experiment on an unpolarized target. This fact can be related to the presence of scalar resonance f o (1500). (author). 41 refs, 9 figs, 1 tab

  3. The present state of laser isotope separation of uranium

    International Nuclear Information System (INIS)

    Tashiro, Hideo; Nemoto, Koshichi.

    1994-01-01

    As the methods of uranium enrichment, gas diffusion method and centrifugal separation method in which power consumption is less and the cost is low have been carried out. On the other hand, as the future technology, the research and development of laser isotope separation technology have been carried out. There are the atomic laser separation process in which the laser beam of visible light is irradiated to atomic state uranium and the molecular laser separation process in which far infrared laser beam is irradiated to uranium hexafluoride molecules. The atomic process is divided into three steps, that is, the processes of uranium evaporation, the reaction of uranium with laser beam and the recovery of enriched uranium. The principle of the laser separation is explained. The state of development of laser equipment and separation equipment is reported. The principle and the present state of development of the molecular separation process which consists of the cooling of UF 6 gas, the generation of high power 16 μm laser pulses and the collection of the reaction product are explained. The present state of both processes in foreign countries is reported. (K.I.)

  4. The catalysis and the molecular separation for the innovation; La catalyse et la separation moleculaire au service de l'innovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This seminar deals with innovations marketed by little and middle enterprises and developed from catalysis or molecular separation techniques and the possibilities of collaborations with the IFP (french petroleum institute). It provides presentations on the catalytic combustion, the depollution of exhaust gazes, the gases emissions treatment in the public transportation, the particles filter, the VOC treatment by catalytic oxidation (Sorbicat and Girocat processes), the photo-catalysis for gaseous pollutants abatement, separation techniques, the Polymen society, the investment and assistance policy, the development and the technological watch of the technologic innovations. (A.L.B.)

  5. Isolation of radioactive thallium from lead targets

    International Nuclear Information System (INIS)

    Kozlova, M.D.; Sevast'yanova, A.S.; Malinin, A.B.; Kurenkov, N.V.

    1989-01-01

    Two methods of thallium-201 preperation from Pb-targets irradiated with protons: precipitation-extraction (1) and extraction (2) - are developed. When the target irraiated is extracted during the time necessary for bismuth-201 transformation into lead-201, lead macroquantity containing lead-201 was separated from undesirable thallium radionuclides, which are formed in direct nuclear reactions. The lead fraction was extracted to accumulate thallium-201, and it was separated from lead mocroquantity. The target was dissolved in the nitric acid. The 1st method differs from the 2nd one by the fact that before thallium-201 extraction, lead was precipitaed by the nitric acid. The 1st method permits to separate thallium-201 with chemical yield not less than 90 %, the 2nd one - ≥95 %. 2 refs

  6. Leading research on next generation metal production technology; Jisedai kinzoku shigen seisan gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The energy saving environment-friendly technology for low- grade difficult-to-process ores was researched focusing attention on the hydro-metallurgical process of non-ferrous metals. This research aims at development of both effective leaching system of metals, and separation/crystallization system recognizing the property difference between metal ions in solution. The leaching system allows the inexpensive molecular level control of electron transfer, mass transfer of metal ions and stabilization of leached metal ions in a solid/liquid interface. The system thus allows selective leaching of metals from various resources such as difficult- to-leach sulfide minerals to prepare concentrated solutions. The separation system can obtain high-purity solutions including each metal ion by advanced separation/concentration technology from the solutions. The crystallization technology (including electrolysis) is developed for preparing target metal materials by molecular level control of nucleation, particle growth, thin film formation and bulky metal formation processes. Overall energy consumption is reduced to 1/3 of that of the pyro-metallurgical method, aiming at zero emission. 15 refs., 14 figs., 11 tabs.

  7. Microcellular foams via phase separation

    International Nuclear Information System (INIS)

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm 3 and cell sizes of 30μm or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure

  8. Development of an electrochemical 90Sr-90Y generator for separation of 90Y suitable for targeted therapy

    International Nuclear Information System (INIS)

    Chakravarty, Rubel; Pandey, Usha; Manolkar, Remani B.; Dash, Ashutosh; Venkatesh, Meera; Pillai, M.R. Ambikalmajan

    2008-01-01

    90 Y of high specific activity and very high radionuclidic purity (>99.998%) is essential for targeted therapy. Since the current methods used for the preparation of 90 Y from 90 Sr are not adaptable for use in a central/hospital radiopharmacy, a simple 90 Sr- 90 Y generator system based on electrochemical separation technique was developed. Methods: Two-cycle electrolysis procedure was developed for separation of 90 Y from 90 Sr in nitrate solution. The first electrolysis was performed for 90 min in 90 Sr(NO 3 ) 2 feed solution at pH 2-3 at a potential of -2.5V with 100-200 mA current using platinum electrodes. The second electrolysis was performed for 45 min in 3 mM HNO 3 at a potential of -2.5V with 100 mA current. In this step, the cathode from the first electrolysis containing 90 Y was used as anode along with a fresh circular platinum electrode as cathode. The 90 Y deposited on the circular cathode after the second electrolysis was dissolved in acetate buffer to obtain 90 Y acetate, suitable for radiolabeling. Results: >96% recovery of 90 Y could be achieved in each cycle, with an overall decay corrected yield of >90%. The recovered 90 Y had high radionuclidic purity with barely 30.2±15.2 kBq (817±411 nCi) of 90 Sr per 37 GBq (1 Ci) of 90 Y (0.817±0.411 ppm). Consistent and repeated separation could be demonstrated using up to 1.85 GBq (50 mCi) of 90 Sr. The generator was named 'Kamadhenu,' the eternally milk-yielding Indian mythological cow. Conclusions: A technique suitable for adaptation at central radiopharmacies for obtaining therapeutic quantities of pure 90 Y has been developed

  9. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  10. Joint Single-Channel Speech Separation and Speaker Identification

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Saeidi, Rahim; Tan, Zheng-Hua

    2010-01-01

    In this paper, we propose a closed loop system to improve the performance of single-channel speech separation in a speaker independent scenario. The system is composed of two interconnected blocks: a separation block and a speaker identiſcation block. The improvement is accomplished by incorporat......In this paper, we propose a closed loop system to improve the performance of single-channel speech separation in a speaker independent scenario. The system is composed of two interconnected blocks: a separation block and a speaker identiſcation block. The improvement is accomplished...... enhances the quality of the separated output signals. To assess the improvements, the results are reported in terms of PESQ for both target and masked signals....

  11. Research and development of basic technologies for next-generation industry. Ultimate evaluation report on research and development of highly efficient polymeric separation membrane material; Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Kokoritsu kobunshi bunrimaku zairyo saishu kenkyu kaihatsu hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-05-01

    For the enhancement of separation process efficiency and energy efficiency in the chemical industry, etc., basic technologies are developed involving high-performance separation membrane materials which are excellent in durability and usable in the field where separation by membranes has been impractical. The liquid mixtures subjected to separation are a neutral organic compound/water system, an acidic organic compound/water system, and a polar organic compound/water system; the gas mixtures subjected to separation are an oxygen/nitrogen system and a carbon monoxide/nitrogen system. After a 10-year/3-phase development endeavors, the initially intended goals are sufficiently achieved. Among those that have to be mentioned is the development of a nonaqueous separation membrane, a supported liquid membrane with amino acid optically active high performance separation capability, a high-precision evaluation unit for gas separation membrane characteristics, a selective permeation membrane with high-level oxygen and carbon monoxide carriers and reactivation technology, a high-performance ethanol separation membrane, a water/polar organic compound separation membrane, and a water/acetic acid separation membrane and stability providing technology. In particular, the water selective permeation membrane for a mixture of water and alcohol has already arrived at the stage of bench plant demonstration. (NEDO)

  12. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric

    2012-04-01

    In the last years, the decontamination and disinfection of waters by means of direct or integrated electrochemical processes are being considered as a very appealing alternative due to the significant improvement of the electrode materials and the coupling with low-cost renewable energy sources. Many electrochemical technologies are currently available for the remediation of waters contaminated by refractory organic pollutants such as pharmaceutical micropollutants, whose presence in the environment has become a matter of major concern. Recent reviews have focused on the removal of pharmaceutical residues upon the application of other important methods like ozonation and advanced oxidation processes. Here, we present an overview on the electrochemical methods devised for the treatment of pharmaceutical residues from both, synthetic solutions and real pharmaceutical wastewaters. Electrochemical separation technologies such as membrane technologies, electrocoagulation and internal micro-electrolysis, which only isolate the pollutants from water, are firstly introduced. The fundamentals and experimental set-ups involved in technologies that allow the degradation of pharmaceuticals, like anodic oxidation, electro-oxidation with active chlorine, electro-Fenton, photoelectro-Fenton and photoelectrocatalysis among others, are further discussed. Progress on the promising solar photoelectro-Fenton process devised and further developed in our laboratory is especially highlighted and documented. The abatement of total organic carbon or reduction of chemical oxygen demand from contaminated waters allows the comparison between the different methods and materials. The routes for the degradation of the some pharmaceuticals are also presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Waste Separations and Pretreatment Workshop report

    International Nuclear Information System (INIS)

    Cruse, J.M.; Harrington, R.A.; Quadrel, M.J.

    1994-01-01

    This document provides the minutes from the Waste Separations and Pretreatment Workshop sponsored by the Underground Storage Tank-Integrated Demonstration in Salt Lake City, Utah, February 3--5, 1993. The Efficient Separations and Processing-Integrated Program and the Hanford Site Tank Waste Remediation System were joint participants. This document provides the detailed minutes, including responses to questions asked, an attendance list, reproductions of the workshop presentations, and a revised chart showing technology development activities

  14. Development and evaluation of separation elements

    International Nuclear Information System (INIS)

    Guimaraes, R.R.R.; Rocha, Z.

    1990-01-01

    For industrial testing of the uranium enrichment technology by the jet nozzle process, it is being erected in Resende the 'First Cascade' (FC) and it was built the Separation Element Plant (FES). For the development, optimization and quality control of the separation elements produced by FES, it was set up in CDTN a laboratorial infrastructure. As part of it, it was designed, built and assembled the Separation Slit Testing Equipment (ITRS), with several components developed and constructed in CDTN. The tests are being carried out in ITRS with the objective of adjusting the machine tools of FES used in the line production of the separation elements. From the satisfactory results obtained with these tests, FES will start the production of separation tubes to be installed in FC. The objective of this paper is to describe the operation and evaluation tests in ITRS, as well as to present their contribution to the development and quality control of the separation elements produced in FES. (author) [pt

  15. Hanford Site physical separations CERCLA treatability test plan

    International Nuclear Information System (INIS)

    1992-03-01

    This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test

  16. Numerical Study of Water Control with Downhole Oil-Water Separation Technology

    Directory of Open Access Journals (Sweden)

    Yin Khor Yin

    2014-07-01

    Full Text Available The maturing oil fields with increasing water production can pose a challenging produced water handling and disposal issues. This paper presents a numerical study of a motorless hydrocyclone to enhance understanding of the downhole oil-water separation. The turbulence of fluid flow is obtained using K-ε Realizable Turbulence model for complex swirl dominated flow, while the interface between hydrocarbon and water is described using the Discrete Phase model. In this approach, factors which contribute to the hydrocyclone separation instability were discussed. Discussion is then extended to the relationship of residence time with pressure difference between overflow and underflow. These pressure differences are able to relate to pressure condition for high water cut well which require downhole separation.

  17. Research and development of basic technologies for next generation industries, 'high-efficiency polymeric separation membrane material'. Evaluation on second term final research and development (first report); Jisesdai sangyo kiban gijutsu kenkyu kaihatsu. Kokoritsu bunshi bunrimaku zairyo (dainiki kenkyu kaihatsu hyoka)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    This study is intended to establish a basic technology for innovative high-efficiency separation membrane materials that can be used in areas in which application of membrane separation has been impossible. The water/ethanol separation membrane (for water selective permeation) and water/acetic acid separation membrane (for water selective permeation) achieved separation coefficient and permeation velocity of the world's highest level. The water/ethanol separation membrane (for ethanol selective permeation), although its separation coefficient is lower than the world's highest performance, has high permeation velocity, providing the performance of the worldwide level as seen from the comprehensive viewpoint. The carbon monoxide/nitrogen separation membrane achieved separation coefficient and permeation velocity of the world's highest level. The oxygen/nitrogen separation membrane requires further enhancement in the permeation velocity and stability. Establishment has been performed on separation technologies for membrane separation of non-water soluble aqueous solutions, optical division by using chiral crown ether, high-performance liquid separation by means of plasma surface treatment, and particle separation. Basic analysis has been advanced also on evaluation technologies for gaseous body separation membrane and liquid separation membrane, of which future progress is expected. (NEDO)

  18. An rf separator for cloud muons at TRIUMF

    International Nuclear Information System (INIS)

    Macdonald, J.A.; Blackmore, E.W.; Bryman, D.A.; Doornbos, J.; Erdman, K.L.; Pearce, R.M.; Poirier, R.L.; Poutissou, J-M.; Spuller, J.

    1983-03-01

    A particle separator utilizing a magnetic field crossed with an rf electric field has been built and incorporated into the M9 secondary channel to produce a clean negative muon beam at 77 MeV/c +- 5 %. The separator is driven at the main cyclotron frequency (23 MHz) and is phase locked to the primary proton beam. Separation is achieved by using the temporal and velocity differences between the muons produced near the production target (cloud muons), and the pion and electron contaminants in the beam

  19. Separation negatives from Kodak film types SO-368 and SO-242

    Science.gov (United States)

    Weinstein, M. S.

    1972-01-01

    Two master resolution friskets were produced on Kodak film types SO-368 and SO-242. These target masters consisted of 21 density steps with three-bar resolution targets at five modulation levels within each step. The target masters were contact printed onto Kodak separation negative film, type 4131, using both a contact printing frame and enlarger as one method of exposure, and a Miller-Holzwarth contact printer as the other exposing device. Red, green, and blue Wratten filters were used to filter the exposing source. Tray processing was done with DK-50 developer diluted 1:2 at a temperature of 70 F. The resolution values were read for the SO-368 and SO-242 target masters, and the red, green, and blue separation negatives.

  20. Feasibility studies on electrochemical separation and recovery of uranium by using domestic low grade uranium resources

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Lee, Kune Woo; Won, Hui Jun; Choi, Wang Kyu; Kim, Gye Nam; Lee, Yu Ri; Lee, Joong Moung

    2005-12-01

    The up-to-date electrochemical uranium separation technology has been developed for uranium sludge waste treatment funded by a long term national nuclear technology development program. The objective of the studies is to examine applicability of the uranium separation technology to making use of the low grade uranium resources in the country. State of the arts of uranium separation and recovery from the low grade national uranium resources. - The amount of the high grade uranium resources(0.1 % U 3 O 8 contents) in the world is 1,750,000MTU and that of the low grade uranium resources(0.04 % U 3 O 8 contents) in the country is 340,000MTU. - The world uranium price will be increase to more than 30$/l0b in 10 years, so that the low grade uranium in the country become worth while to recover. - The conventional uranium recovery technologies are based on both acidic - The ACF electrochemical uranium separation technology is the state of the art technology in the world and the adsorption capability of 690 mgU/g is several ten times higher than that of a conventional zeolite and the uranium stripping efficiency by desorption is more than 99%. So, this technology is expected to replace the existing solvent extraction technology. Feasibility of the ACF electrochemical uranium separation technology as an uranium recovery method. Lab scale demonstration of uranium separation and recovery technologies have been carried out by using an ACF electrochemical method

  1. Adsorption/membrane filtration as a contaminant concentration and separation process for mixed wastes and tank wastes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Benjamin, M.M.; Korshin, G.

    1998-01-01

    'This report describes progress through May, 1998, which is a little past mid-way through the second year of a three-year project. The goal of the research is to develop a treatment system for the separation of contaminants in low-organic Hanford tank wastes into various sub-groups that are relatively easy to treat further to yield products that are amenable to final disposal. The main target contaminants are Sr and Cs, although heavy metals and actinide-group elements are also targets. Effort during the first half-year of the project was devoted primarily to development of experimental and analytical techniques that could be used to test and quantify the treatability of Sr and Cs in the extremely complex matrix of the tank wastes. The treatment technologies to be tested for isolation of Sr from other waste constituents included adsorption of Sr onto various mineral solids and membrane separation of particulate from dissolved Sr. The proposed technology for treating Cs was electrochemically controlled, reversible binding of the Cs to hexacyanoferrates. Results obtained during the remainder of the first year suggested that hematite (a-Fe 2 O 3 ) and iron-oxide-coated sand (IOCS) were the best adsorbents for Sr among the oxides tested, and work during the second project year followed up on that result.'

  2. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  3. Overview of the IFE chamber and target technologies R and D in the U.S

    International Nuclear Information System (INIS)

    Meier, W.R.; Abdou, M.A.; Kulcinski, G.L.; Moir, R.W.; Nobile, A.; Peterson, P.F.; Petti, D.A.; Schultz, K.R.; Tillack, M.; Yoda, M.

    2001-01-01

    The U.S. Department of Energy, Office of Fusion Energy Science (OFES) formed the Virtual Laboratory for Technology (VLT) to develop the technologies needed to support near term fusion experiments and to provide the basis for future magnetic and inertial fusion energy power plants. The scope of the inertial fusion energy (IFE) element of the VLT includes the fusion chamber, driver/chamber interface, target fabrication and injection, and safety and environmental assessment for IFE. Lawrence Livermore National Laboratory, in conjunction with other laboratories, universities and industry, has written an R and D plan to address the critical issues in these areas over the next 5 years in a coordinated manner. This paper provides an overview of the U.S. research activities addressing these critical issues. (author)

  4. Production, separation and target preparation of {sup 171}Tm and {sup 147}Pm for neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heinitz, Stephan; Maugeri, Emilio A.; Schumann, Dorothea; Dressler, Rugard; Kivel, Niko [Paul Scherrer Institute, Villigen (Switzerland); Guerrero, Carlos [Sevilla Univ. (Spain); Koester, Ullrich [Institut Laue-Langevin, Grenoble (France); Tessler, Moshe; Paul, Michael [Hebrew Univ. of Jerusalem (Israel); Halfon, Shlomi [Soreq Nuclear Research Center, Yavne (Israel); Collaboration: nTOF Collaboration

    2017-07-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg {sup 171}Tm from 240 mg {sup 170}Er{sub 2}O{sub 3} and 72 μg {sup 147}Pm from 100 mg {sup 146}Nd{sub 2}O{sub 3} irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at nTOF CERN and the SARAF-LiLiT facility.

  5. Proceedings of the efficient separations and processing crosscutting program 1997 technical exchange meeting

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, J.M. [ed.

    1997-05-01

    This document contains summaries of technology development presented at the 1997 Efficient Separations and Processing Crosscutting Program (ESP-CP) Technical Exchange Meeting (TEM), held January 28-30, 1997, in Gaithersburg, Maryland. The ESP-CP is sponsored by the U.S. Department of Energy`s Office of Environmental Management (DOE/EM), Office of Science and Technology. The ESP-CP TEM is held annually to: (1) Present current technology development activities funded by the ESP-CP. Developers of ESP-CP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Representatives from DOE/EM`s Focus Areas also present their technology needs. (2) Promote the exchange of technical information among those developing new separations technologies, those responsible for providing new separations technologies to meet DOE/EM needs, and those who need or will potentially make use of such technologies. (3) Familiarize the ESP-CP Technical Review Team with the FY 1997 program and solicit reviewers` views on the program as a whole. This meeting is not a program review of the individual tasks, but instead focuses on the technical aspects and implementation of ESP-CP-sponsored technology or data. This document also contains a list of ESP-CP-sponsored publications, presentations, and patents. Separate abstracts have been indexed into the energy database for contributions to this proceedings.

  6. Proceedings of the efficient separations and processing crosscutting program 1997 technical exchange meeting

    International Nuclear Information System (INIS)

    Gephart, J.M.

    1997-01-01

    This document contains summaries of technology development presented at the 1997 Efficient Separations and Processing Crosscutting Program (ESP-CP) Technical Exchange Meeting (TEM), held January 28-30, 1997, in Gaithersburg, Maryland. The ESP-CP is sponsored by the U.S. Department of Energy's Office of Environmental Management (DOE/EM), Office of Science and Technology. The ESP-CP TEM is held annually to: (1) Present current technology development activities funded by the ESP-CP. Developers of ESP-CP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Representatives from DOE/EM's Focus Areas also present their technology needs. (2) Promote the exchange of technical information among those developing new separations technologies, those responsible for providing new separations technologies to meet DOE/EM needs, and those who need or will potentially make use of such technologies. (3) Familiarize the ESP-CP Technical Review Team with the FY 1997 program and solicit reviewers' views on the program as a whole. This meeting is not a program review of the individual tasks, but instead focuses on the technical aspects and implementation of ESP-CP-sponsored technology or data. This document also contains a list of ESP-CP-sponsored publications, presentations, and patents. Separate abstracts have been indexed into the energy database for contributions to this proceedings

  7. Ionic Liquid-salt based aqueous biphasic system for quick separation of no-carrier-added 203Pb from proton irradiated natTl2CO3 target

    International Nuclear Information System (INIS)

    Choudhury, Dibyasree; Ghosh, Kaustab; Lahiri, Susanta; Sarkar, Kangkana; Naskar, Nabanita

    2016-01-01

    In the present study, no-carrier-added (NCA) 203 Pb was radiochemically separated from bulk Tl target applying the ABS composing of 4 M K 2 HPO 4 and 0.1 mL of different strengths of IL (bmim)Cl ranging from 40% to 80% (w/v). Bulk Tl was spiked with 200Tl (T 1/2 = 26.1 h). A separation condition was achieved with 70% IL concentration and with 10 min shaking and 10 min settling time, where ∼84% of NCA 203 Pb was extracted into the IL rich phase with ∼10% contamination from bulk Tl. Therefore, further studies, i.e. variation in shaking and settling time were carried out keeping the concentration of IL fixed at 70%

  8. Triboelectrostatic separation for granular plastic waste recycling: a review.

    Science.gov (United States)

    Wu, Guiqing; Li, Jia; Xu, Zhenming

    2013-03-01

    The world's plastic consumption has increased incredibly in recent decades, generating more and more plastic waste, which makes it a great public concern. Recycling is the best treatment for plastic waste since it cannot only reduce the waste but also reduce the consumption of oil for producing new virgin plastic. Mechanical recycling is recommended for plastic waste to avoid the loss of its virgin value. As a mechanical separation technology, triboelectrostatic separation utilizes the difference between surface properties of different materials to get them oppositely charged, deflected in the electric field and separately collected. It has advantages such as high efficiency, low cost, no concern of water disposal or secondary pollution and a relatively wide processing range of particle size especially suitable for the granular plastic waste. The process of triboelectrostatic separation for plastic waste is reviewed in this paper. Different devices have been developed and proven to be effective for separation of plastic waste. The influence factors are also discussed. It can be concluded that the triboelectrostatic separation of plastic waste is a promising technology. However, more research is required before it can be widely applied in industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Fiscal 1998 New Sunshine Project research report. Development of separation technology of hetero-compounds from coal-derived oil, and use methods of them; 1998 nendo sekitan ekikayuchu no tetero kagobutsu nado no bunri gijutsu to yoto no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project develops the efficient separation technology of compounds including hetero-atoms such as O and N from coal- derived oil, and researches effective use methods of them. Study is made on the concrete applications and problems of the following separation technologies of hetero-compounds: Distillation/refrigeration, extraction, supercritical gas extraction, pressurized crystallization, crystallization, adsorption, and membrane separation technologies. Based on the study result, the applicability of such various separation technologies of hetero-compounds from coal-derived oil fractions is confirmed experimentally. By using the newly developed bench-scale test equipment of an optimum separation process, the process performance is confirmed, and various engineering data are collected. Study is also made on the effective use method of the hetero-compounds separated by the above equipment. In fiscal 1998, as the electric membrane dialysis experiment result on phenolates derived from phenols in Kashima pilot naphtha and atmospheric light oil, the existence of substances (Ca, Fe, SO{sub 4}) deteriorating membranes was confirmed. Preventive measures against contamination of these bivalent cations and anions are one of future issues. (NEDO)

  10. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation

    KAUST Repository

    Xu, Liren; Rungta, Meha; Koros, William J.

    2011-01-01

    materials in realistic gas separations. The very challenging ethylene/ethane separation is the primary target of this work. Matrimid® derived CMS hollow fiber membranes have been investigated in this work. Resultant CMS fiber showed interesting separation

  11. Sludge technology assessment

    International Nuclear Information System (INIS)

    Krause, T.R.; Cunnane, J.C.; Helt, J.E.

    1994-12-01

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  12. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  13. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  14. Feasibility test for production and separation of 103Pd

    International Nuclear Information System (INIS)

    Szuecs, Z.; Takacs, S.; Hunyadi, M.; Gacsi, Z.; Zeevaart, J.R.

    2011-01-01

    Complete text of publication follows. 103 Pd as a well-known Auger-emitter is commonly employed in brachytherapy, but the ultra-short range stopping of Auger-electrons can be more potentially exploited in applications of targeted radionuclide therapy in the future. The no-carrier-added production of 103 Pd is practically possible through charged particle induced reactions. However, separation techniques of 103 Pd from the target material (typically Rh), as well as its recovery by wet chemistry are expensive, and yields high amounts of radioactive waste. An alternative and more efficient procedure, called drydistillation method (DDM), is based on differences between the isothermal vapor pressures of the radionuclide element and the target element. In an appropriately selected temperature region the diffusion and out-gassing rates of radionuclides from the solid matrix of the target material are enhanced. Optimal irradiation parameters were determined in previous experiments at ATOMKI. Separation of 103 Pd was demonstrated at the Isotope Separator Laboratory with an evaporating-condensing system (Fig. 1). Figure 1. Evaporation-condensation system at the Isotope Separator Laboratory of ATOMKI. The irradiated Rh foil was kept above 1800?C in vacuum for several hours. The evaluation of γ-spectra of the Rh foil and the 103 Pd condensed on a low-temperature substrate (Fig. 2). The analysis resulted in a radiochemical yield of about 99.5% for 103 Pd and a radionuclidic purity of better than 99% with respect to the level of 101 Rh in the end product. Acknowledgement. The work was partly supported by the Hungarian TeT Bilateral Cooperation (OMFB- 00138/2009) and by the South African NRF (UID 68768).

  15. Novel highly integrated biodiesel production technology in a centrifugal contactor separator device

    NARCIS (Netherlands)

    Kraai, G. N.; Schuur, B.; van Zwol, F.; van de Bovenkamp, H. H.; Heeres, H. J.

    2009-01-01

    The base catalyzed production of biodiesel (FAME) from sunflower oil and methanol in a continuous centrifugal contactor separator (CCS) with integrated reaction and phase separation was studied. The effect of catalyst loading (sodium methoxide), temperature, rotational frequency and flow rates of

  16. Technology strategy for cost-effective drilling and intervention; Technology Target Areas; TTA4 - Cost effective drilling and intervention

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The main goals of the OG21 initiative are to (1) develop new technology and knowledge to increase the value creation of Norwegian oil and gas resources and (2) enhance the export of Norwegian oil and gas technology. The OG21 Cost-effective Drilling and Intervention (CEDI) Technology Target Area (TTA) has identified some key strategic drilling and well intervention needs to help meet the goals of OG21. These key strategic drilling and well intervention needs are based on a review of present and anticipated future offshore-Norway drilling and well intervention conditions and the Norwegian drilling and well intervention industry. A gap analysis has been performed to assess the extent to which current drilling and well intervention research and development and other activities will meet the key strategic needs. Based on the identified strategic drilling and well intervention needs and the current industry res each and development and other activities, the most important technology areas for meeting the OG21 goals are: environment-friendly and low-cost exploration wells; low-cost methods for well intervention/sidetracks; faster and extended-reach drilling; deep water drilling, completion and intervention; offshore automated drilling; subsea and sub-ice drilling; drilling through basalt and tight carbonates; drilling and completion in salt formation. More specific goals for each area: reduce cost of exploration wells by 50%; reduce cost for well intervention/sidetracks by 50%; increase drilling efficiency by 40%; reduce drilling cost in deep water by 40 %; enable offshore automated drilling before 2012; enable automated drilling from seabed in 2020. Particular focus should be placed on developing new technology for low-cost exploration wells to stem the downward trends in the number of exploration wells drilled and the volume of discovered resources. The CEDI TTA has the following additional recommendations: The perceived gaps in addressing the key strategic drilling and

  17. Separation of fission 99Mo by alpha-benzoin oxime precipitation in nitric medium

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Freitas, Antonio A.; Egute, Nayara dos S.; Camilo, Ruth L.; Araujo, Izilda C.; Forbicini, Christina A.L.G. de O.

    2011-01-01

    Since 2009, the production of generators 99 Mo/ 99 mTc suffers a crisis of global supply due to technical problems of the two reactors which account for 64% of world production of fission 99 Mo. By the project of Brazilian Multipurpose Reactor (RMB), the Brazilian government invests in the construction of the first multipurpose reactor suitable for the domestic production of 99 Mo from LEU targets in order to supply of fission 99 Mo in the coming decades. The IPEN started the research of the technology and production of fission 99 Mo from acid and alkaline dissolutions of Low Enriched Uranium (LEU) targets as well as other used radioisotopes in nuclear medicine. This work is part of the research of the technology of the fission 99 Mo from acid dissolution of the LEU targets that is being developed at the IPEN. In this study the separation of the Mo by precipitation with alpha-benzoin oxime in nitric medium and the recovery by dissolution were investigated. The precipitation studies were performed by batch assays with nitric solution of Mo(VI), containing 99 Mo tracer, and uranyl ions. Influence of concentration of permanganate from 0.03 to 2.5%, dissolution temperature at 30 deg C and 150 deg C and the uranium concentration from 74 g.L -1 to 115 g.L -1 was studied. Results indicated that the precipitation of Mo with alpha-benzoin oxime from nitric medium is highly efficient, and its recovery by dissolution with basic solution of H 2 O 2 gave a high yield. (author)

  18. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  19. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  20. Transport Reactor Development Unit Modification to Provide a Syngas Slipstream at Elevated Conditions to Enable Separation of 100 LB/D of Hydrogen by Hydrogen Separation Membranes Year - 6 Activity 1.15 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Schlasner, Steven

    2012-03-01

    Gasification of coal when associated with carbon dioxide capture and sequestration has the potential to provide low-cost as well as low-carbon hydrogen for electric power, fuels or chemicals production. The key element to the success of this concept is inexpensive, effective separation of hydrogen from carbon dioxide in synthesis gas. Many studies indicate that membrane technology is one of the most, if not the most, economical means of accomplishing separation; however, the advancement of hydrogen separation membrane technology is hampered by the absence of experience or demonstration that the technology is effective economically and environmentally at larger scales. While encouraging performance has been observed at bench scale (less than 12 lb/d hydrogen), it would be imprudent to pursue a largescale demonstration without testing at least one intermediate scale, such as 100 lb/d hydrogen. Among its many gasifiers, the Energy & Environmental Research Center is home to the transport reactor demonstration unit (TRDU), a unit capable of firing 200—500 lb/hr of coal to produce 400 scfm of synthesis gas containing more than 200 lb/d of hydrogen. The TRDU and associated downstream processing equipment has demonstrated the capability of producing a syngas over a wide range of temperatures and contaminant levels — some of which approximate conditions of commercial-scale gasifiers. Until this activity, however, the maximum pressure of the TRDU’ s product syngas was 120 psig, well below the 400+ psig pressures of existing large gasifiers. This activity installed a high-temperature compressor capable of accepting the range of TRDU products up to 450°F and compressing them to 500 psig, a pressure comparable to some large scale gasifiers. Thus, with heating or cooling downstream of the TRDU compressor, the unit is now able to present a near-raw to clean gasifier synthesis gas containing more than 100 lb/d of hydrogen at up to 500 psig over a wide range of temperatures

  1. The SPES High Power ISOL production target

    Science.gov (United States)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  2. Technology of micro- and macroshells and the problem of reactor targets

    International Nuclear Information System (INIS)

    Akunets, A.A.; Dorogotovtsev, V.M.; Merkul'ev, Yu.A.

    1987-01-01

    Technological principles, permitting to produce laser targets of 4.0 - 10 mm diameter are suggested. According to the given technique a particle of initial substance (drop or shell) with additions of a gas-forming agent under conditions similar to free fall, flies in the atmosphere of rarefied heat-exchange gas through a hot area. The process of its heating under conditions of a weak forced convective heat exchange is the main process taking much time. Starting heat treatment of a shell 4.0 mm in diameter with aspect ratio A = 200, i.e. thickness of 10 μm, the treatment can be finished with 10.0 mm diameter at A = 1300, i.e. with wall thickness 1.6 μm. Experimental testing has confirmed the evaluations. Shells of 4.0 mm diameter with A = 2500 are produced

  3. The isotope separator on-line at the INS-SF cyclotron

    International Nuclear Information System (INIS)

    Yonehara, H.; Kawakami, H.; Tanaka, J.; Omata, K.; Shida, Y.

    1981-02-01

    The Isotope Separator On-Line at the SF Cyclotron has been improved. Some details of improvements are described on the target-ion source, rapid extraction with aluminized tape, tape transport system and data aquisition. The performance of the improved SF-ISOL is discussed. (author)

  4. Future of brain stimulation: new targets, new indications, new technology.

    Science.gov (United States)

    Hariz, Marwan; Blomstedt, Patric; Zrinzo, Ludvic

    2013-11-01

    In the last quarter of a century, DBS has become an established neurosurgical treatment for Parkinson's disease (PD), dystonia, and tremors. Improved understanding of brain circuitries and their involvement in various neurological and psychiatric illnesses, coupled with the safety of DBS and its exquisite role as a tool for ethical study of the human brain, have unlocked new opportunities for this technology, both for future therapies and in research. Serendipitous discoveries and advances in structural and functional imaging are providing abundant "new" brain targets for an ever-increasing number of pathologies, leading to investigations of DBS in diverse neurological, psychiatric, behavioral, and cognitive conditions. Trials and "proof of concept" studies of DBS are underway in pain, epilepsy, tinnitus, OCD, depression, and Gilles de la Tourette syndrome, as well as in eating disorders, addiction, cognitive decline, consciousness, and autonomic states. In parallel, ongoing technological development will provide pulse generators with longer battery longevity, segmental electrode designs allowing a current steering, and the possibility to deliver "on-demand" stimulation based on closed-loop concepts. The future of brain stimulation is certainly promising, especially for movement disorders-that will remain the main indication for DBS for the foreseeable future-and probably for some psychiatric disorders. However, brain stimulation as a technique may be at risk of gliding down a slippery slope: Some reports indicate a disturbing trend with suggestions that future DBS may be proposed for enhancement of memory in healthy people, or as a tool for "treatment" of "antisocial behavior" and for improving "morality." © 2013 International Parkinson and Movement Disorder Society.

  5. On the preparation of self-supporting zinc target foils of separated isotopes

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1975-01-01

    This is the second report on the practical method of preparation of targets for nuclear experiments following the previous one (INS-TL-121 (in Japanese)). In this report, a method is described for the preparation of self-supporting zinc foils from ZnO. The thicknesses of target foils and their uniformity were measured with an α-ray thickness gauge. (auth.)

  6. Simulative technology for auxiliary fuel tank separation in a wind tunnel

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2016-06-01

    Full Text Available In this paper, we propose a simulative experimental system in wind tunnel conditions for the separation of auxiliary fuel tanks from an aircraft. The experimental system consists of a simulative release mechanism, a scaled model and a pose measuring system. A new release mechanism was designed to ensure stability of the separation. Scaled models of the auxiliary fuel tank were designed and their moment of inertia was adjusted by installing counterweights inside the model. Pose parameters of the scaled model were measured and calculated by a binocular vision system. Additionally, in order to achieve high brightness and high signal-to-noise ratio of the images in the dark enclosed wind tunnel, a new high-speed image acquisition method based on miniature self-emitting units was presented. Accuracy of the pose measurement system and repeatability of the separation mechanism were verified in the laboratory. Results show that the position precision of the pose measurement system can reach 0.1 mm, the precision of the pitch and yaw angles is less than 0.1° and that of the roll angle can be up to 0.3°. Besides, repeatability errors of models’ velocity and angular velocity controlled by the release mechanism remain small, satisfying the measurement requirements. Finally, experiments for the separation of auxiliary fuel tanks were conducted in the laboratory.

  7. Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets

    International Nuclear Information System (INIS)

    Kannan, R.

    2009-01-01

    The UK government's economy-wide 60% carbon dioxide reduction target by 2050 requires a paradigm shift in the whole energy system. Numerous analytical studies have concluded that the power sector is a critical contributor to a low carbon energy system, and electricity generation has dominated the policy discussion on UK decarbonisation scenarios. However, range of technical, social and market challenges, combined with alternate market investment strategies mean that large scale deployment of key classes of low carbon electricity technologies is fraught with uncertainty. The UK MARKAL energy systems model has been used to investigate these long-term uncertainties in key electricity generation options. A range of power sector specific parametric sensitivities have been performed under a 'what-if' framework to provide a systematic exploration of least-cost energy system configurations under a broad, integrated set of input assumptions. In this paper results of six sensitivities, via restricted investments in key low carbon technologies to reflect their technical and political uncertainties, and an alternate investment strategies from perceived risk and other barriers, have been presented. (author)

  8. Materials technology applied to nuclear accelerator targets

    International Nuclear Information System (INIS)

    Barthell, B.L.

    1986-01-01

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology

  9. SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery.

    Science.gov (United States)

    Zha, Haihong; Cai, Yuping; Yin, Yandong; Wang, Zhuozhong; Li, Kang; Zhu, Zheng-Jiang

    2018-03-20

    The complexity of metabolome presents a great analytical challenge for quantitative metabolite profiling, and restricts the application of metabolomics in biomarker discovery. Targeted metabolomics using multiple-reaction monitoring (MRM) technique has excellent capability for quantitative analysis, but suffers from the limited metabolite coverage. To address this challenge, we developed a new strategy, namely, SWATHtoMRM, which utilizes the broad coverage of SWATH-MS technology to develop high-coverage targeted metabolomics method. Specifically, SWATH-MS technique was first utilized to untargeted profile one pooled biological sample and to acquire the MS 2 spectra for all metabolites. Then, SWATHtoMRM was used to extract the large-scale MRM transitions for targeted analysis with coverage as high as 1000-2000 metabolites. Then, we demonstrated the advantages of SWATHtoMRM method in quantitative analysis such as coverage, reproducibility, sensitivity, and dynamic range. Finally, we applied our SWATHtoMRM approach to discover potential metabolite biomarkers for colorectal cancer (CRC) diagnosis. A high-coverage targeted metabolomics method with 1303 metabolites in one injection was developed to profile colorectal cancer tissues from CRC patients. A total of 20 potential metabolite biomarkers were discovered and validated for CRC diagnosis. In plasma samples from CRC patients, 17 out of 20 potential biomarkers were further validated to be associated with tumor resection, which may have a great potential in assessing the prognosis of CRC patients after tumor resection. Together, the SWATHtoMRM strategy provides a new way to develop high-coverage targeted metabolomics method, and facilitates the application of targeted metabolomics in disease biomarker discovery. The SWATHtoMRM program is freely available on the Internet ( http://www.zhulab.cn/software.php ).

  10. Targeted social mobilization in a global manhunt.

    Science.gov (United States)

    Rutherford, Alex; Cebrian, Manuel; Rahwan, Iyad; Dsouza, Sohan; McInerney, James; Naroditskiy, Victor; Venanzi, Matteo; Jennings, Nicholas R; deLara, J R; Wahlstedt, Eero; Miller, Steven U

    2013-01-01

    Social mobilization, the ability to mobilize large numbers of people via social networks to achieve highly distributed tasks, has received significant attention in recent times. This growing capability, facilitated by modern communication technology, is highly relevant to endeavors which require the search for individuals that possess rare information or skills, such as finding medical doctors during disasters, or searching for missing people. An open question remains, as to whether in time-critical situations, people are able to recruit in a targeted manner, or whether they resort to so-called blind search, recruiting as many acquaintances as possible via broadcast communication. To explore this question, we examine data from our recent success in the U.S. State Department's Tag Challenge, which required locating and photographing 5 target persons in 5 different cities in the United States and Europe - in under 12 hours - based only on a single mug-shot. We find that people are able to consistently route information in a targeted fashion even under increasing time pressure. We derive an analytical model for social-media fueled global mobilization and use it to quantify the extent to which people were targeting their peers during recruitment. Our model estimates that approximately 1 in 3 messages were of targeted fashion during the most time-sensitive period of the challenge. This is a novel observation at such short temporal scales, and calls for opportunities for devising viral incentive schemes that provide distance or time-sensitive rewards to approach the target geography more rapidly. This observation of '12 hours of separation' between individuals has applications in multiple areas from emergency preparedness, to political mobilization.

  11. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    OpenAIRE

    K. C. CHONG; S. O. LAI; H. S. THIAM; H. C. TEOH; S. L. HENG

    2016-01-01

    The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA). Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology...

  12. Gas Sensors Based on Molecular Imprinting Technology.

    Science.gov (United States)

    Zhang, Yumin; Zhang, Jin; Liu, Qingju

    2017-07-04

    Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.

  13. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    Science.gov (United States)

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  14. New design targets and new automated technology for the production of radionuclides with high specificity radioactivity in nuclear research reactors

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.

    1997-01-01

    Current demands of industry require the application of radionuclides with high specific radioactivity under low consumption of neutrons. To provide this aim staff of ITEP Reactor Department investigated the different type AEs of start targets for the production of the main radionuclides; Co-60, Ir-192 and others. In first turn the targets of Co and Ir without the block-effect of neutron flux (with low absorption of neutrons) were investigated. The following principal results were received for example for Ir-192: block effect is equal 0.086 for diameter of Ir target mm and is equal 0.615 for diameter Ir target 0.5mm. It means average neutron flux for Ir target diameter 0.5mm and therefore the production of Ir-192 will be at 10 times more than for diameter 6.0mm. To provide the automated technology of the manufacture of radioactive sources with radionuclides with high specific radioactivity it was proposed that the compound targets for the irradiation of ones and for the management with the irradiated targets. Different types of compound targets were analyzed. (authors)

  15. Aquatek introduces new oily water technology

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Many conventional oily water separators cause clogged filters on marine vessels, which has led some operators to illegally discharge oily wastes into lakes and oceans. This article presented details of a simple and reliable technology to separate chemically emulsified and mechanically suspended oil particles from water. Designed by Newfoundland entrepreneurs and commercialized by Aquatek Environmental Inc., the Aquatek separator does not require membranes or chemicals and can be configured to function without moving parts or external energy. The small size of the separator has made it the subject of considerable interest at marine technology shows. The technology is able to treat highly variable concentrations of oily water without clogging, and works on low oil concentrations as well as fluids consisting of all-free oil. The Aquatek has the ability to separate oil from water as well as water from oil. Tests have indicated that the technology can also be used to treat produced water at oilfields. It was concluded that the separator is a major improvement over other available products. 2 figs

  16. Rare earth separations by selective borate crystallization

    Science.gov (United States)

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-03-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation.

  17. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  18. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  19. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    International Nuclear Information System (INIS)

    Lee, Hau-Wei; Chen, Chieh-Li

    2009-01-01

    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system

  20. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  1. Advances in high frequency ultrasound separation of particulates from biomass.

    Science.gov (United States)

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  2. Highlights from the 2015 WIN Symposium: novel targets, innovative agents, and advanced technologies-a WINning strategy?

    Science.gov (United States)

    Schilsky, Richard L

    2015-01-01

    The worldwide innovative networking (WIN) consortium comprises a global alliance of 28 academic and clinical cancer centres, 11 pharmaceutical and technology companies and five charitable or health payer organisations. Since its inception the consortium has striven to provide a forum for all of its members to network, share information and experience, and perform clinical trials with the overarching goal of advancing the care of patients with cancer through the use of precision medicine. The annual 2-day WIN Symposium is the most visible output of the consortium and provides an opportunity for around 400 experts and other delegates to meet and discuss the latest research and initiatives in personalised cancer medicine. The seventh WIN Symposium, held in Paris, France, 29-30 June 2015, consisted of nine plenary and eight poster sessions that covered the overarching theme of novel targets, innovative agents, and advanced technologies being a winning strategy. Highlights included discussions of immune mechanisms and ways to target the cancer immunome and systems biology approaches to supporting personalised cancer. The latest data from the BATTLE-2 and WINther trials were discussed, and round table discussions were held that focused on how best to design the next generation of clinical trials, which included SPRING, SUMMER, and BOOSTER being initiated by the WIN Consortium.

  3. Isolation of radioactive thallium from mercury targets

    International Nuclear Information System (INIS)

    Sevast'yanova, A.S.; Kozlova, M.D.; Malinin, A.B.; Kurenkov, N.V.

    1989-01-01

    The extraction method of thallium-201, 202, 200 separation from mercury target irradiated by protons is suggested. Tl + in sulfuric acid solution prepared after Hg-target treatment with the sulfuric acid was oxidized up to Tl 3+ with hydrogen peroxide and then it was extracted with butylacetate. Thallium was re-exrtacted by the sulfurous acid solution in the presence of CCl 4 , and Tl 3+ was recovered up to Tl + . The method permits to separate thallium with chemical yield nor less than 95 %. 2 refs

  4. Radionuclide separations and processing for defense water management

    International Nuclear Information System (INIS)

    Fryberger, T.B.

    1993-01-01

    An overview is given of the Department of Energy's Efficient Separations and Processing Integrated Program (ESPIP). This program sponsors research in advanced chemical separations for removal of radionuclides and hazardous components from radioactive defense wastes. Separations processing will reduce the volume of high-level waste that must be disposed of in a deep geological repository and will improve the quality of low-level wastes acceptable for near-surface disposal. DOE defense complex processing needs as well as technologies that are currently under development in the program are discussed

  5. Separations/pretreatment considerations for Hanford privatization phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.; McGinnis, C.P.; Welch, T.D.

    1998-05-01

    The Tank Focus Area is funded to develop, demonstrate, and deploy technologies that will assist in the treatment and closure of its nuclear waste tanks. Pretreatment technologies developed to support the privatization effort by the Department of Energy are reviewed. Advancements in evaporation, solid-liquid separation, sludge treatment, solids controls, sodium management, and radionuclide removal are considered.

  6. Aerospace gas/liquid separator for terrestrial applications

    International Nuclear Information System (INIS)

    Mondt, J.F.

    1996-01-01

    The space gas/liquid separator, a key component in the heat transport subsystem of a space reactor power system, was developed to remove helium gas from liquid lithium in zero gravity. Helium is generated from lithium irradiation in the reactor core and would reach saturation in lithium after 48 hours of full power operations. The gas/liquid separator is also applicable for large commercial powerplants to deaerate the water before and after the feedwater heaters. Another terrestrial application is for industrial companies to use the gas/liquid separator and wet chemistry to remove all the gases from the air and only discharge clean air to the atmosphere. An additional application that resulted from this gas/liquid separator technology, was separating liquid carbon dioxide from nitrogen. This application is opposite from the space application in that it is removing a liquid from a gas rather than a gas from a liquid

  7. Accelerator Production and Separations for High Specific Activity Rhenium-186

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia S. [Univ. of Missouri, Columbia, MO (United States); Wilbur, D. Scott [Univ. of Washington, Seattle, WA (United States)

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  8. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-10-17

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted to concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.

  9. Adsorbent filled polymeric membranes : applications to pervaporation and gas separation

    NARCIS (Netherlands)

    Duval, Jean-Marc

    1993-01-01

    Nowadays research in membrane technology aims at improving the efficiency of the separation process to make it more competitive in comparison to conventional separation techniques. The improvement of the membrane material is a way to achieve this goal, especially in the case of pervaporation and gas

  10. Rapid cell separation with minimal manipulation for autologous cell therapies

    Science.gov (United States)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  11. Targeted killing with drones? Old arguments, new technologies

    Directory of Open Access Journals (Sweden)

    Meisels Tamar

    2018-01-01

    Full Text Available The question of how to contend with terrorism in keeping with our preexisting moral and legal commitments now challenges Europe as well as Israel and the United States: how do we apply Just War Theory and International Law to asymmetrical warfare, specifically to our counter terrorism measures? What can the classic moral argument in Just and Unjust Wars teach us about contemporary targeted killings with drones? I begin with a defense of targeted killing, arguing for the advantages of pin pointed attacks over any alternative measure available for combatting terrorism. Assuming the legitimacy of killing combatants in wartime, I argue, there is nothing wrong, and in fact much that is right, with targeting particular terrorists selected by name, as long as their assassinations can be reasonably expected to reduce terrorist hostilities rather than increase it. Subsequently, I offer some further thoughts and comments on the use of remotely piloted aircrafts to carry out targeted killings, and address the various sources for discomfort with this practice identified by Michael Walzer and others.

  12. Low-enriched uranium high-density target project. Compendium report

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.; Gelis, Artem V.; Stepinski, Dominique C.; Wiedmeyer, Stanley; Youker, Amanda; Hebden, Andrew; Solbrekken, G; Allen, C; Robertson., D; El-Gizawy, Sherif; Govindarajan, Srisharan; Hoyer, Annemarie; Makarewicz, Philip; Harris, Jacob; Graybill, Brian; Gunn, Andy; Berlin, James; Bryan, Chris; Sherman, Steven; Hobbs, Randy; Griffin, F. P.; Chandler, David; Hurt, C. J.; Williams, Paul; Creasy, John; Tjader, Barak; McFall, Danielle; Longmire, Hollie

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.

  13. Improvement of auditing technology of safety analysis through thermal-hydraulic separate effect tests

    Energy Technology Data Exchange (ETDEWEB)

    No, Hee Cheon; Moon, Young Min; Lee, Dong Won; Lee, Sang Ik; Kim, Eung Soo; Yeom, Keum Soo [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-03-15

    The objective of the present research is to perform the separate effect tests and to assess the RELAP5/MOD3.2 code for the analysis of thermal-hydraulic behavior in the reactor coolant system and the improvement of the auditing technology of safety analysis. Three Separate Effect Tests (SETs) are the reflux condensation in the U-tube, the direct contact condensation in the hot-leg and the mixture level buildup in the pressurizer. The experimental data and the empirical correlations are obtained through SETs. On the ases of the three SET works, models in RELAP5 are modified and improved, which are compared with the data. The Korea Standard Nuclear Power Plant (KSNP) are assessed using the modified RELAP5. In the reflux condensation test, the data of heat transfer coefficients and flooding are obtained and the condensation models are modified using the non-iterative model, as results, modified code better predicts the data. In the direct contact condensation test, the data of heat transfer coefficients are obtained for the cocurrent and countercurrent flow between the mixture gas and the water in condition of horizontal stratified flow. Several condensation and friction models are modified, which well predict the present data. In the mixture level test, the data for the mixture level and the onset of water draining into the surge line are obtained. The standard RELAP5 over-predicts the mixture level and the void fraction in the pressurizer. Simple modification of model related to the pool void fraction is suggested. The KSNP is assessed using the standard and the modified RELAP5 resulting from the experimental and code works for the SETs. In case of the pressurizer manway opening with available secondary side of the steam generators, the modified code predicts that the collapsed level in the pressurizer is little accumulated. The presence and location of the opening and the secondary condition of the steam generators have an effect on the coolant inventory. The

  14. A Cabin Air Separator for EVA Oxygen

    Science.gov (United States)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  15. Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications

    Energy Technology Data Exchange (ETDEWEB)

    Amy, Fabrice [Air Products and Chemicals Inc., Allentown, PA (United States); Hufton, Jeffrey [Air Products and Chemicals Inc., Allentown, PA (United States); Bhadra, Shubhra [Air Products and Chemicals Inc., Allentown, PA (United States); Weist, Edward [Air Products and Chemicals Inc., Allentown, PA (United States); Lau, Garret [Air Products and Chemicals Inc., Allentown, PA (United States); Jonas, Gordon [Air Products and Chemicals Inc., Allentown, PA (United States)

    2015-06-30

    Air Products has developed an acid gas removal technology based on adsorption (Sour PSA) that favorably compares with incumbent AGR technologies. During this DOE-sponsored study, Air Products has been able to increase the Sour PSA technology readiness level by successfully operating a two-bed test system on coal-derived sour syngas at the NCCC, validating the lifetime and performance of the adsorbent material. Both proprietary simulation and data obtained during the testing at NCCC were used to further refine the estimate of the performance of the Sour PSA technology when expanded to a commercial scale. In-house experiments on sweet syngas combined with simulation work allowed Air Products to develop new PSA cycles that allowed for further reduction in capital expenditure. Finally our techno economic analysis of the use the Sour PSA technology for both IGCC and coal-to-methanol applications suggests significant improvement of the unit cost of electricity and methanol compared to incumbent AGR technologies.

  16. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T. R.; McInteer, B. B.; Montoya, J. G.

    1988-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of these isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separation of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S vs. 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produced separated isotopes with an effect similar to that found for sulfur in SF 4 . 8 refs., 2 tabs

  17. Sulfur and selenium isotope separation by distillation

    International Nuclear Information System (INIS)

    Mills, T.R.; McInteer, B.B.; Montoya, J.G.

    1989-01-01

    Sulfur and selenium isotopes are used for labeled compounds and as precursors for radioisotope production; however, both limited availability and high costs are problems. A new method is needed for large-scale separation of theses isotopes. Experimental distillation columns were used to measure isotopic separations for sulfur and selenium compounds. The maximum total isotope separations of 32 S vs. 34 S were 1.127 for H 2 S, 1.048 for COS, 0.838 for SF 4 , and 1.058 for CH 3 SH. Relative volatilities of 32 S and 34 S are 1.0006 for COS and 0.9976 for SF 4 . There is a reverse isotope effect for carbon in COS. No isotopic separation was observed for dimethyl selenide. The lower mass selenium isotopes in H 2 Se are more volatile. Distillation is a promising method for separating sulfur isotopes on a production scale. Existing distillation technology produces separated isotopes with an effect similar to that found for sulfur in SF 4 . (author). 8 refs.; 2 tabs

  18. Ceramic membrane technologies for gas separation

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Ciacchi, F.T.

    2000-01-01

    Solid state electrochemical cells based on oxygen-ion or proton conduction (pure ionic or mixed ionic/electronic conductors) allow selective transport of oxygen (oxygen-ion conducting materials) or hydrogen (for proton conducting materials) in the form of ionic flux at high temperatures. Thus these systems can act as filters for molecular oxygen or hydrogen and can be used for both generation or removal of these gases selectively. The usage of such devices are numerous including control of atmosphere in industrial environments to production of power and chemicals, in petroleum and medical industries, and in combustion processes. In this paper, a brief overview of the technology has been given and various doped materials for construction of such devices, such as zirconia, ceria, bismuth oxides or lanthanum gallates have been briefly reviewed. Copyright (2000) The Australian Ceramic Society

  19. Separations: The path to waste minimization

    International Nuclear Information System (INIS)

    Bell, J.T.

    1992-01-01

    Waste materials usually are composed of large amounts of innocuous and frequently useful components mixed with lesser amounts of one or more hazardous components. The ultimate path to waste minimization is the separation of the lesser quantities of hazardous components from the innocuous components, and then recycle the useful components. This vision is so simple that everyone would be expected to properly manage waste. Several parameters interfere with this proper waste management, which encourages the open-quotes sweep it under the rugclose quotes or the open-quotes bury it allclose quotes attitudes, both of which delay and complicate proper waste management. The two primary parameters that interfere with proper waste management are: economics drives a process to a product without concerns of waste minimization, and emergency needs for immediate production of a product usually delays proper waste management. A third parameter in recent years is also interfering with proper waste management: quick relief of waste insults to political and public perceptions is promoting the open-quotes bury it allclose quotes attitude. A fourth parameter can promote better waste management for any scenario that suffers either or all of the first three parameters: separations technology can minimize wastes when the application of this technology is not voided by influence of the first three parameters. The US Department of Energy's management of nuclear waste has been seriously affected by the above four parameters. This paper includes several points about how the generation and management of DOE wastes have been, and continue to be, affected by these parameters. Particular separations technologies for minimizing the DOE wastes that must be stored for long periods are highlighted

  20. Leading research on cell proliferation regulation technology; Saibo zoshoku seigyo gijutsu no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing intelligent material, animal test alternative model, bio-cell analysis equipment, self-controlling bio-reactor and medical material, development of functional cells was studied by cell proliferation regulation technology. In fiscal 1996, the expression analysis and separation technology of specific gene for cell proliferation, and the intracellular regulation technology were surveyed from the viewpoint of intracellular regulation. The cell proliferation regulation technology by specific regulating material of cells, extracellular matrix, coculture system and embryonic cell was surveyed from the viewpoint of extracellular regulation. In addition, based on these survey results, new cell culture/analysis technology, new bio-material, artificial organ system, energy saving bio-reactor, environment purification microorganism, and animal test alternative model were surveyed as applications to industrial basic technologies from a long-term viewpoint. The approach to cell proliferation regulation requires preparation of a concrete proliferation regulation technology system of cells, and concrete application targets. 268 refs., 43 figs., 4 tabs.

  1. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    International Nuclear Information System (INIS)

    Appleton, B.R.; Bauer, G.S.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R ampersand D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R ampersand D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R ampersand D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and

  2. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, B.R.; Bauer, G.S. [comp.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R&D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has been funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R & D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R & D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Target support for inertial confinement fusion

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1995-08-01

    General Atomics (GA) plays an important industrial support role for the US Inertial Confinement Fusion (ICF) program in the area of target technology. This includes three major activities: target fabrication support, target handling systems development, and target chamber design. The work includes target fabrication for existing ICF experiments, target and target system development for future experiments, and target research and target chamber design for experiments on future machines, such as the National Ignition Facility (NIF)

  4. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling.

    Science.gov (United States)

    Cimpan, Ciprian; Maul, Anja; Jansen, Michael; Pretz, Thomas; Wenzel, Henrik

    2015-06-01

    Today's waste regulation in the EU comprises stringent material recovery targets and calls for comprehensive programs in order to achieve them. A similar movement is seen in the US where more and more states and communities commit to high diversion rates from landfills. The present paper reviews scientific literature, case studies and results from pilot projects, on the topic of central sorting of recyclable materials commonly found in waste from households. The study contributes, inter alia, with background understanding on the development of materials recovery, both in a historical and geographical perspective. Physical processing and sorting technology has reached a high level of maturity, and many quality issues linked to cross-contamination by commingling have been successfully addressed to date. New sorting plants tend to benefit from economies of scale, and innovations in automation and process control, which are targeted at curtailing process inefficiencies shown by operational practice. Technology developed for the sorting of commingled recyclables from separate collection is also being successfully used to upgrade residual MSW processing plants. The strongest motivation for central sorting of residual MSW is found for areas where source separation and separate collection is difficult, such as urban agglomerations, and can in such areas contribute to increasing recycling rates, either complementary to- or as a substitute for source separation of certain materials, such as plastics and metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Metals separation using solvent extractants on magnetic microparticles

    International Nuclear Information System (INIS)

    Nunez, L.; Pourfarzaneh, M.

    1997-01-01

    The magnetically assisted chemical separation program was initially funded by DOE EM-50 to develop processes for the efficient separation of radionuclides and other hazardous metals. This process has simulated the partnership between industry and ANL for many applications related to hazardous metal problems in industry. In-tank or near-tank hazardous metals separation using magnetic particles promises simple, compact processing at very low costs and employs mature chemical separations technologies to remove and recover hazardous metals from aqueous solutions. The selective chemical extractants are attached to inexpensive magnetic carrier particles. Surfaces of small particles composed of rare earths or ferromagnetic materials are treated to retain chemical extractants (e.g., TBP, CMPO, quaternary amines, carboxylic acid). After selective partitioning of contaminants to the surface layer, magnets are used to collect the loaded particles from the tank. The particles can be regenerated by stripping the contaminants and the selective metals can be recovered and recycled from the strip solution. This process and its related equipment are simple enough to be used for recovery/recycling and waste minimization activities at many industrial sites. Both the development of the process for hazardous and radioactive waste and the transfer of the technology will be discussed

  6. Use of high gradient magnetic separation for actinide application

    International Nuclear Information System (INIS)

    Avens, L.R.; Worl, L.A.; Padilla, D.D.

    1996-01-01

    Decontamination of materials such as soils or waste water that contain radioactive isotopes, heavy metals, or hazardous components is a subject of great interest. Magnetic separation is a physical separation process that segregates materials on the basis of magnetic susceptibility. Because the process relies on physical properties, separations can be achieved while producing a minimum of secondary waste. Most traditional physical separation processes effectively treat particles larger than 70 microns. In many situations, the radioactive contaminants are found concentrated in the fine particle size fraction of less than 20 microns. For effective decontamination of the fine particle size fraction most current operations resort to chemical dissolution methods for treatment. High gradient magnetic separation (HGMS) is able to effectively treat particles from 90 to ∼0.1 micron in diameter. The technology is currently used on the 60 ton per hour scale in the kaolin clay industry. When the field gradient is of sufficiently high intensity, paramagnetic particles can be physically captured and separated from extraneous nonmagnetic material. Because all actinide compounds are paramagnetic, magnetic separation of actinide containing mixtures is feasible. The advent of reliable superconducting magnets also makes magnetic separation of weakly paramagnetic species attractive. HGMS work at Los Alamos National Laboratory (LANL) is being developed for soil remediation, waste water treatment and treatment of actinide chemical processing residues. LANL and Lockheed Environmental Systems and Technologies Company (LESAT) have worked on a co-operative research and development agreement (CRADA) to develop HGMS for radioactive soil decontamination. The program is designed to transfer HGMS from the laboratory and other industries for the commercial treatment of radioactive contaminated materials. 9 refs., 2 figs., 2 tabs

  7. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)

    1996-12-31

    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  8. Soil washing physical separations test procedure - 300-FF-1 operable unit

    Energy Technology Data Exchange (ETDEWEB)

    Belden, R.D.

    1993-10-08

    This procedure provides the operations approach, a field sampling plan, and laboratory procedures for a soil washing test to be conducted by Alternative Remedial Technologies, Inc. (ART) in the 300-FF-1 area at the Hanford site. The {open_quotes}Quality Assurance Project Plan for the Soil Washing Physical Separations Test, 300-FF-1 Operable Unit,{close_quotes} Hanford, Washington, Alternative Remedial Technologies, Inc., February 1994 (QAPP) is provided in a separate document that presents the procedural and organizational guidelines for this test. This document describes specifications, responsibilities, and general procedures to be followed to conduct physical separation soil treatability tests in the North Process Pond of the 300-FF-1 Operable Unit (OU) at the Hanford Site. These procedures are based on the {open_quotes}300-FF-1 Physical Separations CERCLA Treatability Test Plan, DOE/RL 92-2l,{close_quotes} (DOE-RL 1993).

  9. Soil washing physical separations test procedure - 300-FF-1 operable unit

    International Nuclear Information System (INIS)

    Belden, R.D.

    1993-01-01

    This procedure provides the operations approach, a field sampling plan, and laboratory procedures for a soil washing test to be conducted by Alternative Remedial Technologies, Inc. (ART) in the 300-FF-1 area at the Hanford site. The open-quotes Quality Assurance Project Plan for the Soil Washing Physical Separations Test, 300-FF-1 Operable Unit,close quotes Hanford, Washington, Alternative Remedial Technologies, Inc., February 1994 (QAPP) is provided in a separate document that presents the procedural and organizational guidelines for this test. This document describes specifications, responsibilities, and general procedures to be followed to conduct physical separation soil treatability tests in the North Process Pond of the 300-FF-1 Operable Unit (OU) at the Hanford Site. These procedures are based on the open-quotes 300-FF-1 Physical Separations CERCLA Treatability Test Plan, DOE/RL 92-2l,close quotes (DOE-RL 1993)

  10. Trends in Supersonic Separator design development

    Directory of Open Access Journals (Sweden)

    Altam Rami Ali

    2017-01-01

    Full Text Available Supersonic separator is a new technology with applications in hydrocarbon dew pointing and gas dehydration which can be used to condensate and separate water and heavy hydrocarbons from natural gas. Many researchers have studied the design, performance and efficiency, economic viability, and industrial applications of these separators. The purpose of this paper is to succinctly review recent progress in the design and application of supersonic separators and their limitations. This review has found that while several aspects of this study are well studied, considerable gaps within the published literature still exists in the areas such as turndown flexibility which is a critical requirement to cater for variation of mass flow and since almost all the available designs have a fixed geometry and therefore cannot be considered suitable for variable mass flow rate, which is a common situation in actual site. Hence, the focus needs to be more on designing a flexible geometry that can maintain a high separation efficiency regardless of inlet conditions and mass flow variations. This review is focusing only on the design and application of the supersonic separators without going through the experimental facilities, industrial platform, pilot plants as well as theoretical, analytical, and numerical modelling.

  11. Development and evaluation of a targeted orchard sprayer using machine vision technology

    Directory of Open Access Journals (Sweden)

    H Asaei

    2016-09-01

    Full Text Available Introduction In conventional methods of spraying in orchards, the amount of pesticide sprayed, is not targeted. The pesticide consumption data indicates that the application rate of pesticide in greenhouses and orchards is more than required. Less than 30% of pesticide sprayed actually reaches nursery canopies while the rest are lost and wasted. Nowadays, variable rate spray applicators using intelligent control systems can greatly reduce pesticide use and off-target contamination of environment in nurseries and orchards. In this research a prototype orchard sprayer based on machine vision technology was developed and evaluated. This sprayer performs real-time spraying based on the tree canopy structure and its greenness extent which improves the efficiency of spraying operation in orchards. Materials and Methods The equipment used in this study comprised of three main parts generally: 1- Mechanical Equipment 2- Data collection and image processing system 3- Electronic control system Two booms were designed to support the spray nozzles and to provide flexibility in directing the spray nozzles to the target. The boom comprised two parts, the vertical part and inclined part. The vertical part of the boom was used to spray one side of the trees during forward movement of the tractor and inclined part of the boom was designed to spray the upper half of the tree canopy. Three nozzles were considered on each boom. On the vertical part of the boom, two nozzles were placed, whereas one other nozzle was mounted on the inclined part of the boom. To achieve different tree heights, the vertical part of the boom was able to slide up and down. Labview (version 2011 was used for real time image processing. Images were captured through RGB cameras mounted on a horizontal bar attached on top of the tractor to take images separately for each side of the sprayer. Images were captured from the top of the canopies looking downward. The triggering signal for

  12. Simulations of effusion from ISOL target/ion source systems

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.

    2004-01-01

    Monte Carlo simulations of the low- and high-conductivity Target/Ion Source systems used at Oak Ridge National Laboratory for effusion measurements are performed. Comparisons with the corresponding experimental data for the different geometries are presented and discussed. Independent checks of the simulation using data for simple geometries and using the conductance approach well known in vacuum technology are performed. A simulation-based comparison between the low- and high-conductivity systems is also presented

  13. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    International Nuclear Information System (INIS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-01-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  15. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Science.gov (United States)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  16. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Tong, Ruijie [Sichuan University, West China Medical Center (China); Song, Yanling [Shenyang University of Chemical Technology, College of Pharmaceutical and Biological Engineering (China); Xiong, Fang [Sichuan University, West China College of Stomatology (China); Li, Jiman [Sichuan Cancer Hospital, Pathology Department (China); Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei, E-mail: zzw2002400@126.com; Wu, Jiang, E-mail: jw@scu.edu.cn [Sichuan University, West China Medical Center (China)

    2017-04-15

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  17. Design of the Advanced Rare Isotope Separator ARIS at FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, M., E-mail: hausmann@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Aaron, A.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Amthor, A.M. [Dept. of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Avilov, M.; Bandura, L.; Bennett, R.; Bollen, G.; Borden, T. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Burgess, T.W. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Chouhan, S.S. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Graves, V.B. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mittig, W. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Morrissey, D.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Pellemoine, F.; Portillo, M.; Ronningen, R.M.; Schein, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Sherrill, B.M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Zeller, A. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States)

    2013-12-15

    The Facility for Rare Isotopes Beams (FRIB) at Michigan State University will use projectile fragmentation and induced in-flight fission of heavy-ion primary beams at energies of 200 MeV/u and higher and at a beam power of 400 kW to generate rare isotope beams for experiments in nuclear physics, nuclear astrophysics, and fundamental symmetries, as well as for societal needs. The Advanced Rare Isotope Separator (ARIS) has been designed as a three-stage fragment separator for the efficient collection and purification of the rare isotope beams of interest. A vertically bending preseparator (first stage) with production target and beam dump is fully integrated into a production target facility hot cell with remote handling. The new separator compresses the accepted momentum width of up to ±5% of the beam by a factor of three in the standard operational mode. Provisions for alternate operational modes for specific cases are included in the design. This preseparator is followed by two, horizontally-bending separator stages (second and third stages) utilizing the magnets from the existing A1900 fragment separator at the National Superconducting Cyclotron Laboratory (NSCL). These stages can alternatively be coupled to a single high-resolution separator stage, resulting in the flexibility to optimize the operation for different experiments, including momentum tagging and in-flight particle identification of rare isotope beams. The design of ARIS will be presented with an emphasis on beam physics characteristics, and anticipated operational modes will be described.

  18. Sinusoidal masks for single channel speech separation

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2010-01-01

    In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show...... that the proposed method is able to minimize the target speech distortion while suppressing the crosstalk to a predetermined threshold. It is observed that compared to the STFTbased masks, the proposed sinusoidal masks improve the separation performance in terms of objective measures (SSNR and PESQ) and are mostly...

  19. SEPARATION AND PURIFICATION OF TWO MINOR COMPOUNDS FROM RADIX ISATIDIS BY INTEGRATIVE MPLC AND HSCCC WITH PREPARATIVE HPLC.

    Science.gov (United States)

    Liang, Zhenjie; Li, Bin; Liang, Yong; Su, Yaping; Ito, Yoichiro

    2015-01-01

    Radix isatidis has been widely used as a Chinese traditional medicine for its anti-virus and anticancer activities where the minor components may contribute to these beneficial pharmaceutical effects. In order to enrich the target minor compounds effectively and rapidly, extraction, medium-pressure liquid chromatography (MPLC), high-speed countercurrent chromatography (HSCCC) and preparative high-performance liquid chromatography (pre-HPLC) were integratively used for separation and purification of two target minor compounds indole-3-acetonitrile-6-O-β-D-glucopyranoside (target 1) and clemastanin B (target 2) in the present study. Radix isatidis was dried, pulverized and extracted with 50% methanol at room temperature, then concentrated and subjected to pretreatment with D-101 macroporous resin chromatography and extraction by MPLC. The first target compound was separated by MPLC at the purity raised to 70-80%, but without the second minor compounds which were irreversibly adsorbed by C18 solid support. Therefore, the second target compound in the crude extract was directly separated by HSCCC at purity of 80-90%. Finally these refined samples were further separated by pre-HPLC to obtain a high purity at 98-99%. The chemical structure identification of each target compound was carried out by IR, ESI-MS and 1 H NMR.

  20. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    Hoppe, M.

    1996-05-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period October 1, 1994 through September 30, 1995. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. A portion of the effort on these tasks included providing direct ''Onsite Support'' at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). The ICF program is anticipating experiments at the National Ignition Facility (NIF) and the OMEGA Upgrade. Both facilities will require capsules containing layered D 2 or deuterium-tritium (D-T) fuel. The authors are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Progress has been made on ways to both create viable layers and to characterize them. They continued engineering, assembly and testing of equipment for a cryogenic target handling system for University of Rochester's Laboratory for Laser Energetics (UR/LLE) that will fill, transport, layer, and characterize targets filled with cryogenic fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks

  1. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, M. [ed.

    1996-05-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period October 1, 1994 through September 30, 1995. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. A portion of the effort on these tasks included providing direct ``Onsite Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). The ICF program is anticipating experiments at the National Ignition Facility (NIF) and the OMEGA Upgrade. Both facilities will require capsules containing layered D{sub 2} or deuterium-tritium (D-T) fuel. The authors are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Progress has been made on ways to both create viable layers and to characterize them. They continued engineering, assembly and testing of equipment for a cryogenic target handling system for University of Rochester`s Laboratory for Laser Energetics (UR/LLE) that will fill, transport, layer, and characterize targets filled with cryogenic fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  2. Chemical separation of Th-230 from uranium ore

    International Nuclear Information System (INIS)

    Kikunaga, H.; Nakanishi, T.; Mitsugashira, T.; Hara, M.

    2001-01-01

    We are studying the decay processes of low energy nuclear isomer of Th-229. Our approach to produce Th-229m is (γ, n) reaction on Th-230, hence, about 100 μg of Th-230 is necessary as a target. However, our stock of Th-230 has run out during several experiments, thus, we tried to separate Th-230 from uranium ore. In this paper, the detail of a chemical separation procedure for Th-230 from uranium ore and the results are reported. (author)

  3. Technology strategy for deepwater and subsea production systems 2008 update; Technology Target Areas; TTA7 - Deep water and subsea prodution technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Executive summary 'Deepwater and Subsea Production Systems' has been identified as one of the eight new Technology Target Areas (TTAs) in Norway's technology strategy for the Oil and Gas sector. This TTA covers deepwater floating production systems, subsea systems (except subsea processing technologies which are addressed by TTA6) and arctic development systems (in both shallow and deepwater). The total hydrocarbon reserves worldwide, which are enabled by the technologies under this TTA exceed 400 billion boe which, itself exceeds the proven reserves of Saudi Arabia. For deepwater developments the long term technical challenge is to develop flexible and adaptive systems which are better able to cope with subsurface uncertainties e.g. compartmentalisation and provide required access to the reservoir to enable successful recovery. More specific medium term challenges relate to developing solutions for harsh environmental conditions such as those offshore Norway and to develop cost effective methods of installing subsea hardware in deep and ultra deep water without requiring expensive crane vessels. For subsea systems the challenge is to develop solutions for ultra deepwater without increasing costs, so that Norway's leading export position in this area can be maintained and strengthened. Considering developments in the arctic, Norwegian industry is already well placed through its familiarity with arctic climate, close relationship with Russia and involvement in Sakhalin II. As we move to water depth beyond about 150m use of Gravity Base Structures (GBS) becomes very expensive or non-feasible and we need to consider other solutions. Subsea-to-beach could be an attractive solution but we need to resolve challenges related to long distance tie backs, flow assurance, uneven terrain, etc. There is also a specific need to develop floating systems capable of drilling and production in an arctic environment. To address the above technical challenges the

  4. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately.

    Science.gov (United States)

    Shi, Yan; Shu, Bin; Yang, Ronghua; Xu, Yingbin; Xing, Bangrong; Liu, Jian; Chen, Lei; Qi, Shaohai; Liu, Xusheng; Wang, Peng; Tang, Jinming; Xie, Julin

    2015-06-16

    Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant role during wound healing. However, their biological effects during cutaneous tissues repair are unclear. We employed a self-controlled model (Sprague-Dawley rats with full-thickness skin wounds) to observe the action and effect of Wnt/β-catenin and Notch signalings in vivo. The quality of wound repair relevant to the gain/loss-of-function Wnt/β-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were cultured in keratinocyte serum-free medium with Jaggedl or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the expression of Wnt/β-catenin signaling. The results showed that in vivo the gain-of-function Wnt/β-catenin and Notch activation extended the ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration by targeting c-Myc and Hes1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot analysis suggested that the two pathways might interact in vivo and in vitro. These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting c-Myc and Hes1 separately. What's more, interaction between the above two pathways might act as a vital role in regulation of wound healing.

  5. Fusion target design

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1978-01-01

    Most detailed fusion target design is done by numerical simulation using large computers. Although numerical simulation is briefly discussed, this lecture deals primarily with the way in which basic physical arguments, driver technology considerations and economical power production requirements are used to guide and augment the simulations. Physics topics discussed include target energetics, preheat, stability and symmetry. A specific design example is discussed

  6. Preparation of 199Tl using the electroplating gold targets on the internal target installation of cyclotron

    International Nuclear Information System (INIS)

    Zhou Dehai; Xie Degao; Chao Yangshu; Liao Fuquan; Zhang Youfa; Wang Zefu

    1992-01-01

    The separative conditions of 199 Tl from Cu, Au and Ga by reaction 197 Au(α, 2n) 199 Tl on the internal target installation of cyclotron is studied. The α-particle energy is selected in the range of 24-15 MeV. The cumulative current intensities of such α-particle beams bombarding the gold target at 150-200 μA are 1200 μA · h and 1500 μA · h respectively. The radiochemical separation of 199 Tl is carried out with isopropyl ether extraction and anions exchange from the irradiated gold targets. The radioactivities of 199 Tl and 200 Tl are 2.3 x 10 5 Bq and 7.1 x 10 2 Bq, and 200 Tl makes up 0.29% of the total radioactivity. The impurity elements contained 1 ml of 199 TlCl injection solution are Au 199 TlCl has been used in clinical experiments in vivo and relatively good results have been obtained

  7. Technology choices for the Integrated Beam Experiment (IBX)

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2002-10-31

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete ''source-to-target'' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current ({approx}1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing. This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets.

  8. Timing Calibration for Time-of-Flight PET Using Positron-Emitting Isotopes and Annihilation Targets

    Science.gov (United States)

    Li, Xiaoli; Burr, Kent C.; Wang, Gin-Chung; Du, Huini; Gagnon, Daniel

    2016-06-01

    Adding time-of-flight (TOF) technology has been proven to improve image quality in positron emission tomography (PET). In order for TOF information to significantly reduce the statistical noise in reconstructed PET images, good timing resolution is needed across the scanner field of view (FOV). This work proposes an accurate, robust, and practical crystal-based timing calibration method using 18F - FDG positron-emitting sources together with a spatially separated annihilation target. We calibrated a prototype Toshiba TOF PET scanner using this method and then assessed its timing resolution at different locations in the scanner FOV.

  9. Studies on the separation of {sup 89}Sr(II) from irradiated yttria target using 4, 4{sup '}(5{sup '}) di-tert-butyl-cyclohexano-18-crown-6 (DtBuCH18C6) by solvent extraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Debasish; Vithya, Jayagopal; Kumar, Ramalingam; Venkata Subramani, Canchipuram Ramamoorthy; Vasudeva Rao, Polur Ranga [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam (India). Chemistry Group

    2016-07-01

    The radioisotope {sup 89}Sr as {sup 89}SrCl{sub 2} is medically useful for bone pain palliation and is produced in fast reactors using the {sup 89}Y(n, p){sup 89}Sr reaction. A procedure for isolation of the radionuclide {sup 89}Sr by chemical processing of the irradiated Y{sub 2}O{sub 3} target has been standardised and trial runs have been carried out at the Fast Breeder Test Reactor (FBTR), Kalpakkam. The chemical processing of the irradiated Y{sub 2}O{sub 3} target involves (i) the removal of target Y(III) by TBP extraction and (ii) further purification of the separated {sup 89}Sr fraction by cationic exchange chromatography. However a selective isolation of {sup 89}Sr by the Sr-specific crown ether makes the above chemical processing faster and relatively simple. This work presents a study on the selective removal of Sr from the irradiated target dissolver solution using the Sr-specific crown ether 4,4{sup '}(5{sup '}) di-tert-butyl-cyclohexano-18-crown-6 (DtBuCH18C6) in octanol medium. The separation behaviour of the other impurities such as Ce(IV), Y(III), Tb(III), Eu(III), Zn(II), Mn(II) and Rb(I) present along with Sr(II) in the irradiated sample was also investigated. The method of separation by using the crown ether DtBuCH18C6 is proved to be a potential tool for the purification of {sup 89}Sr(II) source produced from yttria target in fast reactors.

  10. Micro-separation toward systems biology.

    Science.gov (United States)

    Liu, Bi-Feng; Xu, Bo; Zhang, Guisen; Du, Wei; Luo, Qingming

    2006-02-17

    Current biology is experiencing transformation in logic or philosophy that forces us to reevaluate the concept of cell, tissue or entire organism as a collection of individual components. Systems biology that aims at understanding biological system at the systems level is an emerging research area, which involves interdisciplinary collaborations of life sciences, computational and mathematical sciences, systems engineering, and analytical technology, etc. For analytical chemistry, developing innovative methods to meet the requirement of systems biology represents new challenges as also opportunities and responsibility. In this review, systems biology-oriented micro-separation technologies are introduced for comprehensive profiling of genome, proteome and metabolome, characterization of biomolecules interaction and single cell analysis such as capillary electrophoresis, ultra-thin layer gel electrophoresis, micro-column liquid chromatography, and their multidimensional combinations, parallel integrations, microfabricated formats, and nano technology involvement. Future challenges and directions are also suggested.

  11. Radiochemical separation of cadmium-109

    International Nuclear Information System (INIS)

    Egamediev, S.; Mukhtarov, A.; Nurbaeva, D.; Rakhmanov, A.

    2006-01-01

    Full text: Cadmium-109 has a half-life of 461.9 days and decays by electron capture to 109 Ag with the emission of 88 keV γ-ray (3.79%) along with the characteristic X-ray from the K level of Ag, with energy of 22.5 keV. This radionuclide has found widespread use as a photon source in x-ray fluorescence analysis devices employed in industry for numerous applications such as the direct determination of gold in ores, the analysis of metals and identification of steels. Other applications range from its use as an electron source for measurement of densities of air-pollution samples, to tracer studies in mushrooms and mice and rats. In the nuclear medicine field there is growing interest in employing 109 Cd in a 109 Cd/ 109mA g generator, as an alternative to other biomedical generators of ultra short-lived gamma emitters. There are several methods for the production of 109 Cd in literature: 1. Bombardment of silver cyclotron target via 109 Ag(d,2n) 109 Cd reaction with 16 MeV deuterons. 2. Bombardment of natural silver target via 109 Ag(p,n) 109 Cd reaction with 14 MeV protons. 3. Proton bombardment of natural indium target with 96 MeV protons. 4. Irradiation of enriched 107 Ag target in high-flux nuclear reactor at neutron flux 2x10 15 n·cm -2 ·s -1 via 107 Ag(n,γ) 108 Ag → 108 Cd (n,γ) 109 Cd reaction. 5. Irradiation of enriched 108 Cd target in nuclear reactor at neutron flux 1x10 14 n·cm -2 ·s -1 via 108 Cd (n,γ) 109 Cd reaction. The production of 109 Cd with proton beam via 109 Ag(p,n) 109 Cd reaction is ideal for the cyclotron U-150, since it is not required the change of the regime for the machine functioning. Because of its relatively long half-life the time required for separation is also not an important factor, but its use as an X-ray source requires a very high radiochemical purity. In the present work we studied two methods for separation of 109 Cd from model solution of silver targets. First method is based on precipitation of silver as

  12. Method for selecting hollow microspheres for use in laser fusion targets

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  13. Engineering design of the EURISOL multi-MW spallation target

    CERN Document Server

    Herrera-Martínez, A; Ashrafi-Nik, M; Samec, K; Freibergs, J; Platacis, E

    2007-01-01

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order of 1...

  14. ENGINEERING DESIGN OF THE EURISOL MULTI-MW SPALLATION TARGET

    CERN Document Server

    Adonai Herrera-Martinez*, Yacine Kadi, Morteza Ashrafi-Nik, Karel Samec, Janis Freibergs, Ernests Platacis

    The European Isotope Separation On-Line Radioactive Ion Beam project (EURISOL) is set to design the ‘next-generation’ European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, four target stations are foreseen, three direct targets of approximately 100 kW of beam power and one multi-MW target assembly, all driven by a high-power particle accelerator. In this high power target station, high-intensity RIBs of neutron-rich isotopes will be obtained by inducing fission in several actinide targets surrounding a liquid metal spallation neutron source. This article summarises the work carried out within Task 2 of the EURISOL Design Study, with special attention to the coupled neutronics of the mercury proton-to-neutron converter and the fission targets. The overall performance of the facility, which will sustain fast neutron fluxes of the order ...

  15. Induction Accelerator Technology Choices for the Integrated Beam Experiment (IBX)

    International Nuclear Information System (INIS)

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Logan, B.G.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2003-01-01

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete 'source-to-target' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current (∼1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing.This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets

  16. Microparticle Separation by Cyclonic Separation

    Science.gov (United States)

    Karback, Keegan; Leith, Alexander

    2017-11-01

    The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.

  17. Separation phenomena in Liquids and Gases

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P; Soubbaramayer, [CEA Saclay, Dept. des Lasers et de la Physico-Chimie, DESICP/DLPC/SPP, 91 - Gif-sur-Yvette (France); Noe, P

    1989-07-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  18. Separation phenomena in Liquids and Gases

    International Nuclear Information System (INIS)

    Louvet, P.; Dr Soubbaramayer; Noe, P.

    1989-01-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  19. Technology of solid-fuel-layer targets for laser-fusion experiments

    International Nuclear Information System (INIS)

    Musinski, D.L.; Henderson, T.M.; Pattinson, T.R.; Tarvin, J.A.

    1979-01-01

    An apparatus which produces uniform solid-fuel layers in glass-shell targets for laser irradiation is described. A low-power cw laser pulse is used to vaporize the fuel within a previously frozen target which is maintained in a cold-helium environment by a cryogenic shroud. The rapid refreezing that follows the pulse forms a uniform fuel layer on the inner surface of the glass shell. This apparatus and technique meet the restrictions imposed by the experimental target chamber. The method does not perturb the target position; nor does it preclude the usual diagnostic experimets since the shroud is retracted before the main laser pulse arrives. Successful laser irradiation and implosion of solid-fuel-layer targets at KMSF have confirmed the effectiveness and reliability of this system and extended the range of laser-target-interaction studies in the cryogenic regime

  20. Application and recovery of ionic liquids in the preparative separation of four flavonoids from Rhodiola rosea by on-line three-dimensional liquid chromatography.

    Science.gov (United States)

    Ma, Shufeng; Hu, Liming; Ma, Chaoyang; Lv, Wenping; Wang, Hongxin

    2014-09-01

    A novel on-line three-dimensional liquid chromatography method was developed to separate four main flavonoids from Rhodiola rosea. Ethyl acetate/0.5 mol/L ionic liquid 1-butyl-3-methylimidazolium chloride aqueous solution was selected as the solvent system. In the first-dimension separation, the target flavonoids were entrapped and subsequently desorbed into the second-dimension high-speed countercurrent chromatographic column for separation. In the third-dimension chromatography, the residual ionic liquid in the four separated flavonoids was removed and the used ionic liquid was recovered. As a result, 35.1 mg of compound 1, 20.4 mg of compound 2, 8.5 mg of compound 3, and 10.6 mg of compound 4 were obtained from 1.53 g R. rosea extract. They were identified as rhodiosin, rhodionin, herbacetin, and kaempferol, respectively. The recovery of ionic liquid reached 99.1% of the initial amount. The results showed that this method is a powerful technology for the separation of R. rosea flavonoids and that the ionic-liquid-based solvent system has advantages over traditional solvent systems in renewable and environmentally friendly properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. COST MEASUREMENT AND COST MANAGEMENT IN TARGET COSTING

    Directory of Open Access Journals (Sweden)

    Moisello Anna Maria

    2012-07-01

    Full Text Available Firms are coping with a competitive scenario characterized by quick changes produced by internationalization, concentration, restructuring, technological innovation processes and financial market crisis. On the one hand market enlargement have increased the number and the segmentation of customers and have raised the number of competitors, on the other hand technological innovation has reduced product life cycle. So firms have to adjust their management models to this scenario, pursuing customer satisfaction and respecting cost constraints. In a context where price is a variable fixed by the market, firms have to switch from the cost measurement logic to the cost management one, adopting target costing methodology. The target costing process is a price driven, customer oriented profit planning and cost management system. It works, in a cross functional way, from the design stage throughout all the product life cycle and it involves the entire value chain. The process implementation needs a costing methodology consistent with the cost management logic. The aim of the paper is to focus on Activity Based Costing (ABC application to target costing process. So: -it analyzes target costing logic and phases, basing on a literary review, in order to highlight the costing needs related to this process; -it shows, through a numerical example, how to structure a flexible ABC model – characterized by the separation between variable, fixed in the short and fixed costs - that effectively supports target costing process in the cost measurement phase (drifting cost determination and in the target cost alignment; -it points out the effectiveness of the Activity Based Costing as a model of cost measurement applicable to the supplier choice and as a support for supply cost management which have an important role in target costing process. The activity based information allows a firm to optimize the supplier choice by following the method of minimizing the

  2. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  3. A novel approach to the simultaneous extraction and non-targeted analysis of the small molecules metabolome and lipidome using 96-well solid phase extraction plates with column-switching technology.

    Science.gov (United States)

    Li, Yubo; Zhang, Zhenzhu; Liu, Xinyu; Li, Aizhu; Hou, Zhiguo; Wang, Yuming; Zhang, Yanjun

    2015-08-28

    This study combines solid phase extraction (SPE) using 96-well plates with column-switching technology to construct a rapid and high-throughput method for the simultaneous extraction and non-targeted analysis of small molecules metabolome and lipidome based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. This study first investigated the columns and analytical conditions for small molecules metabolome and lipidome, separated by an HSS T3 and BEH C18 columns, respectively. Next, the loading capacity and actuation duration of SPE were further optimized. Subsequently, SPE and column switching were used together to rapidly and comprehensively analyze the biological samples. The experimental results showed that the new analytical procedure had good precision and maintained sample stability (RSDmetabolome and lipidome to test the throughput. The resulting method represents a new analytical approach for biological samples, and a highly useful tool for researches in metabolomics and lipidomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Addressing key science and technology issues for IFE chambers, target fabrication and target injection

    International Nuclear Information System (INIS)

    Meier, W.R.; Goodin, D.T.; Nobile, A.

    2003-01-01

    Significant progress has been made in the development of high repetition rate chambers, target fabrication and injection for inertial fusion energy (IFE) for both heavy ion and laser drivers. Research is being conducted in a coordinated manner by national laboratories, universities and industry. This paper provides an overview of U.S. research activities and discusses how interface considerations (such as beam propagation and target survival during injection) impact design choices. (author)

  5. Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA.

    Directory of Open Access Journals (Sweden)

    Sisse B Ditlev

    Full Text Available Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA. Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i the large size of VAR2CSA and (ii the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.

  6. Laser isotope separation - a new class of chemical process

    International Nuclear Information System (INIS)

    Woodall, K.B.; Mannik, L.; O'Neill, J.A.; Mader, D.L.; Nickerson, S.B.; Robins, J.R.; Bartoszek, F.E.; Gratton, D.

    1983-01-01

    Lasers may soon find several applications in chemical processing. The applications that have attracted the most research funding to date involve isotope separation for the nuclear industry. These isotopes have an unusually high value (≥$1000/kg) compared to bulk chemicals (∼$1/kg) and are generally required in very large quantities. In a laser isotope separation process, light is used to convert a separation that is very difficult or even impossible by conventional chemical engineering techniques to one that is readily handled by conventional separation technology. For some isotopes this can result in substantial capital and energy savings. A uranium enrichment process developed at the Lawrence Livermore National Laboratory is the closest to commercialization of the large scale laser isotope separation processes. Of particular interest to the Canadian nuclear industry are the laser separation of deuterium, tritium, zirconium-90 and carbon-14. In this paper, the basic principles behind laser isotope separation are reviewed and brief dscriptions of the more developed processes are given

  7. New vision in fractional radiofrequency technology with switching, vacuum and cooling.

    Science.gov (United States)

    Elman, Monica; Gauthier, Nelly; Belenky, Inna

    2015-04-01

    Since the introduction of fractional technology, various systems were launched to the market. The first generation of fractional RF systems created epidermal ablation with coagulative/necrosis of the dermis with sufficient clinical outcomes, but with some limitations. The aim of this study was to evaluate the efficacy and safety of SVC technology, based on the principle of separate biological responses. Fifty-two patients were treated for 3-6 sessions using fractional RF handpiece and eight patients received combination treatments with non-invasive RF handpiece. All volunteers showed notable to significant improvement in the photoageing symptoms, without any significant complications or adverse events. Due to its wide spectrum of parameters, the SVC technology can promote different biological responses. Owing to the "Switching" technology, the control of energy depth penetration enables delivery of the necessary thermal dose to the targeted skin layer. In addition, this novel technology includes the "Vacuum" and "Cooling" mechanisms, each contributing to the safety of the treatment. The Smart Heat function reduces the necessary energy levels and thereby reduces the pain level and risks for side effects.

  8. Accelerator and spallation target technologies for ADS applications

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. Worldwide, more than 250 000 tons of spent fuel from reactors currently operating will require disposal. These numbers account for only high-level radio-active waste generated by present-day power reactors. Nearly all issues related to risks to future generations arising from the long-term disposal of such spent nuclear fuel is attributable to only about 1% of its content. This 1% is made up primarily of plutonium, neptunium, americium and curium (called transuranic elements) and the long-lived isotopes of iodine and technetium. When transuranics are removed from discharged fuel destined for disposal, the toxic nature of the spent fuel drops below that of natural uranium ore (that which was originally mined for the nuclear fuel) within a period of several hundred years. This significantly reduces the burden on geological repositories and the problem of addressing the remaining long-term residues can thus be done in controlled environments having timescales of centuries rather than millennia. To address the disposal of transuranics, accelerator-driven systems (ADS), i.e. a sub-critical system driven by an accelerator to sustain the chain reaction, seem to have great potential for transuranic transmutation, though much R and D work is still required in order to demonstrate their desired capability as a whole system. This report describes the current status of accelerator and spallation target technologies and suggests technical issues that need to be resolved for ADS applications. It will be of particular interest to nuclear scientists involved in ADS development and in advanced fuel cycles in general. (author)

  9. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  10. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  11. International Nuclear Target Development Society workshop 1983: proceedings

    International Nuclear Information System (INIS)

    Thomas, G.

    1983-01-01

    Separate abstracts were prepared for 11 of the 19 papers presented. Eight papers were previously included in the data base. Discussion group session papers on carbon stripper foils, problems in producing heavy-ion targets, and problems in producing general type targets are included

  12. Development of the multitracer technology for a simultaneous multi-elemental analysis and its evolution in RI-beam factory project

    International Nuclear Information System (INIS)

    Enomoto, Shuichi

    2003-01-01

    This review describes the method to produce the multitracer, its biobehavior, its application for environmental sciences, Nuclear Energy Fundamentals Crossover Research (for upgrading multitracer production technology, and development of the automatic chemical separation units and of the simultaneous imaging apparatus for multi gamma-ray nuclides), and Inst. of Physical and Chemical Research (RIKEN) RI-beam factory project. The multitracer technology is an efficient (i.e., many information's are available through one experimentation) tracer technique for studying the physical, chemical and biological behavior of elements with use of their multiple radioisotopes produced by accelerators like RIKEN ring cyclotron and of computer/semiconductor detector for their individual gamma-ray spectrometry. The multitracer elements are produced in their carrier-free forms by irradiation of the target element with the heavy particle (up to Ta, in RIKEN cyclotron) and by resultant nuclear fragmentation of the target. The multitracer through nuclear fragmentation and/or fission with an automated separation apparatus will be sophisticatedly supplied in future. GREI (gamma-ray emission imaging) is under investigation. The RI-beam factory project aims to irradiate/accelerate the radioisotope, which is expected to give novel knowledge's in biology like metabolic physiology. (N.I.)

  13. Tapered Microfluidic for Continuous Micro-Object Separation Based on Hydrodynamic Principle.

    Science.gov (United States)

    Ahmad, Ida Laila; Ahmad, Mohd Ridzuan; Takeuchi, Masaru; Nakajima, Masahiro; Hasegawa, Yasuhisa

    2017-12-01

    Recent advances in microfluidic technologies have created a demand for a simple and efficient separation intended for various applications such as food industries, biological preparation, and medical diagnostic. In this paper, we report a tapered microfluidic device for passive continuous separation of microparticles by using hydrodynamic separation. By exploiting the hydrodynamic properties of the fluid flow and physical characteristics of micro particles, effective size based separation is demonstrated. The tapered microfluidic device has widening geometries with respect to specific taper angle which amplify the sedimentation effect experienced by particles of different sizes. A mixture of 3-μm and 10-μm polystyrene microbeads are successfully separated using 20° and 25° taper angles. The results obtained are in agreement with three-dimensional finite element simulation conducted using Abaqus 6.12. Moreover, the feasibility of this mechanism for biological separation is demonstrated by using polydisperse samples consists of 3-μm polystyrene microbeads and human epithelial cervical carcinoma (HeLa) cells. 98% of samples purity is recovered at outlet 1 and outlet 3 with flow rate of 0.5-3.0 μl/min. Our device is interesting despite adopting passive separation approach. This method enables straightforward, label-free, and continuous separation of multiparticles in a stand-alone device without the need for bulky apparatus. Therefore, this device may become an enabling technology for point of care diagnosis tools and may hold potential for micrototal analysis system applications.

  14. Investigations and researches on CO2 balance in a high-temperature carbon dioxide separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    With an objective to select a promising process by comparing application environments and effectiveness of a high-temperature carbon dioxide separation, recovery and re-utilization technology with other methods, investigations were performed on reducible amount of carbon dioxide discharge by using material balance and system introduction. A large number of chemical and physical technologies are being developed for the separation and refining methods. This paper discusses the technologies for their application to iron and steel making, oil refining, and petrochemical industries, the so-called heavy and large product industries. As a possibility of utilizing the high-temperature separated CO2 in iron and steel making, an investigation was given on the direct iron ore smelting reduction process. It would be unreasonable to use CO2 in oil refining as a substitute to air to regenerate a catalytic decomposition and reformation catalyst because of decline in the catalytic activity. A discussion was given on a case to replace steam with CO2 in steam reformation and pyrolysis of hydrocarbons. The discussion requires the objective to be focused on such items as C/H ratio at a reformer outlet and relationship of balance in decomposition products. The C1 chemical and others were reviewed to search possibilities for their use as raw materials of chemicals used in chemical industries. Possibilities were discussed to fix high-temperature CO2 into peridotite and serpentine. 42 refs., 32 figs., 11 tabs.

  15. Clearing the fog of anticancer patents from 1993-2013: through an in-depth technology landscape & target analysis from pioneer research institutes and universities worldwide.

    Science.gov (United States)

    Dara, Ajay; Sangamwar, Abhay T

    2014-01-01

    In a search for an effective anticancer therapy the R&D units from leading universities and institutes reveal numerous technologies in the form of patent documents. The article addressed comparative anticancer patent landscape and technology assessment of Council of Scientific and Industrial Research (CSIR): India's largest R&D organisation with top twenty international public funded universities and institutes from eight different countries. The methodology include quantitative and qualitative assessment based on the bibliometric parameters and manual technology categorisation to understand the changing patent trends and recent novel technologies. The research finding analysed 25,254 patent documents from the year 1993 to 2013 and reported the insights of latest anticancer technologies and targets through categorisation studies at the level of drug discovery, development and treatment & diagnosis. The article has reported the technology correlation matrix of twelve secondary class technologies with 34 tertiary sub-class research area to identify the leading technologies and scope of future research through whitespaces analysis. In addition, the results have also addressed the target analysis, leading inventor, assignee, collaboration network, geographical distribution, patent trend analysis, citation maps and technology assessment with respect to international patent classification systems such as CPC, IPC and CPI codes. The result suggested peptide technology as the dominating research area next to gene therapy, vaccine and medical preparation containing organic compounds. The Indian CSIR has ranked itself at seventh position among the top 20 universities. Globally, the anticancer research was focused in the area of genetics and immunology, whereas Indian CSIR reported more patents related to plant extract and organic preparation. The article provided a glimpse of two decade anticancer scenario with respect to top public funded universities worldwide.

  16. Target preparation and characterization for multielemental analysis of liquid samples by use of accelerators

    CERN Document Server

    Liendo, J A; Fletcher, N R; Gómez, J; Caussyn, D D; Myers, S H; Castelli, C; Sajo-Bohus, L

    1999-01-01

    Elastic scattering at forward angles is tested as a useful alternative method to characterize liquid samples of scientific and/or technological interest. Solid residues of such samples deposited on light backings have been bombarded with 16 MeV sup 7 Li and 24 MeV sup 1 sup 6 O beams in order to determine the experimental configuration giving the best elemental mass separation. The elastically scattered ions were detected at 16 deg. , 20 deg. and 28 deg. with surface barrier detectors. The ratios between the mass separation and the line width obtained in the spectral region between carbon and oxygen varied between 2 and 13. This method is particularly useful for an accurate elemental characterization below sodium which is beyond the scope of standard techniques such as PIXE and TXRF provided the ion beam type, its kinetic energy and the target thickness are considered simultaneously.

  17. Fiscal 1998 R and D project on global environmental industrial technology. Research result report on DNA analysis and information processing technology for photosynthesis microorganisms (Development of CO{sub 2} fixation and effective use technology by using bacteria and algae); 1998 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo. Kogosei biseibutsu nado DNA kaiseki joho shori gijutsu no kenkyu (saikin sorui nado riyo nisanka tanso koteika yuko riyo gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report summarizes the fiscal 1998 research result on DNA analysis and information processing technology for photosynthesis microorganisms. On the study on DNA analysis technology by triple-strand formation method, as the comparison study result of a READ method, stable triple- strand formation method and hairpin method, a READ method showed the highest triple-strand formation efficiency for target DNA. On the study on accurate separation technology of specific genes, establishment of protocols was promoted for solid-phase probe technology, subtract technology and leveling technology. On the study on DNA microarray analysis technology by high-efficiency hybridization method, the analysis technology of genes by hybridization method using DNA chips is under investigation. In addition, the high- efficiency analysis technology of specific DNA segments by using an affinity sensor, and the high-accuracy cloning technology for DNA with altered primary structure were also studied. (NEDO)

  18. Application and Prospect of Superconducting High Gradient Magnetic Separation in Disposal of Micro-fine Tailings

    Science.gov (United States)

    Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei

    2017-12-01

    Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.

  19. The effect of target and non-target similarity on neural classification performance: A boost from confidence

    OpenAIRE

    Amar R Marathe; Anthony J Ries; Vernon J Lawhern; Vernon J Lawhern; Brent J Lance; Jonathan eTouryan; Kaleb eMcDowell; Hubert eCecotti

    2015-01-01

    Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in si...

  20. The effect of target and non-target similarity on neural classification performance: a boost from confidence

    OpenAIRE

    Marathe, Amar R.; Ries, Anthony J.; Lawhern, Vernon J.; Lance, Brent J.; Touryan, Jonathan; McDowell, Kaleb; Cecotti, Hubert

    2015-01-01

    Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in si...

  1. Investigation of the potential of silica-bonded macrocyclic ligands for separation of metal ions from nuclear waste

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Colton, N.G.; Bruening, R.L.

    1992-01-01

    This report describes the testing of some novel separations materials known as SuperLig trademark materials for their ability to separate efficiently and selectively certain metal ions from a synthetic, nonradioactive nuclear waste solution. The materials, developed and patented by IBC Advanced Technologies, are highly selective macrocyclic ligands that have been covalently bonded to silica gel. The SuperLig trademark materials that were tested are: (1) SuperLig trademark 601 for barium (Ba 2+ ) and strontium (Sr 2+ ) separation, (2) SuperLig trademark 602 for cesium (Cs + ) and rubidium (Rb + ) separation, (3) SuperLig trademark 27 for palladium (Pd 2+ ) separation, and (4) SuperLig trademark II for silver (Ag + ) and ruthenium (Ru 3+ ) separation. Our observations show that the technology for separating metal ions using silica-bonded macrocycles is essentially sound and workable to varying degrees of success that mainly depend on the affinity of the macrocycle for the metal ion of interest. It is expected that ligands will be discovered or synthesized that are amenable to separating metal ions of interest using this technology. Certainly more development, testing, and evaluation is warranted. 3 figs., 11 tabs

  2. IR technology for enhanced force protection by AIM

    Science.gov (United States)

    Breiter, R.; Ihle, T.; Rode, W.; Wendler, J.; Rühlich, I.; Haiml, M.; Ziegler, J.

    2008-04-01

    In all recent missions our forces are faced with various types of asymmetric threads like snipers, IEDs, RPGs or MANPADS. 2 nd and 3 rd Gen IR technology is a backbone of modern force protection by providing situational awareness and accurate target engagement at day/night. 3 rd Gen sensors are developed for thread warning capabilities by use of spectral or spatial information. The progress on a dual-color IR module is discussed in a separate paper [1]. A 1024x256 SWIR array with flexure bearing compressor and pulse tube cold finger provides > 50,000h lifetime for space or airborne hyperspectral imaging in pushbroom geometry with 256 spectral channels for improved change detection and remote sensing of IEDs or chemical agents. Similar concepts are pursued in the LWIR with either spectroscopic imaging or a system of LWIR FPA combined with a cooled tunable Laser to do spectroscopy with stimulated absorption of specific wavelengths. AIM introduced the RangIR sight to match the requirements of sniper teams, AGLs and weapon stations, extending the outstanding optronic performance of the fielded HuntIR with position data of a target by a laser range finder (LRF), a 3 axis digital magnetic compass (DMC) and a ballistic computer for accurate engagement of remote targets. A version with flexure bearing cooler with >30,000h life time is being developed for continuous operation in e.g. gunfire detection systems. This paper gives an overview of AIM's technologies for enhanced force protection.

  3. On the configuration of an active target for a fixed-target B experiment at SSC energies

    International Nuclear Information System (INIS)

    Dukes, E.C.

    1993-01-01

    The optimal configuration of target and silicon microvertex detector for fixed-target B experiments has yet to be determined. For fixed-target charm experiments the usual setup consists of a series of inert target foils - typically a few millimeters thick and separated by a few centimeters - immediately followed by a silicon microvertex detector. Because of the larger boost at the SSC, the efficacy of using active target foils - tightly packed silicon microstrip detectors - has been considered by at least one group: the SFT collaboration. It is hoped that with an active target the tracks of charged B's themselves can be measured, improving charged B reconstruction efficiencies. The author examines two issues concerning silicon active targets for fixed-target experiments at the SSC: (1) the effect on the acceptance of the requirement that the B decay vertices occur outside of the target foils, and (2) the ability of an active target to directly track charged B's

  4. Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery

    Science.gov (United States)

    Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng

    2012-10-01

    In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.

  5. International Nuclear Target Development Society workshop 1983: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G. (ed.)

    1983-01-01

    Separate abstracts were prepared for 11 of the 19 papers presented. Eight papers were previously included in the data base. Discussion group session papers on carbon stripper foils, problems in producing heavy-ion targets, and problems in producing general type targets are included. (WHK)

  6. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun; Wang Jiaxiang

    2012-01-01

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  7. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2012-11-15

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  8. Recent highlights in electro-driven separations- selected applications of alkylthiol gold nanoparticles in capillary electrophoresis and capillary electro-chromatography.

    Science.gov (United States)

    Guihen, Elizabeth

    2017-09-01

    To date, alkylthiol gold nanoparticles (AuNPs) have been widely used in electro-chromatographic separation techniques as a viable alternative to traditional stationary phases. This is mainly due to their stability, chemical inertness, ease of functionality, increased phase ratio, ability to form self-assembled monolayers. They also yield versatile stationary phases with highly specific targeted functionalities. At the nanoscale region, the chemical and physical properties of a molecule display different attributes to that of the parent molecules or material, hence these features can be harnessed in electro-driven chromatographic separations. Application areas illustrating the use of AuNPs in separation science continue to grow and expand to cover many different kinds of analysis. The last decade has witnessed a successful trend in miniaturisation of chemical separation systems toward the micro and nanoscale ranges. Nanoparticle-based stationary phases fit well with performing chemical separations on microfluidic and capillary platforms. In this review the theory of the use of alkylthiol gold nanoparticles in electro-chromatographic driven separation methods will be discussed. This will be followed by details of recent and selected applications showing alkylthiol gold nanoparticles in capillary electrophoretic and open-tubular electro-chromatographic separations. This review will focus solely on alkylthiol based gold nanoparticles, therefore other kinds of chemical moieties bonded to gold nanoparticles are outside the scope of this review. Finally the future outlook of this exciting technology will be outlined in some detail in the final section. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    Science.gov (United States)

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    The recycling or sequestration of carbon dioxide (CO2) from the waste gas of fossil-fuel power plants is widely acknowledged as one of the most realistic strategies for delaying or avoiding the severest environmental, economic, political, and social consequences that will result from global climate change and ocean acidification. For context, in 2013 coal and natural gas power plants accounted for roughly 31% of total U.S. CO2 emissions. Recycling or sequestering this CO2 would reduce U.S. emissions by ca. 1800 million metric tons-easily meeting the U.S.'s currently stated CO2 reduction targets of ca. 17% relative to 2005 levels by 2020. This situation is similar for many developed and developing nations, many of which officially target a 20% reduction relative to 1990 baseline levels by 2020. To make CO2 recycling or sequestration processes technologically and economically viable, the CO2 must first be separated from the rest of the waste gas mixture-which is comprised mostly of nitrogen gas and water (ca. 85%). Of the many potential separation technologies available, membrane