WorldWideScience

Sample records for targeting specific areas

  1. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples.

    Science.gov (United States)

    Bandyopadhyay, Sanghamitra; Mitra, Ramkrishna

    2009-10-15

    Prediction of microRNA (miRNA) target mRNAs using machine learning approaches is an important area of research. However, most of the methods suffer from either high false positive or false negative rates. One reason for this is the marked deficiency of negative examples or miRNA non-target pairs. Systematic identification of non-target mRNAs is still not addressed properly, and therefore, current machine learning approaches are compelled to rely on artificially generated negative examples for training. In this article, we have identified approximately 300 tissue-specific negative examples using a novel approach that involves expression profiling of both miRNAs and mRNAs, miRNA-mRNA structural interactions and seed-site conservation. The newly generated negative examples are validated with pSILAC dataset, which elucidate the fact that the identified non-targets are indeed non-targets.These high-throughput tissue-specific negative examples and a set of experimentally verified positive examples are then used to build a system called TargetMiner, a support vector machine (SVM)-based classifier. In addition to assessing the prediction accuracy on cross-validation experiments, TargetMiner has been validated with a completely independent experimental test dataset. Our method outperforms 10 existing target prediction algorithms and provides a good balance between sensitivity and specificity that is not reflected in the existing methods. We achieve a significantly higher sensitivity and specificity of 69% and 67.8% based on a pool of 90 feature set and 76.5% and 66.1% using a set of 30 selected feature set on the completely independent test dataset. In order to establish the effectiveness of the systematically generated negative examples, the SVM is trained using a different set of negative data generated using the method in Yousef et al. A significantly higher false positive rate (70.6%) is observed when tested on the independent set, while all other factors are kept the

  2. Identification of clinical target areas in the brainstem of prion‐infected mice

    Science.gov (United States)

    Mirabile, Ilaria; Jat, Parmjit S.; Brandner, Sebastian

    2015-01-01

    Aims While prion infection ultimately involves the entire brain, it has long been thought that the abrupt clinical onset and rapid neurological decline in laboratory rodents relates to involvement of specific critical neuroanatomical target areas. The severity and type of clinical signs, together with the rapid progression, suggest the brainstem as a candidate location for such critical areas. In this study we aimed to correlate prion pathology with clinical phenotype in order to identify clinical target areas. Method We conducted a comprehensive survey of brainstem pathology in mice infected with two distinct prion strains, which produce different patterns of pathology, in mice overexpressing prion protein (with accelerated clinical onset) and in mice in which neuronal expression was reduced by gene targeting (which greatly delays clinical onset). Results We identified specific brainstem areas that are affected by prion pathology during the progression of the disease. In the early phase of disease the locus coeruleus, the nucleus of the solitary tract, and the pre‐Bötzinger complex were affected by prion protein deposition. This was followed by involvement of the motor and autonomic centres of the brainstem. Conclusions Neurodegeneration in the locus coeruleus, the nucleus of the solitary tract and the pre‐Bötzinger complex predominated and corresponded to the manifestation of the clinical phenotype. Because of their fundamental role in controlling autonomic function and the overlap with clinical signs in sporadic Creutzfeldt–Jakob disease, we suggest that these nuclei represent key clinical target areas in prion diseases. PMID:25311251

  3. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  4. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  5. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    Science.gov (United States)

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  6. Design of the target area for the National Ignition Facility

    International Nuclear Information System (INIS)

    Foley, R.J.; Karpenko, V.P.; Adams, C.H.

    1997-01-01

    The preliminary design of the target area for the National Ignition Facility has been completed. The target area is required to meet a challenging set of engineering system design requirements and user needs. The target area must provide the appropriate conditions before, during, and after each shot. The repeated introduction of large amounts of laser energy into the chamber and subsequent target emissions represent new design challenges for ICF facility design. Prior to each shot, the target area must provide the required target illumination, target chamber vacuum, diagnostics, and optically stable structures. During the shot, the impact of the target emissions on the target chamber, diagnostics, and optical elements is minimized and the workers and public are protected from excessive prompt radiation doses. After the shot, residual radioactivation is managed to allow the required accessibility. Diagnostic data is retrieved, operations and maintenance activities are conducted, and the facility is ready for the next shot. The target area subsystems include the target chamber, target positioner, structural systems, target diagnostics, environmental systems, and the final optics assembly. The engineering design of the major elements of the target area requires a unique combination of precision engineering, structural analysis, opto-mechanical design, random vibration suppression, thermal stability, materials engineering, robotics, and optical cleanliness. The facility has been designed to conduct both x- ray driven targets and to be converted at a later date for direct drive experiments. The NIF has been configured to provide a wide range of experimental environments for the anticipated user groups of the facility. The design status of the major elements of the target area is described

  7. Targeting global protected area expansion for imperiled biodiversity.

    Science.gov (United States)

    Venter, Oscar; Fuller, Richard A; Segan, Daniel B; Carwardine, Josie; Brooks, Thomas; Butchart, Stuart H M; Di Marco, Moreno; Iwamura, Takuya; Joseph, Liana; O'Grady, Damien; Possingham, Hugh P; Rondinini, Carlo; Smith, Robert J; Venter, Michelle; Watson, James E M

    2014-06-01

    Governments have agreed to expand the global protected area network from 13% to 17% of the world's land surface by 2020 (Aichi target 11) and to prevent the further loss of known threatened species (Aichi target 12). These targets are interdependent, as protected areas can stem biodiversity loss when strategically located and effectively managed. However, the global protected area estate is currently biased toward locations that are cheap to protect and away from important areas for biodiversity. Here we use data on the distribution of protected areas and threatened terrestrial birds, mammals, and amphibians to assess current and possible future coverage of these species under the convention. We discover that 17% of the 4,118 threatened vertebrates are not found in a single protected area and that fully 85% are not adequately covered (i.e., to a level consistent with their likely persistence). Using systematic conservation planning, we show that expanding protected areas to reach 17% coverage by protecting the cheapest land, even if ecoregionally representative, would increase the number of threatened vertebrates covered by only 6%. However, the nonlinear relationship between the cost of acquiring land and species coverage means that fivefold more threatened vertebrates could be adequately covered for only 1.5 times the cost of the cheapest solution, if cost efficiency and threatened vertebrates are both incorporated into protected area decision making. These results are robust to known errors in the vertebrate range maps. The Convention on Biological Diversity targets may stimulate major expansion of the global protected area estate. If this expansion is to secure a future for imperiled species, new protected areas must be sited more strategically than is presently the case.

  8. Target-specific binding of immunoliposomes in vivo

    International Nuclear Information System (INIS)

    Holmberg, E.; Maruyama, K.; Kennel, S.; Klibanov, A.; Torchilin, V.; Ryan, U.; Huang, L.; Oak Ridge National Lab., TN; Akademiya Meditsinskikh Nauk SSSR, Moscow; Miami Univ., FL; Tennessee Univ., Knoxville, TN

    1989-01-01

    Our group at the University of Tennessee has been concentrating on using monoclonal antibody for targeting of a liposomal drug carrier system. This paper discusses our initial effort to target these liposomes using an organ-specific monoclonal antibody. 9 refs., 9 figs

  9. Fast neutron dose equivalent rates in heavy ion target areas

    Energy Technology Data Exchange (ETDEWEB)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas.

  10. Fast neutron dose equivalent rates in heavy ion target areas

    International Nuclear Information System (INIS)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas

  11. Large area solid target neutron source

    International Nuclear Information System (INIS)

    Crawford, J.C.; Bauer, W.

    1974-01-01

    A potentially useful neutron source may result from the combination of a solid deuterium-tritium loaded target with the large area, high energy ion beams from ion sources being developed for neutral beam injection. The resulting neutron source would have a large radiating area and thus produce the sizable experimental volume necessary for future studies of bulk and synergistic surface radiation effects as well as experiments on engineering samples and small components. With a 200 keV D + T + beam and 40 kW/cm 2 power dissipation on a 200 cm 2 target spot, a total neutron yield of about 4 x 10 15 n/sec may be achieved. Although the useable neutron flux from this source is limited to 1 to 2 x 10 13 n/cm 2 /sec, this flux can be produced 3 cm in front of the target and over about 300 cm 3 of experimental volume. Problems of total power dissipation, sputtering, isotopic flushing and thermal dissociation are reviewed. Neutron flux profiles and potential experimental configurations are presented and compared to other neutron source concepts. (U.S.)

  12. Literature-based condition-specific miRNA-mRNA target prediction.

    Directory of Open Access Journals (Sweden)

    Minsik Oh

    Full Text Available miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction

  13. Integrating Biodiversity and Ecosystem Services in the Post-2015 Development Agenda: Goal Structure, Target Areas and Means of Implementation

    Directory of Open Access Journals (Sweden)

    Paul L. Lucas

    2013-12-01

    Full Text Available The United Nations’ discussions on defining a new set of post-2015 development goals focus on poverty eradication and sustainable development. Biodiversity and ecosystem services are essential for poverty eradication, which is also one of the foundations of the Strategic Plan for Biodiversity of the Convention on Biological Diversity (CBD. Based on an assessment of current proposals of goals and targets, and a quantitative pathway analysis to meet long term biodiversity and food security goals, this paper discusses how biodiversity and ecosystem services can be integrated into a broad set of goals and targets, and concludes with relevant target areas and means of implementation for which specific targets need to be defined. Furthermore, it responds to the call of the CBD to consider the Strategic Plan for Biodiversity and the related Aichi biodiversity targets in the post-2015 development agenda. The paper’s analysis identifies three overlapping but also supplemental ways to integrate biodiversity and ecosystem services in the post-2015 agenda: integrated goals, goals addressing earth system functioning and goals addressing environmental limits. It further concludes seven target areas to be included under the goals to address biodiversity and ecosystem services in the context of food and agriculture: access to food, demand for agricultural products, sustainable intensification, ecosystem fragmentation, protected areas, essential ecosystem services and genetic diversity. The Strategic Plan for Biodiversity provides a good basis for integrating biodiversity and ecosystem services in the post-2015 development agenda. Many Aichi targets address the proposed target areas and the means of implementation discussed, while they need to be complemented with targets that specifically address human well-being, as well as institutions and governance.

  14. Review of laser mega joule target area: Design and processes

    International Nuclear Information System (INIS)

    Geitzholz, M.; Lanternier, C.

    2006-01-01

    The Laser Mega Joule (LMJ) target area is currently designed to achieve ignition and significant fusion gain in laboratory. LMJ will be composed of 240 identical large 370 mm * 370 mm square laser beams. These beams will focus 2 mega-joules of energy at the wavelength of 351 nm on the center of an experiment chamber. Design studies for target equipment are well advanced, target chamber and target holder (concrete) works have already begun. A detailed overview of the target area equipment is presented: target chamber, frame, diagnostic inserter manipulator, final optic assembly, dual diagnostic and laser reference, non cryogenic target positioner. Recent technical and architectural choices are detailed including safety transfers and alignment processes (target, laser and diagnostic). All this target equipment allows us to optimize shot chrono-gram, from target metrology to the shot, including calibration process. (authors)

  15. The area centralis in the chicken retina contains efferent target amacrine cells

    Science.gov (United States)

    Weller, Cynthia; Lindstrom, Sarah H.; De Grip, Willem J.; Wilson, Martin

    2012-01-01

    The retinas of birds receive a substantial efferent, or centrifugal, input from a midbrain nucleus. The function of this input is presently unclear but previous work in the pigeon has shown that efferent input is excluded from the area centralis, suggesting that the functions of the area centralis and the efferent system are incompatible. Using an antibody specific to rods, we have identified the area centralis in another species, the chicken, and mapped the distribution of the unique amacrine cells that are the postsynaptic partners of efferent fibers. Efferent target amacrine cells are found within the chicken area centralis and their density is continuous across the border of the area centralis. In contrast to the pigeon retina then, we conclude that the chicken area centralis receives efferent input. We suggest that the difference between the 2 species is attributable to the presence of a fovea within the area centralis of the pigeon and its absence from that of the chicken. PMID:19296862

  16. Improving privacy protection in the area of behavioural targeting

    NARCIS (Netherlands)

    Zuiderveen Borgesius, F.J.

    2014-01-01

    This PhD thesis discusses how European law could improve privacy protection in the area of behavioural targeting. Behavioural targeting, also referred to as online profiling, involves monitoring people’s online behaviour, and using the collected information to show people individually targeted

  17. IMS Mitigation Target Areas - 2010 [ds673

    Data.gov (United States)

    California Natural Resource Agency — Mitigation Target Areas (MTA) were developed by the California Department of Fish and Game for the Interim Mitigation Strategy (IMS). The MTAs are an identification...

  18. Growing Fixed With Age: Lay Theories of Malleability Are Target Age-Specific.

    Science.gov (United States)

    Neel, Rebecca; Lassetter, Bethany

    2015-11-01

    Beliefs about whether people can change ("lay theories" of malleability) are known to have wide-ranging effects on social motivation, cognition, and judgment. Yet rather than holding an overarching belief that people can or cannot change, perceivers may hold independent beliefs about whether different people are malleable-that is, lay theories may be target-specific. Seven studies demonstrate that lay theories are target-specific with respect to age: Perceivers hold distinct, uncorrelated lay theories of people at different ages, and younger targets are considered to be more malleable than older targets. Both forms of target-specificity are consequential, as target age-specific lay theories predict policy support for learning-based senior services and the rehabilitation of old and young drug users. The implications of target age-specific lay theories for a number of psychological processes, the social psychology of aging, and theoretical frameworks of malleability beliefs are discussed. © 2015 by the Society for Personality and Social Psychology, Inc.

  19. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    Science.gov (United States)

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Target area for Nova upgrade: Containing ignition and beyond

    International Nuclear Information System (INIS)

    Tobin, M.T.; Smith, J.R.; Campbell, D.; Wong, D.K.; Sullivan, J.A.; Pendergrass, J.; Weinstein, B.; Klein, M.

    1991-01-01

    The Lawrence Livermore National Laboratory (LLNL) is developing a conceptual design for upgrading the Nova laser from ∼ 50 kJ to ∼ 1.8 MJ of laser energy at a wavelength of 351 nm. Anticipated target performance includes achieving ignition and possibly fusion yields to 20 MJ. The target area design represents a unique challenge since it will be operating in a regime where first wall ablation and optics damage are major issues for the first time in an ICF facility. Here we describe potential performance criteria for the facility and anticipated yield-dependent x-ray, neutron, shrapnel, and debris environments. We also briefly describe the different systems that make up the target area and discuss some of the design issues. The insignificant environmental impact Nova Upgrade (NU) operations is anticipated to have on the laboratory and surrounding area is discussed. Finally, alternate design options are described along with their potential benefits

  1. Error Analysis of Fast Moving Target Geo-location in Wide Area Surveillance Ground Moving Target Indication Mode

    Directory of Open Access Journals (Sweden)

    Zheng Shi-chao

    2013-12-01

    Full Text Available As an important mode in airborne radar systems, Wide Area Surveillance Ground Moving Target Indication (WAS-GMTI mode has the ability of monitoring a large area in a short time, and then the detected moving targets can be located quickly. However, in real environment, many factors introduce considerable errors into the location of moving targets. In this paper, a fast location method based on the characteristics of the moving targets in WAS-GMTI mode is utilized. And in order to improve the location performance, those factors that introduce location errors are analyzed and moving targets are relocated. Finally, the analysis of those factors is proved to be reasonable by simulation and real data experiments.

  2. Rare isotope accelerator—conceptual design of target areas

    Science.gov (United States)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-06-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  3. Rare isotope accelerator - conceptual design of target areas

    International Nuclear Information System (INIS)

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas

  4. Target experimental area and systems of the Us national ignition facility

    International Nuclear Information System (INIS)

    Tobin, M.; Van Wonterghem, B.; MacGowan, B.J.; Hibbard, W.; Kalantar, D.; Lee, F.D.; Pittenger, L.; Wong, K.

    2000-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition we will describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools. (authors)

  5. Targeted histology sampling from atypical small acinar proliferation area detected by repeat transrectal prostate biopsy

    Directory of Open Access Journals (Sweden)

    A. V. Karman

    2017-01-01

    Full Text Available Оbjective: to define the approach to the management of patients with the detected ASAP area.Materials and methods. In the time period from 2012 through 2015, 494 patients with previously negative biopsy and remaining suspicion of prostate cancer (PCa were examined. The patients underwent repeat 24-core multifocal prostate biopsy with taking additional tissue samples from suspicious areas detected by multiparametric magnetic resonance imaging and transrectal ultrasound. An isolated ASAP area was found in 127 (25. 7 % of the 494 examined men. All of them were offered to perform repeat target transrectal biopsy of this area. Targeted transrectal ultrasound guided biopsy of the ASAP area was performed in 56 (44.1 % of the 127 patients, 53 of them being included in the final analysis.Results. PCa was diagnosed in 14 (26.4 % of the 53 patients, their mean age being 64.4 ± 6.9 years. The average level of prostate-specific antigen (PSA in PCa patients was 6.8 ± 3.0 ng/ml, in those with benign lesions – 9.3 ± 6.5 ng/ml; the percentage ratio of free/total PSA with PCa was 16.2 ± 7,8 %, with benign lesions – 23.3 ± 7.7 %; PSA density in PCa patients was 0.14 ± 0.07 ng/ml/cm3, in those with benign lesions – 0.15 ± 0.12 ng/ml/cm3. Therefore, with ASAP area being detected in repeat prostate biopsy samples, it is advisable that targeted extended biopsy of this area be performed. 

  6. Genus-specific PCR Primers Targeting Intracellular Parasite Euduboscquella (Dinoflagellata: Syndinea)

    Science.gov (United States)

    Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok

    2018-03-01

    We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.

  7. Do overarching mitigation objectives dominate transport-specific targets in the EU?

    OpenAIRE

    GHERSI , Frédéric; Mcdonnell , Simon; Sassi , Olivier

    2013-01-01

    International audience; This research investigates if the stringent 2020 and 2050 overarching CO2 mitigation objectives set out by the European Union dominate its 2010 to 2020 targets specific to the transportation arena, specifically its biofuel penetration objectives and gram CO2 per kilometre emission caps. Using a dynamic recursive general equilibrium model, IMACLIM-R, we demonstrate that these overarching targets do not dominate the interim transportation targets when the carbon policy t...

  8. Rare Isotope Accelerator - Conceptual Design of Target Areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [Michigan State University, East Lansing; Baek, Inseok [Michigan State University, East Lansing; Blideanu, Valentin [CEA, Saclay, France; Lawton, Don [Michigan State University, East Lansing; Mantica, Paul F. [Michigan State University, East Lansing; Morrissey, David J. [Michigan State University, East Lansing; Ronningen, Reginald M. [Michigan State University, East Lansing; Sherrill, Bradley S. [Michigan State University, East Lansing; Zeller, Albert [Michigan State University, East Lansing; Beene, James R [ORNL; Burgess, Tom [Oak Ridge National Laboratory (ORNL); Carter, Kenneth [Oak Ridge National Laboratory (ORNL); Carrol, Adam [Oak Ridge National Laboratory (ORNL); Conner, David [ORNL; Gabriel, Tony A [ORNL; Mansur, Louis K [ORNL; Remec, Igor [ORNL; Rennich, Mark J [ORNL; Stracener, Daniel W [ORNL; Wendel, Mark W [ORNL; Ahle, Larry [Lawrence Livermore National Laboratory (LLNL); Boles, Jason [Lawrence Livermore National Laboratory (LLNL); Reyes, Susana [Lawrence Livermore National Laboratory (LLNL); Stein, Werner [Lawrence Livermore National Laboratory (LLNL); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory (LBNL)

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  9. Rare isotope accelerator-conceptual design of target areas

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)]. E-mail: bollen@nscl.msu.edu; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Beene, James R.; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony; Mansur, Louis; Remec, Igor; Rennich, Mark; Stracener, Dan; Wendel, Mark [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner [Lawrence Livermore Laboratory, Livermore, CA 94550 (United States); Heilbronn, Lawrence [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-06-23

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  10. Specific capture of target bacteria onto sensor surfaces for infectious disease diagnosis

    International Nuclear Information System (INIS)

    Kim, Jong-Hoon; Inoue, Shinnosuke; Chung, Jae-Hyun; Cangelosi, Gerard A; Lee, Kyong-Hoon

    2014-01-01

    A long-sought goal for infectious disease care is a rapid and accurate diagnostic tool that is compatible with the needs of low-resource settings. To identify target biomarkers of infectious diseases, immunoassays utilizing the binding affinity between antigen and antibody have been widely used. In immunoassays, the interaction between antigen and antibody on sensor surfaces should be precisely controlled for specific identification of targets. This paper studies the specific capturing mechanisms of target bacteria onto sensor surfaces through investigation of combined effects of capillary action and binding affinity. As a model system, cells of both Escherichia coli and the Bacillus Calmette-Guérin strain of Mycobacterium bovis were used to study specific and nonspecific capturing mechanisms onto a microtip sensor. The capillary action was observed to arrange the concentrated cells onto the two-dimensional sensor surface. Due to the capillary-induced organization of target cells on the antibody-functionalized sensor surface, the number of the captured target cells was three times greater than that of the non-targeted cells. The capturing and detection capabilities varied with the width of a microtip. The specific capturing mechanism can be used to enhance the sensitivity and specificity of an immunoassay. (paper)

  11. Reversal of target-specific oral anticoagulants

    Science.gov (United States)

    Siegal, D.M.; Cuker, Adam

    2014-01-01

    Target-specific oral anticoagulants (TSOACs) provide safe and effective anticoagulation for the prevention and treatment of thrombosis in a variety of clinical settings by interfering with the activity of thrombin (dabigatran) or factor Xa (rivaroxaban, apixaban, edoxaban, betrixaban). Although TSOACs have practical advantages over vitamin K antagonists (VKAs), there are currently no antidotes to reverse their anticoagulant effect. Herein we summarize the available evidence for TSOAC reversal using nonspecific and specific reversal agents. We discuss important limitations of existing evidence, which is derived from studies in human volunteers, animal models and in vitro experiments. Studies evaluating the safety and efficacy of reversal agents on clinical outcomes such as bleeding and mortality in patients with TSOAC-associated bleeding are needed. PMID:24880102

  12. Distribution measurement of 60Co target radioactive specific activity

    International Nuclear Information System (INIS)

    Li Xingyan; Chen Zigen; Ren Min

    1994-01-01

    Radioactive specific activity distribution of cobalt 60 target by irradiation in HFETR is a key parameter. With the collimate principle, the under water measurement device and conversion coefficient which is get by experiments, and the radioactive specific activity distribution is obtained. The uncertainty of measurement is less than 10%

  13. Target experimental area and systems of the U.S. National Ignition Facility

    International Nuclear Information System (INIS)

    Tobin, M; Van Wonterghem, B; MacGowan, B J; Hibbard, W; Kalantar, D; Lee, F D; Pittenger, L; Wong, K

    1999-01-01

    One of the major goals of the US National Ignition Facility is the demonstration of laser driven fusion ignition and burn of targets by inertial confinement and provide capability for a wide variety of high energy density physics experiments. The NIF target area houses the optical systems required to focus the 192 beamlets to a target precisely positioned at the center of the 10 meter diameter, 10-cm thick aluminum target chamber. The chamber serves as mounting surface for the 48 final optics assemblies, the target alignment and positioning equipment, and the target diagnostics. The internal surfaces of the chamber are protected by louvered steel beam dumps. The target area also provides the necessary shielding against target emission and environmental protection equipment. Despite its complexity, the design provides the flexibility to accommodate the needs of the various NIF user groups, such as direct and indirect drive irradiation geometries, modular final optics design, capability to handle cryogenic targets, and easily re-configurable diagnostic instruments. Efficient target area operations are ensured by using line-replaceable designs for systems requiring frequent inspection, maintenance and reconfiguration, such as the final optics, debris shields, phase plates and the diagnostic instruments. A precision diagnostic instrument manipulator (DIMS) allows fast removal and precise repositioning of diagnostic instruments. In addition the authors describe several activities to enhance the target chamber availability, such as the target debris mitigation, the use of standard experimental configurations and the development of smart shot operations planning tools

  14. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    International Nuclear Information System (INIS)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne

    2012-01-01

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id + tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id + single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id + fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id + tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id + scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  15. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne, E-mail: bjarne.bogen@medisin.uio.no [Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo (Norway)

    2012-10-30

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id{sup +} tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id{sup +} single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id{sup +} fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id{sup +} tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id{sup +} scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  16. Specific targeting for the treatment of neuroendocrine tumors

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.

    2003-01-01

    For the treatment of neuroendocrine tumors three ways of specific targeting of radionuclides prevail: by 131 I-meta-iodo-benzyl-guanidine (MIBG), which is taken up by an active uptake-1 mechanism and stored in neurosecretory granules of neural crest tumor cells, by radiolabeled peptides, in particular the somatostatin analogs octreotide and lanreotide, targeting the peptide receptors, and by radiolabeled antibodies, which target tumor cell surface antigens. The choice depends on the indication, the results of diagnostic imaging using tracer amounts of these agents, the availability and feasibility of radionuclide therapy and of other treatment modalities. The applications, clinical results and developments for the major indications are reviewed. 131 I-MIBG therapy has a cumulative response rate of 50%, associated with little toxicity, in metastatic pheochromocytoma, paraganglioma and neuroblastoma, whereas its role is primarily palliative in patients with medullary thyroid carcinoma and carcinoid tumors. Treatment using 90 Y- or 177 Lu-labeled octreotide/lanreotide is mostly used in neuroendocrine gastro-entero-pancreatic (GEP) tumors and paraganglioma, attaining stabilization of disease anti-palliation in the majority of patients. As this treatment is specific for the receptor rather than for the tumor type, it may also be applicable to other, non-neuroendocrine tumors. Radioimmunotherapy is applied in medullary thyroid carcinoma, in which a phase I/II study using bi-specific anti-DTPA/anti-CEA immuno-conjugates followed by 131 I-hapten has proven some degree of success, and may be used in neuroblastoma more effectively than before, once chimeric and humanized monoclonal antibodies become available for therapy. Integration of these specific and noninvasive therapies at an optimal moment into the treatment protocols of these diseases may enhance their effectiveness and acceptance. (author)

  17. Radiation Target Area Sample Environmental Chamber (RTASEC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. proposes the Radiation Target Area Sample Environmental Chamber (RTASEC) as an innovative approach enabling radiobiologists to investigate the...

  18. AA, radiation shielding curtain along the target area

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    At the far left is the beam tube for the high-intensity proton beam from the 26 GeV PS. The tube ends in a thin window and the proton beam continues in air through a hole in the shielding blocks (see also 8010308), behind which the target (see 7905091, 7905094)was located. After the target followed the magnetic horn, focusing the antiprotons, and the first part of the injection line with a proton dump. The antiprotons, deflected by a magnet, left the target area through another shielding wall, to make their way to the AA ring. Laterally, this sequence of components was shielded with movable, suspended, concrete blocks: the "curtain". Balasz Szeless, who had constructed it, is standing at its side.

  19. Mung bean nuclease treatment increases capture specificity of microdroplet-PCR based targeted DNA enrichment.

    Directory of Open Access Journals (Sweden)

    Zhenming Yu

    Full Text Available Targeted DNA enrichment coupled with next generation sequencing has been increasingly used for interrogation of select sub-genomic regions at high depth of coverage in a cost effective manner. Specificity measured by on-target efficiency is a key performance metric for target enrichment. Non-specific capture leads to off-target reads, resulting in waste of sequencing throughput on irrelevant regions. Microdroplet-PCR allows simultaneous amplification of up to thousands of regions in the genome and is among the most commonly used strategies for target enrichment. Here we show that carryover of single-stranded template genomic DNA from microdroplet-PCR constitutes a major contributing factor for off-target reads in the resultant libraries. Moreover, treatment of microdroplet-PCR enrichment products with a nuclease specific to single-stranded DNA alleviates off-target load and improves enrichment specificity. We propose that nuclease treatment of enrichment products should be incorporated in the workflow of targeted sequencing using microdroplet-PCR for target capture. These findings may have a broad impact on other PCR based applications for which removal of template DNA is beneficial.

  20. Prostate-specific membrane antigen-directed nanoparticle targeting for extreme nearfield ablation of prostate cancer cells.

    Science.gov (United States)

    Lee, Seung S; Roche, Philip Jr; Giannopoulos, Paresa N; Mitmaker, Elliot J; Tamilia, Michael; Paliouras, Miltiadis; Trifiro, Mark A

    2017-03-01

    Almost all biological therapeutic interventions cannot overcome neoplastic heterogeneity. Physical ablation therapy is immune to tumor heterogeneity, but nearby tissue damage is the limiting factor in delivering lethal doses. Multi-walled carbon nanotubes offer a number of unique properties: chemical stability, photonic properties including efficient light absorption, thermal conductivity, and extensive surface area availability for covalent chemical ligation. When combined together with a targeting moiety such as an antibody or small molecule, one can deliver highly localized temperature increases and cause extensive cellular damage. We have functionalized multi-walled carbon nanotubes by conjugating an antibody against prostate-specific membrane antigen. In our in vitro studies using prostate-specific membrane antigen-positive LNCaP prostate cancer cells, we have effectively demonstrated cell ablation of >80% with a single 30-s exposure to a 2.7-W, 532-nm laser for the first time without bulk heating. We also confirmed the specificity and selectivity of prostate-specific membrane antigen targeting by assessing prostate-specific membrane antigen-null PC3 cell lines under the same conditions (<10% cell ablation). This suggests that we can achieve an extreme nearfield cell ablation effect, thus restricting potential tissue damage when transferred to in vivo clinical applications. Developing this new platform will introduce novel approaches toward current therapeutic modalities and will usher in a new age of effective cancer treatment squarely addressing tumoral heterogeneity.

  1. Qualitative values of radioactivity, area and volumetric: Application on phantoms (target and background)

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahman Al-Shakhrah, Issa [Department of Physics, University of Jordan, Queen Rania Street, Amman (Jordan)], E-mail: issashak@yahoo.com

    2009-04-15

    The visualization of a lesion depends on the contrast between the lesion and surrounding background (T/B; (target/background) ratio). For imaging in vivo not only is the radioactivity in the target organ important, but so too is the ratio of radioactivity in the target versus that in the background. Nearly all studies reported in the literature have dealt with the surface index, as a standard factor to study the relationship between the target (tissue or organ) and the background. It is necessary to know the ratio between the volumetric activity of lesions (targets) and normal tissues (background) instead of knowing the ratio between the area activity, the volume index being a more realistic factor than the area index as the targets (tissues or organs) are real volumes that have surfaces. The intention is that this work should aid in approaching a quantitative relationship and differentiation between different tissues (target/background or abnormal/normal tissues). For the background, square regions of interest (Rios) (11x11 pixels in size) were manually drawn by the observer at locations far from the border of the plastic cylinder (simulated organ), while an isocontour region with 50% threshold was drawn automatically over the cylinder. The total number of counts and pixels in each of these regions was calculated. The relationship between different phantom parameters, cylinder (target) depth, area activity ratio (background/target, A(B/T)) and real volumetric activity ratio (background/target, V(B/T)), was demonstrated. Variations in the area and volumetric activity ratio values with respect to the depth were deduced. To find a realistic value of the ratio, calibration charts have been constructed that relate the area and real volumetric ratios as a function of depth of the tissues and organs. Our experiments show that the cross-sectional area of the cylinder (applying a threshold 50% isocontour) has a weak dependence on the activity concentrations of the

  2. Qualitative values of radioactivity, area and volumetric: Application on phantoms (target and background)

    International Nuclear Information System (INIS)

    Abdel-Rahman Al-Shakhrah, Issa

    2009-01-01

    The visualization of a lesion depends on the contrast between the lesion and surrounding background (T/B; (target/background) ratio). For imaging in vivo not only is the radioactivity in the target organ important, but so too is the ratio of radioactivity in the target versus that in the background. Nearly all studies reported in the literature have dealt with the surface index, as a standard factor to study the relationship between the target (tissue or organ) and the background. It is necessary to know the ratio between the volumetric activity of lesions (targets) and normal tissues (background) instead of knowing the ratio between the area activity, the volume index being a more realistic factor than the area index as the targets (tissues or organs) are real volumes that have surfaces. The intention is that this work should aid in approaching a quantitative relationship and differentiation between different tissues (target/background or abnormal/normal tissues). For the background, square regions of interest (Rios) (11x11 pixels in size) were manually drawn by the observer at locations far from the border of the plastic cylinder (simulated organ), while an isocontour region with 50% threshold was drawn automatically over the cylinder. The total number of counts and pixels in each of these regions was calculated. The relationship between different phantom parameters, cylinder (target) depth, area activity ratio (background/target, A(B/T)) and real volumetric activity ratio (background/target, V(B/T)), was demonstrated. Variations in the area and volumetric activity ratio values with respect to the depth were deduced. To find a realistic value of the ratio, calibration charts have been constructed that relate the area and real volumetric ratios as a function of depth of the tissues and organs. Our experiments show that the cross-sectional area of the cylinder (applying a threshold 50% isocontour) has a weak dependence on the activity concentrations of the

  3. Target Context Specification Can Reduce Costs in Nonfocal Prospective Memory

    Science.gov (United States)

    Lourenço, Joana S.; White, Katherine; Maylor, Elizabeth A.

    2013-01-01

    Performing a nonfocal prospective memory (PM) task results in a cost to ongoing task processing, but the precise nature of the monitoring processes involved remains unclear. We investigated whether target context specification (i.e., explicitly associating the PM target with a subset of ongoing stimuli) can trigger trial-by-trial changes in task…

  4. 100-N Area Decision Unit Target Analyte List Development for Soil

    Energy Technology Data Exchange (ETDEWEB)

    Ovink, R.

    2012-09-18

    This report documents the process used to identify source area target analytes in support of the 100-N Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

  5. Target-specific delivery of doxorubicin to human glioblastoma cell ...

    Indian Academy of Sciences (India)

    Abdullah Tahir Bayraç

    2018-01-29

    Jan 29, 2018 ... was previously selected for specific recognition of glioblastoma and represented many advantageous ... antigens, receptors or any 3-D structure on the target cells ..... both PSMA (?) and PSMA (-) prostate cancers.

  6. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    Science.gov (United States)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  7. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  8. Prostate Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate

  9. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.

    2013-01-01

    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  10. Tilted bending magnet for SPS target area TCC2

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    A slow-extracted proton beam from the SPS goes to the underground target zone TCC2. The part of the primary beam which traverses target T4 is recuperated and transported over some 800 m, for further use in the North Area High Intensity facility (NAHIF). The curved and sloped trajectory required 4 of the bending magnets to be tilted. Here we see one of them being attended by Gilbert Françon in hall 867, ready for installation in TCC2.

  11. Specific surface area evaluation method by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Petrescu, Camelia; Petrescu, Cristian; Axinte, Adrian

    2000-01-01

    Ceramics are among the most interesting materials for a large category of applications, including both industry and health. Among the characteristic of the ceramic materials, the specific surface area is often difficult to evaluate.The paper presents a method of evaluation for the specific surface area of two ceramic powders by means of scanning electron microscopy measurements and an original method of computing the specific surface area.Cumulative curves are used to calculate the specific surface area under assumption that the values of particles diameters follow a normal logarithmic distribution. For two powder types, X7R and NPO the results are the following: - for the density ρ (g/cm 2 ), 5.5 and 6.0, respectively; - for the average diameter D bar (μm), 0.51 and 0.53, respectively; - for σ, 1.465 and 1.385, respectively; - for specific surface area (m 2 /g), 1.248 and 1.330, respectively. The obtained results are in good agreement with the values measured by conventional methods. (authors)

  12. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses.

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M; Tu, Tiffany; Reijmers, Leon G

    2013-11-20

    A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos-based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Radiolabelled peptides and nanoparticles for specific molecular targeting in oncology

    International Nuclear Information System (INIS)

    Helbok, A.

    2011-01-01

    The aim of this thesis is the development of radiolabelled peptides and nanoparticles (NP) for specific molecular targeting in oncology. Three different types of NP were investigated in this study: lipid - based NP (liposomes and micelles), human serum albumin - based NP (albumin NP) and protamine - oligonucleotide - based NP (proticles). In a first step, radiolabelling protocols were set up for the different NP - formulations. The variety of radioisotopes used, covers the whole spectrum of applications in nuclear medicine: SPECT (111In, 99mTc), (2) PET (68Ga) and therapeutic applications (177Lu, 90Y) opening a manifold administration potential for these NP aiming towards multiple targeting and hybrid imaging strategies (combined SPECT / PET and MRI). Radiolabelling quality was analyzed by instant thin layer chromatography (ITLC). High radiochemical yields (RCY >90 %) and high specific activity (SA) were achieved. NP - formulations were derivatized with the chelating agent Diethylenetriaminepentaacetic acid (DTPA) allowing complexation of trivalent radiometals, and potentially nonradioactive metals, such as Gd3+, for MRI imaging leading to the development of multifunctionalized NP for a unified labelling approach. Furthermore, NP were derivatized with the pharmacokinetic modifier polyethylene glycol (PEG) to maintain NP with long circulating ability. Stability assessments included incubation in different media (serum, 4 mM DTPA - solution and PBS pH 7.4, at 37 o C for a period of 24 h). For the in vivo biodistribution of the NP, static and / or dynamic SPECT / PET imaging studies were performed at different time points with Lewis rats and correlated to results from quantification of tissue - uptake. Results indicate differences in stability and general pharmacokinetic behaviour depended on the NP - formulation. However, a positive influence expressed in a prolonged retention time in circulation was investigated for all different NP - formulations due to PEG

  14. Do overarching mitigation objectives dominate transport-specific targets in the EU?

    International Nuclear Information System (INIS)

    Ghersi, Frédéric; McDonnell, Simon; Sassi, Olivier

    2013-01-01

    This research investigates if the stringent 2020 and 2050 overarching CO 2 mitigation objectives set out by the European Union dominate its 2010 to 2020 targets specific to the transportation arena, specifically its biofuel penetration objectives and gram CO 2 per kilometre emission caps. Using a dynamic recursive general equilibrium model, IMACLIM-R, we demonstrate that these overarching targets do not dominate the interim transportation targets when the carbon policy triggering compliance with the mitigation objectives boils down to the theoretical least-cost option of uniform carbon pricing. Ground transportation is confirmed as quite insensitive to high carbon prices, even when such prices are applied over a long term. It is tempting to conclude that pursuing the mitigation objectives specific to transportation will impose unnecessary costs. However, because of the second best conditions prevailing in actual economies, and of the risk of lock-in in carbon intensive trajectories, we conclude with the urgent need for some ambitious transport-specific policy design research agenda. - Highlights: ► We review the European Union’s climate and transportation policy. ► We describe the IMACLIM-R model and how it represents transport. ► We develop an EU carbon pricing scenario that meets its aggregate CO 2 targets. ► This does not require meeting biofuel nor g/km 2010 to 2020 objectives. ► We conclude on the policy implications of this apparent inefficiency

  15. miRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity

    DEFF Research Database (Denmark)

    Moore, Michael J; Scheel, Troels K H; Luna, Joseph M

    2015-01-01

    microRNAs (miRNAs) act as sequence-specific guides for Argonaute (AGO) proteins, which mediate posttranscriptional silencing of target messenger RNAs. Despite their importance in many biological processes, rules governing AGO-miRNA targeting are only partially understood. Here we report a modifie...

  16. Empowerment Zones and Enterprise Districts - MDC_TargetUrbanAreaCorridor

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A polygon feature class of Miami-Dade County, Targeted Urban Area Corridors. This coverage was created for the Office of Community & Economic Development (OCED)...

  17. THE LOW BACKSCATTERING TARGETS CLASSIFICATION IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    L. Shi

    2012-07-01

    Full Text Available The Polarimetric and Interferometric Synthetic Aperture Radar (POLINSAR is widely used in urban area nowadays. Because of the physical and geometric sensitivity, the POLINSAR is suitable for the city classification, power-lines detection, building extraction, etc. As the new X-band POLINSAR radar, the china prototype airborne system, XSAR works with high spatial resolution in azimuth (0.1 m and slant range (0.4 m. In land applications, SAR image classification is a useful tool to distinguish the interesting area and obtain the target information. The bare soil, the cement road, the water and the building shadow are common scenes in the urban area. As it always exists low backscattering sign objects (LBO with the similar scattering mechanism (all odd bounce except for shadow in the XSAR images, classes are usually confused in Wishart-H-Alpha and Freeman-Durden methods. It is very hard to distinguish those targets only using the general information. To overcome the shortage, this paper explores an improved algorithm for LBO refined classification based on the Pre-Classification in urban areas. Firstly, the Pre-Classification is applied in the polarimetric datum and the mixture class is marked which contains LBO. Then, the polarimetric covariance matrix C3 is re-estimated on the Pre-Classification results to get more reliable results. Finally, the occurrence space which combining the entropy and the phase-diff standard deviation between HH and VV channel is used to refine the Pre-Classification results. The XSAR airborne experiments show the improved method is potential to distinguish the mixture classes in the low backscattering objects.

  18. National Ignition Facility subsystem design requirements target area auxiliary subsystem SSDR 1.8.6

    International Nuclear Information System (INIS)

    Reitz, T.

    1996-01-01

    This Subsystem Design Requirement (SSDR) establishes the performance, design, development, and test requirements for the Target Area Auxiliary Subsystems (WBS 1.8.6), which is part of the NIF Target Experimental System (WBS 1.8). This document responds directly to the requirements detailed in NIF Target Experimental System SDR 003 document. Key elements of the Target Area Auxiliary Subsystems include: WBS 1.8.6.1 Local Utility Services; WBS 1.8.6.2 Cable Trays; WBS 1.8.6.3 Personnel, Safety, and Occupational Access; WBS 1.8.6.4 Assembly, Installation, and Maintenance Equipment; WBS 1.8.6.4.1 Target Chamber Service System; WBS 1.8.6.4.2 Target Bay Service Systems

  19. Progress towards the Conventionon Biological Diversity terrestrial2010 and marine 2012 targets forprotected area coverage

    DEFF Research Database (Denmark)

    Coad, Lauren; Burgess, Neil David; Fish, Lucy

    2010-01-01

    coverage targets. National protected areas data from the WDPA have been used to measure progress in protected areas coverage at global, regional and national scale. The mean protected area coverage per nation was 12.2% for terrestrial area, and only 5.1% for near-shore marine area. Variation in protected......Protected area coverage targets set by the Convention on Biological Diversity (CBD) for both terrestrial and marine environments provide a major incentive for governments to review and upgrade their protected area systems. Assessing progress towards these targets will form an important component...... of the work of the Xth CBD Conference of Parties meeting to be held in Japan in 2010. The World Database on Protected Areas (WDPA) is the largest assembly of data on the world's terrestrial and marine protected areas and, as such, represents a fundamental tool in tracking progress towards protected area...

  20. OligoRAP - an Oligo Re-Annotation Pipeline to improve annotation and estimate target specificity

    NARCIS (Netherlands)

    Neerincx, P.B.T.; Rauwerda, H.; Nie, H.; Groenen, M.A.M.; Breit, T.M.; Leunissen, J.A.M.

    2009-01-01

    Background: High throughput gene expression studies using oligonucleotide microarrays depend on the specificity of each oligonucleotide (oligo or probe) for its target gene. However, target specific probes can only be designed when a reference genome of the species at hand were completely sequenced,

  1. Low Impact Development for Industrial Areas

    Science.gov (United States)

    2015-07-01

    copper gutters can also be significant sources of metal pollutants. Other studies indicate that vehicle disc brake pads and car tires can be a...industrial areas to develop the performance criteria for LID systems that specifically targeted these areas. Areas targeted include scrap metal recycling

  2. On the specific surface area of nanoporous materials

    NARCIS (Netherlands)

    Detsi, E.; De Jong, E.; Zinchenko, A.; Vukovic, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; ten Brinke, G.; De Raedt, H. A.; Onck, P. R.; De Hosson, J. T. M.

    2011-01-01

    A proper quantification of the specific surface area of nanoporous materials is necessary for a better understanding of the properties that are affected by the high surface-area-to-volume ratio of nanoporous metals, nanoporous polymers and nanoporous ceramics. In this paper we derive an analytical

  3. A Dual-Specific Targeting Approach Based on the Simultaneous Recognition of Duplex and Quadruplex Motifs.

    Science.gov (United States)

    Nguyen, Thi Quynh Ngoc; Lim, Kah Wai; Phan, Anh Tuân

    2017-09-20

    Small-molecule ligands targeting nucleic acids have been explored as potential therapeutic agents. Duplex groove-binding ligands have been shown to recognize DNA in a sequence-specific manner. On the other hand, quadruplex-binding ligands exhibit high selectivity between quadruplex and duplex, but show limited discrimination between different quadruplex structures. Here we propose a dual-specific approach through the simultaneous application of duplex- and quadruplex-binders. We demonstrated that a quadruplex-specific ligand and a duplex-specific ligand can simultaneously interact at two separate binding sites of a quadruplex-duplex hybrid harbouring both quadruplex and duplex structural elements. Such a dual-specific targeting strategy would combine the sequence specificity of duplex-binders and the strong binding affinity of quadruplex-binders, potentially allowing the specific targeting of unique quadruplex structures. Future research can be directed towards the development of conjugated compounds targeting specific genomic quadruplex-duplex sites, for which the linker would be highly context-dependent in terms of length and flexibility, as well as the attachment points onto both ligands.

  4. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    Directory of Open Access Journals (Sweden)

    Jiji Antony

    2006-01-01

    Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.

  5. Targeting brain tumor cAMP: the case for sex-specific therapeutics

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    2015-07-01

    Full Text Available A relationship between cyclic adenosine 3’, 5’-monophosphate (cAMP levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor risk in individuals with Neurofibromatosis type 1 (NF1. Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.

  6. Search guidance is proportional to the categorical specificity of a target cue.

    Science.gov (United States)

    Schmidt, Joseph; Zelinsky, Gregory J

    2009-10-01

    Visual search studies typically assume the availability of precise target information to guide search, often a picture of the exact target. However, search targets in the real world are often defined categorically and with varying degrees of visual specificity. In five target preview conditions we manipulated the availability of target visual information in a search task for common real-world objects. Previews were: a picture of the target, an abstract textual description of the target, a precise textual description, an abstract + colour textual description, or a precise + colour textual description. Guidance generally increased as information was added to the target preview. We conclude that the information used for search guidance need not be limited to a picture of the target. Although generally less precise, to the extent that visual information can be extracted from a target label and loaded into working memory, this information too can be used to guide search.

  7. Harmonizing outdoor recreation and bird conservation targets in protected areas

    NARCIS (Netherlands)

    Pouwels, Rogier; Sierdsema, Henk; Foppen, Ruud P.B.; Henkens, René J.H.G.; Opdam, Paul F.M.; Eupen, van Michiel

    2017-01-01

    In protected areas managers have to achieve conservation targets while providing opportunities for outdoor recreation. This dual mandate causes conflicts in choosing between management options. Furthermore, the persistence of a protected species within the management unit often depends on how

  8. Target-specific stigma change: a strategy for impacting mental illness stigma.

    Science.gov (United States)

    Corrigan, Patrick W

    2004-01-01

    In the past decade, mental health advocates and researchers have sought to better understand stigma so that the harm it causes can be erased. In this paper, we propose a target-specific stigma change model to organize the diversity of information into a cogent framework. "Target" here has a double meaning: the power groups that have some authority over the life goals of people with mental illness and specific discriminatory behaviors which power groups might produce that interfere with these goals. Key power groups in the model include landlords, employers, health care providers, criminal justice professionals, policy makers, and the media. Examples are provided of stigmatizing attitudes that influence the discriminatory behavior and social context in which the power group interacts with people with mental illness. Stigma change is most effective when it includes all the components that describe how a specific power group impacts people with mental illness.

  9. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement

    Directory of Open Access Journals (Sweden)

    Scott D Swanson

    2008-06-01

    Full Text Available Scott D Swanson1, Jolanta F Kukowska-Latallo2, Anil K Patri5, Chunyan Chen6, Song Ge4, Zhengyi Cao3, Alina Kotlyar3, Andrea T East7, James R Baker31Department of Radiology, The University of Michigan Medical School, 2Department of Internal Medicine, The University of Michigan Medical School, 3Michigan Nanotechnology Institute for Medicine and Biological Sciences, The University of Michigan, 4Applied Physics, The University of Michigan, MD, USA; 5Present address: National Cancer Institute at Frederick (Contractor, MD, USA; 6Present address: Intel Corporation, Chandler, AZ, USA; 7Present address: Stritch School of Medicine, Chicago, ILL, USAAbstract: A target-specific MRI contrast agent for tumor cells expressing high affinity folate receptor was synthesized using generation five (G5 of polyamidoamine (PAMAM dendrimer. Surface modified dendrimer was functionalized for targeting with folic acid (FA and the remaining terminal primary amines of the dendrimer were conjugated with the bifunctional NCS-DOTA chelator that forms stable complexes with gadolinium (Gd III. Dendrimer-DOTA conjugates were then complexed with GdCl3, followed by ICP-OES as well as MRI measurement of their longitudinal relaxivity (T1 s−1 mM−1 of water. In xenograft tumors established in immunodeficient (SCID mice with KB human epithelial cancer cells expressing folate receptor (FAR, the 3D MRI results showed specific and statistically significant signal enhancement in tumors generated with targeted Gd(III-DOTA-G5-FA compared with signal generated by non-targeted Gd(III-DOTA-G5 contrast nanoparticle. The targeted dendrimer contrast nanoparticles infiltrated tumor and were retained in tumor cells up to 48 hours post-injection of targeted contrast nanoparticle. The presence of folic acid on the dendrimer resulted in specific delivery of the nanoparticle to tissues and xenograft tumor cells expressing folate receptor in vivo. We present the specificity of the dendrimer

  10. Using the Species-Area Relationship to Set Baseline Targets for Conservation

    Directory of Open Access Journals (Sweden)

    Philip Desmet

    2004-12-01

    Full Text Available This paper demonstrates how the power form of the Species-Area Relationship (SAR can be used to set conservation targets for land classes using biodiversity survey data. The log-transformation of the power model is a straight line; therefore, if one knows the average number of species recorded per survey site and can estimate the true species number present in the land class, using EstimateS software, it is possible to calculate the slope of the curve, or z-value. The z-value is the exponent in the power model and it can then be used to estimate the proportion of area required to represent a given proportion of species present in any land class. This application of the SAR is explored using phytosociological relevé data from South Africa's Succulent Karoo biome. We also provide suggestions for extrapolating the estimated z-values to other land classes within a bioregion that lack sufficient survey data, using the relationship between z-values and remotely determined landscape variables such as habitat diversity (topographic diversity and geographic location (latitude and longitude. The SAR predicts that for most Succulent Karoo vegetation types a conservation target of 10% of the land area would not be sufficient to conserve the majority of species. We also demonstrate that not all land classes are equal from a plant biodiversity perspective, so applying one target to all land classes in a region will lead to significant gaps and inefficiencies in any reserve network based on this universal target.

  11. Footwear Supply Network Management for Specific Target Groups

    OpenAIRE

    Franchini, Valentina

    2013-01-01

    This research is a part of CoReNet (Customer-ORiented and Eco-friendly NETworks for healthy fashionable goods), an European 7th Framework Program project, whose objective is to implement innovative methods and tools to fulfil needs and expectations of specific target groups – elderly, obese, disabled and diabetic people – by improving the supply network structure of the European Textile, Clothing and Footwear Industry (TCFI) to produce small series of functional and fashionable clothes and fo...

  12. Hierarchical mesosilicalite nanoformulation integrated with cisplatin exhibits target-specific efficient anticancer activity

    Science.gov (United States)

    Jermy, B. Rabindran; Acharya, Sadananda; Ravinayagam, Vijaya; Alghamdi, Hajer Saleh; Akhtar, Sultan; Basuwaidan, Rehab S.

    2018-04-01

    Hierarchically structured zeolitic ZSM-5 and meso MCM-41 interlinked domain had an impeccable use as catalysis in many applications. The aim of the study was to develop a new drug delivery nanoformulation, specifically, cisplatin/mesosilicalite using top-down approach for cancer therapy. Hierarchical mesosilicalite with variable porosity was synthesized using alkaline molar solution (0.2 and 0.7 M NaOH) and was loaded with cisplatin through equilibrium adsorption technique. Physico-chemical properties of the nanoformulation (IAUM-56—Imam Abdulrahman Bin Faisal University Mesosilicalite-56) were characterized using X-ray diffraction, surface area analysis (BET), Fourier transformed infrared spectroscopy (FT-IR), diffuse reflectance UV-Vis spectroscopy, and transmission electron microscopy. Drug release study and anticancer activity were assayed on HeLa and MCF7 cancer cells using MTT assay. X-ray diffraction pattern showed interrelated meso- and microphases, while BET analysis revealed considerable mesoporosity formation with a remodulation of isotherm hysteresis indicating the presence of hierarchical pores. FT-IR showed the presence of nanozeolitic subunits into mesostructure with a band at about 550 cm-1. IAUM-56 demonstrated high cytotoxic activity against HeLa cancer cells with an LC50 of 0.02 mg/ml, MCF7 cancer cells with an LC50 of 0.05 mg/ml, and less toxic to normal fibroblast cells with an LC50 of approximately ten times higher at 0.5 mg/ml. Overall, IAUM-56 showed a high rate of sustained release of cisplatin imparting target specific cytotoxic effect against tumor cells with at least tenfold lower toxicity on normal fibroblast cells. Our nanoformulation has the potential use in cancer therapy as a targeted drug delivery system.

  13. 33 CFR 334.1160 - San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo.

    Science.gov (United States)

    2010-07-01

    ... practice area, Mare Island Naval Shipyard, Vallejo. 334.1160 Section 334.1160 Navigation and Navigable... REGULATIONS § 334.1160 San Pablo Bay, Calif.; target practice area, Mare Island Naval Shipyard, Vallejo. (a..., Mare Island Naval Shipyard, Vallejo, California, will conduct target practice in the area at intervals...

  14. Tertiary particle production and target optimization of the H2 beam line in the SPS North Area

    CERN Document Server

    AUTHOR|(CDS)2079540; Tellander, Felix; CERN. Geneva. ATS Department

    2016-01-01

    In this note, the tertiary particle yield from secondary targets of different materials placed at the ‘filter’ position of the H2 beam line of SPS North Area are presented. The production is studied for secondary beams of different momenta in the range of 50-250 GeV/c. More specifically, we studied six different targets: two copper cylinders with a radius of 40 mm and lengths of 100 and 300 mm, one solid tungsten cylinder with a radius of 40 mm and a length of 150 mm and three polyethylene cylinders with radius of 40 mm and lengths of 550, 700 and 1000 mm. Eight different momenta of the secondary beam (50, 60, 70, 100, 120, 150, 200 and 250 GeV/c) as well as two different physics lists (QGSP_BIC and FTFP_BERT) have been extensively studied. The purpose of this study is (a) to optimize (using the appropriate filter target) the particle production from the secondary targets as demanded by the experiments (b) investigate the proton production (with respect to the pion production) in the produced tertiary bea...

  15. OligoRAP – an Oligo Re-Annotation Pipeline to improve annotation and estimate target specificity

    NARCIS (Netherlands)

    Neerincx, P.; Rauwerda, H.; Nie, H.; Groenen, M.A.M.; Breit, T.M.; Leunissen, J.A.M.

    2009-01-01

    Background - High throughput gene expression studies using oligonucleotide microarrays depend on the specificity of each oligonucleotide (oligo or probe) for its target gene. However, target specific probes can only be designed when a reference genome of the species at hand were completely

  16. Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine.

    Science.gov (United States)

    Arrue, Lily; Ratjen, Lars

    2017-12-07

    The photochemical control of structure and reactivity bears great potential for chemistry, biology, and life sciences. A key feature of photochemistry is the spatiotemporal control over secondary events. Well-established applications of photochemistry in medicine are photodynamic therapy (PDT) and photopharmacology (PP). However, although both are highly localizable through the application of light, they lack cell- and tissue-specificity. The combination of nanomaterial-based drug delivery and targeting has the potential to overcome limitations for many established therapy concepts. Even more privileged seems the merger of nanomedicine and cell-specific targeting (internal targeting) controlled by light (external control), as it can potentially be applied to many different areas of medicine and pharmaceutical research, including the aforementioned PDT and PP. In this review a survey of the interface of photochemistry, medicine and targeted drug delivery is given, especially focusing on phototriggered targeting in nanomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5.

    Science.gov (United States)

    Walsh, V; Ellison, A; Battelli, L; Cowey, A

    1998-03-22

    Transcranial magnetic stimulation (TMS) can be used to simulate the effects of highly circumscribed brain damage permanently present in some neuropsychological patients, by reversibly disrupting the normal functioning of the cortical area to which it is applied. By using TMS we attempted to recreate deficits similar to those reported in a motion-blind patient and to assess the specificity of deficits when TMS is applied over human area V5. We used six visual search tasks and showed that subjects were impaired in a motion but not a form 'pop-out' task when TMS was applied over V5. When motion was present, but irrelevant, or when attention to colour and form were required, TMS applied to V5 enhanced performance. When attention to motion was required in a motion-form conjunction search task, irrespective of whether the target was moving or stationary, TMS disrupted performance. These data suggest that attention to different visual attributes involves mutual inhibition between different extrastriate visual areas.

  18. Sintering of uranium oxide of high specific surface area

    International Nuclear Information System (INIS)

    Bel, Alain; Francois, Bernard; Delmas, Roger; Caillat, Roger

    1959-01-01

    The extent to which a uranium oxide powder deriving from ammonium uranate or uranium peroxide lends itself to the sintering process depends largely on its specific surface area. When this is greater than 5 m 2 / g there is an optimum temperature for sintering in hydrogen. This temperature becomes less as the specific area of the powder is greater. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 1045-1047, sitting of 21 September 1959 [fr

  19. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    Directory of Open Access Journals (Sweden)

    Zhou Jiangfeng

    2003-11-01

    Full Text Available Abstract The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.

  20. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  1. Motion-specific internal target volumes for FDG-avid mediastinal and hilar lymph nodes

    International Nuclear Information System (INIS)

    Lamb, James M.; Robinson, Clifford G.; Bradley, Jeffrey D.; Low, Daniel A.

    2013-01-01

    Background and purpose: To quantify the benefit of motion-specific internal target volumes for FDG-avid mediastinal and hilar lymph nodes generated using 4D-PET, vs. conventional internal target volumes generated using non-respiratory gated PET and 4D-CT scans. Materials and methods: Five patients with FDG-avid tumors metastatic to 11 hilar or mediastinal lymph nodes were imaged with respiratory-correlated FDG-PET (4D-PET) and 4D-CT. FDG-avid nodes were contoured by a radiation oncologist in two ways. Standard-of-care volumes were contoured using conventional un-gated PET, 4D-CT, and breath-hold CT. A second, motion-specific, set of volumes were contoured using 4D-PET.Contours based on 4D-PET corresponded directly to an internal target volume (ITV 4D ), whereas contours based on un-gated PET were expanded by a series of exploratory isotropic margins (from 5 to 13 mm) based on literature recommendations on lymph node motion to form internal target volumes (ITV 3D ). Results: A 13 mm expansion of the un-gated PET nodal volume was needed to cover the ITV 4D for 10 of 11 nodes studied. The ITV 3D based on a 13 mm expansion included on average 45 cm 3 of tissue that was not included in the ITV 4D . Conclusions: Motion-specific lymph-node internal target volumes generated from 4D-PET imaging could be used to improve accuracy and/or reduce normal-tissue irradiation compared to the standard-of-care un-gated PET based internal target volumes

  2. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP)

    Science.gov (United States)

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547

  3. Decoding target distance and saccade amplitude from population activity in the macaque lateral intraparietal area (LIP

    Directory of Open Access Journals (Sweden)

    Frank Bremmer

    2016-08-01

    Full Text Available Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades towards moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP. Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction towards either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a, b. Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface.

  4. Novel strategies for ultrahigh specific activity targeted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong

    2012-12-13

    We have developed novel strategies optimized for preparing high specific activity radiolabeled nanoparticles, targeting nuclear imaging of low abundance biomarkers. Several compounds have been labeled with F-18 and Cu-64 for radiolabeling of SCK-nanoparticles via Copper(I) catalyzed or copper-free alkyne-azide cyclolization. Novel strategies have been developed to achieve ultrahigh specific activity with administrable amount of dose for human study using copper-free chemistry. Ligands for carbonic anhydrase 12 (CA12), a low abundance extracellular biomarker for the responsiveness of breast cancer to endocrine therapie, have been labeled with F-18 and Cu-64, and one of them has been evaluated in animal models. The results of this project will lead to major improvements in the use of nanoparticles in nuclear imaging and will significantly advance their potential for detecting low abundance biomarkers of medical importance.

  5. Specific and Efficient Regression of Cancers Harboring KRAS Mutation by Targeted RNA Replacement.

    Science.gov (United States)

    Kim, Sung Jin; Kim, Ju Hyun; Yang, Bitna; Jeong, Jin-Sook; Lee, Seong-Wook

    2017-02-01

    Mutations in the KRAS gene, which persistently activate RAS function, are most frequently found in many types of human cancers. Here, we proposed and verified a new approach against cancers harboring the KRAS mutation with high cancer selectivity and efficient anti-cancer effects based on targeted RNA replacement. To this end, trans-splicing ribozymes from Tetrahymena group I intron were developed, which can specifically target and reprogram the mutant KRAS G12V transcript to induce therapeutic gene activity in cells. Adenoviral vectors containing the specific ribozymes with downstream suicide gene were constructed and then infection with the adenoviruses specifically downregulated KRAS G12V expression and killed KRAS G12V-harboring cancer cells additively upon pro-drug treatment, but it did not affect the growth of wild-type KRAS-expressing cells. Minimal liver toxicity was noted when the adenoviruses were administered systemically in vivo. Importantly, intratumoral injection of the adenoviruses with pro-drug treatment specifically and significantly impeded the growth of xenografted tumors harboring KRAS G12V through a trans-splicing reaction with the target RNA. In contrast, xenografted tumors harboring wild-type KRAS were not affected by the adenoviruses. Therefore, RNA replacement with a mutant KRAS-targeting trans-splicing ribozyme is a potentially useful therapeutic strategy to combat tumors harboring KRAS mutation. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  6. Methodology for estimation of potential for solar water heating in a target area

    International Nuclear Information System (INIS)

    Pillai, Indu R.; Banerjee, Rangan

    2007-01-01

    Proper estimation of potential of any renewable energy technology is essential for planning and promotion of the technology. The methods reported in literature for estimation of potential of solar water heating in a target area are aggregate in nature. A methodology for potential estimation (technical, economic and market potential) of solar water heating in a target area is proposed in this paper. This methodology links the micro-level factors and macro-level market effects affecting the diffusion or adoption of solar water heating systems. Different sectors with end uses of low temperature hot water are considered for potential estimation. Potential is estimated at each end use point by simulation using TRNSYS taking micro-level factors. The methodology is illustrated for a synthetic area in India with an area of 2 sq. km and population of 10,000. The end use sectors considered are residential, hospitals, nursing homes and hotels. The estimated technical potential and market potential are 1700 m 2 and 350 m 2 of collector area, respectively. The annual energy savings for the technical potential in the area is estimated as 110 kW h/capita and 0.55 million-kW h/sq. km. area, with an annual average peak saving of 1 MW. The annual savings is 650-kW h per m 2 of collector area and accounts for approximately 3% of the total electricity consumption of the target area. Some of the salient features of the model are the factors considered for potential estimation; estimation of electrical usage pattern for typical day, amount of electricity savings and savings during the peak load. The framework is general and enables accurate estimation of potential of solar water heating for a city, block. Energy planners and policy makers can use this framework for tracking and promotion of diffusion of solar water heating systems. (author)

  7. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI

    Science.gov (United States)

    Tomassy, Giulio Srubek; De Leonibus, Elvira; Jabaudon, Denis; Lodato, Simona; Alfano, Christian; Mele, Andrea; Macklis, Jeffrey D.; Studer, Michèle

    2010-01-01

    Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise. PMID:20133588

  8. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Food and agricultural sciences areas targeted for..., AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS... sciences areas targeted for National Needs Graduate and Postdoctoral Fellowship Grants Program support...

  9. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  10. Acute oral administration of low doses of methylphenidate targets calretinin neurons in the rat septal area.

    Directory of Open Access Journals (Sweden)

    Alvaro eGarcía-Aviles

    2015-03-01

    Full Text Available Methylphenidate (MPD is a commonly administered drug to treat children suffering from attention deficit hyperactivity disorder (ADHD. Alterations in septal driven hippocampal theta rhythm may underlie attention deficits observed in these patients. Amongst others, the septo-hippocampal connections have long been acknowledged to be important in preserving hippocampal function. Thus, we wanted to ascertain if methylphenidate administration, which improves attention in patients, could affect septal areas connecting with hippocampus. We used low and orally administered methylphenidate doses (1.3; 2.7 and 5mg/Kg to rats what mimics the dosage range in humans. In our model, we observed no effect when using 1.3mg/Kg methylphenidate; whereas 2.7 and 5 mg/Kg induced a significant increase in c-fos expression specifically in the medial septum, an area intimately connected to the hippocampus. We analyzed dopaminergic areas such as nucleus accumbens and striatum, and found that only 5mg/Kg induced c-fos levels increase. In these areas tyrosine hydroxylase correlated well with c-fos staining, whereas in the medial septum the sparse tyrosine hydroxylase fibres did not overlap with c-fos positive neurons. Double immunofluorescence of c-fos with neuronal markers in the septal area revealed that co-localization with choline acethyl transferase, parvalbumin, and calbindin with c-fos did not change with MPD treatment; whereas, calretinin and c-fos double labeled neurons increased after MPD administration. Altogether, these results suggest that low and acute doses of methylphenidate primary target specific populations of caltretinin medial septal neurons.

  11. Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents.

    Science.gov (United States)

    Kang, S; Lu, K; Leelawattanachai, J; Hu, X; Park, S; Park, T; Min, I M; Jin, M M

    2013-11-01

    Systemic and target-specific delivery of large genetic contents has been difficult to achieve. Although viruses effortlessly deliver kilobase-long genome into cells, its clinical use has been hindered by serious safety concerns and the mismatch between native tropisms and desired targets. Nonviral vectors, in contrast, are limited by low gene transfer efficiency and inherent cytotoxicity. Here we devised virus-mimetic polyplex particles (VMPs) based on electrostatic self-assembly among polyanionic peptide (PAP), cationic polymer polyethyleneimine (PEI) and nucleic acids. We fused PAP to the engineered ligand-binding domain of integrin αLβ2 to target intercellular adhesion molecule-1 (ICAM-1), an inducible marker of inflammation. Fully assembled VMPs packaged large genetic contents, bound specifically to target molecules, elicited receptor-mediated endocytosis and escaped endosomal pathway, resembling intracellular delivery processes of viruses. Unlike conventional PEI-mediated transfection, molecular interaction-dependent gene delivery of VMPs was unaffected by the presence of serum and achieved higher efficiency without toxicity. By targeting overexpressed ICAM-1, VMPs delivered genes specifically to inflamed endothelial cells and macrophages both in vitro and in vivo. Simplicity and versatility of the platform and inflammation-specific delivery may open up opportunities for multifaceted gene therapy that can be translated into the clinic and treat a broad range of debilitating immune and inflammatory diseases.

  12. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    Science.gov (United States)

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  13. Swedish Hard Rock Laboratory first evaluation of preinvestigations 1986-87 and target area characterization

    International Nuclear Information System (INIS)

    Gustafson, G.; Stanfors, R.; Wikberg, P.

    1988-06-01

    SKB plans to site an underground research laboratory in the Simpevarp area. A regional survey started in 1986 and an extensive programme for geology, geohydrology and hydrochemistry was carried through. This report gives an evaluation of all available data gathered from the start of the project up to the drilling of core boreholes in some target areas in the autumn of 1987. A descriptive geological-tectonic model on a regional scale is presented that is intended to constitute a basis for the hydrogeological modelling work. Preliminary rock mass descriptions are also presented on a more detailed scale for some minor parts of the area. It is recommended that the island Aespoe is the principal target area for the continued work on the Swedish Hard Rock Laboratory. (orig.)

  14. Porous silicon structures with high surface area/specific pore size

    Science.gov (United States)

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  15. Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2012-07-01

    Full Text Available This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa, namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1 and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2 was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

  16. Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells.

    Science.gov (United States)

    Schneider, Craig S; Perez, Jimena G; Cheng, Emily; Zhang, Clark; Mastorakos, Panagiotis; Hanes, Justin; Winkles, Jeffrey A; Woodworth, Graeme F; Kim, Anthony J

    2015-02-01

    A major limitation in the treatment of glioblastoma (GBM), the most common and deadly primary brain cancer, is delivery of therapeutics to invading tumor cells outside of the area that is safe for surgical removal. A promising way to target invading GBM cells is via drug-loaded nanoparticles that bind to fibroblast growth factor-inducible 14 (Fn14), thereby potentially improving efficacy and reducing toxicity. However, achieving broad particle distribution and nanoparticle targeting within the brain remains a significant challenge due to the adhesive extracellular matrix (ECM) and clearance mechanisms in the brain. In this work, we developed Fn14 monoclonal antibody-decorated nanoparticles that can efficiently penetrate brain tissue. We show these Fn14-targeted brain tissue penetrating nanoparticles are able to (i) selectively bind to recombinant Fn14 but not brain ECM proteins, (ii) associate with and be internalized by Fn14-positive GBM cells, and (iii) diffuse within brain tissue in a manner similar to non-targeted brain penetrating nanoparticles. In addition, when administered intracranially, Fn14-targeted nanoparticles showed improved tumor cell co-localization in mice bearing human GBM xenografts compared to non-targeted nanoparticles. Minimizing non-specific binding of targeted nanoparticles in the brain may greatly improve the access of particulate delivery systems to remote brain tumor cells and other brain targets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Plasma membrane associated, virus-specific polypeptides required for the formation of target antigen complexes recognized by virus-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Domber, E.A.

    1986-01-01

    These studies were undertaken to define some of the poxvirus-specific target antigens which are synthesized in infected cells and recognized by vaccinia virus-specific CTLs (VV-CTLs). Since vaccinia virus infected, unmanipulated target cells express numerous virus-specific antigens on the plasma membrane, attempts were made to manipulate expression of the poxvirus genome after infection so that one or a few defined virus-specified antigens were expressed on the surface of infected cells. In vitro [ 51 Cr]-release assays determined that viral DNA synthesis and expression of late viral proteins were not necessary to form a target cell which was fully competent for lysis by VV-CTLs. Under the conditions employed in these experiments, 90-120 minutes of viral protein synthesis were necessary to produce a competent cell for lysis by VV-CTLs. In order to further inhibit the expression of early viral proteins in infected cells, partially UV-inactivated vaccinia virus was employed to infect target cells. It was determined that L-cells infected with virus preparations which had been UV-irradiated for 90 seconds were fully competent for lysis by VV-CTLs. Cells infected with 90 second UV-irr virus expressed 3 predominant, plasma membrane associated antigens of 36-37K, 27-28K, and 19-17K. These 3 viral antigens represent the predominant membrane-associated viral antigens available for interaction with class I, major histocompatibility antigens and hence are potential target antigens for VV-CTLs

  18. Engineered Cpf1 variants with altered PAM specificities increase genome targeting range

    Science.gov (United States)

    Gao, Linyi; Cox, David B.T.; Yan, Winston X.; Manteiga, John C.; Schneider, Martin W.; Yamano, Takashi; Nishimasu, Hiroshi; Nureki, Osamu; Crosetto, Nicola; Zhang, Feng

    2017-01-01

    The RNA-guided endonuclease Cpf1 is a promising tool for genome editing in eukaryotic cells1–7. However, the utility of the commonly used Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1) and Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1) is limited by their requirement of a TTTV protospacer adjacent motif (PAM) in the DNA substrate. To address this limitation, we performed a structure-guided mutagenesis screen to increase the targeting range of Cpf1. We engineered two AsCpf1 variants carrying the mutations S542R/K607R and S542R/K548V/N552R, which recognize TYCV and TATV PAMs, respectively, with enhanced activities in vitro and in human cells. Genome-wide assessment of off-target activity using BLISS7 assay indicated that these variants retain high DNA targeting specificity, which we further improved by introducing an additional non-PAM-interacting mutation. Introducing the identified mutations at their corresponding positions in LbCpf1 similarly altered its PAM specificity. Together, these variants increase the targeting range of Cpf1 by approximately three-fold in human coding sequences to one cleavage site per ~11 bp. PMID:28581492

  19. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature

    Directory of Open Access Journals (Sweden)

    Alexander Patronis

    2018-04-01

    Full Text Available Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.. We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  20. Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature.

    Science.gov (United States)

    Patronis, Alexander; Richardson, Robin A; Schmieschek, Sebastian; Wylie, Brian J N; Nash, Rupert W; Coveney, Peter V

    2018-01-01

    Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

  1. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    Science.gov (United States)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  2. The FLUKA study of the secondary particles fluence in the AD-Antiproton Decelerator target area

    CERN Document Server

    Calviani, M

    2014-01-01

    In this paper we present Monte Carlo FLUKA simulations [1, 2] carried out to investigate the secondary particles fluence emerging from the antiproton production target and their spatial distribution in the AD target area. The detailed quantitative analysis has been performed for different positions along the magnet dog-leg as well as after the main collimator. These results allow tuning the position of the new beam current transformers (BCT) in the target area, in order to have a precise pulse-by-pulse evaluation of the intensity of negative particles injected in the AD-ring before the deceleration phase.

  3. The ecological representativeness of the global protected areas estate in 2009: progress towards the CBD 2010 target

    DEFF Research Database (Denmark)

    Coad, Lauren; Burgess, Neil David; Loucks, Colby

    The Convention on Biological Diversity has established a global target for the protection of 10% of each of the world's ecological regions by 2010. This report uses the WWF Terrestrial Ecoregions of the World and the 2009 version of the World Database of Protected Areas to analyse progress towards...... are still working to develop their protected area networks and it is likely that further ecoregions will reach the 10% protected area coverage target for terrestrial ecological regions by 2010. Although protection of the Global 200 priority ecoregions is higher than for the total set of ecoregions, with 72...... % reaching the 10% target, previous studies have suggested that areas of high biodiversity may require higher levels of protection and conservation planning. The approaching 2010 deadline provides a further opportunity to discuss and assess the effectiveness of the 10% target in affording adequate protection...

  4. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    Science.gov (United States)

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer.

    Science.gov (United States)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M Laird

    2015-03-01

    The aim is to develop irradiated nanodiamonds (INDs) as a molecularly targeted contrast agent for high-resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. The surface of acid treated radiation-damaged nanodiamonds was grafted with PEG to improve its stability and circulation time in blood, followed by conjugation to an anti-HER2 peptide with a final nanoparticle size of approximately 92 nm. Immunocompetent mice bearing orthotopic HER2-positive or negative tumors were administered INDs and PA imaged using an 820-nm near-infrared laser. PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 h. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are nontoxic. PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high-resolution (sub-mm) and phenotype-specific monitoring of cancer growth.

  6. Hotspots ampersand other hidden targets: Probability of detection, number, frequency and area

    International Nuclear Information System (INIS)

    Vita, C.L.

    1994-01-01

    Concepts and equations are presented for making probability-based estimates of the detection probability, and the number, frequency, and area of hidden targets, including hotspots, at a given site. Targets include hotspots, which are areas of extreme or particular contamination, and any object or feature that is hidden from direct visual observation--including buried objects and geologic or hydrologic details or anomalies. Being Bayesian, results are fundamentally consistent with observational methods. Results are tools for planning or interpreting exploration programs used in site investigation or characterization, remedial design, construction, or compliance monitoring, including site closure. Used skillfully and creatively, these tools can help streamline and expedite environmental restoration, reducing time and cost, making site exploration cost-effective, and providing acceptable risk at minimum cost. 14 refs., 4 figs

  7. Protected area connectivity: Shortfalls in global targets and country-level priorities.

    Science.gov (United States)

    Saura, Santiago; Bertzky, Bastian; Bastin, Lucy; Battistella, Luca; Mandrici, Andrea; Dubois, Grégoire

    2018-03-01

    Connectivity of protected areas (PAs) is crucial for meeting their conservation goals. We provide the first global evaluation of countries' progress towards Aichi Target 11 of the Convention on Biological Diversity that is to have at least 17% of the land covered by well-connected PA systems by 2020. We quantify how well the terrestrial PA systems of countries are designed to promote connectivity, using the Protected Connected (ProtConn) indicator. We refine ProtConn to focus on the part of PA connectivity that is in the power of a country to influence, i.e. not penalizing countries for PA isolation due to the sea and to foreign lands. We found that globally only 7.5% of the area of the countries is covered by protected connected lands, which is about half of the global PA coverage of 14.7%, and that only 30% of the countries currently meet the Aichi Target 11 connectivity element. These findings suggest the need for considerable efforts to improve PA connectivity globally. We further identify the main priorities for improving or sustaining PA connectivity in each country: general increase of PA coverage, targeted designation of PAs in strategic locations for connectivity, ensuring permeability of the unprotected landscapes between PAs, coordinated management of neighbouring PAs within the country, and/or transnational coordination with PAs in other countries. Our assessment provides a key contribution to evaluate progress towards global PA connectivity targets and to highlight important strengths and weaknesses of the design of PA systems for connectivity in the world's countries and regions.

  8. Liver-targeting of interferon-alpha with tissue-specific domain antibodies.

    Directory of Open Access Journals (Sweden)

    Edward Coulstock

    Full Text Available Interferon alpha (IFNα is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. We genetically fused IFN to a domain antibody (dAb specific to a hepatocyte restricted antigen, asialoglycoprotein receptor (ASGPR. Our results show that the murine IFNα2 homolog (mIFNα2 fused to an ASGPR specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo targeting of the liver by mIFNα2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNα2 or mIFNα2 fused to an isotype control dAb VHD2 (which does not bind ASGPR was demonstrated using microSPECT imaging. We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a treatment for human hepatitis virus infections.

  9. Immunogenic Targets for Specific Immunotherapy in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2012-01-01

    Full Text Available Multiple myeloma remains an incurable disease although the prognosis has been improved by novel therapeutics and agents recently. Relapse occurs in the majority of patients and becomes fatal finally. Immunotherapy might be a powerful intervention to maintain a long-lasting control of minimal residual disease or to even eradicate disseminated tumor cells. Several tumor-associated antigens have been identified in patients with multiple myeloma. These antigens are expressed in a tumor-specific or tumor-restricted pattern, are able to elicit immune response, and thus could serve as targets for immunotherapy. This review discusses immunogenic antigens with therapeutic potential for multiple myeloma.

  10. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons.

    Science.gov (United States)

    Prouty, Eric W; Chandler, Daniel J; Waterhouse, Barry D

    2017-11-15

    Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. TARGET - NEW PAYMENT SYSTEM FOR THE EURO AREA

    Directory of Open Access Journals (Sweden)

    ELENA VIOLETA DRĂGOI

    2015-04-01

    Full Text Available At EU level, the funds transfer systems have undergone significant changes starting with the introduction of euro. The launch of the euro, the emergence of new technologies, introduction of financial innovations and the globalization have led to reorganization of funds transfer systems` infrastructure. The paper aims to offer an analysis of actual payment system for Euro area, a trans-European funds transfer system with gross settlement in real-time for payments in euro TARGET- to increase economical and operational efficiency of payments and also to reduce the risks in the electronic funds transfer system by creating efficient and secure payment systems.

  12. Molecular-targeted nanotherapies in cancer: enabling treatment specificity.

    Science.gov (United States)

    Blanco, Elvin; Hsiao, Angela; Ruiz-Esparza, Guillermo U; Landry, Matthew G; Meric-Bernstam, Funda; Ferrari, Mauro

    2011-12-01

    Chemotherapy represents a mainstay and powerful adjuvant therapy in the treatment of cancer. The field has evolved from drugs possessing all-encompassing cell-killing effects to those with highly targeted, specific mechanisms of action; a direct byproduct of enhanced understanding of tumorigenic processes. However, advances regarding development of agents that target key molecules and dysregulated pathways have had only modest impacts on patient survival. Several biological barriers preclude adequate delivery of drugs to tumors, and remain a formidable challenge to overcome in chemotherapy. Currently, the field of nanomedicine is enabling the delivery of chemotherapeutics, including repositioned drugs and siRNAs, by giving rise to carriers that provide for protection from degradation, prolonged circulation times, and increased tumor accumulation, all the while resulting in reduced patient morbidity. This review aims to highlight several innovative, nanoparticle-based platforms with the potential of providing clinical translation of several novel chemotherapeutic agents. We will also summarize work regarding the development of a multistage drug delivery strategy, a robust carrier platform designed to overcome several biological barriers while en route to tumors. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Combinatorial synthesis and screening of cancer cell-specific nanomedicines targeted via phage fusion proteins

    Directory of Open Access Journals (Sweden)

    James W. Gillespie

    2015-06-01

    Full Text Available Active tumor targeting of nanomedicines has recently shown significant improvements in the therapeutic activity of currently existing drug delivery systems, such as liposomal doxorubicin (Doxil/Caelyx/Lipodox. Previously, we have shown that isolated pVIII major coat proteins of the fd tet filamentous phage vector, containing cancer cell-specific peptide fusions at their N terminus, can be used as active targeting ligands in a liposomal doxorubicin delivery system in vitro and in vivo. Here, we show a novel major coat protein isolation procedure in 2-propanol that allows spontaneous incorporation of the hydrophobic protein core into preformed liposomal doxorubicin with minimal damage or drug loss while still retaining the targeting ligand exposed for cell-specific targeting. Using a panel of 12 structurally unique ligands with specificity towards breast, lung, and/or pancreatic cancer, we showed the feasibility of pVIII major coat proteins to significantly increase the throughput of targeting ligand screening in a common nanomedicine core. Phage protein-modified Lipodox samples showed an average doxorubicin recovery of 82.8% across all samples with 100% of protein incorporation in the correct orientation (N-terminus exposed. Following cytotoxicity screening in a doxorubicin-sensitive breast cancer line (MCF-7, three major groups of ligands were identified. Ligands showing the most improved cytotoxicity included: DMPGTVLP, ANGRPSMT, VNGRAEAP, and ANDVYLD showing a 25-fold improvement (p < 0.05 in toxicity. Similarly DGQYLGSQ, ETYNQPYL, and GSSEQLYL ligands with specificity towards a doxorubicin-insensitive pancreatic cancer line (PANC-1 showed significant increases in toxicity (2-fold; p < 0.05. Thus, we demonstrated proof-of-concept that pVIII major coat proteins can be screened in significantly higher throughput to identify novel ligands displaying improved therapeutic activity in a desired cancer phenotype.

  14. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Science.gov (United States)

    2010-07-01

    ... degrees 09 minutes 26 seconds identified as Hannibal Target. (3) The regulations. Nonexplosive projectiles and bombs will be dropped at frequent intervals in the target areas. Hooper and Hannibal target areas...

  15. The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype.

    Directory of Open Access Journals (Sweden)

    Gunnveig Grødeland

    Full Text Available Different diseases require different immune responses for efficient protection. Thus, prophylactic vaccines should prime the immune system for the particular type of response needed for protection against a given infectious agent. We have here tested fusion DNA vaccines which encode proteins that bivalently target influenza hemagglutinins (HA to different surface molecules on antigen presenting cells (APC. We demonstrate that targeting to MHC class II molecules predominantly induced an antibody/Th2 response, whereas targeting to CCR1/3/5 predominantly induced a CD8(+/Th1 T cell response. With respect to antibodies, the polarizing effect was even more pronounced upon intramuscular (i.m delivery as compared to intradermal (i.d. vaccination. Despite these differences in induced immune responses, both vaccines protected against a viral challenge with influenza H1N1. Substitution of HA with ovalbumin (OVA demonstrated that polarization of immune responses, as a consequence of APC targeting specificity, could be extended to other antigens. Taken together, the results demonstrate that vaccination can be tailor-made to induce a particular phenotype of adaptive immune responses by specifically targeting different surface molecules on APCs.

  16. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    Science.gov (United States)

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  17. National Ignition Facility subsystem design requirements laser and target area building (LTAB) SSDR 1.2.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS)

  18. Identification and target prediction of miRNAs specifically expressed in rat neural tissue

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2009-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a large group of RNAs that play important roles in regulating gene expression and protein translation. Several studies have indicated that some miRNAs are specifically expressed in human, mouse and zebrafish tissues. For example, miR-1 and miR-133 are specifically expressed in muscles. Tissue-specific miRNAs may have particular functions. Although previous studies have reported the presence of human, mouse and zebrafish tissue-specific miRNAs, there have been no detailed reports of rat tissue-specific miRNAs. In this study, Home-made rat miRNA microarrays which established in our previous study were used to investigate rat neural tissue-specific miRNAs, and mapped their target genes in rat tissues. This study will provide information for the functional analysis of these miRNAs. Results In order to obtain as complete a picture of specific miRNA expression in rat neural tissues as possible, customized miRNA microarrays with 152 selected miRNAs from miRBase were used to detect miRNA expression in 14 rat tissues. After a general clustering analysis, 14 rat tissues could be clearly classified into neural and non-neural tissues based on the obtained expression profiles with p values Conclusion Our work provides a global view of rat neural tissue-specific miRNA profiles and a target map of miRNAs, which is expected to contribute to future investigations of miRNA regulatory mechanisms in neural systems.

  19. Development of a certified reference material for specific surface area of quartz sand

    Directory of Open Access Journals (Sweden)

    Egor P Sobina

    2017-01-01

    Full Text Available The paper presents results of conducting research on the development of a certified reference material (CRM for specific surface area of quartz sand, which is practically non-porous and therefore has low specific surface area value ~ 0.8 m2/g. The standard uncertainty due to RM inhomogeneity, the standard uncertainty due to RM instability, as well as the standard uncertainty due to characterization were estimated using the State Primary Standard GET 210‑2014 for Units of Specific Absorption of Gases, Specific Surface Area, Specific Volume, and Pore Size of Solid Substances and Materials. The metrological characteristics of the CRM were determined using a low-temperature gas adsorption method. Krypton was used as an adsorbate to increase measurement accuracy.

  20. Targeted Nanodiamonds as Phenotype Specific Photoacoustic Contrast Agents for Breast Cancer

    Science.gov (United States)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2015-01-01

    Aim The aim is to develop irradiated nanodiamonds (INDs) as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. Materials & Methods The surface of acid treated radiation-damaged nanodiamonds was grafted with polyethylene glycol (PEG) to improve its stability and circulation time in blood, followed by conjugation to an anti-Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) with a final nanoparticle size of ca. 92 nm. Immunocompetent mice bearing orthotopic HER2 positive or negative tumors were administered INDs and PA imaged using an 820-nm near infrared laser. Results PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 hours. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are non-toxic. Conclusions PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high resolution (sub-mm) and phenotype specific monitoring of cancer growth. PMID:25723091

  1. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M. -C.; Berthelot, T.; Baudin, C.; Déléris, G., E-mail: giancarlo.rizza@polytechnique.edu [Commissariat à l' énergie atomique (CEA), Institut Rayonnement Matière de Saclay (IRaMIS), B.P. 52, 91191 Gif Sur Yvette Cedex (France)

    2010-07-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy.

  2. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M.-C.; Berthelot, T.; Baudin, C.; Déléris, G.

    2010-01-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy

  3. An integrated in silico approach to design specific inhibitors targeting human poly(a-specific ribonuclease.

    Directory of Open Access Journals (Sweden)

    Dimitrios Vlachakis

    Full Text Available Poly(A-specific ribonuclease (PARN is an exoribonuclease/deadenylase that degrades 3'-end poly(A tails in almost all eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme. However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation. Although the complete structure of the full-length human PARN, as well as several aspects of the catalytic mechanism still remain elusive, many previous studies indicate that PARN can be used as potent and promising anti-cancer target. In the present study, we attempt to complement the existing structural information on PARN with in-depth bioinformatics analyses, in order to get a hologram of the molecular evolution of PARNs active site. In an effort to draw an outline, which allows specific drug design targeting PARN, an unequivocally specific platform was designed for the development of selective modulators focusing on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis based on all the publicly available genomes indicated a broad distribution for PARN across eukaryotic species and revealed structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the catalytic mechanism of PARN. Based on the above, we propose a comprehensive in silico model for the PARN's catalytic mechanism and moreover, we developed a 3D pharmacophore model, which was subsequently used for the introduction of DNP-poly(A amphipathic substrate analog as a potential inhibitor of PARN. Indeed, biochemical analysis revealed that DNP-poly(A inhibits PARN competitively. Our approach provides an efficient integrated platform for the rational design of pharmacophore models as well as novel modulators of PARN with therapeutic potential.

  4. Evaluation of Cytochalasin B-Induced Membrane Vesicles Fusion Specificity with Target Cells

    Directory of Open Access Journals (Sweden)

    Marina Gomzikova

    2018-01-01

    Full Text Available Extracellular vesicles (EV represent a promising vector system for biomolecules and drug delivery due to their natural origin and participation in intercellular communication. As the quantity of EVs is limited, it was proposed to induce the release of membrane vesicles from the surface of human cells by treatment with cytochalasin B. Cytochalasin B-induced membrane vesicles (CIMVs were successfully tested as a vector for delivery of dye, nanoparticles, and a chemotherapeutic. However, it remained unclear whether CIMVs possess fusion specificity with target cells and thus might be used for more targeted delivery of therapeutics. To answer this question, CIMVs were obtained from human prostate cancer PC3 cells. The diameter of obtained CIMVs was 962,13 ± 140,6 nm. We found that there is no statistically significant preference in PC3 CIMVs fusion with target cells of the same type. According to our observations, the greatest impact on CIMVs entry into target cells is by the heterophilic interaction of CIMV membrane receptors with the surface proteins of target cells.

  5. Conceptual design of a high current ISOL target area at TRIUMF

    International Nuclear Information System (INIS)

    Beveridge, J.L.; Buchmann, L.; Clark, G.S.; Sprenger, H.; Thorson, I.; Vincent, J.; D'Auria, J.M.; Dombsky, M.

    1993-05-01

    Two similar conceptual designs for the handling of highly activated components at the target area of a high current radioactive beam facility have been investigated. The proposed designs are sufficiently flexible that practical detailed designs could be realized. Personnel exposure to radiation during the handling procedures is expected to be minimal. (author) 3 refs., 4 figs

  6. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    DEFF Research Database (Denmark)

    Kristensen, Dorte Enggaard; Albers, Peter Hjorth; Prats, Clara

    2015-01-01

    are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of m. vastus lateralis from healthy men before and after two exercise trials; A) continuous cycling......AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been proven. We hypothesized that AMPK subunits...... (CON) 30 min at 69 ± 1% VO2peak or B) interval cycling (INT) 30 min with 6 × 1.5 min high-intense bouts peaking at 95 ± 2% VO2peak . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (-71%) was found. α1 , α2 , β2 and γ1 AMPK expression was similar between fibre types...

  7. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors.

    Science.gov (United States)

    Milowsky, Matthew I; Nanus, David M; Kostakoglu, Lale; Sheehan, Christine E; Vallabhajosula, Shankar; Goldsmith, Stanley J; Ross, Jeffrey S; Bander, Neil H

    2007-02-10

    Based on prostate-specific membrane antigen (PSMA) expression on the vasculature of solid tumors, we performed a phase I trial of antibody J591, targeting the extracellular domain of PSMA, in patients with advanced solid tumor malignancies. This was a proof-of-principle evaluation of PSMA as a potential neovascular target. The primary end points were targeting,toxicity, maximum-tolerated dose, pharmacokinetics (PK), and human antihuman antibody (HAHA) response. Patients had advanced solid tumors previously shown to express PSMA on the neovasculature. They received 111Indium (111ln)-J591 for scintigraphy and PK, followed 2 weeks later by J591 with a reduced amount of 111In for additional PK measurements. J591 dose levels were 5, 10, 20, 40, and 80 mg. The protocol was amended for six weekly administrations of unchelated J591. Patients with a response or stable disease were eligible for re-treatment. Immunohistochemistry assessed PSMA expression in tumor tissues. Twenty-seven patients received monoclonal antibody (mAb) J591. Treatment was well tolerated. Twenty (74%) of 27 patients had at least one area of known metastatic disease targeted by 111In-J591, with positive imaging seen in patients with kidney, bladder, lung, breast, colorectal, and pancreatic cancers, and melanoma. Seven of 10 patient specimens available for immunohistochemical assessment of PSMA expression in tumor-associated vasculature demonstrated PSMA staining. No HAHA response was seen. Three patients of 27 with stable disease received re-treatment. Acceptable toxicity and excellent targeting of known sites of metastases were demonstrated in patients with multiple solid tumor types, highlighting a potential role for the anti-PSMA antibody J591 as a vascular-targeting agent.

  8. Target-specific M1 inputs to infragranular S1 pyramidal neurons

    Science.gov (United States)

    Fanselow, Erika E.; Simons, Daniel J.

    2016-01-01

    The functional role of input from the primary motor cortex (M1) to primary somatosensory cortex (S1) is unclear; one key to understanding this pathway may lie in elucidating the cell-type specific microcircuits that connect S1 and M1. Recently, we discovered that a subset of pyramidal neurons in the infragranular layers of S1 receive especially strong input from M1 (Kinnischtzke AK, Simons DJ, Fanselow EE. Cereb Cortex 24: 2237–2248, 2014), suggesting that M1 may affect specific classes of pyramidal neurons differently. Here, using combined optogenetic and retrograde labeling approaches in the mouse, we examined the strengths of M1 inputs to five classes of infragranular S1 neurons categorized by their projections to particular cortical and subcortical targets. We found that the magnitude of M1 synaptic input to S1 pyramidal neurons varies greatly depending on the projection target of the postsynaptic neuron. Of the populations examined, M1-projecting corticocortical neurons in L6 received the strongest M1 inputs, whereas ventral posterior medial nucleus-projecting corticothalamic neurons, also located in L6, received the weakest. Each population also possessed distinct intrinsic properties. The results suggest that M1 differentially engages specific classes of S1 projection neurons, thereby regulating the motor-related influence S1 exerts over subcortical structures. PMID:27334960

  9. Application effect of TEM sounding survey on prospecting and target area selection of sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    He Jianguo; Liang Shanming; Zhao Cuiping

    2006-01-01

    Based on the results of transient electromagnetic (TEM) sounding survey during recent years regional geological reconnaissance with drilling (1:250000), the application effect of TEM sounding survey during regional reconnaissance is summarized in this paper. It is suggested that the data of TEM sounding are useful in judging hydrodynamic conditions of groundwater and determining favorable areas for uranium ore-formation; TEM sounding in large areas may be proper for prospecting in gobi-desert areas and be beneficial for regional reconnaissance and target area selection, and may reduce the target area and provide basis for further drilling program. It is of popularized significance in the prospecting for sandstone-type uranium deposits. (authors)

  10. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    Science.gov (United States)

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  11. Design specification for the European Spallation Source neutron generating target element

    International Nuclear Information System (INIS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J.M.

    2017-01-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  12. Design specification for the European Spallation Source neutron generating target element

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, A. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sordo, F., E-mail: fernando.sordo@essbilbao.org [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mora, T. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Mena, L. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Magan, M.; Vivanco, R. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Jimenez-Villacorta, F. [Consorcio ESS-BILBAO. Parque Tecnológico Bizkaia. Poligono Ugaldeguren III, Pol. A, 7B, 48170 Zamudio (Spain); Sjogreen, K.; Oden, U. [European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund (Sweden); Perlado, J.M. [Instituto de Fusión Nuclear, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); and others

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  13. CD25 targeted therapy of chemotherapy resistant leukemic stem cells using DR5 specific TRAIL peptide

    Directory of Open Access Journals (Sweden)

    Jayaprakasam Madhumathi

    2017-03-01

    Full Text Available Chemotherapy resistant leukemic stem cells (LSCs are being targeted as a modern therapeutic approach to prevent disease relapse. LSCs isolated from methotrexate resistant side population (SP of leukemic cell lines HL60 and MOLT4 exhibited high levels of CD25 and TRAIL R2/DR5 which are potential targets. Recombinant immunotoxin conjugating IL2α with TRAIL peptide mimetic was constructed for DR5 receptor specific targeting of LSCs and were tested in total cell population and LSCs. IL2-TRAIL peptide induced apoptosis in drug resistant SP cells from cell lines and showed potent cytotoxicity in PBMCs derived from leukemic patients with an efficacy of 81.25% in AML and 100% in CML, ALL and CLL. IL2-TRAIL peptide showed cytotoxicity in relapsed patient samples and was more effective than TRAIL or IL2-TRAIL proteins. Additionally, DR5 specific IL2-TRAIL peptide was effective in targeting and killing LSCs purified from cell lines [IC50: 952 nM in HL60, 714 nM in MOLT4] and relapsed patient blood samples with higher efficacy (85% than IL2-TRAIL protein (46%. Hence, CD25 and DR5 specific targeting by IL2-TRAIL peptide may be an effective strategy for targeting drug resistant leukemic cells and LSCs.

  14. atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples

    Science.gov (United States)

    2013-01-01

    Background The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets. Results Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples. Conclusions The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples. PMID:24299240

  15. α-Fetoprotein promoter-driven Cre/LoxP-switched RNA interference for hepatocellular carcinoma tissue-specific target therapy.

    Directory of Open Access Journals (Sweden)

    Yuan-Fei Peng

    Full Text Available RNA interference (RNAi has recently emerged as a potential treatment modality for hepatocellular carcinoma (HCC therapy, but the lack of cellular targets and sustained efficacy limits its application. The purpose of this study is to develop an HCC tissue-specific RNAi system and investigate its possibility for HCC treatment.Two different HCC-specific RNAi systems in which therapeutic miRNA or shRNA against target gene (Beclin 1 was directly or indirectly driven by alpha-fetoprotein promoter (AFP-miRNA and AFP-Cre/LoxP-shRNA were constructed. Human HCC cell lines (HepG2, Hep3B and HCCLM3 and non-HCC cell lines (L-02, Hela and SW1116 were infected with the systems. The effectiveness and tissue-specificity of the systems were examined by Q-PCR and western blot analysis. The efficacy of the systems was further tested in mouse model of HCC by intravenous or intratumoral administration. The feasibility of the system for HCC treatment was evaluated by applying the system as adjuvant therapy to enhance sorafenib treatment. An AFP-Cre/LoxP-shRNA system targeting Atg5 gene (AFP-Cre/LoxP-shRNA-Atg5 was constructed and its efficacy in sensitizing HCC cells (MHCC97L/PLC to sorafenib treatment was examined by apoptosis assay in vitro and tumorigenesis assay in vivo.The AFP-miRNA system could silence target gene (Beclin 1 but required a high titer which was lethal to target cells. The AFP-Cre/LoxP-shRNA system could efficiently knockdown target gene while maintain high HCC specificity. Intratumoral injection of the AFP-Cre/LoxP-shRNA system could efficiently silence target gene (Beclin 1 in vivo while intravenous administration could not. The AFP-Cre/LoxP-shRNA system target Atg5 gene could significantly sensitize MHCC97L/PLC cells to sorafenib-induced apoptosis in vitro and tumor growth suppression in vivo.An efficient HCC tissue-specific RNAi system (AFP-Cre/LoxP-shRNA was successfully established. The system provides a usable tool for HCC-specific RNAi

  16. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    Science.gov (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  17. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.

    Directory of Open Access Journals (Sweden)

    Lihua J Zhu

    Full Text Available CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at the desired target site while minimizing off-target cleavage. Because of the rapid advances in the understanding of existing CRISPR-Cas9-derived RNA-guided nucleases and the development of novel RNA-guided nuclease systems, it is critical to have computational tools that can accommodate a wide range of different parameters for the design of target-specific RNA-guided nuclease systems. We have developed CRISPRseek, a highly flexible, open source software package to identify gRNAs that target a given input sequence while minimizing off-target cleavage at other sites within any selected genome. CRISPRseek will identify potential gRNAs that target a sequence of interest for CRISPR-Cas9 systems from different bacterial species and generate a cleavage score for potential off-target sequences utilizing published or user-supplied weight matrices with position-specific mismatch penalty scores. Identified gRNAs may be further filtered to only include those that occur in paired orientations for increased specificity and/or those that overlap restriction enzyme sites. For applications where gRNAs are desired to discriminate between two related sequences, CRISPRseek can rank gRNAs based on the difference between predicted cleavage scores in each input sequence. CRISPRseek is implemented as a Bioconductor package within the R statistical programming environment, allowing it to be incorporated into computational pipelines to automate the design of gRNAs for target sequences identified in a wide variety of genome-wide analyses. CRISPRseek is available under the GNU General

  18. Sindbis Virus-Pseudotyped Lentiviral Vectors Carrying VEGFR2-Specific Nanobody for Potential Transductional Targeting of Tumor Vasculature.

    Science.gov (United States)

    Ahani, Roshank; Roohvand, Farzin; Cohan, Reza Ahangari; Etemadzadeh, Mohammad Hossein; Mohajel, Nasir; Behdani, Mahdi; Shahosseini, Zahra; Madani, Navid; Azadmanesh, Kayhan

    2016-11-01

    Introduction of selectivity/specificity into viral-based gene delivery systems, such as lentiviral vectors (LVs), is crucial in their systemic administration for cancer gene therapy. The pivotal role of tumor-associated endothelial cells (TAECs) in tumor angiogenesis and overexpression of vascular endothelial growth factor receptor-2 (VEGFR2 or KDR) in TAECs makes them a potent target in cancer treatment. Herein, we report the development of VEGFR2-targeted LVs pseudotyped with chimeric sindbis virus E2 glycoprotein (cSVE2s). For this purpose, either sequence of a VEGFR2-specific nanobody or its natural ligand (VEGF 121 ) was inserted into the binding site of sindbis virus E2 glycoprotein. In silico modeling data suggested that the inserted targeting motifs were exposed in the context of cSVE2s. Western blot analysis of LVs indicated the incorporation of cSVE2s into viral particles. Capture ELISA demonstrated the specificity/functionality of the incorporated cSVE2s. Transduction of 293/KDR (expressing VEGFR2) or 293T cells (negative control) by constructed LVs followed by fluorescent microscopy and flow cytometric analyses indicated selective transduction of 293/KDR cells (30 %) by both targeting motifs compared to 293T control cells (1-2 %). These results implied similar targeting properties of VEGFR2-specific nanobody compared to the VEGF 121 and indicated the potential for transductional targeting of tumor vasculature by the nanobody displaying LVs.

  19. Charomers-Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery.

    Science.gov (United States)

    Hahn, Ulrich

    2017-12-06

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2'-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers-in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  20. The occipital face area is causally involved in the formation of identity-specific face representations.

    Science.gov (United States)

    Ambrus, Géza Gergely; Dotzer, Maria; Schweinberger, Stefan R; Kovács, Gyula

    2017-12-01

    Transcranial magnetic stimulation (TMS) and neuroimaging studies suggest a role of the right occipital face area (rOFA) in early facial feature processing. However, the degree to which rOFA is necessary for the encoding of facial identity has been less clear. Here we used a state-dependent TMS paradigm, where stimulation preferentially facilitates attributes encoded by less active neural populations, to investigate the role of the rOFA in face perception and specifically in image-independent identity processing. Participants performed a familiarity decision task for famous and unknown target faces, preceded by brief (200 ms) or longer (3500 ms) exposures to primes which were either an image of a different identity (DiffID), another image of the same identity (SameID), the same image (SameIMG), or a Fourier-randomized noise pattern (NOISE) while either the rOFA or the vertex as control was stimulated by single-pulse TMS. Strikingly, TMS to the rOFA eliminated the advantage of SameID over DiffID condition, thereby disrupting identity-specific priming, while leaving image-specific priming (better performance for SameIMG vs. SameID) unaffected. Our results suggest that the role of rOFA is not limited to low-level feature processing, and emphasize its role in image-independent facial identity processing and the formation of identity-specific memory traces.

  1. Beams configuration design in target area with successive quadratic programming method

    International Nuclear Information System (INIS)

    Shi Zhiquan; Tan Jichun; Wei Xiaofeng; Man Jongzai; Zhang Xiaomin; Yuan Jing; Yuan Xiaodong

    1998-01-01

    The author describes the application of successive quadratic programming method (SQP) to design laser beam configuration in target area. Based on the requirement of ICF experiment physics, a math model of indirect-driver beam geometry is given. A 3D wire-frame is plotted, in which support lines represent 60 laser entireties and 240 turning points of support lines' segments stand for the spatial positions of reflectors

  2. A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells.

    Science.gov (United States)

    Shen, Zheyu; Wu, Hao; Yang, Sugeun; Ma, Xuehua; Li, Zihou; Tan, Mingqian; Wu, Aiguo

    2015-11-01

    One big challenge with active targeting of nanocarriers is non-specific binding between targeting molecules and non-target moieties expressed on non-cancerous cells, which leads to non-specific uptake of nanocarriers by non-cancerous cells. Here, we propose a novel Trojan-horse targeting strategy to hide or expose the targeting molecules of nanocarriers on-demand. The non-specific uptake by non-cancerous cells can be reduced because the targeting molecules are hidden in hydrophilic polymers. The nanocarriers are still actively targetable to cancer cells because the targeting molecules can be exposed on-demand at tumor regions. Typically, Fe3O4 nanocrystals (FN) as magnetic resonance imaging (MRI) contrast agents were encapsulated into albumin nanoparticles (AN), and then folic acid (FA) and pH-sensitive polymers (PP) were grafted onto the surface of AN-FN to construct PP-FA-AN-FN nanoparticles. Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), transmission electron microscope (TEM) and gel permeation chromatography (GPC) results confirm successful construction of PP-FA-AN-FN. According to difference of nanoparticle-cellular uptake between pH 7.4 and 5.5, the weight ratio of conjugated PP to nanoparticle FA-AN-FN (i.e. graft density) and the molecular weight of PP (i.e. graft length) are optimized to be 1.32 and 5.7 kDa, respectively. In vitro studies confirm that the PP can hide ligand FA to prevent it from binding to cells with FRα at pH 7.4 and shrink to expose FA at pH 5.5. In vivo studies demonstrate that our Trojan-horse targeting strategy can reduce the non-specific uptake of the PP-FA-AN-FN by non-cancerous cells. Therefore, our PP-FA-AN-FN might be used as an accurately targeted MRI contrast agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A new method for discovering disease-specific MiRNA-target regulatory networks.

    Directory of Open Access Journals (Sweden)

    Miriam Baglioni

    Full Text Available Genes and their expression regulation are among the key factors in the comprehension of the genesis and development of complex diseases. In this context, microRNAs (miRNAs are post-transcriptional regulators that play an important role in gene expression since they are frequently deregulated in pathologies like cardiovascular disease and cancer. In vitro validation of miRNA--targets regulation is often too expensive and time consuming to be carried out for every possible alternative. As a result, a tool able to provide some criteria to prioritize trials is becoming a pressing need. Moreover, before planning in vitro experiments, the scientist needs to evaluate the miRNA-target genes interaction network. In this paper we describe the miRable method whose purpose is to identify new potentially relevant genes and their interaction networks associate to a specific pathology. To achieve this goal miRable follows a system biology approach integrating together general-purpose medical knowledge (literature, Protein-Protein Interaction networks, prediction tools and pathology specific data (gene expression data. A case study on Prostate Cancer has shown that miRable is able to: 1 find new potential miRNA-targets pairs, 2 highlight novel genes potentially involved in a disease but never or little studied before, 3 reconstruct all possible regulatory subnetworks starting from the literature to expand the knowledge on the regulation of miRNA regulatory mechanisms.

  4. Would an obese person whistle vivaldi? Targets of prejudice self-present to minimize appearance of specific threats.

    Science.gov (United States)

    Neel, Rebecca; Neufeld, Samantha L; Neuberg, Steven L

    2013-05-01

    How do targets of stigma manage social interactions? We built from a threat-specific model of prejudice to predict that targets select impression-management strategies that address the particular threats other people see them to pose. We recruited participants from two groups perceived to pose different threats: overweight people, who are heuristically associated with disease and targeted with disgust, and Black men, who are perceived to be dangerous and targeted with fear. When stereotypes and prejudices toward their groups were made salient, overweight people (Studies 1 and 2) and Black men (Study 2) selectively prioritized self-presentation strategies to minimize apparent disease threat (wearing clean clothes) or physical-violence threat (smiling), respectively. The specific threat a group is seen to pose plays an important but underexamined role in the psychology of being a target of prejudice.

  5. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    Science.gov (United States)

    2017-01-01

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld. PMID:29211023

  6. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ulrich Hahn

    2017-12-01

    Full Text Available Interleukin-6 (IL-6 is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT. Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  7. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting

    Directory of Open Access Journals (Sweden)

    Wang SM

    2015-04-01

    Full Text Available Shan-Mei Wang,1,* Xian He,2,* Nan Li,1,* Feng Yu,3 Yang Hu,1 Liu-Sheng Wang,1 Peng Zhang,4 Yu-Kui Du,1 Shan-Shan Du,1 Zhao-Fang Yin,1 Ya-Ru Wei,1 Xavier Mulet,5 Greg Coia,6 Dong Weng,1 Jian-Hua He,3 Min Wu,7 Hui-Ping Li1 1Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 2School of Medicine, Suzhou University, SuZhou, 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 4Department of Chest Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China; 5CSIRO (Commonwealth Scientific and Industrial Research Materials Science and Engineering, Clayton, 6CSIRO Materials Science and Engineering, Parkville, Melbourne, VIC, Australia; 7Department of Basic Sciences, University of North Dakota, Grand Forks, ND, USA *These authors contributed equally to this work Abstract: Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high

  8. Technical Targets - A Tool to Support Strategic Planning in the Subsurface Contaminants Focus Area

    International Nuclear Information System (INIS)

    Looney, B.B.

    2002-01-01

    The Subsurface Contaminants Focus Area (SCFA) is supported by a lead laboratory consisting of technical representatives from DOE laboratories across the country. This broadly representative scientific group has developed and implemented a process to define Technical Targets to assist the SCFA in strategic planning and in managing their environmental research and development portfolio. At an initial meeting in Golden Colorado, an initial set of Technical Targets was identified using a rapid consensus based technical triage process. Thirteen Technical Targets were identified and described. Vital scientific and technical objectives were generated for each target. The targets generally fall into one of the following five strategic investment categories: Enhancing Environmental Stewardship, Eliminating Contaminant Sources, Isolating Contaminants, Controlling Contaminant Plumes, Enabling DOEs CleanUp Efforts. The resulting targets and the detail they comprise on what is, and what is not, needed to meet Environmental Management needs provide a comprehensive technically-based framework to assist in prioritizing future work and in managing the SCFA program

  9. Where to Go Next? Identifying Target Areas in the North Atlantic for Future Seafloor Mapping Initiatives

    Science.gov (United States)

    Woelfl, A. C.; Jencks, J.; Johnston, G.; Varner, J. D.; Devey, C. W.

    2017-12-01

    Human activities are rapidly expanding into the oceans, yet detailed bathymetric maps do not exist for most of the seafloor that would permit governments to formulate sensible usage rules. Changing this situation will require an enormous international mapping effort. To ensure that this effort is directed towards the regions most in need of mapping, we need to know which areas have already been mapped and which areas are potentially most interesting. Despite various mapping efforts in recent years, large parts of the Atlantic still lack detailed bathymetric information. To successfully plan for future mapping efforts to fill these gaps, knowledge of current data coverage is imperative to avoid duplication of effort. While certain datasets are publically available online (e.g. NOAA's NCEI, EMODnet, IHO-DCDB, LDEO's GMRT), many are not. However, with the limited information we do have at hand, the question remains, where should we map next? And what criteria should we take into account? In 2016, a study was taken on as part of the efforts of the International Atlantic Seabed Mapping Working Group (ASMIWG). The ASMIWG, established by the Tri-Partite Galway Statement Implementation Committee, was tasked to develop a cohesive seabed mapping strategy for the Atlantic Ocean. The aim of our study was to develop a reproducible process for identifying and evaluating potential target areas within the North Atlantic that represent suitable sites for future bathymetric surveys. The sites were selected by applying a GIS-based suitability analysis that included specific user group-based parameters of the marine environment. Furthermore, information regarding current data coverage were gathered to take into account in the selection process. The results reveal the suitability of sites within the North Atlantic based on the selected criteria. Three potential target sites should be seen as flexible suggestions for future mapping initiatives rather than a rigid, defined set of areas

  10. Prostate-Specific Membrane Antigen Targeted Therapy of Prostate Cancer Using a DUPA-Paclitaxel Conjugate.

    Science.gov (United States)

    Lv, Qingzhi; Yang, Jincheng; Zhang, Ruoshi; Yang, Zimeng; Yang, Zhengtao; Wang, Yongjun; Xu, Youjun; He, Zhonggui

    2018-05-07

    Prostate cancer (PCa) is the most prevalent cancer among men in the United States and remains the second-leading cause of cancer mortality in men. Paclitaxel (PTX) is the first line chemotherapy for PCa treatment, but its therapeutic efficacy is greatly restricted by the nonspecific distribution in vivo. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of most PCa cells, and its expression level increases with cancer aggressiveness, while being present at low levels in normal cells. The high expression level of PSMA in PCa cells offers an opportunity for target delivery of nonspecific cytotoxic drugs to PCa cells, thus improving therapeutic efficacy and reducing toxicity. PSMA has high affinity for DUPA, a glutamate urea ligand. Herein, a novel DUPA-PTX conjugate is developed using DUPA as the targeting ligand to deliver PTX specifically for treatment of PSMA expressing PCa. The targeting ligand DUPA enhances the transport capability and selectivity of PTX to tumor cells via PSMA mediated endocytosis. Besides, DUPA is conjugated with PTX via a disulfide bond, which facilitates the rapid and differential drug release in tumor cells. The DUPA-PTX conjugate exhibits potent cytotoxicity in PSMA expressing cell lines and induces a complete cessation of tumor growth with no obvious toxicity. Our findings give new insight into the PSMA-targeted delivery of chemotherapeutics and provide an opportunity for the development of novel active targeting drug delivery systems for PCa therapy.

  11. Tumor-specific apoptotic gene targeting overcomes radiation resistance in esophageal adenocarcinoma

    International Nuclear Information System (INIS)

    Chang, Joe Y.; Zhang Xiaochun; Komaki, Ritsuko; Cheung, Rex; Fang Bingliang

    2006-01-01

    Purpose: To overcome radiation resistance in esophageal adenocarcinoma by tumor-specific apoptotic gene targeting using tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Methods and Materials: Adenoviral vector Ad/TRAIL-F/RGD with a tumor-specific human telomerase reverse transcription promoter was used to transfer TRAIL gene to human esophageal adenocarcinoma and normal human lung fibroblastic cells (NHLF). Activation of apoptosis was analyzed by Western blot, fluorescent activated cell sorting, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate labeling (TUNEL) assay. A human esophageal adenocarcinoma mouse model was treated with intratumoral injections of Ad/TRAIL-F/RGD plus local radiotherapy. Results: The combination of Ad/TRAIL-F/RGD and radiotherapy increased the cell-killing effect in all esophageal adenocarcinoma cell lines but not in NHLF cells. This combination also significantly reduced clonogenic formation (p < 0.05) and increased sub-G1 deoxyribonucleic acid accumulation in cancer cells (p < 0.05). Activation of apoptosis by Ad/TRAIL-F/RGD plus radiotherapy was demonstrated by activation of caspase-9, caspase-8, and caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase in vitro and TUNEL assay in vivo. Combined Ad/TRAIL-F/RGD and radiotherapy dramatically inhibited tumor growth and prolonged mean survival in the esophageal adenocarcinoma model to 31.6 days from 16.7 days for radiotherapy alone and 21.5 days for Ad/TRAIL-F/RGD alone (p < 0.05). Conclusions: The combination of tumor-specific TRAIL gene targeting and radiotherapy enhances the effect of suppressing esophageal adenocarcinoma growth and prolonging survival

  12. Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis.

    Directory of Open Access Journals (Sweden)

    Juan D Unciti-Broceta

    2015-06-01

    Full Text Available African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.

  13. Spatial organization of the cytoskeleton enhances cargo delivery to specific target areas on the plasma membrane of spherical cells

    Science.gov (United States)

    Hafner, Anne E.; Rieger, Heiko

    2016-12-01

    Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell’s specific spatial organization of the cytoskeleton we formulate a random velocity model with intermittent arrest states. With extensive computer simulations we analyze the dependence of the mean first passage times for narrow escape problems on the structural characteristics of the cytoskeleton, the motor properties and the fraction of time spent in each state. We find that an inhomogeneous architecture with a small width of the actin cortex constitutes an efficient intracellular search strategy.

  14. Spatial organization of the cytoskeleton enhances cargo delivery to specific target areas on the plasma membrane of spherical cells.

    Science.gov (United States)

    Hafner, Anne E; Rieger, Heiko

    2016-11-15

    Intracellular transport is vital for the proper functioning and survival of a cell. Cargo (proteins, vesicles, organelles, etc) is transferred from its place of creation to its target locations via molecular motor assisted transport along cytoskeletal filaments. The transport efficiency is strongly affected by the spatial organization of the cytoskeleton, which constitutes an inhomogeneous, complex network. In cells with a centrosome microtubules grow radially from the central microtubule organizing center towards the cell periphery whereas actin filaments form a dense meshwork, the actin cortex, underneath the cell membrane with a broad range of orientations. The emerging ballistic motion along filaments is frequently interrupted due to constricting intersection nodes or cycles of detachment and reattachment processes in the crowded cytoplasm. In order to investigate the efficiency of search strategies established by the cell's specific spatial organization of the cytoskeleton we formulate a random velocity model with intermittent arrest states. With extensive computer simulations we analyze the dependence of the mean first passage times for narrow escape problems on the structural characteristics of the cytoskeleton, the motor properties and the fraction of time spent in each state. We find that an inhomogeneous architecture with a small width of the actin cortex constitutes an efficient intracellular search strategy.

  15. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting.

    Science.gov (United States)

    Wu, Shwu-Yuan; Lee, A-Young; Lai, Hsien-Tsung; Zhang, Hong; Chiang, Cheng-Ming

    2013-03-07

    Bromodomain-containing protein 4 (Brd4) is an epigenetic reader and transcriptional regulator recently identified as a cancer therapeutic target for acute myeloid leukemia, multiple myeloma, and Burkitt's lymphoma. Although chromatin targeting is a crucial function of Brd4, there is little understanding of how bromodomains that bind acetylated histones are regulated, nor how the gene-specific activity of Brd4 is determined. Via interaction screen and domain mapping, we identified p53 as a functional partner of Brd4. Interestingly, Brd4 association with p53 is modulated by casein kinase II (CK2)-mediated phosphorylation of a conserved acidic region in Brd4 that selectively contacts either a juxtaposed bromodomain or an adjacent basic region to dictate the ability of Brd4 binding to chromatin and also the recruitment of p53 to regulated promoters. The unmasking of bromodomains and activator recruitment, concurrently triggered by the CK2 phospho switch, provide an intriguing mechanism for gene-specific targeting by a universal epigenetic reader. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Targeting therapeutics to the glomerulus with nanoparticles.

    Science.gov (United States)

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  17. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames.

    Science.gov (United States)

    Liang, Xue-Hai; Shen, Wen; Crooke, Stanley T

    2017-01-01

    A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.

  18. Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Directory of Open Access Journals (Sweden)

    Michael C. Gong

    1999-06-01

    Full Text Available The expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells.

  19. Targeted Delivery of LXR Agonist Using a Site-Specific Antibody-Drug Conjugate.

    Science.gov (United States)

    Lim, Reyna K V; Yu, Shan; Cheng, Bo; Li, Sijia; Kim, Nam-Jung; Cao, Yu; Chi, Victor; Kim, Ji Young; Chatterjee, Arnab K; Schultz, Peter G; Tremblay, Matthew S; Kazane, Stephanie A

    2015-11-18

    Liver X receptor (LXR) agonists have been explored as potential treatments for atherosclerosis and other diseases based on their ability to induce reverse cholesterol transport and suppress inflammation. However, this therapeutic potential has been hindered by on-target adverse effects in the liver mediated by excessive lipogenesis. Herein, we report a novel site-specific antibody-drug conjugate (ADC) that selectively delivers a LXR agonist to monocytes/macrophages while sparing hepatocytes. The unnatural amino acid para-acetylphenylalanine (pAcF) was site-specifically incorporated into anti-CD11a IgG, which binds the α-chain component of the lymphocyte function-associated antigen 1 (LFA-1) expressed on nearly all monocytes and macrophages. An aminooxy-modified LXR agonist was conjugated to anti-CD11a IgG through a stable, cathepsin B cleavable oxime linkage to afford a chemically defined ADC. The anti-CD11a IgG-LXR agonist ADC induced LXR activation specifically in human THP-1 monocyte/macrophage cells in vitro (EC50-27 nM), but had no significant effect in hepatocytes, indicating that payload delivery is CD11a-mediated. Moreover, the ADC exhibited higher-fold activation compared to a conventional synthetic LXR agonist T0901317 (Tularik) (3-fold). This novel ADC represents a fundamentally different strategy that uses tissue targeting to overcome the limitations of LXR agonists for potential use in treating atherosclerosis.

  20. Specificity in the interaction of natural products with their target proteins--a biochemical and structural insight.

    Science.gov (United States)

    Venkatraman, Prasanna

    2010-06-01

    Natural products are an abundant source of anti cancer agents. They act as cytotoxic drugs, and inhibitors of apoptosis, transcription, cell proliferation and angiogenesis. While pathways targeted by natural products have been well studied, there is paucity of information about the in vivo molecular target/s of these compounds. This review summarizes some of the natural compounds for which the molecular targets, mechanism of action and structural basis of specificity have been well documented. These examples illustrate that 'off target' binding can be explained on the basis of diversity inherent to biomolecular interactions. There is enough evidence to suggest that natural compounds are potent and versatile warheads that can be optimized for a multi targeted therapeutic intervention in cancer.

  1. Neutronics and radiation field studies for the RIA fragmentation target area

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Susana [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)]. E-mail: reyes20@llnl.gov; Boles, Jason L. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P.O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kw for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  2. Neutronics and radiation field studies for the RIA fragmentation target area

    Science.gov (United States)

    Reyes, Susana; Boles, Jason L.; Ahle, Larry E.; Stein, Werner

    2006-06-01

    Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kW for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions.

  3. Summary of the target-blanket breakout group

    Energy Technology Data Exchange (ETDEWEB)

    Capiello, M.; Bell, C. [Los Alamos National Laboratory, NM (United States); Barthold, W.

    1995-10-01

    This breakout group discussed a number of topics and issues pertaining to target and blanket concepts for accelerator-driven systems. This major component area is one marked by a broad spectrum of technical approaches. It is therefore less defined than other major component areas such as the accelerator and is at an earlier stage of technical needs and task specification. The working group did reach a number of general conclusions and recommendations that are summarized. The Conference and the Target/Blanket Breakout Group provided a first opportunity for people working on a variety of missions and concepts to get together and exchange information. A number of subcritical systems applicable for a spectrum of missions were proposed at the Conference and discussed in the Breakout Group. Missions included plutonium disposition, energy production, waste destruction, isotope production, and neutron scattering. The Target/Blanket Breakout Group also defined areas where parameters and data should be addressed as target/blanket design activities become more detailed and sophisticated.

  4. Hypoxia- and radiation-inducible, breast cell-specific targeting of retroviral vectors

    International Nuclear Information System (INIS)

    Lipnik, Karoline; Greco, Olga; Scott, Simon; Knapp, Elzbieta; Mayrhofer, Elisabeth; Rosenfellner, Doris; Guenzburg, Walter H.; Salmons, Brian; Hohenadl, Christine

    2006-01-01

    To facilitate a more efficient radiation and chemotherapy of mammary tumours, synthetic enhancer elements responsive to hypoxia and ionizing radiation were coupled to the mammary-specific minimal promoter of the murine whey acidic protein (WAP) encoding gene. The modified WAP promoter was introduced into a retroviral promoter conversion (ProCon) vector. Expression of a transduced reporter gene in response to hypoxia and radiation was analysed in stably infected mammary cancer cell lines and an up to 9-fold increase in gene expression demonstrated in comparison to the respective basic vector. Expression analyses in vitro, moreover, demonstrated a widely preserved mammary cell-specific promoter activity. For in vivo analyses, xenograft tumours consisting of infected human mammary adenocarcinoma cells were established in SCID/beige mice. Immunohistochemical analyses demonstrated a hypoxia-specific, markedly increased WAP promoter-driven expression in these tumours. Thus, this retroviral vector will facilitate a targeted gene therapeutic approach exploiting the unique environmental condition in solid tumours

  5. Wildlife detection dog training: A case study on achieving generalization between target odor variations while retaining specificity

    NARCIS (Netherlands)

    Oldenburg, Cor; Schoon, Adee; Heitkönig, I.M.A.

    2016-01-01

    Wildlife detection dogs are required to correctly discriminate target wildlife species odor from nontarget
    species odors (specificity), while enabling some degree of target odor variation (generality). Because
    there is no standardized training protocol, and little knowledge on training

  6. Prostate specific membrane antigen- a target for imaging and therapy with radionuclides

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Choyke, Peter L; Capala, Jacek

    2010-01-01

    Prostate cancer continues to represent a major health problem, and yet there is no effective treatment available for advanced metastatic disease. Thus, there is an urgent need for the development of more effective treatment modalities that could improve the outcome. Because prostate specific...... membrane antigen (PSMA), a transmembrane protein, is expressed by virtually all prostate cancers, and its expression is further increased in poorly differentiated, metastatic, and hormone-refractory carcinomas, it is a very attractive target. Molecules targeting PSMA can be labelled with radionuclides...... to become both diagnostic and/or therapeutic agents. The use of PSMA binding agents, labelled with diagnostic and therapeutic radio-isotopes, opens up the potential for a new era of personalized management of metastatic prostate cancer....

  7. Specific Depletion of Myelin-Reactive B Cells via BCR-Targeting.

    Science.gov (United States)

    Stepanov, A V; Belogurov, A A; Kothapalli, P; Shamborant, O G; Knorre, V D; Telegin, G B; Ovsepyan, A A; Ponomarenko, N A; Deyev, S M; Kaveri, S V; Gabibov, A G

    2015-01-01

    B cells play a crucial role in the development and pathogenesis of systemic and organ-specific autoimmune diseases. Autoreactive B cells not only produce antibodies, but also secrete pro-inflammatory cytokines and present specific autoantigens to T cells. The treatment of autoimmune diseases via the elimination of the majority of B cells using the monoclonal anti-CD19/20 antibody (Rituximab) causes systemic side effects and, thus, requires a major revision. Therapeutic intervention directed towards selective elimination of pathogenic autoreactive B cells has the potential to become a universal approach to the treatment of various autoimmune abnormalities. Here, we developed a recombinant immunotoxin based on the immunodominant peptide of the myelin basic protein (MBP), fused to the antibody Fc domain. We showed that the obtained immunotoxin provides selective in vivo elimination of autoreactive B cells in mice with experimental autoimmune encephalomyelitis. The proposed conception may be further used for the development of new therapeutics for a targeted treatment of multiple sclerosis and other autoimmune disorders.

  8. Targeting and tracing of specific DNA sequences with dTALEs in living cells

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-01-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation. PMID:24371265

  9. Targeting and tracing of specific DNA sequences with dTALEs in living cells.

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-04-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation.

  10. Recall of "The Real Cost" Anti-Smoking Campaign Is Specifically Associated With Endorsement of Campaign-Targeted Beliefs.

    Science.gov (United States)

    Kranzler, Elissa C; Gibson, Laura A; Hornik, Robert C

    2017-10-01

    Though previous research suggests the FDA's "The Real Cost" anti-smoking campaign has reduced smoking initiation, the theorized pathway of effects (through targeted beliefs) has not been evaluated. This study assesses the relationship between recall of campaign television advertisements and ad-specific anti-smoking beliefs. Respondents in a nationally representative survey of nonsmoking youths age 13-17 (n = 4,831) reported exposure to four The Real Cost advertisements and a fake ad, smoking-relevant beliefs, and nonsmoking intentions. Analyses separately predicted each targeted belief from specific ad recall, adjusting for potential confounders and survey weights. Parallel analyses with non-targeted beliefs showed smaller effects, strengthening claims of campaign effects. Recall of four campaign ads (but not the fake ad) significantly predicted endorsement of the ad-targeted belief (Mean β = .13). Two-sided sign tests indicated stronger ad recall associations with the targeted belief relative to the non-targeted belief (p < .05). Logistic regression analyses indicated that respondents who endorsed campaign-targeted beliefs were more likely to have no intention to smoke (p < .01). This study is the first to demonstrate a relationship between recall of ads from The Real Cost campaign and the theorized pathway of effects (through targeted beliefs). These analyses also provide a methodological template for showing campaign effects despite limitations of available data.

  11. Scale-up of high specific activity {sup 186g}Re production using graphite-encased thick {sup 186}W targets and demonstration of an efficient target recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric [Washington Univ., Seattle, WA (United States). Dept. of Radiation Oncology; and others

    2017-07-01

    Production of high specific activity {sup 186g}Re is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity {sup 186g}Re can be obtained by cyclotron irradiation of enriched {sup 186}W via the {sup 186}W(d,2n){sup 186g}Re reaction, but most irradiations were conducted at low beam currents and for short durations. In this investigation, enriched {sup 186}W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched {sup 186}W metal encased between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick {sup 186}W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the {sup 186}W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. To demonstrate scaled-up production, a graphite-encased {sup 186}W target made from recycled {sup 186}W was irradiated for ∝2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of {sup 186g}Re, decay-corrected to the end of bombardment. ICP-MS analysis of the

  12. Area-Specific Cell Stimulation via Surface-Mediated Gene Transfer Using Apatite-Based Composite Layers

    Directory of Open Access Journals (Sweden)

    Yushin Yazaki

    2015-04-01

    Full Text Available Surface-mediated gene transfer systems using biocompatible calcium phosphate (CaP-based composite layers have attracted attention as a tool for controlling cell behaviors. In the present study we aimed to demonstrate the potential of CaP-based composite layers to mediate area-specific dual gene transfer and to stimulate cells on an area-by-area basis in the same well. For this purpose we prepared two pairs of DNA–fibronectin–apatite composite (DF-Ap layers using a pair of reporter genes and pair of differentiation factor genes. The results of the area-specific dual gene transfer successfully demonstrated that the cells cultured on a pair of DF-Ap layers that were adjacently placed in the same well showed specific gene expression patterns depending on the gene that was immobilized in theunderlying layer. Moreover, preliminary real-time PCR results indicated that multipotential C3H10T1/2 cells may have a potential to change into different types of cells depending on the differentiation factor gene that was immobilized in the underlying layer, even in the same well. Because DF-Ap layers have a potential to mediate area-specific cell stimulation on their surfaces, they could be useful in tissue engineering applications.

  13. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    Science.gov (United States)

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  14. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    Energy Technology Data Exchange (ETDEWEB)

    Bouriaud, O. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France); Soudani, K. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Lab. Ecologie Systematique et Evolution, Orsay Cedex (France); Breda, N. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France)

    2003-06-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m{sup 2}{center_dot}g{sup -1}) is used to convert dry leaf litter biomass (g .m{sup -}2) into leaf area per ground unit area (m{sup 2}{center_dot}m{sup -2}). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m{sup 2}) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm{sup 2}{center_dot}g{sup -1}. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant

  15. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    International Nuclear Information System (INIS)

    Bouriaud, O.; Soudani, K.; Breda, N.

    2003-01-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m 2 ·g -1 ) is used to convert dry leaf litter biomass (g .m - 2) into leaf area per ground unit area (m 2 ·m -2 ). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m 2 ) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm 2 ·g -1 . Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA

  16. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2010-03-01

    This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: • Clearing bomblet target areas within the study area. • Identifying and remediating disposal pits. • Collecting verification samples. • Performing radiological screening of soil. • Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

  17. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1

    International Nuclear Information System (INIS)

    Krauss, Mark

    2010-01-01

    This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: (1) Clearing bomblet target areas within the study area. (2) Identifying and remediating disposal pits. (3) Collecting verification samples. (4) Performing radiological screening of soil. (5) Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

  18. Spatial risk for gender-specific adult mortality in an area of southern China

    Directory of Open Access Journals (Sweden)

    Ochiai Rion

    2007-07-01

    Full Text Available Abstract Background Although economic reforms have brought significant benefits, including improved health care to many Chinese people, accessibility to improved care has not been distributed evenly throughout Chinese society. Also, the effects of the uneven distribution of improved healthcare are not clearly understood. Evidence suggests that mortality is an indicator for evaluating accessibility to improved health care services. We constructed spatially smoothed risk maps for gender-specific adult mortality in an area of southern China comprising both urban and rural areas and identified ecological factors of gender-specific mortality across societies. Results The study analyzed the data of the Hechi Prefecture in southern in China. An average of 124,204 people lived in the area during the study period (2002–2004. Individual level data for 2002–2004 were grouped using identical rectangular cells (regular lattice of 0.25 km2. Poisson regression was fitted to the group level data to identify gender-specific ecological factors of adult (ages 15– Conclusion We found a disparity in mortality rates between rural and urban areas in the study area in southern China, especially for adult men. There were also differences in mortality rates between poorer and wealthy populations in both rural and urban areas, which may in part reflect differences in health care quality. Spatial influences upon adult male versus adult female mortality difference underscore the need for more research on gender-related influences on adult mortality in China.

  19. Virus Capsids as Targeted Nanoscale Delivery Vessels of Photoactive Compounds for Site-Specific Photodynamic Therapy

    Science.gov (United States)

    Cohen, Brian A.

    The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin

  20. The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail

    Science.gov (United States)

    Chen, Su-Ren; Batool, Aalia; Wang, Yu-Qian; Hao, Xiao-Xia; Chang, Chawn-Shang; Cheng, C Yan; Liu, Yi-Xun

    2016-01-01

    Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms ‘spermiogenesis failure', ‘globozoospermia', ‘spermatid-specific', ‘acrosome', ‘infertile', ‘manchette', ‘sperm connecting piece', ‘sperm annulus', ‘sperm ADAMs', ‘flagellar abnormalities', ‘sperm motility loss', ‘sperm ion exchanger' and ‘contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific

  1. Associations among Life Events, Empathic Concern, and Adolescents' Prosocial and Aggressive Behaviors Toward Specific Targets.

    Science.gov (United States)

    Davis, Alexandra N; Luce, Haley; Davalos, Natasha

    2018-05-25

    The goal of the present study was to examine the links between life events and adolescents' social behaviors (prosocial and aggressive behaviors) toward specific targets and to examine how empathic concern may play a role in these associations. The study examined two hypotheses: both the mediating role of empathic concern and the moderating role of empathic concern. The sample included 311 high school students from the Midwest (M age = 16.10 years; age range = 14-19 years; 58.7% girls; 82.7% White, 13.6% Latino). The results demonstrated support for the moderation model as well as complex links between life events and prosocial and aggressive behaviors toward specific targets. The discussion focuses on the role of empathic concern in understanding how life events are ultimately associated with adolescents' social development.

  2. Specificity of Plasma Membrane Targeting by the Rous Sarcoma Virus Gag Protein

    OpenAIRE

    Scheifele, Lisa Z.; Rhoads, Jonathan D.; Parent, Leslie J.

    2003-01-01

    Budding of C-type retroviruses begins when the viral Gag polyprotein is directed to the plasma membrane by an N-terminal membrane-binding (M) domain. While dispersed basic amino acids within the M domain are critical for stable membrane association and consequent particle assembly, additional residues or motifs may be required for specific plasma membrane targeting and binding. We have identified an assembly-defective Rous sarcoma virus (RSV) Gag mutant that retains significant membrane affin...

  3. The relation between societal factors and different forms of prejudice: A cross-national approach on target-specific and generalized prejudice.

    Science.gov (United States)

    Meeusen, Cecil; Kern, Anna

    2016-01-01

    The goal of this paper was to investigate the generalizability of prejudice across contexts by analyzing associations between different types of prejudice in a cross-national perspective and by investigating the relation between country-specific contextual factors and target-specific prejudices. Relying on the European Social Survey (2008), results indicated that prejudices were indeed positively associated, confirming the existence of a generalized prejudice component. Next to substantial cross-national differences in associational strength, also within country variance in target-specific associations was observed. This suggested that the motivations for prejudice largely vary according to the intergroup context. Two aspects of the intergroup context - economic conditions and cultural values - showed to be related to generalized and target-specific components of prejudice. Future research on prejudice and context should take an integrative approach that considers both the idea of generalized and specific prejudice simultaneously. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area

    KAUST Repository

    El-Amin, Mohamed

    2015-06-01

    In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as pc–Sw–awn surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling.

  5. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Science.gov (United States)

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  6. Strand Invasion Based Amplification (SIBA®: a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Directory of Open Access Journals (Sweden)

    Mark J Hoser

    Full Text Available Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA. SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  7. 200 Area Treated Effluent Disposal Facility operational test specification. Revision 2

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met. The technical requirements for operational testing of the 200 Area TEDF are defined by the test requirements presented in Appendix A. These test requirements demonstrate the following: pump station No.1 and associated support equipment operate both automatically and manually; pump station No. 2 and associated support equipment operate both automatically and manually; water is transported through the collection and transfer lines to the disposal ponds with no detectable leakage; the disposal ponds accept flow from the transfer lines with all support equipment operating as designed; and the control systems operate and status the 200 Area TEDF including monitoring of appropriate generator discharge parameters

  8. Branch age and light conditions determine leaf-area-specific conductivity in current shoots of Scots pine.

    Science.gov (United States)

    Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki

    2016-08-01

    Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Methotrexate transport mechanisms: the basis for targeted drug delivery and ß-folate-receptor-specific treatment.

    Science.gov (United States)

    Fiehn, C

    2010-01-01

    Methotrexate (MTX) plays a pivotal role in the treatment of rheumatoid arthritis (RA). The transport mechanisms with which MTX reaches is target after application are an important part of MTX pharmacology and its concentration in target tissue such as RA synovial membrane might strongly influence the effectiveness of the drug. Physiological plasma protein binding of MTX to albumin is important for the distribution of MTX in the body and relative high concentrations of the drug are found in the liver. However, targeted drug delivery into inflamed joints and increased anti-arthritic efficiency can be obtained by covalent coupling of MTX ex-vivo to human serum albumin (MTX-HSA) or in-vivo to endogenous albumin mediated through the MTX-pro-drug AWO54. High expression of the folate receptor β (FR-β) on synovial macrophages of RA patients and its capacity to mediate binding and uptake of MTX has been demonstrated. To further improve drug treatment of RA, FR-β specific drugs have been developed and were characterised for their therapeutic potency in synovial inflammation. Therefore, different approaches to improve folate inhibitory and FR-β specific therapy of RA beyond MTX are in development and will be described.

  10. Specific and selective target detection of supra-genome 21 Mers Salmonella via silicon nanowires biosensor

    Science.gov (United States)

    Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.

    2017-09-01

    The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.

  11. Influence of the Target Vessel on the Location and Area of Maximum Skin Dose during Percutaneous Coronary Intervention

    International Nuclear Information System (INIS)

    Chida, K.; Fuda, K.; Kagaya, Y.; Saito, H.; Takai, Y.; Kohzuki, M.; Takahash i, S.; Yamada, S.; Zuguchi, M.

    2007-01-01

    Background: A number of cases involving radiation-associated patient skin injury attributable to percutaneous coronary intervention (PCI) have been reported. Knowledge of the location and area of the patient's maximum skin dose (MSD) in PCI is necessary to reduce the risk of skin injury. Purpose: To determine the location and area of the MSD in PCI, and separately analyze the effects of different target vessels. Material and Methods: 197 consecutive PCI procedures were studied, and the location and area of the MSD were calculated by a skin-dose mapping software program: Caregraph. The target vessels of the PCI procedures were divided into four groups based on the American Heart Association (AHA) classification. Results: The sites of the MSD for AHA no.1-3, AHA no.4, and AHA no.11-15 were located mainly on the right back skin, the lower right or center back skin, and the upper back skin areas, respectively, whereas the MSD sites for the AHA no. 5-10 PCI were widely spread. The MSD area for the AHA no. 4 PCI was larger than that for the AHA no. 11-15 PCI (P<0.0001). Conclusion: Although the radiation associated with PCI can be widely spread and variable, we observed a tendency regarding the location and area of the MSD when we separately analyzed the data for different target vessels. We recommend the use of a smaller radiation field size and the elimination of overlapping fields during PCI

  12. Tumor-specific RNA interference targeting Pokemon suppresses tumor growth and induces apoptosis in prostate cancer.

    Science.gov (United States)

    Li, Yining; Xu, Shuxiong; Wang, Xiangwei; Shi, Hua; Sun, Zhaolin; Yang, Zhao

    2013-02-01

    To explore the exact mechanism of Pokemon in prostate cancer. Pokemon is a member of the POK family of transcriptional repressors. Its main function is suppression of the p14ARF (alternate reading frame) tumor suppressor gene. Although Pokemon expression has been found to be increased in various types of lymphoma, the exact mechanism of the gene in prostate cancer is not clear. In the present study, prostate cancer cells were transfected with the specific short hairpin ribonucleic acid (RNA) expression vector targeting Pokemon. The expression of Pokemon messenger RNA and its protein was detected by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively. The cell growth and cell apoptosis were also examined using the methyl thiazolyl tetrazolium assay and flow cytometry. The results demonstrated that specific RNA interference (RNAi) could decrease the expression levels of Pokemon gene messenger RNA and protein in prostate cancer cells. In addition, that specific RNAi significantly inhibited the cell proliferation and increased the apoptotic rate. In vivo experiments showed that specific RNAi inhibited the tumorigenicity of prostate cancer cells and significantly suppressed tumor growth. Therefore, an RNAi-targeted Pokemon gene strategy could be a potential approach to prostate cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2014-04-01

    Full Text Available Underground research laboratories (URLs, including “generic URLs” and “site-specific URLs”, are underground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW disposal. In addition to the generic URL and site-specific URL, a concept of “area-specific URL”, or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a “generic URL”, but also acts as a “site-specific URL” to some extent. Considering the current situation in China, the most suitable option is to build an “area-specific URL” in Beishan area, the first priority region for China's high-level waste repository. With this strategy, the goal to build China's URL by 2020 may be achieved, but the time left is limited.

  14. New design targets and new automated technology for the production of radionuclides with high specificity radioactivity in nuclear research reactors

    International Nuclear Information System (INIS)

    Gerasimov, A.S.; Kiselev, G.V.

    1997-01-01

    Current demands of industry require the application of radionuclides with high specific radioactivity under low consumption of neutrons. To provide this aim staff of ITEP Reactor Department investigated the different type AEs of start targets for the production of the main radionuclides; Co-60, Ir-192 and others. In first turn the targets of Co and Ir without the block-effect of neutron flux (with low absorption of neutrons) were investigated. The following principal results were received for example for Ir-192: block effect is equal 0.086 for diameter of Ir target mm and is equal 0.615 for diameter Ir target 0.5mm. It means average neutron flux for Ir target diameter 0.5mm and therefore the production of Ir-192 will be at 10 times more than for diameter 6.0mm. To provide the automated technology of the manufacture of radioactive sources with radionuclides with high specific radioactivity it was proposed that the compound targets for the irradiation of ones and for the management with the irradiated targets. Different types of compound targets were analyzed. (authors)

  15. Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area

    Science.gov (United States)

    Liao, M. W.; Chung, C. K.

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D-3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W-185 W for 1 h at a working pressure of 2.5 × 10-1 Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  16. Subcellular Targeting of Methylmercury Lyase Enhances Its Specific Activity for Organic Mercury Detoxification in Plants1

    Science.gov (United States)

    Bizily, Scott P.; Kim, Tehryung; Kandasamy, Muthugapatti K.; Meagher, Richard B.

    2003-01-01

    Methylmercury is an environmental pollutant that biomagnifies in the aquatic food chain with severe consequences for humans and other animals. In an effort to remove this toxin in situ, we have been engineering plants that express the bacterial mercury resistance enzymes organomercurial lyase MerB and mercuric ion reductase MerA. In vivo kinetics experiments suggest that the diffusion of hydrophobic organic mercury to MerB limits the rate of the coupled reaction with MerA (Bizily et al., 2000). To optimize reaction kinetics for organic mercury compounds, the merB gene was engineered to target MerB for accumulation in the endoplasmic reticulum and for secretion to the cell wall. Plants expressing the targeted MerB proteins and cytoplasmic MerA are highly resistant to organic mercury and degrade organic mercury at 10 to 70 times higher specific activity than plants with the cytoplasmically distributed wild-type MerB enzyme. MerB protein in endoplasmic reticulum-targeted plants appears to accumulate in large vesicular structures that can be visualized in immunolabeled plant cells. These results suggest that the toxic effects of organic mercury are focused in microenvironments of the secretory pathway, that these hydrophobic compartments provide more favorable reaction conditions for MerB activity, and that moderate increases in targeted MerB expression will lead to significant gains in detoxification. In summary, to maximize phytoremediation efficiency of hydrophobic pollutants in plants, it may be beneficial to target enzymes to specific subcellular environments. PMID:12586871

  17. Area-specific migration and recruitment of new neurons in the adult songbird brain

    DEFF Research Database (Denmark)

    Vellema, Michiel; Van der Linden, Annemie; Gahr, Manfred

    2010-01-01

    sensitive to plastic changes, such as nucleus higher vocal center (HVC) and area X, recruited similar numbers of new neurons as their surrounding brain tissues, employing no specific directional mechanisms. The distribution pattern in and around HVC could best be described by a random displacement model......Neuron recruitment has been implicated in morphological and functional plasticity in the adult brain. Whereas mammals restrict neuron recruitment specifically to two regions of known plasticity, the hippocampus and olfactory bulb, newborn neurons are found throughout the forebrain of adult...... songbirds. In order to study the area-specificity of the widespread proliferation and recruitment in the songbird brain, six adult male canaries received repetitive intraperitoneal injections of the mitotic marker BrdU (5-bromo-2-deoxyuridine) and were sacrificed after 24 hours to study proliferation...

  18. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    Science.gov (United States)

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  19. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.

    Science.gov (United States)

    Ghebremichael, Lula T; Veith, Tamie L; Hamlett, James M

    2013-01-15

    Quantitative risk assessments of pollution and data related to the effectiveness of mitigating best management practices (BMPs) are important aspects of nonpoint source pollution control efforts, particularly those driven by specific water quality objectives and by measurable improvement goals, such as the total maximum daily load (TMDL) requirements. Targeting critical source areas (CSAs) that generate disproportionately high pollutant loads within a watershed is a crucial step in successfully controlling nonpoint source pollution. The importance of watershed simulation models in assisting with the quantitative assessments of CSAs of pollution (relative to their magnitudes and extents) and of the effectiveness of associated BMPs has been well recognized. However, due to the distinct disconnect between the hydrological scale in which these models conduct their evaluation and the farm scale at which feasible BMPs are actually selected and implemented, and due to the difficulty and uncertainty involved in transferring watershed model data to farm fields, there are limited practical applications of these tools in the current nonpoint source pollution control efforts by conservation specialists for delineating CSAs and planning targeting measures. There are also limited approaches developed that can assess impacts of CSA-targeted BMPs on farm productivity and profitability together with the assessment of water quality improvements expected from applying these measures. This study developed a modeling framework that integrates farm economics and environmental aspects (such as identification and mitigation of CSAs) through joint use of watershed- and farm-scale models in a closed feedback loop. The integration of models in a closed feedback loop provides a way for environmental changes to be evaluated with regard to the impact on the practical aspects of farm management and economics, adjusted or reformulated as necessary, and revaluated with respect to effectiveness of

  20. Sex differences in the vaccine-specific and non-targeted effects of vaccines

    DEFF Research Database (Denmark)

    Flanagan, Katie L; Klein, Sabra L; Skakkebaek, Niels E

    2011-01-01

    Vaccines have non-specific effects (NSE) on subsequent morbidity and mortality from non-vaccine related infectious diseases. Thus NSE refers to any effect that cannot be accounted for by the induction of immunity against the vaccine-targeted disease. These effects are sex-differential, generally...... being more pronounced in females than males. Furthermore, the NSE are substantial causing greater than fifty percent changes in all cause mortality in certain settings, yet have never been systematically tested despite the fact that millions of children receive vaccines each year. As we strive...... to eliminate infectious diseases through vaccination programmes, the relative impact of NSE of vaccines on mortality is likely to increase, raising important questions regarding the future of certain vaccine schedules. A diverse group of scientists met in Copenhagen to discuss non-specific and sex...

  1. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI.

    Science.gov (United States)

    Aggarwal, Manisha; Nauen, David W; Troncoso, Juan C; Mori, Susumu

    2015-01-15

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n=3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers-layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    Energy Technology Data Exchange (ETDEWEB)

    Stetson, Ned T., E-mail: ned.stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); McWhorter, Scott [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-12-15

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided.

  3. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    International Nuclear Information System (INIS)

    Stetson, Ned T.; Ordaz, Grace; Adams, Jesse; Randolph, Katie; McWhorter, Scott

    2013-01-01

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided

  4. The specific targeting of immune regulation

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2012-01-01

    as well as dendritic cells. Consequently, IDO may serve as a widely applicable target for immunotherapeutic strategies with a completely different function as well as expression pattern compared to previously described antigens. IDO constitutes a significant counter-regulatory mechanism induced by pro...

  5. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Susumu eUehara

    2016-02-01

    Full Text Available Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

  6. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    Science.gov (United States)

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Specific surface area of overlapping spheres in the presence of obstructions.

    Science.gov (United States)

    Jenkins, D R

    2013-02-21

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  8. Improving specificity of Bordetella pertussis detection using a four target real-time PCR.

    Directory of Open Access Journals (Sweden)

    Helena Martini

    Full Text Available The incidence of whooping cough, a contagious respiratory disease caused by Bordetella pertussis, is on the rise despite existing vaccination programmes. Similar, though usually milder, respiratory symptoms may be caused by other members of the Bordetella genus: B. parapertussis, B. holmesii, and B. bronchiseptica. Pertussis diagnosis is mostly done using PCR, but the use of multiple targets is necessary in order to differentiate the different Bordetella spp. with sufficient sensitivity and specificity. In this study we evaluate a multiplex PCR assay for the differentiation of B. pertussis from other Bordetella spp., using the targets IS481, IS1001, IS1002, and recA. Moreover, we retrospectively explore the epidemiology of Bordetella spp. infections in Belgium, using the aforementioned assay over a three-year period, from 2013 until 2015.

  9. Improving specificity of Bordetella pertussis detection using a four target real-time PCR

    Science.gov (United States)

    Detemmerman, Liselot; Soetens, Oriane; Yusuf, Erlangga; Piérard, Denis

    2017-01-01

    The incidence of whooping cough, a contagious respiratory disease caused by Bordetella pertussis, is on the rise despite existing vaccination programmes. Similar, though usually milder, respiratory symptoms may be caused by other members of the Bordetella genus: B. parapertussis, B. holmesii, and B. bronchiseptica. Pertussis diagnosis is mostly done using PCR, but the use of multiple targets is necessary in order to differentiate the different Bordetella spp. with sufficient sensitivity and specificity. In this study we evaluate a multiplex PCR assay for the differentiation of B. pertussis from other Bordetella spp., using the targets IS481, IS1001, IS1002, and recA. Moreover, we retrospectively explore the epidemiology of Bordetella spp. infections in Belgium, using the aforementioned assay over a three-year period, from 2013 until 2015. PMID:28403204

  10. Reimbursement of targeted cancer therapies within 3 different European health care systems

    NARCIS (Netherlands)

    Mihajlović, Jovan; Dolk, Christiaan; Tolley, Keith; Simoens, Steven; Postma, Maarten J.

    2015-01-01

    PURPOSE: Targeted cancer therapies (TCTs) are drugs that specifically act on molecular targets within the cancer cell, causing its regression and/or destruction. Although TCTs offer clinically important gains in survival in one of the most challenging therapeutic areas, these gains are followed by

  11. Collaborative 3D Target Tracking in Distributed Smart Camera Networks for Wide-Area Surveillance

    Directory of Open Access Journals (Sweden)

    Xenofon Koutsoukos

    2013-05-01

    Full Text Available With the evolution and fusion of wireless sensor network and embedded camera technologies, distributed smart camera networks have emerged as a new class of systems for wide-area surveillance applications. Wireless networks, however, introduce a number of constraints to the system that need to be considered, notably the communication bandwidth constraints. Existing approaches for target tracking using a camera network typically utilize target handover mechanisms between cameras, or combine results from 2D trackers in each camera into 3D target estimation. Such approaches suffer from scale selection, target rotation, and occlusion, drawbacks typically associated with 2D tracking. In this paper, we present an approach for tracking multiple targets directly in 3D space using a network of smart cameras. The approach employs multi-view histograms to characterize targets in 3D space using color and texture as the visual features. The visual features from each camera along with the target models are used in a probabilistic tracker to estimate the target state. We introduce four variations of our base tracker that incur different computational and communication costs on each node and result in different tracking accuracy. We demonstrate the effectiveness of our proposed trackers by comparing their performance to a 3D tracker that fuses the results of independent 2D trackers. We also present performance analysis of the base tracker along Quality-of-Service (QoS and Quality-of-Information (QoI metrics, and study QoS vs. QoI trade-offs between the proposed tracker variations. Finally, we demonstrate our tracker in a real-life scenario using a camera network deployed in a building.

  12. Identification of the target areas to be resected in patients with non-bullous emphysema by using gas and perfusion SPECT images

    International Nuclear Information System (INIS)

    Sugi, Kazuro; Ueda, Kazuhiro; Fujita, Nobuhiro; Nawata, Kouichi; Kaneda, Yoshikazu; Nawata, Sumihiko; Esato, Kensuke

    1997-01-01

    Significant improvement of pulmonary function after the volume reduction surgery has been reported in patients with bullous emphysema. However, there has been no successful report in patients with non-bullous emphysema. The reason of failure in patients with non-bullous emphysema should lie mainly on the difficulty to identify the target areas to be resected. We describe how to identify the target areas in the patients with non-bullous emphysema by using gas and perfusion single-photon emission computed tomography (SPECT). Twelve patients with non-bullous emphysema were studied by 133 Xe gas and 99m Tc MAA SPECT, which revealed that abnormal retention and low perfusion areas were located in the apex of the upper lobe and the basal segment of the lower lobe. The resections were performed thoracoscopically focused on the target areas by hockey-stick shape resection in the upper lobe and spiral shape resection in the lower lobe without deformity formation of the residual lung. Slight but significant improvement in the pulmonary functions was observed after the surgery in patients with non-bullous emphysema. The Xe gas and Tc MAA SPECT were useful procedures to identify the target areas to be resected in patients with non-bullous emphysema. (author)

  13. Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein

    Science.gov (United States)

    Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.

    2015-01-01

    ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can

  14. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract

    Science.gov (United States)

    Russo, Flavia; Boghi, Andrea; Gori, Fabio

    2018-04-01

    Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.

  15. Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels.

    Science.gov (United States)

    Temming, Kai; Meyer, Damon L; Zabinski, Roger; Dijkers, Eli C F; Poelstra, Klaas; Molema, Grietje; Kok, Robbert J

    2006-01-01

    Induction of apoptosis in endothelial cells is considered an attractive strategy to therapeutically interfere with a solid tumor's blood supply. In the present paper, we constructed cytotoxic conjugates that specifically target angiogenic endothelial cells, thus preventing typical side effects of apoptosis-inducing drugs. For this purpose, we conjugated the potent antimitotic agent monomethyl-auristatin-E (MMAE) via a lysosomal cleavable linker to human serum albumin (HSA) and further equipped this drug-albumin conjugate with cyclic c(RGDfK) peptides for multivalent interaction with alphavbeta3-integrin. The RGD-peptides were conjugated via either an extended poly(ethylene glycol) linker or a short alkyl linker. The resulting drug-targeting conjugates RGDPEG-MMAE-HSA and RGD-MMAE-HSA demonstrated high binding affinity and specificity for alphavbeta3-integrin expressing human umbilical vein endothelial cells (HUVEC). Both types of conjugates were internalized by endothelial cells and killed the target cells at low nM concentrations. Furthermore, we observed RGD-dependent binding of the conjugates to C26 carcinoma. Upon i.v. administration to C26-tumor bearing mice, both drug-targeting conjugates displayed excellent tumor homing properties. Our results demonstrate that RGD-modified albumins are suitable carriers for cell selective intracellular delivery of cytotoxic compounds, and further studies will be conducted to assess the antivascular and tumor inhibitory potential of RGDPEG-MMAE-HSA and RGD-MMAE-HSA.

  16. 'Multi-epitope-targeted' immune-specific therapy for a multiple sclerosis-like disease via engineered multi-epitope protein is superior to peptides.

    Directory of Open Access Journals (Sweden)

    Nathali Kaushansky

    Full Text Available Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and "epitope spread", have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such "multi-epitope-targeting" approach in murine experimental autoimmune encephalomyelitis (EAE associated with a single ("classical" or multiple ("complex" anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as "multi-epitope-targeting" agents. Y-MSPc was superior to peptide(s in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells. Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of "classical" or "complex EAE" or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a "multi-epitope-targeting" strategy is required for

  17. Circulating MicroRNAs in Plasma of Hepatitis B e Antigen Positive Children Reveal Liver-Specific Target Genes

    DEFF Research Database (Denmark)

    Winther, Thilde Nordmann; Jacobsen, Kari Stougaard; Mirza, Aashiq Hussain

    2014-01-01

    Background and Aim. Hepatitis B e antigen positive (HBeAg-positive) children are at high risk of severe complications such as hepatocellular carcinoma and cirrhosis. Liver damage is caused by the host immune response to infected hepatocytes, and we hypothesise that specific microRNAs play a role...... in this complex interaction between virus and host. The study aimed to identify microRNAs with aberrant plasma expressions in HBeAg-positive children and with liver-specific target genes. Methods. By revisiting our previous screen of microRNA plasma levels in HBeAg-positive and HBeAg-negative children...... with chronic hepatitis B (CHB) and in healthy controls, candidate microRNAs with aberrant plasma expressions in HBeAg-positive children were identified. MicroRNAs targeting liver-specific genes were selected based on bioinformatics analysis and validated by qRT-PCR using plasma samples from 34 HBe...

  18. Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences

    Science.gov (United States)

    Dumeige, Laurence; Storey, Caroline; Decourtye, Lyvianne; Nehlich, Melanie; Lhadj, Christophe; Viengchareun, Say; Kappeler, Laurent; Lombès, Marc; Martinerie, Laetitia

    2017-01-01

    Sex differences have been identified in various biological processes, including hypertension. The mineralocorticoid signaling pathway is an important contributor to early arterial hypertension, however its sex-specific expression has been scarcely studied, particularly with respect to the kidney. Basal systolic blood pressure (SBP) and heart rate (HR) were measured in adult male and female mice. Renal gene expression studies of major players of mineralocorticoid signaling were performed at different developmental stages in male and female mice using reverse transcription quantitative PCR (RT-qPCR), and were compared to those of the same genes in the lung, another mineralocorticoid epithelial target tissue that regulates ion exchange and electrolyte balance. The role of sex hormones in the regulation of these genes was also investigated in differentiated KC3AC1 renal cells. Additionally, renal expression of the 11 β-hydroxysteroid dehydrogenase type 2 (11βHSD2) protein, a regulator of mineralocorticoid specificity, was measured by immunoblotting and its activity was indirectly assessed in the plasma using liquid-chromatography coupled to mass spectrometry in tandem (LC-MSMS) method. SBP and HR were found to be significantly lower in females compared to males. This was accompanied by a sex- and tissue-specific expression profile throughout renal development of the mineralocorticoid target genes serum and glucocorticoid-regulated kinase 1 (Sgk1) and glucocorticoid-induced leucine zipper protein (Gilz), together with Hsd11b2, Finally, the implication of sex hormones in this sex-specific expression profile was demonstrated in vitro, most notably for Gilz mRNA expression. We demonstrate a tissue-specific, sex-dependent and developmentally-regulated pattern of expression of the mineralocorticoid pathway that could have important implications in physiology and pathology. PMID:28230786

  19. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1998-01-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well

  20. Optomagnetic Detection of MicroRNA Based on Duplex-Specific Nuclease-Assisted Target Recycling and Multilayer Core-Satellite Magnetic Superstructures

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Qiu, Zhen

    2017-01-01

    -efficiency, and potential for bioresponsive multiplexing. Herein, we demonstrate a sensitive and rapid miRNA detection method based on optomagnetic read-out, duplex-specific nuclease (DSN)-assisted target recycling, and the use of multilayer core-satellite magnetic superstructures. Triggered by the presence of target mi...

  1. Impact of target area selection in 125 Iodine seed brachytherapy on locoregional recurrence in patients with non-small cell lung cancer.

    Science.gov (United States)

    Yan, Wei-Liang; Lv, Jin-Shuang; Guan, Zhi-Yu; Wang, Li-Yang; Yang, Jing-Kui; Liang, Ji-Xiang

    2017-05-01

    Computed tomography (CT)-guided percutaneous implantation of 125 Iodine radioactive seeds requires the precise arrangement of seeds by tumor shape. We tested whether selecting target areas, including subclinical areas around tumors, can influence locoregional recurrence in patients with non-small cell lung cancer (NSCLC). We divided 82 patients with NSCLC into two groups. Target areas in group 1 (n = 40) were defined along tumor margins based on lung-window CT. Target areas in group 2 (n = 42) were extended by 0.5 cm in all dimensions outside tumor margins. Preoperative plans for both groups were based on a treatment plan system, which guided 125 I seed implantation. Six months later, patients underwent chest CT to evaluate treatment efficacy (per Response Evaluation Criteria in Solid Tumors version 1). We compared locoregional recurrences between the groups after a year of follow-up. We then used the treatment plan system to extend target areas for group 1 patients by 0.5 cm (defined as group 3 data) and compared these hypothetical group 3 planned seeds with the actual seed numbers used in group 1 patients. All patients successfully underwent implantation; none died during the follow-up period. Recurrence was significantly lower in group 2 than in group 1 ( P  area for 125 I seeds can decrease recurrence risk by eradicating cancerous lymph-duct blockades within the extended areas. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Growth of porous anodized alumina on the sputtered aluminum films with 2D–3D morphology for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.W.; Chung, C.K., E-mail: ckchung@mail.ncku.edu.tw

    2014-08-01

    The porous anodic aluminum oxide (AAO) with high-aspect-ratio pore channels is widely used as a template for fabricating nanowires or other one-dimensional (1D) nanostructures. The high specific surface area of AAO can also be applied to the super capacitor and the supporting substrate for catalysis. The rough surface could be helpful to enhance specific surface area but it generally results in electrical field concentration even to ruin AAO. In this article, the aluminum (Al) films with the varied 2D–3D morphology on Si substrates were prepared using magnetron sputtering at a power of 50 W–185 W for 1 h at a working pressure of 2.5 × 10⁻¹ Pa. Then, AAO was fabricated from the different Al films by means of one-step hybrid pulse anodizing (HPA) between the positive 40 V and the negative -2 V (1 s:1 s) for 3 min in 0.3 M oxalic acid at a room temperature. The microstructure and morphology of Al films were characterized by X-ray diffraction, scanning electron microscope and atomic force microscope, respectively. Some hillocks formed at the high target power could be attributed to the grain texture growth in the normal orientation of Al(1 1 1). The 3D porous AAO structure which is different from the conventional 2D planar one has been successfully demonstrated using HPA on the film with greatly rough hillock-surface formed at the highest power of 185 W. It offers a potential application of the new 3D AAO to high specific surface area devices.

  3. Vertical displacement of the brain and the target area during open stereotaxic neurosurgery

    International Nuclear Information System (INIS)

    Wester, K.; Kraekenes, J.

    2001-01-01

    During stereotaxic thalamotomies, we observed that the brain surface was sinking. The study was carried out to investigate to what extent the target area also was displaced and how this would affect the accuracy of the stereotaxic procedure. In 12 thalamotomies, with the patients operated on in the sitting position, we found that the cortical surface sank 0-9 (mean 5) mm during the operation. The vertical co-ordinate of the thalamic target was consequently adjusted per-operatively, and the electrodes were advanced on additional distance of 1-5.5 (mean 3.5) mm in an attempt to compensate for the assumed sinking of the target. This per-operative adjustment was based on the surgeon's experience and the results of macro-stimulation studies. The exact location of the thalamotomy lesion, and thereby the accuracy of the adjustment, was evaluated on 3 months postoperative CT scans. These showed that the intended target was hit with a sufficient degree of accuracy in all the patients, although the vertical co-ordinate had been slightly over-adjusted, as the center of the lesion on the average was located 1 mm below the intended location. Thus, if the vertical position had not been adjusted, the lesion would on the average have been located 2.5 mm too high compared with the intended target. Patients undergoing thalamotomy and other stereotaxic procedures, where a high degree of accuracy is needed, should be operated on in the sitting position. At the thalamic level, the vertical displacement of the target should be adjusted for by additional advancement of the stereotaxic probe. On average, this compensatory adjustment should be about half the per-operative sinking of the cortical surface. (author)

  4. eap Gene as novel target for specific identification of Staphylococcus aureus.

    Science.gov (United States)

    Hussain, Muzaffar; von Eiff, Christof; Sinha, Bhanu; Joost, Insa; Herrmann, Mathias; Peters, Georg; Becker, Karsten

    2008-02-01

    The cell surface-associated extracellular adherence protein (Eap) mediates adherence of Staphylococcus aureus to host extracellular matrix components and inhibits inflammation, wound healing, and angiogenesis. A well-characterized collection of S. aureus and non-S. aureus staphylococcal isolates (n = 813) was tested for the presence of the Eap-encoding gene (eap) by PCR to investigate the use of the eap gene as a specific diagnostic tool for identification of S. aureus. Whereas all 597 S. aureus isolates were eap positive, this gene was not detectable in 216 non-S. aureus staphylococcal isolates comprising 47 different species and subspecies of coagulase-negative staphylococci and non-S. aureus coagulase-positive or coagulase-variable staphylococci. Furthermore, non-S. aureus isolates did not express Eap homologs, as verified on the transcriptional and protein levels. Based on these data, the sensitivity and specificity of the newly developed PCR targeting the eap gene were both 100%. Thus, the unique occurrence of Eap in S. aureus offers a promising tool particularly suitable for molecular diagnostics of this pathogen.

  5. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target.

    Directory of Open Access Journals (Sweden)

    Francesca Spyrakis

    Full Text Available The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block

  6. Region-specificity of GABAA receptor mediated effects on orientation and direction selectivity in cat visual cortical area 18.

    Science.gov (United States)

    Jirmann, Kay-Uwe; Pernberg, Joachim; Eysel, Ulf T

    2009-01-01

    The role of GABAergic inhibition in orientation and direction selectivity has been investigated with the GABA(A)-Blocker bicuculline in the cat visual cortex, and results indicated a region specific difference of functional contributions of GABAergic inhibition in areas 17 and 18. In area 17 inhibition appeared mainly involved in sculpturing orientation and direction tuning, while in area 18 inhibition seemed more closely associated with temporal receptive field properties. However, different types of stimuli were used to test areas 17 and 18 and further studies performed in area 17 suggested an important influence of the stimulus type (single light bars vs. moving gratings) on the evoked responses (transient vs. sustained) and inhibitory mechanisms (GABA(A) vs. GABA(B)) which in turn might be more decisive for the specific results than the cortical region. To insert the missing link in this chain of arguments it was necessary to study GABAergic inhibition in area 18 with moving light bars, which has not been done so far. Therefore, in the present study we investigated area 18 cells responding to oriented moving light bars with extracellular recordings and reversible microiontophoretic blockade of GABAergig inhibition with bicuculline methiodide. The majority of neurons was characterized by a pronounced orientation specificity and variable degrees of direction selectivity. GABA(A)ergic inhibition significantly influenced preferred orientation and preferred direction in area 18. During the action of bicuculline orientation tuning width increased and orientation and direction selectivity indices decreased. Our results obtained in area 18 with moving bar stimuli, although in the proportion of affected cells similar to those described in area 17, quantitatively matched the findings for direction and orientation specificity obtained with moving gratings in area 18. Accordingly, stimulus type is not decisive in area 18 and the GABA(A) dependent, inhibitory intracortical

  7. Control of laser absorbing efficiency and proton quality by a specific double target

    Czech Academy of Sciences Publication Activity Database

    Yu, Q.; Gu, Yanjun; Li, X.F.; Qu, J.F.; Kong, Q.; Kawata, S.

    2016-01-01

    Roč. 18, č. 8 (2016), 1-9, č. článku 083024. ISSN 1367-2630 R&D Projects: GA MŠk LQ1606; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : improved proton beam quality * increased laser absorption efficiency * specific double-layer target Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.786, year: 2016

  8. Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels

    NARCIS (Netherlands)

    Temming, Kai; Meyer, Damon L.; Zabinski, Roger; Dijkers, Eli C. F.; Poelstra, Klaas; Molema, Grietje; Kok, Robbert J.

    2006-01-01

    Induction of apoptosis in endothelial cells is considered an attractive strategy to therapeutically interfere with a solid tumor's blood supply. In the present paper, we constructed cytotoxic conjugates that specifically target angiogenic endothelial cells, thus preventing typical side effects of

  9. Dependence of the specific surface area of the nuclear fuel with the matrix oxidation

    International Nuclear Information System (INIS)

    Gomez, F.; Quinones, J.; Iglesias, E.; Rodriguez, N.

    2008-01-01

    This paper is focused on the study of the changes in the specific surface area measured using BET techniques. The objective is to obtain a relation between this parameter and the change in the matrix stoichiometry (i.e., oxidation increase). None of the actual models used for extrapolating the behaviour of the spent fuel matrix under repository conditions have included this dependence yet. In this work the specific surface area of different uranium oxide were measured using N 2 (g) and Kr(g). The starting material was UO 2+x (s) with a size powder distribution lower than 20 μm. The results included in this paper shown a strong dependence on specific surface area with the matrix stoichiometry, i.e., and increase of more than one order of magnitude (SUO 2 = 6 m 2 *g -1 and SU 3 O 8 = 16.07 m 2 *g -1 ). Furthermore, the particle size distribution measured as a function of the thermal treatment done shows changes on the powder size related to the changes observed in the uranium oxide stoichiometry. (authors)

  10. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    Science.gov (United States)

    2016-08-19

    Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser- plasma ,mass-limited, fast electrons , sheath...New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser... plasma interactions CZulick, ARaymond,AMcKelvey, VChvykov, AMaksimchuk, AGRThomas, LWillingale, VYanovsky andKKrushelnick Center forUltrafast Optical

  11. DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets.

    Science.gov (United States)

    Cereto-Massagué, Adrià; Guasch, Laura; Valls, Cristina; Mulero, Miquel; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2012-06-15

    Decoys are molecules that are presumed to be inactive against a target (i.e. will not likely bind to the target) and are used to validate the performance of molecular docking or a virtual screening workflow. The Directory of Useful Decoys database (http://dud.docking.org/) provides a free directory of decoys for use in virtual screening, though it only contains a limited set of decoys for 40 targets.To overcome this limitation, we have developed an application called DecoyFinder that selects, for a given collection of active ligands of a target, a set of decoys from a database of compounds. Decoys are selected if they are similar to active ligands according to five physical descriptors (molecular weight, number of rotational bonds, total hydrogen bond donors, total hydrogen bond acceptors and the octanol-water partition coefficient) without being chemically similar to any of the active ligands used as an input (according to the Tanimoto coefficient between MACCS fingerprints). To the best of our knowledge, DecoyFinder is the first application designed to build target-specific decoy sets. A complete description of the software is included on the application home page. A validation of DecoyFinder on 10 DUD targets is provided as Supplementary Table S1. DecoyFinder is freely available at http://URVnutrigenomica-CTNS.github.com/DecoyFinder.

  12. Targeted Treatment for Bacterial Infections: Prospects for Pathogen-Specific Antibiotics Coupled with Rapid Diagnostics

    OpenAIRE

    Maxson, Tucker; Mitchell, Douglas A.

    2015-01-01

    Antibiotics are a cornerstone of modern medicine and have significantly reduced the burden of infectious diseases. However, commonly used broad-spectrum antibiotics can cause major collateral damage to the human microbiome, causing complications ranging from antibiotic-associated colitis to the rapid spread of resistance. Employing narrower spectrum antibiotics targeting specific pathogens may alleviate this predicament as well as provide additional tools to expand an antibiotic repertoire th...

  13. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    The broad, long-term objectives of this application are to 1. develop easily implementable tools for radionuclide dosimetry that can be used to predict normal organ toxicity and tumor response in targeted radionuclide therapy; and 2. to apply these tools to the analysis of clinical trial data in order to demonstrate dose-response relationships for radionuclide therapy treatment planning. The work is founded on the hypothesis that robust dose-response relationships have not been observed in targeted radionuclide therapy studies because currently available internal dosimetry methodologies are inadequate, failing to adequately account for individual variations in patient anatomy, radionuclide activity distribution/kinetics, absorbed dose-distribution, and absorbed dose-rate. To reduce development time the previously available software package, 3D-ID, one of the first dosimetry software packages to incorporate 3-D radionuclide distribution with individual patient anatomy; and the first to be applied for the comprehensive analysis of patient data, will be used as a platform to build the functionality listed above. The following specific aims are proposed to satisfy the long-term objectives stated above: 1. develop a comprehensive and validated methodology for converting one or more SPECT images of the radionuclide distribution to a 3-D representation of the cumulated activity distribution; 2. account for differences in tissue density and atomic number by incorporating an easily implementable Monte Carlo methodology for the 3-D dosimetry calculations; 3. incorporate the biologically equivalent dose (BED) and equivalent uniform dose (EUD) models to convert the spatial distribution of absorbed dose and dose-rate into equivalent single values that account for differences in dose uniformity and rate and that may be correlated with tumor response and normal organ toxicity; 4. test the hypothesis stated above by applying the resulting package to patient trials of targeted

  14. Closure Report for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2010-09-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 408: Bomblet Target Area (TTR), Tonopah Test Range, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 408 is located at the Tonopah Test Range, Nevada, and consists of Corrective Action Site (CAS) TA-55-002-TAB2, Bomblet Target Areas. This CAS includes the following seven target areas: • Mid Target • Flightline Bomblet Location • Strategic Air Command (SAC) Target Location 1 • SAC Target Location 2 • South Antelope Lake • Tomahawk Location 1 • Tomahawk Location 2 The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for the CAS within CAU 408 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 408 issued by the Nevada Division of Environmental Protection. From July 2009 through August 2010, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 408: Bomblet Target Area, Tonopah Test Range (TTR), Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Identify and remove munitions of explosive concern (MEC) associated with DOE activities. • Investigate potential disposal pit locations. • Remove depleted uranium-contaminated fragments and soil. • Determine whether contaminants of concern (COCs) are

  15. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    International Nuclear Information System (INIS)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.; Chapman, Jenny B.

    2003-01-01

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed. Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle

  16. Target specific proteochemometric model development for BACE1 - protein flexibility and structural water are critical in virtual screening.

    Science.gov (United States)

    Manoharan, Prabu; Chennoju, Kiranmai; Ghoshal, Nanda

    2015-07-01

    BACE1 is an attractive target in Alzheimer's disease (AD) treatment. A rational drug design effort for the inhibition of BACE1 is actively pursued by researchers in both academic and pharmaceutical industries. This continued effort led to the steady accumulation of BACE1 crystal structures, co-complexed with different classes of inhibitors. This wealth of information is used in this study to develop target specific proteochemometric models and these models are exploited for predicting the prospective BACE1 inhibitors. The models developed in this study have performed excellently in predicting the computationally generated poses, separately obtained from single and ensemble docking approaches. The simple protein-ligand contact (SPLC) model outperforms other sophisticated high end models, in virtual screening performance, developed during this study. In an attempt to account for BACE1 protein active site flexibility information in predictive models, we included the change in the area of solvent accessible surface and the change in the volume of solvent accessible surface in our models. The ensemble and single receptor docking results obtained from this study indicate that the structural water mediated interactions improve the virtual screening results. Also, these waters are essential for recapitulating bioactive conformation during docking study. The proteochemometric models developed in this study can be used for the prediction of BACE1 inhibitors, during the early stage of AD drug discovery.

  17. Sport-Specific Training Targeting the Proximal Segments and Throwing Velocity in Collegiate Throwing Athletes

    Science.gov (United States)

    Palmer, Thomas; Uhl, Timothy L.; Howell, Dana; Hewett, Timothy E.; Viele, Kert; Mattacola, Carl G.

    2015-01-01

    Context The ability to generate, absorb, and transmit forces through the proximal segments of the pelvis, spine, and trunk has been proposed to influence sport performance, yet traditional training techniques targeting the proximal segments have had limited success improving sport-specific performance. Objective To investigate the effects of a traditional endurance-training program and a sport-specific power-training program targeting the muscles that support the proximal segments and throwing velocity. Design Randomized controlled clinical trial. Setting University research laboratory and gymnasium. Patients or Other Participants A total of 46 (age = 20 ± 1.3 years, height = 175.7 ± 8.7 cm) healthy National Collegiate Athletic Association Division III female softball (n = 17) and male baseball (n = 29) players. Intervention(s) Blocked stratification for sex and position was used to randomly assign participants to 1 of 2 training groups for 7 weeks: a traditional endurance-training group (ET group; n = 21) or a power-stability–training group (PS group; n = 25). Mean Outcome Measure(s) The change score in peak throwing velocity (km/h) normalized for body weight (BW; kilograms) and change score in tests that challenge the muscles of the proximal segments normalized for BW (kilograms). We used 2-tailed independent-samples t tests to compare differences between the change scores. Results The peak throwing velocity (ET group = 0.01 ± 0.1 km/h/kg of BW, PS group = 0.08 ± 0.03 km/h/kg of BW; P < .001) and muscle power outputs for the chop (ET group = 0.22 ± 0.91 W/kg of BW, PS group = 1.3 ± 0.91 W/kg of BW; P < .001) and lift (ET group = 0.59 ± 0.67 W/kg of BW, PS group = 1.4 ± 0.87 W/kg of BW; P < .001) tests were higher at postintervention in the PT than in the ET group. Conclusions An improvement in throwing velocity occurred simultaneously with measures of muscular endurance and power after a sport-specific training regimen targeting the proximal segments

  18. Comparison of Gull Feces-specific Assays Targeting the 16S rRNA Gene of Catellicoccus Marimammalium and Streptococcus spp.

    Science.gov (United States)

    Two novel gull-specific qPCR assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR-green-based assay targeting Streptococcus spp. (i.e., gull3) and a TaqMan qPCR assay targeting Catellicoccus marimammalium (i.e., gull4). The main objectives ...

  19. Advances in targeted delivery of small interfering RNA using simple bioconjugates

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Kjems, Jørgen; Sorensen, Kristine Rothaus

    2014-01-01

    with a targeting moiety, in a simple bioconjugate construct. We discuss the use of different types of targeting moieties, as well as the different conjugation strategies employed for preparing these bioconjugate constructs that deliver the siRNA to target cells. We focus especially on the in-built or passive......Introduction: Development of drugs based on RNA interference by small interfering RNA (siRNA) has been progressing slowly due to a number of challenges associated with the in vivo behavior of siRNA. A central problem is controlling siRNA delivery to specific cell types. Here, we review existing...... literature on one type of strategy for solving the issue of cell-specific delivery of siRNA, namely delivering the siRNA as part of simple bioconjugate constructs. Areas covered: This review presents current experience from strategies aimed at targeting siRNA to specific cell types, by associating the siRNA...

  20. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    International Nuclear Information System (INIS)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F.

    2016-01-01

    Terbium layered hydroxide nanoparticles (Tb_2(OH)_5NO_3) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb_2(OH)_5NO_3 resulted in the preparation of two optimized nanoparticles. In particular, Tb_2(OH)_5NO_3:Eu and Tb_2(OH)_5NO_3-FA were prepared when Tb_2(OH)_5NO_3 was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb_2(OH)_5NO_3, could render these nanoparticles appropriate for biomedical applications.

  1. Planning of Agro-Tourism Development, Specific Location in Green Open Space Sarbagita Area, Bali Province

    Science.gov (United States)

    Lanya, I.; Subadiyasa, N.; Sardiana, K.; Ratna Adi, G. P.

    2018-02-01

    Tourism development has a negative impact on agricultural land in Bali, resulted in the transfer of rice field of 800 ha/year. Subak rice field area as a world cultural heritage, requires conservation strategy, increasing economic and environmental value, through integrated agriculture development with tourism. Tourism destination planning in the form of tourist destination (TD) and tourism object (TO) by raising local genius, at specific location, is expected to preserve nature and culture, as well as the economic value of the region. Research Methods: (1) identification of agrarian cultures, (2) field survey, (3) mapping of site specific TD/TO plans, and (4) compile documents of agro-tourism road map based on local genius. Seven subak areas in the green open space area have the potential to develop new TD/TO, namely: (1) Gedon2Subak in Tanah Lot area, is developed for the preservation of agriculture, the implementation of the zoning plan of the sacred, madya and nista areas, (2) the Kerdung and Penatih Subak areas, developed for urban farming in Denpasar City, (3) Cangi south Subak area, built for agro-tourism plasmanutfah banana and Cemagi Let Subak area developed agro-tourism food crops and horticulture, (4) Erjeruk Subak area, developed tourism plasmanutfah coconut.

  2. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    International Nuclear Information System (INIS)

    Diagaradjane, P; Deorukhkar, A; Sankaranarayanapillai, M; Singh, P; Manohar, N; Tailor, R; Cho, S; Goodrich, G; Krishnan, S

    2015-01-01

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  3. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Diagaradjane, P [M.D. Anderson Cancer Center, Houston, TX (United States); Deorukhkar, A; Sankaranarayanapillai, M; Singh, P [The UT MD Anderson Cancer Center, Houston, TX (United States); Manohar, N; Tailor, R; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Goodrich, G [Nanospectra Biosciences Inc, Houston, TX (United States); Krishnan, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  4. Screening and Identification of Peptides Specifically Targeted to Gastric Cancer Cells from a Phage Display Peptide Library

    Science.gov (United States)

    Sahin, Deniz; Taflan, Sevket Onur; Yartas, Gizem; Ashktorab, Hassan; Smoot, Duane T

    2018-04-25

    Background: Gastric cancer is the second most common cancer among the malign cancer types. Inefficiency of traditional techniques both in diagnosis and therapy of the disease makes the development of alternative and novel techniques indispensable. As an alternative to traditional methods, tumor specific targeting small peptides can be used to increase the efficiency of the treatment and reduce the side effects related to traditional techniques. The aim of this study is screening and identification of individual peptides specifically targeted to human gastric cancer cells using a phage-displayed peptide library and designing specific peptide sequences by using experimentally-eluted peptide sequences. Methods: Here, MKN-45 human gastric cancer cells and HFE-145 human normal gastric epithelial cells were used as the target and control cells, respectively. 5 rounds of biopannning with a phage display 12-peptide library were applied following subtraction biopanning with HFE-145 control cells. The selected phage clones were established by enzyme-linked immunosorbent assay and immunofluorescence detection. We first obtain random phage clones after five biopanning rounds, determine the binding levels of each individual clone. Then, we analyze the frequencies of each amino acid in best binding clones to determine positively overexpressed amino acids for designing novel peptide sequences. Results: DE532 (VETSQYFRGTLS) phage clone was screened positive, showing specific binding on MKN-45 gastric cancer cells. DE-Obs (HNDLFPSWYHNY) peptide, which was designed by using amino acid frequencies of experimentally selected peptides in the 5th round of biopanning, showed specific binding in MKN-45 cells. Conclusion: Selection and characterization of individual clones may give us specifically binding peptides, but more importantly, data extracted from eluted phage clones may be used to design theoretical peptides with better binding properties than even experimentally selected ones

  5. Larval abundances of rockfishes that were historically targeted by fishing increased over 16 years in association with a large marine protected area.

    Science.gov (United States)

    Thompson, Andrew R; Chen, Dustin C; Guo, Lian W; Hyde, John R; Watson, William

    2017-09-01

    Marine protected areas (MPAs) can facilitate recovery of diminished stocks by protecting reproductive adults. To effectively augment fisheries, however, reproductive output must increase within the bounds of MPAs so that larvae can be exported to surrounding areas and seed the region. In response to dramatic declines of rockfishes ( Sebastes spp.) in southern California by the late 1990s two large MPAs, the Cowcod Conservation Areas (CCAs), were established in 2001. To evaluate whether the CCAs affected rockfish productivity we evaluated the dynamics of 8 species that were, and 7 that were not, historically targeted by fishing. Abundances of 6/8 targeted and 4/7 non-targeted species increased regionally from 1998 to 2013. These upturns were probably affected by environmental conditions in addition to changes in fishing pressure as the presence of most species correlated negatively with temperature, and temperature was lower than the historic average in 11/15 years. Seventy-five per cent of the targeted, but none of the non-targeted species increased at a greater rate inside than outside the CCAs while controlling for environmental factors. Results indicate that management actions, coupled with favourable environmental conditions, facilitated the resurgence of multiple rockfish species that were targeted by intense fishing effort for decades.

  6. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation.

    Science.gov (United States)

    Mavridis, Ioannis N

    2017-12-11

    The concept of stereotactically standard areas (SSAs) within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  7. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Ioannis N. Mavridis

    2017-12-01

    Full Text Available The concept of stereotactically standard areas (SSAs within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  8. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies.

    Science.gov (United States)

    Botkjaer, Kenneth A; Fogh, Sarah; Bekes, Erin C; Chen, Zhuo; Blouse, Grant E; Jensen, Janni M; Mortensen, Kim K; Huang, Mingdong; Deryugina, Elena; Quigley, James P; Declerck, Paul J; Andreasen, Peter A

    2011-08-15

    Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types, with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found to harbour the epitopes for three conformation-specific monoclonal antibodies, two with a preference for the zymogen form pro-uPA, and one with a preference for active uPA. All three antibodies were shown to have overlapping epitopes, with three common residues being crucial for all three antibodies, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active uPA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems, the antibodies inhibited tumour cell invasion and dissemination, providing evidence for the feasibility of pharmaceutical intervention with serine protease activity by targeting surface loops that undergo conformational changes during zymogen activation. © The Authors Journal compilation © 2011 Biochemical Society

  9. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jenny J Sun

    Full Text Available CRISPR/Cas9 mediated DNA double strand cutting is emerging as a powerful approach to increase rates of homologous recombination of large targeting vectors, but the optimization of parameters, equipment and expertise required remain barriers to successful mouse generation by single-step zygote injection. Here, we sought to apply CRISPR/Cas9 methods to traditional embryonic stem (ES cell targeting followed by blastocyst injection to overcome the common issues of difficult vector construction and low targeting efficiency. To facilitate the study of noradrenergic function, which is implicated in myriad behavioral and physiological processes, we generated two different mouse lines that express FLPo recombinase under control of the noradrenergic-specific Dopamine-Beta-Hydroxylase (DBH gene. We found that by co-electroporating a circular vector expressing Cas9 and a locus-specific sgRNA, we could target FLPo to the DBH locus in ES cells with shortened 1 kb homology arms. Two different sites in the DBH gene were targeted; the translational start codon with 6-8% targeting efficiency, and the translational stop codon with 75% targeting efficiency. Using this approach, we established two mouse lines with DBH-specific expression of FLPo in brainstem catecholaminergic populations that are publically available on MMRRC (MMRRC_041575-UCD and MMRRC_041577-UCD. Altogether, this study supports simplified, high-efficiency Cas9/CRISPR-mediated targeting in embryonic stem cells for production of knock-in mouse lines in a wider variety of contexts than zygote injection alone.

  10. Near-term technology policies for long-term climate targets--economy wide versus technology specific approaches

    International Nuclear Information System (INIS)

    Sanden, B.A.; Azar, Christian

    2005-01-01

    The aim of this paper is to offer suggestions when it comes to near-term technology policies for long-term climate targets based on some insights into the nature of technical change. We make a distinction between economy wide and technology specific policy instruments and put forward two key hypotheses: (i) Near-term carbon targets such as the Kyoto protocol can be met by economy wide price instruments (carbon taxes, or a cap-and-trade system) changing the technologies we pick from the shelf (higher energy efficiency in cars, buildings and industry, wind, biomass for heat and electricity, natural gas instead of coal, solar thermal, etc.). (ii) Technology specific policies are needed to bring new technologies to the shelf. Without these new technologies, stricter emission reduction targets may be considered impossible to meet by the government, industry and the general public, and therefore not adopted. The policies required to bring these more advanced technologies to the shelf are more complex and include increased public research and development, demonstration, niche market creation, support for networks within the new industries, standard settings and infrastructure policies (e.g., when it comes to hydrogen distribution). There is a risk that the society in its quest for cost-efficiency in meeting near-term emissions targets, becomes blindfolded when it comes to the more difficult, but equally important issue of bringing more advanced technologies to the shelf. The paper presents mechanisms that cause technology look in, how these very mechanisms can be used to get out of the current 'carbon lock-in' and the risk with premature lock-ins into new technologies that do not deliver what they currently promise. We then review certain climate policy proposals with regards to their expected technology impact, and finally we present a let-a-hundred-flowers-bloom strategy for the next couple of decades

  11. A retrospective population-based cohort study identifying target areas for prevention of acute lower respiratory infections in children

    Directory of Open Access Journals (Sweden)

    Richmond Peter

    2010-12-01

    Full Text Available Abstract Background Acute lower respiratory infections (ALRI are a major cause of hospitalisation in young children. Many factors can lead to increased risk of ALRI in children and predispose a child to hospitalisation, but population attributable fractions for different risk factors and how these fractions differ between Indigenous and non-Indigenous children is unknown. This study investigates population attributable fractions of known infant and maternal risk factors for ALRI to inform prevention strategies that target high-risk groups or particular risk factors. Methods A retrospective population-based data linkage study of 245,249 singleton births in Western Australia. Population attributable fractions of known maternal and infant risk factors for hospitalisation with ALRI between 1996 and 2005 were calculated using multiple logistic regression. Results The overall ALRI hospitalisation rate was 16.1/1,000 person-years for non-Aboriginal children and 93.0/1,000 for Aboriginal children. Male gender, being born in autumn, gestational age Conclusions The population attributable fractions estimated in this study should help in guiding public health interventions to prevent ALRI. A key risk factor for all children is maternal smoking during pregnancy, and multiple previous pregnancies and autumnal births are important high-risk groups. Specific key target areas are reducing elective caesareans in non-Aboriginal women and reducing teenage pregnancies and improving access to services and living conditions for the Aboriginal population.

  12. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence1[OPEN

    Science.gov (United States)

    2017-01-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451

  13. Target-specific NMR detection of protein–ligand interactions with antibody-relayed {sup 15}N-group selective STD

    Energy Technology Data Exchange (ETDEWEB)

    Hetényi, Anasztázia [University of Szeged, Department of Medical Chemistry (Hungary); Hegedűs, Zsófia [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary); Fajka-Boja, Roberta; Monostori, Éva [Biological Research Center of the Hungarian Academy of Sciences, Lymphocyte Signal Transduction Laboratory, Institute of Genetics (Hungary); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Martinek, Tamás A., E-mail: martinek@pharm.u-szeged.hu [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary)

    2016-12-15

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein–ligand interactions is a key element. {sup 1}H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed {sup 15}N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A {sup 15}N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  14. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhbahaei, Sara; Solnes, Lilja B.; Javadi, Mehrbod S.; Pomper, Martin G.; Rowe, Steven P. [Johns Hopkins University School of Medicine, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Afshar-Oromieh, Ali; Haberkorn, Uwe [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); Eiber, Matthias [David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); Technical University of Munich, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Ross, Ashley E.; Pienta, Kenneth J.; Allaf, Mohamad E.; Gorin, Michael A. [Johns Hopkins University School of Medicine, The James Buchanan Brady Urological Institute and Department of Urology, Baltimore, MD (United States)

    2017-11-15

    The rapidly expanding clinical adaptation of prostate-specific membrane antigen (PSMA)-targeted PET imaging in the evaluation of patients with prostate cancer has placed an increasing onus on understanding both the potential pearls of interpretation as well as limitations of this new technique. As with any new molecular imaging modality, accurate characterization of abnormalities on PSMA-targeted PET imaging can be accomplished only if one is aware of the normal distribution pattern, physiological variants of radiotracer uptake, and potential sources of false-positive and false-negative imaging findings. In recent years, a growing number of reports have come to light describing incidental non-prostatic benign or malignant pathologies with high uptake on PSMA-targeted PET imaging. In this review, we have summarized the published literature regarding the potential pearls and technical and interpretive pitfalls of this imaging modality. Knowledge of these limitations can increase the confidence of interpreting physicians and thus improve patient care. As PSMA-targeted PET is expected to be evaluated in larger prospective trials, the dissemination of potential diagnostic pitfalls and the biologic underpinning of those findings will be of increased importance. (orig.)

  15. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging

    International Nuclear Information System (INIS)

    Sheikhbahaei, Sara; Solnes, Lilja B.; Javadi, Mehrbod S.; Pomper, Martin G.; Rowe, Steven P.; Afshar-Oromieh, Ali; Haberkorn, Uwe; Eiber, Matthias; Ross, Ashley E.; Pienta, Kenneth J.; Allaf, Mohamad E.; Gorin, Michael A.

    2017-01-01

    The rapidly expanding clinical adaptation of prostate-specific membrane antigen (PSMA)-targeted PET imaging in the evaluation of patients with prostate cancer has placed an increasing onus on understanding both the potential pearls of interpretation as well as limitations of this new technique. As with any new molecular imaging modality, accurate characterization of abnormalities on PSMA-targeted PET imaging can be accomplished only if one is aware of the normal distribution pattern, physiological variants of radiotracer uptake, and potential sources of false-positive and false-negative imaging findings. In recent years, a growing number of reports have come to light describing incidental non-prostatic benign or malignant pathologies with high uptake on PSMA-targeted PET imaging. In this review, we have summarized the published literature regarding the potential pearls and technical and interpretive pitfalls of this imaging modality. Knowledge of these limitations can increase the confidence of interpreting physicians and thus improve patient care. As PSMA-targeted PET is expected to be evaluated in larger prospective trials, the dissemination of potential diagnostic pitfalls and the biologic underpinning of those findings will be of increased importance. (orig.)

  16. Specific Organ Targeted Vestibular Physiotherapy: The Pivot in the Contemporary Management of Vertigo and Imbalance.

    Science.gov (United States)

    Biswas, Anirban; Barui, Bibhas

    2017-12-01

    Advancements in our understanding of vestibular physiology and how it is changes in different diseases have established that of the three therapeutic approaches to treat disorders of the vestibular system viz. pharmacotherapy, surgery and physical therapy, it is the later i.e., physical therapy which is the most efficacious modality in the management of balance disorders. The futility of vestibular sedatives in the correction of vestibular disorders and in the restoration of balance and the very limited role of surgery has now been recognised. Advancements in vestibulometry now enable us to localise any lesion in the vestibular system with utmost precision and also determine the exact cause of the balance disorder. The site of lesion and the specific organ that is defective can now be very precisely identified. Treatment modalities especially that for physical therapy hence have to be organ specific, and if possible, also disease specific. The study aims at evaluating the efficacy of physiotherapy in the management of balance disorders and also assesses the efficacy of organ targeted physical therapy, a new concept in restoring balance after vestibulometry has identified the offending organ. The study was conducted in the specialised physical therapy unit for balance and gait disorder patients which is a part of Vertigo and Deafness Clinic in Kolkata, India. Special instruments for physical therapy devised by the first author were used for stimulation of specific sense organs in the vestibular labyrinth that were found to be defective in vestibulometry. Specially made Virtual reality programs were used in patients suffering from psychogenic balance disorders. The pre and post therapy status was evaluated by different standard scales to assess balance and dizziness. Very promising results were obtained. Organ targeted physiotherapy where defective sense organs were specifically stimulated showed remarkable improvement in different measures. Virtual reality exercises

  17. Organelle targeting: third level of drug targeting

    Directory of Open Access Journals (Sweden)

    Sakhrani NM

    2013-07-01

    Full Text Available Niraj M Sakhrani, Harish PadhDepartment of Cell and Molecular Biology, BV Patel Pharmaceutical Education and Research Development (PERD Centre, Gujarat, IndiaAbstract: Drug discovery and drug delivery are two main aspects for treatment of a variety of disorders. However, the real bottleneck associated with systemic drug administration is the lack of target-specific affinity toward a pathological site, resulting in systemic toxicity and innumerable other side effects as well as higher dosage requirement for efficacy. An attractive strategy to increase the therapeutic index of a drug is to specifically deliver the therapeutic molecule in its active form, not only into target tissue, nor even to target cells, but more importantly, into the targeted organelle, ie, to its intracellular therapeutic active site. This would ensure improved efficacy and minimize toxicity. Cancer chemotherapy today faces the major challenge of delivering chemotherapeutic drugs exclusively to tumor cells, while sparing normal proliferating cells. Nanoparticles play a crucial role by acting as a vehicle for delivery of drugs to target sites inside tumor cells. In this review, we spotlight active and passive targeting, followed by discussion of the importance of targeting to specific cell organelles and the potential role of cell-penetrating peptides. Finally, the discussion will address the strategies for drug/DNA targeting to lysosomes, mitochondria, nuclei and Golgi/endoplasmic reticulum.Keywords: intracellular drug delivery, cancer chemotherapy, therapeutic index, cell penetrating peptides

  18. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer.

    Science.gov (United States)

    Peng, Zheng-Hong; Sima, Monika; Salama, Mohamed E; Kopečková, Pavla; Kopeček, Jindřich

    2013-12-01

    Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (-GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer--DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates' in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice.

  19. Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification.

    Science.gov (United States)

    Schmedes, Sarah E; Woerner, August E; Novroski, Nicole M M; Wendt, Frank R; King, Jonathan L; Stephens, Kathryn M; Budowle, Bruce

    2018-01-01

    The human skin microbiome is comprised of diverse communities of bacterial, eukaryotic, and viral taxa and contributes millions of additional genes to the repertoire of human genes, affecting human metabolism and immune response. Numerous genetic and environmental factors influence the microbiome composition and as such contribute to individual-specific microbial signatures which may be exploited for forensic applications. Previous studies have demonstrated the potential to associate skin microbial profiles collected from touched items to their individual owner, mainly using unsupervised methods from samples collected over short time intervals. Those studies utilize either targeted 16S rRNA or shotgun metagenomic sequencing to characterize skin microbiomes; however, these approaches have limited species and strain resolution and susceptibility to stochastic effects, respectively. Clade-specific markers from the skin microbiome, using supervised learning, can predict individual identity using skin microbiomes from their respective donors with high accuracy. In this study the hidSkinPlex is presented, a novel targeted sequencing method using skin microbiome markers developed for human identification. The hidSkinPlex (comprised of 286 bacterial (and phage) family-, genus-, species-, and subspecies-level markers), initially was evaluated on three bacterial control samples represented in the panel (i.e., Propionibacterium acnes, Propionibacterium granulosum, and Rothia dentocariosa) to assess the performance of the multiplex. The hidSkinPlex was further evaluated for prediction purposes. The hidSkinPlex markers were used to attribute skin microbiomes collected from eight individuals from three body sites (i.e., foot (Fb), hand (Hp) and manubrium (Mb)) to their host donor. Supervised learning, specifically regularized multinomial logistic regression and 1-nearest-neighbor classification were used to classify skin microbiomes to their hosts with up to 92% (Fb), 96% (Mb

  20. Effects of Temporal and Interspecific Variation of Specific Leaf Area on Leaf Area Index Estimation of Temperate Broadleaved Forests in Korea

    Directory of Open Access Journals (Sweden)

    Boram Kwon

    2016-09-01

    Full Text Available This study investigated the effects of interspecific and temporal variation of specific leaf area (SLA, cm2·g−1 on leaf area index (LAI estimation for three deciduous broadleaved forests (Gwangneung (GN, Taehwa (TH, and Gariwang (GRW in Korea with varying ages and composition of tree species. In fall of 2014, fallen leaves were periodically collected using litter traps and classified by species. LAI was estimated by obtaining SLAs using four calculation methods (A: including both interspecific and temporal variation in SLA; B: species specific mean SLA; C: period-specific mean SLA; and D: overall mean, then multiplying the SLAs by the amount of leaves. SLA varied across different species in all plots, and SLAs of upper canopy species were less than those of lower canopy species. The LAIs calculated using method A, the reference method, were GN 6.09, TH 5.42, and GRW 4.33. LAIs calculated using method B showed a difference of up to 3% from the LAI of method A, but LAIs calculated using methods C and D were overestimated. Therefore, species specific SLA must be considered for precise LAI estimation for broadleaved forests that include multiple species.

  1. Specific Nongluten Proteins of Wheat Are Novel Target Antigens in Celiac Disease Humoral Response

    Science.gov (United States)

    2014-01-01

    While the antigenic specificity and pathogenic relevance of immunologic reactivity to gluten in celiac disease have been extensively researched, the immune response to nongluten proteins of wheat has not been characterized. We aimed to investigate the level and molecular specificity of antibody response to wheat nongluten proteins in celiac disease. Serum samples from patients and controls were screened for IgG and IgA antibody reactivity to a nongluten protein extract from the wheat cultivar Triticum aestivum Butte 86. Antibodies were further analyzed for reactivity to specific nongluten proteins by two-dimensional gel electrophoresis and immunoblotting. Immunoreactive molecules were identified by tandem mass spectrometry. Compared with healthy controls, patients exhibited significantly higher levels of antibody reactivity to nongluten proteins. The main immunoreactive nongluten antibody target proteins were identified as serpins, purinins, α-amylase/protease inhibitors, globulins, and farinins. Assessment of reactivity toward purified recombinant proteins further confirmed the presence of antibody response to specific antigens. The results demonstrate that, in addition to the well-recognized immune reaction to gluten, celiac disease is associated with a robust humoral response directed at a specific subset of the nongluten proteins of wheat. PMID:25329597

  2. Targeting the Brain with Nanomedicine.

    Science.gov (United States)

    Rueda, Felix; Cruz, Luis J

    2017-01-01

    Herein, we review innovative nanomedicine-based approaches for treating, preventing and diagnosing neurodegenerative diseases. We focus on nanoscale systems such as polymeric nanoparticles (NPs), liposomes, micelles and other vehicles (e.g. dendrimers, nanogels, nanoemulsions and nanosuspensions) for targeted delivery of bioactive molecules to the brain. To ensure maximum selectivity for optimal therapeutic or diagnostic results, researchers must employ delivery systems that are non-toxic, biodegradable and biocompatible. This entails: (i) use of "safe" materials, such as polymers or lipids; (ii) targeting to the brain and, specifically, to the desired active site within the brain; (iii) controlled release of the loaded agent; and (iv) use of agents that, once released into the brain, will exhibit the desired pharmacologic activity. Here, we explore the design and preclinical use of representative delivery systems that have been proposed to date. We then analyze the principal challenges that have delayed clinical application of these and other approaches. Lastly, we look at future developments in this area, addressing the needs for increased penetration of the blood brain barrier (BBB), enhanced targeting of specific brain sites, improved therapeutic efficacy and lower neurotoxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Target area acquisition and control system survivability for the National Ignition Facility

    International Nuclear Information System (INIS)

    Hagans, K.; Stathis, P.; Wiedwald, J.; Campbell, D.

    1994-06-01

    The hardening of instruments to survive NIF target emission environments presents a significant challenge. Neutron flux is predicted to be as much as six orders of magnitude greater than the highest achieved neutron flux on NOVA. Not withstanding the high prompt radiation fields, the specifications for the instruments are demanding; requiring high resolution imaging and sub nanosecond transient measurements. We present an analysis of the sensitivity of the proposed NIF instrumentation design to EMP, X-rays, gamma rays, and neutrons. Major components assessed include fiber optic cable transport, high bandwidth cable and charge coupled detector (CCD) imaging systems

  4. Target Users' Diagrammatic Reasoning of Domain-specific Terminology

    DEFF Research Database (Denmark)

    Pram Nielsen, Louise

    2016-01-01

    In this paper, we investigate target users' diagrammatic reasoning in a controlled experiment, where participants were asked to search for information in a dual visualization comprising of a concept-oriented graphical (diagram) entry and a corresponding textual (article) entry. During the experim......In this paper, we investigate target users' diagrammatic reasoning in a controlled experiment, where participants were asked to search for information in a dual visualization comprising of a concept-oriented graphical (diagram) entry and a corresponding textual (article) entry. During...

  5. Targeted Regression of Hepatocellular Carcinoma by Cancer-Specific RNA Replacement through MicroRNA Regulation.

    Science.gov (United States)

    Kim, Juhyun; Won, Ranhui; Ban, Guyee; Ju, Mi Ha; Cho, Kyung Sook; Young Han, Sang; Jeong, Jin-Sook; Lee, Seong-Wook

    2015-07-20

    Hepatocellular carcinoma (HCC) has a high fatality rate and limited therapeutic options with side effects and low efficacy. Here, we proposed a new anti-HCC approach based on cancer-specific post-transcriptional targeting. To this end, trans-splicing ribozymes from Tetrahymena group I intron were developed, which can specifically induce therapeutic gene activity through HCC-specific replacement of telomerase reverse transcriptase (TERT) RNA. To circumvent side effects due to TERT expression in regenerating liver tissue, liver-specific microRNA-regulated ribozymes were constructed by incorporating complementary binding sites for the hepatocyte-selective microRNA-122a (miR-122a), which is down-regulated in HCC. The ribozyme activity in vivo was assessed in mouse models orthotopically implanted with HCC. Systemic administration of adenovirus encoding the developed ribozymes caused efficient anti-cancer effect and the least hepatotoxicity with regulation of ribozyme expression by miR-122a in both xenografted and syngeneic orthotopic murine model of multifocal HCC. Of note, the ribozyme induced local and systemic antitumor immunity, thereby completely suppressing secondary tumor challenge in the syngeneic mouse. The cancer specific trans-splicing ribozyme system, which mediates tissue-specific microRNA-regulated RNA replacement, provides a clinically relevant, safe, and efficient strategy for HCC treatment.

  6. CRISPR is an optimal target for the design of specific PCR assays for salmonella enterica serotypes Typhi and Paratyphi A.

    Directory of Open Access Journals (Sweden)

    Laetitia Fabre

    Full Text Available BACKGROUND: Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms. METHODOLOGY: Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats, as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers. PRINCIPAL FINDINGS: We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species. CONCLUSIONS: The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples.

  7. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-08-26

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  8. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira; El Tall, Omar; Rasul, Shahid; Hedhili, Mohamed N.; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  9. Implication of the displacement of the T1 primary target in the west area at the CERN SPS

    CERN Document Server

    Gatignon, L

    1999-01-01

    As soon as the transfer line T12 for proton injection into the LHC must be installed, the T1 primary target has to be at least partly dismantled, as its shielding would block the passage of the beam. Even though the installation of T12 is only foreseen for later, in view of sharing of workload related to the SLI project, it is preferred to move the primary production target T1 for the West Area to its new position already in the shutdown 1999/2000. The new position of the target requires major modifications of support structures in TCC6, of the transfer line towards T1 and of a more than 500 metres long section of the H3 secondary beam in the West Area, all to be completed in the 1999/2000 shutdown. To allow the work to be finished in time, part of it (including some civil engineering in TT4) is already done in the 1998/99 shutdown. In this memo the necessary modifications are described, cost estimates are given and a planning is provided.

  10. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    Directory of Open Access Journals (Sweden)

    Hu Xueting

    2016-01-01

    Full Text Available Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that the water-dispersible TiO2 nanoparticles possess excellent adsorption capacities for Congo red, orange II, and methyl orange, which could be attributed to their good water-dispersibility and large specific surface area.

  11. Signalling fiscal stress in the euro area - a country-specific early warning system

    OpenAIRE

    Hernández de Cos, Pablo; Koester, Gerrit B.; Moral-Benito, Enrique; Nickel, Christiane

    2014-01-01

    The sovereign debt crisis in the euro area has increased the interest in early warning indicators, with the aim to indicate the build?up of fiscal stress early on and to facilitate crisis prevention by a timely counteraction of fiscal and macroeconomic policies. This paper presents possible improvements to enhance existing early warning indicators for fiscal stress, especially for the euro area. We show that a country?specific approach could strongly increase the signalling power of early war...

  12. Prostate-Specific Membrane Antigen Targeted Gold Nanoparticles for Theranostics of Prostate Cancer.

    Science.gov (United States)

    Mangadlao, Joey Dacula; Wang, Xinning; McCleese, Christopher; Escamilla, Maria; Ramamurthy, Gopalakrishnan; Wang, Ziying; Govande, Mukul; Basilion, James P; Burda, Clemens

    2018-04-24

    Prostate cancer is one of the most common cancers and among the leading causes of cancer deaths in the United States. Men diagnosed with the disease typically undergo radical prostatectomy, which often results in incontinence and impotence. Recurrence of the disease is often experienced by most patients with incomplete prostatectomy during surgery. Hence, the development of a technique that will enable surgeons to achieve a more precise prostatectomy remains an open challenge. In this contribution, we report a theranostic agent (AuNP-5kPEG-PSMA-1-Pc4) based on prostate-specific membrane antigen (PSMA-1)-targeted gold nanoparticles (AuNPs) loaded with a fluorescent photodynamic therapy (PDT) drug, Pc4. The fabricated nanoparticles are well-characterized by spectroscopic and imaging techniques and are found to be stable over a wide range of solvents, buffers, and media. In vitro cellular uptake experiments demonstrated significantly higher nanoparticle uptake in PSMA-positive PC3pip cells than in PSMA-negative PC3flu cells. Further, more complete cell killing was observed in Pc3pip than in PC3flu cells upon exposure to light at different doses, demonstrating active targeting followed by Pc4 delivery. Likewise, in vivo studies showed remission on PSMA-expressing tumors 14 days post-PDT. Atomic absorption spectroscopy revealed that targeted AuNPs accumulate 4-fold higher in PC3pip than in PC3flu tumors. The nanoparticle system described herein is envisioned to provide surgical guidance for prostate tumor resection and therapeutic intervention when surgery is insufficient.

  13. Targeting specific azimuthal modes using wall changes in turbulent pipe flow

    Science.gov (United States)

    van Buren, Tyler; Hellström, Leo; Marusic, Ivan; Smits, Alexander

    2017-11-01

    We experimentally study turbulent pipe flow at Re =3486 using stereoscopic particle image velocimetry. Using pipe inserts with non-circular geometry to perturb the flow upstream of the measurement location, we excite specific naturally occurring energetic modes. We consider inserts that directly manipulate the flow momentum (vortex generators), and/or induce secondary flows through Reynolds stresses (sinusoidally varying wall shape). These inserts substantially change the mean flow, and produce distinct regions of low and high momentum corresponding to the mode being excited. The inserts add energy in the targeted modes while simultaneously reducing the energy in the non-excited azimuthal modes. In addition, inserts designed to excite two modes simultaneously exhibit non-linear interactions. Supported under ONR Grant N00014-15-1-2402, Program Manager/Director Thomas Fu and the Australian Research Council.

  14. Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors

    Science.gov (United States)

    Xu, Hailing; Li, Xingwei; Wang, Gengchao

    2015-10-01

    Polyaniline (PANI) with a high specific surface area and an improved pore structure (HSSA-PANI) has been prepared by using a facile method, treating PANI nanofibers with chloroform (CHCl3), and its structure, morphology and pore structure are investigated. The specific surface area and pore volume of HSSA-PANI are 817.3 m2 g-1 and 0.6 cm3 g-1, and those of PANI are 33.6 m2 g-1 and 0.2 cm3 g-1. As electrode materials, a large specific surface area and pore volume can provide high electroactive regions, accelerate the diffusion of ions, and mitigate the electrochemical degradation of active materials. Compared with PANI, the capacity retention rate of HSSA-PANI is 90% with a growth of current density from 5.0 to 30 A g-1, and that of PANI is 29%. At a current density of 30 A g-1, the specific capacitance of HSSA-PANI still reaches 278.3 F g-1, and that of PANI is 86.7 F g-1. At a current density of 5.0 A g-1, the capacitance retention of HSSA-PANI is 53.1% after 2000 cycles, and that of PANI electrode is only 28.1%.

  15. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine

    International Nuclear Information System (INIS)

    Xu Wei; Chu Yiwei; Zhang Ruihua; Xu Huanbin; Wang Ying; Xiong Sidong

    2005-01-01

    CD8 + T cells play a critical role in protective immunity against Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing HBV-dominant CTL epitopes can be used as candidate vaccines capable of inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA encoding a CTL epitope of HBV core antigen, HBc 18-27 , was constructed. Intramuscular immunization of C57BL/6 mice with this DNA vaccine resulted in successful induction of HBV-specific CTL responses. In order to promote transportation of the peptide into endoplasmic reticulum (ER) to bind to MHC class I molecules for optimal class I antigen presentation, an ER targeting sequence (ERTS) was fused with the C 18-27 encoding gene. ERTS fusion significantly enhanced specific CD8 + T cell responses in terms of CTL cytolysis as well as IFN-γ secretion. This enhancement was correlated with promoted epitope presentation on target cell surface. We report here an enhanced immunogenicity of an epitope-based DNA vaccine using an ER targeting signal sequence, which has significant implications for future design of therapeutic HBV vaccine

  16. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F., E-mail: ghanotakis@uoc.gr [University of Crete, Department of Chemistry (Greece)

    2016-07-15

    Terbium layered hydroxide nanoparticles (Tb{sub 2}(OH){sub 5}NO{sub 3}) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb{sub 2}(OH){sub 5}NO{sub 3} resulted in the preparation of two optimized nanoparticles. In particular, Tb{sub 2}(OH){sub 5}NO{sub 3}:Eu and Tb{sub 2}(OH){sub 5}NO{sub 3}-FA were prepared when Tb{sub 2}(OH){sub 5}NO{sub 3} was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb{sub 2}(OH){sub 5}NO{sub 3}, could render these nanoparticles appropriate for biomedical applications.

  17. Specific targeting for the treatment of neuroendocrine tumors; Ciblage specifique pour le traitement des tumeurs neuro-endocrines

    Energy Technology Data Exchange (ETDEWEB)

    Hoefnagel, C.A. [Netherlands Cancer Institute 1066 CX Amsterdam, Dept. of Nuclear Medicine (Netherlands)

    2003-09-01

    For the treatment of neuroendocrine tumors three ways of specific targeting of radionuclides prevail: by {sup 131}I-meta-iodo-benzyl-guanidine (MIBG), which is taken up by an active uptake-1 mechanism and stored in neurosecretory granules of neural crest tumor cells, by radiolabeled peptides, in particular the somatostatin analogs octreotide and lanreotide, targeting the peptide receptors, and by radiolabeled antibodies, which target tumor cell surface antigens. The choice depends on the indication, the results of diagnostic imaging using tracer amounts of these agents, the availability and feasibility of radionuclide therapy and of other treatment modalities. The applications, clinical results and developments for the major indications are reviewed. {sup 131}I-MIBG therapy has a cumulative response rate of 50%, associated with little toxicity, in metastatic pheochromocytoma, paraganglioma and neuroblastoma, whereas its role is primarily palliative in patients with medullary thyroid carcinoma and carcinoid tumors. Treatment using {sup 90}Y- or {sup 177}Lu-labeled octreotide/lanreotide is mostly used in neuroendocrine gastro-entero-pancreatic (GEP) tumors and paraganglioma, attaining stabilization of disease anti-palliation in the majority of patients. As this treatment is specific for the receptor rather than for the tumor type, it may also be applicable to other, non-neuroendocrine tumors. Radioimmunotherapy is applied in medullary thyroid carcinoma, in which a phase I/II study using bi-specific anti-DTPA/anti-CEA immuno-conjugates followed by {sup 131}I-hapten has proven some degree of success, and may be used in neuroblastoma more effectively than before, once chimeric and humanized monoclonal antibodies become available for therapy. Integration of these specific and noninvasive therapies at an optimal moment into the treatment protocols of these diseases may enhance their effectiveness and acceptance. (author)

  18. PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing

    Directory of Open Access Journals (Sweden)

    Fanyongjing Wang

    2015-07-01

    Full Text Available Whispering Gallery Mode (WGM optical microresonator biosensors are a powerful tool for targeted detection of analytes at extremely low concentrations. However, in complex environments, non-specific adsorption can significantly reduce their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene glycol (PEG can be employed in conjunction with appropriate recognition elements to create a nonfouling surface capable of detecting targeted analytes. This paper investigates a general route for the addition of nonfouling elements to WGM optical biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We use the avidin-biotin analyte-recognition element system, in conjunction with PEG nonfouling elements, as a proof-of-concept, and explore the extent of non-specific adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact angle measurement, fluorescence microscopy, and optical resonator characterization methods were used to study non-specific adsorption, the quality of the functionalized surface, and the biosensor’s performance. Using a recognition element ratio to nonfouling element ratio of 1:1, we showed that non-specific adsorption could be significantly reduced over the controls, and that high sensitivity could be maintained. Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor surfaces with biotin-labeled recognition elements, this chemistry could provide a common basis for creating a non-fouling surface capable of targeted detection. This should improve the ability of WGM optical biosensors to operate in complex environments, extending their application towards real-world detection.

  19. Simultaneous targeting of prostate stem cell antigen and prostate-specific membrane antigen improves the killing of prostate cancer cells using a novel modular T cell-retargeting system.

    Science.gov (United States)

    Arndt, Claudia; Feldmann, Anja; Koristka, Stefanie; Cartellieri, Marc; Dimmel, Maria; Ehninger, Armin; Ehninger, Gerhard; Bachmann, Michael

    2014-09-01

    Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. Overall, the novel modular system represents a promising tool for multiple tumor targeting. © 2014 Wiley Periodicals, Inc.

  20. Thin-target excitation functions: a powerful tool for optimizing yield, radionuclidic purity and specific activity of cyclotron produced radionuclides

    International Nuclear Information System (INIS)

    Bonardi, M.L.

    2002-01-01

    In accelerator production of radionuclides, thin-target yield, y(E), is defined as a function of the projectile energy E, at the End Of an Instantaneous Bombardment (EOIB), as the slope at the origin of the growing curve of the activity per unit beam current (A/I) of a specific radionuclide vs. irradiation time, for a target in which the energy loss is negligible with respect to the projectile energy itself. In practice, y(E) is defined as the second derivative of A/I with respect to particle energy and irradiation time, calculated when the irradiation time tends to zero (EOIB). The thin-target yields of different radionuclides, produced by direct and side reactions, are numerically fitted, taking into account the overall statistical errors as weights. The 'effective' cross-section σ ± (E) as a function of projectile energy is proportional to thin-target yield, but the physical meaning of this parameter is poor, being only a raw summation of the several cross sections of the reaction channels concerned, weighted on target isotopic composition. Conversely, Thick-Target Yield, Y(E,ΔE), is defined as a two parameter function of the incident particle energy E(MeV) onto the target and the energy loss ΔE (MeV), in the target itself, obtained by integration of thin-target excitation function, y(E). This approach holds in the strict approximation of a monochromatic beam of energy E, not affected by either intrinsic energy spread or straggling. The energy straggling is computed by Monte Carlo computer codes, like TRIM 2001. In case of total particle energy absorption in the target, for a nuclear reaction of energy threshold E th , the function Y(E,ΔE) reaches a value Y(E,E- E th ), for ΔE=E- E th , that represents mathematically the envelope of the Y(E,ΔE) family of curves. This envelope is a monotonically increasing curve, never reaching either a maximum or a saturation value, even if its slope becomes negligible for high particle energies and energy losses. Some

  1. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    Science.gov (United States)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  2. Current target industry analysis: Las Vegas Metropolitan Area

    International Nuclear Information System (INIS)

    Boyle, M.R.

    1988-06-01

    This is the second of three reports dealing with the Las Vegas MSA's economic development potential in support of an overall effort to prepare an environmental impact statement for the proposed underground nuclear waste storage facility at Yucca Mountain. The first report provides an assessment of the MSA current business climate for economic growth. This second report draws on that business climate assessment to evaluate the Las Vegas MSA's competitive posture in pursuing business investment in the ''primary'' sector of the economy -- businesses which sell their products or services outside the local marketplace and bring new money back into the area and businesses serving local customers who would otherwise import these products or services from suppliers outside the area. GSO has developed an analytic tool which attempts to model the decision process used by businesses in selecting locations for new or expanded business investment. This computer based model reflects variations in site selection decision making among industries and ownership and management types. The underlying premise of the GSO locational compatibility index (LCI) model is that locational decisions are based more on a process of elimination that on a process of selection. There are many factors, some essential and some desirable, which influence any site selection decision. Multivariate comparative analyses narrow the geographic field to a region, then a group of states, then a state, then a sub-state region, then a community and finally to a specific site. Sometimes these analyses are rational and quantitative. More often, they are at least partially random and intuitive. 2 tabs

  3. Practical considerations in emergency management of bleeding in the setting of target-specific oral anticoagulants.

    Science.gov (United States)

    Miller, Michael P; Trujillo, Toby C; Nordenholz, Kristen E

    2014-04-01

    The recent arrival of the target-specific oral anticoagulants (TSOACs) offers potential advantages in the field of anticoagulation. However, there are no rapid and accurate and routinely available laboratory assays to evaluate their contribution to clinical bleeding. With the expanding clinical indications for the TSOACs, and the arrival of newer reversal agents on the market, the emergency clinician will need to be familiar with drug specifics as well as methods for anticoagulation reversal. This review offers a summary of the literature and some practical strategies for the approach to the patient taking TSOACs and the management of bleeding in these cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  5. Estimasi kebutuhan spektrum untuk memenuhi target rencana pita lebar Indonesia di wilayah perkotaan [The estimation of spectrum requirements to meet the target of Indonesia broadband plan in urban area

    Directory of Open Access Journals (Sweden)

    Kasmad Ariansyah

    2015-12-01

    Full Text Available Pemerintah Indonesia telah mengesahkan Rencana Pita Lebar Indonesia menjelang akhir tahun 2014. Dokumen tersebut berisi panduan dan arah pembangunan pita lebar nasional dan berisi berisi target-target pencapaian berkelanjutan antara tahun 2014-2019. Terkait target capaian pita lebar nirkabel, ketersediaan dan kecukupan spektrum frekuensi merupakan salah satu hal yang sangat penting.  Studi ini dilakukan untuk mengestimasi kebutuhan spektrum frekuensi dalam rangka memenuhi target capaian Rencana Pita Lebar Indonesia khususnya layanan pita lebar nirkabel di wilayah perkotaan. DKI Jakarta dipilih sebagai sampel wilayah perkotaan. Analisis dilakukan dengan menghitung luas cakupan BTS, mengestimasi jumlah potensi pengguna, mengestimasi kebutuhan spektrum dan membandingkannya dengan spektrum yang sudah dialokasikan untuk mendapatkan jumlah kekurangan spektrum. 3G dan 4G diasumsikan sebagai teknologi yang digunakan untuk memenuhi sasaran pita lebar bergerak. Hasil analisis menunjukkan pada rentang tahun 2016-2019 akan terjadi kekurangan spektrum di wilayah perkotaan sebesar 2x234,5 MHz sampai dengan 2x240,5MHz (untuk mode FDD atau sebesar 313 MHz sampai dengan 321 MHz (untuk mode TDD. Spektrum frekuensi merupakan sumber daya yang reusable, dengan mengasumsikan kebutuhan spektrum di perdesaan lebih rendah dibanding kebutuhan di perkotaan, maka estimasi ini dapat pula digunakan untuk menggambarkan kebutuhan spektrum di Indonesia secara keseluruhan.*****Indonesian government has issued Indonesia Broadband Plan (IBP at the end of 2014. IBP provides guidance and direction for the development of national broadband and contains targets in the period of 2014 to 2019. Relating to wireless broadband target, the availability and the adequacy of spectrum is very important. This study was conducted to estimate the spectrum requirements to meet the Indonesia broadband plan target especially the target of mobile broadband in urban area. DKI Jakarta was taken as

  6. Acrylic microspheres in vivo. X. Elimination of circulating cells by active targeting using specific monoclonal antibodies bound to microparticles

    International Nuclear Information System (INIS)

    Laakso, T.; Andersson, J.; Artursson, P.; Edman, P.; Sjoeholm, I.

    1986-01-01

    The elimination from the blood of 51 Cr-labelled mouse erythrocytes modified with trinitrophenyl (TNP) groups was followed in mice. After 24 hours, when a stable concentration of the labelled erythrocytes has been attained, monoclonal anti-TNP-antibodies were given intravenously, either in free, soluble form, or bound to microparticles containing immobilized protein A. The anti-TNP-antibodies induced a rapid elimination of the TNP- and 51 Cr-labelled erythrocytes. Over the 8-hours time period studied, the elimination rate was significantly faster when the antibodies were administered bound to the particles. After the elimination of the target cells, the radioactivity was found in the liver, spleen and bone marrow. These results and relevant control experiments indicate that a solid carrier (1) can be directed to a specific target cell with a specific antibody and (2) can induce a rapid elimination of the target cell from the circulation. 31 references, 1 figure, 2 tables

  7. The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway.

    Science.gov (United States)

    Fox, Melanie J; Gao, Hongyu; Smith-Kinnaman, Whitney R; Liu, Yunlong; Mosley, Amber L

    2015-01-01

    The exosome and its nuclear specific subunit Rrp6 form a 3'-5' exonuclease complex that regulates diverse aspects of RNA biology including 3' end processing and degradation of a variety of noncoding RNAs (ncRNAs) and unstable transcripts. Known targets of the nuclear exosome include short (Polymerase II (RNAPII) localization. Deletion of RRP6 promotes hyper-elongation of multiple NNS-dependent transcripts resulting from both improperly processed 3' RNA ends and faulty transcript termination at specific target genes. The defects in RNAPII termination cause transcriptome-wide changes in mRNA expression through transcription interference and/or antisense repression, similar to previously reported effects of depleting Nrd1 from the nucleus. Elongated transcripts were identified within all classes of known NNS targets with the largest changes in transcription termination occurring at CUTs. Interestingly, the extended transcripts that we have detected in our studies show remarkable similarity to Nrd1-unterminated transcripts at many locations, suggesting that Rrp6 acts with the NNS complex globally to promote transcription termination in addition to 3' end RNA processing and/or degradation at specific targets.

  8. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting

    KAUST Repository

    Abdel-Haleem, Alyaa M.; Hefzi, Hooman; Mineta, Katsuhiko; Gao, Xin; Gojobori, Takashi; Palsson, Bernhard O.; Lewis, Nathan E.; Jamshidi, Neema

    2018-01-01

    and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species

  9. Spallation source neutron target systems

    International Nuclear Information System (INIS)

    Russell, G.; Brown, R.; Collier, M.; Donahue, J.

    1996-01-01

    This is the final report for a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to design a next-generation spallation source neutron target system for the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) at Los Alamos. It has been recognized for some time that new advanced neutron sources are needed in the US if the country is to maintain a competitive position in several important scientific and technological areas. A recent DOE panel concluded that the proposed Advanced Neutron Source (a nuclear reactor at Oak Ridge National Laboratory) and a high-power pulsed spallation source are both needed in the near future. One of the most technically challenging designs for a spallation source is the target station itself and, more specifically, the target-moderator-reflector arrangement. Los Alamos has demonstrated capabilities in designing, building, and operating high-power spallation-neutron-source target stations. Most of the new design ideas proposed worldwide for target system design for the next generation pulsed spallation source have either been conceived and implemented at LANSCE or proposed by LANSCE target system designers. These concepts include split targets, flux-trap moderators, back scattering and composite moderators, and composite reflectors

  10. Update on design simulations for NIF ignition targets, and the roll-up of all specifications into an error budget

    International Nuclear Information System (INIS)

    Haan, S.W.; Herrmann, M.C.; Salmonson, J.D.; Amendt, P.A.; Callahan, D.A.; Dittrich, T.R.; Edwards, M.J.; Jones, O.S.; Marinak, M.M.; Munro, D.H.; Pollaine, S.M.; Spears, B.K.; Suter, L.J.

    2007-01-01

    Targets intended to produce ignition on NIF are being simulated and the simulations are used to set specifications for target fabrication and other program elements. Recent design work has focused on designs that assume only 1.0 MJ of laser energy instead of the previous 1.6 MJ. To perform with less laser energy, the hohlraum has been redesigned to be more efficient than previously, and the capsules are slightly smaller. Three hohlraum designs are being examined: gas fill, SiO 2 foam fill, and SiO 2 lined. All have a cocktail wall, and shields mounted between the capsule and the laser entrance holes. Two capsule designs are being considered. One has a graded doped Be(Cu) ablator, and the other graded doped CH(Ge). Both can perform acceptably with recently demonstrated ice layer quality, and with recently demonstrated outer surface roughness. Complete tables of specifications are being prepared for both targets, to be completed this fiscal year. All the specifications are being rolled together into an error budget indicating adequate margin for ignition with the new designs. The dominant source of error is hohlraum asymmetry at intermediate modes 4-8, indicating the importance of experimental techniques to measure and control this asymmetry. (authors)

  11. Membrane Targeting of P-type ATPases in Plant Cells

    International Nuclear Information System (INIS)

    Harper, Jeffrey F.

    2004-01-01

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems

  12. Target specific oral anticoagulants in the management of thromboembolic disease in the elderly.

    Science.gov (United States)

    Maddula, Surekha; Ansell, Jack

    2013-08-01

    The elderly population represents a population at highest risk of thromboembolism, but also the most vulnerable to hemorrhage. In the community setting there is a general tendency to under- treat this patient group. Specific consideration must be taken with elderly patients because they have reduced renal function, co-morbidities and risk of falls, altered pharmacodynamics, and challenges with adherence. Vitamin K antagonists, most often warfarin, have been the first line choice of therapy for long-term anticoagulation and enjoyed an unopposed position in the market for the last 70 years. Recently several new oral anticoagulants have been developed and found to be equally effective as warfarin in phase III studies and may provide an optimal treatment option in the elderly population. In this review we explore the target-specific oral anticoagulants and the pharmacological differences between them with a focus on the elderly population in whom these new drugs would constitute a possible alternative to warfarin therapy.

  13. 21 CFR 1000.50 - Recommendation for the use of specific area gonad shielding on patients during medical diagnostic...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Recommendation for the use of specific area gonad shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... GENERAL Radiation Protection Recommendations § 1000.50 Recommendation for the use of specific area gonad...

  14. FeNi nanotubes: perspective tool for targeted delivery

    Science.gov (United States)

    Kaniukov, Egor; Shumskaya, Alena; Yakimchuk, Dzmitry; Kozlovskiy, Artem; Korolkov, Ilya; Ibragimova, Milana; Zdorovets, Maxim; Kadyrzhanov, Kairat; Rusakov, Vyacheslav; Fadeev, Maxim; Lobko, Eugenia; Saunina, Kristina; Nikolaevich, Larisa

    2018-05-01

    Targeted delivery of drugs and proteins by magnetic field is a promising method to treat cancer that reduces undesired systemic toxicity of drugs. In this method, the therapeutic agent is attached through links to functional groups with magnetic nanostructure and injected into the blood to be transported to the problem area. To provide a local effect of drug treatment, nanostructures are concentrated and fixed in the selected area by the external magnetic field (magnet). After the exposure, carriers are removed from the circulatory system by magnetic field. In this study, Fe20Ni80 nanotubes are considered as carriers for targeted delivery of drugs and proteins. A simple synthesis method is proposed to form these structures by electrodeposition in PET template pores, and structural and magnetic properties are studied in detail. Nanotubes have polycrystalline walls providing mechanical strength of carriers and magnetic anisotropy that allow controlling the nanostructure movement under the exposure of by magnetic field. Moreover, potential advantages of magnetic nanotubes are discussed in comparison with other carrier types. Most sufficient of them is predictable behavior in magnetic field due to the absence of magnetic core, low specific density that allows floating in biological media, and large specific surface area providing the attachment of a larger number of payloads for the targeted delivery. A method of coating nanotube surfaces with PMMA is proposed to exclude possible negative impact of the carrier material and to form functional bonds for the payload connection. Cytotoxicity studies of coated and uncoated nanotubes are carried out to understand their influence on the biological media.

  15. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Directory of Open Access Journals (Sweden)

    Huthmacher Carola

    2010-08-01

    Full Text Available Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte. Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.

  16. A new restriction endonuclease-based method for highly-specific detection of DNA targets from methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Maria W Smith

    Full Text Available PCR multiplexing has proven to be challenging, and thus has provided limited means for pathogen genotyping. We developed a new approach for analysis of PCR amplicons based on restriction endonuclease digestion. The first stage of the restriction enzyme assay is hybridization of a target DNA to immobilized complementary oligonucleotide probes that carry a molecular marker, horseradish peroxidase (HRP. At the second stage, a target-specific restriction enzyme is added, cleaving the target-probe duplex at the corresponding restriction site and releasing the HRP marker into solution, where it is quantified colorimetrically. The assay was tested for detection of the methicillin-resistant Staphylococcus aureus (MRSA pathogen, using the mecA gene as a target. Calibration curves indicated that the limit of detection for both target oligonucleotide and PCR amplicon was approximately 1 nM. Sequences of target oligonucleotides were altered to demonstrate that (i any mutation of the restriction site reduced the signal to zero; (ii double and triple point mutations of sequences flanking the restriction site reduced restriction to 50-80% of the positive control; and (iii a minimum of a 16-bp target-probe dsDNA hybrid was required for significant cleavage. Further experiments showed that the assay could detect the mecA amplicon from an unpurified PCR mixture with detection limits similar to those with standard fluorescence-based qPCR. Furthermore, addition of a large excess of heterologous genomic DNA did not affect amplicon detection. Specificity of the assay is very high because it involves two biorecognition steps. The proposed assay is low-cost and can be completed in less than 1 hour. Thus, we have demonstrated an efficient new approach for pathogen detection and amplicon genotyping in conjunction with various end-point and qPCR applications. The restriction enzyme assay may also be used for parallel analysis of multiple different amplicons from the same

  17. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  18. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  19. Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2015-11-01

    Full Text Available Nanoparticles combined with cells, drugs, and specially designed genes provide improved therapeutic efficacy in studies and clinical setting, demonstrating a new era of treatment strategy, especially in retinal diseases. Nanotechnology-based drugs can provide an essential platform for sustaining, releasing and a specific targeting design to treat retinal diseases. Poly-lactic-co-glycolic acid is the most widely used biocompatible and biodegradable polymer approved by the Food and Drug Administration. Many studies have attempted to develop special devices for delivering small-molecule drugs, proteins, and other macromolecules consistently and slowly. In this article, we first review current progress in the treatment of age-related macular degeneration. Then, we discuss the function of vascular endothelial growth factor (VEGF and the pharmacological effects of anti-VEGF-A antibodies and soluble or modified VEGF receptors. Lastly, we summarize the combination of antiangiogenic therapy and nanomedicines, and review current potential targeting therapy in age-related macular degeneration.

  20. Molecular Differentiation of Risk for Disease Progression: Delineating Stage-Specific Therapeutic Targets for Disease Management in Breast Cancer

    National Research Council Canada - National Science Library

    Worsham, Maria J; Raju, Usha; Chase, Gary; Lu, Mei

    2004-01-01

    .... The aim of this research is to 1a: identify an informative set of specific genetic alterations that underlie the pathogenesis of disease progression to serve as targets for management of disease at the earliest stages and 1b...

  1. Molecular Differentiation of Risk for Disease Progression: Delineating Stage-Specific Therapeutic Targets for Disease Management in Breast Cancer

    National Research Council Canada - National Science Library

    Worsham, Maria J; Raju, Usha; Lu, Mei

    2006-01-01

    .... The aim of this research is to 1a: identify an informative set of specific genetic alterations that underlie the pathogenesis of disease progression to serve as targets for management of disease at the earliest stages and 1b...

  2. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area

    International Nuclear Information System (INIS)

    Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo

    2013-01-01

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. - Highlights: ► The expression of AHR-target genes in blood bovine lymphocytes was evaluated. ► The lymphocyte CYP1B1 expression appears to be related to bulk milk TEQ values. ► Blood lymphocytes from dairy cows might represent a matrix for dioxin biomonitoring

  3. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Flavia [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Spalenza, Veronica [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Carletti, Monica [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Sacchi, Paola [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Rasero, Roberto [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Nebbia, Carlo [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. - Highlights: ► The expression of AHR-target genes in blood bovine lymphocytes was evaluated. ► The lymphocyte CYP1B1 expression appears to be related to bulk milk TEQ values. ► Blood lymphocytes from dairy cows might represent a matrix for dioxin biomonitoring.

  4. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    Science.gov (United States)

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Specification of volume and dose in radiotherapy

    International Nuclear Information System (INIS)

    Levernes, S.

    1997-01-01

    As a result of a questionnaire about dose and volume specifications in radiotherapy in the Nordic countries, a group has been set up to propose common recommendations for these countries. The proposal is partly based on ICRU 50, but with major extensions. These extensions fall into three areas: patient geometry, treatment geometry, and dose specifications. For patient geometry and set-up one need alignment markings and anatomical reference points, the latter can be divided into internal and external reference points. These points are necessary to get relationships between coordinate systems related to patient and to treatment unit. For treatment geometry the main volume will be an anatomical target volume which just encompass the clinical target volume with all its variations and movements. This anatomical volume are the most suitable volume for prescription, optimization and reporting dose. A set-up margin should be added to the beam periphery in beams-eye-view to get the minimum size and shape of the beam. For dose specification the most important parameter for homogeneous dose distributions is the arithmetic mean of dose to the anatomical target volume together with its standard deviation. In addition the dose to the ICRU reference point should be reported for intercomparison, together with minimum and maximum doses or dose volume histograms for the anatomical target volume. (author)

  6. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    Science.gov (United States)

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Evaluation of dual target-specific real-time PCR for the detection of Kingella kingae in a Danish paediatric population

    DEFF Research Database (Denmark)

    de Knegt, Victoria Elizabeth; Kristiansen, Gitte Qvist; Schønning, Kristian

    2017-01-01

    BACKGROUND: We aimed to evaluate the relevance of dual target real-time polymerase chain (PCR) assays targeting the rtxA and cpn60 genes of the paediatric pathogen Kingella kingae. We also studied for the first time the clinical and epidemiological features of K. kingae infections in a Danish pop......-value: peak in autumn. CONCLUSION: Dual target-specific real-time PCR markedly improved the detection of K. kingae in clinical specimens when compared to culture methods....

  8. Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jameel Ahmad Khan

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography. The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor, all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1 targeting agent to nanoparticle ratio 2 availability of reactive surface area on the nanoparticle 3 ability of the nanoconjugate to bind the target and 4 hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle

  9. Software engineering with application-specific languages

    Science.gov (United States)

    Campbell, David J.; Barker, Linda; Mitchell, Deborah; Pollack, Robert H.

    1993-01-01

    Application-Specific Languages (ASL's) are small, special-purpose languages that are targeted to solve a specific class of problems. Using ASL's on software development projects can provide considerable cost savings, reduce risk, and enhance quality and reliability. ASL's provide a platform for reuse within a project or across many projects and enable less-experienced programmers to tap into the expertise of application-area experts. ASL's have been used on several software development projects for the Space Shuttle Program. On these projects, the use of ASL's resulted in considerable cost savings over conventional development techniques. Two of these projects are described.

  10. Power utility generation portfolio optimization as function of specific RES and decarbonisation targets – EPBiH case study

    International Nuclear Information System (INIS)

    Kazagic, Anes; Merzic, Ajla; Redzic, Elma; Music, Mustafa

    2014-01-01

    Highlights: • Guidelines for power utilities to reach specific decarbonisation targets offered. • Optimization model of RES share to be introduced into power system is proposed. • Single criteria analysis and multicriteria sustainability assessment are applied. • The optimization method has been demonstrated on a real power system. • In the considered case, HIGH RES scenario showed to be the preferable one. - Abstract: This paper provides guidelines and principles for power utilities to reach specific energy and decarbonisation targets. Method of power generation portfolio optimization, as function of sustainability and decarbonisation, along with appropriate criteria, has been proposed. Application of this optimization method has been demonstrated on a real power system – power utility JP Elektroprivreda BiH d.d. – Sarajevo (EPBiH), a typical example of South East European power system. The software tool WASP IV has been employed in the analysis, in order to define the dynamics and an optimized expansion of generation portfolio of the power system under consideration for the next period. The mid-term generation portfolio development plan for the EPBiH power system until year 2030 has been made during this research, taking into account the shutdown dynamics of existing power units and commissioning new ones, in order to provide safe supply of electric and heat energy for local consumers. Three basic scenario of renewable energy sources (RES) expansion have been analysed to reach specific RES and decarbonisation targets set for 2030, including RES share increase from the current level of 18% up to 35% (LOW RES), 45% (MID RES) and 55% (HIGH RES). Effects to the sustainability are considered through environmental, economic and social indicators. Multicriteria sustainability assessment gave an advantage to the HIGH RES, under assumption of equal weighting factors of economic and environment groups of indicators. Also, single criteria analysis has been

  11. Recent advances in indirect drive ICF target physics at LLNL

    International Nuclear Information System (INIS)

    Hammel, B.A.; Bernat, T.P.; Collins, G.W.; Haan, S.; Landen, O.L.; MacGowan, B.J.; Suter, L.J.

    1999-01-01

    In preparation for ignition on the National Ignition Facility, the Lawrence Livermore National Laboratory's Inertial Confinement Fusion Program, working in collaboration with Los Alamos National Laboratory, Commissariat a l'Energie Atomique (CEA), and Laboratory for Laser Energetics at the University of Rochester, has performed a broad range of experiments on the Nova and Omega lasers to test the fundamentals of the NIF target designs. These studies have refined our understanding of the important target physics, and have led to many of the specifications for the NIF laser and the cryogenic ignition targets. Our recent work has been focused in the areas of hohlraum energetics, symmetry, shock physics, and target design optimization and fabrication. (author)

  12. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining.

    Directory of Open Access Journals (Sweden)

    Etienne G J Danchin

    2013-10-01

    Full Text Available Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when

  13. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Directory of Open Access Journals (Sweden)

    Monika Stimac

    Full Text Available Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET (TS plasmid, in comparison to the plasmid with constitutive promoter (CON plasmid, in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  14. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Science.gov (United States)

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  15. CRISPR-RT: A web service for designing CRISPR-C2c2 crRNA with improved target specificity

    OpenAIRE

    Zhu, Houxiang; Richmond, Emily; Liang, Chun

    2017-01-01

    CRISPR-Cas systems have been successfully applied in genome editing. Recently, the CRISPR-C2c2 system has been reported as a tool for RNA editing. Here we describe CRISPR-RT (CRISPR RNA-Targeting), the first web service to help biologists design the crRNA with improved target specificity for the CRISPR-C2c2 system. CRISPR-RT allows users to set up a wide range of parameters, making it highly flexible for current and future research in CRISPR-based RNA editing. CRISPR-RT covers major model org...

  16. TNYL peptide functional chitosan-g-stearate conjugate micelles for tumor specific targeting

    Directory of Open Access Journals (Sweden)

    Chen FY

    2014-09-01

    Full Text Available Feng-Ying Chen,1 Jing-Jing Yan,1 Han-Xi Yi,2 Fu-Qiang Hu,2 Yong-Zhong Du,2 Hong Yuan,2 Jian You,2 Meng-Dan Zhao1 1Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 2College of Pharmaceutical Science, Zhejiang University, Hangzhou, People’s Republic of China Abstract: Nowadays, a real challenge in cancer therapy is to design drug delivery systems that can achieve high concentrations of drugs at the target site for improved therapeutic effect with reduced side effects. In this research, we designed and synthesized a homing peptide-(TNYLFSPNGPIA, TNYL modified chitosan-g-stearate (CS polymer micelle (named T-CS for targeting delivery. The peptide displayed specific binding affinity to EphB4 which is a member of the Eph family of receptor tyrosine protein kinases. The amphiphilic polymer T-CS can gather into micelles by themselves in an aqueous environment with a low critical micelle concentration value (91.2 µg/L and nano-scaled size (82.1±2.8 nm. The drug encapsulation efficiency reached 86.43% after loading the hydrophobic drug doxorubicin (DOX. The cytotoxicity of T-CS/DOX against SKOV3 cells was enhanced by approximately 2.3-fold when compared with CS/DOX. The quantitative and qualitative analysis for cellular uptake indicated that TNYL modification can markedly increase cellular internalization in the EphB4-overexpressing SKOV3 cell line, especially with a short incubation time. It is interesting that relatively higher uptake of the T-CS/DOX micelles by SKOV3 cells (positive-EphB4 than A549 cells (negative-EphB4 was observed when the two cells were co-incubated. Furthermore, in vivo distribution experiment using a bilateral-tumor model showed that there was more fluorescence accumulation in the SKOV3 tumor than in the A549 tumor over the whole experiment. These results suggest that TNYL-modified CS micelles may be promising drug carriers as targeting therapy for the EphB4-overexpressing

  17. Truck-mounted Area-wide Application of Pyriproxyfen Targeting Aedes aegypti and Aedes albopictus in Northeast Florida

    Science.gov (United States)

    2014-12-01

    TRUCK-MOUNTED AREA-WIDE APPLICATION OF PYRIPROXYFEN TARGETING AEDES AEGYPTI AND AEDES ALBOPICTUS IN NORTHEAST FLORIDA1 CARL W. DOUD,2,3 ANTHONY M...truck-mounted ultra-low volume applications of pyriproxyfen against Aedes aegypti larvae in artificial water containers and wild adult Ae. albopictus...larval control, Aedes aegypti, Aedes albopictus INTRODUCTION Aedes albopictus (Skuse) (Asian tiger mosquito) and Ae. aegypti (L.) (yellow fever

  18. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area.

    Science.gov (United States)

    Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Mechanism of Genome Interrogation: How CRISPR RNA-Guided Cas9 Proteins Locate Specific Targets on DNA.

    Science.gov (United States)

    Shvets, Alexey A; Kolomeisky, Anatoly B

    2017-10-03

    The ability to precisely edit and modify a genome opens endless opportunities to investigate fundamental properties of living systems as well as to advance various medical techniques and bioengineering applications. This possibility is now close to reality due to a recent discovery of the adaptive bacterial immune system, which is based on clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that utilize RNA to find and cut the double-stranded DNA molecules at specific locations. Here we develop a quantitative theoretical approach to analyze the mechanism of target search on DNA by CRISPR RNA-guided Cas9 proteins, which is followed by a selective cleavage of nucleic acids. It is based on a discrete-state stochastic model that takes into account the most relevant physical-chemical processes in the system. Using a method of first-passage processes, a full dynamic description of the target search is presented. It is found that the location of specific sites on DNA by CRISPR Cas9 proteins is governed by binding first to protospacer adjacent motif sequences on DNA, which is followed by reversible transitions into DNA interrogation states. In addition, the search dynamics is strongly influenced by the off-target cutting. Our theoretical calculations allow us to explain the experimental observations and to give experimentally testable predictions. Thus, the presented theoretical model clarifies some molecular aspects of the genome interrogation by CRISPR RNA-guided Cas9 proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Measurement of the specific surface area of loose copper deposit by electrochemical methods

    Directory of Open Access Journals (Sweden)

    E. A. Dolmatova

    2016-07-01

    Full Text Available In the work the surface area of the electrode with dispersed copper deposit obtained within 30 seconds was evaluated by techniques of chronopotentiometry (CPM and impedance spectroscopy. In method CPM the electrode surface available for measurement depends on the value of the polarizing current. At high currents during the transition time there is a change of surface relief that can not determine the full surface of loose deposit. The electrochemical impedance method is devoid of this shortcoming since the measurements are carried out in indifferent electrolyte in the absence of current. The area measured by the impedance is tens of times higher than the value obtained by chronopotentiometry. It is found that from a solution containing sulfuric acid the deposits form with a high specific surface area. Based on these data it was concluded that the method of impedance spectroscopy can be used to measure in situ the surface area of the dispersed copper deposits.

  1. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. (Genentech, San Francisco, CA (USA))

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  2. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    International Nuclear Information System (INIS)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W.

    1990-01-01

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF

  3. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2017-01-01

    Specific leaf area (SLA), which is defined as the leaf area per unit of dry leaf mass is an important component when assessing functional diversity and plays a key role in ecosystem modeling, linking plant carbon and water cycles as well as quantifying plant physiological processes. However, studies

  4. Technology strategy for enhanced recovery; Technology Target Areas; TTA3 - enhanced recovery

    Energy Technology Data Exchange (ETDEWEB)

    2007-07-01

    The Norwegian Continental Shelf (NCS) is facing new challenges in reserve replacement and improved recovery in order to maintain the overall oil production rate from the area. A new target for an increase in oil reserves of 800 million Sm3 of oil (5 billion barrels) by year 2015 has been set by NPD. This is an ambitious goal considering several of the large fields are on a steep decline, and most of the recent discoveries are relatively small. A significant part of these increased reserves will have to come from fields currently on production, from reservoir areas that have been partly or fully swept, and it is therefore evident that Enhanced Oil Recovery (EOR) methods have to play a key role in achieving this target. EOR methods can be divided into gas based EOR methods and water based EOR methods. Thermal methods are not considered applicable on the NCS due to the relatively light oils present, and the depth of the reservoirs. Gas Based EOR; Water Based EOR; CO{sub 2} injection; Surfactants; Air injection; Polymer; Nitrogen injection; Alkaline; Flue gas injection; Polymer gels; WAG; MEOR; FAWAG. The former OG21 strategy document gave high priority to Water Alternating Gas (WAG) methods and CO{sub 2} injection for enhanced recovery. A lot of research and development and evaluation projects on CO{sub 2} injection were launched and are on-going, most of these are being CO{sub 2} WAG studies. The main challenge now in order to realize CO{sub 2} injection on the NCS is on CO{sub 2} availability and transport. It is also believed that increasing gas prices will limit the availability of hydrocarbon gas for injection purposes in the future. There is, however, a clear need for developing alternative cost efficient EOR methods that can improve the sweep efficiency significantly. Since a majority of the fields on the NCS are being produced under water flooding (or WAG), methods that can improve the water flooding efficiency by chemical additives are of special interest and

  5. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    Directory of Open Access Journals (Sweden)

    Edyta Petters

    2015-08-01

    Full Text Available Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.

  6. Design of ignition targets for the National Ignition Facility

    International Nuclear Information System (INIS)

    Haan, S.W.; Dittrich, T.R.; Marinak, M.M.; Hinkel, D.E.

    1999-01-01

    This is a brief update on the work being done to design ignition targets for the National Ignition Facility. Updates are presented on three areas of current activity : improvements in modeling, work on a variety of targets spanning the parameter space of possible ignition targets ; and the setting of specifications for target fabrication and diagnostics. Highlights of recent activity include : a simulation of the Rayleigh-Taylor instability growth on an imploding capsule, done in 3D on a 72degree by 72degree wedge, with enough zones to resolve modes out to 100 ; and designs of targets at 250eV and 350eV, as well as the baseline 300 eV ; and variation of the central DT gas density, which influences both the Rayleigh-Taylor growth and the smoothness of the DT ice layer

  7. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    OpenAIRE

    Hu Xueting; Zhang Dongyun; Zhao Siqin; Asuha Sin

    2016-01-01

    Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase) with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange) with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that th...

  8. A Computational Methodology to Overcome the Challenges Associated With the Search for Specific Enzyme Targets to Develop Drugs Against Leishmania major.

    Science.gov (United States)

    Catharina, Larissa; Lima, Carlyle Ribeiro; Franca, Alexander; Guimarães, Ana Carolina Ramos; Alves-Ferreira, Marcelo; Tuffery, Pierre; Derreumaux, Philippe; Carels, Nicolas

    2017-01-01

    We present an approach for detecting enzymes that are specific of Leishmania major compared with Homo sapiens and provide targets that may assist research in drug development. This approach is based on traditional techniques of sequence homology comparison by similarity search and Markov modeling; it integrates the characterization of enzymatic functionality, secondary and tertiary protein structures, protein domain architecture, and metabolic environment. From 67 enzymes represented by 42 enzymatic activities classified by AnEnPi (Analogous Enzymes Pipeline) as specific for L major compared with H sapiens , only 40 (23 Enzyme Commission [EC] numbers) could actually be considered as strictly specific of L major and 27 enzymes (19 EC numbers) were disregarded for having ambiguous homologies or analogies with H sapiens . Among the 40 strictly specific enzymes, we identified sterol 24-C-methyltransferase, pyruvate phosphate dikinase, trypanothione synthetase, and RNA-editing ligase as 4 essential enzymes for L major that may serve as targets for drug development.

  9. Monitoring Ground Deformation of Subway Area during the Construction Based on the Method of Multi-Temporal Coherent Targets Analysis

    Science.gov (United States)

    Zhang, L.; Wu, J.; Zhao, J.; Yuan, M.

    2018-04-01

    Multi-temporal coherent targets analysis is a high-precision and high-spatial-resolution monitoring method for urban surface deformation based on Differential Synthetic Aperture Radar (DInSAR), and has been successfully applied to measure land subsidence, landslide and strain accumulation caused by fault movement and so on. In this paper, the multi-temporal coherent targets analysis is used to study the settlement of subway area during the period of subway construction. The eastern extension of Shanghai Metro Line. 2 is taking as an example to study the subway settlement during the construction period. The eastern extension of Shanghai Metro Line. 2 starts from Longyang Road and ends at Pudong airport. Its length is 29.9 kilometers from east to west and it is a key transportation line to the Pudong Airport. 17 PalSAR images during 2007 and 2010 are applied to analyze and invert the settlement of the buildings nearby the subway based on the multi-temporal coherent targets analysis. But there are three significant deformation areas nearby the Line 2 between 2007 and 2010, with maximum subsidence rate up to 30 mm/y in LOS. The settlement near the Longyang Road station and Chuansha Town are both caused by newly construction and city expansion. The deformation of the coastal dikes suffer from heavy settlement and the rate is up to -30 mm/y. In general, the area close to the subway line is relatively stable during the construction period.

  10. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer.

    Science.gov (United States)

    Murga, Jose D; Moorji, Sameer M; Han, Amy Q; Magargal, Wells W; DiPippo, Vincent A; Olson, William C

    2015-02-15

    Antibody-drug conjugates (ADCs) are an emerging class of cancer therapies that have demonstrated favorable activity both as single agents and as components of combination regimens. Phase 2 testing of an ADC targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer has shown antitumor activity. The present study examined PSMA ADC used in combination with potent antiandrogens (enzalutamide and abiraterone) and other compounds. Antiproliferative activity and expression of PSMA, prostate-specific antigen and androgen receptor were evaluated in the prostate cancer cell lines LNCaP and C4-2. Cells were tested for susceptibility to antiandrogens or other inhibitors, used alone and in combination with PSMA ADC. Potential drug synergy or antagonism was evaluated using the Bliss independence method. Enzalutamide and abiraterone demonstrated robust, statistically significant synergy when combined with PSMA ADC. Largely additive activity was observed between the antiandrogens and the individual components of the ADC (free drug and unmodified antibody). Rapamycin also synergized with PSMA ADC in certain settings. Synergy was linked in part to upregulation of PSMA expression. In androgen-dependent LNCaP cells, enzalutamide and abiraterone each inhibited proliferation, upregulated PSMA expression, and synergized with PSMA ADC. In androgen-independent C4-2 cells, enzalutamide and abiraterone showed no measurable antiproliferative activity on their own but increased PSMA expression and synergized with PSMA ADC nonetheless. PSMA expression increased progressively over 3 weeks with enzalutamide and returned to baseline levels 1 week after enzalutamide removal. The findings support exploration of clinical treatment regimens that combine potent antiandrogens and PSMA-targeted therapies for prostate cancer. © 2014 Wiley Periodicals, Inc.

  11. Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy.

    Science.gov (United States)

    Nie, Shuming

    2009-01-01

    Biomedical nanotechnology is a cross-disciplinary area of research in science, engineering and medicine with broad applications for molecular imaging, molecular diagnosis, and targeted therapy. The basic rationale is that nanometer-sized particles such as semiconductor quantum dots and iron oxide nanocrystals have optical, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with biotargeting ligands such as monoclonal antibodies, peptides or small molecules, these nanoparticles can be used to target diseased cells and organs (such as malignant tumors and cardiovascular plaques) with high affinity and specificity. In the "mesoscopic" size range of 5-100 nm diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents.

  12. Drainage filter technologies to mitigate site-specific phosphorus losses in agricultural drainage discharge

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Canga, Eriona

    in drainage. The Danish “SUPREME-TECH” project (2010-2016) (www.supreme-tech.dk) aims at providing the scientific basis for developing cost-effective filter technologies for P in agricultural drainage waters. The project studies different approaches of implementing filter technologies including drainage well....... Targeting high risk areas of P loss and applying site-specific measures promises to be a cost-efficient approach. The Danish Commission for Nature and Agriculture has, therefore, now called for a paradigm shift towards targeted, cost-efficient technologies to mitigate site-specific nutrient losses...... environmental threshold values (

  13. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting.

    Directory of Open Access Journals (Sweden)

    Alyaa M Abdel-Haleem

    2018-01-01

    Full Text Available Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale metabolic models (GeMMs of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1, choline, and pantothenate (vitamin B5 metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  14. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting

    KAUST Repository

    Abdel-Haleem, Alyaa M.

    2018-01-04

    Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale models (GEMs) of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1), choline, and pantothenate (vitamin B5) metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  15. Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy

    Science.gov (United States)

    Wong, Michael; Daly, Seth M.; Greenberg, David E.; Toprak, Erdal

    2016-01-01

    The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene’s sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities. PMID:27631336

  16. Validation and evaluation of common large-area display set (CLADS) performance specification

    Science.gov (United States)

    Hermann, David J.; Gorenflo, Ronald L.

    1998-09-01

    Battelle is under contract with Warner Robins Air Logistics Center to design a Common Large Area Display Set (CLADS) for use in multiple Command, Control, Communications, Computers, and Intelligence (C4I) applications that currently use 19- inch Cathode Ray Tubes (CRTs). Battelle engineers have built and fully tested pre-production prototypes of the CLADS design for AWACS, and are completing pre-production prototype displays for three other platforms simultaneously. With the CLADS design, any display technology that can be packaged to meet the form, fit, and function requirements defined by the Common Large Area Display Head Assembly (CLADHA) performance specification is a candidate for CLADS applications. This technology independent feature reduced the risk of CLADS development, permits life long technology insertion upgrades without unnecessary redesign, and addresses many of the obsolescence problems associated with COTS technology-based acquisition. Performance and environmental testing were performed on the AWACS CLADS and continues on other platforms as a part of the performance specification validation process. A simulator assessment and flight assessment were successfully completed for the AWACS CLADS, and lessons learned from these assessments are being incorporated into the performance specifications. Draft CLADS specifications were released to potential display integrators and manufacturers for review in 1997, and the final version of the performance specifications are scheduled to be released to display integrators and manufacturers in May, 1998. Initial USAF applications include replacements for the E-3 AWACS color monitor assembly, E-8 Joint STARS graphics display unit, and ABCCC airborne color display. Initial U.S. Navy applications include the E-2C ACIS display. For these applications, reliability and maintainability are key objectives. The common design will reduce the cost of operation and maintenance by an estimated 3.3M per year on E-3 AWACS

  17. Insulation and wiring specificity of BceR-like response regulators and their target promoters in Bacillus subtilis.

    Science.gov (United States)

    Fang, Chong; Nagy-Staroń, Anna; Grafe, Martin; Heermann, Ralf; Jung, Kirsten; Gebhard, Susanne; Mascher, Thorsten

    2017-04-01

    BceRS and PsdRS are paralogous two-component systems in Bacillus subtilis controlling the response to antimicrobial peptides. In the presence of extracellular bacitracin and nisin, respectively, the two response regulators (RRs) bind their target promoters, P bceA or P psdA , resulting in a strong up-regulation of target gene expression and ultimately antibiotic resistance. Despite high sequence similarity between the RRs BceR and PsdR and their known binding sites, no cross-regulation has been observed between them. We therefore investigated the specificity determinants of P bceA and P psdA that ensure the insulation of these two paralogous pathways at the RR-promoter interface. In vivo and in vitro analyses demonstrate that the regulatory regions within these two promoters contain three important elements: in addition to the known (main) binding site, we identified a linker region and a secondary binding site that are crucial for functionality. Initial binding to the high-affinity, low-specificity main binding site is a prerequisite for the subsequent highly specific binding of a second RR dimer to the low-affinity secondary binding site. In addition to this hierarchical cooperative binding, discrimination requires a competition of the two RRs for their respective binding site mediated by only slight differences in binding affinities. © 2016 John Wiley & Sons Ltd.

  18. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2006-01-01

    This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 408, Bomblet Target Area. CAU 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. One Corrective Action Site (CAS) is included in CAU 408: (lg b ullet) CAS TA-55-002-TAB2, Bomblet Target Areas Based on historical documentation, personnel interviews, process knowledge, site visits, aerial photography, multispectral data, preliminary geophysical surveys, and the results of data quality objectives process (Section 3.0), clean closure will be implemented for CAU 408. CAU 408 closure activities will consist of identification and clearance of bomblet target areas, identification and removal of depleted uranium (DU) fragments on South Antelope Lake, and collection of verification samples. Any soil containing contaminants at concentrations above the action levels will be excavated and transported to an appropriate disposal facility. Based on existing information, contaminants of potential concern at CAU 408 include explosives. In addition, at South Antelope Lake, bomblets containing DU were tested. None of these contaminants is expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results. The corrective action investigation and closure activities have been planned to include data collection and hold points throughout the process. Hold points are designed to allow decision makers to review the existing data and decide which of the available options are most suitable. Hold points include the review of radiological, geophysical, and analytical data and field observations

  19. An Anti-proteome Nanobody Library Approach Yields a Specific Immunoassay for Trypanosoma congolense Diagnosis Targeting Glycosomal Aldolase.

    Directory of Open Access Journals (Sweden)

    Steven Odongo

    2016-02-01

    Full Text Available Infectious diseases pose a severe worldwide threat to human and livestock health. While early diagnosis could enable prompt preventive interventions, the majority of diseases are found in rural settings where basic laboratory facilities are scarce. Under such field conditions, point-of-care immunoassays provide an appropriate solution for rapid and reliable diagnosis. The limiting steps in the development of the assay are the identification of a suitable target antigen and the selection of appropriate high affinity capture and detection antibodies. To meet these challenges, we describe the development of a Nanobody (Nb-based antigen detection assay generated from a Nb library directed against the soluble proteome of an infectious agent. In this study, Trypanosoma congolense was chosen as a model system.An alpaca was vaccinated with whole-parasite soluble proteome to generate a Nb library from which the most potent T. congolense specific Nb sandwich immunoassay (Nb474H-Nb474B was selected. First, the Nb474-homologous sandwich ELISA (Nb474-ELISA was shown to detect experimental infections with high Positive Predictive Value (98%, Sensitivity (87% and Specificity (94%. Second, it was demonstrated under experimental conditions that the assay serves as test-of-cure after Berenil treatment. Finally, this assay allowed target antigen identification. The latter was independently purified through immuno-capturing from (i T. congolense soluble proteome, (ii T. congolense secretome preparation and (iii sera of T. congolense infected mice. Subsequent mass spectrometry analysis identified the target as T. congolense glycosomal aldolase.The results show that glycosomal aldolase is a candidate biomarker for active T. congolense infections. In addition, and by proof-of-principle, the data demonstrate that the Nb strategy devised here offers a unique approach to both diagnostic development and target discovery that could be widely applied to other infectious

  20. Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA.

    Science.gov (United States)

    Zozaya-Valdés, Enrique; Porter, Jessica L; Coventry, John; Fyfe, Janet A M; Carter, Glen P; Gonçalves da Silva, Anders; Schultz, Mark B; Seemann, Torsten; Johnson, Paul D R; Stewardson, Andrew J; Bastian, Ivan; Roberts, Sally A; Howden, Benjamin P; Williamson, Deborah A; Stinear, Timothy P

    2017-06-01

    Mycobacterium chimaera is an opportunistic environmental mycobacterium belonging to the Mycobacterium avium - M. intracellulare complex. Although most commonly associated with pulmonary disease, there has been growing awareness of invasive M. chimaera infections following cardiac surgery. Investigations suggest worldwide spread of a specific M. chimaera clone, associated with contaminated hospital heater-cooler units used during the surgery. Given the global dissemination of this clone, its potential to cause invasive disease, and the laboriousness of current culture-based diagnostic methods, there is a pressing need to develop rapid and accurate diagnostic assays specific for M. chimaera Here, we assessed 354 mycobacterial genome sequences and confirmed that M. chimaera is a phylogenetically coherent group. In silico comparisons indicated six DNA regions present only in M. chimaera We targeted one of these regions and developed a TaqMan quantitative PCR (qPCR) assay for M. chimaera with a detection limit of 100 CFU/ml in whole blood spiked with bacteria. In vitro screening against DNA extracted from 40 other mycobacterial species and 22 bacterial species from 21 diverse genera confirmed the in silico -predicted specificity for M. chimaera Screening 33 water samples from heater-cooler units with this assay highlighted the increased sensitivity of PCR compared to culture, with 15 of 23 culture-negative samples positive by M. chimaera qPCR. We have thus developed a robust molecular assay that can be readily and rapidly deployed to screen clinical and environmental specimens for M. chimaera . Copyright © 2017 American Society for Microbiology.

  1. Decision Analysis and Policy Formulation for Technology-Specific Renewable Energy Targets

    Science.gov (United States)

    Okioga, Irene Teshamulwa

    This study establishes a decision making procedure using Analytic Hierarchy Process (AHP) for a U.S. national renewable portfolio standard, and proposes technology-specific targets for renewable electricity generation for the country. The study prioritizes renewable energy alternatives based on a multi-perspective view: from the public, policy makers, and investors' points-of-view, and uses multiple criteria for ranking the alternatives to generate a unified prioritization scheme. During this process, it considers a 'quadruple bottom-line' approach (4P), i.e. reflecting technical "progress", social "people", economic 'profits", and environmental "planet" factors. The AHP results indicated that electricity generation from solar PV ranked highest, and biomass energy ranked lowest. A "Benefits/Cost Incentives/Mandates" (BCIM) model was developed to identify where mandates are needed, and where incentives would instead be required to bring down costs for technologies that have potential for profitable deployment. The BCIM model balances the development of less mature renewable energy technologies, without the potential for rising near-term electricity rates for consumers. It also ensures that recommended policies do not lead to growth of just one type of technology--the "highest-benefit, least-cost" technology. The model indicated that mandates would be suited for solar PV, and incentives generally for geothermal and concentrated solar power. Development for biomass energy, as a "low-cost, low-benefits" alternative was recommended at a local rather than national level, mainly due to its low resource potential values. Further, biomass energy generated from wastewater treatment plants (WWTPs) had the least resource potential compared to other biomass sources. The research developed methodologies and recommendations for biogas electricity targets at WWTPs, to take advantage of the waste-to-energy opportunities.

  2. A Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays.

    Science.gov (United States)

    Min, Junseon; Song, Eun Kyung; Kim, Hansol; Kim, Kyoung Taek; Park, Tae Joo; Kang, Sebyung

    2016-04-11

    We construct a novel recombinant secondary antibody mimic, GST-ABD, which can bind to the Fc regions of target-bound primary antibodies and acquire multiple HRPs simultaneously. We produce it in tenth of mg quantities with a bacterial overexpression system and simple purification procedures, significantly reducing the manufacturing cost and time without the use of animals. GST-ABD is effectively conjugated with 3 HRPs per molecule on an average and selectively bind to the Fc region of primary antibodies derived from three different species (mouse, rabbit, and rat). HRP-conjugated GST-ABD (HRP-GST-ABD) is successfully used as an alternative to secondary antibodies to amplify target-specific signals in both ELISA and immunohistochemistry regardless of the target molecules and origin of primary antibodies used. GST-ABD also successfully serves as an anchoring adaptor on the surface of GSH-coated plates for immobilizing antigen-capturing antibodies in an orientation-controlled manner for sandwich-type indirect ELISA through simple molecular recognition without any complicated chemical modification.

  3. Nanomedicine: Drug Delivery Systems and Nanoparticle Targeting

    International Nuclear Information System (INIS)

    Youn, Hye Won; Kang, Keon Wook; Chung, Jun Key; Lee, Dong Soo

    2008-01-01

    Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic tool at the same time. The development of high affinity nanoparticles with large surface area and functional groups multiplies diagnostic and therapeutic capacities. Considering the specific conditions related to the disease of individual patient, customized therapy requires the identification of disease target at the cellular and molecular level for reducing side effects and enhancing therapeutic efficiency. Well-designed nanoparticles can minimize unnecessary exposure of cytotoxic drugs and maximize targeted localization of administrated drugs. This review will focus on major pharmaceutical nanomaterials and nanoparticles as key components of designing and surface engineering for targeted theragnostic drug development

  4. Quantification of Different Eubacterium spp. in Human Fecal Samples with Species-Specific 16S rRNA-Targeted Oligonucleotide Probes

    OpenAIRE

    Schwiertz, Andreas; Le Blay, Gwenaelle; Blaut, Michael

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none...

  5. Tissue- and stage-specific Wnt target gene expression is controlled subsequent to beta-catenin recruitment to cis-regulatory modules

    NARCIS (Netherlands)

    Nakamura, Y.; de Paiva Alves, E.; Veenstra, G.J.C.; Hoppler, S.

    2016-01-01

    Key signalling pathways, such as canonical Wnt/beta-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear beta-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling,

  6. Flow analysis of water-powder mixtures: Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  7. Flow analysis of water-powder mixtures : Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  8. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg (Germany); Schmitt, Eberhard, E-mail: eschmitt@kip.uni-heidelberg.de [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg (Germany); University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestraße 16-18, D-37083 Göttingen (Germany); Hausmann, Michael, E-mail: hausmann@kip.uni-heidelberg.de [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg (Germany)

    2016-07-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with at least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.

  9. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    International Nuclear Information System (INIS)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta; Schmitt, Eberhard; Hausmann, Michael

    2016-01-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with at least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.

  10. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    Science.gov (United States)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  11. Geophysical background and as-built target characteristics

    International Nuclear Information System (INIS)

    Allen, J.W.

    1994-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas in Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ''very easy to detect'' to ''challenging to the most advanced systems.'' Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets

  12. Artificial neural network study on organ-targeting peptides

    Science.gov (United States)

    Jung, Eunkyoung; Kim, Junhyoung; Choi, Seung-Hoon; Kim, Minkyoung; Rhee, Hokyoung; Shin, Jae-Min; Choi, Kihang; Kang, Sang-Kee; Lee, Nam Kyung; Choi, Yun-Jaie; Jung, Dong Hyun

    2010-01-01

    We report a new approach to studying organ targeting of peptides on the basis of peptide sequence information. The positive control data sets consist of organ-targeting peptide sequences identified by the peroral phage-display technique for four organs, and the negative control data are prepared from random sequences. The capacity of our models to make appropriate predictions is validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC) curve (the ROC score). VHSE descriptor produces statistically significant training models and the models with simple neural network architectures show slightly greater predictive power than those with complex ones. The training and test set statistics indicate that our models could discriminate between organ-targeting and random sequences. We anticipate that our models will be applicable to the selection of organ-targeting peptides for generating peptide drugs or peptidomimetics.

  13. Robot Towed Shortwave Infrared Camera for Specific Surface Area Retrieval of Surface Snow

    Science.gov (United States)

    Elliott, J.; Lines, A.; Ray, L.; Albert, M. R.

    2017-12-01

    Optical grain size and specific surface area are key parameters for measuring the atmospheric interactions of snow, as well as tracking metamorphosis and allowing for the ground truthing of remote sensing data. We describe a device using a shortwave infrared camera with changeable optical bandpass filters (centered at 1300 nm and 1550 nm) that can be used to quickly measure the average SSA over an area of 0.25 m^2. The device and method are compared with calculations made from measurements taken with a field spectral radiometer. The instrument is designed to be towed by a small autonomous ground vehicle, and therefore rides above the snow surface on ultra high molecular weight polyethylene (UHMW) skis.

  14. Automated alignment of the Advanced Radiographic Capability (ARC) target area at the National Ignition Facility

    Science.gov (United States)

    Roberts, Randy S.; Awwal, Abdul A. S.; Bliss, Erlan S.; Heebner, John E.; Leach, Richard R.; Orth, Charles D.; Rushford, Michael C.; Lowe-Webb, Roger R.; Wilhelmsen, Karl C.

    2015-09-01

    The Advanced Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a petawatt-class, short-pulse laser system designed to provide x-ray backlighting of NIF targets. ARC uses four NIF beamlines to produce eight beamlets to create a sequence of eight images of an imploding fuel capsule using backlighting targets and diagnostic instrumentation. ARC employs a front end that produces two pulses, chirps the pulses out to 2 ns, and then injects the pulses into the two halves of each of four NIF beamlines. These pulses are amplified by NIF pre- and main amplifiers and transported to compressor vessels located in the NIF target area. The pulses are then compressed and pointed into the NIF target chamber where they impinge upon an array of backlighters. The interaction of the ARC laser pulses and the backlighting material produces bursts of high-energy x-rays that illuminate an imploding fuel capsule. The transmitted x-rays are imaged by diagnostic instrumentation to produce a sequence of radiograph images. A key component of the success of ARC is the automatic alignment system that accomplishes the precise alignment of the beamlets to avoid damaging equipment and to ensure that the beamlets are directed onto the tens-of-microns scale backlighters. In this paper, we describe the ARC automatic alignment system, with emphasis on control loops used to align the beampaths. We also provide a detailed discussion of the alignment image processing, because it plays a critical role in providing beam centering and pointing information for the control loops.

  15. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system

    Science.gov (United States)

    Karimova, Madina; Abi-Ghanem, Josephine; Berger, Nicolas; Surendranath, Vineeth; Pisabarro, Maria Teresa; Buchholz, Frank

    2013-01-01

    Targeted genome engineering has become an important research area for diverse disciplines, with site-specific recombinases (SSRs) being among the most popular genome engineering tools. Their ability to trigger excision, integration, inversion and translocation has made SSRs an invaluable tool to manipulate DNA in vitro and in vivo. However, sophisticated strategies that combine different SSR systems are ever increasing. Hence, the demand for additional precise and efficient recombinases is dictated by the increasing complexity of the genetic studies. Here, we describe a novel site-specific recombination system designated Vika/vox. Vika originates from a degenerate bacteriophage of Vibrio coralliilyticus and shares low sequence similarity to other tyrosine recombinases, but functionally carries out a similar type of reaction. We demonstrate that Vika is highly specific in catalyzing vox recombination without recombining target sites from other SSR systems. We also compare the recombination activity of Vika/vox with other SSR systems, providing a guideline for deciding on the most suitable enzyme for a particular application and demonstrate that Vika expression does not cause cytotoxicity in mammalian cells. Our results show that Vika/vox is a novel powerful and safe instrument in the ‘genetic toolbox’ that can be used alone or in combination with other SSRs in heterologous hosts. PMID:23143104

  16. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia

    2013-03-01

    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  17. Smart IR780 Theranostic Nanocarrier for Tumor-Specific Therapy: Hyperthermia-Mediated Bubble-Generating and Folate-Targeted Liposomes.

    Science.gov (United States)

    Guo, Fang; Yu, Meng; Wang, Jinping; Tan, Fengping; Li, Nan

    2015-09-23

    The therapeutic effectiveness of chemotherapy was hampered by dose-limiting toxicity and was optimal only when tumor cells were subjected to a maximum drug exposure. The purpose of this work was to design a dual-functional thermosensitive bubble-generating liposome (BTSL) combined with conjugated targeted ligand (folate, FA) and photothermal agent (IR780), to realize enhanced therapeutic and diagnostic functions. This drug carrier was proposed to target tumor cells owing to FA-specific binding, followed by triggering drug release due to the decomposition of encapsulated ammonium bicarbonate (NH4HCO3) (generated CO2 bubbles) by being subjected to near-infrared (near-IR) laser irradiation, creating permeable defects in the lipid bilayer that rapidly release drug. In vitro temperature-triggered release study indicated the BTSL system was sensitive to heat triggering, resulting in rapid drug release under hyperthermia. For in vitro cellular uptake experiments, different results were observed on human epidermoid carcinoma cells (KB cells) and human lung cancer cells (A549 cells) due to their different (positive or negative) response to FA receptor. Furthermore, in vivo biodistribution analysis and antitumor study indicated IR780-BTSL-FA could specifically target KB tumor cells, exhibiting longer circulation time than free drug. In the pharmacodynamics experiments, IR780-BTSL-FA efficiently inhibited tumor growth in nude mice with no evident side effect to normal tissues and organs. Results of this study demonstrated that the constructed smart theranostic nanocarrier IR780-BTSL-FA might contribute to establishment of tumor-selective and effective chemotherapy.

  18. Targeting the GPI biosynthetic pathway.

    Science.gov (United States)

    Yadav, Usha; Khan, Mohd Ashraf

    2018-02-27

    The GPI (Glycosylphosphatidylinositol) biosynthetic pathway is a multistep conserved pathway in eukaryotes that culminates in the generation of GPI glycolipid which in turn anchors many proteins (GPI-APs) to the cell surface. In spite of the overall conservation of the pathway, there still exist subtle differences in the GPI pathway of mammals and other eukaryotes which holds a great promise so far as the development of drugs/inhibitors against specific targets in the GPI pathway of pathogens is concerned. Many of the GPI structures and their anchored proteins in pathogenic protozoans and fungi act as pathogenicity factors. Notable examples include GPI-anchored variant surface glycoprotein (VSG) in Trypanosoma brucei, GPI-anchored merozoite surface protein 1 (MSP1) and MSP2 in Plasmodium falciparum, protein-free GPI related molecules like lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) in Leishmania spp., GPI-anchored Gal/GalNAc lectin and proteophosphoglycans in Entamoeba histolytica or the GPI-anchored mannoproteins in pathogenic fungi like Candida albicans. Research in this active area has already yielded encouraging results in Trypanosoma brucei by the development of parasite-specific inhibitors of GlcNCONH 2 -β-PI, GlcNCONH 2 -(2-O-octyl)-PI and salicylic hydroxamic acid (SHAM) targeting trypanosomal GlcNAc-PI de-N-acetylase as well as the development of antifungal inhibitors like BIQ/E1210/gepinacin/G365/G884 and YW3548/M743/M720 targeting the GPI specific fungal inositol acyltransferase (Gwt1) and the phosphoethanolamine transferase-I (Mcd4), respectively. These confirm the fact that the GPI pathway continues to be the focus of researchers, given its implications for the betterment of human life.

  19. Target Price Accuracy

    Directory of Open Access Journals (Sweden)

    Alexander G. Kerl

    2011-04-01

    Full Text Available This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio. However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.

  20. Specific diversity and morphological indices of muriform rodents in some areas of Semipalatinsk test range zone

    International Nuclear Information System (INIS)

    Magda, I.N.; Chernykh, A.B.; Morozov, A.E.; Bushneva, I.A.; Ponyavkina, A.G.

    2002-01-01

    There were presented the results of the preliminary estimation of comparative specific diversity and morphological indices of muriform rodents inhabiting separate areas of the Semipalatinsk test site. (author)

  1. Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation.

    Science.gov (United States)

    Li, Liwei; Khanna, May; Jo, Inha; Wang, Fang; Ashpole, Nicole M; Hudmon, Andy; Meroueh, Samy O

    2011-04-25

    We assess the performance of our previously reported structure-based support vector machine target-specific scoring function across 41 targets, 40 among them from the Directory of Useful Decoys (DUD). The area under the curve of receiver operating characteristic plots (ROC-AUC) revealed that scoring with SVM-SP resulted in consistently better enrichment over all target families, outperforming Glide and other scoring functions, most notably among kinases. In addition, SVM-SP performance showed little variation among protein classes, exhibited excellent performance in a test case using a homology model, and in some cases showed high enrichment even with few structures used to train a model. We put SVM-SP to the test by virtual screening 1125 compounds against two kinases, EGFR and CaMKII. Among the top 25 EGFR compounds, three compounds (1-3) inhibited kinase activity in vitro with IC₅₀ of 58, 2, and 10 μM. In cell cultures, compounds 1-3 inhibited nonsmall cell lung carcinoma (H1299) cancer cell proliferation with similar IC₅₀ values for compound 3. For CaMKII, one compound inhibited kinase activity in a dose-dependent manner among 20 tested with an IC₅₀ of 48 μM. These results are encouraging given that our in-house library consists of compounds that emerged from virtual screening of other targets with pockets that are different from typical ATP binding sites found in kinases. In light of the importance of kinases in chemical biology, these findings could have implications in future efforts to identify chemical probes of kinases within the human kinome.

  2. Macromolecular target prediction by self-organizing feature maps.

    Science.gov (United States)

    Schneider, Gisbert; Schneider, Petra

    2017-03-01

    Rational drug discovery would greatly benefit from a more nuanced appreciation of the activity of pharmacologically active compounds against a diverse panel of macromolecular targets. Already, computational target-prediction models assist medicinal chemists in library screening, de novo molecular design, optimization of active chemical agents, drug re-purposing, in the spotting of potential undesired off-target activities, and in the 'de-orphaning' of phenotypic screening hits. The self-organizing map (SOM) algorithm has been employed successfully for these and other purposes. Areas covered: The authors recapitulate contemporary artificial neural network methods for macromolecular target prediction, and present the basic SOM algorithm at a conceptual level. Specifically, they highlight consensus target-scoring by the employment of multiple SOMs, and discuss the opportunities and limitations of this technique. Expert opinion: Self-organizing feature maps represent a straightforward approach to ligand clustering and classification. Some of the appeal lies in their conceptual simplicity and broad applicability domain. Despite known algorithmic shortcomings, this computational target prediction concept has been proven to work in prospective settings with high success rates. It represents a prototypic technique for future advances in the in silico identification of the modes of action and macromolecular targets of bioactive molecules.

  3. Are area-based initiatives able to improve area safety in deprived areas? A quasi-experimental evaluation of the Dutch District Approach.

    Science.gov (United States)

    Kramer, Daniëlle; Jongeneel-Grimen, Birthe; Stronks, Karien; Droomers, Mariël; Kunst, Anton E

    2015-07-28

    Numerous area-based initiatives have been implemented in deprived areas across Western-Europe with the aim to improve the socio-economic and environmental conditions in these areas. Only few of these initiatives have been scientifically evaluated for their impact on key social determinants of health, like perceived area safety. Therefore, this study aimed to assess the impact of a Dutch area-based initiative called the District Approach on trends in perceived area safety and underlying problems in deprived target districts. A quasi-experimental design was used. Repeated cross-sectional data on perceived area safety and underlying problems were obtained from the National Safety Monitor (2005-2008) and its successor the Integrated Safety Monitor (2008-2011). Study population consisted of 133,522 Dutch adults, including 3,595 adults from target districts. Multilevel logistic regression analyses were performed to assess trends in self-reported general safety, physical order, social order, and non-victimization before and after the start of the District Approach mid-2008. Trends in target districts were compared with trends in various control groups. Residents of target districts felt less safe, perceived less physical and social order, and were victimized more often than adults elsewhere in the Netherlands. For non-victimization, target districts showed a somewhat more positive change in trend after the start of the District Approach than the rest of the Netherlands or other deprived districts. Differences were only statistically significant in women, older adults, and lower educated adults. For general safety, physical order, and social order, there were no differences in trend change between target districts and control groups. Results suggest that the District Approach has been unable to improve perceptions of area safety and disorder in deprived areas, but that it did result in declining victimization rates.

  4. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  5. Specific surface area behavior of a dissolving population of particles. Augmenting Mercer Dissolution Theory

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Rothenberg, S.J.

    1986-01-01

    Specific surface area (Sp) measurements were made on two uranium oxide aerosol materials before and after in vitro dissolution studies were performed on the materials. The results of these Sp measurements were evaluated relative to predictions made from extending Mercer dissolution theory to describe the Sp behavior of a dissolving population of particles

  6. A patient-specific planning target volume used in 'plan of the day' adaptation for interfractional motion mitigation

    International Nuclear Information System (INIS)

    Chen, Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a patient-specific planning target volume (PTV) to deal with interfractional variations, and test its feasibility in a retrospective treatment-planning study. Instead of using one planning image only, multiple scans are taken on different days. The target and organs at risk (OARs) are delineated on each images. The proposed PTV is generated from a union of those target contours on the planning images, excluding voxels of the OARs, and is denoted the PTV 'GP-OAR' (global prostate-organs at risk). The study is performed using 'plan of the day' adaptive workflow, which selects a daily plan from a library of plans based on a similarity comparison between the daily scan and planning images. The daily plans optimized for GP-OAR volumes are compared with those optimized for PTVs generated from a single prostate contour (PTV SP). Four CT serials of prostate cancer patient datasets are included in the test, and in total 28 fractions are simulated. The results show that the daily chosen GP-OAR plans provide excellent target coverage, with V95 values of the prostate mostly >95%. In addition, dose delivered to the OARs as calculated from applying daily chosen GP-OAR plans is slightly increased but comparable to that calculated from applying daily SP plans. In general, the PTV GP-OARs are able to cover possible target variations while keeping dose delivered to the OARs at a similar level to that of the PTV SPs. (author)

  7. Task-specific impairments and enhancements induced by magnetic stimulation of human visual area V5.

    OpenAIRE

    Walsh, V; Ellison, A; Battelli, L; Cowey, A

    1998-01-01

    Transcranial magnetic stimulation (TMS) can be used to simulate the effects of highly circumscribed brain damage permanently present in some neuropsychological patients, by reversibly disrupting the normal functioning of the cortical area to which it is applied. By using TMS we attempted to recreate deficits similar to those reported in a motion-blind patient and to assess the specificity of deficits when TMS is applied over human area V5. We used six visual search tasks and showed that subje...

  8. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    Directory of Open Access Journals (Sweden)

    O'Gara Fergal

    2010-11-01

    Full Text Available Abstract Background Catabolite repression control (CRC is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas

  9. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria.

    Science.gov (United States)

    Browne, Patrick; Barret, Matthieu; O'Gara, Fergal; Morrissey, John P

    2010-11-25

    Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate nutritional status cues with the regulation

  10. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria

    LENUS (Irish Health Repository)

    Browne, Patrick

    2010-11-25

    Abstract Background Catabolite repression control (CRC) is an important global control system in Pseudomonas that fine tunes metabolism in order optimise growth and metabolism in a range of different environments. The mechanism of CRC in Pseudomonas spp. centres on the binding of a protein, Crc, to an A-rich motif on the 5\\' end of an mRNA resulting in translational down-regulation of target genes. Despite the identification of several Crc targets in Pseudomonas spp. the Crc regulon has remained largely unexplored. Results In order to predict direct targets of Crc, we used a bioinformatics approach based on detection of A-rich motifs near the initiation of translation of all protein-encoding genes in twelve fully sequenced Pseudomonas genomes. As expected, our data predict that genes related to the utilisation of less preferred nutrients, such as some carbohydrates, nitrogen sources and aromatic carbon compounds are targets of Crc. A general trend in this analysis is that the regulation of transporters is conserved across species whereas regulation of specific enzymatic steps or transcriptional activators are often conserved only within a species. Interestingly, some nucleoid associated proteins (NAPs) such as HU and IHF are predicted to be regulated by Crc. This finding indicates a possible role of Crc in indirect control over a subset of genes that depend on the DNA bending properties of NAPs for expression or repression. Finally, some virulence traits such as alginate and rhamnolipid production also appear to be regulated by Crc, which links nutritional status cues with the regulation of virulence traits. Conclusions Catabolite repression control regulates a broad spectrum of genes in Pseudomonas. Some targets are genus-wide and are typically related to central metabolism, whereas other targets are species-specific, or even unique to particular strains. Further study of these novel targets will enhance our understanding of how Pseudomonas bacteria integrate

  11. Fabrication of mesoporous and high specific surface area lanthanum carbide-carbon nanotube composites

    International Nuclear Information System (INIS)

    Biasetto, L.; Carturan, S.; Maggioni, G.; Zanonato, P.; Bernardo, P. Di; Colombo, P.; Andrighetto, A.; Prete, G.

    2009-01-01

    Mesoporous lanthanum carbide-carbon nanotube composites were produced by means of carbothermal reaction of lanthanum oxide, graphite and multi-walled carbon nanotube mixtures under high vacuum. Residual gas analysis revealed the higher reactivity of lanthanum oxide towards carbon nanotubes compared to graphite. After sintering, the composites revealed a specific surface area increasing with the amount of carbon nanotubes introduced. The meso-porosity of carbon nanotubes was maintained after thermal treatment.

  12. Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: putative drug targets for chagas' disease treatment.

    Science.gov (United States)

    Capriles, Priscila V S Z; Guimarães, Ana C R; Otto, Thomas D; Miranda, Antonio B; Dardenne, Laurent E; Degrave, Wim M

    2010-10-29

    Trypanosoma cruzi is the etiological agent of Chagas' disease, an endemic infection that causes thousands of deaths every year in Latin America. Therapeutic options remain inefficient, demanding the search for new drugs and/or new molecular targets. Such efforts can focus on proteins that are specific to the parasite, but analogous enzymes and enzymes with a three-dimensional (3D) structure sufficiently different from the corresponding host proteins may represent equally interesting targets. In order to find these targets we used the workflows MHOLline and AnEnΠ obtaining 3D models from homologous, analogous and specific proteins of Trypanosoma cruzi versus Homo sapiens. We applied genome wide comparative modelling techniques to obtain 3D models for 3,286 predicted proteins of T. cruzi. In combination with comparative genome analysis to Homo sapiens, we were able to identify a subset of 397 enzyme sequences, of which 356 are homologous, 3 analogous and 38 specific to the parasite. In this work, we present a set of 397 enzyme models of T. cruzi that can constitute potential structure-based drug targets to be investigated for the development of new strategies to fight Chagas' disease. The strategies presented here support the concept of structural analysis in conjunction with protein functional analysis as an interesting computational methodology to detect potential targets for structure-based rational drug design. For example, 2,4-dienoyl-CoA reductase (EC 1.3.1.34) and triacylglycerol lipase (EC 3.1.1.3), classified as analogous proteins in relation to H. sapiens enzymes, were identified as new potential molecular targets.

  13. Subject-specific computational modeling of DBS in the PPTg area

    Directory of Open Access Journals (Sweden)

    Laura M. Zitella

    2015-07-01

    Full Text Available Deep brain stimulation (DBS in the pedunculopontine tegmental nucleus (PPTg has been proposed to alleviate medically intractable gait difficulties associated with Parkinson’s disease. Clinical trials have shown somewhat variable outcomes, stemming in part from surgical targeting variability, modulating fiber pathways implicated in side effects, and a general lack of mechanistic understanding of DBS in this brain region. Subject-specific computational models of DBS are a promising tool to investigate the underlying therapy and side effects. In this study, a parkinsonian rhesus macaque was implanted unilaterally with an 8-contact DBS lead in the PPTg region. Fiber tracts adjacent to PPTg, including the oculomotor nerve, central tegmental tract, and superior cerebellar peduncle, were reconstructed from a combination of pre-implant 7T MRI, post-implant CT, and post-mortem histology. These structures were populated with axon models and coupled with a finite element model simulating the voltage distribution in the surrounding neural tissue during stimulation. This study introduces two empirical approaches to evaluate model parameters. First, incremental monopolar cathodic stimulation (20Hz, 90µs pulse width was evaluated for each electrode, during which a right eyelid flutter was observed at the proximal four contacts (-1.0 to -1.4mA. These current amplitudes followed closely with model predicted activation of the oculomotor nerve when assuming an anisotropic conduction medium. Second, PET imaging was collected OFF-DBS and twice during DBS (two different contacts, which supported the model predicted activation of the central tegmental tract and superior cerebellar peduncle. Together, subject-specific models provide a framework to more precisely predict pathways modulated by DBS.

  14. Disease-specific survival in de novo metastatic renal cell carcinoma in the cytokine and targeted therapy era.

    Directory of Open Access Journals (Sweden)

    Sumanta K Pal

    Full Text Available Recent phase III studies of targeted agents for metastatic renal cell carcinoma (mRCC have generated median survival estimates that far exceed those observed during the cytokine era. However, substantial population-based data does not exist to confirm this trend. We sought to determine whether survival has improved for patients with mRCC diagnosed in the era of targeted therapies, as compared to the era of immunotherapy.The Surveillance, Epidemiology, and End Results (SEER Registry was used to identify patients aged 18 and older diagnosed stage IV RCC between 1992 and 2009. Patients had documented clear cell, papillary or chromophobe histology. The Kaplan Meier method and log-rank test were used to compare disease-specific survival (DSS for patients diagnosed from 1992-2004 (i.e., the cytokine era and 2005-2009 (i.e., the targeted therapy era. Univariate and multivariate analyses of relevant clinicopathologic characteristics were also performed.Of 5,176 patients identified using the above characteristics, 2,392 patients were diagnosed from 1992-2004 and 2,784 from 2005-2009. Median DSS was improved in those patients diagnosed from 2005-2009 (16 months vs 13 months; P<0.0001. A similar temporal trend towards improving survival was noted in patients with clear cell (P = 0.0006, but not in patients with non-clear cell disease (P = 0.32. Notable findings on multivariate analysis include an association between shorter DSS and the following characteristics: (1 diagnosis from 1992-2004, (2 advanced age (80+, and (3 absence of cytoreductive nephrectomy.These data reflect progress in the management of mRCC, specifically in the era of targeted therapies. Notably, it was inferred that certain treatment strategies were employed during pre-specified time periods, representing a major caveat of the current analysis. Further studies related to the influence of age and race/ethnicity are warranted, as are studies exploring the role of cytoreductive nephrectomy

  15. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock.

    Directory of Open Access Journals (Sweden)

    Mo-bin Cheng

    2014-12-01

    Full Text Available Histone lysine (K residues, which are modified by methyl- and acetyl-transferases, diversely regulate RNA synthesis. Unlike the ubiquitously activating effect of histone K acetylation, the effects of histone K methylation vary with the number of methyl groups added and with the position of these groups in the histone tails. Histone K demethylases (KDMs counteract the activity of methyl-transferases and remove methyl group(s from specific K residues in histones. KDM3A (also known as JHDM2A or JMJD1A is an H3K9me2/1 demethylase. KDM3A performs diverse functions via the regulation of its associated genes, which are involved in spermatogenesis, metabolism, and cell differentiation. However, the mechanism by which the activity of KDM3A is regulated is largely unknown. Here, we demonstrated that mitogen- and stress-activated protein kinase 1 (MSK1 specifically phosphorylates KDM3A at Ser264 (p-KDM3A, which is enriched in the regulatory regions of gene loci in the human genome. p-KDM3A directly interacts with and is recruited by the transcription factor Stat1 to activate p-KDM3A target genes under heat shock conditions. The demethylation of H3K9me2 at the Stat1 binding site specifically depends on the co-expression of p-KDM3A in the heat-shocked cells. In contrast to heat shock, IFN-γ treatment does not phosphorylate KDM3A via MSK1, thereby abrogating its downstream effects. To our knowledge, this is the first evidence that a KDM can be modified via phosphorylation to determine its specific binding to target genes in response to thermal stress.

  16. Targeted therapy using nanotechnology: focus on cancer.

    Science.gov (United States)

    Sanna, Vanna; Pala, Nicolino; Sechi, Mario

    2014-01-01

    Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication.

  17. In vivo targeting of dead tumor cells in a murine tumor model using a monoclonal antibody specific for the La autoantigen.

    Science.gov (United States)

    Al-Ejeh, Fares; Darby, Jocelyn M; Pensa, Katherine; Diener, Kerrilyn R; Hayball, John D; Brown, Michael P

    2007-09-15

    To investigate the potential of the La-specific monoclonal antibody (mAb) 3B9 as an in vivo tumor-targeting agent. The murine EL4 lymphoma cell line was used for in vitro studies and the EL4 model in which apoptosis was induced with cyclophosphamide and etoposide was used for in vivo studies. In vitro studies compared 3B9 binding in the EL4 cell with that in its counterpart primary cell type of the thymocyte. For in vivo studies, 3B9 was intrinsically or extrinsically labeled with carbon-14 or 1,4,7,10-tetra-azacylododecane-N,N',N'',N''''-tetraacetic acid-indium-111, respectively, and biodistribution of the radiotracers was investigated in EL4 tumor-bearing mice, which were treated or not with chemotherapy. La-specific 3B9 mAb bound EL4 cells rather than thymocytes, and binding was detergent resistant. 3B9 binding to dead EL4 cells in vitro was specific, rapid, and saturable. Significantly, more 3B9 bound dead EL4 tumor explant cells after host mice were treated with chemotherapy, which suggested that DNA damage induced 3B9 binding. Tumor binding of 3B9 in vivo was antigen specific and increased significantly after chemotherapy. Tumor accumulation of 3B9 peaked at approximately 50% of the injected dose per gram of tumor 72 h after chemotherapy and correlated with increased tumor cell death. Tumor/organ ratios of 3B9 biodistribution, which included the tumor/blood ratio, exceeded unity 48 or more hours after chemotherapy. La-specific mAb selectively targeted dead tumor cells in vivo, and targeting was augmented by cytotoxic chemotherapy. This novel cell death radioligand may be useful both for radioimmunoscintigraphy and radioimmunotherapy.

  18. Characterization of the omega-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types

    International Nuclear Information System (INIS)

    Cruz, L.J.; Johnson, D.S.; Olivera, B.M.

    1987-01-01

    Omega-Conotoxin GVIA (omega-CgTx-VIA) is a 27 amino acid peptide from the venom of the fish-hunting snail, Conus geographus, that blocks voltage-activated Ca channels. The characterization of a biologically active, homogeneous 125 I-labeled monoiodinated Tyr 22 derivative of omega-conotoxin GVIA and its use in binding and cross-linking studies are described. The 125 I-labeled toxin is specifically cross-linked to a receptor protein with an apparent M/sub r/ of 135,000. The stoichiometry between omega-conotoxin and nitrendipine binding sites in different chick tissues was determined. Skeletal muscle has a high concentration of [ 3 H]nitrendipine binding sites but no detectable omega-conotoxin sites. Brain microsomes have both binding sites, but omega-conotoxin targets are in excess. These results, combined with recent electrophysiological studies define four types of Ca channels in chick tissues, N, T, L/sub n/ (omega sensitive), and L/sub m/ (omega insensitive), and are consistent with the hypothesis that the α-subunits of certain neuronal Ca 2+ channels (L/sub n/, N) are the molecular targets of omega-conotoxin GVIA

  19. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand.

    Science.gov (United States)

    Kularatne, Sumith A; Wang, Kevin; Santhapuram, Hari-Krishna R; Low, Philip S

    2009-01-01

    Prostate cancer (PCa) is a major cause of mortality and morbidity in Western society today. Current methods for detecting PCa are limited, leaving most early malignancies undiagnosed and sites of metastasis in advanced disease undetected. Major deficiencies also exist in the treatment of PCa, especially metastatic disease. In an effort to improve both detection and therapy of PCa, we have developed a PSMA-targeted ligand that delivers attached imaging and therapeutic agents selectively to PCa cells without targeting normal cells. The PSMA-targeted radioimaging agent (DUPA-(99m)Tc) was found to bind PSMA-positive human PCa cells (LNCaP cell line) with nanomolar affinity (K(D) = 14 nM). Imaging and biodistribution studies revealed that DUPA-(99m)Tc localizes primarily to LNCaP cell tumor xenografts in nu/nu mice (% injected dose/gram = 11.3 at 4 h postinjection; tumor-to-muscle ratio = 75:1). Two PSMA-targeted optical imaging agents (DUPA-FITC and DUPA-rhodamine B) were also shown to efficiently label PCa cells and to internalize and traffic to intracellular endosomes. A PSMA-targeted chemotherapeutic agent (DUPA-TubH) was demonstrated to kill PSMA-positive LNCaP cells in culture (IC(50) = 3 nM) and to eliminate established tumor xenografts in nu/nu mice with no detectable weight loss. Blockade of tumor targeting upon administration of excess PSMA inhibitor (PMPA) and the absence of targeting to PSMA-negative tumors confirmed the specificity of each of the above targeted reagents for PSMA. Tandem use of the imaging and therapeutic agents targeted to the same receptor could allow detection, staging, monitoring, and treatment of PCa with improved accuracy and efficacy.

  20. A Novel ¹¹¹In-Labeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer.

    Science.gov (United States)

    Chatalic, Kristell L S; Veldhoven-Zweistra, Joke; Bolkestein, Michiel; Hoeben, Sander; Koning, Gerben A; Boerman, Otto C; de Jong, Marion; van Weerden, Wytske M

    2015-07-01

    Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer (PCa) and a promising target for molecular imaging and therapy. Nanobodies (single-domain antibodies, VHH) are the smallest antibody-based fragments possessing ideal molecular imaging properties, such as high target specificity and rapid background clearance. We developed a novel anti-PSMA Nanobody (JVZ-007) for targeted imaging and therapy of PCa. Here, we report on the application of the (111)In-radiolabeled Nanobody for SPECT/CT imaging of PCa. A Nanobody library was generated by immunization of a llama with 4 human PCa cell lines. Anti-PSMA Nanobodies were captured by biopanning on PSMA-overexpressing cells. JVZ-007 was selected for evaluation as an imaging probe. JVZ-007 was initially produced with a c-myc-hexahistidine (his) tag allowing purification and detection. The c-myc-his tag was subsequently replaced by a single cysteine at the C terminus, allowing site-specific conjugation of chelates for radiolabeling. JVZ-007-c-myc-his was conjugated to 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-DTPA) via the lysines, whereas JVZ-007-cys was conjugated to maleimide-DTPA via the C-terminal cysteine. PSMA targeting was analyzed in vitro by cell-binding experiments using flow cytometry, autoradiography, and internalization assays with various PCa cell lines and patient-derived xenografts (PDXs). The targeting properties of radiolabeled Nanobodies were evaluated in vivo in biodistribution and SPECT/CT imaging experiments, using nude mice bearing PSMA-positive PC-310 and PSMA-negative PC-3 tumors. JVZ-007 was successfully conjugated to DTPA for radiolabeling with (111)In at room temperature. (111)In-JVZ007-c-myc-his and (111)In-JVZ007-cys internalized in LNCaP cells and bound to PSMA-expressing PDXs and, importantly, not to PSMA-negative PDXs and human kidneys. Good tumor targeting and fast blood clearance were observed for (111)In-JVZ-007-c-myc-his and (111)In

  1. Targeted Nanotechnology for Cancer Imaging

    Science.gov (United States)

    Toy, Randall; Bauer, Lisa; Hoimes, Christopher; Ghaghada, Ketan B.; Karathanasis, Efstathios

    2014-01-01

    Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents. PMID:25116445

  2. MicroRNA-targeted therapeutics for lung cancer treatment.

    Science.gov (United States)

    Xue, Jing; Yang, Jiali; Luo, Meihui; Cho, William C; Liu, Xiaoming

    2017-02-01

    Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.

  3. Development of a Rickettsia bellii-Specific TaqMan Assay Targeting the Citrate Synthase Gene.

    Science.gov (United States)

    Hecht, Joy A; Allerdice, Michelle E J; Krawczak, Felipe S; Labruna, Marcelo B; Paddock, Christopher D; Karpathy, Sandor E

    2016-11-01

    Rickettsia bellii is a rickettsial species of unknown pathogenicity that infects argasid and ixodid ticks throughout the Americas. Many molecular assays used to detect spotted fever group (SFG) Rickettsia species do not detect R. bellii, so that infection with this bacterium may be concealed in tick populations when assays are used that screen specifically for SFG rickettsiae. We describe the development and validation of a R. bellii-specific, quantitative, real-time PCR TaqMan assay that targets a segment of the citrate synthase (gltA) gene. The specificity of this assay was validated against a panel of DNA samples that included 26 species of Rickettsia, Orientia, Ehrlichia, Anaplasma, and Bartonella, five samples of tick and human DNA, and DNA from 20 isolates of R. bellii, including 11 from North America and nine from South America. A R. bellii control plasmid was constructed, and serial dilutions of the plasmid were used to determine the limit of detection of the assay to be one copy per 4 µl of template DNA. This assay can be used to better determine the role of R. bellii in the epidemiology of tick-borne rickettsioses in the Western Hemisphere. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  4. Establishment of first engineering specifications for environmental modification to eliminate schistosomiasis epidemic foci in urban areas.

    Science.gov (United States)

    Kong, Shibo; Tan, Xiaodong; Deng, Zhiqing; Xie, Yaofei; Yang, Fen; Zheng, Zengwang

    2017-08-01

    Snail control is a key link in schistosomiasis control, but no unified methods for eliminating snails have been produced to date. This study was conducted to explore an engineering method for eliminating Oncomelania hupensis applicable to urban areas. The engineering specifications were established using the Delphi method. An engineering project based on these specifications was conducted in Hankou marshland to eliminate snails, including the transformation of the beach surface and ditches. Molluscicide was used as a supplement. The snail control effect was evaluated by field investigation. The engineering results fulfilled the requirements of the design. The snail density decreased to 0/0.11m 2 , and the snail area dropped to 0m 2 after the project. There was a statistically significant difference in the number of frames with snails before and after the project (Pengineering specifications for environmental modification were successfully established. Environmental modification, mainly through beach and ditch remediation, can completely change the environment of Oncomelania breeding. This method of environmental modification combined with mollusciciding was highly effective at eliminating snails. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Kettlebell swing targets semitendinosus and supine leg curl targets biceps femoris

    DEFF Research Database (Denmark)

    Zebis, Mette Kreutzfeldt; Skotte, Jørgen; Andersen, Christoffer H

    2013-01-01

    The medial hamstring muscle has the potential to prevent excessive dynamic valgus and external rotation of the knee joint during sports. Thus, specific training targeting the medial hamstring muscle seems important to avoid knee injuries.......The medial hamstring muscle has the potential to prevent excessive dynamic valgus and external rotation of the knee joint during sports. Thus, specific training targeting the medial hamstring muscle seems important to avoid knee injuries....

  6. The software program Peridose to calculate the fetal dose or dose to other critical structures outside the target area in radiation therapy

    International Nuclear Information System (INIS)

    Giessen, P.H. van der

    2001-01-01

    An accurate estimate of the dose outside the target area is of utmost importance when pregnant patients have to undergo radiotherapy, something that occurs in every radiotherapy department once in a while. Such peripheral doses (PD) are also of interest for late effects risk estimations for doses to specific organs as well as estimations of dose to pacemakers. A software program, Peridose, is described to allow easy calculation of this peripheral dose. The calculation is based on data from many publications on peripheral dose measurements, including those by the author. Clinical measurements have shown that by using data averaged over many measurements and different machine types PDs can be estimated with an accuracy of ± 60% (2 standard deviations). The program allows easy and fairly accurate estimates of peripheral doses in patients. Further development to overcome some of the constraints and limitations is desirable. The use of average data is to be preferred if general applicability is to be maintained. (author)

  7. Targeted health department expenditures benefit birth outcomes at the county level.

    Science.gov (United States)

    Bekemeier, Betty; Yang, Youngran; Dunbar, Matthew D; Pantazis, Athena; Grembowski, David E

    2014-06-01

    Public health leaders lack evidence for making decisions about the optimal allocation of resources across local health department (LHD) services, even as limited funding has forced cuts to public health services while local needs grow. A lack of data has also limited examination of the outcomes of targeted LHD investments in specific service areas. This study used unique, detailed LHD expenditure data gathered from state health departments to examine the influence of maternal and child health (MCH) service investments by LHDs on health outcomes. A multivariate panel time-series design was used in 2013 to estimate ecologic relationships between 2000-2010 LHD expenditures on MCH and county-level rates of low birth weight and infant mortality. The unit of analysis was 102 LHD jurisdictions in Washington and Florida. Results indicate that LHD expenditures on MCH services have a beneficial relationship with county-level low birth weight rates, particularly in counties with high concentrations of poverty. This relationship is stronger for more targeted expenditure categories, with expenditures in each of the three specific examined MCH service areas demonstrating the strongest effects. Findings indicate that specific LHD investments in MCH have an important effect on related health outcomes for populations in poverty and likely help reduce the costly burden of poor birth outcomes for families and communities. These findings underscore the importance of monitoring the impact of these evolving investments and ensuring that targeted, beneficial investments are not lost but expanded upon across care delivery systems. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

    Science.gov (United States)

    Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

    2018-02-08

    The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

  9. Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays

    Directory of Open Access Journals (Sweden)

    Yuan Xin Goay

    2016-01-01

    Full Text Available Salmonella Typhi (S. Typhi causes typhoid fever which is a disease characterised by high mortality and morbidity worldwide. In order to curtail the transmission of this highly infectious disease, identification of new markers that can detect the pathogen is needed for development of sensitive and specific diagnostic tests. In this study, genomic comparison of S. Typhi with other enteric pathogens was performed, and 6 S. Typhi genes, that is, STY0201, STY0307, STY0322, STY0326, STY2020, and STY2021, were found to be specific in silico. Six PCR assays each targeting a unique gene were developed to test the specificity of these genes in vitro. The diagnostic sensitivities and specificities of each assay were determined using 39 S. Typhi, 62 non-Typhi Salmonella, and 10 non-Salmonella clinical isolates. The results showed that 5 of these genes, that is, STY0307, STY0322, STY0326, STY2020, and STY2021, demonstrated 100% sensitivity (39/39 and 100% specificity (0/72. The detection limit of the 5 PCR assays was 32 pg for STY0322, 6.4 pg for STY0326, STY2020, and STY2021, and 1.28 pg for STY0307. In conclusion, 5 PCR assays using STY0307, STY0322, STY0326, STY2020, and STY2021 were developed and found to be highly specific at single-gene target resolution for diagnosis of typhoid fever.

  10. Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays.

    Science.gov (United States)

    Goay, Yuan Xin; Chin, Kai Ling; Tan, Clarissa Ling Ling; Yeoh, Chiann Ying; Ja'afar, Ja'afar Nuhu; Zaidah, Abdul Rahman; Chinni, Suresh Venkata; Phua, Kia Kien

    2016-01-01

    Salmonella Typhi ( S . Typhi) causes typhoid fever which is a disease characterised by high mortality and morbidity worldwide. In order to curtail the transmission of this highly infectious disease, identification of new markers that can detect the pathogen is needed for development of sensitive and specific diagnostic tests. In this study, genomic comparison of S . Typhi with other enteric pathogens was performed, and 6 S . Typhi genes, that is, STY0201, STY0307, STY0322, STY0326, STY2020, and STY2021, were found to be specific in silico . Six PCR assays each targeting a unique gene were developed to test the specificity of these genes in vitro . The diagnostic sensitivities and specificities of each assay were determined using 39 S . Typhi, 62 non-Typhi Salmonella , and 10 non- Salmonella clinical isolates. The results showed that 5 of these genes, that is, STY0307, STY0322, STY0326, STY2020, and STY2021, demonstrated 100% sensitivity (39/39) and 100% specificity (0/72). The detection limit of the 5 PCR assays was 32 pg for STY0322, 6.4 pg for STY0326, STY2020, and STY2021, and 1.28 pg for STY0307. In conclusion, 5 PCR assays using STY0307, STY0322, STY0326, STY2020, and STY2021 were developed and found to be highly specific at single-gene target resolution for diagnosis of typhoid fever.

  11. Radar automatic target recognition (ATR) and non-cooperative target recognition (NCTR)

    CERN Document Server

    Blacknell, David

    2013-01-01

    The ability to detect and locate targets by day or night, over wide areas, regardless of weather conditions has long made radar a key sensor in many military and civil applications. However, the ability to automatically and reliably distinguish different targets represents a difficult challenge. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR) captures material presented in the NATO SET-172 lecture series to provide an overview of the state-of-the-art and continuing challenges of radar target recognition. Topics covered include the problem as applied to th

  12. Seasonal and pod-specific differences in core use areas by resident killer whales in the Northern Gulf of Alaska

    Science.gov (United States)

    Olsen, Daniel W.; Matkin, Craig O.; Andrews, Russel D.; Atkinson, Shannon

    2018-01-01

    The resident killer whale is a genetically and behaviorally distinct ecotype of killer whale (Orcinus orca) found in the North Pacific that feeds primarily on Pacific salmon (Oncorhynchus spp .). Details regarding core use areas have been inferred by boat surveys, but are subject to effort bias and weather limitations. To investigate core use areas, 37 satellite tags were deployed from 2006 to 2014 on resident killer whales representing 12 pods in the Northern Gulf of Alaska, and transmissions were received during the months of June to January. Core use areas were identified through utilization distributions using a biased Brownian Bridge movement model. Distinct differences in these core use areas were revealed, and were highly specific to season and pod. In June, July, and August, the waters of Hinchinbrook Entrance and west of Kayak Island were primary areas used, mainly by 3 separate pods. These same pods shifted their focus to Montague Strait in August, September, and October. Port Gravina was a focal area for 2 other pods in June, July, and August, but this was not the case in later months. These pods were responsible for seven of eight documented trips into the deeper fjords of Prince William Sound, yet these fjords were not a focus for most groups of killer whales. The seasonal differences in core use may be a response to the seasonal returns of salmon, though details on specific migration routes and timing for the salmon are limited. We found strong seasonal and pod-specific shifts in patterns between core use areas. Future research should investigate pod differences in diet composition and relationships between core area use and bathymetry.

  13. Abnormal functional lateralization and activity of language brain areas in typical specific language impairment (developmental dysphasia)

    Science.gov (United States)

    De Guibert, Clément; Maumet, Camille; Jannin, Pierre; Ferré, Jean-Christophe; Tréguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting structural language (n=21), to a matched group of typically-developing children using a panel of four language tasks neither requiring reading nor metalinguistic skills, including two auditory lexico-semantic tasks (category fluency and responsive naming) and two visual phonological tasks based on picture naming. Data processing involved normalizing the data with respect to a matched pairs pediatric template, groups and between-groups analysis, and laterality indexes assessment within regions of interest using single and combined task analysis. Children with specific language impairment exhibited a significant lack of left lateralization in all core language regions (inferior frontal gyrus-opercularis, inferior frontal gyrus-triangularis, supramarginal gyrus, superior temporal gyrus), across single or combined task analysis, but no difference of lateralization for the rest of the brain. Between-group comparisons revealed a left hypoactivation of Wernicke’s area at the posterior superior temporal/supramarginal junction during the responsive naming task, and a right hyperactivation encompassing the anterior insula with adjacent inferior frontal gyrus and the head of the caudate nucleus during the first phonological task. This study thus provides evidence that this specific subtype of specific language impairment is associated with atypical lateralization and functioning of core language areas. PMID:21719430

  14. Preparation and properties of polymer foams for ICF targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Lucht, L.M.

    1986-09-01

    Low density small cell sized foams were developed to localize the liquid DT layer in a direct drive wetted foam laser fusion target. We have developed foams made from ultrahigh molecular weight polyethylene gels and polystyrene inverse emulsions. Materials in the density range of from 0.020 to 0.300 g/cc were prepared and characterized for cell size, mechanical properties, machinability, specific surface area, and wetting. Foams with a density of 0.05 g/cc were made with a cell size of less than 5 μm. A cell structure model was developed which relates the density and specific surface area to cell size and cell wall thickness. Wetting tests in organic solvents and in liquid hydrogen were used to characterize the capillary pressure, pore structure and uniformity of the foams. 13 refs., 9 figs., 2 tabs

  15. Cancer Chemotherapy Specific to Acidic Nests.

    Science.gov (United States)

    Kobayashi, Hiroshi

    2017-04-20

    The realization of cancer therapeutics specific to cancer cells with less of an effect on normal tissues is our goal. Many trials have been carried out for this purpose, but this goal is still far from being realized. It was found more than 80 years ago that solid cancer nests are acidified, but in vitro studies under acidic conditions have not been extensively studied. Recently, in vitro experiments under acidic conditions were started and anti-cancer drugs specific to acidic areas have been identified. Many genes have been reported to be expressed at a high level under acidic conditions, and such genes may be potent targets for anti-cancer drugs specific to acidic nests. In this review article, recent in vitro, in vivo, and clinical achievements in anti-cancer drugs with marked efficacy under acidic conditions are summarized, and the clinical use of anti-cancer drugs specific to acidic nests is discussed.

  16. Fungicides transport in runoff from vineyard plot and catchment: contribution of non-target areas.

    Science.gov (United States)

    Lefrancq, Marie; Payraudeau, Sylvain; García Verdú, Antonio Joaquín; Maillard, Elodie; Millet, Maurice; Imfeld, Gwenaël

    2014-04-01

    Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and plot scales enable to evaluate the sources areas of pesticide off-site transport.

  17. Organic solar cell modules for specific applications-From energy autonomous systems to large area photovoltaics

    International Nuclear Information System (INIS)

    Niggemann, M.; Zimmermann, B.; Haschke, J.; Glatthaar, M.; Gombert, A.

    2008-01-01

    We report on the development of two types of organic solar cell modules one for energy autonomous systems and one for large area energy harvesting. The first requires a specific tailoring of the solar cell geometry and cell interconnection in order to power an energy autonomous system under its specific operating conditions. We present an organic solar cell module with 22 interconnected solar cells. A power conversion efficiency of 2% under solar illumination has been reached on the active area of 46.2 cm 2 . A voltage of 4 V at the maximum power point has been obtained under indoor illumination conditions. Micro contact printing of a self assembling monolayer was employed for the patterning of the polymer anode. Large area photovoltaic modules have to meet the requirements on efficiency, lifetime and costs simultaneously. To minimize the production costs, a suitable concept for efficient reel-to-reel production of large area modules is needed. A major contribution to reduce the costs is the substitution of the commonly used indium tin oxide electrode by a cheap material. We present the state of the art of the anode wrap through concept as a reel-to-reel suited module concept and show comparative calculations of the module interconnection of the wrap through concept and the standard ITO-based cell architecture. As a result, the calculated overall module efficiency of the anode wrap through module exceeds the overall efficiency of modules based on ITO on glass (sheet resistance 15 Ω/square) and on foils (sheet resistance 60 Ω/square)

  18. [Targeted public funding for health research in the Netherlands].

    Science.gov (United States)

    Viergever, Roderik F; Hendriks, Thom C C

    2014-01-01

    The Dutch government funds health research in several ways. One component of public funding consists of funding programmes issued by the Netherlands Organisation for Health Research and Development (ZonMw). The majority of ZonMw's programmes provide funding for research in specific health research areas. Such targeted funding plays an important role in addressing knowledge gaps and in generating products for which there is a need. Good governance of the allocation of targeted funding for health research requires three elements: a research agenda, an overview of the health research currently being conducted, and a transparent decision-making process regarding the distribution of funds. In this article, we describe how public funding for health research is organized in the Netherlands and how the allocation of targeted funds is governed. By describing the questions that the current model of governance raises, we take a first step towards a debate about the governance of targeted public funding for health research in the Netherlands.

  19. Combinatorial microRNA target predictions

    DEFF Research Database (Denmark)

    Krek, Azra; Grün, Dominic; Poy, Matthew N.

    2005-01-01

    MicroRNAs are small noncoding RNAs that recognize and bind to partially complementary sites in the 3' untranslated regions of target genes in animals and, by unknown mechanisms, regulate protein production of the target transcript1, 2, 3. Different combinations of microRNAs are expressed...... in different cell types and may coordinately regulate cell-specific target genes. Here, we present PicTar, a computational method for identifying common targets of microRNAs. Statistical tests using genome-wide alignments of eight vertebrate genomes, PicTar's ability to specifically recover published micro......RNA targets, and experimental validation of seven predicted targets suggest that PicTar has an excellent success rate in predicting targets for single microRNAs and for combinations of microRNAs. We find that vertebrate microRNAs target, on average, roughly 200 transcripts each. Furthermore, our results...

  20. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery

    Czech Academy of Sciences Publication Activity Database

    Tykvart, Jan; Schimer, Jiří; Bařinková, Jitka; Pachl, Petr; Poštová Slavětínská, Lenka; Majer, Pavel; Konvalinka, Jan; Šácha, Pavel

    2014-01-01

    Roč. 22, č. 15 (2014), s. 4099-4108 ISSN 0968-0896 R&D Projects: GA ČR GBP208/12/G016 Grant - others:OPPK(CZ) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : GCPII * PSMA * structure-aided drug design * specific drug targeting Subject RIV: CE - Biochemistry Impact factor: 2.793, year: 2014

  1. Electroplating targets for production of unique PET radionuclides

    International Nuclear Information System (INIS)

    Bui, V.; Sheh, Y.; Finn, R.

    1994-01-01

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators

  2. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  3. Health Policy as a Specific Area of Social Policy

    Directory of Open Access Journals (Sweden)

    Dominika Pekarová

    2017-08-01

    Full Text Available Purpose and Originality: The aim of the article was to analyse the work of the health policy which is a very specific part of social policy. In the work we focus on its financing, which is a very important issue in the health care. We try to show, what is the role of the state in the health care system as well as the creation of resources and control costs in the health sector. The work is finding such as financing health care in Slovakia and in other selected countries, and which could be changed for the best operation. Method: The analysis was carried out on the basis of the information which I drew from books and Internet resources. The work is divided into two parts. Contains 9 tables and 3 charts. The first chapter is devoted to a general description of social policy, its funding, with a focus on health policy than its specific area. The second chapter analyses the financing systems of health policy in Slovakia and in selected countries. Results: The results showed that the Slovak health care makes is trying hard to catch up with the level of the best health care systems. However, there are countries, which are doing much worse than us, in terms of funding. Society: It is important to properly invest money but also communication between states. To get help on health and to ensure that citizens know states the best conditions of health care. Limitations / further research: This work is focused on how to bring closer health care and its financing in several different countries economically. IN doing so some other aspects such as what is best level of services, etc. were put aside.

  4. Bolder science needed now for protected areas.

    Science.gov (United States)

    Watson, James E M; Darling, Emily S; Venter, Oscar; Maron, Martine; Walston, Joe; Possingham, Hugh P; Dudley, Nigel; Hockings, Marc; Barnes, Megan; Brooks, Thomas M

    2016-04-01

    Recognizing that protected areas (PAs) are essential for effective biodiversity conservation action, the Convention on Biological Diversity established ambitious PA targets as part of the 2020 Strategic Plan for Biodiversity. Under the strategic goal to "improve the status of biodiversity by safeguarding ecosystems, species, and genetic diversity," Target 11 aims to put 17% of terrestrial and 10% of marine regions under PA status by 2020. Additionally and crucially, these areas are required to be of particular importance for biodiversity and ecosystem services, effectively and equitably managed, ecologically representative, and well-connected and to include "other effective area-based conservation measures" (OECMs). Whereas the area-based targets are explicit and measurable, the lack of guidance for what constitutes important and representative; effective; and OECMs is affecting how nations are implementing the target. There is a real risk that Target 11 may be achieved in terms of area while failing the overall strategic goal for which it is established because the areas are poorly located, inadequately managed, or based on unjustifiable inclusion of OECMs. We argue that the conservation science community can help establish ecologically sensible PA targets to help prioritize important biodiversity areas and achieve ecological representation; identify clear, comparable performance metrics of ecological effectiveness so progress toward these targets can be assessed; and identify metrics and report on the contribution OECMs make toward the target. By providing ecologically sensible targets and new performance metrics for measuring the effectiveness of both PAs and OECMs, the science community can actively ensure that the achievement of the required area in Target 11 is not simply an end in itself but generates genuine benefits for biodiversity. © 2016 Society for Conservation Biology.

  5. Analysis of Individuals from a Dengue-Endemic Region Helps Define the Footprint and Repertoire of Antibodies Targeting Dengue Virus 3 Type-Specific Epitopes.

    Science.gov (United States)

    Andrade, Daniela V; Katzelnick, Leah C; Widman, Doug G; Balmaseda, Angel; de Silva, Aravinda M; Baric, Ralph S; Harris, Eva

    2017-09-19

    The four dengue virus serotypes (DENV1 to 4) cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. Here, we use a recombinant DENV4 (rDENV4/3-M14) displaying a major DENV3 type-specific quaternary epitope recognized by human monoclonal antibody 5J7 to measure the proportion, magnitude, and kinetics of DENV3 type-specific neutralizing antibody responses targeting this epitope. Primary DENV3 sera from 30 individuals in a dengue hospital-based study in Nicaragua were studied 3, 6, 12, and 18 months post-infection, alongside samples collected annually 1 to 4 years post-primary DENV3 infection from 10 individuals in a cohort study in Nicaragua. We found substantial individual variation in the proportion of DENV3 type-specific neutralizing antibody titers attributed to the 5J7 epitope (range, 0 to 100%), with the mean significantly increasing from 22.6% to 41.4% from 3 to 18 months. We extended the transplanted DENV3 5J7 epitope on the virion (rDENV4/3-M16), resulting in increased recognition in several individuals, helping define the footprint of the epitope. However, 37% and 13% of the subjects still showed little to no recognition of the 5J7 epitope at 3 and 18 months, respectively, indicating that one or more additional DENV3 type-specific epitopes exist. Overall, this study demonstrates how DENV-immune plasma from populations from areas of endemicity, when coupled with structurally guided recombinant viruses, can help characterize the epitope-specific neutralizing antibody response in natural DENV infections, with direct implications for design and evaluation of dengue vaccines. IMPORTANCE The four serotypes of dengue virus cause dengue

  6. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    Science.gov (United States)

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  7. The X-linked 1.688 Satellite in Drosophila melanogaster Promotes Specific Targeting by Painting of Fourth.

    Science.gov (United States)

    Kim, Maria; Ekhteraei-Tousi, Samaneh; Lewerentz, Jacob; Larsson, Jan

    2018-02-01

    Repetitive DNA, represented by transposons and satellite DNA, constitutes a large portion of eukaryotic genomes, being the major component of constitutive heterochromatin. There is a growing body of evidence that it regulates several nuclear functions including chromatin state and the proper functioning of centromeres and telomeres. The 1.688 satellite is one of the most abundant repetitive sequences in Drosophila melanogaster , with the longest array being located in the pericentromeric region of the X-chromosome. Short arrays of 1.688 repeats are widespread within the euchromatic part of the X-chromosome, and these arrays were recently suggested to assist in recognition of the X-chromosome by the dosage compensation male-specific lethal complex. We discovered that a short array of 1.688 satellite repeats is essential for recruitment of the protein POF to a previously described site on the X-chromosome ( PoX2 ) and to various transgenic constructs. On an isolated target, i.e. , an autosomic transgene consisting of a gene upstream of 1.688 satellite repeats, POF is recruited to the transgene in both males and females. The sequence of the satellite, as well as its length and position within the recruitment element, are the major determinants of targeting. Moreover, the 1.688 array promotes POF targeting to the roX1 -proximal PoX1 site in trans Finally, binding of POF to the 1.688-related satellite-enriched sequences is conserved in evolution. We hypothesize that the 1.688 satellite functioned in an ancient dosage compensation system involving POF targeting to the X-chromosome. Copyright © 2018 by the Genetics Society of America.

  8. Limited-area short-range ensemble predictions targeted for heavy rain in Europe

    Directory of Open Access Journals (Sweden)

    K. Sattler

    2005-01-01

    Full Text Available Inherent uncertainties in short-range quantitative precipitation forecasts (QPF from the high-resolution, limited-area numerical weather prediction model DMI-HIRLAM (LAM are addressed using two different approaches to creating a small ensemble of LAM simulations, with focus on prediction of extreme rainfall events over European river basins. The first ensemble type is designed to represent uncertainty in the atmospheric state of the initial condition and at the lateral LAM boundaries. The global ensemble prediction system (EPS from ECMWF serves as host model to the LAM and provides the state perturbations, from which a small set of significant members is selected. The significance is estimated on the basis of accumulated precipitation over a target area of interest, which contains the river basin(s under consideration. The selected members provide the initial and boundary data for the ensemble integration in the LAM. A second ensemble approach tries to address a portion of the model-inherent uncertainty responsible for errors in the forecasted precipitation field by utilising different parameterisation schemes for condensation and convection in the LAM. Three periods around historical heavy rain events that caused or contributed to disastrous river flooding in Europe are used to study the performance of the LAM ensemble designs. The three cases exhibit different dynamic and synoptic characteristics and provide an indication of the ensemble qualities in different weather situations. Precipitation analyses from the Deutsche Wetterdienst (DWD are used as the verifying reference and a comparison of daily rainfall amounts is referred to the respective river basins of the historical cases.

  9. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery

    DEFF Research Database (Denmark)

    Alanjary, Mohammad; Kronmiller, Brent; Adamek, Martina

    2017-01-01

    and identifying gene clusters for compounds active against specific and novel targets. Here we introduce the 'Antibiotic Resistant Target Seeker' (ARTS) available at https://arts.ziemertlab.com. ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets. The aim...

  10. 14C specific activity of farm products and marine products collected from the Rokkasho area in Aomori prefecture

    International Nuclear Information System (INIS)

    Muranaka, Takeshi; Honda, Kazuya

    1996-01-01

    We investigated 14 C specific activity of farm products and marine products which were collected from the Rokkasho area in Aomori prefecture from 1988 to 1990. The measured 14 C specific activity of farm products was almost equal to one another with the averaged 14 C specific activity of 0.261 [Bq/g·C]. On the other hand, 14 C specific activity of marine products was slightly lower than those of farm products. Especially that of squid was the lowest among studied marine products. This may be due to the low 14 C specific activity of the sea water surrounding squid. (author)

  11. Exceptionally potent anti-tumor bystander activity of an scFv : sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells

    NARCIS (Netherlands)

    Bremer, E; Samplonius, D; Kroesen, BJ; van Genne, L; de Leij, L; Helfrich, W

    2004-01-01

    Previously, we reported on the target cell-restricted fratricide apoptotic activity of scFvC54:sTRAIL, a fusion protein comprising human-soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) genetically linked to the antibody fragment scFvC54 specific for the cell surface target

  12. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.

    Science.gov (United States)

    Hou, Jianhua; Jiang, Kun; Wei, Rui; Tahir, Muhammad; Wu, Xiaoge; Shen, Ming; Wang, Xiaozhi; Cao, Chuanbao

    2017-09-13

    Popcorn-derived porous carbon flakes have been successfully fabricated from the biomass of maize. Utilizing the "puffing effect", the nubby maize grain turned into materials with an interconnected honeycomb-like porous structure composed of carbon flakes. The following chemical activation method enabled the as-prepared products to possess optimized porous structures for electrochemical energy-storage devices, such as multilayer flake-like structures, ultrahigh specific surface area (S BET : 3301 m 2 g -1 ), and a high content of micropores (microporous surface area of 95%, especially the optimized sub-nanopores with the size of 0.69 nm) that can increase the specific capacitance. The as-obtained sample displayed excellent specific capacitance of 286 F g -1 at 90 A g -1 for supercapacitors. Moreover, the unique porous structure demonstrated an ideal way to improve the volumetric energy density performance. A high energy density of 103 Wh kg -1 or 53 Wh L -1 has been obtained in the case of ionic liquid electrolyte, which is the highest among reported biomass-derived carbon materials and will satisfy the urgent requirements of a primary power source for electric vehicles. This work may prove to be a fast, green, and large-scale synthesis route by using the large nubby granular materials to synthesize applicable porous carbons in energy-storage devices.

  13. Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets

    International Nuclear Information System (INIS)

    Ozdemir, Enver Doruk; Haerdtlein, Marlies; Eltrop, Ludger

    2009-01-01

    The provision of biofuels today is based on energy crops rather than residual biomass, which results in the requirement of agricultural land area. The side products may serve as animal feed and thus prevent cultivation of other feedstock and the use of corresponding land area. These effects of biofuel provision have to be taken into account for a comprising assessment of land area requirement for biofuel provision. Between 18.5 and 21.1 Mio. hectares (ha) of land area is needed to meet the EU 2020 biofuel target depending on the biofuel portfolio when substitution effects are neglected. The utilization of the bioethanol side products distiller's dried grain and solubles (DDGS) and pressed beet slices may save up to 0.7 Mio. ha of maize cultivation area in the EU. The substitution effect due to the utilization of biodiesel side products (oil cakes of rape, palm and soy) as animal feed may account for up to 7.1 Mio. ha of soy cultivation area in Brazil. The results show that the substitution of land area due to use of side products might ease the pressures on land area requirement considerably and should therefore not be neglected in assessing the impacts of biofuel provision worldwide.

  14. Regulatory function of a novel population of mouse autoantigen-specific Foxp3 regulatory T cells depends on IFN-gamma, NO, and contact with target cells.

    Directory of Open Access Journals (Sweden)

    Cyndi Chen

    Full Text Available BACKGROUND: Both naturally arising Foxp3(+ and antigen-induced Foxp3(- regulatory T cells (Treg play a critical role in regulating immune responses, as well as in preventing autoimmune diseases and graft rejection. It is known that antigen-specific Treg are more potent than polyclonal Treg in suppressing pathogenic immune responses that cause autoimmunity and inflammation. However, difficulty in identifying and isolating a sufficient number of antigen-specific Treg has limited their use in research to elucidate the mechanisms underlying their regulatory function and their potential role in therapy. METHODOLOGY/PRINCIPAL FINDINGS: Using a novel class II MHC tetramer, we have isolated a population of CD4(+ Foxp3(- T cells specific for the autoantigen glutamic acid decarboxylase p286-300 peptide (NR286 T cells from diabetes-resistant non-obese resistant (NOR mice. These Foxp3(- NR286 T cells functioned as Treg that were able to suppress target T cell proliferation in vitro and inhibit type 1 diabetes in animals. Unexpected results from mechanistic studies in vitro showed that their regulatory function was dependent on not only IFN-gamma and nitric oxide, but also on cell contact with target cells. In addition, separating NR286 Treg from target T cells in transwell assays abolished both production of NO and suppression of target T cells, regardless of whether IFN-gamma was produced in cell cultures. Therefore, production of NO, not IFN-gamma, was cell contact dependent, suggesting that NO may function downstream of IFN-gamma in mediating regulatory function of NR286 Treg. CONCLUSIONS/SIGNIFICANCE: These studies identified a unique population of autoantigen-specific Foxp3(- Treg that can exert their regulatory function dependent on not only IFN-gamma and NO but also cell contact with target cells.

  15. Target organ specific activity of drosophila MRP (ABCC1) moderates developmental toxicity of methylmercury.

    Science.gov (United States)

    Prince, Lisa; Korbas, Malgorzata; Davidson, Philip; Broberg, Karin; Rand, Matthew Dearborn

    2014-08-01

    Methylmercury (MeHg) is a ubiquitous and persistent neurotoxin that poses a risk to human health. Although the mechanisms of MeHg toxicity are not fully understood, factors that contribute to susceptibility are even less well known. Studies of human gene polymorphisms have identified a potential role for the multidrug resistance-like protein (MRP/ABCC) family, ATP-dependent transporters, in MeHg susceptibility. MRP transporters have been shown to be important for MeHg excretion in adult mouse models, but their role in moderating MeHg toxicity during development has not been explored. We therefore investigated effects of manipulating expression levels of MRP using a Drosophila development assay. Drosophila MRP (dMRP) is homologous to human MRP1-4 (ABCC1-4), sharing 50% identity and 67% similarity with MRP1. A greater susceptibility to MeHg is seen in dMRP mutant flies, demonstrated by reduced rates of eclosion on MeHg-containing food. Furthermore, targeted knockdown of dMRP expression using GAL4>UAS RNAi methods demonstrates a tissue-specific function for dMRP in gut, Malpighian tubules, and the nervous system in moderating developmental susceptibility to MeHg. Using X-ray synchrotron fluorescence imaging, these same tissues were also identified as the highest Hg-accumulating tissues in fly larvae. Moreover, higher levels of Hg are seen in dMRP mutant larvae compared with a control strain fed an equivalent dose of MeHg. In sum, these data demonstrate that dMRP expression, both globally and within Hg-targeted organs, has a profound effect on susceptibility to MeHg in developing flies. Our findings point to a potentially novel and specific role for dMRP in neurons in the protection against MeHg. Finally, this experimental system provides a tractable model to evaluate human polymorphic variants of MRP and other gene variants relevant to genetic studies of mercury-exposed populations. © The Author 2014. Published by Oxford University Press on behalf of the Society of

  16. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    Science.gov (United States)

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  17. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  18. THE EFFECT OF STORAGE AT AMBIENT HUMIDITY ON THE BET-SPECIFIC SURFACE-AREA OF TABLETS COMPACTED FROM DIFFERENT MATERIALS

    NARCIS (Netherlands)

    RIEPMA, KA; DEKKER, BG; JAGER, RS; ELBERSE, PA; LERK, CF

    1993-01-01

    Tablets compacted from both water soluble and water insoluble particulate solids showed no change in BET-specific surface area when transferred immediately after ejection from the die in a dry atmosphere. Storage at ambient humidity resulted in an irreversible decrease in surface area, caused by

  19. Genome Target Evaluator (GTEvaluator: A workflow exploiting genome dataset to measure the sensitivity and specificity of genetic markers.

    Directory of Open Access Journals (Sweden)

    Arnaud Felten

    Full Text Available Most of the bacterial typing methods used to discriminate isolates in medical or food safety microbiology are based on genetic markers used as targets in PCR or hybridization experiments. These DNA typing methods are important tools for studying prevalence and epidemiology, for conducting surveillance, investigations and control of biological hazard sources. In that perspective, it is crucial to insure that the chosen genetic markers have the greatest specificity and sensitivity. The wealth of whole-genome sequences available for many bacterial species offers the opportunity to evaluate the performance of these genetic markers. In the present study, we have developed GTEvaluator, a bioinformatics workflow which ranks genetic markers depending on their sensitivity and specificity towards groups of well-defined genomes. GTEvaluator identifies the most performant genetic markers to target individuals among a population. The individuals (i.e. a group of genomes within a collection are defined by any kind of particular phenotypic or biological properties inside a related population (i.e. collection of genomes. The performance of the genetic markers is computed by a distance value which takes into account both sensitivity and specificity. In this study we report two examples of GTEvaluator application. In the first example Bacillus phenotypic markers were evaluated for their capacity to distinguish B. cereus from B. thuringiensis. In the second experiment, GTEvaluator measured the performance of genetic markers dedicated to the molecular serotyping of Salmonella enterica. In one in silico experiment it was possible to test 64 markers onto 134 genomes corresponding to 14 different serotypes.

  20. Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

    Directory of Open Access Journals (Sweden)

    Avinaba Mukherjee

    2016-03-01

    Full Text Available Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug

  1. A glossary of policy frameworks: the many forms of 'universalism' and policy 'targeting'.

    Science.gov (United States)

    Carey, Gemma; Crammond, Brad

    2017-03-01

    The recognition that certain characteristics (such as poverty, disadvantage or membership of marginalised social or cultural groups) can make individuals more susceptible to illness has reignited interest in how to combine universal programmes and policies with ones targeted at specific groups. However, 'universalism' and 'targeting' are used in different ways for different purposes. In this glossary, we define different types and approaches to universalism and targeting. We anticipate that greater clarity in relation to what is meant by 'universalism' and 'targeting' will lead to a more nuanced debate and practice in this area. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Comparative studies of the endonucleases from two related Xenopus laevis retrotransposons, Tx1L and Tx2L: target site specificity and evolutionary implications.

    Science.gov (United States)

    Christensen, S; Pont-Kingdon, G; Carroll, D

    2000-01-01

    In the genome of the South African frog, Xenopus laevis, there are two complex families of transposable elements, Tx1 and Tx2, that have identical overall structures, but distinct sequences. In each family there are approximately 1500 copies of an apparent DNA-based element (Tx1D and Tx2D). Roughly 10% of these elements in each family are interrupted by a non-LTR retrotransposon (Tx1L and Tx2L). Each retrotransposon is flanked by a 23-bp target duplication of a specific D element sequence. In earlier work, we showed that the endonuclease domain (Tx1L EN) located in the second open reading frame (ORF2) of Tx1L encodes a protein that makes a single-strand cut precisely at the expected site within its target sequence, supporting the idea that Tx1L is a site-specific retrotransposon. In this study, we express the endonuclease domain of Tx2L (Tx2L EN) and compare the target preferences of the two enzymes. Each endonuclease shows some preference for its cognate target, on the order of 5-fold over the non-cognate target. The observed discrimination is not sufficient, however, to explain the observation that no cross-occupancy is observed - that is, L elements of one family have never been found within D elements of the other family. Possible sources of additional specificity are discussed. We also compare two hypotheses regarding the genome duplication event that led to the contemporary pseudotetraploid character of Xenopus laevis in light of the Tx1L and Tx2L data.

  3. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.

    Science.gov (United States)

    Xia, Jie; Hsieh, Jui-Hua; Hu, Huabin; Wu, Song; Wang, Xiang Simon

    2017-06-26

    Structure-based virtual screening (SBVS) has become an indispensable technique for hit identification at the early stage of drug discovery. However, the accuracy of current scoring functions is not high enough to confer success to every target and thus remains to be improved. Previously, we had developed binary pose filters (PFs) using knowledge derived from the protein-ligand interface of a single X-ray structure of a specific target. This novel approach had been validated as an effective way to improve ligand enrichment. Continuing from it, in the present work we attempted to incorporate knowledge collected from diverse protein-ligand interfaces of multiple crystal structures of the same target to build PF ensembles (PFEs). Toward this end, we first constructed a comprehensive data set to meet the requirements of ensemble modeling and validation. This set contains 10 diverse targets, 118 well-prepared X-ray structures of protein-ligand complexes, and large benchmarking actives/decoys sets. Notably, we designed a unique workflow of two-layer classifiers based on the concept of ensemble learning and applied it to the construction of PFEs for all of the targets. Through extensive benchmarking studies, we demonstrated that (1) coupling PFE with Chemgauss4 significantly improves the early enrichment of Chemgauss4 itself and (2) PFEs show greater consistency in boosting early enrichment and larger overall enrichment than our prior PFs. In addition, we analyzed the pairwise topological similarities among cognate ligands used to construct PFEs and found that it is the higher chemical diversity of the cognate ligands that leads to the improved performance of PFEs. Taken together, the results so far prove that the incorporation of knowledge from diverse protein-ligand interfaces by ensemble modeling is able to enhance the screening competence of SBVS scoring functions.

  4. A specific endogenous reference for genetically modified common bean (Phaseolus vulgaris L.) DNA quantification by real-time PCR targeting lectin gene.

    Science.gov (United States)

    Venturelli, Gustavo L; Brod, Fábio C A; Rossi, Gabriela B; Zimmermann, Naíra F; Oliveira, Jaison P; Faria, Josias C; Arisi, Ana C M

    2014-11-01

    The Embrapa 5.1 genetically modified (GM) common bean was approved for commercialization in Brazil. Methods for the quantification of this new genetically modified organism (GMO) are necessary. The development of a suitable endogenous reference is essential for GMO quantification by real-time PCR. Based on this, a new taxon-specific endogenous reference quantification assay was developed for Phaseolus vulgaris L. Three genes encoding common bean proteins (phaseolin, arcelin, and lectin) were selected as candidates for endogenous reference. Primers targeting these candidate genes were designed and the detection was evaluated using the SYBR Green chemistry. The assay targeting lectin gene showed higher specificity than the remaining assays, and a hydrolysis probe was then designed. This assay showed high specificity for 50 common bean samples from two gene pools, Andean and Mesoamerican. For GM common bean varieties, the results were similar to those obtained for non-GM isogenic varieties with PCR efficiency values ranging from 92 to 101 %. Moreover, this assay presented a limit of detection of ten haploid genome copies. The primers and probe developed in this work are suitable to detect and quantify either GM or non-GM common bean.

  5. Structural basis for the high specificity of a Trypanosoma congolense immunoassay targeting glycosomal aldolase.

    Directory of Open Access Journals (Sweden)

    Joar Pinto

    2017-09-01

    Full Text Available Animal African trypanosomosis (AAT is a neglected tropical disease which imposes a heavy burden on the livestock industry in Sub-Saharan Africa. Its causative agents are Trypanosoma parasites, with T. congolense and T. vivax being responsible for the majority of the cases. Recently, we identified a Nanobody (Nb474 that was employed to develop a homologous sandwich ELISA targeting T. congolense fructose-1,6-bisphosphate aldolase (TcoALD. Despite the high sequence identity between trypanosomatid aldolases, the Nb474-based immunoassay is highly specific for T. congolense detection. The results presented in this paper yield insights into the molecular principles underlying the assay's high specificity.The structure of the Nb474-TcoALD complex was determined via X-ray crystallography. Together with analytical gel filtration, the structure reveals that a single TcoALD tetramer contains four binding sites for Nb474. Through a comparison with the crystal structures of two other trypanosomatid aldolases, TcoALD residues Ala77 and Leu106 were identified as hot spots for specificity. Via ELISA and surface plasmon resonance (SPR, we demonstrate that mutation of these residues does not abolish TcoALD recognition by Nb474, but does lead to a lack of detection in the Nb474-based homologous sandwich immunoassay.The results show that the high specificity of the Nb474-based immunoassay is not determined by the initial recognition event between Nb474 and TcoALD, but rather by its homologous sandwich design. This (i provides insights into the optimal set-up of the assay, (ii may be of great significance for field applications as it could explain the potential detection escape of certain T. congolense strains, and (iii may be of general interest to those developing similar assays.

  6. Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device

    Science.gov (United States)

    Valiya Peedikakkal, Liyana; Steventon, Victoria; Furley, Andrew; Cadby, Ashley J.

    2017-12-01

    We demonstrate a simple illumination system based on a digital mirror device which allows for fine control over the power and pattern of illumination. We apply this to localization microscopy (LM), specifically stochastic optical reconstruction microscopy (STORM). Using this targeted STORM, we were able to image a selected area of a labelled cell without causing photo-damage to the surrounding areas of the cell.

  7. Tumor Specific Detection of an Optically Targeted Antibody Combined with a Quencher-conjugated Neutravidin “Quencher-Chaser”: A Dual “Quench and Chase” Strategy to Improve Target to Non-target Ratios for Molecular Imaging of Cancer

    Science.gov (United States)

    Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Kobayashi, Hisataka

    2009-01-01

    and could not bind to nAv-QSY21. In conclusion, the proposed “quench-and-chase” system combines two strategies, fluorescent quenching and avidin chasing to improve target TBR and reduce non target TBR which should result in both improved tumor sensitivity and specificity. PMID:19072537

  8. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent.

    Science.gov (United States)

    Jung, Yuchae; Park, Heejoo; Zhao, Hui-Yuan; Jeon, Raok; Ryu, Jae-Ha; Kim, Woo-Young

    2014-07-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and TGFβ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

  9. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin-avidin-specific binding.

    Science.gov (United States)

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin-avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P contrast agent and held great potential for molecular diagnosis of tumor.

  10. Signaling Network Assessment of Mutations and Copy Number Variations Predict Breast Cancer Subtype-Specific Drug Targets

    Directory of Open Access Journals (Sweden)

    Naif Zaman

    2013-10-01

    Full Text Available Individual cancer cells carry a bewildering number of distinct genomic alterations (e.g., copy number variations and mutations, making it a challenge to uncover genomic-driven mechanisms governing tumorigenesis. Here, we performed exome sequencing on several breast cancer cell lines that represent two subtypes, luminal and basal. We integrated these sequencing data and functional RNAi screening data (for the identification of genes that are essential for cell proliferation and survival onto a human signaling network. Two subtype-specific networks that potentially represent core-signaling mechanisms underlying tumorigenesis were identified. Within both networks, we found that genes were differentially affected in different cell lines; i.e., in some cell lines a gene was identified through RNAi screening, whereas in others it was genomically altered. Interestingly, we found that highly connected network genes could be used to correctly classify breast tumors into subtypes on the basis of genomic alterations. Further, the networks effectively predicted subtype-specific drug targets, which were experimentally validated.

  11. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China); Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong [Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Liu, Chen; Yang, Jun [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China); Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Zheng, Xiaolin [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China)

    2014-04-15

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  12. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    International Nuclear Information System (INIS)

    Wang, Li; Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong; Liu, Chen; Yang, Jun; Yan, Rubing; Zheng, Xiaolin

    2014-01-01

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  13. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration

    Science.gov (United States)

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically. PMID:23836972

  14. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration.

    Science.gov (United States)

    Gu, Wenyi; Wu, Chengtie; Chen, Jiezhong; Xiao, Yin

    2013-01-01

    Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically.

  15. Specification of Change Mechanisms in Pregnant Smokers for Malleable Target Identification: A Novel Approach to a Tenacious Public Health Problem

    Directory of Open Access Journals (Sweden)

    Suena H. Massey

    2017-09-01

    Full Text Available Maternal smoking during pregnancy (MSDP continues to be a leading modifiable risk factor for perinatal complications and a range of neurodevelopmental and cardio-metabolic outcomes across the lifespan. Despite 40 years of intervention research less than one in five pregnant smokers who receive an intervention quit by delivery. Within this context, recognition of pregnancy is commonly associated with abrupt suspension or reduction of smoking in the absence of intervention, yet has not been investigated as a volitional target. The goal of this article is to provide the empirical foundation for a novel direction of research aimed at identifying malleable targets for intervention through the specification of behavior change mechanisms specific to pregnant women. To do so, we: (1 summarize progress on MSDP in the United States generated from conventional empirical approaches to health behavior change; (2 discuss the phenomenon of spontaneous change in the absence of intervention among pregnant smokers to illustrate the need for mechanistic specification of behavior change motivated by concern for fetal well-being; (3 summarize component processes in neurobiological models of parental and non-parental social behaviors as a conceptual framework for understanding change mechanisms during pregnancy; (4 discuss the evidence for the malleability of these processes to support their translational relevance for preventive interventions; and (5 propose a roadmap for validating the proposed change mechanism using an experimental medicine approach. A greater understanding of social and interpersonal processes that facilitate health behavior change among expectant mothers and how these processes differ interindividually could yield novel volitional targets for prenatal interventions. More broadly, explicating other-oriented mechanisms of behavior change during pregnancy could serve as a paradigm for understanding how social and interpersonal processes

  16. Targeting of Mesenchymal Stromal Cells by Cre-Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells.

    Science.gov (United States)

    Zhang, Jingzhu; Link, Daniel C

    2016-11-01

    The targeting specificity of tissue-specific Cre-recombinase transgenes is a key to interpreting phenotypes associated with their use. The Ocn-Cre and Dmp1-Cre transgenes are widely used to target osteoblasts and osteocytes, respectively. Here, we used high-resolution microscopy of bone sections and flow cytometry to carefully define the targeting specificity of these transgenes. These transgenes were crossed with Cxcl12 gfp mice to identify Cxcl12-abundant reticular (CAR) cells, which are a perivascular mesenchymal stromal population implicated in hematopoietic stem/progenitor cell maintenance. We show that in addition to osteoblasts, Ocn-Cre targets a majority of CAR cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also targets a subset of CAR cells, in which expression of osteoblast-lineage genes is enriched. Finally, we introduce a new tissue-specific Cre-recombinase, Tagln-Cre, which efficiently targets osteoblasts, a majority of CAR cells, and both venous sinusoidal and arteriolar pericytes. These data show that Ocn-Cre and Dmp1-Cre target broader stromal cell populations than previously appreciated and may aid in the design of future studies. Moreover, these data highlight the heterogeneity of mesenchymal stromal cells in the bone marrow and provide tools to interrogate this heterogeneity. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  17. Optimization of operating variables for production of ultra-fine talc in a stirred mill. Specific surface area investigations

    Directory of Open Access Journals (Sweden)

    Toraman Oner Yusuf

    2016-01-01

    Full Text Available Due to its properties such as chemical inertness, softness, whiteness, high thermal conductivity, low electrical conductivity and adsorption properties talc has wide industrial applications in paper, cosmetics, paints, polymer, ceramics, refractory materials and pharmaceutical. The demand for ultra-fine talc is emerging which drives the mineral industry to produce value added products. In this study, it was investigated how certain grinding parameters such as mill speed, ball filling ratio, powder filling ratio and grinding time of dry stirred mill affect grindability of talc ore (d97=127 μm. A series of laboratory experiments using a 24 full factorial design was conducted to determine the optimal operational parameters of a stirred mill in order to minimize the specific surface area. The main and interaction effects on the volume specific surface area (SV, m2.cm−3 of the ground product were evaluated using the Yates analysis. Under the optimal conditions at the stirrer speed of 600 rpm, grinding time of 20 min, sample mass of 5% and ball ratio of 70%, the resulting talc powder had larger volume specific surface area (i.e., 3.48 m2.cm−3 than the starting material (i.e., 1.84 m2.cm−3.

  18. Quantitative phosphoproteomic analysis reveals shared and specific targets of Arabidopsis MPK3, MPK4 and MPK6

    KAUST Repository

    Rayapuram, Naganand; Bigeard, Jean; Alhoraibi, Hanna Mohsen Abdulrab; Bonhomme, Ludovic; Hesse, Anne-Marie; Vinh, Joelle; Hirt, Heribert; Pflieger, Delphine

    2017-01-01

    In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4 and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. While some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4 and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. As a whole, 152 peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar non-fermenting (SnRK) protein kinases.

  19. Quantitative phosphoproteomic analysis reveals shared and specific targets of Arabidopsis MPK3, MPK4 and MPK6

    KAUST Repository

    Rayapuram, Naganand

    2017-11-23

    In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4 and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. While some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4 and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. As a whole, 152 peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar non-fermenting (SnRK) protein kinases.

  20. Target support for inertial confinement fusion

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1995-08-01

    General Atomics (GA) plays an important industrial support role for the US Inertial Confinement Fusion (ICF) program in the area of target technology. This includes three major activities: target fabrication support, target handling systems development, and target chamber design. The work includes target fabrication for existing ICF experiments, target and target system development for future experiments, and target research and target chamber design for experiments on future machines, such as the National Ignition Facility (NIF)

  1. EVALUATION OF MAXILLARY BONE DIMENSIONS IN SPECIFIC AREAS FOR REMOVABLE DENTURES

    Directory of Open Access Journals (Sweden)

    Dobromira Shopova

    2017-05-01

    Full Text Available Background: The removable prosthetics is a big part of Prosthetic Dentistry. The prosthetic field is very important for successful treatment with partial or complete dentures. Maxillary bone is covered with soft tissues, but its anatomy is essential for retention, chewing stability and comfort of the patients. Purpose: The study’s aim was to evaluate the dimensions of maxillary bone in specific zones for removable dentures. Methods: Sixteen craniums were measured in 10 different zones. It was used an Electronic Digital Caliper 0-150 mm. Results: Consistently were applied F-test and Welch t-test for equality of variance and group’s comparison mean, respectively. The spread of the data was described by calculating range and standard deviation. The estimated value of range was highest in the FI-A1P, followed by FI-AC and FI-A2P. The smallest amplitude was established in the TM-PP and SNA. The estimated value of standard deviation was 2,57/2,51 in FI-AC zone, 2,46/2,59 in FI-A1P zone and a few smaller 2,08/2,13 in FI-A2P zone. The lowest values were in TM-PP and SNA areas. Conclusion: Tuber maxillae and Spina nasalis anterior have stable dimensions. The areas of canine and premolars are varied, because the zone is tasked by chewing function.

  2. Using the Nova target chamber for high-yield targets

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1987-01-01

    The existing 2.2-m-radius Nova aluminum target chamber, coated and lined with boron-seeded carbon shields, is proposed for use with 1000-MJ-yield targets in the next laser facility. The laser beam and diagnostic holes in the target chamber are left open and the desired 10 -2 Torr vacuum is maintained both inside and outside the target chamber; a larger target chamber room is the vacuum barrier to the atmosphere. The hole area available is three times that necessary to maintain a maximum fluence below 12 J/cm 2 on optics placed at a radius of 10 m. Maximum stress in the target chamber wall is 73 MPa, which complies with the intent of the ASME Pressure Vessel Code. However, shock waves passing through the inner carbon shield could cause it to comminute. We propose tests and analyses to ensure that the inner carbon shield survives the environment. 13 refs

  3. Language Teachers' Target Language Project: Language for Specific Purposes of Language Teaching

    Science.gov (United States)

    Korenev, Alexey; Westbrook, Carolyn; Merry, Yvonne; Ershova, Tatiana

    2016-01-01

    The Language Teachers' Target Language project (LTTL) aims to describe language teachers' target language use domain (Bachman & Palmer 2010) and to develop a language test for future teachers of English. The team comprises four researchers from Moscow State University (MSU) and Southampton Solent University.

  4. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    Energy Technology Data Exchange (ETDEWEB)

    Wuytack, Tatiana, E-mail: tatiana.wuytack@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Wuyts, Karen, E-mail: karen.wuyts@ugent.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Van Dongen, Stefan, E-mail: stefan.vandongen@ua.ac.be [Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Baeten, Lander, E-mail: lander.baeten@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Kardel, Fatemeh, E-mail: fatemeh.kardel@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode, Melle (Belgium); Samson, Roeland, E-mail: roeland.samson@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2011-10-15

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO{sub x} and O{sub 3} concentrations had only a marginal influence. The influence of SO{sub 2} concentration was negligible. Although our data analysis suggests a relationship between SLA and NO{sub x}/O{sub 3} concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: > Leaf characteristics of white willow as possible bio-indicators for air quality. > Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. > Shadow increases specific leaf area. > NO{sub x} and O{sub 3} change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO{sub x} and decreasing O{sub 3} concentration, while leaf asymmetry did not respond to air pollution

  5. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    International Nuclear Information System (INIS)

    Wuytack, Tatiana; Wuyts, Karen; Van Dongen, Stefan; Baeten, Lander; Kardel, Fatemeh; Verheyen, Kris; Samson, Roeland

    2011-01-01

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO x and O 3 concentrations had only a marginal influence. The influence of SO 2 concentration was negligible. Although our data analysis suggests a relationship between SLA and NO x /O 3 concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: → Leaf characteristics of white willow as possible bio-indicators for air quality. → Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. → Shadow increases specific leaf area. → NO x and O 3 change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO x and decreasing O 3 concentration, while leaf asymmetry did not respond to air pollution

  6. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao

    2017-01-01

    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.

  7. Mitochondrial targeting increases specific activity of a heterologous valine assimilation pathway in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kevin V. Solomon

    2016-12-01

    Full Text Available Bio-based isobutantol is a sustainable ‘drop in’ substitute for petroleum-based fuels. However, well-studied production routes, such as the Ehrlich pathway, have yet to be commercialized despite more than a century of research. The more versatile bacterial valine catabolism may be a competitive alternate route producing not only an isobutanol precursor but several carboxylic acids with applications as biomonomers, and building blocks for other advanced biofuels. Here, we transfer the first two committed steps of the pathway from pathogenic Pseudomonas aeruginosa PAO1 to yeast to evaluate their activity in a safer model organism. Genes encoding the heteroligomeric branched chain keto-acid dehydrogenase (BCKAD; bkdA1, bkdA2, bkdB, lpdV, and the homooligomeric acyl-CoA dehydrogenase (ACD; acd1 were tagged with fluorescence epitopes and targeted for expression in either the mitochondria or cytoplasm of S. cerevisiae. We verified the localization of our constructs with confocal fluorescence microscopy before measuring the activity of tag-free constructs. Despite reduced heterologous expression of mitochondria-targeted enzymes, their specific activities were significantly improved with total enzyme activities up to 138% greater than those of enzymes expressed in the cytoplasm. In total, our results demonstrate that the choice of protein localization in yeast has significant impact on heterologous activity, and suggests a new path forward for isobutanol production. Keywords: Pseudomonas, Isobutanol, Dehydrogenase, Mitochondria, Saccharomyces cerevisiae, Metabolic engineering

  8. Brief Report: Loss of Muscle Strength Prior to Knee Replacement: A Question of Anatomic Cross-Sectional Area or Specific Strength?

    Science.gov (United States)

    Culvenor, Adam G; Hamler, Felix C; Kemnitz, Jana; Wirth, Wolfgang; Eckstein, Felix

    2018-02-01

    To determine whether loss in thigh muscle strength prior to knee replacement is caused by reductions of muscle strength in the anatomic cross-sectional area or by reductions of specific strength. All 100 of the participants in the Osteoarthritis Initiative who underwent knee replacement and whose medical records included data on thigh isometric muscle strength and magnetic resonance imaging (MRI) (58 women, and 42 men, mean ± SD age 65 ± 8 years, mean ± SD body mass index [BMI] 29 ± 5 kg/m 2 ) were matched with a control (no knee replacement) for age, sex, height, BMI, and radiographic severity. Thigh muscle anatomic cross-sectional area was determined by MRI at the research visit before knee replacement (time 0) and 2 years before time 0 (time -2). Specific strength (strength/anatomic cross-sectional area) was calculated, and the measures were compared by conditional logistic regression (i.e., odds ratio [OR] per standard deviation). ORs adjusted for pain (OR adj ) and 95% confidence intervals (95% CIs) were also calculated. Knee replacement cases had significantly smaller extensor (but not flexor) anatomic cross-sectional areas than controls at time 0 (women, OR adj 1.89 [95% CI 1.05-3.90]; men, OR adj 2.22 [95% CI 1.04-4.76]), whereas no significant differences were found at time -2. Women who had knee replacement showed lower levels of extensor specific strength than controls at time 0 (OR 1.59 [95% CI 1.02-2.50]), although this difference was not observed in men and did not maintain significance after adjustment for pain (OR adj 1.22 [95% CI 0.71-2.08]). Female cases lost significantly more extensor specific strength between time -2 and time 0 than controls (OR adj 3.76 [95% CI 1.04-13.60]), whereas no significant differences were noted at time -2, or in men. Prior to knee replacement, a significant reduction in knee extensor strength appears to occur in women through 2 mechanisms: one driven by pain (loss of specific strength) and one independent of pain

  9. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications

    Science.gov (United States)

    Harb, Kawssar; Magrinelli, Elia; Nicolas, Céline S; Lukianets, Nikita; Frangeul, Laura; Pietri, Mariel; Sun, Tao; Sandoz, Guillaume; Grammont, Franck; Jabaudon, Denis; Studer, Michèle; Alfano, Christian

    2016-01-01

    During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features. DOI: http://dx.doi.org/10.7554/eLife.09531.001 PMID:26814051

  10. RISC RNA sequencing for context-specific identification of in vivo microRNA targets.

    Science.gov (United States)

    Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W

    2011-01-07

    MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1645 mRNAs consistently targeted to mouse cardiac RISCs. We used this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing "seed" sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context and is applicable to any tissue and any disease state.

  11. The target effect: visual memory for unnamed search targets.

    Science.gov (United States)

    Thomas, Mark D; Williams, Carrick C

    2014-01-01

    Search targets are typically remembered much better than other objects even when they are viewed for less time. However, targets have two advantages that other objects in search displays do not have: They are identified categorically before the search, and finding them represents the goal of the search task. The current research investigated the contributions of both of these types of information to the long-term visual memory representations of search targets. Participants completed either a predefined search or a unique-object search in which targets were not defined with specific categorical labels before searching. Subsequent memory results indicated that search target memory was better than distractor memory even following ambiguously defined searches and when the distractors were viewed significantly longer. Superior target memory appears to result from a qualitatively different representation from those of distractor objects, indicating that decision processes influence visual memory.

  12. Tumour targeting with systemically administered bacteria.

    LENUS (Irish Health Repository)

    Morrissey, David

    2012-01-31

    Challenges for oncology practitioners and researchers include specific treatment and detection of tumours. The ideal anti-cancer therapy would selectively eradicate tumour cells, whilst minimising side effects to normal tissue. Bacteria have emerged as biological gene vectors with natural tumour specificity, capable of homing to tumours and replicating locally to high levels when systemically administered. This property enables targeting of both the primary tumour and secondary metastases. In the case of invasive pathogenic species, this targeting strategy can be used to deliver genes intracellularly for tumour cell expression, while non-invasive species transformed with plasmids suitable for bacterial expression of heterologous genes can secrete therapeutic proteins locally within the tumour environment (cell therapy approach). Many bacterial genera have been demonstrated to localise to and replicate to high levels within tumour tissue when intravenously (IV) administered in rodent models and reporter gene tagging of bacteria has permitted real-time visualisation of this phenomenon. Live imaging of tumour colonising bacteria also presents diagnostic potential for this approach. The nature of tumour selective bacterial colonisation appears to be tumour origin- and bacterial species- independent. While originally a correlation was drawn between anaerobic bacterial colonisation and the hypoxic nature of solid tumours, it is recently becoming apparent that other elements of the unique microenvironment within solid tumours, including aberrant neovasculature and local immune suppression, may be responsible. Here, we consider the pre-clinical data supporting the use of bacteria as a tumour-targeting tool, recent advances in the area, and future work required to develop it into a beneficial clinical tool.

  13. Targeting lysine specific demethylase 4A (KDM4A) tandem TUDOR domain - A fragment based approach.

    Science.gov (United States)

    Upadhyay, Anup K; Judge, Russell A; Li, Leiming; Pithawalla, Ron; Simanis, Justin; Bodelle, Pierre M; Marin, Violeta L; Henry, Rodger F; Petros, Andrew M; Sun, Chaohong

    2018-06-01

    The tandem TUDOR domains present in the non-catalytic C-terminal half of the KDM4A, 4B and 4C enzymes play important roles in regulating their chromatin localizations and substrate specificities. They achieve this regulatory role by binding to different tri-methylated lysine residues on histone H3 (H3-K4me3, H3-K23me3) and histone H4 (H4-K20me3) depending upon the specific chromatin environment. In this work, we have used a 2D-NMR based fragment screening approach to identify a novel fragment (1a), which binds to the KDM4A-TUDOR domain and shows modest competition with H3-K4me3 binding in biochemical as well as in vitro cell based assays. A co-crystal structure of KDM4A TUDOR domain in complex with 1a shows that the fragment binds stereo-specifically to the methyl lysine binding pocket forming a network of strong hydrogen bonds and hydrophobic interactions. We anticipate that the fragment 1a can be further developed into a novel allosteric inhibitor of the KDM4 family of enzymes through targeting their C-terminal tandem TUDOR domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex.

    Science.gov (United States)

    Auer, Tibor; Dewiputri, Wan Ilma; Frahm, Jens; Schweizer, Renate

    2018-05-15

    Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information

  15. Passive Polarimetric Information Processing for Target Classification

    Science.gov (United States)

    Sadjadi, Firooz; Sadjadi, Farzad

    Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).

  16. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhaoqiang [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Annie Bligh, S.W. [Department of Life Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW (United Kingdom); Tao, Lei; Quan, Jing [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Nie, Huali, E-mail: niehuali@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhu, Limin, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Gong, Xiao [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-03-01

    A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stern–Volmer equation. The K{sub SV} for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 × 10{sup −7}–35.0 × 10{sup −7} M with a detection limit of 80 nM. - Highlights: • A novel fluorescent biomimetic sensor based on MWCNT-QDs was designed. • The sensor exhibited a fast mass-transfer speed with a response time of 25 min. • The sensor possessed a highly selective recognition to BSA.

  17. A Multi-Area Stochastic Model for a Covert Visual Search Task.

    Directory of Open Access Journals (Sweden)

    Michael A Schwemmer

    Full Text Available Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys' lateral interparietal area (LIP neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.

  18. Technology strategy for deepwater and subsea production systems 2008 update; Technology Target Areas; TTA7 - Deep water and subsea prodution technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Executive summary 'Deepwater and Subsea Production Systems' has been identified as one of the eight new Technology Target Areas (TTAs) in Norway's technology strategy for the Oil and Gas sector. This TTA covers deepwater floating production systems, subsea systems (except subsea processing technologies which are addressed by TTA6) and arctic development systems (in both shallow and deepwater). The total hydrocarbon reserves worldwide, which are enabled by the technologies under this TTA exceed 400 billion boe which, itself exceeds the proven reserves of Saudi Arabia. For deepwater developments the long term technical challenge is to develop flexible and adaptive systems which are better able to cope with subsurface uncertainties e.g. compartmentalisation and provide required access to the reservoir to enable successful recovery. More specific medium term challenges relate to developing solutions for harsh environmental conditions such as those offshore Norway and to develop cost effective methods of installing subsea hardware in deep and ultra deep water without requiring expensive crane vessels. For subsea systems the challenge is to develop solutions for ultra deepwater without increasing costs, so that Norway's leading export position in this area can be maintained and strengthened. Considering developments in the arctic, Norwegian industry is already well placed through its familiarity with arctic climate, close relationship with Russia and involvement in Sakhalin II. As we move to water depth beyond about 150m use of Gravity Base Structures (GBS) becomes very expensive or non-feasible and we need to consider other solutions. Subsea-to-beach could be an attractive solution but we need to resolve challenges related to long distance tie backs, flow assurance, uneven terrain, etc. There is also a specific need to develop floating systems capable of drilling and production in an arctic environment. To address the above technical challenges the

  19. Retrieval of Specific Leaf Area From Landsat-8 Surface Reflectance Data Using Statistical and Physical Models

    NARCIS (Netherlands)

    Ali, Abebe Mohammed; Darvishzadeh, R.; Skidmore, Andrew K.

    2017-01-01

    One of the key traits in the assessment of ecosystem functions is a specific leaf area (SLA). The main aim of this study was to examine the potential of new generation satellite images, such as Landsat-8 imagery, for the retrieval of SLA at regional and global scales. Therefore, both statistical and

  20. Targeting radiation to tumours

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Greater Glasgow Health Board, Glasgow

    1994-01-01

    Biologically targeted radiotherapy entails the preferential delivery of radiation to solid tumours or individual tumour cells by means of tumour-seeking delivery vehicles to which radionuclides can be conjugated. Monoclonal antibodies have attracted attention for some years as potentially selective targeting agents, but advances in tumour and molecular biology are now providing a much wider choice of molecular species. General radiobiological principles may be derived which are applicable to most forms of targeted radiotherapy. These principles provide guidelines for the appropriate choice of radionuclide in specific treatment situations and its optimal combination with other treatment modalities. In future, the availability of gene targeting agents will focus attention on the use of Auger electron emitters whose high potency and short range selectivity makes them attractive choices for specific killing of cancer cells whose genetic peculiarities are known. (author)

  1. Specific emotions as mediators of the effect of intergroup contact on prejudice: findings across multiple participant and target groups.

    Science.gov (United States)

    Seger, Charles R; Banerji, Ishani; Park, Sang Hee; Smith, Eliot R; Mackie, Diane M

    2017-08-01

    Emotions are increasingly being recognised as important aspects of prejudice and intergroup behaviour. Specifically, emotional mediators play a key role in the process by which intergroup contact reduces prejudice towards outgroups. However, which particular emotions are most important for prejudice reduction, as well as the consistency and generality of emotion-prejudice relations across different in-group-out-group relations, remain uncertain. To address these issues, in Study 1 we examined six distinct positive and negative emotions as mediators of the contact-prejudice relations using representative samples of U.S. White, Black, and Asian American respondents (N = 639). Admiration and anger (but not other emotions) were significant mediators of the effects of previous contact on prejudice, consistently across different perceiver and target ethnic groups. Study 2 examined the same relations with student participants and gay men as the out-group. Admiration and disgust mediated the effect of past contact on attitude. The findings confirm that not only negative emotions (anger or disgust, based on the specific types of threat perceived to be posed by an out-group), but also positive, status- and esteem-related emotions (admiration) mediate effects of contact on prejudice, robustly across several different respondent and target groups.

  2. A Tumor-specific MicroRNA Recognition System Facilitates the Accurate Targeting to Tumor Cells by Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yingting Yu

    2016-01-01

    Full Text Available Targeted therapy for cancer is a research area of great interest, and magnetic nanoparticles (MNPs show great potential as targeted carriers for therapeutics. One important class of cancer biomarkers is microRNAs (miRNAs, which play a significant role in tumor initiation and progression. In this study, a cascade recognition system containing multiple plasmids, including a Tet activator, a lacI repressor gene driven by the TetOn promoter, and a reporter gene repressed by the lacI repressor and influenced by multiple endogenous miRNAs, was used to recognize cells that display miRNA signals that are characteristic of cancer. For this purpose, three types of signal miRNAs with high proliferation and metastasis abilities were chosen (miR-21, miR-145, and miR-9. The response of this system to the human breast cancer MCF-7 cell line was 3.2-fold higher than that to the human breast epithelial HBL100 cell line and almost 7.5-fold higher than that to human embryonic kidney HEK293T cells. In combination with polyethyleneimine-modified MNPs, this recognition system targeted the tumor location in situ in an animal model, and an ≃42% repression of tumor growth was achieved. Our study provides a new combination of magnetic nanocarrier and gene therapy based on miRNAs that are active in vivo, which has potential for use in future cancer therapies.

  3. Immunological tumor destruction in a murine melanoma model by targeted LTalpha independent of secondary lymphoid tissue

    DEFF Research Database (Denmark)

    Schrama, D.; Voigt, H.; Eggert, A.O.

    2008-01-01

    BACKGROUND: We previously demonstrated that targeting lymphotoxin alpha (LTalpha) to the tumor evokes its immunological destruction in a syngeneic B16 melanoma model. Since treatment was associated with the induction of peritumoral tertiary lymphoid tissue, we speculated that the induced immune...... response was initiated at the tumor site. METHODS AND RESULTS: In order to directly test this notion, we analyzed the efficacy of tumor targeted LTalpha in LTalpha knock-out (LTalpha(-/-)) mice which lack peripheral lymph nodes. To this end, we demonstrate that tumor-targeted LTalpha mediates the induction...... of specific T-cell responses even in the absence of secondary lymphoid organs. In addition, this effect is accompanied by the initiation of tertiary lymphoid tissue at the tumor site in which B and T lymphocytes are compartmentalized in defined areas and which harbor expanded numbers of tumor specific T cells...

  4. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas.

    Science.gov (United States)

    Gallivan, Jason P; McLean, D Adam; Flanagan, J Randall; Culham, Jody C

    2013-01-30

    Planning object-directed hand actions requires successful integration of the movement goal with the acting limb. Exactly where and how this sensorimotor integration occurs in the brain has been studied extensively with neurophysiological recordings in nonhuman primates, yet to date, because of limitations of non-invasive methodologies, the ability to examine the same types of planning-related signals in humans has been challenging. Here we show, using a multivoxel pattern analysis of functional MRI (fMRI) data, that the preparatory activity patterns in several frontoparietal brain regions can be used to predict both the limb used and hand action performed in an upcoming movement. Participants performed an event-related delayed movement task whereby they planned and executed grasp or reach actions with either their left or right hand toward a single target object. We found that, although the majority of frontoparietal areas represented hand actions (grasping vs reaching) for the contralateral limb, several areas additionally coded hand actions for the ipsilateral limb. Notable among these were subregions within the posterior parietal cortex (PPC), dorsal premotor cortex (PMd), ventral premotor cortex, dorsolateral prefrontal cortex, presupplementary motor area, and motor cortex, a region more traditionally implicated in contralateral movement generation. Additional analyses suggest that hand actions are represented independently of the intended limb in PPC and PMd. In addition to providing a unique mapping of limb-specific and action-dependent intention-related signals across the human cortical motor system, these findings uncover a much stronger representation of the ipsilateral limb than expected from previous fMRI findings.

  5. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions.

    Science.gov (United States)

    Venter, Oscar; Magrach, Ainhoa; Outram, Nick; Klein, Carissa Joy; Possingham, Hugh P; Di Marco, Moreno; Watson, James E M

    2018-02-01

    To contribute to the aspirations of recent international biodiversity conventions, protected areas (PAs) must be strategically located and not simply established on economically marginal lands as they have in the past. With refined international commitments under the Convention on Biological Diversity to target protected areas in places of "importance to biodiversity," perhaps they may now be. We analyzed location biases in PAs globally over historic (pre-2004) and recent periods. Specifically, we examined whether the location of protected areas are more closely associated with high concentrations of threatened vertebrate species or with areas of low agricultural opportunity costs. We found that both old and new protected areas did not target places with high concentrations of threatened vertebrate species. Instead, they appeared to be established in locations that minimize conflict with agriculturally suitable lands. This entrenchment of past trends has substantial implications for the contributions these protected areas are making to international commitments to conserve biodiversity. If protected-area growth from 2004 to 2014 had strategically targeted unrepresented threatened vertebrates, >30 times more species (3086 or 2553 potential vs. 85 actual new species represented) would have been protected for the same area or the same cost as the actual expansion. With the land available for conservation declining, nations must urgently focus new protection on places that provide for the conservation outcomes outlined in international treaties. © 2017 Society for Conservation Biology.

  6. SU-E-T-453: Image-Guided Patient-Specific Quality Assurance for Multi-Target Single Isocenter Intracranial VMAT Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M; Brezovich, I; Duan, J; Wu, X; Shen, S; Cardan, R.; Fiveash, J; Popple, R [Univ Alabama Birmingham, Birmingham, AL (United States)

    2015-06-15

    Purpose: To demonstrate a patient specific, image-guided quality assurance method that tests both dosimetric and geometric accuracy for single-isocenter multiple-target VMAT radiosurgery (SIMT-VMAT-SRS) Method: We used a new film type, EBT-XD (optimal range 0.4–40Gy), and an in-house PMMA phantom having a coronal plane for film and a 0.125 cm3 ionization chamber (IC). The phantom contained fiducial features for kV image guided setup and for accurate film marking. Five patient plans with multiple targets sizes ranging from 3 to 21mm in diameter and prescribed doses from 14 to 18 Gy were selected. Two verification plans were generated for each case with the film plane passing through the center of the largest and smallest targets. For the four largest targets we obtained an IC measurement. For each case, a calibration film was irradiated using a custom designed step pattern. The films were scanned using a flatbed color scanner and converted to dose using the calibration film and the three channel calibration method. Image registration was performed between film and treatment planning system calculations to evaluate the geometric accuracy. Results: The mean registration vector had an average magnitude of 0.47 mm (range from 0.13mm to 0.64 mm). For the four largest targets, the mean ratio of the IC and film measurement to expected dose was 0.990 (range 0.968 to 1.009) and 1.032 (1.021 to 1.046), respectively. The fraction of pixels having gamma index < 1 for criteria of 3%/3mm, 3%/2mm, 3%/1mm was 98.8%, 97.5% and 87.2% before geometric registration and 99.1%, 98.3% and 94.8% after registration. Conclusion: We have demonstrated an image-guided QA method can assess both geometric and dosimetric accuracy. The phantom was positioned with sub-millimeter accuracy. Absolute film dosimetry using EBT-XD film was sufficiently accurate for assessment of dose to multi-targets too small for IC measurement in SRS VMAT plans.

  7. Factors Affecting Initial Intimate Partner Violence-Specific Health Care Seeking in the Tokyo Metropolitan Area, Japan.

    Science.gov (United States)

    Kamimura, Akiko; Bybee, Deborah; Yoshihama, Mieko

    2014-09-01

    This study examined the factors affecting a women's initial intimate partner violence (IPV)-specific health care seeking event which refers to the first health care seeking as a result of IPV in a lifetime. Data were collected using the Life History Calendar method in the Tokyo metropolitan area from 101 women who had experienced IPV. Discrete-time survival analysis was used to assess the time to initial IPV-specific health care seeking. IPV-related injury was the most significant factor associated with increased likelihood of seeking IPV-specific health care seeking for the first time. In the presence of a strong effect of formal help seeking, physical and sexual IPV were no longer significantly related to initial IPV-specific health care seeking. The results suggest some victims of IPV may not seek health care unless they get injured. The timing of receiving health care would be important to ensure the health and safety of victims. © The Author(s) 2014.

  8. Progress on LMJ targets for ignition

    Energy Technology Data Exchange (ETDEWEB)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Dattolo, E; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L, E-mail: catherine.cherfils@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France)

    2009-12-15

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  9. Progress on LMJ targets for ignition

    International Nuclear Information System (INIS)

    Cherfils-Clerouin, C; Boniface, C; Bonnefille, M; Dattolo, E; Galmiche, D; Gauthier, P; Giorla, J; Laffite, S; Liberatore, S; Loiseau, P; Malinie, G; Masse, L; Masson-Laborde, P E; Monteil, M C; Poggi, F; Seytor, P; Wagon, F; Willien, J L

    2009-01-01

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  10. Using GIS Mapping to Target Public Health Interventions: Examining Birth Outcomes Across GIS Techniques.

    Science.gov (United States)

    MacQuillan, E L; Curtis, A B; Baker, K M; Paul, R; Back, Y O

    2017-08-01

    With advances in spatial analysis techniques, there has been a trend in recent public health research to assess the contribution of area-level factors to health disparity for a number of outcomes, including births. Although it is widely accepted that health disparity is best addressed by targeted, evidence-based and data-driven community efforts, and despite national and local focus in the U.S. to reduce infant mortality and improve maternal-child health, there is little work exploring how choice of scale and specific GIS visualization technique may alter the perception of analyses focused on health disparity in birth outcomes. Retrospective cohort study. Spatial analysis of individual-level vital records data for low birthweight and preterm births born to black women from 2007 to 2012 in one mid-sized Midwest city using different geographic information systems (GIS) visualization techniques [geocoded address records were aggregated at two levels of scale and additionally mapped using kernel density estimation (KDE)]. GIS analyses in this study support our hypothesis that choice of geographic scale (neighborhood or census tract) for aggregated birth data can alter programmatic decision-making. Results indicate that the relative merits of aggregated visualization or the use of KDE technique depend on the scale of intervention. The KDE map proved useful in targeting specific areas for interventions in cities with smaller populations and larger census tracts, where they allow for greater specificity in identifying intervention areas. When public health programmers seek to inform intervention placement in highly populated areas, however, aggregated data at the census tract level may be preferred, since it requires lower investments in terms of time and cartographic skill and, unlike neighborhood, census tracts are standardized in that they become smaller as the population density of an area increases.

  11. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  12. Report of the workshop on polarized target materials

    International Nuclear Information System (INIS)

    Court, G.R.; Crabb, D.G.; Fernow, R.C.; Fitzgerald, D.H.; Gray, S.W.; Hill, D.A.; Jarmer, J.J.; Krisch, A.D.; Krumpolic, M.; Niinikoski, T.O.

    1978-01-01

    The workshop concentrated on an examination of: radiation damage in polarized target materials, a survey of clean target materials, and dynamic polarization results with the new stable Cr(V) complexes. In addition to the normal polarized target experts with backgrounds in high energy physics, low temperature physics and solid state physics, scientists with strong backgrounds in various areas of chemistry and radiation damage physics were included, as these areas were quite crucial to the workshop goals. However, it is clear that much closer collaboration with experts in these areas will be necessary to find polarized target materials that allow more precise experiments on high P 2 perpendicular processes and inclusive processes

  13. Data on the weights, specific gravities and chemical compositions of potato (Solanum tuberosum) tubers for food processing from different areas of Hokkaido, Japan.

    Science.gov (United States)

    Sato, Hiroaki; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Itoyama, Ryuichi; Ichisawa, Megumi; Negichi, Junko; Sakuma, Rui; Furusho, Tadasu; Sagane, Yoshimasa; Takano, Katsumi

    2017-04-01

    This data article provides the weights, specific gravities and chemical compositions (moisture, protein, fat, ash, and carbohydrate) of potato tubers, for food processing use, from the Tokachi, Kamikawa and Abashiri areas of Hokkaido, Japan. Potato tubers of four cultivars ('Toyoshiro', 'Kitahime', 'Snowden' and 'Poroshiri') were employed in the current study. The weights and specific gravities of potato tubers from each cultivar, harvested from three areas, were measured, and those of near average weight and specific gravity from each group were analyzed for their chemical composition. In this article, weight, specific gravity, and chemical composition data are provided in tables.

  14. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Schwiertz, A; Le Blay, G; Blaut, M

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 10(7) cells g (dry weight) of feces(-1). The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.

  15. Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments.

    Science.gov (United States)

    Janvier, Monique; Regnault, Béatrice; Grimont, Patrick

    2003-09-01

    Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.

  16. The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway.

    Directory of Open Access Journals (Sweden)

    Melanie J Fox

    Full Text Available The exosome and its nuclear specific subunit Rrp6 form a 3'-5' exonuclease complex that regulates diverse aspects of RNA biology including 3' end processing and degradation of a variety of noncoding RNAs (ncRNAs and unstable transcripts. Known targets of the nuclear exosome include short (<1000 bp RNAPII transcripts such as small noncoding RNAs (snRNAs, cryptic unstable transcripts (CUTs, and some stable unannotated transcripts (SUTs that are terminated by an Nrd1, Nab3, and Sen1 (NNS dependent mechanism. NNS-dependent termination is coupled to RNA 3' end processing and/or degradation by the Rrp6/exosome in yeast. Recent work suggests Nrd1 is necessary for transcriptome surveillance, regulating promoter directionality and suppressing antisense transcription independently of, or prior to, Rrp6 activity. It remains unclear whether Rrp6 is directly involved in termination; however, Rrp6 has been implicated in the 3' end processing and degradation of ncRNA transcripts including CUTs. To determine the role of Rrp6 in NNS termination globally, we performed RNA sequencing (RNA-Seq on total RNA and perform ChIP-exo analysis of RNA Polymerase II (RNAPII localization. Deletion of RRP6 promotes hyper-elongation of multiple NNS-dependent transcripts resulting from both improperly processed 3' RNA ends and faulty transcript termination at specific target genes. The defects in RNAPII termination cause transcriptome-wide changes in mRNA expression through transcription interference and/or antisense repression, similar to previously reported effects of depleting Nrd1 from the nucleus. Elongated transcripts were identified within all classes of known NNS targets with the largest changes in transcription termination occurring at CUTs. Interestingly, the extended transcripts that we have detected in our studies show remarkable similarity to Nrd1-unterminated transcripts at many locations, suggesting that Rrp6 acts with the NNS complex globally to promote

  17. Joint passive radar tracking and target classification using radar cross section

    Science.gov (United States)

    Herman, Shawn M.

    2004-01-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  18. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin; Choi, Peter  S.; Casey, Stephanie  C.; Dill, David  L.; Felsher, Dean  W.

    2014-01-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  19. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin

    2014-08-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  20. The regional metallogenesis and optimum selection of prospecting target for superlarge uranium deposit in metallogenic area of erguna

    International Nuclear Information System (INIS)

    Luo Yi; Wang Zhengbang; Hou Huiqun; Zhou Dean; Qi Fucheng; Xiao Xiangping

    1995-06-01

    The study area, an activation zone of the median Massif in Xingmeng geosynclinal area, geologically underwent the multiple tectono-magmatic reworking of granitizations during Shinagan, Caledonia and Hercynian periods and of continental rift volcanism in the Mesozoic-Cenozoic era. It is an important potential area for uranium metallogenesis in volcanic basin in North China. The study identifies that four stages of uranium preconcentration and three phases of hydrothermal superimposed-reworking uranium metallogenesis occurred along with the regional geological elevation process. Studies on the U-Pb isotope and induced fission track of various kinds of basement rocks from the area indicate that the basement composed of crustal source remelting type Caledonian and Hercynian granites is favourable for uranium metallogenesis in volcanic basin, and that the late Jurassic intermediate-acid volcano-rock directly act as the source of uranium and that Cretaceous-Tertiary extension-rift basalt magmatic activation supply an important hydrothermal reworking condition for the uranium metallogenesis in volcanic basin. Based on comparative study on the metallogenetic conditions of typical large-scale volcanic uranium deposits at home and abroad, nine prospecting criteria are summarized, the polygenetic mixing hydrothermal uranium metallogenetic model for penetrable volcano-collapse basin is presented, and the main prospecting targets of uranium deposits are pointed out. (2 figs.)

  1. Proton irradiation parameters and chemical separation procedure for the bulk production of high-specific-activity {sup 186g}Re using WO{sub 3} targets

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, M.E.; Ballard, B.; Birnbaum, E.R. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.] [and others

    2013-08-01

    Rhenium-186g (T{sub 1/2} = 89.2 h) is a {beta}{sup -} emitter suitable for therapeutic applications. Current production methods rely on reactor production via {sup 185}Re(n,{gamma}) which results in low specific activities, thereby limiting its use. Production by p,d activation of enriched {sup 186}W results in a {sup 186g}Re product with a higher specific activity, allowing it to be used for targeted therapy with limited receptors. A test target consisting of pressed, sintered {sup nat}WO{sub 3} was proton irradiated at Los Alamos (LANL-IPF) to evaluate product yield and impurities, irradiation parameters and wet chemical Re recovery for proof-of-concept for bulk production of {sup 186g}Re. We demonstrated isolation of {sup 186g}Re in 97% yield from irradiated {sup nat}WO{sub 3} targets within 12 h of end of bombardment (EOB) via an alkaline dissolution followed by anion exchange. The recovery process has potential for automation, and WO{sub 3} can be easily recycled for recurrent irradiations. A {sup 186g}Re batch yield of 42.7 {+-} 2.2 {mu}Ci/{mu}Ah or 439 {+-} 23 MBq/C was obtained after 24 h in an 18.5 {mu}A proton beam. The target entrance energy was determined to be 15.6 MeV. The specific activity of {sup 186g}Re at EOB was measured to be 1.9 kCi (70.3 TBq) mmol{sup -1}, which agrees well with the result of a previous {sup 185,186m}Re co-production EMPIRE and TALYS modeling study assuming similar conditions. Utilizing enriched {sup 186}WO{sub 3}, we anticipate that a proton beam of 250 {mu}A for 24 h will provide batch yields of 256 mCi (9.5 GBq) of {sup 186g}Re at EOB with specific activities even higher than 1.9 kCi (70.3 TBq) mmol{sup -1}, suitable for therapy applications. (orig.)

  2. Polymerase chain reaction assay for verifying the labeling of meat and commercial meat products from game birds targeting specific sequences from the mitochondrial D-loop region.

    Science.gov (United States)

    Rojas, M; González, I; Pavón, M A; Pegels, N; Hernández, P E; García, T; Martín, R

    2010-05-01

    A PCR assay was developed for the identification of meats and commercial meat products from quail (Coturnix coturnix), pheasant (Phasianus colchicus), partridge (Alectoris spp.), guinea fowl (Numida meleagris), pigeon (Columba spp.), Eurasian woodcock (Scolopax rusticola), and song thrush (Turdus philomelos) based on oligonucleotide primers targeting specific sequences from the mitochondrial D-loop region. The primers designed generated specific fragments of 96, 100, 104, 106, 147, 127, and 154 bp in length for quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock, and song thrush tissues, respectively. The specificity of each primer pair was tested against DNA from various game and domestic species. In this work, satisfactory amplification was accomplished in the analysis of experimentally pasteurized (72 degrees C for 30 min) and sterilized (121 degrees C for 20 min) meats, as well as in commercial meat products from the target species. The technique was also applied to raw and sterilized muscular binary mixtures, with a detection limit of 0.1% (wt/wt) for each of the targeted species. The proposed PCR assay represents a rapid and straightforward method for the detection of possible mislabeling in game bird meat products.

  3. Clinical improvement in psoriasis with specific targeting of interleukin-23

    DEFF Research Database (Denmark)

    Kopp, Tamara; Riedl, Elisabeth; Bangert, Christine

    2015-01-01

    Psoriasis is a chronic inflammatory skin disorder that affects approximately 2-3% of the population worldwide and has severe effects on patients' physical and psychological well-being. The discovery that psoriasis is an immune-mediated disease has led to more targeted, effective therapies; recent...

  4. Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study.

    Science.gov (United States)

    Friedrich, Julia; Mückschel, Moritz; Beste, Christian

    2018-03-01

    Sensorimotor integration is essential for successful motor control and the somatosensory modality has been shown to have strong effects on the execution of motor plans. The primary (SI) and the secondary somatosensory (SII) cortices are known to differ in their neuroanatomical connections to prefrontal areas, as well as in their involvement to encode cognitive aspects of tactile processing. Here, we ask whether the area-specific processing architecture or the structural neuroanatomical connections with prefrontal areas determine the efficacy of sensorimotor integration processes for motor control. In a system neurophysiological study including EEG signal decomposition (i.e., residue iteration decomposition, RIDE) and source localization, we investigated this question using vibrotactile stimuli optimized for SI or SII processing. The behavioral data show that when being triggered via the SI area, inhibitory control of motor processes is stronger as when being triggered via the SII area. On a neurophysiological level, these effects were reflected in the C-cluster as a result of a temporal decomposition of EEG data, indicating that the sensory processes affecting motor inhibition modulate the response selection level. These modulations were associated with a stronger activation of the right inferior frontal gyrus extending to the right middle frontal gyrus as parts of a network known to be involved in inhibitory motor control when response inhibition is triggered over SI. In addition, areas important for sensorimotor integration like the postcentral gyrus and superior parietal cortex showed activation differences. The data suggest that connection patterns are more important for sensorimotor integration and control than the more restricted area-specific processing architecture.

  5. Fusion target design

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1978-01-01

    Most detailed fusion target design is done by numerical simulation using large computers. Although numerical simulation is briefly discussed, this lecture deals primarily with the way in which basic physical arguments, driver technology considerations and economical power production requirements are used to guide and augment the simulations. Physics topics discussed include target energetics, preheat, stability and symmetry. A specific design example is discussed

  6. The genome editing revolution: A CRISPR-Cas TALE off-target story.

    Science.gov (United States)

    Stella, Stefano; Montoya, Guillermo

    2016-07-01

    In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than the previously available DNA binding templates, zinc fingers and meganucleases. Recently, the area experimented a quantum leap because of the introduction of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system (clustered regularly interspaced short palindromic sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR-Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human pathways or to improve key organisms for biotechnological applications, such as plants, livestock genome as well as yeasts and bacterial strains. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  7. Target Choice and Unique Synergies in Global Mobile Telephony

    DEFF Research Database (Denmark)

    Claussen, Jörg; Köhler, Rebecca; Kretschmer, Tobias

    2018-01-01

    their foresight to select specific targets: First, they lower integration costs by selecting geographically close targets. This effect is stronger when buyer and target are in the same country, but only if the market is not so concentrated that it provokes regulatory interventions. Second, they select targets......The success of acquisitions rests on detecting and realizing unique synergies between buyer and target through their dyadic relationships. We study the role of unique dyad-specific synergies in the selection of takeover targets in the global mobile telecommunications industry. Firms use...... that can be acquired at a modest bid premium because they have asymmetric bargaining power. Finally, they select targets which can generate significant synergies due to technological synergies. Our work expands the existing target selection literature by studying dyad-specific factors within a single...

  8. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  9. Directed area search using socio-biological vision algorithms and cognitive Bayesian reasoning

    Science.gov (United States)

    Medasani, S.; Owechko, Y.; Allen, D.; Lu, T. C.; Khosla, D.

    2010-04-01

    Volitional search systems that assist the analyst by searching for specific targets or objects such as vehicles, factories, airports, etc in wide area overhead imagery need to overcome multiple problems present in current manual and automatic approaches. These problems include finding targets hidden in terabytes of information, relatively few pixels on targets, long intervals between interesting regions, time consuming analysis requiring many analysts, no a priori representative examples or templates of interest, detecting multiple classes of objects, and the need for very high detection rates and very low false alarm rates. This paper describes a conceptual analyst-centric framework that utilizes existing technology modules to search and locate occurrences of targets of interest (e.g., buildings, mobile targets of military significance, factories, nuclear plants, etc.), from video imagery of large areas. Our framework takes simple queries from the analyst and finds the queried targets with relatively minimum interaction from the analyst. It uses a hybrid approach that combines biologically inspired bottom up attention, socio-biologically inspired object recognition for volitionally recognizing targets, and hierarchical Bayesian networks for modeling and representing the domain knowledge. This approach has the benefits of high accuracy, low false alarm rate and can handle both low-level visual information and high-level domain knowledge in a single framework. Such a system would be of immense help for search and rescue efforts, intelligence gathering, change detection systems, and other surveillance systems.

  10. A microbial-mineralization approach for syntheses of iron oxides with a high specific surface area.

    Science.gov (United States)

    Yagita, Naoki; Oaki, Yuya; Imai, Hiroaki

    2013-04-02

    Of minerals and microbes: A microbial-mineralization-inspired approach was used to facilitate the syntheses of iron oxides with a high specific surface area, such as 253 m(2)g(-1) for maghemite (γ-Fe(2)O(3)) and 148 m(2)g(-1) for hematite (α-Fe(2)O(3)). These iron oxides can be applied to electrode material of lithium-ion batteries, adsorbents, and catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nitrides and carbides of molybdenum and tungsten with high specific-surface area: their synthesis, structure, and catalytic properties

    International Nuclear Information System (INIS)

    Volpe, L.

    1985-01-01

    Temperature-programmed reactions between trioxides of molybdenum or tungsten and ammonia provide a new method to synthesize dimolybdenum and ditungsten nitrides with specific surface areas to two-hundred-and-twenty and ninety-one square meters per gram, respectively. These are the highest values on record for any unsupported metallic powders. They correspond to three-four nonometer particles. The reaction of molybdenum trioxide with ammonia is topotactic in the sense that one-zero-zero planes of dimolybdenum nitride are parallel to zero-one-zero planes of molybdenum trioxide. As the trioxide transforms, it passes through an oxynitride intermediate with changing bulk structure and increasing surface area and extent of reduction. The nitride product consists of platelets, pseudomorphous with the original trioxide, which can be regarded as highly porous defect single crystals. By treating small particles of dimolybdenum or ditungsten nitride with methane-dihydrogen mixtures it is possible to replace interstitial nitrogen atoms by carbon atoms, without sintering, and thus to prepare carbides of molybdenum and tungsten with very high specific surface areas. Molybdenum nitride powders catalyze ammonia synthesis. A pronounced increase in the catalytic activity with increasing particle size confirms the structure-sensitive character of this reaction

  12. A target group-specific approach to ''green'' power retailing: students as consumers of renewable energy

    International Nuclear Information System (INIS)

    Gossling, S.; Kunkel, T.; Schumacher, K.; Heck, N.; Birkemeyer, J.; Froese, J.; Naber, N.; Schliermann, E.

    2005-01-01

    An extensive body of literature exists on the obstacles that have to be overcome in green power retailing. In this article, target group-specific marketing is evaluated as a strategy to increase the share of residential customers of green power. A sample of students in the city of Freiburg, Germany was interviewed in order to assess their awareness of environmental issues, their willingness to change to green power products, and to better understand individual hindrances in changing the power supplier. The analysis shows that students are highly positive towards green power products, but for several reasons difficult to reach in marketing campaigns. Aspects to be considered in addressing this consumer-group include the students' particular expectations towards green products, their living-conditions, price sensitivity, and their perception of the relative effort involved in changing the power provider. (author)

  13. Gas chromatographic isolation technique for compound-specific radiocarbon analysis

    International Nuclear Information System (INIS)

    Uchida, M.; Kumamoto, Y.; Shibata, Y.; Yoneda, M.; Morita, M.; Kawamura, K.

    2002-01-01

    Full text: We present here a gas chromatographic isolation technique for the compound-specific radiocarbon analysis of biomarkers from the marine sediments. The biomarkers of fatty acids, hydrocarbon and sterols were isolated with enough amount for radiocarbon analysis using a preparative capillary gas chromatograph (PCGC) system. The PCGC systems used here is composed of an HP 6890 GC with FID, a cooled injection system (CIS, Gerstel, Germany), a zero-dead-volume effluent splitter, and a cryogenic preparative collection device (PFC, Gerstel). For AMS analysis, we need to separate and recover sufficient quantity of target individual compounds (>50 μgC). Yields of target compounds from C 14 n-alkanes to C 40 to C 30 n-alkanes and approximately that of 80% for higher molecular weights compounds more than C 30 n-alkanes. Compound specific radiocarbon analysis of organic compounds, as well as compound-specific stable isotope analysis, provide valuable information on the origins and carbon cycling in marine system. Above PCGC conditions, we applied compound-specific radiocarbon analysis to the marine sediments from western north Pacific, which showed the possibility of a useful chronology tool for estimating the age of sediment using organic matter in paleoceanographic study, in the area where enough amounts of planktonic foraminifera for radiocarbon analysis by accelerator mass spectrometry (AMS) are difficult to obtain due to dissolution of calcium carbonate. (author)

  14. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer

    OpenAIRE

    Hong, Sung-Jei; Song, Sang-Hyun; Kim, Byeong Jun; Lee, Jae-Yong; Kim, Young-Sung

    2017-01-01

    In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980??C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05?m2/g and 103.8?nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were gro...

  15. Synthesis and in vitro evaluation of an antiangiogenic cancer-specific dual-targeting 177Lu-Au-nanoradiopharmaceutical

    International Nuclear Information System (INIS)

    Gonzalez-Ruiz, Abraham; Ferro-Flores, Guillermina; Azorin-Vega, Erika; Ocampo-Garcia, Blanca; Maria Ramirez, Flor de; Santos-Cuevas, Clara; Luna-Gutierrez, Myrna; Leon-Rodriguez, Luis De; Isaac-Olive, Keila; Morales-Avila, Enrique

    2017-01-01

    The aim of this research was to synthesize and chemically characterize a cancer-specific 177 Lu-Au-nanoradiopharmaceutical based on gold nanoparticles (NPs), the nuclear localization sequence (NLS)-Arg-Gly-Asp peptide and an aptamer (HS-pentyl-pegaptanib) to target both the α(v)β(3) integrin and the vascular endothelial growth factor (VEGF) overexpressed in the tumor neovasculature, as well as to evaluate by the tube formation assay, the nanosystem capability to inhibit angiogenesis. 177 Lu-NP-RGD-NLS-Aptamer was obtained with a radiochemical purity of 99 ± 1%. Complete inhibition of tube formation (angiogenesis) was demonstrated when endothelial cells (EA.hy926), cultured in a 3D-extracellular matrix support, were treated with the developed nanosystem. (author)

  16. How to target inter-regional phase synchronization with dual-site Transcranial Alternating Current Stimulation

    DEFF Research Database (Denmark)

    Saturnino, Guilherme Bicalho; Madsen, Kristoffer Hougaard; Siebner, Hartwig Roman

    2017-01-01

    oscillations in two connected cortical areas. While the frequency of ds-TACS is matched, the phase of stimulation is either identical (in-phase stimulation) or opposite (anti-phase stimulation) in the two cortical target areas. In-phase stimulation is thought to synchronize the endogenous oscillations...... and hereby to improve behavioral performance. Conversely, anti-phase stimulation is thought to desynchronize neural oscillations in the two areas, which is expected to decrease performance. Critically, in- and anti-phase ds-TACS should only differ with respect to temporal phase, while all other stimulation...... unambiguously the causal contribution of phase coupling to specific cognitive processes in the human brain....

  17. In Vivo Tumor Targeting by the B-Subunit of Shiga Toxin

    Directory of Open Access Journals (Sweden)

    Thomas Viel

    2008-11-01

    Full Text Available Delivery of drugs to the appropriate target cells would improve efficacy and reduce potential side effects. The nontoxic B-subunit of the intestinal pathogen-produced Shiga toxin (STxB binds specifically to the glycosphingolipid Gb3, overex-pressed in membranes of certain tumor cells, and enters these cells through the retrograde pathway. Therefore, STxB binding to Gb3 receptors may be useful for cell-specific vectorization or imaging purposes. Here we labeled STxB with a fluorophore to evaluate its potential as an in vivo cell-specific targeting reagent in two different models of human colorectal carcinoma. Fluorescent STxB was administered systemically to xenografted nude mice, and its biodistribution was studied by optical imaging. The use of fluorescent STxB allowed the combination of the macroscopic observations with analyses at the cellular level using confocal microscopy. After administration, the fluorescent STxB was slowly eliminated by renal excretion. However, it accumulated in the tumor area. Furthermore, STxB was demonstrated to enter the Gb3-expressing tumoral cells, as well as the epithelial cells of the neovascularization and the monocytes and macrophages surrounding the xenografts.

  18. Reperfusion of specific cortical areas is associated with improvement in distinct forms of hemispatial neglect.

    Science.gov (United States)

    Khurshid, Shaan; Trupe, Lydia A; Newhart, Melissa; Davis, Cameron; Molitoris, John J; Medina, Jared; Leigh, Richard; Hillis, Argye E

    2012-05-01

    To test the hypothesis that restoring blood flow to specific right cortical regions in acute stroke results in improvement in distinct forms of hemispatial neglect distinguished by reference frame: viewer-centered versus stimulus-centered neglect. Twenty five patients with acute right stroke were evaluated at Day 1 and Day 3-5 with a battery of neglect tests and Diffusion- and Perfusion-Weighted MR Imaging. Multivariate linear regression analysis revealed Brodmann areas (BAs) where reperfusion predicted degree of improvement in scores on each type of neglect, independently of reperfusion of other areas, total change in the volume of infarct or hypoperfusion, and age. Reperfusion of dorsal frontoparietal cortex (including BAs 40, 46, and 4) independently predicted improvement in viewer-centered neglect, such as detecting stimuli on left in line cancellation and scene copying (r=.951; p<.0001). Reperfusion of a more ventral temporo-occipital cortex, including right BAs 37, 38, 21 and 18, independently contributed to improvement in stimulus-centered neglect, such as detecting left gaps in circles (r=.926; p<.0001). Reperfusion of right midfusiform gyrus (temporal occipital cortex), change in total volume of ischemia, change in volume of hypoperfusion and age predicted degree of improvement in reading (reduction in "neglect dyslexic" errors; r=.915; p<.0001). Results demonstrate that reperfusing specific cortical regions yields improvement in different types of neglect. Copyright © 2011 Elsevier Srl. All rights reserved.

  19. Targeted intervention strategies to optimise diversion of BMW in the Dublin, Ireland region

    International Nuclear Information System (INIS)

    Purcell, M.; Magette, W.L.

    2011-01-01

    Highlights: → Previous research indicates that targeted strategies designed for specific areas should lead to improved diversion. → Survey responses and GIS model predictions from previous research were the basis for goal setting. → Then logic modelling and behavioural research were employed to develop site-specific management intervention strategies. → Waste management initiatives can be tailored to specific needs of areas rather than one size fits all means currently used. - Abstract: Urgent transformation is required in Ireland to divert biodegradable municipal waste (BMW) from landfill and prevent increases in overall waste generation. When BMW is optimally managed, it becomes a resource with value instead of an unwanted by-product requiring disposal. An analysis of survey responses from commercial and residential sectors for the Dublin region in previous research by the authors proved that attitudes towards and behaviour regarding municipal solid waste is spatially variable. This finding indicates that targeted intervention strategies designed for specific geographic areas should lead to improved diversion rates of BMW from landfill, a requirement of the Landfill Directive 1999/31/EC. In the research described in this paper, survey responses and GIS model predictions from previous research were the basis for goal setting, after which logic modelling and behavioural research were employed to develop site-specific waste management intervention strategies. The main strategies devised include (a) roll out of the Brown Bin (Organics) Collection and Community Workshops in Dun Laoghaire Rathdown, (b) initiation of a Community Composting Project in Dublin City (c) implementation of a Waste Promotion and Motivation Scheme in South Dublin (d) development and distribution of a Waste Booklet to promote waste reduction activities in Fingal (e) region wide distribution of a Waste Booklet to the commercial sector and (f) Greening Irish Pubs Initiative. Each of these

  20. Design of the FMIT lithium target

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Annese, C.E.; Greenwell, R.K.; Ingham, J.G.; Miles, R.R.; Miller, W.C.

    1981-01-01

    Development of the liquid lithium target for the Fusion Materials Irradiation Test (FMIT) Facility is described. The target concept, major design goals and design requirements are presented. Progress made in the research and development areas leading to detailed design of the target is discussed. This progress, including experimental and analytic results, demonstrates that the FMIT target design is capable of meeting its major design goals and requirements