WorldWideScience

Sample records for targeting pre-selected chromosomal

  1. Particle compositions with a pre-selected cell internalization mode

    Science.gov (United States)

    Decuzzi, Paolo (Inventor); Ferrari, Mauro (Inventor)

    2012-01-01

    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.

  2. Chromosome segregation regulation in human zygotes : Altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex

    NARCIS (Netherlands)

    Van De Werken, C.; Avo Santos, M.; Laven, J. S E; Eleveld, C.; Fauser, B. C J M; Lens, S. M A; Baart, E. B.

    2015-01-01

    STUDY QUESTION Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? SUMMARY ANSWER Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal

  3. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    Science.gov (United States)

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  4. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  5. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells.

    Science.gov (United States)

    Sato, Hiroshi; Kato, Hiroki; Yamaza, Haruyoshi; Masuda, Keiji; Nguyen, Huong Thi Nguyen; Pham, Thanh Thi Mai; Han, Xu; Hirofuji, Yuta; Nonaka, Kazuaki

    2017-01-01

    Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  6. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sato

    2017-01-01

    Full Text Available Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV. Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  7. Chromosome segregation regulation in human zygotes: altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex.

    Science.gov (United States)

    van de Werken, C; Avo Santos, M; Laven, J S E; Eleveld, C; Fauser, B C J M; Lens, S M A; Baart, E B

    2015-10-01

    Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal phosphorylation dynamics of histone H2A at T120 (H2ApT120) by Bub1 kinase and subsequent recruitment of Shugoshin, but phosphorylation of histone H3 at threonine 3 (H3pT3) by Haspin failed to show the expected centromeric enrichment on metaphase chromosomes in the zygote. Human cleavage stage embryos show high levels of chromosomal instability. What causes this high error rate is unknown, as mechanisms used to ensure proper chromosome segregation in mammalian embryos are poorly described. In this study, we investigated the pathways regulating CPC targeting to the inner centromere in human embryos. We characterized the distribution of the CPC in relation to activity of its two main centromeric targeting pathways: the Bub1-H2ApT120-Sgo-CPC and Haspin-H3pT3-CPC pathways. The study was conducted between May 2012 and March 2014 on human surplus embryos resulting from in vitro fertilization treatment and donated for research. In zygotes, nuclear envelope breakdown was monitored by time-lapse imaging to allow timed incubations with specific inhibitors to arrest at prometaphase and metaphase, and to interfere with Haspin and Aurora B/C kinase activity. Functionality of the targeting pathways was assessed through characterization of histone phosphorylation dynamics by immunofluorescent analysis, combined with gene expression by RT-qPCR and immunofluorescent localization of key pathway proteins. Immunofluorescent analysis of the CPC subunit Inner Centromere Protein revealed the pool of stably bound CPC proteins was not strictly confined to the inner centromere of prometaphase chromosomes in human zygotes, as observed in later stages of preimplantation development and somatic cells. Investigation of the

  8. Targeting Chromosomal Instability and Tumour Heterogeneity in HER2-Positive Breast Cancer

    DEFF Research Database (Denmark)

    Burrell, Rebecca A.; Birkbak, Nicolai Juul; Johnston, Stephen R.

    2010-01-01

    Chromosomal instability (CIN) is a common cause of tumour heterogeneity and poor prognosis in solid tumours and describes cell-cell variation in chromosome structure or number across a tumour population. In this article we consider evidence suggesting that CIN may be targeted and may influence...... response to distinct chemotherapy regimens, using HER2-positive breast cancer as an example. Pre-clinical models have indicated a role for HER2 signalling in initiating CIN and defective cell-cycle control, and evidence suggests that HER2-targeting may attenuate this process. Anthracyclines and platinum...... agents may target tumours with distinct patterns of karyotypic complexity, whereas taxanes may have preferential activity in tumours with relative chromosomal stability. A greater understanding of karyotypic complexity and identification of methods to directly examine and target CIN may support novel...

  9. A highly efficient targeted recombination system for engineering linear chromosomes of industrial bacteria Streptomyces.

    Science.gov (United States)

    Pan, Hung-Yin; Chen, Carton W; Huang, Chih-Hung

    2018-04-17

    Soil bacteria Streptomyces are the most important producers of secondary metabolites, including most known antibiotics. These bacteria and their close relatives are unique in possessing linear chromosomes, which typically harbor 20 to 30 biosynthetic gene clusters of tens to hundreds of kb in length. Many Streptomyces chromosomes are accompanied by linear plasmids with sizes ranging from several to several hundred kb. The large linear plasmids also often contain biosynthetic gene clusters. We have developed a targeted recombination procedure for arm exchanges between a linear plasmid and a linear chromosome. A chromosomal segment inserted in an artificially constructed plasmid allows homologous recombination between the two replicons at the homology. Depending on the design, the recombination may result in two recombinant replicons or a single recombinant chromosome with the loss of the recombinant plasmid that lacks a replication origin. The efficiency of such targeted recombination ranges from 9 to 83% depending on the locations of the homology (and thus the size of the chromosomal arm exchanged), essentially eliminating the necessity of selection. The targeted recombination is useful for the efficient engineering of the Streptomyces genome for large-scale deletion, addition, and shuffling.

  10. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Science.gov (United States)

    Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C

    2013-04-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  11. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Directory of Open Access Journals (Sweden)

    Reuben B Vercoe

    2013-04-01

    Full Text Available In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs and their associated (Cas proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2 involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  12. Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands

    Science.gov (United States)

    Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.

    2013-01-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624

  13. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures.

    Science.gov (United States)

    Marculescu, Rodrig; Vanura, Katrina; Montpellier, Bertrand; Roulland, Sandrine; Le, Trang; Navarro, Jean-Marc; Jäger, Ulrich; McBlane, Fraser; Nadel, Bertrand

    2006-09-08

    A large number of lymphoid malignancies is characterized by specific chromosomal translocations, which are closely linked to the initial steps of pathogenesis. The hallmark of these translocations is the ectopic activation of a silent proto-oncogene through its relocation at the vicinity of an active regulatory element. Due to the unique feature of lymphoid cells to somatically rearrange and mutate receptor genes, and to the corresponding strong activity of the immune enhancers/promoters at that stage of cell development, B- and T-cell differentiation pathways represent propitious targets for chromosomal translocations and oncogene activation. Recent progress in the understanding of the V(D)J recombination process has allowed a more accurate definition of the translocation mechanisms involved, and has revealed that V(D)J-mediated translocations result both from targeting mistakes of the recombinase, and from illegitimate repair of the V(D)J recombination intermediates. Surprisingly, V(D)J-mediated translocations turn out to be restricted to two specific sub-types of lymphoid malignancies, T-cell acute lymphoblastic leukemias, and a restricted set of mature B-cell Non-Hodgkin's lymphomas.

  14. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jon M. Kaguni

    2018-03-01

    Full Text Available DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.

  15. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus

    2007-11-01

    Full Text Available Abstract Background In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. Methods Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. Results An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1 on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. Conclusion Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as

  16. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    Science.gov (United States)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  17. Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome

    DEFF Research Database (Denmark)

    da Rocha, Simão Teixeira; Boeva, Valentina; Escamilla-Del-Arenal, Martin

    2014-01-01

    complex, unlike at other parts of the genome, such as CG-rich regions, where Jarid2 and PRC2 binding are interdependent. Conversely, we show that Jarid2 loss prevents efficient PRC2 and H3K27me3 enrichment to Xist-coated chromatin. Jarid2 thus represents an important intermediate between PRC2 and Xist RNA......During X chromosome inactivation (XCI), the Polycomb Repressive Complex 2 (PRC2) is thought to participate in the early maintenance of the inactive state. Although Xist RNA is essential for the recruitment of PRC2 to the X chromosome, the precise mechanism remains unclear. Here, we demonstrate...... for the initial targeting of the PRC2 complex to the X chromosome during onset of XCI....

  18. Targeted exome sequencing and chromosomal microarray for the molecular diagnosis of nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Matsudate, Yoshihiro; Naruto, Takuya; Hayashi, Yumiko; Minami, Mitsuyoshi; Tohyama, Mikiko; Yokota, Kenji; Yamada, Daisuke; Imoto, Issei; Kubo, Yoshiaki

    2017-06-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder mainly caused by heterozygous mutations of PTCH1. In addition to characteristic clinical features, detection of a mutation in causative genes is reliable for the diagnosis of NBCCS; however, no mutations have been identified in some patients using conventional methods. To improve the method for the molecular diagnosis of NBCCS. We performed targeted exome sequencing (TES) analysis using a multi-gene panel, including PTCH1, PTCH2, SUFU, and other sonic hedgehog signaling pathway-related genes, based on next-generation sequencing (NGS) technology in 8 cases in whom possible causative mutations were not detected by previously performed conventional analysis and 2 recent cases of NBCCS. Subsequent analysis of gross deletion within or around PTCH1 detected by TES was performed using chromosomal microarray (CMA). Through TES analysis, specific single nucleotide variants or small indels of PTCH1 causing inferred amino acid changes were identified in 2 novel cases and 2 undiagnosed cases, whereas gross deletions within or around PTCH1, which are validated by CMA, were found in 3 undiagnosed cases. However, no mutations were detected even by TES in 3 cases. Among 3 cases with gross deletions of PTCH1, deletions containing the entire PTCH1 and additional neighboring genes were detected in 2 cases, one of which exhibited atypical clinical features, such as severe mental retardation, likely associated with genes located within the 4.3Mb deleted region, especially. TES-based simultaneous evaluation of sequences and copy number status in all targeted coding exons by NGS is likely to be more useful for the molecular diagnosis of NBCCS than conventional methods. CMA is recommended as a subsequent analysis for validation and detailed mapping of deleted regions, which may explain the atypical clinical features of NBCCS cases. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by

  19. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering.

    Science.gov (United States)

    Niu, Zhixia; Klindworth, Daryl L; Friesen, Timothy L; Chao, Shiaoman; Jin, Yue; Cai, Xiwen; Xu, Steven S

    2011-04-01

    Chromosome engineering is a useful strategy for transfer of alien genes from wild relatives into modern crops. However, this strategy has not been extensively used for alien gene introgression in most crops due to low efficiency of conventional cytogenetic techniques. Here, we report an improved scheme of chromosome engineering for efficient elimination of a large amount of goatgrass (Aegilops speltoides) chromatin surrounding Sr39, a gene that provides resistance to multiple stem rust races, including Ug99 (TTKSK) in wheat. The wheat ph1b mutation, which promotes meiotic pairing between homoeologous chromosomes, was employed to induce recombination between wheat chromosome 2B and goatgrass 2S chromatin using a backcross scheme favorable for inducing and detecting the homoeologous recombinants with small goatgrass chromosome segments. Forty recombinants with Sr39 with reduced surrounding goatgrass chromatin were quickly identified from 1048 backcross progenies through disease screening and molecular marker analysis. Four of the recombinants carrying Sr39 with a minimal amount of goatgrass chromatin (2.87-9.15% of the translocated chromosomes) were verified using genomic in situ hybridization. Approximately 97% of the goatgrass chromatin was eliminated in one of the recombinants, in which a tiny goatgrass chromosome segment containing Sr39 was retained in the wheat genome. Localization of the goatgrass chromatin in the recombinants led to rapid development of three molecular markers tightly linked to Sr39. The new wheat lines and markers provide useful resources for the ongoing global effort to combat Ug99. This study has demonstrated great potential of chromosome engineering in genome manipulation for plant improvement.

  20. Targeted resequencing of the pericentromere of chromosome 2 linked to constitutional delay of growth and puberty.

    Directory of Open Access Journals (Sweden)

    Diana L Cousminer

    Full Text Available Constitutional delay of growth and puberty (CDGP is the most common cause of pubertal delay. CDGP is defined as the proportion of the normal population who experience pubertal onset at least 2 SD later than the population mean, representing 2.3% of all adolescents. While adolescents with CDGP spontaneously enter puberty, they are at risk for short stature, decreased bone mineral density, and psychosocial problems. Genetic factors contribute heavily to the timing of puberty, but the vast majority of CDGP cases remain biologically unexplained, and there is no definitive test to distinguish CDGP from pathological absence of puberty during adolescence. Recently, we published a study identifying significant linkage between a locus at the pericentromeric region of chromosome 2 (chr 2 and CDGP in Finnish families. To investigate this region for causal variation, we sequenced chr 2 between the genomic coordinates of 79-124 Mb (genome build GRCh37 in the proband and affected parent of the 13 families contributing most to this linkage signal. One gene, DNAH6, harbored 6 protein-altering low-frequency variants (< 6% in the Finnish population in 10 of the CDGP probands. We sequenced an additional 135 unrelated Finnish CDGP subjects and utilized the unique Sequencing Initiative Suomi (SISu population reference exome set to show that while 5 of these variants were present in the CDGP set, they were also present in the Finnish population at similar frequencies. Additional variants in the targeted region could not be prioritized for follow-up, possibly due to gaps in sequencing coverage or lack of functional knowledge of non-genic genomic regions. Thus, despite having a well-characterized sample collection from a genetically homogeneous population with a large population-based reference sequence dataset, we were unable to pinpoint variation in the linked region predisposing delayed puberty. This study highlights the difficulties of detecting genetic variants

  1. Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus.

    Science.gov (United States)

    Guan, Jing; Wang, Wanying; Sun, Baolin

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCC mec ). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5' tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCE Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCC mec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive

  2. Somatic chromosomal engineering identifies BCAN-NTRK1 as a potent glioma driver and therapeutic target.

    Science.gov (United States)

    Cook, Peter J; Thomas, Rozario; Kannan, Ram; de Leon, Esther Sanchez; Drilon, Alexander; Rosenblum, Marc K; Scaltriti, Maurizio; Benezra, Robert; Ventura, Andrea

    2017-07-11

    The widespread application of high-throughput sequencing methods is resulting in the identification of a rapidly growing number of novel gene fusions caused by tumour-specific chromosomal rearrangements, whose oncogenic potential remains unknown. Here we describe a strategy that builds upon recent advances in genome editing and combines ex vivo and in vivo chromosomal engineering to rapidly and effectively interrogate the oncogenic potential of genomic rearrangements identified in human brain cancers. We show that one such rearrangement, an microdeletion resulting in a fusion between Brevican (BCAN) and Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1), is a potent oncogenic driver of high-grade gliomas and confers sensitivity to the experimental TRK inhibitor entrectinib. This work demonstrates that BCAN-NTRK1 is a bona fide human glioma driver and describes a general strategy to define the oncogenic potential of novel glioma-associated genomic rearrangements and to generate accurate preclinical models of this lethal human cancer.

  3. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    International Nuclear Information System (INIS)

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2012-01-01

    Highlights: ► Adeno-associated virus (AAV) is capable of targeted integration in human cells. ► Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. ► A targeted integration system of IDRV DNA using the AAV integration mechanism. ► Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  4. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    Directory of Open Access Journals (Sweden)

    Leclerc Xavier

    2009-04-01

    Full Text Available Abstract Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1. Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.

  5. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus.

    Science.gov (United States)

    Vakili, Hana; Jin, Yan; Cattini, Peter A

    2014-11-01

    Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.

  6. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins.

    Directory of Open Access Journals (Sweden)

    Teruhiko Suzuki

    Full Text Available Microcell-mediated chromosome transfer (MMCT is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell.

  7. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression.

    Science.gov (United States)

    Li, Runsheng; Ren, Xiaoliang; Bi, Yu; Ho, Vincy Wing Sze; Hsieh, Chia-Ling; Young, Amanda; Zhang, Zhihong; Lin, Tingting; Zhao, Yanmei; Miao, Long; Sarkies, Peter; Zhao, Zhongying

    2016-09-01

    Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction. © 2016 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40.

    Science.gov (United States)

    Mills, W; Critcher, R; Lee, C; Farr, C J

    1999-05-01

    A linear mammalian artificial chromosome (MAC) will require at least three types of functional element: a centromere, two telomeres and origins of replication. As yet, our understanding of these elements, as well as many other aspects of structure and organization which may be critical for a fully functional mammalian chromosome, remains poor. As a way of defining these various requirements, minichromosome reagents are being developed and analysed. Approaches for minichromosome generation fall into two broad categories: de novo assembly from candidate DNA sequences, or the fragmentation of an existing chromosome to reduce it to a minimal size. Here we describe the generation of a human minichromosome using the latter, top-down, approach. A human X chromosome, present in a DT40-human microcell hybrid, has been manipulated using homologous recombination and the targeted seeding of a de novo telomere. This strategy has generated a linear approximately 2.4 Mb human X centromere-based minichromosome capped by two artificially seeded telomeres: one immediately flanking the centromeric alpha-satellite DNA and the other targeted to the zinc finger gene ZXDA in Xp11.21. The chromosome retains an alpha-satellite domain of approximately 1. 8 Mb, a small array of gamma-satellite repeat ( approximately 40 kb) and approximately 400 kb of Xp proximal DNA sequence. The mitotic stability of this minichromosome has been examined, both in DT40 and following transfer into hamster and human cell lines. In all three backgrounds, the minichromosome is retained efficiently, but in the human and hamster microcell hybrids its copy number is poorly regulated. This approach of engineering well-defined chromosome reagents will allow key questions in MAC development (such as whether a lower size limit exists) to be addressed. In addition, the 2.4 Mb minichromosome described here has potential to be developed as a vector for gene delivery.

  9. Efficient generation of recombinant RNA viruses using targeted recombination-mediated mutagenesis of bacterial artificial chromosomes containing full-length cDNA

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Risager, Peter Christian; Fahnøe, Ulrik

    2013-01-01

    Background Infectious cDNA clones are a prerequisite for directed genetic manipulation of RNA viruses. Here, a strategy to facilitate manipulation and rescue of classical swine fever viruses (CSFVs) from full-length cDNAs present within bacterial artificial chromosomes (BACs) is described....... This strategy allows manipulation of viral cDNA by targeted recombination-mediated mutagenesis within bacteria. Results A new CSFV-BAC (pBeloR26) derived from the Riems vaccine strain has been constructed and subsequently modified in the E2 coding sequence, using the targeted recombination strategy to enable...

  10. Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Thangavelu, Pulari U; Lin, Cheng-Yu; Vaidyanathan, Srividya; Nguyen, Thu H M; Dray, Eloise; Duijf, Pascal H G

    2017-09-22

    During cell division, chromosome segregation is facilitated by the mitotic checkpoint, or spindle assembly checkpoint (SAC), which ensures correct kinetochore-microtubule attachments and prevents premature sister-chromatid separation. It is well established that misexpression of SAC components on the outer kinetochores promotes chromosome instability (CIN) and tumorigenesis. Here, we study the expression of CENP-I, a key component of the HIKM complex at the inner kinetochores, in breast cancer, including ductal, lobular, medullary and male breast carcinomas. CENPI mRNA and protein levels are significantly elevated in estrogen receptor-positive (ER+) but not in estrogen receptor-negative (ER-) breast carcinoma. Well-established prognostic tests indicate that CENPI overexpression constitutes a powerful independent marker for poor patient prognosis and survival in ER+ breast cancer. We further demonstrate that CENPI is an E2F target gene. Consistently, it is overexpressed in RB1 -deficient breast cancers. However, CENP-I overexpression is not purely due to cell cycle-associated expression. In ER+ breast cancer cells, CENP-I overexpression promotes CIN, especially chromosome gains. In addition, in ER+ breast carcinomas the degree of CENPI overexpression is proportional to the level of aneuploidy and CENPI overexpression is one of the strongest markers for CIN identified to date. Our results indicate that overexpression of the inner kinetochore protein CENP-I promotes CIN and forecasts poor prognosis for ER+ breast cancer patients. These observations provide novel mechanistic insights and have important implications for breast cancer diagnostics and potentially therapeutic targeting.

  11. Chromosomal aberrations in bladder cancer: fresh versus formalin fixed paraffin embedded tissue and targeted FISH versus wide microarray-based CGH analysis.

    Directory of Open Access Journals (Sweden)

    Elena Panzeri

    Full Text Available Bladder carcinogenesis is believed to follow two alternative pathways driven by the loss of chromosome 9 and the gain of chromosome 7, albeit other nonrandom copy number alterations (CNAs were identified. However, confirmation studies are needed since many aspects of this model remain unclear and considerable heterogeneity among cases has emerged. One of the purposes of this study was to evaluate the performance of a targeted test (UroVysion assay widely used for the detection of Transitional Cell Carcinoma (TCC of the bladder, in two different types of material derived from the same tumor. We compared the results of UroVysion test performed on Freshly Isolated interphasic Nuclei (FIN and on Formalin Fixed Paraffin Embedded (FFPE tissues from 22 TCCs and we didn't find substantial differences. A second goal was to assess the concordance between array-CGH profiles and the targeted chromosomal profiles of UroVysion assay on an additional set of 10 TCCs, in order to evaluate whether UroVysion is an adequately sensitive method for the identification of selected aneuploidies and nonrandom CNAs in TCCs. Our results confirmed the importance of global genomic screening methods, that is array based CGH, to comprehensively determine the genomic profiles of large series of TCCs tumors. However, this technique has yet some limitations, such as not being able to detect low level mosaicism, or not detecting any change in the number of copies for a kind of compensatory effect due to the presence of high cellular heterogeneity. Thus, it is still advisable to use complementary techniques such as array-CGH and FISH, as the former is able to detect alterations at the genome level not excluding any chromosome, but the latter is able to maintain the individual data at the level of single cells, even if it focuses on few genomic regions.

  12. The Role of the CRL4Cdt2 Target Spd1 in Chromosome Segregation in Fission Yeast

    DEFF Research Database (Denmark)

    Landvad, Katrine

    Ddb1, a component of the E3 ubiquitin ligase CRL4Cdt2, is needed for proper chromosome segregation in fission yeast as ddb1 deleted cells show unequal distribution of DNA to daughter cells and sensitivity to the microtubule destabilising drug TBZ. In this study we show that Δddb1 cells have...

  13. Lipofection of purified adeno-associated virus Rep68 protein: toward a chromosome-targeting nonviral particle.

    Science.gov (United States)

    Lamartina, S; Roscilli, G; Rinaudo, D; Delmastro, P; Toniatti, C

    1998-09-01

    Adeno-associated virus (AAV) integrates very efficiently into a specific site (AAVS1) of human chromosome 19. Two elements of the AAV genome are sufficient: the inverted terminal repeats (ITRs) and the Rep78 or Rep68 protein. The incorporation of the AAV integration machinery in nonviral delivery systems is of great interest for gene therapy. We demonstrate that purified recombinant Rep68 protein is functionally active when directly delivered into human cells by using the polycationic liposome Lipofectamine, promoting the rescue-replication of a codelivered ITR-flanked cassette in adenovirus-infected cells and its site-specific integration in noninfected cells. The sequencing of cloned virus-host DNA junctions confirmed that lipofected Rep68 protein triggers site-specific integration at the same sites in chromosome 19 already characterized in cells latently infected with AAV.

  14. [Linkage analysis of susceptibility loci in 2 target chromosomes in pedigrees with paranoid schizophrenia and undifferentiated schizophrenia].

    Science.gov (United States)

    Zeng, Li-ping; Hu, Zheng-mao; Mu, Li-li; Mei, Gui-sen; Lu, Xiu-ling; Zheng, Yong-jun; Li, Pei-jian; Zhang, Ying-xue; Pan, Qian; Long, Zhi-gao; Dai, He-ping; Zhang, Zhuo-hua; Xia, Jia-hui; Zhao, Jing-ping; Xia, Kun

    2011-06-01

    To investigate the relationship of susceptibility loci in chromosomes 1q21-25 and 6p21-25 and schizophrenia subtypes in Chinese population. A genomic scan and parametric and non-parametric analyses were performed on 242 individuals from 36 schizophrenia pedigrees, including 19 paranoid schizophrenia and 17 undifferentiated schizophrenia pedigrees, from Henan province of China using 5 microsatellite markers in the chromosome region 1q21-25 and 8 microsatellite markers in the chromosome region 6p21-25, which were the candidates of previous studies. All affected subjects were diagnosed and typed according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR; American Psychiatric Association, 2000). All subjects signed informed consent. In chromosome 1, parametric analysis under the dominant inheritance mode of all 36 pedigrees showed that the maximum multi-point heterogeneity Log of odds score method (HLOD) score was 1.33 (α = 0.38). The non-parametric analysis and the single point and multi-point nonparametric linkage (NPL) scores suggested linkage at D1S484, D1S2878, and D1S196. In the 19 paranoid schizophrenias pedigrees, linkage was not observed for any of the 5 markers. In the 17 undifferentiated schizophrenia pedigrees, the multi-point NPL score was 1.60 (P= 0.0367) at D1S484. The single point NPL score was 1.95(P= 0.0145) and the multi-point NPL score was 2.39 (P= 0.0041) at D1S2878. Additionally, the multi-point NPL score was 1.74 (P= 0.0255) at D1S196. These same three loci showed suggestive linkage during the integrative analysis of all 36 pedigrees. In chromosome 6, parametric linkage analysis under the dominant and recessive inheritance and the non-parametric linkage analysis of all 36 pedigrees and the 17 undifferentiated schizophrenia pedigrees, linkage was not observed for any of the 8 markers. In the 19 paranoid schizophrenias pedigrees, parametric analysis showed that under recessive

  15. Determining true HER2 gene status in breast cancers with polysomy by using alternative chromosome 17 reference genes: implications for anti-HER2 targeted therapy.

    Science.gov (United States)

    Tse, Chun Hing; Hwang, Harry C; Goldstein, Lynn C; Kandalaft, Patricia L; Wiley, Jesse C; Kussick, Steven J; Gown, Allen M

    2011-11-01

    The ratio of human epidermal growth factor receptor 2 (HER2) to CEP17 by fluorescent in situ hybridization (FISH) with the centromeric probe CEP17 is used to determine HER2 gene status in breast cancer. Increases in CEP17 copy number have been interpreted as representing polysomy 17. However, pangenomic studies have demonstrated that polysomy 17 is rare. This study tests the hypothesis that the use of alternative chromosome 17 reference genes might more accurately assess true HER2 gene status. In all, 171 patients with breast cancer who had HER2 FISH that had increased mean CEP17 copy numbers (> 2.6) were selected for additional chromosome 17 studies that used probes for Smith-Magenis syndrome (SMS), retinoic acid receptor alpha (RARA), and tumor protein p53 (TP53) genes. A eusomic copy number exhibited in one or more of these loci was used to calculate a revised HER2-to-chromosome-17 ratio by using the eusomic gene locus as the reference. Of 132 cases classified as nonamplified on the basis of their HER2:CEP17 ratios, 58 (43.9%) were scored as amplified by using alternative chromosome 17 reference gene probes, and 13 (92.9%) of 14 cases scored as equivocal were reclassified as amplified. Among the cases with mean HER2 copy number of 4 to 6, 41 (47.7%) of 86 had their HER2 gene status upgraded from nonamplified to amplified, and four (4.7%) of 86 were upgraded from equivocal to amplified. Our results support the findings of recent pangenomic studies that true polysomy 17 is uncommon. Additional FISH studies that use probes to the SMS, RARA, and TP53 genes are an effective way to determine the true HER2 amplification status in patients with polysomy 17 and they have important potential implications for guiding HER2-targeted therapy in breast cancer.

  16. Development of the NUMO pre-selection, site-specific safety case

    International Nuclear Information System (INIS)

    Fujiyama, Tetsuo; Suzuki, Satoru; Deguchi, Akira; Umeki, Hiroyuki

    2016-01-01

    Key conclusions: ◆ “The NUMO pre-selection, site-specific safety case” provides the basic structure for subsequent safety cases that will be applied to any selected site, emphasising practical approaches and methodology which will be applicable for the conditions/constraints during an actual siting process. ◆ The preliminary results of the design and safety assessment would underpin the feasibility and safety of geological disposal in Japan.

  17. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  18. Chromosomal Targeting by the Type III-A CRISPR-Cas System Can Reshape Genomes in Staphylococcus aureus

    OpenAIRE

    Guan, Jing; Wang, Wanying; Sun, Baolin

    2017-01-01

    ABSTRACT CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show...

  19. Modeling Chromosomes

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  20. Chromosomal Conditions

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Chromosomal conditions Chromosomal conditions ... Disorders See also: Genetic counseling , Your family health history Last reviewed: February, 2013 ... labor & premature birth The newborn intensive care unit (NICU) Birth defects & ...

  1. Chromosome Territories

    OpenAIRE

    Cremer, Thomas; Cremer, Marion

    2010-01-01

    Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions wit...

  2. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  3. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  4. Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements.

    Science.gov (United States)

    Ge, Jun; Lou, Zheng; Cui, Hong; Shang, Lei; Harshey, Rasika M

    2011-09-01

    Of all known transposable elements, phage Mu exhibits the highest transposition efficiency and the lowest target specificity. In vitro, MuB protein is responsible for target choice. In this work, we provide a comprehensive assessment of the genome-wide distribution of MuB and its relationship to Mu target selection using high-resolution Escherichia coli tiling DNA arrays. We have also assessed how MuB binding and Mu transposition are influenced by chromosome-organizing elements such as AT-rich DNA signatures, or the binding of the nucleoid-associated protein Fis, or processes such as transcription. The results confirm and extend previous biochemical and lower resolution in vivo data. Despite the generally random nature of Mu transposition and MuB binding, there were hot and cold insertion sites and MuB binding sites in the genome, and differences between the hottest and coldest sites were large. The new data also suggest that MuB distribution and subsequent Mu integration is responsive to DNA sequences that contribute to the structural organization of the chromosome.

  5. Genomic Selection Using Extreme Phenotypes and Pre-Selection of SNPs in Large Yellow Croaker (Larimichthys crocea).

    Science.gov (United States)

    Dong, Linsong; Xiao, Shijun; Chen, Junwei; Wan, Liang; Wang, Zhiyong

    2016-10-01

    Genomic selection (GS) is an effective method to improve predictive accuracies of genetic values. However, high cost in genotyping will limit the application of this technology in some species. Therefore, it is necessary to find some methods to reduce the genotyping costs in genomic selection. Large yellow croaker is one of the most commercially important marine fish species in southeast China and Eastern Asia. In this study, genotyping-by-sequencing was used to construct the libraries for the NGS sequencing and find 29,748 SNPs in the genome. Two traits, eviscerated weight (EW) and the ratio between eviscerated weight and whole body weight (REW), were chosen to study. Two strategies to reduce the costs were proposed as follows: selecting extreme phenotypes (EP) for genotyping in reference population or pre-selecting SNPs to construct low-density marker panels in candidates. Three methods of pre-selection of SNPs, i.e., pre-selecting SNPs by absolute effects (SE), by single marker analysis (SMA), and by fixed intervals of sequence number (EL), were studied. The results showed that using EP was a feasible method to save the genotyping costs in reference population. Heritability did not seem to have obvious influences on the predictive abilities estimated by EP. Using SMA was the most feasible method to save the genotyping costs in candidates. In addition, the combination of EP and SMA in genomic selection also showed good results, especially for trait of REW. We also described how to apply the new methods in genomic selection and compared the genotyping costs before and after using the new methods. Our study may not only offer a reference for aquatic genomic breeding but also offer a reference for genomic prediction in other species including livestock and plants, etc.

  6. Over-expression of the miRNA cluster at chromosome 14q32 in the alcoholic brain correlates with suppression of predicted target mRNA required for oligodendrocyte proliferation.

    Science.gov (United States)

    Manzardo, A M; Gunewardena, S; Butler, M G

    2013-09-10

    We examined miRNA expression from RNA isolated from the frontal cortex (Broadman area 9) of 9 alcoholics (6 males, 3 females, mean age 48 years) and 9 matched controls using both the Affymetrix GeneChip miRNA 2.0 and Human Exon 1.0 ST Arrays to further characterize genetic influences in alcoholism and the effects of alcohol consumption on predicted target mRNA expression. A total of 12 human miRNAs were significantly up-regulated in alcohol dependent subjects (fold change≥1.5, false discovery rate (FDR)≤0.3; p<0.05) compared with controls including a cluster of 4 miRNAs (e.g., miR-377, miR-379) from the maternally expressed 14q32 chromosome region. The status of the up-regulated miRNAs was supported using the high-throughput method of exon microarrays showing decreased predicted mRNA gene target expression as anticipated from the same RNA aliquot. Predicted mRNA targets were involved in cellular adhesion (e.g., THBS2), tissue differentiation (e.g., CHN2), neuronal migration (e.g., NDE1), myelination (e.g., UGT8, CNP) and oligodendrocyte proliferation (e.g., ENPP2, SEMA4D1). Our data support an association of alcoholism with up-regulation of a cluster of miRNAs located in the genomic imprinted domain on chromosome 14q32 with their predicted gene targets involved with oligodendrocyte growth, differentiation and signaling. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. RecET driven chromosomal gene targeting to generate a RecA deficient Escherichia coli strain for Cre mediated production of minicircle DNA

    Directory of Open Access Journals (Sweden)

    Coutelle Charles

    2006-03-01

    Full Text Available Abstract Background Minicircle DNA is the non-replicating product of intramolecular site-specific recombination within a bacterial minicircle producer plasmid. Minicircle DNA can be engineered to contain predominantly human sequences which have a low content of CpG dinucleotides and thus reduced immunotoxicity for humans, whilst the immunogenic bacterial origin and antibiotic resistance marker gene sequences are entirely removed by site-specific recombination. This property makes minicircle DNA an excellent vector for non-viral gene therapy. Large-scale production of minicircle DNA requires a bacterial strain expressing tightly controlled site-specific recombinase, such as Cre recombinase. As recombinant plasmids tend to be more stable in RecA-deficient strains, we aimed to construct a recA- bacterial strain for generation of minicircle vector DNA with less chance of unwanted deletions. Results We describe here the construction of the RecA-deficient minicircle DNA producer Escherichia coli HB101Cre with a chromosomally located Cre recombinase gene under the tight control of the araC regulon. The Cre gene expression cassette was inserted into the chromosomal lacZ gene by creating transient homologous recombination proficiency in the recA- strain HB101 using plasmid-born recET genes and homology-mediated chromosomal "pop-in, pop-out" of the plasmid pBAD75Cre containing the Cre gene and a temperature sensitive replication origin. Favourably for the Cre gene placement, at the "pop-out" step, the observed frequency of RecET-led recombination between the proximal regions of homology was 10 times higher than between the distal regions. Using the minicircle producing plasmid pFIXluc containing mutant loxP66 and loxP71 sites, we isolated pure minicircle DNA from the obtained recA- producer strain HB101Cre. The minicircle DNA preparation consisted of monomeric and, unexpectedly, also multimeric minicircle DNA forms, all containing the hybrid loxP66

  8. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Heermann, Dieter W.

    2012-01-01

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  9. Mitotic chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Heermann, Dieter W., E-mail: heermann@tphys.uni-heidelberg.de

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  10. Enhanced DNA Profiling of the Semen Donor in Late Reported Sexual Assaults: Use of Y-Chromosome-Targeted Pre-amplification and Next Generation Y-STR Amplification Systems.

    Science.gov (United States)

    Hanson, Erin K; Ballantyne, Jack

    2016-01-01

    In some cases of sexual assault the victim may not report the assault for several days after the incident due to various factors. The ability to obtain an autosomal STR profile of the semen donor from a living victim rapidly diminishes as the post-coital interval is extended due to the presence of only a small amount of male DNA amidst an overwhelming amount of female DNA. Previously, we have utilized various technological tools to overcome the limitations of male DNA profiling in extended interval post-coital samples including the use of Y-chromosome STR profiling, cervical sample, and post-PCR purification permitting the recovery of Y-STR profiles of the male DNA from samples collected 5-6 days after intercourse. Despite this success, the reproductive biology literature reports the presence of spermatozoa in the human cervix up to 7-10 days post-coitus. Therefore, novel and improved methods for recovery of male profiles in extended interval post-coital samples were required. Here, we describe enhanced strategies, including Y-chromosome-targeted pre-amplification and next generation Y-STR amplification kits, that have resulted in the ability to obtain probative male profiles from samples collected 6-9 days after intercourse.

  11. Use of different marker pre-selection methods based on single SNP regression in the estimation of Genomic-EBVs

    Directory of Open Access Journals (Sweden)

    Corrado Dimauro

    2010-01-01

    Full Text Available Two methods of SNPs pre-selection based on single marker regression for the estimation of genomic breeding values (G-EBVs were compared using simulated data provided by the XII QTL-MAS workshop: i Bonferroni correction of the significance threshold and ii Permutation test to obtain the reference distribution of the null hypothesis and identify significant markers at P<0.01 and P<0.001 significance thresholds. From the set of markers significant at P<0.001, random subsets of 50% and 25% markers were extracted, to evaluate the effect of further reducing the number of significant SNPs on G-EBV predictions. The Bonferroni correction method allowed the identification of 595 significant SNPs that gave the best G-EBV accuracies in prediction generations (82.80%. The permutation methods gave slightly lower G-EBV accuracies even if a larger number of SNPs resulted significant (2,053 and 1,352 for 0.01 and 0.001 significance thresholds, respectively. Interestingly, halving or dividing by four the number of SNPs significant at P<0.001 resulted in an only slightly decrease of G-EBV accuracies. The genetic structure of the simulated population with few QTL carrying large effects, might have favoured the Bonferroni method.

  12. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  13. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in

  14. Interphase Chromosome Profiling: A Method for Conventional Banded Chromosome Analysis Using Interphase Nuclei.

    Science.gov (United States)

    Babu, Ramesh; Van Dyke, Daniel L; Dev, Vaithilingam G; Koduru, Prasad; Rao, Nagesh; Mitter, Navnit S; Liu, Mingya; Fuentes, Ernesto; Fuentes, Sarah; Papa, Stephen

    2018-02-01

    - Chromosome analysis on bone marrow or peripheral blood samples fails in a small proportion of attempts. A method that is more reliable, with similar or better resolution, would be a welcome addition to the armamentarium of the cytogenetics laboratory. - To develop a method similar to banded metaphase chromosome analysis that relies only on interphase nuclei. - To label multiple targets in an equidistant fashion along the entire length of each chromosome, including landmark subtelomere and centromere regions. Each label so generated by using cloned bacterial artificial chromosome probes is molecularly distinct with unique spectral characteristics, so the number and position of the labels can be tracked to identify chromosome abnormalities. - Interphase chromosome profiling (ICP) demonstrated results similar to conventional chromosome analysis and fluorescence in situ hybridization in 55 previously studied cases and obtained useful ICP chromosome analysis results on another 29 cases in which conventional methods failed. - ICP is a new and powerful method to karyotype peripheral blood and bone marrow aspirate preparations without reliance on metaphase chromosome preparations. It will be of particular value for cases with a failed conventional analysis or when a fast turnaround time is required.

  15. Determination of HER2 and p53 Mutations by Sequence Analysis Method and EGFR/Chromosome 7 Gene Status by Fluorescence in Situ Hybridization for the Predilection of Targeted Therapy Modalities in Immunohistochemically Triple Negative Breast Carcinomas in Turkish Population.

    Science.gov (United States)

    Pala, Emel Ebru; Bayol, Umit; Keskin, Elif Usturali; Ozguzer, Alp; Kucuk, Ulku; Ozer, Ozge; Koc, Altug

    2015-09-01

    Triple negative breast cancer (TNBC), an agressive subtype accounts nearly 15 % of all breast carcinomas. Conventional chemotherapy is the only treatment modality thus new, effective targeted therapy methods have been investigated. Epidermal growth factor receptor (EGFR) inhibitors give hope according to the recent studies results. Also therapeutic agents have been tried against aberrant p53 signal activity as TNBC show high p53 mutation rates. Our aim was to detect the incidence of mutations/amplifications identified in TNBC in our population. Here we used sequence analysis to detect HER2 (exon 18-23), p53 (exon 5-8) mutations; fluorescence in situ hybridization (FISH) method to analyse EGFR/chromosome 7 centromere gene status in 82 immunohistochemically TNBC. Basaloid phenotype was identified in 49 (59.8 %) patients. EGFR amplification was noted in 5 cases (6.1 %). All EGFR amplified cases showed EGFR overexpression by immunohistochemistry (IHC). p53 mutations were identified in 33 (40.2 %) cases. Almost 60 % of the basal like breast cancer cases showed p53 mutation. Only one case showed HER2 mutation (exon 20:g.36830_3). Our results showed that gene amplification is not the unique mechanism in EGFR overexpression. IHC might be used in the decision of anti-EGFR therapy in routine practice. p53 mutation rate was lower than the rates reported in the literature probably due to ethnic differences and low sensitivity of sanger sequences in general mutation screening. We also established the rarity of HER2 mutation in TNBC. In conclusion EGFR and p53 are the major targets in TNBC also for our population.

  16. Chromosomal Evolution in Chiroptera.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Baker, Robert J; Volleth, Marianne

    2017-10-13

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  17. Chromosomal Evolution in Chiroptera

    Directory of Open Access Journals (Sweden)

    Cibele G. Sotero-Caio

    2017-10-01

    Full Text Available Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62. As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae, focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  18. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-05-02

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome.

  19. Molecular cytogenetics: A novel approach for measuring chromosome translocations in individuals years after exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Lucas, J.N.; Straume, T.

    1992-04-01

    Chromosome painting was developed in our laboratory to facilitate rapid and accurate detection of chromosome translocations in human cells. Chromosome painting is the selective staining of one or more chromosomes by fluorescence in situ hybridization (FISH) using whole chromosome probes. This method permits essentially uniform hybridization and staining along the entire lengths of targeted chromosomes. Staining all other chromosomes a different color makes interchromosomal exchange aberrations readily apparent as bicolored chromosomes. Here we present a brief discussion of this methodology and recent results from studies in our laboratory

  20. Discrimination of chromosome by autoradiography

    International Nuclear Information System (INIS)

    Masubuchi, Masanori

    1975-01-01

    This paper describes discrimination of chromosome by autoradiography. In this method, the difference in DNA synthetic phase between each chromosome was used as a standard, and the used chromosome was in metaphase, as morphological characteristics were markedly in this phase. Cell cycle and autoradiography with 3 H-thymidine were also examined. In order to discriminate chromosome by autoradiography, it was effective to utilize the labelled pattern in late DNA synthetic phase, where asynchronous replication of chromosome appeared most obviously. DNA synthesis in chromosome was examined in each DNA synthetic phase by culturing the chromosome after the treatment with 3 H-thymidine and altering the time to prepare chromosome specimen. Discrimination of chromosome in plants and animals by autoradiography was also mentioned. It was noticed as a structural and functional discrimination of chromosome to observe amino acid uptake into chromosome protein and to utilize the difference in labelled pattern between the sites of chromosome. (K. Serizawa)

  1. Fetal chromosome analysis

    DEFF Research Database (Denmark)

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  2. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants

    DEFF Research Database (Denmark)

    Wendt, Toni; Holm, Preben Bach; Starker, Colby G

    2013-01-01

    , and their broad targeting range. Here we report the assembly of several TALENs for a specific genomic locus in barley. The cleavage activity of individual TALENs was first tested in vivo using a yeast-based, single-strand annealing assay. The most efficient TALEN was then selected for barley transformation....... Analysis of the resulting transformants showed that TALEN-induced double strand breaks led to the introduction of short deletions at the target site. Additional analysis revealed that each barley transformant contained a range of different mutations, indicating that mutations occurred independently...

  3. CHROMOSOMES OF WOODY SPECIES

    Directory of Open Access Journals (Sweden)

    Julio R Daviña

    2000-01-01

    Full Text Available Chromosome numbers of nine subtropical woody species collected in Argentina and Paraguay are reported. The counts tor Coutarea hexandra (2n=52, Inga vera subsp. affinis 2n=26 (Fabaceae and Chorisia speciosa 2n=86 (Bombacaceae are reported for the first time. The chromosome number given for Inga semialata 2n=52 is a new cytotype different from the previously reported. Somatic chromosome numbers of the other taxa studied are: Sesbania punicea 2n=12, S. virgata 2n=12 and Pilocarpus pennatifolius 2n=44 from Argentina

  4. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  5. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  6. Chromosomal Evolution in Chiroptera

    OpenAIRE

    Sotero-Caio, Cibele G.; Baker, Robert J.; Volleth, Marianne

    2017-01-01

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within d...

  7. Geo-metadata design for the GIS of the pre-selected site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Zhong Xia; Wang Ju; Huang Shutao; Wang Shuhong; Gao Min

    2008-01-01

    The information system for the geological disposal of high-level radioactive waste aims at the integrated management and full application of multi-sourceful information in the research for geological disposal of high-level radioactive waste. And the establishment and operation of the system need geo-metadata's support of multi-sourceful information. In the paper, on the basis of geo-data analysis for pre-selected site of disposal of high-level radioactive waste, we can apply the existing metadata standards. Also we can research and design the content information, management pattern and application for geo-metadata of the multi-sourceful information. (authors)

  8. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  9. Interdependency and phosphorylation of KIF4 and condensin I are essential for organization of chromosome scaffold.

    Science.gov (United States)

    Poonperm, Rawin; Takata, Hideaki; Uchiyama, Susumu; Fukui, Kiichi

    2017-01-01

    Kinesin family member 4 (KIF4) and condensins I and II are essential chromosomal proteins for chromosome organization by locating primarily to the chromosome scaffold. However, the mechanism of how KIF4 and condensins localize to the chromosome scaffold is poorly understood. Here, we demonstrate a close relationship between the chromosome localization of KIF4 and condensin I, but not condensin II, and show that KIF4 and condensin I assist each other for stable scaffold formation by forming a stable complex. Moreover, phosphorylation of KIF4 and condensin I by Aurora B and polo-like kinase 1 (Plk1) is important for KIF4 and condensin I localization to the chromosome. Aurora B activity facilitates the targeting of KIF4 and condensin I to the chromosome, whereas Plk1 activity promotes the dissociation of these proteins from the chromosome. Thus, the interdependency between KIF4 and condensin I, and their phosphorylation states play important roles in chromosome scaffold organization during mitosis.

  10. Strong selective sweeps associated with ampliconic regions in great ape X chromosomes

    DEFF Research Database (Denmark)

    Nam, Kiwoong; Munch, Kasper; Hobolth, Asger

    2014-01-01

    The unique inheritance pattern of X chromosomes makes them preferential targets of adaptive evolution. We here investigate natural selection on the X chromosome in all species of great apes. We find that diversity is more strongly reduced around genes on the X compared with autosomes...... with ampliconic sequences we propose that intra-genomic conflict between the X and the Y chromosomes is a major driver of X chromosome evolution....

  11. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...... chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein...... families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1...

  12. Robot system for preparing lymphocyte chromosome

    International Nuclear Information System (INIS)

    Hayata, Isamu; Furukawa, Akira; Yamamoto, Mikio; Sato, Koki; Tabuchi, Hiroyoshi; Okabe, Nobuo.

    1992-01-01

    Towards the automatization of the scoring of chromosome aberrations in radiation dosimetry with the emphasis on the improvement of biological preparations, the conventional culture and harvesting method was modified. Based on this modified method, a culture and harvest robotic system (CHROSY) for preparing lymphocyte chromosome was developed. The targeted points of the modification are as in the preparing lymphocyte chromosome was developed. The targeted points of the modification are as in the following. 1) Starting culture with purified lymphocytes in a fixed cell number. 2) Avoiding the loss of cells in changing the liquids following centrifugalization. 3) Keeping the quantity of the liquids to be applied to the treatments of cells fixed. 4) Building a system even a beginner can handle. System features are as follows. 1) Operation system: Handling robot having 5 degrees of freedom; a rotator incubator with an automatic sliding door; units for setting and removing pipette tips; a centrifuge equipped with a position adjuster and an automatic sliding door; two aluminium block baths; two nozzles as pipettes and aspirators connected to air pumps; a capping unit with a nozzle for CO 2 gas; a compressor; and an air manipulated syringe. 2) Control system; NEC PC-9801RX21 with CRT; and program written in Basic and Assembly languages on MS-DOS. It took this system 2 hours and 25 minutes to harvest 2 cultures. A fairly good chromosome slide was made from the sample harvested by CHROSY automatically. (author)

  13. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  14. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Samouhos, E.

    1983-01-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  15. Know Your Chromosomes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Know Your Chromosomes The Strong Holds of Family Trees. Vani Brahmachari. Series Article Volume 1 Issue 3 March 1996 pp 30-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...

  17. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  18. The study of human Y chromosome variation through ancient DNA.

    Science.gov (United States)

    Kivisild, Toomas

    2017-05-01

    High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.

  19. The X chromosome in space.

    Science.gov (United States)

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  20. Adaptation of the chlorophycean Dictyosphaerium chlorelloides to stressful acidic, mine metal-rich waters as result of pre-selective mutations.

    Science.gov (United States)

    López-Rodas, Victoria; Marvá, Fernando; Rouco, Mónica; Costas, Eduardo; Flores-Moya, Antonio

    2008-06-01

    Several species of microalgae, closely related to mesophilic lineages, inhabit the extreme environment (pH 2.5, high levels of metals) of the Spain's Aguas Agrias Stream water (AASW). Consequently, AASW constitutes an interesting natural laboratory for analysis of adaptation by microalgae to extremely stressful conditions. To distinguish between the pre-selective or post-selective origin of adaptation processes allowing the existence of microalgae in AASW, a Luria-Delbrück fluctuation analysis was performed with the chlorophycean Dictyosphaerium chlorelloides isolated from non-acidic waters. In the analysis, AASW was used as selective factor. Preselective, resistant D. chlorelloides cells appeared with a frequency of 1.1 x 10(-6) per cell per generation. AASW-resistant mutants, with a diminished Malthusian fitness, are maintained in non-extreme waters as the result of a balance between new AASW-resistant cells arising by mutation and AASW-resistant mutants eliminated by natural selection (equilibrium at c. 12 AASW-resistants per 10(7) wild-type cells). We propose that the microalgae inhabiting this stressful environment could be the descendents of chance mutants that arrived in the past or are even arriving at the present.

  1. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. II. Cloning of resistance gene analogs from single chromosomes.

    Science.gov (United States)

    Huang, D; Wu, W; Lu, L

    2004-05-01

    Amplification of resistance gene analogs (RGAs) is both a useful method for acquiring DNA markers closely linked to disease resistance (R) genes and a potential approach for the rapid cloning of R genes in plants. However, the screening of target sequences from among the numerous amplified RGAs can be very laborious. The amplification of RGAs from specific chromosomes could greatly reduce the number of RGAs to be screened and, consequently, speed up the identification of target RGAs. We have developed two methods for amplifying RGAs from single chromosomes. Method 1 uses products of Sau3A linker adaptor-mediated PCR (LAM-PCR) from a single chromosome as the templates for RGA amplification, while Method 2 directly uses a single chromosomal DNA molecule as the template. Using a pair of degenerate primers designed on the basis of the conserved nucleotide-binding-site motifs in many R genes, RGAs were successfully amplified from single chromosomes of pomelo using both these methods. Sequencing and cluster analysis of RGA clones obtained from single chromosomes revealed the number, type and organization of R-gene clusters on the chromosomes. We suggest that Method 1 is suitable for analyzing chromosomes that are unidentifiable under a microscope, while Method 2 is more appropriate when chromosomes can be clearly identified.

  2. Molecular fundamentals of chromosomal mutagenesis

    International Nuclear Information System (INIS)

    Ganassi, E.Eh.; Zaichkina, S.I.; Malakhova, L.V.

    1987-01-01

    Precise quantitative correlation between the yield of chromosome structure damages and the yield of DNA damages is shown when comparing data on molecular and cytogenetic investigations carried out in cultural Mammalia cells. As the chromosome structure damage is to be connected with the damage of its carcass structure, then it is natural that DNA damage in loop regions is not to affect considerably the structure, while DNA damage lying on the loop base and connected with the chromosome carcass is to play a determining role in chromosomal mutagenesis. This DNA constitutes 1-2% from the total quantity of nuclear DNA. If one accepts that damages of these regions of DNA are ''hot'' points of chromosomal mutagenesis, then it becomes clear why 1-2% of preparation damages in a cell are realized in chromosome structural damages

  3. Radiation-induced chromosome aberrations in bone marrow cells leading to acute myeloid leukemia in mouse

    International Nuclear Information System (INIS)

    Nobuhiko Ban; Tomoko Kusama

    1996-01-01

    It is well known that radiation-induced acute myeloid leukemia (RI-AML) in mice is charaterized by deletion and/or rearrangement of chromosome 2. While chromosome 2 has been suspected to be a target of RI-AML, radiation-sensitive site of the chromosome might be implicated in the leukemogenesis. There were few cytogenetical studies, however, focusing on chromosomal rearrangements shortly after irradiation, and little was known about the frequency and pattern of chromosome 2 aberrations during the early period. In this study, metaphase samples were prepared from whole-body irradiated mice 24 hours after irradiation, most of the cells considered to be in the first mitotic stage. Distribution of chromosomal breakpoints on the metaphase samples were analyzed to study the relationship between chromosome aberrations and RI-AML. (author)

  4. Conversion and non-conversion approach to preimplantation diagnosis for chromosomal rearrangements in 475 cycles.

    Science.gov (United States)

    Kuliev, Anver; Janzen, Jeanine Cieslak; Zlatopolsky, Zev; Kirillova, Irina; Ilkevitch, Yury; Verlinsky, Yury

    2010-07-01

    Due to the limitations of preimplantation genetic diagnosis (PGD) for chromosomal rearrangements by interphase fluorescent in-situ hybridization (FISH) analysis, a method for obtaining chromosomes from single blastomeres was introduced by their fusion with enucleated or intact mouse zygotes, followed by FISH analysis of the resulting heterokaryons. Although this allowed a significant improvement in the accuracy of testing of both maternally and paternally derived translocations, it is still labour intensive and requires the availability of fertilized mouse oocytes, also creating ethical issues related to the formation of interspecies heterokaryons. This method was modified with a chemical conversion procedure that has now been clinically applied for the first time on 877 embryos from PGD cycles for chromosomal rearrangements and has become the method of choice for performing PGD for structural rearrangements. This is presented within the context of overall experience of 475 PGD cycles for translocations with pre-selection and transfer of balanced or normal embryos in 342 (72%) of these cycles, which resulted in 131 clinical pregnancies (38%), with healthy deliveries of 113 unaffected children. The spontaneous abortion rate in these cycles was as low as 17%, which confirms an almost five-fold reduction of spontaneous abortion rate following PGD for chromosomal rearrangements. 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Intraspecific chromosome variability

    Directory of Open Access Journals (Sweden)

    N Dubinin

    2010-12-01

    Full Text Available (Editorial preface. The publication is presented in order to remind us of one of dramatic pages of the history of genetics. It re-opens for the contemporary reader a comprehensive work marking the priority change from plant cytogenetics to animal cytogenetics led by wide population studies which were conducted on Drosophila polytene chromosomes. The year of the publication (1937 became the point of irretrievable branching between the directions of Old World and New World genetics connected with the problems of chromosome variability and its significance for the evolution of the species. The famous book of T. Dobzhansky (1937 was published by Columbia University in the US under the title “Genetics and the origin of species”, and in the shadow of this American ‘skybuilding’ all other works grew dim. It is remarkable that both Dobzhansky and Dubinin come to similar conclusions about the role of chromosomes in speciation. This is not surprising given that they both might be considered as representatives of the Russian genetic school, by their birth and education. Interestingly, Dobzhansky had never referred to the full paper of Dubinin et al. (1937, though a previous short communication in Nature (1936 was included together with all former papers on the related subject. In full, the volume of the original publication printed in the Biological Journal in Moscow comprised 47 pages, in that number 41 pages of the Russian text accompanied by 16 Figs, a table and reference list, and, above all, 6 pages of the English summary. This final part in English is now reproduced in the authors’ version with the only addition being the reference list in the originally printed form.

  6. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Paula M Checchi

    2011-09-01

    Full Text Available Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI but not meiotic silencing of unsynapsed chromatin (MSUC, suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  7. X chromosome and suicide.

    Science.gov (United States)

    Fiori, L M; Zouk, H; Himmelman, C; Turecki, G

    2011-02-01

    Suicide completion rates are significantly higher in males than females in most societies. Although gender differences in suicide rates have been partially explained by environmental and behavioral factors, it is possible that genetic factors, through differential expression between genders, may also help explain gender moderation of suicide risk. This study investigated X-linked genes in suicide completers using a two-step strategy. We first took advantage of the genetic structure of the French-Canadian population and genotyped 722 unrelated French-Canadian male subjects, of whom 333 were suicide completers and 389 were non-suicide controls, using a panel of 37 microsatellite markers spanning the entire X chromosome. Nine haplotype windows and several individual markers were associated with suicide. Significant results aggregated primarily in two regions, one in the long arm and another in the short arm of chromosome X, limited by markers DXS8051 and DXS8102, and DXS1001 and DXS8106, respectively. The second stage of the study investigated differential brain expression of genes mapping to associated regions in Brodmann areas 8/9, 11, 44 and 46, in an independent sample of suicide completers and controls. Six genes within these regions, Rho GTPase-activating protein 6, adaptor-related protein complex 1 sigma 2 subunit, glycoprotein M6B, ribosomal protein S6 kinase 90  kDa polypeptide 3, spermidine/spermine N(1)-acetyltransferase 1 and THO complex 2, were found to be differentially expressed in suicide completers.

  8. Chromosome Connections: Compelling Clues to Common Ancestry

    Science.gov (United States)

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  9. New Y chromosomes and early stages of sex chromosome ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... chromosomes are evolutionary consequences of that func- tion. Given sufficient ... (for a review, see Charlesworth et al. 2005). ... In the present paper, I review sex deter- mination .... part had apparently been exchanged against the homologous ... age group III-Y chromosomes were successful while in well-.

  10. Pure chromosome-specific PCR libraries from single sorted chromosomes

    NARCIS (Netherlands)

    VanDevanter, D. R.; Choongkittaworn, N. M.; Dyer, K. A.; Aten, J. A.; Otto, P.; Behler, C.; Bryant, E. M.; Rabinovitch, P. S.

    1994-01-01

    Chromosome-specific DNA libraries can be very useful in molecular and cytogenetic genome mapping studies. We have developed a rapid and simple method for the generation of chromosome-specific DNA sequences that relies on polymerase chain reaction (PCR) amplification of a single flow-sorted

  11. Naturally occurring minichromosome platforms in chromosome engineering: an overview.

    Science.gov (United States)

    Raimondi, Elena

    2011-01-01

    Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.

  12. Cohesin in determining chromosome architecture

    Energy Technology Data Exchange (ETDEWEB)

    Haering, Christian H., E-mail: christian.haering@embl.de [Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg (Germany); Jessberger, Rolf, E-mail: rolf.jessberger@tu-dresden.de [Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany)

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  13. Sex chromosomes in Ephestia kuehniella

    Czech Academy of Sciences Publication Activity Database

    Marec, František; Sahara, K.; Traut, W.

    2001-01-01

    Roč. 44, č. 1 (2001), s. 131 ISSN 0003-3995. [European Cytogenetics Conference /3./. 07.07.2001-10.07.2001, Paris] Institutional research plan: CEZ:AV0Z5007907 Keywords : Telomere * sex chromosomes * chromosome fragments Subject RIV: EB - Genetics ; Molecular Biology

  14. Slit scan flow cytometry of isolated chromosomes following fluorescence hybridization: an approach of online screening for specific chromosomes and chromosome translocations

    NARCIS (Netherlands)

    Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.; Diaz, E.; Cremer, C.

    1991-01-01

    The recently developed methods of non radioactive in situ hybridization of chromosomes offer new aspects for chromosome analysis. Fluorescent labelling of hybridized chromosomes or chromosomal subregions allows to facilitate considerably the detection of specific chromosomal abnormalities. For many

  15. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  16. High resolution FISH on super-stretched flow-sorted plant chromosomes.

    NARCIS (Netherlands)

    Valárik, M.; Bartos, J.; Kovarova, P.; Kubalakova, M.; Jong, de J.H.S.G.M.; Dolezel, J.

    2004-01-01

    A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for

  17. Mitotic chromosome condensation in vertebrates

    International Nuclear Information System (INIS)

    Vagnarelli, Paola

    2012-01-01

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  18. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  19. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  20. Chromosome fragility in Freemartin cattle

    Directory of Open Access Journals (Sweden)

    V. Barbieri

    2010-04-01

    Full Text Available The aim of the present study was to verify chromosome fragility in freemartin cattle using chromosome aberration (CA and sister chromatid exchange (SCE tests. A total of eighteen co-twins were investigated. Fourteen animals were identified as cytogenetically chimeric (2n=60, XX/XY while 4 were classified as normal. Freemartin cattle showed a higher percentage of aneuploid cells (18.64% and highly significant statistical differences (P < 0.001 in mean values of gaps (4.53 ± 2.05, chromatid breaks (0.26 ± 0.51, and significant statistical differences (P < 0.005 in mean values of chromosome breaks (0.12 ± 0.43 when compared to 10 control animals from single births (aneuploid cells, 11.20%; gaps, 2.01 ± 1.42; chromatid breaks, 0.05 ± 0.22; chromosome breaks, 0.02 ± 0.14.

  1. Are There Knots in Chromosomes?

    Directory of Open Access Journals (Sweden)

    Jonathan T. Siebert

    2017-08-01

    Full Text Available Recent developments have for the first time allowed the determination of three-dimensional structures of individual chromosomes and genomes in nuclei of single haploid mouse embryonic stem (ES cells based on Hi–C chromosome conformation contact data. Although these first structures have a relatively low resolution, they provide the first experimental data that can be used to study chromosome and intact genome folding. Here we further analyze these structures and provide the first evidence that G1 phase chromosomes are knotted, consistent with the fact that plots of contact probability vs sequence separation show a power law dependence that is intermediate between that of a fractal globule and an equilibrium structure.

  2. Flow cytogenetics and chromosome sorting.

    Science.gov (United States)

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  3. Metastic Progression of Breast Cancer by Allelic Loss on Chromosome 18q21

    National Research Council Canada - National Science Library

    Thiagalingam, Sam

    2006-01-01

    Genetic and epigenetic inactivation of SMAD4 are rare occurrences in breast tumors despite it is localized to chromosome 18q and serves as a frequent target for inactivation in advanced gastrointestinal cancers...

  4. Algorithm for sorting chromosomal aberrations

    DEFF Research Database (Denmark)

    Vogel, Ida; Lund, Najaaraq; Rasmussen, Steen

    2018-01-01

    Prenatal diagnostic methods and screening procedures change rapidly in these years. Years ago only karyotyping was performed prenatally, and we monitored only Down syndrome(1) . Since then the diagnostic possibilities have increased to QF-PCR, FISH, MLPA and chromosomal microarray.......Prenatal diagnostic methods and screening procedures change rapidly in these years. Years ago only karyotyping was performed prenatally, and we monitored only Down syndrome(1) . Since then the diagnostic possibilities have increased to QF-PCR, FISH, MLPA and chromosomal microarray....

  5. Diagnostic radiation and chromosome aberrations

    International Nuclear Information System (INIS)

    Patil, S.R.; Hecht, F.; Lubs, H.A.; Kimberling, W.; Brown, J.; Gerald, P.S.; Summitt, R.L.

    1977-01-01

    Some evidence is presented suggesting that diagnostic X-rays may be important in the origin of a new chromosomal abnormality other than Down syndrome. Chromosome analyses have been carried out on 4342 children, seven or eight years old. Maternal diagnostic irradiation in the year before conception and up to third lunar month of the index pregnancy was recorded, before the chromosome study began, together with a large amount of family and clinical data. Information on X-ray exposure was supplied by the mothers, s o radiation dosage could not be estimated. 21 children (including a pair of twins and a pair of siblings) born to 19 mothers had chromosomal aberrations. The mothers of six children with inherited translocations, rearrangements and XYY karyotypes were excluded, and 3 (23%) of the remaining 13 mothers had received abdominal and pelvic X-ray exposures. In the whole sample, however, only 6% of the mothers had diagnostic irradiation. Two of these mothers, aged sixteen and twenty, gave birth to a child each with de-novo autosomal translocations, and the third mother, aged thirty-two, had a child with a complex mosaicism involving one X chromosome. Although the sample size of the mothers with chromosomally abnormal children is small, the results are significant. (U.K.)

  6. Diagnostic radiation and chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S R; Hecht, F [Dept. of Pediatrics, Child Development and Rehabilitation Center, Univ. of Oregon Health Sciences Center, Portland, Oregon (USA); Lubs, H A; Kimberling, W; Brown, J; Gerald, P S; Summitt, R L

    1977-01-15

    Some evidence is presented suggesting that diagnostic X-rays may be important in the origin of a new chromosomal abnormality other than Down syndrome. Chromosome analyses have been carried out on 4342 children, seven or eight years old. Maternal diagnostic irradiation in the year before conception and up to third lunar month of the index pregnancy was recorded, before the chromosome study began, together with a large amount of family and clinical data. Information on X-ray exposure was supplied by the mothers, so radiation dosage could not be estimated. 21 children (including a pair of twins and a pair of siblings) born to 19 mothers had chromosomal aberrations. The mothers of six children with inherited translocations, rearrangements and XYY karyotypes were excluded, and 3 (23%) of the remaining 13 mothers had received abdominal and pelvic X-ray exposures. In the whole sample, however, only 6% of the mothers had diagnostic irradiation. Two of these mothers, aged sixteen and twenty, gave birth to a child each with de-novo autosomal translocations, and the third mother, aged thirty-two, had a child with a complex mosaicism involving one X chromosome. Although the sample size of the mothers with chromosomally abnormal children is small, the results are significant.

  7. Designing of plant artificial chromosome (PAC) by using the Chlorella smallest chromosome as a model system.

    Science.gov (United States)

    Noutoshi, Y; Arai, R; Fujie, M; Yamada, T

    1997-01-01

    As a model for plant-type chromosomes, we have been characterizing molecular organization of the Chlorella vulgaris C-169 chromosome I. To identify chromosome structural elements including the centromeric region and replication origins, we constructed a chromosome I specific cosmid library and aligned each cosmid clones to generate contigs. So far, more than 80% of the entire chromosome I has been covered. A complete clonal physical reconstitution of chromosome I provides information on the structure and genomic organization of plant genome. We propose our strategy to construct an artificial chromosome by assembling the functional chromosome structural elements identified on Chrorella chromosome I.

  8. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  9. Kaposi's sarcoma herpesvirus C-terminal LANA concentrates at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes

    International Nuclear Information System (INIS)

    Kelley-Clarke, Brenna; Ballestas, Mary E.; Komatsu, Takashi; Kaye, Kenneth M.

    2007-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) tethers KSHV terminal repeat (TR) DNA to mitotic chromosomes to efficiently segregate episomes to progeny nuclei. LANA contains N- and C-terminal chromosome binding regions. We now show that C-terminal LANA preferentially concentrates to paired dots at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes through residues 996-1139. Deletions within C-terminal LANA abolished both self-association and chromosome binding, consistent with a requirement for self-association to bind chromosomes. A deletion abolishing TR DNA binding did not affect chromosome targeting, indicating LANA's localization is not due to binding its recognition sequence in chromosomal DNA. LANA distributed similarly on human and non-human mitotic chromosomes. These results are consistent with C-terminal LANA interacting with a cell factor that concentrates at pericentromeric and peri-telomeric regions of mitotic chromosomes

  10. Heterogeneous chromatin target model

    International Nuclear Information System (INIS)

    Watanabe, Makoto

    1996-01-01

    The higher order structure of the entangled chromatin fibers in a chromosome plays a key role in molecular control mechanism involved in chromosome mutation due to ionizing radiations or chemical mutagens. The condensed superstructure of chromatin is not so rigid and regular as has been postulated in general. We have proposed a rheological explanation for the flexible network system ('chromatin network') that consists of the fluctuating assembly of nucleosome clusters linked with supertwisting DNA in a chromatin fiber ('Supertwisting Particulate Model'). We have proposed a 'Heterosensitive Target Model' for cellular radiosensitivity that is a modification of 'Heterogeneous Target Model'. The heterogeneity of chromatin target is derived from the highly condensed organization of chromatin segments consist of unstable and fragile sites in the fluctuating assembly of nucleosome clusters, namely 'supranucleosomal particles' or 'superbeads'. The models have been principally supported by our electron microscopic experiments employing 'surface - spreading whole - mount technique' since 1967. However, some deformation and artifacts in the chromatin structure are inevitable with these electron microscopic procedures. On the contrary, the 'atomic force microscope (AFM)' can be operated in liquid as well as in the air. A living specimen can be examined without any preparative procedures. Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. The living human chromosomes were submerged in a solution of culture medium and observed by AFM using a liquid immersion cell. The surface - spreading whole - mount technique was applicable for this observation. The particulate chromatin segments of nucleosome clusters were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (J.P.N.)

  11. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  12. Retrospective dosimetry using chromosome painting

    International Nuclear Information System (INIS)

    Nasazzi, N.B.; Giorgio, M.D.; Taja, M.R.

    2000-01-01

    Chromosome aberration frequency measured in peripheral lymphocytes of persons exposed to ionizing radiation has been used since 1960s for dose assessment. Suspected overexposure is usually evaluated by the frequency of dicentrics and centric rings using an appropriate in vitro calibration curve. However, these chromosome aberrations are unstable with time after exposure and dose reconstruction may encounter uncertainties when the time between the exposure and the analysis is considerable or even unknown. It appears that translocations persist with time after exposure and may be used as an indication of acute past overexposures. Moreover, they appear to accumulate the cytogenetical information, which correlates with the dose received under fractionated, chronic or even occupational exposure conditions. Translocations may be detected using G-banding, which allows to score the total amount of radiation induced translocations but it is a time consuming method, or by Chromosome Painting, a method base on the Fluorescence in situ Hybridization (FISH) technique, painting only some chromosome pairs with specific whole chromosome probes and then extrapolating the observed translocation frequencies to the full genome. The latter method allows a faster aberration scoring than G-banding and appears to be the most promissory tool for biodosimetry, particularly when it is necessary to assess low doses and consequently to score a large number of metaphases, e.g. radiation workers exposed within dose limits. As with the unstable chromosome aberration, it is necessary an in vitro calibration curve based on the frequency of stable chromosome aberrations to assess doses. Our laboratory performed calibration curves for Co 60 γ-rays based on the frequencies of unstable (dicentrics and centric rings detected by conventional Giemsa staining) and stable chromosome aberrations (translocations and inversions, detected by G-banding). In order to minimize the interlaboratory variability, we

  13. CRISPR/Cas9-induced transgene insertion and telomere-associated truncation of a single human chromosome for chromosome engineering in CHO and A9 cells.

    Science.gov (United States)

    Uno, Narumi; Hiramatsu, Kei; Uno, Katsuhiro; Komoto, Shinya; Kazuki, Yasuhiro; Oshimura, Mitsuo

    2017-10-06

    Chromosome engineering techniques including gene insertion, telomere-associated truncation and microcell-mediated chromosome transfer (MMCT) are powerful tools for generation of humanised model animal, containing megabase-sized genomic fragments. However, these techniques require two cell lines: homologous recombination (HR)-proficient DT40 cells for chromosome modification, and CHO cells for transfer to recipient cells. Here we show an improved technique using a combination of CRISPR/Cas9-induced HR in CHO and mouse A9 cells without DT40 cells following MMCT to recipient cells. Transgene insertion was performed in CHO cells with the insertion of enhanced green fluorescence protein (EGFP) using CRISPR/Cas9 and a circular targeting vector containing two 3 kb HR arms. Telomere-associated truncation was performed in CHO cells using CRISPR/Cas9 and a linearised truncation vector containing a single 7 kb HR arm at the 5' end, a 1 kb artificial telomere at the 3' end. At least 11% and 6% of the targeting efficiency were achieved for transgene insertion and telomere-associated truncation, respectively. The transgene insertion was also confirmed in A9 cells (29%). The modified chromosomes were transferrable to other cells. Thus, this CHO and A9 cell-mediated chromosome engineering using the CRISPR/Cas9 for direct transfer of the modified chromosome is a rapid technique that will facilitate chromosome manipulation.

  14. Radiation-induced chromosomal instability

    International Nuclear Information System (INIS)

    Ritter, S.

    1999-01-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/μm) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  15. Chromosome segregation in plant meiosis

    Directory of Open Access Journals (Sweden)

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  16. Radiation exposure and chromosome damage

    International Nuclear Information System (INIS)

    Lloyd, D.

    1979-01-01

    Chromosome damage is discussed as a means of biologically measuring radiation exposure to the body. Human lymphocytes are commonly used for this test since the extent of chromosome damage induced is related to the exposure dose. Several hundred lymphocytes are analysed in metaphase for chromosome damage, particularly dicentrics. The dose estimate is made by comparing the observed dicentric yield against calibration curves, previously produced by in vitro irradiation of blood samples to known doses of different types of radiation. This test is useful when there is doubt that the film badge has recorded a reasonable whole body dose and also when there is an absence of any physical data. A case of deliberate exposure is described where the chromosome damage test estimated an exposure of 152 rads. The life span of cell aberrations is also considered. Regular checks on radiotherapy patients and some accidental overdose cases have shown little reduction in the aberration levels over the first six weeks after which the damage disappears slowly with a half-life of about three years. In conclusion, chromosome studies have been shown to be of value in resolving practical problems in radiological protection. (U.K.)

  17. Interdependency and phosphorylation of KIF4 and condensin I are essential for organization of chromosome scaffold.

    Directory of Open Access Journals (Sweden)

    Rawin Poonperm

    Full Text Available Kinesin family member 4 (KIF4 and condensins I and II are essential chromosomal proteins for chromosome organization by locating primarily to the chromosome scaffold. However, the mechanism of how KIF4 and condensins localize to the chromosome scaffold is poorly understood. Here, we demonstrate a close relationship between the chromosome localization of KIF4 and condensin I, but not condensin II, and show that KIF4 and condensin I assist each other for stable scaffold formation by forming a stable complex. Moreover, phosphorylation of KIF4 and condensin I by Aurora B and polo-like kinase 1 (Plk1 is important for KIF4 and condensin I localization to the chromosome. Aurora B activity facilitates the targeting of KIF4 and condensin I to the chromosome, whereas Plk1 activity promotes the dissociation of these proteins from the chromosome. Thus, the interdependency between KIF4 and condensin I, and their phosphorylation states play important roles in chromosome scaffold organization during mitosis.

  18. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    Czech Academy of Sciences Publication Activity Database

    Homolka, David; Ivánek, Robert; Čapková, Jana; Jansa, Petr; Forejt, Jiří

    2007-01-01

    Roč. 17, č. 10 (2007), s. 1431-1437 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA301/06/1334; GA ČR GA301/07/1383 Grant - others:Howard Hughes Medical Institute(US) HHMI 55000306 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromosomal translocations * meiotic X chromosome inactivation * spermatogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  19. TARGET Research Goals

    Science.gov (United States)

    TARGET researchers use various sequencing and array-based methods to examine the genomes, transcriptomes, and for some diseases epigenomes of select childhood cancers. This “multi-omic” approach generates a comprehensive profile of molecular alterations for each cancer type. Alterations are changes in DNA or RNA, such as rearrangements in chromosome structure or variations in gene expression, respectively. Through computational analyses and assays to validate biological function, TARGET researchers predict which alterations disrupt the function of a gene or pathway and promote cancer growth, progression, and/or survival. Researchers identify candidate therapeutic targets and/or prognostic markers from the cancer-associated alterations.

  20. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications.

    Science.gov (United States)

    Katona, Robert L

    2015-02-01

    Mammalian artificial chromosomes (MACs) are non-integrating, autonomously replicating natural chromosome-based vectors that may carry a vast amount of genetic material, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in target cells. Satellite-DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian and plant species. These artificially generated accessory chromosomes are composed of predictable DNA sequences, and they contain defined genetic information. SATACs have already passed a number of obstacles crucial to their further development as gene therapy vectors, including large-scale purification, transfer of purified artificial chromosomes into different cells and embryos, generation of transgenic animals and germline transmission with purified SATACs, and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals. SATACs could be used in cell therapy protocols. For these methods, the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells.

  1. Chromosomal rearrangements in Tourette syndrome

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Debes, Nanette Mol; Hjermind, Lena E

    2013-01-01

    , and identification of susceptibility genes through linkage and association studies has been complicated due to inherent difficulties such as no clear mode of inheritance, genetic heterogeneity, and apparently incomplete penetrance. Positional cloning through mapping of disease-related chromosome rearrangements has...... been an efficient tool for the cloning of disease genes in several Mendelian disorders and in a number of complex disorders. Through cytogenetic investigation of 205 TS patients, we identified three possibly disease-associated chromosome rearrangements rendering this approach relevant in chasing TS...

  2. Chromosomal instability determines taxane response

    DEFF Research Database (Denmark)

    Swanton, C.; Nicke, B.; Schuett, M.

    2009-01-01

    chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these "CIN-survival'' genes is associated with poor outcome in estrogen receptor......-positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane...

  3. Genetics Home Reference: ring chromosome 20 syndrome

    Science.gov (United States)

    ... drugs. Prolonged seizure episodes known as non-convulsive status epilepticus also appear to be characteristic of ring chromosome ... K, Takahashi Y. Ring chromosome 20 and nonconvulsive status epilepticus. A new epileptic syndrome. Brain. 1997 Jun;120 ( ...

  4. Chromosomal disorders and male infertility

    Institute of Scientific and Technical Information of China (English)

    Gary L Harton; Helen G Tempest

    2012-01-01

    infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family.Despite this,the molecular and genetic factors underlying the cause of infertility remain largely undiscovered.Nevertheless,more and more genetic factors associated with infertility are being identified.This review will focus on our current understanding of the chromosomal basis of male infertility specifically:chromosomal aneuploidy,structural and numerical karyotype abnormalities and Y chromosomal microdeletions.Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans.Aneuploidy is predominantly maternal in origin,but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts.Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm.Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed,as well as the application of preimplantation genetic diagnosis (PGD) in such cases.Clinical recommendations where possible will be made,as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  5. Chromosomal Abnormalities Associated With Omphalocele

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-03-01

    Full Text Available Fetuses with omphalocele have an increased risk for chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with umbilical cord cysts, complexity of associated anomalies, and the contents of omphalocele. There is considerable evidence that genetics contributes to the etiology of omphalocele. This article provides an overview of chromosomal abnormalities associated with omphalocele and a comprehensive review of associated full aneuploidy such as trisomy 18, trisomy 13, triploidy, trisomy 21, 45,X, 47,XXY, and 47,XXX, partial aneuploidy such as dup(3q, dup(11p, inv(11, dup(1q, del(1q, dup(4q, dup(5p, dup(6q, del(9p, dup(15q, dup(17q, Pallister-Killian syndrome with mosaic tetrasomy 12p and Miller-Dieker lissencephaly syndrome with deletion of 17p13.3, and uniparental disomy (UPD such as UPD 11 and UPD 14. Omphalocele is a prominent marker for chromosomal abnormalities. Perinatal identification of omphalocele should alert chromosomal abnormalities and familial unbalanced translocations, and prompt thorough cytogenetic investigations and genetic counseling.

  6. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    Science.gov (United States)

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  7. Non-random distribution of instability-associated chromosomal rearrangement breakpoints in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Moore, Stephen R.; Papworth, David; Grosovsky, Andrew J.

    2006-01-01

    Genomic instability is observed in tumors and in a large fraction of the progeny surviving irradiation. One of the best-characterized phenotypic manifestations of genomic instability is delayed chromosome aberrations. Our working hypothesis for the current study was that if genomic instability is in part attributable to cis mechanisms, we should observe a non-random distribution of chromosomes or sites involved in instability-associated rearrangements, regardless of radiation quality, dose, or trans factor expression. We report here the karyotypic examination of 296 instability-associated chromosomal rearrangement breaksites (IACRB) from 118 unstable TK6 human B lymphoblast, and isogenic derivative, clones. When we tested whether IACRB were distributed across the chromosomes based on target size, a significant non-random distribution was evident (p < 0.00001), and three IACRB hotspots (chromosomes 11, 12, and 22) and one IACRB coldspot (chromosome 2) were identified. Statistical analysis at the chromosomal band-level identified four IACRB hotspots accounting for 20% of all instability-associated breaks, two of which account for over 14% of all IACRB. Further, analysis of independent clones provided evidence within 14 individual clones of IACRB clustering at the chromosomal band level, suggesting a predisposition for further breaks after an initial break at some chromosomal bands. All of these events, independently, or when taken together, were highly unlikely to have occurred by chance (p < 0.000001). These IACRB band-level cluster hotspots were observed independent of radiation quality, dose, or cellular p53 status. The non-random distribution of instability-associated chromosomal rearrangements described here significantly differs from the distribution that was observed in a first-division post-irradiation metaphase analysis (p = 0.0004). Taken together, these results suggest that genomic instability may be in part driven by chromosomal cis mechanisms

  8. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities.

    Science.gov (United States)

    Naim, Valeria; Rosselli, Filippo

    2009-06-01

    Loss-of-function of caretaker genes characterizes a group of cancer predisposition diseases that feature cellular hypersensitivity to DNA damage and chromosome fragility; this group includes Fanconi anaemia and Bloom syndrome. The products of the 13 FANC genes (mutated in Fanconi anaemia), which constitute the 'FANC' pathway, and BLM (the RecQ helicase mutated in Bloom syndrome) are thought to collaborate during the S phase of the cell cycle, preventing chromosome instability. Recently, BLM has been implicated in the completion of sister chromatid separation during mitosis, a complex process in which precise regulation and execution is crucial to preserve genomic stability. Here we show for the first time a role for the FANC pathway in chromosome segregation during mitotic cell division. FANCD2, a key component of the pathway, localizes to discrete spots on mitotic chromosomes. FANCD2 chromosomal localization is responsive to replicative stress and specifically targets aphidicolin (APH)-induced chromatid gaps and breaks. Our data indicate that the FANC pathway is involved in rescuing abnormal anaphase and telophase (ana-telophase) cells, limiting aneuploidy and reducing chromosome instability in daughter cells. We further address a cooperative role for the FANC pathway and BLM in preventing micronucleation, through FANC-dependent targeting of BLM to non-centromeric abnormal structures induced by replicative stress. We reveal new crosstalk between FANC and BLM proteins, extending their interaction beyond the S-phase rescue of damaged DNA to the safeguarding of chromosome stability during mitosis.

  9. Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes

    Czech Academy of Sciences Publication Activity Database

    Cioffi, M. de B.; Yano, C. F.; Sember, Alexandr; Bertollo, L.A.C.

    2017-01-01

    Roč. 8, č. 10 (2017), č. článku 258. ISSN 2073-4425 R&D Projects: GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : alternative evolutionary models * simple and multiple sex chromosomes * independent and common origins Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.600, year: 2016

  10. Microdissection and Chromosome Painting of the Alien Chromosome in an Addition Line of Wheat - Thinopyrum intermedium

    Science.gov (United States)

    Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R.-C.; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat - Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th . intermedium . Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th . intermedium , 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th . intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a Js genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (Js, J and St) in Th . intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th . bessarabicum . Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the Js genome, within a single chromosome, and among different genomes in Th . intermedium . Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  11. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate...... this incredibly big molecule and separate the two daughter chromosomes and how it makes sure that the daughter cells receives one copy each. The fully extended chromosome is two orders of magnitude larger than the cell in which it is contained. Hence the chromosome is heavily compacted in the cell...

  12. A novel genetic tool for clonal analysis of fourth chromosome mutations

    OpenAIRE

    Sousa-Neves, Rui; Schinaman, Joseph M.

    2012-01-01

    The fourth chromosome of Drosophila remains one of the most intractable regions of the fly genome to genetic analysis. The main difficulty posed to the genetic analyses of mutations on this chromosome arises from the fact that it does not undergo meiotic recombination, which makes recombination mapping impossible, and also prevents clonal analysis of mutations, a technique which relies on recombination to introduce the prerequisite recessive markers and FLP-recombinase recognition targets (FR...

  13. Frequencies of chromosome aberration on radiation workers

    International Nuclear Information System (INIS)

    Yanti Lusiyanti; Zubaidah Alatas

    2016-01-01

    Radiation exposure of the body can cause damage to the genetic material in cells (cytogenetic) in the form of changes in the structure or chromosomal aberrations in peripheral blood lymphocytes. Chromosomal aberrations can be unstable as dicentric and ring chromosomes, and is stable as translocation. Dicentric chromosome is the gold standard biomarker due to radiation exposure, and chromosome translocation is a biomarker for retrospective biodosimetry. The aim of this studi is to conduct examination of chromosomal aberrations in the radiation worker to determine the potential damage of cell that may arise due to occupational radiation exposure. The examination have been carried out on blood samples from 55 radiation workers in the range of 5-30 year of service. Chromosome aberration frequency measurement starts with blood sampling, culturing, harvesting, slide preparations, and lymphocyte chromosome staining with Giemsa and painting with Fluorescence In Situ Hybridization (FISH) technique. The results showed that chromosomal translocations are not found in blood samples radiation workers and dicentric chromosomes found only on 2 blood samples of radiation workers with a frequency of 0.001/cell. The frequency of chromosomal aberrations in the blood cells such workers within normal limits and this means that the workers have been implemented a radiation safety aspects very well. (author)

  14. Chromosomal instability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1995-01-01

    There is accumulating evidence indicating genomic instability can manifest multiple generations after cellular exposure to DNA damaging agents. For instance, some cells surviving exposure to ionizing radiations show delayed reproductive cell death, delayed mutation and / or delayed chromosomal instability. Such instability, especially chromosome destabilization has been implicated in mutation, gene amplification, cellular transformation, and cell killing. To investigate chromosomal instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells. The relationship between delayed chromosomal destabilization and other endpoints of genomic instability, namely; delayed mutation and gene amplification will be discussed, as will the potential cytogenetic and molecular mechanisms contributing to delayed chromosomal instability

  15. Delayed chromosomal instability induced by DNA damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Marder, B.A.; Day, J.P.

    1994-01-01

    Cellular exposure to DNA damaging agents rapidly results in a dose dependent increase in chromosomal breakage and gross structural chromosomal rearrangements. Over recent years, evidence has been accumulating indicating genomic instability can manifest multiple generations after cellular exposure to physical and chemical DNA damaging agents. Genomic instability manifests in the progeny of surviving cells, and has been implicated in mutation, gene application, cellular transformation, and cell killing. To investigate chromosome instability following DNA damage, we have used fluorescence in situ hybridization to detect chromosomal rearrangements in a human/hamster somatic hybrid cell line following exposure to ionizing radiation. Delayed chromosomal instability was detected when multiple populations of uniquely arranged metaphases were observed in clonal isolates raised from single cells surviving X-irradiation many generations after exposure. At higher radiation doses, chromosomal instability was observed in a relatively high frequency of surviving clones and, in general, those clones showed delayed chromosome instability also showed reduced survival as measured by colony forming ability

  16. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors

    Science.gov (United States)

    2008-04-01

    Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka , J., Braverman, M.S., Chen, Y.J., Chen, Z., et al. 2005. Genome sequencing in microfabricated...software after filtering to exclude bad spots. qPCR validation. Primer pairs used in Figure 1 were designed to cover three peaks and three troughs in

  17. Genome Organization Drives Chromosome Fragility.

    Science.gov (United States)

    Canela, Andres; Maman, Yaakov; Jung, Seolkyoung; Wong, Nancy; Callen, Elsa; Day, Amanda; Kieffer-Kwon, Kyong-Rim; Pekowska, Aleksandra; Zhang, Hongliang; Rao, Suhas S P; Huang, Su-Chen; Mckinnon, Peter J; Aplan, Peter D; Pommier, Yves; Aiden, Erez Lieberman; Casellas, Rafael; Nussenzweig, André

    2017-07-27

    In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT. Published by Elsevier Inc.

  18. Chromosomes aberations and enviromental factors

    Directory of Open Access Journals (Sweden)

    Marković Srđan Z.

    2017-01-01

    Full Text Available Explanation the topic: Changes in genetic material can lead to aberrant cell in the direction of disorders of cellular regulation, malignant transformation, cell death, or if the adjustment was made at the level of the reproductive cells, to genetic changes in some of the consequent off spring. The topic position in scientific/professional public: Breaking of chromosomes can occur spontaneously or can be induced. Chromatid/chromosome breakings can be induced by different environmental factors: chemicals, biological clastogenic agents, accidentally or intentionally. Conclusions: The authors suggest: - making conditions for strong respect of environmental regulations; - to use higher plants for the early detection of environmental mutagens; - create and orderly update National radionuclide database.

  19. A large-scale chromosome-specific SNP discovery guideline.

    Science.gov (United States)

    Akpinar, Bala Ani; Lucas, Stuart; Budak, Hikmet

    2017-01-01

    Single-nucleotide polymorphisms (SNPs) are the most prevalent type of variation in genomes that are increasingly being used as molecular markers in diversity analyses, mapping and cloning of genes, and germplasm characterization. However, only a few studies reported large-scale SNP discovery in Aegilops tauschii, restricting their potential use as markers for the low-polymorphic D genome. Here, we report 68,592 SNPs found on the gene-related sequences of the 5D chromosome of Ae. tauschii genotype MvGB589 using genomic and transcriptomic sequences from seven Ae. tauschii accessions, including AL8/78, the only genotype for which a draft genome sequence is available at present. We also suggest a workflow to compare SNP positions in homologous regions on the 5D chromosome of Triticum aestivum, bread wheat, to mark single nucleotide variations between these closely related species. Overall, the identified SNPs define a density of 4.49 SNPs per kilobyte, among the highest reported for the genic regions of Ae. tauschii so far. To our knowledge, this study also presents the first chromosome-specific SNP catalog in Ae. tauschii that should facilitate the association of these SNPs with morphological traits on chromosome 5D to be ultimately targeted for wheat improvement.

  20. Frequency of primary amenorrhea due to chromosomal aberration

    International Nuclear Information System (INIS)

    Jabbar, S.

    2004-01-01

    Objective: To find out the frequency of primary amenorrhea due to chromosomal aberration and the different options available for management. Subjects and Methods: All patients with primary amenorrhea due to chromosomal aberrations were included in study. Patient's detailed history, general physical examination, presence or absence of secondary sexual characteristics, abdominal and pelvic examination finding were noted. Targeted investigations, including ultrasound, hormonal assay, buccal smear and karyotyping results were recorded. The management options were individually tailored with focus n psychological management. Results: Eighteen patients out of 30,000 patients were diagnosed as having primary amenorrhea. Six had primary amenorrhea due to chromosomal aberrations with the frequency of 0.02%. The age at presentation was 20 years and above in 50%. The most common cause was Turner's syndrome seen in 4 out of 6. The presenting symptoms were delay in onset of menstruation in 05 patients and primary infertility in 01 patient. Conclusion: Primary amenorrhea due to chromosomal aberration is an uncommon condition requiring an early and accurate diagnosis. Turner's syndrome is a relatively common cause of this condition. Management should be multi-disciplinary and individualized according to the patient's age and symptom at presentation. Psychological management is very important and counselling throughout treatment is recommended. (author)

  1. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Science.gov (United States)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  2. Chromosome-Centric Human Proteome Project Allies with Developmental Biology: A Case Study of the Role of Y Chromosome Genes in Organ Development.

    Science.gov (United States)

    Meyfour, Anna; Pooyan, Paria; Pahlavan, Sara; Rezaei-Tavirani, Mostafa; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2017-12-01

    One of the main goals of Chromosome-Centric Human Proteome Project is to identify protein evidence for missing proteins (MPs). Here, we present a case study of the role of Y chromosome genes in organ development and how to overcome the challenges facing MPs identification by employing human pluripotent stem cell differentiation into cells of different organs yielding unprecedented biological insight into adult silenced proteins. Y chromosome is a male-specific sex chromosome which escapes meiotic recombination. From an evolutionary perspective, Y chromosome has preserved 3% of ancestral genes compared to 98% preservation of the X chromosome based on Ohno's law. Male specific region of Y chromosome (MSY) contains genes that contribute to central dogma and govern the expression of various targets throughout the genome. One of the most well-known functions of MSY genes is to decide the male-specific characteristics including sex, testis formation, and spermatogenesis, which are majorly formed by ampliconic gene families. Beyond its role in sex-specific gonad development, MSY genes in coexpression with their X counterparts, as single copy and broadly expressed genes, inhibit haplolethality and play a key role in embryogenesis. The role of X-Y related gene mutations in the development of hereditary syndromes suggests an essential contribution of sex chromosome genes to development. MSY genes, solely and independent of their X counterparts and/or in association with sex hormones, have a considerable impact on organ development. In this Review, we present major recent findings on the contribution of MSY genes to gonad formation, spermatogenesis, and the brain, heart, and kidney development and discuss how Y chromosome proteome project may exploit developmental biology to find missing proteins.

  3. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  4. The Human Proteome Organization Chromosome 6 Consortium: integrating chromosome-centric and biology/disease driven strategies.

    Science.gov (United States)

    Borchers, C H; Kast, J; Foster, L J; Siu, K W M; Overall, C M; Binkowski, T A; Hildebrand, W H; Scherer, A; Mansoor, M; Keown, P A

    2014-04-04

    The Human Proteome Project (HPP) is designed to generate a comprehensive map of the protein-based molecular architecture of the human body, to provide a resource to help elucidate biological and molecular function, and to advance diagnosis and treatment of diseases. Within this framework, the chromosome-based HPP (C-HPP) has allocated responsibility for mapping individual chromosomes by country or region, while the biology/disease HPP (B/D-HPP) coordinates these teams in cross-functional disease-based groups. Chromosome 6 (Ch6) provides an excellent model for integration of these two tasks. This metacentric chromosome has a complement of 1002-1034 genes that code for known, novel or putative proteins. Ch6 is functionally associated with more than 120 major human diseases, many with high population prevalence, devastating clinical impact and profound societal consequences. The unique combination of genomic, proteomic, metabolomic, phenomic and health services data being drawn together within the Ch6 program has enormous potential to advance personalized medicine by promoting robust biomarkers, subunit vaccines and new drug targets. The strong liaison between the clinical and laboratory teams, and the structured framework for technology transfer and health policy decisions within Canada will increase the speed and efficacy of this transition, and the value of this translational research. Canada has been selected to play a leading role in the international Human Proteome Project, the global counterpart of the Human Genome Project designed to understand the structure and function of the human proteome in health and disease. Canada will lead an international team focusing on chromosome 6, which is functionally associated with more than 120 major human diseases, including immune and inflammatory disorders affecting the brain, skeletal system, heart and blood vessels, lungs, kidney, liver, gastrointestinal tract and endocrine system. Many of these chronic and persistent

  5. Tumor-targeted nanomedicines for cancer theranostics

    Science.gov (United States)

    Lammers, Twan; Shi, Yang

    2017-01-01

    Chemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and the target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple different types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery. Based on the notion that tumors and metastases are highly heterogeneous, it is important to integrate imaging properties in nanomedicine formulations in order to enable non-invasive and quantitative assessment of targeting efficiency. By allowing for patient pre-selection, such next generation nanotheranostics are useful for facilitating clinical translation and personalizing nanomedicine treatments. PMID:27865762

  6. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  7. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  8. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley

    Directory of Open Access Journals (Sweden)

    Bartoš Jan

    2008-06-01

    Full Text Available Abstract Background Flow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification. Results Here we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA. Overnight amplification in a 20-microlitre reaction produced 3.7 – 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H – 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H. Conclusion The results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which

  9. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila.

    Science.gov (United States)

    Dyer, Kelly A; White, Brooke E; Bray, Michael J; Piqué, Daniel G; Betancourt, Andrea J

    2011-03-01

    In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining

  10. TargetCompare: A web interface to compare simultaneous miRNAs targets.

    Science.gov (United States)

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-Dos-Santos, André M; Dos Santos, Andrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. http://lghm.ufpa.br/targetcompare.

  11. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  12. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability.

    Science.gov (United States)

    Sansregret, Laurent; Patterson, James O; Dewhurst, Sally; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R; Medema, René H; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-02-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115. ©2017 American Association for Cancer Research.

  13. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  14. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia.

    Science.gov (United States)

    Zaccaria, Alfonso; Valenti, Anna Maria; Donti, Emilio; Gozzetti, Alessandro; Ronconi, Sonia; Spedicato, Francesco

    2007-04-01

    Five Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients with additional chromosome abnormalities at diagnosis have been followed during Imatinib therapy. In all, the Ph chromosome disappeared, while the 5 cases, additional abnormalities [dup(1); del(5), +8 (2 patients) and +14] persisted in the subsequent studies, performed over a period of 11 to 49 months, either alone or together with a karyotypically normal cell population. This finding is consistent with a secondary origin of the Ph chromosome in these patients. It is still to early to evaluate the possible prognostic value of these additional abnormalities.

  15. Chromosomes

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  16. Chromosome engineering: power tools for plant genetics.

    Science.gov (United States)

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Chromosomal instability in women with primary ovarian insufficiency.

    Science.gov (United States)

    Katari, Sunita; Aarabi, Mahmoud; Kintigh, Angela; Mann, Susan; Yatsenko, Svetlana A; Sanfilippo, Joseph S; Zeleznik, Anthony J; Rajkovic, Aleksandar

    2018-02-07

    What is the prevalence of somatic chromosomal instability among women with idiopathic primary ovarian insufficiency (POI)? A subset of women with idiopathic POI may have functional impairment in DNA repair leading to chromosomal instability in their soma. The formation and repair of DNA double-strand breaks during meiotic recombination are fundamental processes of gametogenesis. Oocytes with compromised DNA integrity are susceptible to apoptosis which could trigger premature ovarian aging and accelerated wastage of the human follicle reserve. Genomewide association studies, as well as whole exome sequencing, have implicated multiple genes involved in DNA damage repair. However, the prevalence of defective DNA damage repair in the soma of women with POI is unknown. In total, 46 women with POI and 15 family members were evaluated for excessive mitomycin-C (MMC)-induced chromosome breakage. Healthy fertile females (n = 20) and two lymphoblastoid cell lines served as negative and as positive controls, respectively. We performed a pilot functional study utilizing MMC to assess chromosomal instability in the peripheral blood of participants. A high-resolution array comparative genomic hybridization (aCGH) was performed on 16 POI patients to identify copy number variations (CNVs) for a set of 341 targeted genes implicated in DNA repair. Array CGH revealed three POI patients (3/16, 18.8%) with pathogenic CNVs. Excessive chromosomal breakage suggestive of a constitutional deficiency in DNA repair was detected in one POI patient with the 16p12.3 duplication. In two patients with negative chromosome breakage analysis, aCGH detected a Xq28 deletion comprising the Centrin EF-hand Protein 2 (CETN2) and HAUS Augmin Like Complex Subunit 7 (HAUS7) genes essential for meiotic DNA repair, and a duplication in the 3p22.2 region comprising a part of the ATPase domain of the MutL Homolog 1 (MLH1) gene. Peripheral lymphocytes, used as a surrogate tissue to quantify induced chromosome

  18. Evolution of the Banana Genome (Musa acuminata) Is Impacted by Large Chromosomal Translocations.

    Science.gov (United States)

    Martin, Guillaume; Carreel, Françoise; Coriton, Olivier; Hervouet, Catherine; Cardi, Céline; Derouault, Paco; Roques, Danièle; Salmon, Frédéric; Rouard, Mathieu; Sardos, Julie; Labadie, Karine; Baurens, Franc-Christophe; D'Hont, Angélique

    2017-09-01

    Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  20. Advances in plant chromosome genomics

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Šimková, Hana

    2014-01-01

    Roč. 32, č. 1 (2014), s. 122-136 ISSN 0734-9750 R&D Projects: GA ČR GAP501/10/1740; GA ČR GAP501/10/1778; GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : BAC library * Chromosome sorting * Cytogenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.015, year: 2014

  1. Radiobiological application of atomic force microscopy. Analysis on human chromosomes in culture medium

    International Nuclear Information System (INIS)

    Watanabe, Makoto; Kinjo, Yasuhito

    1995-01-01

    We have proposed a 'Heterogeneous Chromatin Target Model' on the regulating mechanisms involved in chromosome mutation due to ionizing radiations. The heterogeneity of chromatin is derived from the highly condensed organization of chromatin segments that consist of hypersensitive and fragile sites in the fluctuating assembly of nucleosome clusters (superbeads). The above consideration is going to be subjected to a new experimental approach applying the atomic force microscope (AFM), one of the most promising members of a family of scanning probe microscope (SPM). The AFM can be operated in liquid as well as in air. A living specimen can be examined without any preparative procedures (for instance, fixation, staining, vecuum evaporation and so on). Micromanipulation of the isolated chromosome is also possible by the precise positional control of a cantilever on the nanometer scale. In the present report, the mitotic metaphase chromosomes released from living cells (human lymphocytes RPMI) were spread on the clean surface of distilled water filled in a trough. The spread surface film, in which the chromosomes were embedded, was picked up and adhered tightly on a specimen substrate made of silicon. The whole-mounted chromosome were submerged in a solution of culture medium and observed within a liquid immersion cell for AFM. We used an AFM system, SPA-300 made by Seiko Instruments. The particulate chromatin segments of nucleosome clusters (superbeads) were clearly observed within mitotic human chromosomes in a living hydrated condition. These findings support the heterogeneity of chromatin target in a living cell. (author)

  2. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four...... homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  3. Exceptional Complex Chromosomal Rearrangements in Three Generations

    Directory of Open Access Journals (Sweden)

    Hannie Kartapradja

    2015-01-01

    Full Text Available We report an exceptional complex chromosomal rearrangement (CCR found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband’s mother, which was confirmed using the whole chromosome painting (WCP FISH. High resolution whole genome microarray analysis of DNA from the proband’s mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother’s and grandmother’s CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  4. Evaluation of Chromosomal Abnormalities and Common ...

    African Journals Online (AJOL)

    Evaluation of Chromosomal Abnormalities and Common Trombophilic Mutations in Cases with Recurrent Miscarriage. Ahmet Karatas, Recep Eroz, Mustafa Albayrak, Tulay Ozlu, Bulent Cakmak, Fatih Keskin ...

  5. Reflections and meditations upon complex chromosomal exchanges.

    Science.gov (United States)

    Savage, John R K

    2002-12-01

    The application of FISH chromosome painting techniques, especially the recent mFISH (and its equivalents) where all 23 human chromosome pairs can be distinguished, has demonstrated that many chromosome-type structural exchanges are much more complicated (involving more "break-rejoins" and arms) than has hitherto been assumed. It is clear that we have been greatly under-estimating the damage produced in chromatin by such agents as ionising radiation. This article gives a brief historical summary of observations leading up to this conclusion, and after outlining some of the problems surrounding the formation of complex chromosomes exchanges, speculates about possible solutions currently being proposed.

  6. Chromosomal aberrations in ore miners of Slovakia

    International Nuclear Information System (INIS)

    Beno, M.; Vladar, M.; Nikodemova, D.; Vicanova, M.; Durcik, M.

    1998-01-01

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  7. Chromosome heteromorphisms in the Japanese, 3

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Awa, A.A.

    1982-12-01

    The type and frequency of chromosome variants detected by the C-staining method were ascertained in 1,857 individuals residing in Hiroshima. The most frequent heteromorphic variant was the total inversion of the C-band in chromosome 9 found in 27 individuals (1.45%). The total inversion of the C-band in chromosome 1 was not seen in this sample, but the partial inversion of the C-band in chromosome 1 was found in 18 persons (0.97%). Partial inversion was also detected in the C-band in chromosome 9 in 22 individuals (1.18%). In chromosome 16, neither total nor partial inversion of the C-band was observed in the present study. The frequencies of chromosomes 1, 9, and 16 with a very large C-band were 0.70%, 0.22%, and 0.54%, respectively. Aside from these (1, 9, and 16) a very large C-band was found occasionally in chromosomes 4, 5, 6, 11, 12, 14, and 15, and an unusual insertion of the Y chromosome was observed. A total of 128 C-band variants (6.89%) was found in the 1,857 Hiroshima residents. (author)

  8. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome.

    Science.gov (United States)

    Shen, Yue; Wang, Yun; Chen, Tai; Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Müller, Carolin A; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M; Jiang, Hui; French, Christopher E; Nieduszynski, Conrad A; Koszul, Romain; Marston, Adele L; Yuan, Yingjin; Wang, Jian; Bader, Joel S; Dai, Junbiao; Boeke, Jef D; Xu, Xun; Cai, Yizhi; Yang, Huanming

    2017-03-10

    Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP -mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain. Copyright © 2017, American Association for the Advancement of Science.

  9. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  10. Chromosomal replicons of higher plants

    International Nuclear Information System (INIS)

    Van't Hof, J.

    1987-01-01

    This brief discussion of replicons of higher plants offers a glimpse into the properties of chromosomal DNA replication. It gives evidence that the S phase of unrelated plant species is comprised of temporally ordered replicon families that increase in number with genome size. This orderly process, which assures a normal inheritance of genetic material to recipient daughter cells, is maintained at the level of replicon clusters by two mutually exclusive mechanisms, one involving the rate at which single replicons replicate their allotment of DNA, and another by means of the tempo-pause. The same two mechanisms are used by cells to alter the pattern of chromosomal DNA replication just prior to and during normal development. Both mechanisms are genetically determined and produce genetic effects when disturbed of disrupted by additional non-conforming DNAs. Further insight into how these two mechanisms operate requires more molecular information about the nature of replicons and the factors that govern when a replicon family replicates. Plant material is a rich and ideal source for this information just awaiting exploitation. 63 refs

  11. Increased chromosome radiosensitivity during pregnancy

    International Nuclear Information System (INIS)

    Ricoul, Michelle; Sabatier, Laure; Dutrillaux, Bernard

    1997-01-01

    It was necessary to consider the risks of exposure of pregnant women, not only in relation to the child, but also in relation to their own hypersensitivity. We have demonstrated that pregnancy increases radiosensitivity of chromosome in the mouse at the end of gestation. This is of importance since it may have implications on radioprotection of pregnant women and give experimental guidelines to the problems of hypersensitivity to drugs and cancer aggravation during pregnancy. Blood obtained from women at various times of pregnancy was exposed to ionizing radiations. By comparison to non-pregnant women, an increase in chromosome breakage was observed in metaphases from lymphocytes, after short-term culture in the presence of the serum of the same donor. Immediately after delivery, this increase in radiosensitivity disappeared. In a prospective study, serial analyses showed a very strong correlation between the amount of pregnancy hormones, progesterone in particular, and the increase in radiosensitivity. Pregnant women may have an increased sensitivity to ionizing radiation during the second half of their pregnancy. This study provides the first evidence in human that radiosensitivity may vary in relation to physiological conditions

  12. Selfish X chromosomes and speciation.

    Science.gov (United States)

    Patten, Manus M

    2017-12-27

    In two papers published at about the same time almost thirty years ago, Frank (Evolution, 45, 1991a, 262) and Hurst and Pomiankowski (Genetics, 128, 1991, 841) independently suggested that divergence of meiotic drive systems-comprising genes that cheat meiosis and genes that suppress this cheating-might provide a general explanation for Haldane's rule and the large X-effect in interspecific hybrids. Although at the time, the idea was met with skepticism and a conspicuous absence of empirical support, the tide has since turned. Some of the clearest mechanistic explanations we have for hybrid male sterility involve meiotic drive systems, and several other cases of hybrid sterility are suggestive of a role for meiotic drive. In this article, I review these ideas and their descendants and catalog the current evidence for the meiotic drive model of speciation. In addition, I suggest that meiotic drive is not the only intragenomic conflict to involve the X chromosome and contribute to hybrid incompatibility. Sexually and parentally antagonistic selection pressures can also pit the X chromosome and autosomes against each other. The resulting intragenomic conflicts should lead to co-evolution within populations and divergence between them, thus increasing the likelihood of incompatibilities in hybrids. I provide a sketch of these ideas and interpret some empirical patterns in the light of these additional X-autosome conflicts. © 2017 John Wiley & Sons Ltd.

  13. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum

    NARCIS (Netherlands)

    Vlaardingerbroek, I.; Beerens, B.; Rose, L.; Fokkens, L.; Cornelissen, B.J.C.; Rep, M.

    2016-01-01

    Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo

  14. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes

    NARCIS (Netherlands)

    Aten, J. A.; Buys, C. H.; van der Veen, A. Y.; Mesa, J. R.; Yu, L. C.; Gray, J. W.; Osinga, J.; Stap, J.

    1987-01-01

    A number of structurally unrelated DNA intercalators have been studied as stabilizers of mitotic chromosomes during isolation from rodent and human metaphase cells. Seven out of the nine intercalators tested were found to be useful as chromosome stabilizing agents. Chromosome suspensions prepared in

  15. Spatial positioning of all 24 chromosomes in the lymphocytes of six subjects: evidence of reproducible positioning and spatial repositioning following DNA damage with hydrogen peroxide and ultraviolet B.

    Directory of Open Access Journals (Sweden)

    Dimitrios Ioannou

    Full Text Available The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1 More peripheral radial organization; 2 Alterations in the global distribution of chromosomes; and 3 More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively. Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms.

  16. Flow Analysis and Sorting of Plant Chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vrána, Jan; Cápal, Petr; Šimková, Hana; Karafiátová, Miroslava; Čížková, Jana; Doležel, Jaroslav

    2016-01-01

    Roč. 78, Oct 10 (2016), 5.3.1-5.3.43 ISSN 1934-9300 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : cell cycle synchronization * chromosome genomics * chromosome isolation Subject RIV: EB - Genetics ; Molecular Biology

  17. Chromosome studies in Cashew ( Anacardium occidentale L ...

    African Journals Online (AJOL)

    Despite the increased cultivation of cashew as a commodity crop in sub-Sahara Africa, Asia and South America there are few chromosome studies on it. The present study investigates number, structure and behavior of chromosome in cashew populations growing in Nigeria. Cytological examination of these populations ...

  18. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The literature is surveyed for data on recombination between loci on chromosome 5 of barley; 13 loci fall into the category “mapped” loci, more than 20 into the category “associated” loci and nine into the category “loci once suggested to be on chromosome 5”. A procedure was developed...

  19. Statistics for X-chromosome associations.

    Science.gov (United States)

    Özbek, Umut; Lin, Hui-Min; Lin, Yan; Weeks, Daniel E; Chen, Wei; Shaffer, John R; Purcell, Shaun M; Feingold, Eleanor

    2018-06-13

    In a genome-wide association study (GWAS), association between genotype and phenotype at autosomal loci is generally tested by regression models. However, X-chromosome data are often excluded from published analyses of autosomes because of the difference between males and females in number of X chromosomes. Failure to analyze X-chromosome data at all is obviously less than ideal, and can lead to missed discoveries. Even when X-chromosome data are included, they are often analyzed with suboptimal statistics. Several mathematically sensible statistics for X-chromosome association have been proposed. The optimality of these statistics, however, is based on very specific simple genetic models. In addition, while previous simulation studies of these statistics have been informative, they have focused on single-marker tests and have not considered the types of error that occur even under the null hypothesis when the entire X chromosome is scanned. In this study, we comprehensively tested several X-chromosome association statistics using simulation studies that include the entire chromosome. We also considered a wide range of trait models for sex differences and phenotypic effects of X inactivation. We found that models that do not incorporate a sex effect can have large type I error in some cases. We also found that many of the best statistics perform well even when there are modest deviations, such as trait variance differences between the sexes or small sex differences in allele frequencies, from assumptions. © 2018 WILEY PERIODICALS, INC.

  20. Cytometric analysis of irradiation damaged chromosomes

    International Nuclear Information System (INIS)

    Wilder, M.E.; Raju, M.R.

    1982-01-01

    Irradiation of cells in interphase results in dose-dependent damage to DNA which is discernable by flow-cytometric analysis of chromosomes. The quantity (and possibly the quality) of chromosomal changes is different in survival-matched doses of x and α irradiation. It may, therefore, be possible to use these methods for analysis of dose and type of exposure in unknown cases

  1. X-chromosome inactivation and escape

    Indian Academy of Sciences (India)

    2015-11-06

    Nov 6, 2015 ... tion and cancer in mice after a long period of time (Yildirim et al. 2013). ... chromosome of man has a short pairing seg- ment, that is not normally ..... Lyon M. F. 1988 The William Allan memorial award address: X-chromosome ...

  2. Chromosomal evolution and phylogenetic analyses in Tayassu ...

    Indian Academy of Sciences (India)

    Chromosome preparation and karyotype description. The material analysed consists of chromosome preparations of the tayassuid species T. pecari (three individuals) and. P. tajacu (four individuals) and were made from short-term lymphocyte cultures of whole blood samples using standard protocols (Chaves et al. 2002).

  3. AFM image of an entire polygene chromosome

    International Nuclear Information System (INIS)

    Li Minqian; Takeuchi; Ikai, A.

    1994-01-01

    The author present AFM images of an entire polygene chromosome of Drosophila for the first time. Comparing with conventional optical microscope, the AFM image of the polygene chromosomes provides much higher resolution and 3-D measurement capability which will lead to finer scale gene mapping and identification

  4. A sexy spin on nonrandom chromosome segregation.

    Science.gov (United States)

    Charville, Gregory W; Rando, Thomas A

    2013-06-06

    Nonrandom chromosome segregation is an intriguing phenomenon linked to certain asymmetric stem cell divisions. In a recent report in Nature, Yadlapalli and Yamashita (2013) observe nonrandom segregation of X and Y chromosomes in Drosophila germline stem cells and shed light on the complex mechanisms of this fascinating process. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A large inversion in the linear chromosome of Streptomyces griseus caused by replicative transposition of a new Tn3 family transposon.

    Science.gov (United States)

    Murata, M; Uchida, T; Yang, Y; Lezhava, A; Kinashi, H

    2011-04-01

    We have comprehensively analyzed the linear chromosomes of Streptomyces griseus mutants constructed and kept in our laboratory. During this study, macrorestriction analysis of AseI and DraI fragments of mutant 402-2 suggested a large chromosomal inversion. The junctions of chromosomal inversion were cloned and sequenced and compared with the corresponding target sequences in the parent strain 2247. Consequently, a transposon-involved mechanism was revealed. Namely, a transposon originally located at the left target site was replicatively transposed to the right target site in an inverted direction, which generated a second copy and at the same time caused a 2.5-Mb chromosomal inversion. The involved transposon named TnSGR was grouped into a new subfamily of the resolvase-encoding Tn3 family transposons based on its gene organization. At the end, terminal diversity of S. griseus chromosomes is discussed by comparing the sequences of strains 2247 and IFO13350.

  6. Temporal genomic evolution of bird sex chromosomes

    DEFF Research Database (Denmark)

    Wang, Zongji; Zhang, Jilin; Yang, Wei

    2014-01-01

    BACKGROUND: Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex...... driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic...

  7. Chromosome behaviour in Rhoeo spathacea var. variegata.

    Science.gov (United States)

    Lin, Y J

    1980-01-01

    Rhoeo spathacea var. variegata is unusual in that its twelve chromosomes are arranged in a ring at meiosis. The order of the chromosomes has been established, and each chromosome arm has been designated a letter in accordance with the segmental interchange theory. Chromosomes are often irregularly orientated at metaphase I. Chromosomes at anaphase I are generally distributed equally (6-6, 58.75%) although not necessarily balanced. Due to adjacent distribution, 7-5 distribution at anaphase I was frequently observed (24.17%), and due to lagging, 6-1-5 and 5-2-5 distributions were also observed (10.83% and 3.33% respectively). Three types of abnormal distribution, 8-4, 7-1-4 and 6-2-4 were observed very infrequently (2.92% total), and their possible origins are discussed. Irregularities, such as adjacent distribution and lagging, undoubtedly reduce the fertility of the plant because of the resulting unbalanced gametes.

  8. Chromosome reduction in Eleocharis maculosa (Cyperaceae).

    Science.gov (United States)

    da Silva, C R M; González-Elizondo, M S; Laforga Vanzela, A L

    2008-01-01

    Chromosome numbers in Cyperaceae lower than the typical basic number x = 5 have been described for only three species: Rhynchospora tenuis (n = 2), Fimbristylis umbellaris (n = 3) and Eleocharis subarticulata (n = 3). Eleocharis maculosa is recorded here as the fourth species of Cyperaceae that has a chromosome number lower than 2n = 10, with 2n = 8, 7 and 6. The karyotype differentiation in E. maculosa was studied using conventional staining (mitosis and meiosis), FISH with 45S and 5S rDNA and telomere probes. The results allow us to determine which chromosomes of the chromosome race with 2n = 10 fused to form the remaining reduced numbers, as well as to understand how the symploidy and translocation mechanisms were important in karyotype differentiation and the formation of chromosome races in Eleocharis. Copyright 2008 S. Karger AG, Basel.

  9. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    Science.gov (United States)

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  10. Energy Landscapes of Folding Chromosomes

    Science.gov (United States)

    Zhang, Bin

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  11. The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.

    Science.gov (United States)

    Gifalli-Iughetti, C; Koiffmann, C P

    2009-01-01

    In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright 2009 S. Karger AG, Basel.

  12. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    Science.gov (United States)

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  13. Birth and death of genes linked to chromosomal inversion

    Science.gov (United States)

    Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2011-01-01

    The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362

  14. High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in Drosophila

    NARCIS (Netherlands)

    Ramírez, Fidel; Lingg, Thomas; Toscano, Sarah; Lam, Kin Chung; Georgiev, Plamen; Chung, Ho-Ryun; Lajoie, Bryan R; de Wit, Elzo; Zhan, Ye; de Laat, Wouter; Dekker, Job; Manke, Thomas; Akhtar, Asifa

    2015-01-01

    Dosage compensation mechanisms provide a paradigm to study the contribution of chromosomal conformation toward targeting and spreading of epigenetic regulators over a specific chromosome. By using Hi-C and 4C analyses, we show that high-affinity sites (HAS), landing platforms of the male-specific

  15. Chromatid Painting for Chromosomal Inversion Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...

  16. Chromatid Painting for Chromosomal Inversion Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...

  17. Automatic Metaphase Finding by Inter-Chromosome Extrema Profile Analysis

    National Research Council Canada - National Science Library

    Vega-Alvarado, Leticia

    2001-01-01

    ...-level inter-chromosome coarseness features in microscopic images of metaphase spreads, and allows to quantity the texture of the cytological objects analysing the intensity profile between chromosome...

  18. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer

    HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method is a Fluore......HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method...

  19. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  20. Factors that determine the in vivo dose-response relationship for stable chromosome aberrations in A-bomb survivors

    International Nuclear Information System (INIS)

    Awa, A.A.; Nakano, Mimako; Ohtaki, Kazuo; Kodama, Yoshiaki; Lucas, J.; Gray, J.

    1992-01-01

    An overview is given of the dose-response relationship for stable chromosome aberrations (i.e., translocations and inversions) in the peripheral blood lymphocytes of A-bomb survivors in Hiroshima. Special emphasis is placed on (i) the overdispersion of survivor cases with either unexpectedly high or low aberration frequencies relative to the estimated DS86 kerma values assigned to individual survivors, termed 'cytogenetic outliers', and (ii) the correlation of chromosome aberration frequencies with other biological endpoints, such as acute radiation symptoms (severe epilation). A new molecular biological technique, known as fluorescence in situ hybridization (FISH) with composite, whole-chromosome probes to paint differentially the target chromosomes, has facilitated rapid, efficient, and extensive scoring of translocation-type chromosome aberrations in which the target chromosomes are involved. Using this methodology, the observed findings on translocation frequencies in A-bomb survivors have shown that the frequency of stable chromosome aberrations, which have persisted for years without change in frequency in irradiated persons, is indeed useful as an indicator for biological dosimetry. (author)

  1. Chromosomal aberrations in benign prostatic hyperplasia patients

    Directory of Open Access Journals (Sweden)

    Muammer Altok

    2016-01-01

    Full Text Available Purpose: To investigate the chromosomal changes in patients with benign prostatic hyperplasia (BPH. Materials and Methods: A total of 54 patients diagnosed with clinical BPH underwent transurethral prostate resection to address their primary urological problem. All patients were evaluated by use of a comprehensive medical history and rectal digital examination. The preoperative evaluation also included serum prostate-specific antigen (PSA measurement and ultrasonographic measurement of prostate volume. Prostate cancer was detected in one patient, who was then excluded from the study. We performed conventional cytogenetic analyses of short-term cultures of 53 peripheral blood samples obtained from the BPH patients. Results: The mean (±standard deviation age of the 53 patients was 67.8±9.4 years. The mean PSA value of the patients was 5.8±7.0 ng/mL. The mean prostate volume was 53.6±22.9 mL. Chromosomal abnormalities were noted in 5 of the 53 cases (9.4%. Loss of the Y chromosome was the most frequent chromosomal abnormality and was observed in three patients (5.7%. There was no statistically significant relationship among age, PSA, prostate volume, and chromosomal changes. Conclusions: Loss of the Y chromosome was the main chromosomal abnormality found in our study. However, this coexistence did not reach a significant level. Our study concluded that loss of the Y chromosome cannot be considered relevant for the diagnosis of BPH as it is for prostate cancer. Because BPH usually occurs in aging men, loss of the Y chromosome in BPH patients may instead be related to the aging process.

  2. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamàta table olives and developement of a protocol for the pre-selection of fermentation starters.

    Science.gov (United States)

    Bleve, Gianluca; Tufariello, Maria; Durante, Miriana; Grieco, Francesco; Ramires, Francesca Anna; Mita, Giovanni; Tasioula-Margari, Maria; Logrieco, Antonio Francesco

    2015-04-01

    Table olives are one of the most important traditional fermented vegetables in Europe and their world consumption is constantly increasing. Conservolea and Kalamàta are the most important table olives Greek varieties. In the Greek system, the final product is obtained by spontaneous fermentations, without any chemical debittering treatment. This natural fermentation process is not predictable and strongly influenced by the physical-chemical conditions and by the presence of microorganisms contaminating the olives. Natural fermentations of Conservolea and Kalamàta cultivars black olives were studied in order to determine microbiological, biochemical and chemical evolution during the process. Following the process conditions generally used by producers, in both cultivars, yeasts were detected throughout the fermentation, whereas lactic acid bacteria (LAB) appeared in the last staged of the process. A new optimized specific protocol was developed to select autochthonous yeast and LAB isolates that can be good candidates as starters. These microorganisms were pre-selected for their ability to adapt to model brines, to have beta-glucosidase activity, not to produce biogenic amines. Chemical compounds deriving by microbiological activities and associated to the three different phases (30, 90 and 180 days) of the fermentation process were identified and were proposed as chemical descriptors to follow the fermentation progress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Chromosome breakage in Vicia faba by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Fetner, R H

    1958-02-15

    Meristem cells of Vicia faba roots were exposed to an atmosphere of ozone and the fraction of cells showing chromosome aberrations were recorded. Chromosome aberrations were observed on a dose-response basis after exposing the seeds to 0.4 wt. percent ozone for 15, 30, and 60 minutes. The results of ozone, x-rays, and ozone and x-ray treatments are presented. A small number of root tips from each group was treated with colchicine and an analysis made of metaphase aberrations. These observations confirmed that the aberrations were all of the chromosome-type.

  4. Genetic and chromosomal effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The genetic and chromosomal effects of ionizing radiations deal with those effects in the descendants of the individuals irradiated. The information base concerning genetic and chromosomal injury to humans from radiation is less adequate than is the information base for cancer and leukemia. As a result, it is not possible to make the kinds of quantitative estimates that have been made for carcinogenesis in previous chapters of this book. The chapter includes a detailed explanation of various types of genetic injuries such as chromosomal diseases, x-linked diseases, autosomal dominant diseases, recessive diseases, and irregularly inherited diseases. Quantitative estimates of mutation rates and incidences are given based on atomic bomb survivors data

  5. Chromosome mosaicism in hypomelanosis of Ito.

    Science.gov (United States)

    Ritter, C L; Steele, M W; Wenger, S L; Cohen, B A

    1990-01-01

    Our finding of chromosome mosaicism with a ring 22 in a retarded black boy with hypomelanosis of Ito prompted a review of this "syndrome." Most patients have a variety of non-dermal defects, particularly those affecting CNS function. Among karyotyped patients, most are chromosome mosaics of one sort or another. Hypomelanosis of Ito turns out to be a causable non-specific phenotype, i.e., a clinical marker for chromosome mosaicism of all different types in individuals with a dark enough skin to show lighter patches. Consequently, cytogenetic evaluation is indicated in all patients with this skin finding.

  6. The Barley Chromosome 5 Linkage Map

    DEFF Research Database (Denmark)

    Jensen, J.; Jørgensen, Jørgen Helms

    1975-01-01

    The distances between nine loci on barley chromosome 5 have been studied in five two-point tests, three three-point tests, and one four-point test. Our previous chromosome 5 linkage map, which contained eleven loci mapped from literature data (Jensen and Jørgensen 1975), is extended with four loci......-position is fixed on the map by a locus (necl), which has a good marker gene located centrally in the linkage group. The positions of the other loci are their distances in centimorgans from the 0-position; loci in the direction of the short chromosome arm are assigned positive values and those...

  7. Antibodies against chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Giwercman, B; Rasmussen, J W; Ciofu, Oana

    1994-01-01

    A murine monoclonal anti-chromosomal beta-lactamase antibody was developed and an immunoblotting technique was used to study the presence of serum and sputum antibodies against Pseudomonas aeruginosa chromosomal group 1 beta-lactamase in patients with cystic fibrosis (CF). The serum antibody...... 1 cephalosporinase. We found a wide range of chromosomal beta-lactamase activity in the sputum samples, with no correlation with basal or induced activity of beta-lactamase expression. The presence of anti-beta-lactamase antibodies in endobronchial sputum could be an important factor in the defense...

  8. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology.

    Science.gov (United States)

    Moralli, Daniela; Monaco, Zoia L

    2015-02-01

    De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.

  9. Chronic lymphocytic leukemia-associated chromosomal abnormalities and miRNA deregulation

    Directory of Open Access Journals (Sweden)

    Kiefer Y

    2012-03-01

    Full Text Available Yvonne Kiefer1, Christoph Schulte2, Markus Tiemann2, Joern Bullerdiek11Center for Human Genetics, University of Bremen, Bremen, Germany; 2Hematopathology Hamburg, Hamburg, GermanyAbstract: Chronic lymphocytic leukemia is the most common leukemia in adults. By cytogenetic investigations major subgroups of the disease can be identified that reflect different routes of tumor development. Of these chromosomal deviations, trisomy 12 and deletions of parts of either the long arm of chromosome 13, the long arm of chromosome 11, or the short arm of chromosome 17 are most commonly detected. In some of these aberrations the molecular target has been identified as eg, ataxia telangiectasia mutated (ATM in case of deletions of chromosomal region 11q22~23 and the genes encoding microRNAs miR-15a/16-1 as likely targets of deletions of chromosomal band 13q14.3. Of note, these aberrations do not characterize independent subgroups but often coexist within the metaphases of one tumor. Generally, complex aberrations are associated with a worse prognosis than simple karyotypic alterations. Due to smaller sizes of the missing segment the detection of recurrent deletions is not always possible by means of classical cytogenetics but requires more advanced techniques as in particular fluorescence in situ hybridization (FISH. Nevertheless, at this time it is not recommended to replace classical cytogenetics by FISH because this would miss additional information given by complex or secondary karyotypic alterations. However, the results of cytogenetic analyses allow the stratification of prognostic and predictive groups of the disease. Of these, the group characterized by deletions involving TP53 is clinically most relevant. In the future refined methods as eg, array-based comparative genomic hybridization will supplement the existing techniques to characterize CLL. Keywords: chronic lymphocytic leukemia, chromosomal abnormality, miRNA deregulation

  10. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis.

    Science.gov (United States)

    Phillips, Carolyn M; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M; Weiser, Pinky; Meneely, Philip M; Dernburg, Abby F

    2005-12-16

    The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.

  11. HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis

    International Nuclear Information System (INIS)

    Phillips, Carolyn M.; Wong, Chihunt; Bhalla, Needhi; Carlton, Peter M.; Weiser, Pinky; Meneely, Philip M.; Dernburg, Abby F.

    2005-01-01

    The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X-chromosome-specific defects in homolog pairing and synapsis.him-8 encodes a C2H2 zinc finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as themeiotic Pairing Center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8-bound chromosome sites associate with the nuclear envelope (NE)throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient

  12. Methods for targetted mutagenesis in gram-positive bacteria

    Science.gov (United States)

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  13. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin.

    Science.gov (United States)

    Gotoh, Eisuke

    2015-01-01

    Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.

  14. Why Do Sex Chromosomes Stop Recombining?

    Science.gov (United States)

    Ponnikas, Suvi; Sigeman, Hanna; Abbott, Jessica K; Hansson, Bengt

    2018-04-28

    It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Human oocyte chromosome analyses need a standardized ...

    Indian Academy of Sciences (India)

    Studies of DNA polymorphisms in human trisomic abor- tions and liveborn have ... Keywords. human oocyte chromosomes; cytogenetic analysis; aneuploidy; nondisjunction; predivision. Journal of .... oocytes and giant embryos. Hum. Reprod.

  16. Conservation of sex chromosomes in lacertid lizards

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Vukič, J.; Altmanová, M.; Johnson Pokorná, Martina; Moravec, J.; Kratochvíl, L.

    2016-01-01

    Roč. 25, č. 13 (2016), s. 3120-3126 ISSN 0962-1083 Institutional support: RVO:67985904 Keywords : lizards * molecular sex ing * reptiles * sex chromosomes Subject RIV: EG - Zoology Impact factor: 6.086, year: 2016

  17. Micro-Raman spectroscopy of chromosomes

    NARCIS (Netherlands)

    de Mul, F.F.M.; van Welle, A.G.M.; Otto, Cornelis; Greve, Jan

    1984-01-01

    Raman spectra of intact chromosomes (Chinese hamster), recorded with a microspectrometer, are reported. The spectra could be assigned to protein and DNA contributions. Protein and DNA conformations and the ratio of base pairs in DNA were determined.

  18. Partial Duplication of Chromosome 8p

    African Journals Online (AJOL)

    rme

    The partial chromosome 8p duplication is a rare syndrome and is ... abnormality of maternal origin that ... second trimester by vaginal bleeding and ... echocardiography, brain CT scan and. MRI. Fig. 1:Conventional karyotype of case 3 showing.

  19. Chromosomal contact permits transcription between coregulated genes

    CSIR Research Space (South Africa)

    Fanucchi, Stephanie

    2013-10-01

    Full Text Available . To ask whether chromosomal contacts are required for cotranscription in multigene complexes, we devised a strategy using TALENs to cleave and disrupt gene loops in a well-characterized multigene complex. Monitoring this disruption using RNA FISH...

  20. Evaluation of chromosomal abnormalities and common trombophilic ...

    African Journals Online (AJOL)

    2014-03-01

    Mar 1, 2014 ... Infections, genetic, endocrine, anatomic and immunologic problems have been suggested as causes for RM. ... Metaphase chromosome preparations from the .... The rate of karyotypically abnormal abortion specimens.

  1. Histone modifications: Cycling with chromosomal replication

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    Histone modifications tend to be lost during chromosome duplication. Several recent studies suggest that the RNA interference pathway becomes active during the weakened transcriptional repression occurring at centromeres in S phase, resulting in the re-establishment of histone modifications...

  2. Complement activation in chromosome 13 dementias

    DEFF Research Database (Denmark)

    Rostagno, A.; Revesz, T.; Lashley, T.

    2002-01-01

    Chromosome 13 dementias, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with neurodegeneration and cerebrovascular amyloidosis, with striking neuropathological similarities to Alzheimer's disease (AD). Despite the structural differences among the amyloid subunits...

  3. Non-disjunction of chromosome 13

    DEFF Research Database (Denmark)

    Bugge, Merete; Collins, Andrew; Hertz, Jens Michael

    2007-01-01

    We performed a molecular study with 21 microsatellites on a sample of 82 trisomy 13 conceptuses, the largest number of cases studied to date. The parental origin was determined in every case and in 89% the extra chromosome 13 was of maternal origin with an almost equal number of maternal MI and MII...... recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms...... that determine non-disjunction of human chromosomes, consistent with the diversity of findings for other trisomies. Udgivelsesdato: 2007-Aug-15...

  4. System for the analysis of plant chromosomes

    International Nuclear Information System (INIS)

    Medina Martin, D.; Peraza Gonzalez, L.H.

    1996-01-01

    The paper describes a computer system for the automation workers of recognition analysis and interpretation of plant chromosomes. This system permit to carry out the analysis in a more comfortable and faster way, using the image processing techniques

  5. Sex chromosomes and speciation in Drosophila

    Science.gov (United States)

    Presgraves, Daven C.

    2010-01-01

    Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule— the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the ‘large X-effect’ have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings— on faster X evolution, X chromosome meiotic drive, and the regulation of the X chromosome in the male-germline— provide plausible evolutionary explanations for the large X-effect. PMID:18514967

  6. Errata :Chromosomal Abnormalities in Couples with Recurrent ...

    African Journals Online (AJOL)

    Chromosomal Abnormalities in Couples with Recurrent Abortions in Lagos, Nigeria. Akinde OR, Daramola A O, Taiwo I A, Afolayan M O and Akinsola Af. Sonographic Mammary Gland Density Pattern in Women in Selected ommunities of Southern Nigeria.

  7. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae)

    Science.gov (United States)

    Suárez, Pablo; Boeris, Juan M.; Blasco-Zúñiga, Ailin; Barbero, Gastón; Gomes, Anderson; Gazoni, Thiago; Costa, William; Nagamachi, Cleusa Y.; Rivera, Miryan; Parise-Maltempi, Patricia P.; Wiley, John E.; Pieczarka, Julio C.; Haddad, Celio F. B.; Faivovich, Julián; Baldo, Diego

    2018-01-01

    The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46) and H. alytolylax (FN = 38), with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p), H. palmeri (4q), and H. larinopygion (1p). Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns) for their impact on the taxonomy and karyotype evolution in Cophomantini. PMID:29444174

  8. Demasculinization of the Anopheles gambiae X chromosome

    Directory of Open Access Journals (Sweden)

    Magnusson Kalle

    2012-05-01

    Full Text Available Abstract Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z. Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

  9. Human Chromosome 7: DNA Sequence and Biology

    OpenAIRE

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.

    2003-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate gene...

  10. Chromosomal organization and segregation in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Isabelle Vallet-Gely

    2013-05-01

    Full Text Available The study of chromosomal organization and segregation in a handful of bacteria has revealed surprising variety in the mechanisms mediating such fundamental processes. In this study, we further emphasized this diversity by revealing an original organization of the Pseudomonas aeruginosa chromosome. We analyzed the localization of 20 chromosomal markers and several components of the replication machinery in this important opportunistic γ-proteobacteria pathogen. This technique allowed us to show that the 6.3 Mb unique circular chromosome of P. aeruginosa is globally oriented from the old pole of the cell to the division plane/new pole along the oriC-dif axis. The replication machinery is positioned at mid-cell, and the chromosomal loci from oriC to dif are moved sequentially to mid-cell prior to replication. The two chromosomal copies are subsequently segregated at their final subcellular destination in the two halves of the cell. We identified two regions in which markers localize at similar positions, suggesting a bias in the distribution of chromosomal regions in the cell. The first region encompasses 1.4 Mb surrounding oriC, where loci are positioned around the 0.2/0.8 relative cell length upon segregation. The second region contains at least 800 kb surrounding dif, where loci show an extensive colocalization step following replication. We also showed that disrupting the ParABS system is very detrimental in P. aeruginosa. Possible mechanisms responsible for the coordinated chromosomal segregation process and for the presence of large distinctive regions are discussed.

  11. Female meiotic sex chromosome inactivation in chicken.

    Directory of Open Access Journals (Sweden)

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  12. Abnormal sex chromosome constitution and longitudinal growth

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Skakkebaek, Niels E; Juul, Anders

    2008-01-01

    Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles.......Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles....

  13. Chromosome evolution in Cophomantini (Amphibia, Anura, Hylinae.

    Directory of Open Access Journals (Sweden)

    Juan M Ferro

    Full Text Available The hylid tribe Cophomantini is a diverse clade of Neotropical treefrogs composed of the genera Aplastodiscus, Boana, Bokermannohyla, Hyloscirtus, and Myersiohyla. The phylogenetic relationships of Cophomantini have been comprehensively reviewed in the literature, providing a suitable framework for the study of chromosome evolution. Employing different banding techniques, we studied the chromosomes of 25 species of Boana and 3 of Hyloscirtus; thus providing, for the first time, data for Hyloscirtus and for 15 species of Boana. Most species showed karyotypes with 2n = 2x = 24 chromosomes; some species of the B. albopunctata group have 2n = 2x = 22, and H. alytolylax has 2n = 2x = 20. Karyotypes are all bi-armed in most species presented, with the exception of H. larinopygion (FN = 46 and H. alytolylax (FN = 38, with karyotypes that have a single pair of small telocentric chromosomes. In most species of Boana, NORs are observed in a single pair of chromosomes, mostly in the small chromosomes, although in some species of the B. albopunctata, B. pulchella, and B. semilineata groups, this marker occurs on the larger pairs 8, 1, and 7, respectively. In Hyloscirtus, NOR position differs in the three studied species: H. alytolylax (4p, H. palmeri (4q, and H. larinopygion (1p. Heterochromatin is a variable marker that could provide valuable evidence, but it would be necesserary to understand the molecular composition of the C-bands that are observed in different species in order to test its putative homology. In H. alytolylax, a centromeric DAPI+ band was observed on one homologue of chromosome pair 2. The band was present in males but absent in females, providing evidence for an XX/XY sex determining system in this species. We review and discuss the importance of the different chromosome markers (NOR position, C-bands, and DAPI/CMA3 patterns for their impact on the taxonomy and karyotype evolution in Cophomantini.

  14. Paternal isodisomy of chromosome 6 in association with a maternal supernumerary marker chromosome (6)

    Energy Technology Data Exchange (ETDEWEB)

    James, R.S.; Crolla, J.A.; Sitch, F.L. [Salisbury District Hospital, Wiltshire (United Kingdom)] [and others

    1994-09-01

    Uniparental disomy may arise by a number of different mechanisms of aneuploidy correction. A population that has been identified as being at increased risk of aneuploidy are those individuals bearing supernumerary marker chromosomes (SMCs). There have been a number of cases reported of trisomy 21 in association with bi-satellited marker chromosomes have described two individuals with small inv dup (15) markers. One had paternal isodisomy of chromosome 15 and Angelman syndrome. The other had maternal heterodisomy (15) and Prader-Willi syndrome. At the Wessex Regional Genetics Laboratory we have conducted a search for uniparental disomy of the normal homologues of the chromosomes from which SMCs originated. Our study population consists of 39 probands with SMCs originating from a number of different autosomes, including 17 with SMCs of chromosome 15 origin. Using PCR amplification of microsatellite repeat sequences located distal to the regions included in the SMCs we have determined the parental origin of the two normal homologues in each case. We have identified paternal isodisomy of chromosome 6 in a female child with a supernumerary marker ring chromosome 6 in approximately 70% of peripheral blood lymphocytes. The marker was found to be of maternal origin. This is the second case of paternal isodisomy of chromosome 6 to be reported, and the first in association with a SMC resulting in a partial trisomy for a portion of the short arm of chromosome 6. In spite of this, the patient appears to be functioning appropriately for her age.

  15. Chromosomes in the genesis and progression of ependymomas

    DEFF Research Database (Denmark)

    Rogatto, S R; Casartelli, C; Rainho, C A

    1993-01-01

    chromosomes in three cases. Structural rearrangements of chromosome 2 were a finding for all cases and involved loss of material at 2q32-34. Other structural chromosome abnormalities detected involved chromosomes 4, 6, 10, 11, 12, and X. We also reviewed data on 22 cases previously reported....

  16. Chromosome abnormalities in atomic bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Tomonaga, Y [Nagasaki Univ. (Japan). School of Medicine

    1976-09-01

    Chromosome abnormalities in bone marrow cells were recognized in 6 cases which consisted of one case of chronic myelogenous leukemia, two cases of acute myelogenous leukemia, one case of sideroblastic anemia, and two cases of myelodysplasis. Frequency of stable type chromosome abnormalities in bone marrow cells was investigated in 45 atomic bomb survivors without hematologic disorders and 15 controls. It was 1.4% (15 cases) in the group exposed to atomic bomb within 1 km from the hypocenter, which was significantly higher as compared with 0.1% (15 cases) in the group exposed to atomic bomb over 2.5 km from the hypocenter and 0.2% in normal controls. Examination of chromosome was also made on 2 of 3 cases which were the seconds born of female with high chromosome abnormality, who was exposed to within 1 km from the hypocenter, and healthy male exposed 3 km from the hypocenter. These two cases showed chromosome of normal male type, and balanced translocation was not recognized. There was not a significant difference in chromosome abnormalities between the seconds of atomic bomb survivors and controls.

  17. Evolutionary stability of sex chromosomes in snakes.

    Science.gov (United States)

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. © 2015 The Author(s).

  18. Chromosome aberration assays in barley (Hordeum vulgare)

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M J [Univ. of Tennessee, Knoxville; Nilan, R A

    1982-01-01

    Barley is an exceellent organism for studies of induced chromosome aberrations because of its few (2n = 2x = 14) relatively large chromosomes. Root-tip and shoot-tip cells have been used extensively for the study of ionizing radiation-induced chromosome aberrations. The general procedures are well known, the technology is simple and easy to learn, and the assays are relatively quick and inexpensive. Both root tips and shoot tips can be used for the study of chemical mutagens as well as ionizing radiations. Pollen mother cells are well suited for studying the effects of mutagens on meiotic chromosomes. The literature review for the Gene-Tox Program reported on 61 chemicals tested for their effects on barley chromosomes. Of these, 90% were reported to be either positive or positive dose-related, while 7% were negative and 3% were questionable. Barley assays based on chromosomal aberrations are useful to detect the clastogenic potency of chemicals under laboratory conditions. Indications are that the data from barley can be used to corroborate data obtained from other organisms. Among the classes of chemicals assayed were: alcohols and phenols; alkaloids; epoxides; alkyl sulfates; amides and sulfonamides; aromatic amines; aryl halides; aziridines; alkenes; carbamates; hydroazides; nitroaromatics; nitrosamides; nitrosources; phenothiazines; and polycyclic aromatic hydrocarbons.

  19. Flow cytogenetics: progress toward chromosomal aberration detection

    International Nuclear Information System (INIS)

    Carrano, A.V.; Gray, J.W.; Van Dilla, M.A.

    1977-01-01

    Using clonal derivatives of the Chinese hamster M3-1 cell line, we demonstrate the potential of flow systems to karyotype homogeneous aberrations (aberrations which are identical and present in every cell) and to detect heterogeneous aberrations (aberrations which occur randomly in a population and are not identical in every cell). Flow cytometry (FCM) of ethidium bromide stained isolated chromosomes from clone 650A of the M3-1 cells distinguishes nine chromosome types from the fourteen present in the actual karyotype. X-irradiation of this parent 650A clone produced two sub-clones with an altered flow karyotype, that is, their FCM distributions were characterized by the addition of new peaks and alterations in area under existing peaks. From the relative DNA content and area for each peak, as determined by computer analysis, we predicted that each clone had undergone a reciprocal translocation involving chromosomes from two peaks. This prediction was confirmed by Giemsa-banding the metaphase cells. Heterogeneous aberrations are reflected in the flow karyotype as an increase in background, that is, an increase in area underlying the chromosome peaks. This increase is dose dependent but, as yet, the sample variability has been too large for quantitative analysis. Flow sorting of the valleys between chromosome peaks produces enriched fractions of aberrant chromosomes for visual analysis. These approaches are potentially applicable to the analysis of chromsomal aberrations induced by environmental contaminants

  20. Chromosome abnormalities in atomic bomb survivors

    International Nuclear Information System (INIS)

    Tomonaga, Yu

    1976-01-01

    Chromosome abnormalities in bone marrow cells were recognized in 6 cases which consisted of one case of chronic myelogenous leukemia, two cases of acute myelogenous leukemia, one case of sideroblastic anemia, and two cases of myelodysplasis. Frequency of stable type chromosome abnormalities in bone marrow cells was investigated in 45 atomic bomb survivors without hematologic disorders and 15 controls. It was 1.4% (15 cases) in the group exposed to atomic bomb within 1 km from the hypocenter, which was significantly higher as compared with 0.1% (15 cases) in the group exposed to atomic bomb over 2.5 km from the hypocenter and 0.2% in normal controls. Examination of chromosome was also made on 2 of 3 cases which were the seconds born of female with high chromosome abnormality, who was exposed to within 1 km from the hypocenter, and healthy male exposed 3 km from the hypocenter. These two cases showed chromosome of normal male type, and balanced translocation was not recognized. There was not a significant difference in chromosome abnormalities between the seconds of atomic bomb survivors and controls. (Kanao, N.)

  1. Polytene chromosome map and inversion polymorphism in Drosophila mediopunctata

    Directory of Open Access Journals (Sweden)

    Galina Ananina

    2002-07-01

    Full Text Available Drosophila mediopunctata belongs to the tripunctata group, and is one of the commonest Drosophila species collected in some places in Brazil, especially in the winter. A standard map of the polytene chromosomes is presented. The breakpoints of the naturally occurring chromosomal rearrangements are marked on the map. The distribution of breaking points through the chromosomes of D. mediopunctata is apparently non-random. Chromosomes X, II and IV show inversion polymorphisms. Chromosome II is the most polymorphic, with 17 inversions, 8 inversions in the distal region and 9 in the proximal region. Chromosome X has four different gene arrangements, while chromosome IV has only two.

  2. Moderate repetitions (mobile elements) and hot points of chromosomal mutagenesis in Drozophila melanogaster

    International Nuclear Information System (INIS)

    Aleksandrova, M.V.; Sevan'kaev, A.V.; Aleksandrov, I.D.

    1989-01-01

    The results of experimental examination of hypothesis on mobile elements (ME) as target for radiation-induced chromosomal mutagenesis do not confirm it in this direct variant though indicate on the presence of nonincidental connection between sites of ME localization of certain type and points of chromosomal mutagenesis are presented. The presented regularity is explained by assumption that settling of the ME by genome is going along postulated static chromomer-binding-DNA complexes, playing an important role in space organization of interphase chromatin. 11 refs.; 2 figs.; 2 tabs

  3. Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum.

    Science.gov (United States)

    Kashiwa, Takeshi; Kozaki, Toshinori; Ishii, Kazuo; Turgeon, B Gillian; Teraoka, Tohru; Komatsu, Ken; Arie, Tsutomu

    2017-01-01

    A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.

  5. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    Yang-Feng, T.L.; Xue, Feiyu; Zhong, Wuwei; Cotecchia, S.; Frielle, T.; Caron, M.G.; Lefkowitz, R.J.; Francke, U.

    1990-01-01

    The adrenergic receptors (ARs) (subtypes α 1 , α 2 , β 1 , and β 2 ) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β 2 -and α 2 -AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α 1 -AR gene to chromosome 5q32→q34, the same position as β 2 -AR, and the β 1 -AR gene to chromosome 10q24→q26, the region where α 2 -AR, is located. In mouse, both α 2 -and β 1 -AR genes were assigned to chromosome 19, and the α 1 -AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α 1 -and β 2 -AR genes in humans are within 300 kilobases (kb) and the distance between the α 2 - and β 1 -AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  6. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  7. Additional chromosome abnormalities in chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Hui-Hua Hsiao

    2011-02-01

    Full Text Available The Philadelphia (Ph chromosome and/or Breakpoint cluster region-Abelson leukemia virus oncogene transcript are unique markers for chronic myeloid leukemia (CML. However, CML demonstrates heterogeneous presentations and outcomes. We analyzed the cytogenetic and molecular results of CML patients to evaluate their correlation with clinical presentations and outcome. A total of 84 newly diagnosed CML patients were enrolled in the study. Patients were treated according to disease status. Bone marrow samples were obtained to perform cytogenetic and molecular studies. Clinical presentations, treatment courses, and survival were reviewed retrospectively. Among 84 patients, 72 had chronic phase and 12 had accelerated phase CML. Cytogenetic study showed 69 (82.1% with the classic Ph chromosome, 6 (7.2% with a variant Ph chromosome, and 9 (10.7% with additional chromosome abnormalities. Fifty-four (64.3% cases harbored b3a2 transcripts, 29 (34.5% had b2a2 transcript, and 1 had e19a2 transcript. There was no difference in clinical presentations between different cytogenetic and molecular groups; however, additional chromosome abnormalities were significantly associated with the accelerated phase. Imatinib therapy was an effective treatment, as measured by cytogenetic response, when administered as first- and second-line therapy in chronic phase patients. Survival analysis showed that old age, additional chromosome abnormalities, high Sokal score, and no cytogenetic response in second-line therapy had a significant poor impact (p<0.05. In conclusion, we presented the cytogenetic and molecular pattern of CML patients and demonstrated that the additional chromosome abnormality was associated with poor outcome.

  8. Structural variations of chromosome 1 R from rye cultivar Jingzhouheimai induced by irradiation

    International Nuclear Information System (INIS)

    Wang Conglei; Zhuang Lifang; Qi Zengjun

    2012-01-01

    Irradiated with 60 Co γ-rays (12 Gy), the pollen of wheat landrace Huixianhong-Secale cereal cv. Jingzhouheimai DA1R was pollinated to the emasculated spikes of Huixianhong. Analyzed with genomic in situ hybridization GISH using gDNA of rye cv. Jingzhouheimai as a probe, four plants with reciprocal translocation, four plants with large segmental translocation and one plant with distal segmental translocation, one plant with one telocentric chromosome were identified from 33 M 1 seeds. The results showed that the translocation frequency was 30.30% and of the total 11 breakage-fusion events, 1 involved centric regions and 10 involved interstitial regions. The experiment showed that pollen irradiation was an effective method to induce wheat alien chromosomal structural variations which could effectively by used in deletion mapping, chromosomal location of important agronomic genes and development of small segmental translocations with target genes. (authors)

  9. Deep functional analysis of synII, a 770 kb synthetic yeast chromosome

    Science.gov (United States)

    Gao, Feng; Gong, Jianhui; Abramczyk, Dariusz; Walker, Roy; Zhao, Hongcui; Chen, Shihong; Liu, Wei; Luo, Yisha; Müller, Carolin A.; Paul-Dubois-Taine, Adrien; Alver, Bonnie; Stracquadanio, Giovanni; Mitchell, Leslie A.; Luo, Zhouqing; Fan, Yanqun; Zhou, Baojin; Wen, Bo; Tan, Fengji; Wang, Yujia; Zi, Jin; Xie, Zexiong; Li, Bingzhi; Yang, Kun; Richardson, Sarah M.; Jiang, Hui; French, Christopher E.; Nieduszynski, Conrad A.; Koszul, Romain; Marston, Adele L.; Yuan, Yingjin; Wang, Jian; Bader, Joel S.; Dai, Junbiao; Boeke, Jef D.; Xu, Xun; Cai, Yizhi; Yang, Huanming

    2017-01-01

    Herein we report the successful design, construction and characterization of a 770 kb synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels, including phenomics, transcriptomics, proteomics, chromosome segregation and replication analysis to provide a thorough and comprehensive analysis of a synthetic chromosome. Our “Trans-Omics” analyses reveal a modest but potentially significant pervasive up-regulation of translational machinery observed in synII is mainly caused by the deletion of 13 tRNAs. By both complementation assays and SCRaMbLE, we targeted and debuged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the HOG response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain. PMID:28280153

  10. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Science.gov (United States)

    Deng, Chuanliang; Bai, Lili; Fu, Shulan; Yin, Weibo; Zhang, Yingxin; Chen, Yuhong; Wang, Richard R-C; Zhang, Xiangqi; Han, Fangpu; Hu, Zanmin

    2013-01-01

    In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a J(s) genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s) , J and St) in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s) genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different

  11. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat--Thinopyrum intermedium.

    Directory of Open Access Journals (Sweden)

    Chuanliang Deng

    Full Text Available In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome and pDbH12 (a J(s genome specific probe as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s , J and St in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of

  12. Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes

    Czech Academy of Sciences Publication Activity Database

    Bozek, M.; Leitch, A. R.; Leitch, I. J.; Záveská Drábková, Lenka; Kuta, E.

    2012-01-01

    Roč. 170, č. 4 (2012), s. 529-541 ISSN 0024-4074 R&D Projects: GA ČR GP206/07/P147 Institutional support: RVO:67985939 Keywords : chromosomal evolution * endopolyploidy * holokinetic chromosome * karyotype evolution * tetraploides * centromeres * TRNF intergenic spacer Subject RIV: EF - Botanics Impact factor: 2.589, year: 2012

  13. Chromosomal geometry in the interface from the frequency of the radiation induced chromosome aberrations

    International Nuclear Information System (INIS)

    Nasazzi, N.; Otero, D.; Di Giorgio, M.

    1996-01-01

    Ionizing radiation induces DNA double-strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosomal aberrations. Stable chromosomal aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). When DSBs induction and interaction is done at random, and the proximity effects are neglected, the expected relation between translocations and inversions is F=86, based on chromosome arm length. The number of translocations and inversions is analyzed by using G-banding in 16 lymphocytes cultures from blood samples acutely irradiated with γ-rays (dose range: 0,5 Gy - 3 Gy). The result obtained was: F=13,5, significantly smaller than F=86. Literature data show similar small F values, but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have more interaction probability. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. A DSBs interaction probability function with cut-off length= 1μ is assumed. According to our results, the confinement volume is ≅ 6.4% of the nuclear volume. Nevertheless, we presume that large spread in F data could be due to temporal variation in overlapping and spatial chromosomal confinement. (authors). 14 refs

  14. Chromosome painting in biological dosimetry: Semi-automatic system to score stable chromosome aberrations

    International Nuclear Information System (INIS)

    Garcia-Sagredo, J.M.; Vallcorba, I.; Sanchez-Hombre, M.C.; Ferro, M.T.; San Roman Cos-Gayon, C.; Santos, A.; Malpica, N.; Ortiz, C.

    1997-01-01

    From the beginning of the description of the procedure of chromosome painting by fluorescence in situ hybridization (FISH), it was thought its possible application to score induced chromosomal aberrations in radiation exposition. With chromosome painting it is possible to detect changes between chromosomes that has been validated in radiation exposition. Translocation scoring by FISH, contrarily to the unstable dicentrics, mainly detect stable chromosome aberrations that do not disappear, it allows the capability of quantify delayed acute expositions or chronic cumulative expositions. The large number of cells that have to be analyzed for high accuracy, specially when dealing with low radiation doses, makes it almost imperative to use an automatic analysis system. After validate translocation scoring by FISH in our, we have evaluated the ability and sensitivity to detect chromosomal aberrations by chromosome using different paint probes used, showing that any combination of paint probes can be used to score induced chromosomal aberrations. Our group has developed a FISH analysis that is currently being adapted for translocation scoring analysis. It includes systematic error correction and internal control probes. The performance tests carried out show that 9,000 cells can be analyzed in 10 hr. using a Sparc 4/370. Although with a faster computer, a higher throughput is expected, for large population screening or very low radiation doses, this performance still has to be improved. (author)

  15. Unique mosaicism of structural chromosomal rearrangement: is chromosome 18 preferentially involved?

    NARCIS (Netherlands)

    Pater, J.M. de; Smeets, D.F.C.M.; Scheres, J.M.J.C.

    2003-01-01

    The mentally normal mother of a 4-year-old boy with del(18)(q21.3) syndrome was tested cytogenetically to study the possibility of an inherited structural rearrangement of chromosome 18. She was found to carry an unusual mosaicism involving chromosomes 18 and 21. Two unbalanced cell lines were seen

  16. Higher 5-hydroxymethylcytosine identifies immortal DNA strand chromosomes in asymmetrically self-renewing distributed stem cells.

    Science.gov (United States)

    Huh, Yang Hoon; Cohen, Justin; Sherley, James L

    2013-10-15

    Immortal strands are the targeted chromosomal DNA strands of nonrandom sister chromatid segregation, a mitotic chromosome segregation pattern unique to asymmetrically self-renewing distributed stem cells (DSCs). By nonrandom segregation, immortal DNA strands become the oldest DNA strands in asymmetrically self-renewing DSCs. Nonrandom segregation of immortal DNA strands may limit DSC mutagenesis, preserve DSC fate, and contribute to DSC aging. The mechanisms responsible for specification and maintenance of immortal DNA strands are unknown. To discover clues to these mechanisms, we investigated the 5-methylcytosine and 5-hydroxymethylcytosine (5hmC) content on chromosomes in mouse hair follicle DSCs during nonrandom segregation. Although 5-methylcytosine content did not differ significantly, the relative content of 5hmC was significantly higher in chromosomes containing immortal DNA strands than in opposed mitotic chromosomes containing younger mortal DNA strands. The difference in relative 5hmC content was caused by the loss of 5hmC from mortal chromosomes. These findings implicate higher 5hmC as a specific molecular determinant of immortal DNA strand chromosomes. Because 5hmC is an intermediate during DNA demethylation, we propose a ten-eleven translocase enzyme mechanism for both the specification and maintenance of nonrandomly segregated immortal DNA strands. The proposed mechanism reveals a means by which DSCs "know" the generational age of immortal DNA strands. The mechanism is supported by molecular expression data and accounts for the selection of newly replicated DNA strands when nonrandom segregation is initiated. These mechanistic insights also provide a possible basis for another characteristic property of immortal DNA strands, their guanine ribonucleotide dependency.

  17. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    International Nuclear Information System (INIS)

    Willhoeft, U.; Franz, G.

    1998-01-01

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  18. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  19. Noninvolvement of the X chromosome in radiation-induced chromosome translocations in the human lymphoblastoid cell line TK6

    International Nuclear Information System (INIS)

    Jordan, R.; Schwartz, J.L.

    1994-01-01

    Fluorescence in situ hybridization procedures were used to examine the influence of chromosome locus on the frequency and type of chromosome aberrations induced by 60 Co γ rays in the human lymphoblastoid cell line TK6. Aberrations involving the X chromosome were compared to those involving the similarly sized autosome chromosome 7. When corrected for DNA content, acentric fragments were induced with equal frequency in the X and 7 chromosomes. Dose-dependent increases in chromosomal interchanges involving chromosome 7 were noted, and the frequencies of balanced translocations and dicentrics produced were approximately equal. Chromosome interchanges involving the X chromosome were rare and showed no apparent dose dependence. Thus, while chromosomes 7 and X are equally sensitive to the induction of chromosome breaks, the X chromosome is much less likely to interact with autosomes than chromosome 7. The noninvolvement of the X chromosome in translocations with autosomes may reflect a more peripheral and separate location for the X chromosome in the mammalian nucleus. 20 refs., 2 figs., 1 tab

  20. Chromosome 10q tetrasomy: First reported case

    Energy Technology Data Exchange (ETDEWEB)

    Blackston, R.D.; May, K.M.; Jones, F.D. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears with overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.

  1. Nuclear envelope expansion is crucial for proper chromosomal segregation during a closed mitosis.

    Science.gov (United States)

    Takemoto, Ai; Kawashima, Shigehiro A; Li, Juan-Juan; Jeffery, Linda; Yamatsugu, Kenzo; Elemento, Olivier; Nurse, Paul

    2016-03-15

    Here, we screened a 10,371 library of diverse molecules using a drug-sensitive fission yeast strain to identify compounds which cause defects in chromosome segregation during mitosis. We identified a phosphorium-ylide-based compound Cutin-1 which inhibits nuclear envelope expansion and nuclear elongation during the closed mitosis of fission yeast, and showed that its target is the β-subunit of fatty acid synthase. A point mutation in the dehydratase domain of Fas1 conferred in vivo and in vitro resistance to Cutin-1. Time-lapse photomicrography showed that the bulk of the chromosomes were only transiently separated during mitosis, and nucleoli separation was defective. Subsequently sister chromatids re-associated leading to chromosomal mis-segregation. These segregation defects were reduced when the nuclear volume was increased and were increased when the nuclear volume was reduced. We propose that there needs to be sufficient nuclear volume to allow the nuclear elongation necessary during a closed mitosis to take place for proper chromosome segregation, and that inhibition of fatty acid synthase compromises nuclear elongation and leads to defects in chromosomal segregation. © 2016. Published by The Company of Biologists Ltd.

  2. Identification of chromosome 7 inversion breakpoints in an autistic family narrows candidate region for autism susceptibility.

    Science.gov (United States)

    Cukier, Holly N; Skaar, David A; Rayner-Evans, Melissa Y; Konidari, Ioanna; Whitehead, Patrice L; Jaworski, James M; Cuccaro, Michael L; Pericak-Vance, Margaret A; Gilbert, John R

    2009-10-01

    Chromosomal breaks and rearrangements have been observed in conjunction with autism and autistic spectrum disorders. A chromosomal inversion has been previously reported in autistic siblings, spanning the region from approximately 7q22.1 to 7q31. This family is distinguished by having multiple individuals with autism and associated disabilities. The region containing the inversion has been strongly implicated in autism by multiple linkage studies, and has been particularly associated with language defects in autism as well as in other disorders with language components. Mapping of the inversion breakpoints by FISH has localized the inversion to the region spanning approximately 99-108.75 Mb of chromosome 7. The proximal breakpoint has the potential to disrupt either the coding sequence or regulatory regions of a number of cytochrome P450 genes while the distal region falls in a relative gene desert. Copy number variant analysis of the breakpoint regions detected no duplication or deletion that could clearly be associated with disease status. Association analysis in our autism data set using single nucleotide polymorphisms located near the breakpoints showed no significant association with proximal breakpoint markers, but has identified markers near the distal breakpoint ( approximately 108-110 Mb) with significant associations to autism. The chromosomal abnormality in this family strengthens the case for an autism susceptibility gene in the chromosome 7q22-31 region and targets a candidate region for further investigation.

  3. Biodosimetry of ionizing radiation by selective painting of prematurely condensed chromosomes in human lymphocytes

    Science.gov (United States)

    Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.

  4. The ubiquitin-proteasome system and chromosome 17 in cerebellar granule cells and medulloblastoma subgroups.

    Science.gov (United States)

    Vriend, Jerry; Marzban, Hassan

    2017-02-01

    Chromosome 17 abnormalities are often observed in medulloblastomas (MBs), particularly those classified in the consensus Groups 3 and 4. Herein we review MB signature genes associated with chromosome 17 and the relationship of these signature genes to the ubiquitin-proteasome system. While clinical investigators have not focused on the ubiquitin-proteasome system in relation to MB, a substantial amount of data on the topic has been hidden in the form of supplemental datasets of gene expression. A supplemental dataset associated with the Thompson classification of MBs shows that a subgroup of MB with 17p deletions is characterized by reduced expression of genes for several core particle subunits of the beta ring of the proteasome (β1, β4, β5, β7). One of these genes (PSMB6, the gene for the β1 subunit) is located on chromosome 17, near the telomeric end of 17p. By comparison, in the WNT group of MBs only one core proteasome subunit, β6, associated with loss of a gene (PSMB1) on chromosome 6, was down-regulated in this dataset. The MB subgroups with the worst prognosis have a significant association with chromosome 17 abnormalities and irregularities of APC/C cyclosome genes. We conclude that the expression of proteasome subunit genes and genes for ubiquitin ligases can contribute to prognostic classification of MBs. The therapeutic value of targeting proteasome subunits and ubiquitin ligases in the various subgroups of MB remains to be determined separately for each classification of MB.

  5. Chromosomal abnormality in patients with secondary amenorrhea.

    Science.gov (United States)

    Safai, Akbar; Vasei, Mohammad; Attaranzadeh, Armin; Azad, Fariborz; Tabibi, Narjes

    2012-04-01

    Secondary amenorrhea is a condition in which there is cessation of menses after at least one menstruation. It is a symptom of different diseases, such as hormonal disturbances which range from pituitary to ovarian origin, as well as chromosomal abnormalities. Knowledge of the distinct cause of secondary amenorrhea is of tremendous benefit for the management and monitoring of patients. In this study, we determine the chromosomal abnormalities in patients with secondary amenorrhea in Southwest Iran. We selected 94 patients with secondary amenorrhea who referred to our Cytogenetic Ward from 2004 until 2009. For karyotyping, peripheral blood lymphocyte cultures were set up by conventional technique. In this study, 5.3% (n=5) of patients with secondary amenorrhea presented with chromosomal abnormalities, of which all contained an X element. The chromosomal abnormalities were: i) 45, X (n=1); ii) 47, XXX (n=1); iii) 45, X [13]/ 45, Xi(X)q[17] (n=1);  iv) 45, X[12]/46,X,+mar[12] (n=1); and v) 46,X,del(Xq)(q23q28) (n=1). Our study revealed that some causes of secondary amenorrhea could be due to chromosomal abnormalities. Therefore, cytogenetic studies should be important tests in the evaluation of patients with secondary amenorrhea.

  6. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  7. Genomic regulatory landscapes and chromosomal rearrangements

    DEFF Research Database (Denmark)

    Ladegaard, Elisabete L Engenheiro

    2008-01-01

    The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes is that they ......The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes...... the complex spatio-temporal expression of the associated trans-dev gene. Rare chromosomal breakpoints that disrupt the integrity of these regulatory landscapes may be used as a tool, not only to make genotype-phenotype associations, but also to link the associated phenotype with the position and tissue...... specificity of the individual CNEs. In this PhD study I have studied several chromosomal rearrangements with breakpoints in the vicinity of trans-dev genes. This included chromosomal rearrangements compatible with known phenotype-genotype associations (Rieger syndrome-PITX2, Mowat-Wilson syndrome-ZEB2...

  8. Y chromosome STR typing in crime casework.

    Science.gov (United States)

    Roewer, Lutz

    2009-01-01

    Since the beginning of the nineties the field of forensic Y chromosome analysis has been successfully developed to become commonplace in laboratories working in crime casework all over the world. The ability to identify male-specific DNA renders highly variable Y-chromosomal polymorphisms, the STR sequences, an invaluable addition to the standard panel of autosomal loci used in forensic genetics. The male-specificity makes the Y chromosome especially useful in cases of male/female cell admixture, namely in sexual assault cases. On the other hand, the haploidy and patrilineal inheritance complicates the interpretation of a Y-STR match, because male relatives share for several generations an identical Y-STR profile. Since paternal relatives tend to live in the geographic and cultural territory of their ancestors, the Y chromosome analysis has a potential to make inferences on the population of origin of a given DNA profile. This review addresses the fields of application of Y chromosome haplotyping, the interpretation of results, databasing efforts and population genetics aspects.

  9. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent-human......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...

  10. Mapping replication origins in yeast chromosomes.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  11. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M.

    2005-01-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  12. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  13. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  14. Progressive segregation of the Escherichia coli chromosome

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2006-01-01

    We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth...... temporal progression from origin to terminus. Thus, the overall pattern is one of continuous segregation during replication and is not consistent with recently published models invoking extensive sister chromosome cohesion followed by simultaneous segregation of the bulk of the chromosome. The terminus......, and a region immediately clockwise from the origin, are exceptions to the overall pattern and are subjected to a more extensive delay prior to segregation. The origin region and nearby loci are replicated and segregated from the cell centre, later markers from the various positions where they lie...

  15. Non-disjunction of chromosome 18

    DEFF Research Database (Denmark)

    Bugge, M; Collins, A; Petersen, M B

    1998-01-01

    A sample of 100 trisomy 18 conceptuses analysed separately and together with a published sample of 61 conceptuses confirms that an error in maternal meiosis II (MII) is the most frequent cause of non-disjunction for chromosome 18. This is unlike all other human trisomies that have been studied......, which show a higher frequency in maternal meiosis I (MI). Maternal MI trisomy 18 shows a low frequency of recombination in proximal p and medial q, but not the reduction in proximal q observed in chromosome 21 MI non-disjunction. Maternal MII non-disjunction does not fit the entanglement model...... that predicts increased recombination, especially near the centromere. Whereas recent data on MII trisomy 21 show the predicted increase in recombination proximally, maternal MII trisomy 18 has non-significantly reduced recombination. Therefore, chromosome-specific factors must complicate the simple model...

  16. Radiation hybrid mapping of human chromosome 18

    International Nuclear Information System (INIS)

    Francke, U.; Moon, A.J.; Chang, E.; Foellmer, B.; Strauss, B.; Haschke, A.; Chihlin Hsieh; Geigl, E.M.; Welch, S.

    1990-01-01

    The authors have generated a Chinese hamster V79/380-6 HPRT minus x human leukocyte hybrid cell line (18/V79) with chromosome 18 as the only human chromosome that is retained at high frequency without specific selection. Hybrid cells were selected in HAT medium, and 164 individual colonies were isolated. Of 110 colonies screened for human DNA by PCR amplification using a primer specific for human Alu repeats 67 (61%) were positive. These were expanded in culture for large-scale DNA preparations. Retesting expanded clones by PCR with Alu and LINE primers has revealed unique patterns of amplification products. In situ hybridization of biotin labelled total human DNA to metaphase spreads from various hybrids revealed the presence of one or more human DNA fragments integrated in hamster chromosomes. The authors have generated a resource that should allow the construction of a radiation map, to be compared with the YAC contig map also under construction in their laboratory

  17. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  18. An approach to automated chromosome analysis

    International Nuclear Information System (INIS)

    Le Go, Roland

    1972-01-01

    The methods of approach developed with a view to automatic processing of the different stages of chromosome analysis are described in this study divided into three parts. Part 1 relates the study of automated selection of metaphase spreads, which operates a decision process in order to reject ail the non-pertinent images and keep the good ones. This approach has been achieved by Computing a simulation program that has allowed to establish the proper selection algorithms in order to design a kit of electronic logical units. Part 2 deals with the automatic processing of the morphological study of the chromosome complements in a metaphase: the metaphase photographs are processed by an optical-to-digital converter which extracts the image information and writes it out as a digital data set on a magnetic tape. For one metaphase image this data set includes some 200 000 grey values, encoded according to a 16, 32 or 64 grey-level scale, and is processed by a pattern recognition program isolating the chromosomes and investigating their characteristic features (arm tips, centromere areas), in order to get measurements equivalent to the lengths of the four arms. Part 3 studies a program of automated karyotyping by optimized pairing of human chromosomes. The data are derived from direct digitizing of the arm lengths by means of a BENSON digital reader. The program supplies' 1/ a list of the pairs, 2/ a graphic representation of the pairs so constituted according to their respective lengths and centromeric indexes, and 3/ another BENSON graphic drawing according to the author's own representation of the chromosomes, i.e. crosses with orthogonal arms, each branch being the accurate measurement of the corresponding chromosome arm. This conventionalized karyotype indicates on the last line the really abnormal or non-standard images unpaired by the program, which are of special interest for the biologist. (author) [fr

  19. Origin and domestication of papaya Yh chromosome

    Science.gov (United States)

    VanBuren, Robert; Zeng, Fanchang; Chen, Cuixia; Zhang, Jisen; Wai, Ching Man; Han, Jennifer; Aryal, Rishi; Gschwend, Andrea R.; Wang, Jianping; Na, Jong-Kuk; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Gou, Jiqing; Arro, Jie; Guyot, Romain; Moore, Richard C.; Wang, Ming-Li; Zee, Francis; Charlesworth, Deborah; Moore, Paul H.; Yu, Qingyi; Ming, Ray

    2015-01-01

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Yh regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations’ geographic locations, but gene flow is detected for other genomic regions. The Yh sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Yh divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Yh arose only ∼4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Yh chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Yh chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males. PMID:25762551

  20. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  1. Chromosomes of Protists: The crucible of evolution.

    Science.gov (United States)

    Soyer-Gobillard, Marie-Odile; Dolan, Michael F

    2015-12-01

    As early as 1925, the great protozoologist Edouard Chatton classified microorganisms into two categories, the prokaryotic and the eukaryotic microbes, based on light microscopical observation of their nuclear organization. Now, by means of transmission electron microscopy, we know that prokaryotic microbes are characterized by the absence of nuclear envelope surrounding the bacterial chromosome, which is more or less condensed and whose chromatin is deprived of histone proteins but presents specific basic proteins. Eukaryotic microbes, the protists, have nuclei surrounded by a nuclear envelope and have chromosomes more or less condensed, with chromatin-containing histone proteins organized into nucleosomes. The extraordinary diversity of mitotic systems presented by the 36 phyla of protists (according to Margulis et al., Handbook of Protoctista, 1990) is in contrast to the relative homogeneity of their chromosome structure and chromatin components. Dinoflagellates are the exception to this pattern. The phylum is composed of around 2000 species, and characterized by unique features including their nucleus (dinokaryon), dinomitosis, chromosome organization and chromatin composition. Although their DNA synthesis is typically eukaryotic, dinoflagellates are the only eukaryotes in which the chromatin, organized into quasi-permanently condensed chromosomes, is in some species devoid of histones and nucleosomes. In these cases, their chromatin contains specific DNA-binding basic proteins. The permanent compaction of their chromosomes throughout the cell cycle raises the question of the modalities of their division and their transcription. Successful in vitro reconstitution of nucleosomes using dinoflagellate DNA and heterologous corn histones raises questions about dinoflagellate evolution and phylogeny. [Int Microbiol 18(4):209-216 (2015)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  2. Chromosomal radiosensitivity of prostate cancer patients

    International Nuclear Information System (INIS)

    McRobbie, M.L.; Riches, A.; Baxby, K.

    2003-01-01

    Full text: Radiosensitivity of peripheral blood lymphocytes from prostate cancer patients is being investigated using the G2 assay and the Cytokinesis Block Micronucleus(CBMN)assay. The G2 assay evaluates chromosomal damage caused by irradiating cells in the G2 phase of the cell cycle. The CBMN assay quantifies the post mitotic micronuclei, which are the expression of damage incurred during G0. An association between hypersensitivity to the chromosome damaging effects of ionising radiation and cancer predispostion has been demonstrated in a number of heritable conditions by using the aforementioned techniques. Recently, increased chromosomal radiosensitivity has been demonstrated in a significant proportion of patients with no obvious family history of malignancy. The aim of this study is to establish whether a group of prostatic carcinoma patients exists and if so whether there are any correlations between their G2 and G0 sensitivities. The study has shown there is no correlation between G2 and G0 sensitivity, confirming the general trend that individuals exhibiting chromosomal radiosensitivity are defective in only one mechanism and G2 and G0 sensitivity are largely independent. Current data indicates that there is an identifiable group of men within the prostate cancer population with increased chromosomal radiosensitivity. Using the G2 assay and the 90th percentile of the controls as a cut off point for sensitivity, no significant difference between the controls and the patient population has been found. However, using the CBMN assay and again the 90th percentile, approximately 11% of the control group are sensitive compared with approximately 40% of the carcinoma cases. The implications of this increased radiosensitivity are as yet unclear, but it is indicative of increased chromosomal fragility and therefore, possibly associated with malignant transformation. Hence, it may prove a useful tool in identifying individuals at increased risk of developing

  3. From equator to pole: splitting chromosomes in mitosis and meiosis

    Science.gov (United States)

    Duro, Eris

    2015-01-01

    During eukaryotic cell division, chromosomes must be precisely partitioned to daughter cells. This relies on a mechanism to move chromosomes in defined directions within the parental cell. While sister chromatids are segregated from one another in mitosis and meiosis II, specific adaptations enable the segregation of homologous chromosomes during meiosis I to reduce ploidy for gamete production. Many of the factors that drive these directed chromosome movements are known, and their molecular mechanism has started to be uncovered. Here we review the mechanisms of eukaryotic chromosome segregation, with a particular emphasis on the modifications that ensure the segregation of homologous chromosomes during meiosis I. PMID:25593304

  4. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Paul, S.F.D.; Venkatachalam, P.; Jeevanram, R.K.

    1996-01-01

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  5. Computational simulation of chromosome breaks in human liver

    International Nuclear Information System (INIS)

    Yang Jianshe; Li Wenjian; Jin Xiaodong

    2006-01-01

    An easy method was established for computing chromosome breaks in cells exposed to heavily charged particles. The cell chromosome break value by 12 C +6 ions was theoretically calculated, and was tested with experimental data of chromosome breaks by using a premature chromosome condensation technique. The theoretical chromosome break value agreed well with the experimental data. The higher relative biological effectiveness of the heavy ions was closely correlated to its physical characteristics. In addition, the chromosome break value can be predicted off line. (authors)

  6. Chromosomal DNA replication of Vicia faba cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1976-01-01

    The chromosomal DNA replication of higher plant cells has been investigated by DNA fiber autoradiography. The nuclear DNA fibers of Vicia root meristematic cells are organized into many tandem arrays of replication units or replicons which exist as clusters with respect to replication. DNA is replicated bidirectionally from the initiation points at the average rate of 0.15 μm/min at 20 0 C, and the average interinitiation interval is about 16 μm. The manner of chromosomal DNA replication in this higher plant is similar to that found in other eukaryotic cells at a subchromosomal level. (auth.)

  7. Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao.

    Science.gov (United States)

    Viegas Péquignot, E; Koiffmann, C P; Dutrillaux, B

    1985-01-01

    Based on a comparison of the karyotypes of two Plathyrrhini species, Cacajao melanocephalus (Pitheciinae) and Brachyteles arachnoides (Atelinae), with those of two previously studied species, Lagothrix lagothrica (Atelinae) and C calvus rubicundus (Pitheciinae), it appears that the two Cacajao species have undergone the same number of chromosome rearrangements since they diverged from their common ancestor and that the karyotype of Brachyteles is ancestral to that of Lagothrix. The chromosomal phylogeny of these four species is proposed. A Y-autosome translocation is present in the karyotypes of the two Cacajao species.

  8. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  9. Gonadal sex chromosome complement in individuals with sex chromosomal and/or gonadal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, J.A.; Sanger, W.G.; Seemayer, T. [Univ. of Nebraska Medical Center, Omaha, NE (United States)] [and others

    1994-09-01

    Gonadal abnormalities are characteristically seen in patients with sex chromosomal aneuploidy. Morphologically these abnormalities can be variable and are hypothesized to be dependent on the sex chromosomal consititution of the gonad (independent of the chromosomal complement of other tissues, such as peripheral blood lymphocytes). In this study, the gonadal sex chromosome complement was evaluated for potential mosaicism and correlated with the histopathology from 5 patients with known sex chromosomal and/or gonadal disorders. FISH techniques using X and Y chromosome specific probes were performed on nuclei extracted from paraffin embedded tissue. Gonadal tissue obtained from case 1 (a true hemaphroditic newborn) consisted of ovotestes and epididymis (left side) and ovary with fallopian tube (right side). Cytogenetic and FISH studies performed on blood, ovotestes and ovary revealed an XX complement. Cytogenetic analysis of blood from case 2, a 4-year-old with suspected Turner syndrome revealed 45,X/46,X,del(Y)(q11.21). FISH analysis of the resected gonads (histologically = immature testes) confirmed an X/XY mosaic complement. Histologically, the gonadal tissue was testicular. Severe autolysis prohibited successful analysis in the 2 remaining cases. In summary, molecular cytogenetic evaluation of gonadal tissue from individuals with sex chromosomal and/or gonadal disorders did not reveal tissue-specific anomalies which could account for differences observed pathologically.

  10. The distribution of chromosome aberrations among chromosomes of karyotype in exposed human lymphocyte

    International Nuclear Information System (INIS)

    Que Tran; Tien Hoang Hung

    1997-01-01

    Induced chromosome aberrations (ch. ab.) in exposed Human peripheral blood lymphocyte have been used to assay radio.bio.doses, because of their characters such as: the maintaining Go phase in cell cycle in body, the distribution of cell in blood system and the distribution of ch. ab. in exposed cells of body and among chromosomes of karyotype. The frequency of ch. ab. reflected the quantity of radiation dose, dose rate and radiation energy. The dependence between radiation dose and frequency of ch. ab. was illustrated by the mathematic equations. The distribution of induced ch. ab. among the cells exposed to uniform radiation fields was Poisson's, but the distribution of ch. ab. among chromosomes in karyotype depended on radiation field and mononucleotid sequence of DNA molecular of each chromosome. The minimum influence of mononucleotid sequence of DNA molecular in inform ch. ab. will be advantageous state for dose-assessments. The location of induced ch. ab. in exposed Human lymphocyte had been determined by karyotype analyses. The data of statistic analyse had improved that the number of ch. ab. depended on the size of chromosomes in karyotype. The equal distribution of ch. ab.among chromosomes in karyotype provided the objectiveness and the accuracy of using the chromosomal aberrant analysis technique on bio-dosimetry. (author)

  11. CERN: Fixed target targets

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-03-15

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become visible for the first

  12. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    Science.gov (United States)

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  13. Neocentromeres Provide Chromosome Segregation Accuracy and Centromere Clustering to Multiple Loci along a Candida albicans Chromosome.

    Directory of Open Access Journals (Sweden)

    Laura S Burrack

    2016-09-01

    Full Text Available Assembly of kinetochore complexes, involving greater than one hundred proteins, is essential for chromosome segregation and genome stability. Neocentromeres, or new centromeres, occur when kinetochores assemble de novo, at DNA loci not previously associated with kinetochore proteins, and they restore chromosome segregation to chromosomes lacking a functional centromere. Neocentromeres have been observed in a number of diseases and may play an evolutionary role in adaptation or speciation. However, the consequences of neocentromere formation on chromosome missegregation rates, gene expression, and three-dimensional (3D nuclear structure are not well understood. Here, we used Candida albicans, an organism with small, epigenetically-inherited centromeres, as a model system to study the functions of twenty different neocentromere loci along a single chromosome, chromosome 5. Comparison of neocentromere properties relative to native centromere functions revealed that all twenty neocentromeres mediated chromosome segregation, albeit to different degrees. Some neocentromeres also caused reduced levels of transcription from genes found within the neocentromere region. Furthermore, like native centromeres, neocentromeres clustered in 3D with active/functional centromeres, indicating that formation of a new centromere mediates the reorganization of 3D nuclear architecture. This demonstrates that centromere clustering depends on epigenetically defined function and not on the primary DNA sequence, and that neocentromere function is independent of its distance from the native centromere position. Together, the results show that a neocentromere can form at many loci along a chromosome and can support the assembly of a functional kinetochore that exhibits native centromere functions including chromosome segregation accuracy and centromere clustering within the nucleus.

  14. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Pampalona, J.; Soler, D.; Genesca, A. [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain); Tusell, L., E-mail: laura.tusell@uab.es [Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra E-08193 (Spain)

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16{sup INK4a} protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and

  15. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies

    International Nuclear Information System (INIS)

    Pampalona, J.; Soler, D.; Genesca, A.; Tusell, L.

    2010-01-01

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16 INK4a protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  16. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    Science.gov (United States)

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  17. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation.

    Science.gov (United States)

    Claycomb, Julie M; Batista, Pedro J; Pang, Ka Ming; Gu, Weifeng; Vasale, Jessica J; van Wolfswinkel, Josien C; Chaves, Daniel A; Shirayama, Masaki; Mitani, Shohei; Ketting, René F; Conte, Darryl; Mello, Craig C

    2009-10-02

    RNAi-related pathways regulate diverse processes, from developmental timing to transposon silencing. Here, we show that in C. elegans the Argonaute CSR-1, the RNA-dependent RNA polymerase EGO-1, the Dicer-related helicase DRH-3, and the Tudor-domain protein EKL-1 localize to chromosomes and are required for proper chromosome segregation. In the absence of these factors chromosomes fail to align at the metaphase plate and kinetochores do not orient to opposing spindle poles. Surprisingly, the CSR-1-interacting small RNAs (22G-RNAs) are antisense to thousands of germline-expressed protein-coding genes. Nematodes assemble holocentric chromosomes in which continuous kinetochores must span the expressed domains of the genome. We show that CSR-1 interacts with chromatin at target loci but does not downregulate target mRNA or protein levels. Instead, our findings support a model in which CSR-1 complexes target protein-coding domains to promote their proper organization within the holocentric chromosomes of C. elegans.

  18. Contribution of the Chromosomal ccdAB Operon to Bacterial Drug Tolerance.

    Science.gov (United States)

    Gupta, Kritika; Tripathi, Arti; Sahu, Alishan; Varadarajan, Raghavan

    2017-10-01

    One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain ( ccd O157 ) and the ccd operon from the F plasmid ( ccd F ), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccd F and ccd O157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence. IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple

  19. CERN: Fixed target targets

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become

  20. Chromosomal instability drives metastasis through a cytosolic DNA response.

    Science.gov (United States)

    Bakhoum, Samuel F; Ngo, Bryan; Laughney, Ashley M; Cavallo, Julie-Ann; Murphy, Charles J; Ly, Peter; Shah, Pragya; Sriram, Roshan K; Watkins, Thomas B K; Taunk, Neil K; Duran, Mercedes; Pauli, Chantal; Shaw, Christine; Chadalavada, Kalyani; Rajasekhar, Vinagolu K; Genovese, Giulio; Venkatesan, Subramanian; Birkbak, Nicolai J; McGranahan, Nicholas; Lundquist, Mark; LaPlant, Quincey; Healey, John H; Elemento, Olivier; Chung, Christine H; Lee, Nancy Y; Imielenski, Marcin; Nanjangud, Gouri; Pe'er, Dana; Cleveland, Don W; Powell, Simon N; Lammerding, Jan; Swanton, Charles; Cantley, Lewis C

    2018-01-25

    Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.

  1. Aneuploids of wheat and chromosomal localization of genes ...

    African Journals Online (AJOL)

    Aneuploids of wheat and chromosomal localization of genes. ... African Journal of Biotechnology ... cytogenetic methods for the chromosomal localization of major genes in wheat including Chinese spring (CS) monosomics (Triticum aestivum, ...

  2. Divergent actions of long noncoding RNAs on X-chromosome ...

    Indian Academy of Sciences (India)

    2015-10-20

    Oct 20, 2015 ... Organisms with heterochromatic sex chromosomes need to compensate for differences in dosages of ... could also get genetically inactive and late replicating when ... tial to achieve the chromosomal level modifications were.

  3. Human oocyte chromosome analysis: complicated cases and major ...

    Indian Academy of Sciences (India)

    Human oocyte chromosome analysis: complicated cases and major ... dardized even after more than 20 years of research, making it difficult to draw .... (c) Part of a metaphase with a chromosome break in the centromeric region (arrows).

  4. Understanding Chromosome Disorders and their Implications for Special Educators

    Directory of Open Access Journals (Sweden)

    Linda Gilmore

    2014-03-01

    Full Text Available More children are now being diagnosed with chromosome abnormalities. Some chromosome disorder syndromes are relatively well known; while others are so rare that there is only limited evidence about their likely impact on learning and development. For educators, a basic level of knowledge about chromosome abnormalities is important for understanding the literature and communicating with families and professionals. This paper describes chromosomes, and the numerical and structural anomalies that can occur, usually spontaneously during early cell division. Distinctive features of various chromosome syndromes are summarised before a discussion of the rare chromosome disorders that are labelled, not with a syndrome name, but simply by a description of the chromosome number, size and shape. Because of the potential within-group variability that characterises syndromes, and the scarcity of literature about the rare chromosome disorders, expectations for learning and development of individual students need to be based on the range of possible outcomes that may be achievable.

  5. Flow cytometry measurements of human chromosome kinetochore labeling

    International Nuclear Information System (INIS)

    Fantes, J.A.; Green, D.K.; Malloy, P.; Sumner, A.T.

    1989-01-01

    A method for the preparation and measurement of immunofluorescent human chromosome centromeres in suspension is described using CREST antibodies, which bind to the centromeric region of chromosomes. Fluorescein isothiocyanate (FITC)-conjugated antihuman antibodies provide the fluorescent label. Labeled chromosomes are examined on microscope slides and by flow cytometry. In both cases a dye which binds to DNA is added to provide identification of the chromosome groups. Sera from different CREST patients vary in their ability to bind to chromosome arms in addition to the centromeric region. Flow cytometry and microfluorimetry measurements have shown that with a given CREST serum the differences in kinetochore fluorescence between chromosomes are only minor. Flow cytometry experiments to relate the number of dicentric chromosomes, induced by in vitro radiation of peripheral blood cells to the slightly increased number of chromosomes with above-average kinetochore fluorescence did not produce decisive radiation dosimetry results

  6. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    Science.gov (United States)

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  7. The value of chromosomal analysis in oligozoospermic men

    NARCIS (Netherlands)

    Stegen, Çarcia; van Rumste, Minouche M. E.; Mol, Ben Willem J.; Koks, Carolien A. M.

    2012-01-01

    Objective: To determine the prevalence of chromosomal abnormalities in relation to sperm concentration in subfertile oligozoospermic men. Design: Retrospective cohort study. Setting: Two teaching hospitals. Patient(s): We retrospectively studied all men who received chromosomal analysis prior to

  8. Bands and chromosome arrangement in interphase nuclei

    International Nuclear Information System (INIS)

    Bianchi, N.O.; Bianchi, M.A.; Matayoshi, T.

    1977-01-01

    Chromosomes from the vole mouse Akodon dolores and from laboratory mouse showed the presence of G-bands after 3 minutes digestion with trypsin and Giemsa stain. Simultaneously, 30- to 40% of the interphase nuclei exhibited a dark ring parallel to the nuclear contour and a radial array of the chromatin in the internal and external regions of the ring. The origin and meaning of this ring image was analyzed by combining progressive trypsinizations with other methods such as C-banding procedures, autoradiography with 3 HTdR, staining with quinacrine mustard and 33258 Hoechst fluorochromes. Moreover, the presence of the dark ring was also investigated in cells treated with actinomycin and in control cells not subjected to any treatment. The results obtained allowed to assume that in interphase nuclei the chromosomes have chromatin bridges which connect the dark G-bands and that these bridges are probably involved in maintaining an ordered architecture of the nucleus with fixed chromosome positions in regard to the nuclear envelope and in regard to other chromosomes. Trypsinization produces a disruption of the interphase chromatin arrangement and the subsequent appearance of a dark ring formed by the combination of constitutive heterochromatin and dark G-bands. (auth.)

  9. The genomics of plant sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman

    2015-01-01

    Roč. 236, JUL 2015 (2015), s. 126-135 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GBP501/12/G090; GA ČR(CZ) GAP501/12/2220 Institutional support: RVO:68081707 Keywords : Y-CHROMOSOME * SILENE-LATIFOLIA * DIOECIOUS PLANT Subject RIV: BO - Biophysics Impact factor: 3.362, year: 2015

  10. Study of radiation-induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  11. Chromosome 22 microdeletion in children with syndromic ...

    African Journals Online (AJOL)

    Cytogenetic study and fluorescence in situ hybridization (FISH) were performed in the patients. The study revealed that 2 patients were with chromosomal aberrations [one with 46,XY, add (13)(p13) & the other with 47,XX,+13]. In addition, FISH revealed 4 patients (20%) with 22q11.2 microdeletion syndrome. The congenital ...

  12. Johannsen's criticism of the chromosome theory.

    Science.gov (United States)

    Roll-Hansen, Nils

    2014-01-01

    The genotype theory of Wilhelm Johannsen (1857-1927) was an important contribution to the founding of classical genetics. This theory built on Johannsen's experimental demonstration that hereditary change is discontinuous, not continuous as had been widely assumed. Johannsen is also known for his criticism of traditional Darwinian evolution by natural selection, as well as his criticism of the classical Mendelian chromosome theory of heredity. He has often been seen as one of the anti-Darwinians that caused the "eclipse of Darwinism" in the early 20th century, before it was saved by the Modern Synthesis. This article focuses on Johannsen's criticism of the chromosome theory. He was indeed skeptical of the notion of the chromosomes as the sole carriers of heredity, but he praised the mapping of Mendelian genes on the chromosomes as a major step forward. Johannsen objected that these genes could not account for the whole of heredity, and that the stability of the genotype depended on much more than the stability of Mendelian genes. For Johannsen, the genotype, as a property of the whole organism, was the fundamental and empirically well-established entity.

  13. Genetics Home Reference: Y chromosome infertility

    Science.gov (United States)

    ... NBK1339/ Citation on PubMed Tyler-Smith C. An evolutionary perspective on Y-chromosomal variation and male infertility. ... genome editing and CRISPR-Cas9? What is precision medicine? What is newborn screening? New Pages Alopecia areata ...

  14. P chromosomes involved in intergenomic rearrangements of ...

    Indian Academy of Sciences (India)

    2014-04-08

    Apr 8, 2014 ... [Wang Q., Han H., Gao A., Yang X. and Li L. 2014 P chromosomes ... Y, were affected predominantly by ecological factors and altitude in nine populations of Kengyilia thoroldiana (Wang et al. 2012). To investigate the effects of different altitudes on .... AB51 0LX, UK) for improving the article linguistically.

  15. Psychoeducational Implications of Sex Chromosome Anomalies

    Science.gov (United States)

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral…

  16. Association of recurrent pregnancy loss with chromosomal ...

    African Journals Online (AJOL)

    Objective: To evaluate the association of parental and fetal chromosomal abnormalities with recurrent pregnancy loss in our area and to analyze the frequency of three types of hereditary thrombophilia's; (MTHFR C677T polymorphisms, FV Leiden G1691A mutation and Prothrombin (factor II) G20210A mutation) in these ...

  17. Association of recurrent pregnancy loss with chromosomal ...

    African Journals Online (AJOL)

    EB

    for recurrent pregnancy loss and these patients are the best candidates for offering prenatal genetic diagnosis by the help of which there is a possibility of obtaining a better reproductive outcome. Key words: chromosomal abnormality, recurrent pregnancy loss, thrombophilia. African Health Sciences 2013; 13(2): 447 - 452 ...

  18. Determination of chromosomes that control physiological traits ...

    African Journals Online (AJOL)

    Determination of chromosomes that control physiological traits associated with salt tolerance in barley at the seedling stage. ... The phenotypic traits under study included: chlorophyll contents, chlorophyll fluorescence (Fo, Fv, Fv/Fm), proline and carbohydrate rates, relative water content (RWC) and dry and wet weight of ...

  19. Chromosome studies in Cashew (Anacardium occidentale L.)

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-18

    Jan 18, 2007 ... behavior of chromosome in cashew populations growing in Nigeria. Cytological examination of these ... which penetrate very deep into the soil profile and lateral roots that sometimes ... The importance of cytological information to crop improvement ..... Tree nuts production, processing and products,. Vol.

  20. Chromosome-damaging effect of betel leaf.

    Science.gov (United States)

    Sadasivan, G; Rani, G; Kumari, C K

    1978-05-01

    The chewing of betel leaf with other ingredients is a widespread addiction in India. The chromosome damaging effect was studied in human leukocyte cultures. There was an increase in the frequency of chromatid aberrations when the leaf extract was added to cultures.

  1. Plasmid and chromosome segregation in prokaryotes

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic...

  2. Genetics Home Reference: ring chromosome 14 syndrome

    Science.gov (United States)

    ... be something about the ring structure itself that causes epilepsy. Seizures may occur because certain genes on the ... mapping of telomeric 14q32 deletions: search for the cause of seizures. Am J Med Genet A. ... L, Elia M, Vigevano F. Epilepsy in ring 14 chromosome syndrome. Epilepsy Behav. 2012 ...

  3. Improved prenatal detection of chromosomal anomalies

    DEFF Research Database (Denmark)

    Frøslev-Friis, Christina; Hjort-Pedersen, Karina; Henriques, Carsten U

    2011-01-01

    Prenatal screening for karyotype anomalies takes place in most European countries. In Denmark, the screening method was changed in 2005. The aim of this study was to study the trends in prevalence and prenatal detection rates of chromosome anomalies and Down syndrome (DS) over a 22-year period....

  4. Chromosome Conformation Capture on Chip (4C)

    DEFF Research Database (Denmark)

    Leblanc, Benjamin Olivier; Comet, Itys; Bantignies, Frédéric

    2016-01-01

    4C methods are useful to investigate dependencies between regulatory mechanisms and chromatin structures by revealing the frequency of chromatin contacts between a locus of interest and remote sequences on the chromosome. In this chapter we describe a protocol for the data analysis of microarray-...

  5. The map of chromosome 1 of man

    NARCIS (Netherlands)

    W.G. Burgerhout (Wim)

    1977-01-01

    textabstractMaking maps is an essential procedure in the exploration of new territories. In the field of genetics, many basic concepts concerning the structure of a genome and the regulation of gene activity have emerged from regional mapping studies on the chromosomes of e.g. Escherichia coli

  6. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids and chr...

  7. Chromosomal location of genomic SSR markers associated

    Indian Academy of Sciences (India)

    Among the same earlier tested 230 primers, one SSR marker (Xgwm311) also amplified a fragment which is present in the resistant parent and in the resistant bulks, but absent in the susceptible parent and in the susceptible bulks. To understand the chromosome group location of these diagnostic markers, Xgwm382 and ...

  8. Chromosome aberrations induced by radiation. With special reference to possible relation between chromosome aberrations and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, N [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-02-01

    Chromosome aberration seems to be one of the most conspicuous residual abnormalities recognizable in radiation-exposed persons for many years after exposure. Knowledge of the biological significance of these abnormalities seems to be necessary for understanding of the effect of radiation on humans, especially in relation to possible leukemic development. Cytogenetic studies were performed on the bone marrow cells, T and B lymphocytes, and fibroblasts in atomic bomb-survivors who were in apparent good health (105 cases), atomic bomb exposed patients who had prolonged periods of blood disorders which terminated in acute leukemia (8 cases), and who had no such abnormalities (6 cases). All patients with chronic myelocytic leukemia (CML) and a history of atomic bomb exposure showed Philadelphia chromosome, a characteristic chromosome abnormality for CML. The persistent chromosome aberrations of bone marrow cells, T and B lymphocytes found among the atomic bomb survivors with or without blood disorders may give some clue to solve the problems of carcinogenesis.

  9. Chromosomes of South American Bufonidae (Amphibia, Anura Chromosomes of South American Bufonidae (Amphibia, Anura

    Directory of Open Access Journals (Sweden)

    Brum Zorrilla N.

    1973-09-01

    Full Text Available Karyotypes of eight of South American Bufonidae were studied: B.ictericus, B. spinulosus spinulosus, B. arenarum, B. g. fernandezae, B. g. d'orbignyi, B. crucifer, B. paracnemis and B. marinus. In all species 2n = 22 chromosomes were found. Neither heteromorphic pairs of chromosomes nor bivalents with characteristic morphology and behavior of sex chromosomesduring male meiosis were observed in any species.Karyotypes of eight of South American Bufonidae were studied: B.ictericus, B. spinulosus spinulosus, B. arenarum, B. g. fernandezae, B. g. d'orbignyi, B. crucifer, B. paracnemis and B. marinus. In all species 2n = 22 chromosomes were found. Neither heteromorphic pairs of chromosomes nor bivalents with characteristic morphology and behavior of sex chromosomesduring male meiosis were observed in any species.

  10. Chromosomes as well as chromosomal subdomains constitute distinct units in interphase nuclei

    NARCIS (Netherlands)

    Visser, A. E.; Aten, J. A.

    1999-01-01

    Fluorescence in situ hybridization has demonstrated that chromosomes form individual territories in interphase nuclei. However, this technique is not suitable to determine whether territories are mutually exclusive or interwoven. This notion, however, is essential for understanding functional

  11. Identification of Chromosomes Alterations in Primary Breast Cancer Using Premature Chromosome Condensation

    National Research Council Canada - National Science Library

    Griffin, Constance

    2000-01-01

    .... We are developing a new method, premature chromosome condensation (PCC),using mitotic Xenopus extracts that will allow us to obtain G-banded karyotypes from primary, uncultured breast cancer specimens...

  12. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method...... of manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties...... of human chromosomes in polyamine buffer. These can then be used to optimize system designs for further characterization and even sorting. The experimental data from the dielectrophoretic manipulation were combined with theoretical calculations to extract a range of values for the permittivity...

  13. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    International Nuclear Information System (INIS)

    Fletcher, H.L.

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is. (orig./AJ)

  14. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, H L [East Anglia Univ., Norwich (UK). School of Biological Sciences

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is.

  15. Updating the maize karyotype by chromosome DNA sizing

    Science.gov (United States)

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species’ karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes. PMID:29293613

  16. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    Science.gov (United States)

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  17. Heteromorphic Sex Chromosomes: Navigating Meiosis without a Homologous Partner

    OpenAIRE

    Checchi, Paula M.; Engebrecht, JoAnne

    2011-01-01

    Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have ...

  18. Linear Chromosome-generating System of Agrobacterium tumefaciens C58: Protelomerase Generates and Protects Hairpin Ends

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wai Mun; DaGloria, Jeanne; Fox, Heather; Ruan, Qiurong; Tillou, John; Shi, Ke; Aihara, Hideki; Aron, John; Casjens, Sherwood (Utah); (UMM)

    2012-09-05

    Agrobacterium tumefaciens C58, the pathogenic bacteria that causes crown gall disease in plants, harbors one circular and one linear chromosome and two circular plasmids. The telomeres of its unusual linear chromosome are covalently closed hairpins. The circular and linear chromosomes co-segregate and are stably maintained in the organism. We have determined the sequence of the two ends of the linear chromosome thus completing the previously published genome sequence of A. tumefaciens C58. We found that the telomeres carry nearly identical 25-bp sequences at the hairpin ends that are related by dyad symmetry. We further showed that its Atu2523 gene encodes a protelomerase (resolvase) and that the purified enzyme can generate the linear chromosomal closed hairpin ends in a sequence-specific manner. Agrobacterium protelomerase, whose presence is apparently limited to biovar 1 strains, acts via a cleavage-and-religation mechanism by making a pair of transient staggered nicks invariably at 6-bp spacing as the reaction intermediate. The enzyme can be significantly shortened at both the N and C termini and still maintain its enzymatic activity. Although the full-length enzyme can uniquely bind to its product telomeres, the N-terminal truncations cannot. The target site can also be shortened from the native 50-bp inverted repeat to 26 bp; thus, the Agrobacterium hairpin-generating system represents the most compact activity of all hairpin linear chromosome- and plasmid-generating systems to date. The biochemical analyses of the protelomerase reactions further revealed that the tip of the hairpin telomere may be unusually polymorphically capable of accommodating any nucleotide.

  19. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago; Clark, Orlo H.; Weier, Heinz-Ulrich G.

    2010-08-19

    Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding

  1. The role of chromosomal rearrangements in the evolution of Silene latifolia sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Kejnovský, Eduard; Vyskot, Boris; Widmer, A.

    2007-01-01

    Roč. 278, č. 6 (2007), s. 633-638 ISSN 1617-4615 R&D Projects: GA ČR(CZ) GA204/05/2097; GA ČR(CZ) GA521/06/0056 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chromosomal rearrangements * sex chromosomes * FISH Subject RIV: BO - Biophysics Impact factor: 2.978, year: 2007

  2. Cytogenetic and molecular genetic characterization of immortalized human ovarian surface epithelial cell lines: consistent loss of chromosome 13 and amplification of chromosome 20.

    Science.gov (United States)

    Jin, Yuesheng; Zhang, Hao; Tsao, Sai Wah; Jin, Charlotte; Lv, Mei; Strömbeck, Bodil; Wiegant, Joop; Wan, Thomas Shek Kong; Yuen, Po Wing; Kwong, Yok-Lam

    2004-01-01

    This study aimed at identifying the genetic events involved in immortalization of ovarian epithelial cells, which might be important steps in ovarian carcinogenesis. The genetic profiles of five human ovarian surface epithelial (HOSE) cell lines immortalized by retroviral transfection of the human papillomavirus (HPV) E6/E7 genes were thoroughly characterized by chromosome banding and fluorescence in situ hybridization (FISH), at various passages pre- and post-crisis. In pre-crisis, most cells had simple, non-clonal karyotypic changes. Telomere association was the commonest aberration, suggesting that tolermase dysfunction might be an important genetic event leading to cellular crisis. After immortalization post-crisis, however, the karyotypic patterns were non-random. Loss of genetic materials was a characteristic feature. The commonest numerical aberrations were -13, -14, -16, -17, -18, and +5. Among them, loss of chromosome 13 was common change observed in all lines. The only recurrent structural aberration was homogeneously staining regions (hsr) observed in three lines. FISH and combined binary ratio labeling (COBRA)-FISH showed in two cases that the hsrs were derived from chromosome 20. Clonal evolution was observed in four of the lines. In one line, hsr was the only change shared by all subclones, suggesting that it might be a primary event in cell immortalization. The results of the present study suggested that loss of chromosome 13 and the amplification of chromosome 20 might be early genetic events involved in ovarian cell immortalization, and might be useful targets for the study of genomic aberrations in ovarian carcinogenesis.

  3. Sex-chromosome anaphase movements in crane-fly spermatocytes are coordinated: ultraviolet microbeam irradiation of one kinetochore of one sex chromosome blocks the movements of both sex chromosomes

    International Nuclear Information System (INIS)

    Swedak, J.A.M.; Forer, A.

    1987-01-01

    Sex chromosomes in crane-fly spermatocytes move polewards at anaphase after the autosomes have reached the poles. We irradiated one kinetochore of one sex chromosome using an ultraviolet microbeam. When both sex chromosomes were normally oriented, irradiation of a single kinetochore permanently blocked movement of both sex chromosomes. Irradiation of non-kinetochore chromosomal regions or of spindle fibres did not block movement, or blocked movement only temporarily. We argue that ultraviolet irradiation of one kinetochore blocks movement of both sex chromosomes because of effects on a 'signal' system. Irradiation of one kinetochore of a maloriented sex chromosome did not block motion of either sex chromosome. However, irradiation of one kinetochore of a normally oriented sex chromosome permanently blocked motion of both that sex chromosome and the maloriented sex chromosome. Thus for the signal system to allow the sex chromosomes to move to the pole each sex chromosome must have one spindle fibre to each pole. (author)

  4. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    NARCIS (Netherlands)

    van der Crabben, Saskia N; Hennus, Marije P; McGregor, Grant A; Ritter, Deborah I; Nagamani, Sandesh C S; Wells, Owen S; Harakalova, Magdalena; Chinn, Ivan K; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M; Terheggen-Lagro, Suzanne W; van Lieshout, Stef; van Roosmalen, Markus J; Renkens, Ivo; Duran, Karen; Nijman, Isaäc J.; Kloosterman, Wigard P; Hennekam, Eric; Orange, Jordan S; van Hasselt, Peter M; Wheeler, David A; Palecek, Jan J; Lehmann, Alan R; Oliver, Antony W; Pearl, Laurence H; Plon, Sharon E; Murray, Johanne M; van Haaften, Gijs

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome

  5. Target laboratory

    International Nuclear Information System (INIS)

    Ephraim, D.C.; Pednekar, A.R.

    1993-01-01

    A target laboratory to make stripper foils for the accelerator and various targets for use in the experiments is set up in the pelletron accelerator facility. The facilities available in the laboratory are: (1) D.C. glow discharge setup, (2) carbon arc set up, and (3) vacuum evaporation set up (resistance heating), electron beam source, rolling mill - all for target preparation. They are described. Centrifugal deposition technique is used for target preparation. (author). 3 figs

  6. Aneuploids of wheat and chromosomal localization of genes

    African Journals Online (AJOL)

    Administrator

    2011-06-22

    Jun 22, 2011 ... chromosome location of such genes is critical for effective utilization and subsequent manipulation. Further, chromosomal localization will lead to the identification of ... Various cytogenetic stocks and techniques have been previously reported useful in localizing genes on wheat chromosomes. The objective ...

  7. The architecture of chicken chromosome territories changes during differentiation

    Directory of Open Access Journals (Sweden)

    Stadler Sonja

    2004-11-01

    Full Text Available Abstract Background Between cell divisions the chromatin fiber of each chromosome is restricted to a subvolume of the interphase cell nucleus called chromosome territory. The internal organization of these chromosome territories is still largely unknown. Results We compared the large-scale chromatin structure of chromosome territories between several hematopoietic chicken cell types at various differentiation stages. Chromosome territories were labeled by fluorescence in situ hybridization in structurally preserved nuclei, recorded by confocal microscopy and evaluated visually and by quantitative image analysis. Chromosome territories in multipotent myeloid precursor cells appeared homogeneously stained and compact. The inactive lysozyme gene as well as the centromere of the lysozyme gene harboring chromosome located to the interior of the chromosome territory. In further differentiated cell types such as myeloblasts, macrophages and erythroblasts chromosome territories appeared increasingly diffuse, disaggregating to separable substructures. The lysozyme gene, which is gradually activated during the differentiation to activated macrophages, as well as the centromere were relocated increasingly to more external positions. Conclusions Our results reveal a cell type specific constitution of chromosome territories. The data suggest that a repositioning of chromosomal loci during differentiation may be a consequence of general changes in chromosome territory morphology, not necessarily related to transcriptional changes.

  8. Determination of chromosomal ploidy in Agave ssp. | Lingling ...

    African Journals Online (AJOL)

    Chromosome observation is necessary to elucidate the structure, function and organization of Agave plants' genes and genomes. However, few researches about chromosome observation of Agave ssp. were done, not only because their chromosome numbers are large, but also because their ploidies are complicated.

  9. 21 CFR 864.2260 - Chromosome culture kit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chromosome culture kit. 864.2260 Section 864.2260...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products § 864.2260 Chromosome culture kit. (a) Identification. A chromosome culture kit is a device containing the necessary ingredients...

  10. New chromosome numbers in the genus Trigonella L. ( Fabaceae ...

    African Journals Online (AJOL)

    Somatic chromosome numbers of 45 Trigonella L. (Fabaceae), collected from different localities in Turkey was examined. Chromosome numbers were determined as 2n = 14, 16, 30 and 46. B chromosome was also observed in somatic cells of some taxa (Trigonella arcuata C.A. Meyer and Trigonella procumbens (Besser) ...

  11. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Science.gov (United States)

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is

  12. The Detection and Analysis of Chromosome Fragile Sites

    DEFF Research Database (Denmark)

    Bjerregaard, Victoria A; Özer, Özgün; Hickson, Ian D

    2018-01-01

    A fragile site is a chromosomal locus that is prone to form a gap or constriction visible within a condensed metaphase chromosome, particularly following exposure of cells to DNA replication stress. Based on their frequency, fragile sites are classified as either common (CFSs; present in all...... for detection and analysis of chromosome fragile sites....

  13. Chromosomal homologies among vampire bats revealed by chromosome painting (phyllostomidae, chiroptera).

    Science.gov (United States)

    Sotero-Caio, C G; Pieczarka, J C; Nagamachi, C Y; Gomes, A J B; Lira, T C; O'Brien, P C M; Ferguson-Smith, M A; Souza, M J; Santos, N

    2011-01-01

    Substantial effort has been made to elucidate karyotypic evolution of phyllostomid bats, mostly through comparisons of G-banding patterns. However, due to the limited number of G-bands in respective karyotypes and to the similarity of non-homologous bands, an accurate evolutionary history of chromosome segments remains questionable. This is the case for vampire bats (Desmodontinae). Despite several proposed homologies, banding data have not yet provided a detailed understanding of the chromosomal changes within vampire genera. We examined karyotype differentiation of the 3 species within this subfamily using whole chromosomal probes from Phyllostomus hastatus (Phyllostominae) and Carollia brevicauda (Carolliinae). Painting probes of P. hastatus respectively detected 22, 21 and 23 conserved segments in Diphylla ecaudata, Diaemus youngi, and Desmodus rotundus karyotypes, whereas 27, 27 and 28 were respectively detectedwith C. brevicauda paints. Based on the evolutionary relationships proposed by morphological and molecular data, we present probable chromosomal synapomorphies for vampire bats and propose chromosomes that were present in the common ancestor of the 5 genera analyzed. Karyotype comparisons allowed us to relate a number of conserved chromosomal segments among the 5 species, providing a broader database for understanding karyotype evolution in the family. 2010 S. Karger AG, Basel.

  14. Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4.

    Science.gov (United States)

    Lee, Tong Geon; Lee, Yong Jin; Kim, Dae Yeon; Seo, Yong Weon

    2010-12-01

    Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.

  15. Chromosomal instability and double minute chromosomes in a breast cancer patient

    International Nuclear Information System (INIS)

    Lalic, H.; Radosevic-Stasic, B.

    2004-01-01

    Cytogenetic analysis was performed in peripheral blood lymphocytes (PBL) of a woman with ductal breast carcinoma, who as a hospital employee was exposed professionally for 15 years to low doses of ionizing radiation. The most important finding after the chemotherapy in combination with radiotherapy was the presence of double minutes (DM) chromosomes, in combination with other chromosomal abnormalities (on 200 scored metaphases were found 2 chromatid breaks, 10 dicentrics, 11 acentric fragments, 2 gaps, and 3 double min chromosomes). In a repeated analysis (after 6 months), DM chromosomes were still present. To rule out the possibility that the patient was overexposed to ionizing radiation at work, her blood test was compared with a group of coworkers as well as with a group of professionally unexposed people. The data rejected this possibility, but the retroactive analysis showed that the patient even at the time of employment had a moderately increased number of chromosomal aberrations (3.5%) consisting of 3 isochromatids and 4 gaps, suggesting that her initial genomic instability enhanced the later development. The finding of a continuous presence of rare DM chromosomes in her PBL (4 and 10 months after radio-chemotherapy) was considered as an indicator of additional risk, which might have some prognostic significance. (author)

  16. Ice targets

    International Nuclear Information System (INIS)

    Pacheco, C.; Stark, C.; Tanaka, N.; Hodgkins, D.; Barnhart, J.; Kosty, J.

    1979-12-01

    This report presents a description of ice targets that were constructed for research work at the High Resolution Spectrometer (HRS) and at the Energetic Pion Channel and Spectrometer (EPICS). Reasons for using these ice targets and the instructions for their construction are given. Results of research using ice targets will be published at a later date

  17. Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories

    OpenAIRE

    T Cremer; C Cremer

    2009-01-01

    It is now generally accepted that chromosomes in the cell nucleus are organized in distinct domains, first called chromosome territories in 1909 by the great cytologist Theodor Boveri. Yet, even today chromosomes have remained enigmatic individuals, whose structures, arrangements and functions in cycling and post-mitotic cells still need to be explored in full detail. Whereas numerous recent reviews describe present evidence for a dynamic architecture of chromosome territories and discuss the...

  18. Cancer risk in humans predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic study group on the health risk of chromosome damage

    DEFF Research Database (Denmark)

    Hagmar, L; Brøgger, A; Hansteen, I L

    1994-01-01

    Cytogenetic assays in peripheral blood lymphocytes (PBL) have been used extensively to survey the exposure of humans to genotoxic agents. The conceptual basis for this has been the hypothesis that the extent of genetic damage in PBL reflects critical events for carcinogenic processes in target...... tissues. Until now, no follow-up studies have been performed to assess the predictive value of these methods for subsequent cancer risk. In an ongoing Nordic cohort study of cancer incidence, 3182 subjects were examined between 1970 and 1988 for chromosomal aberrations (CA), sister chromatid exchange.......0009) in CA strata with regard to subsequent cancer risk. The point estimates of the standardized incidence ratio in the three CA strata were 0.9, 0.7, and 2.1, respectively. Thus, an increased level of chromosome breakage appears to be a relevant biomarker of future cancer risk....

  19. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    International Nuclear Information System (INIS)

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10 5 copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G 0 , the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes

  20. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Ottesen, Jesper R.; Youngren, Brenda

    2006-01-01

    in one half of the cell and markers on the right arm of the chromosome lie in the opposite half. This is achieved by reorganizing the chromosome arms of the two nucleoids in pre-division cells relative to the cell quarters. The spatial reorganization of the chromosome arms ensures that the two...

  1. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  2. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Kere, J. [Washington Univ. School of Medicine, St. Louis, MO (United States)]|[Univ. of Helsinki (Finland); Grzeschik, K.H. [Univ. of Marburg (Germany); Limon, J. [Medical Academy, Gdansk (Poland); Gremaud, M.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); De La Chapelle, A. [Univ. of Helsinki (Finland)

    1993-05-01

    Anhidrotic ectodermal dysplasia (EDA), an X-chromosomal recessive disorder, is expressed in a few females with chromosomal translocations involving bands Xq12-q13. Using available DNA markers from the region and somatic cell hybrids the authors mapped the X-chromosomal breakpoints in two such translocations. The breakpoints were further mapped within a yeast artificial chromosome contig constructed by chromosome walking techniques. Genomic DNA markers that map between the two translocation breakpoints were recovered representing putative portions of the EDA gene. 32 refs., 3 figs., 1 tab.

  3. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Kruse, Thomas; Møller-Jensen, Jakob; Løbner-Olesen, Anders

    2003-01-01

    The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shape-determining factor in rod-shaped prokaryotic cells. Using immunofluorescence microscopy we found that MreB of Escherichia coli formed helical filaments located beneath the cell surface. Flow...... cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wild-type MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell...... that MreB filaments participate in directional chromosome movement and segregation....

  4. Gain of chromosome 7 by chromogenic in situ hybridization (CISH) in chordomas is correlated to c-MET expression.

    Science.gov (United States)

    Walter, Beatriz A; Begnami, Maria; Valera, Vladimir A; Santi, Mariarita; Rushing, Elisabeth J; Quezado, Martha

    2011-01-01

    Chordomas are low to intermediate grade malignancies that arise from remnants of embryonic notochord. They often recur after surgery and are highly resistant to conventional adjuvant therapies. Recently, the development of effective targeted molecular therapy has been investigated in chordomas that show receptors for tyrosine kinase (RTKs) activation. Expression of specific RTKs such as Epidermal Growth Factor Receptor (EGFR) and Mesenchymal-epithelial transition factor (c-MET) in chordomas may offer valuable therapeutic options. We investigated changes in copy number of chromosome 7 and correlated it with EGFR gene status and EGFR and c-MET protein expression in 22 chordoma samples. Chromosome 7 copy number was evaluated by chromogenic in situ hybridization (CISH) and protein expression of EGFR and c-MET by immunohistochemistry. Tumors mostly showed conventional histopathologic features and were found mainly in sacral (41%) and cranial sites (54.5%). Aneusomy of chromosome 7 was seen in 73% of the samples, 62% of primary tumors and in all recurrent chordomas. EGFR and c-MET were both expressed, but only c-MET protein expression was significantly correlated with chromosome 7 aneusomy (P ≤ 0.001). c-MET overexpression may represent an early chromosome 7 alteration that could play an important role during chordoma pathogenesis. c-MET overexpression shows promise as a molecular marker of response to targeted molecular therapy in the treatment of chordomas.

  5. Persistence of Breakage in Specific Chromosome Bands 6 Years after Acute Exposure to Oil.

    Directory of Open Access Journals (Sweden)

    Alexandra Francés

    251 breakpoints in exposed individuals were identified, showing a non-uniform distribution in the human ideogram. Ten chromosome bands were found to be especially prone to breakage through both statistical methods. By comparing these bands with those observed in certain exposed individuals who had already participated the previous study, it was found in both studies that four bands (2q21, 3q27, 5q31 and 17p11.2 are particularly sensitive to breakage. Additionally, the dysfunction in DNA repair mechanisms was not significantly higher in oil-exposed individuals than in non-exposed individuals.The sample size and the possibility of some kind of selection bias should be considered. Genotoxic results cannot be extrapolated to the high number of individuals who participated occasionally in clean-up tasks.Our findings show the existence of at least four target bands (2q21, 3q27, 5q31 and 17p11.2 with a greater propensity to break over time after an acute exposure to oil. The breaks in these bands, which are commonly involved in hematological cancer, may explain the increase of cancer risk reported in chronically benzene-exposed individuals. In addition, a more efficiency of the DNA repair mechanisms has been detected six years after in fishermen who were highly exposed to the oil spill. To date, only this study, performed by our group on the previous and present genotoxic effects, has analyzed the chromosomal regions affected by breakage after an acute oil exposure.

  6. Calcium ions function as a booster of chromosome condensation.

    Science.gov (United States)

    Phengchat, Rinyaporn; Takata, Hideaki; Morii, Kenichi; Inada, Noriko; Murakoshi, Hideji; Uchiyama, Susumu; Fukui, Kiichi

    2016-12-02

    Chromosome condensation is essential for the faithful transmission of genetic information to daughter cells during cell division. The depletion of chromosome scaffold proteins does not prevent chromosome condensation despite structural defects. This suggests that other factors contribute to condensation. Here we investigated the contribution of divalent cations, particularly Ca 2+ , to chromosome condensation in vitro and in vivo. Ca 2+ depletion caused defects in proper mitotic progression, particularly in chromosome condensation after the breakdown of the nuclear envelope. Fluorescence lifetime imaging microscopy-Förster resonance energy transfer and electron microscopy demonstrated that chromosome condensation is influenced by Ca 2+ . Chromosomes had compact globular structures when exposed to Ca 2+ and expanded fibrous structures without Ca 2+ . Therefore, we have clearly demonstrated a role for Ca 2+ in the compaction of chromatin fibres.

  7. Diagnosis of Fanconi Anemia: Chromosomal Breakage Analysis

    Science.gov (United States)

    Oostra, Anneke B.; Nieuwint, Aggie W. M.; Joenje, Hans; de Winter, Johan P.

    2012-01-01

    Fanconi anemia (FA) is a rare inherited syndrome with diverse clinical symptoms including developmental defects, short stature, bone marrow failure, and a high risk of malignancies. Fifteen genetic subtypes have been distinguished so far. The mode of inheritance for all subtypes is autosomal recessive, except for FA-B, which is X-linked. Cells derived from FA patients are—by definition—hypersensitive to DNA cross-linking agents, such as mitomycin C, diepoxybutane, or cisplatinum, which becomes manifest as excessive growth inhibition, cell cycle arrest, and chromosomal breakage upon cellular exposure to these drugs. Here we provide a detailed laboratory protocol for the accurate assessment of the FA diagnosis as based on mitomycin C-induced chromosomal breakage analysis in whole-blood cultures. The method also enables a quantitative estimate of the degree of mosaicism in the lymphocyte compartment of the patient. PMID:22693659

  8. American marsupials chromosomes: why study them?

    Directory of Open Access Journals (Sweden)

    Marta Svartman

    2009-01-01

    Full Text Available Marsupials, one of the three main groups of mammals, are only found in Australia and in the American continent. Studies performed in Australian marsupials have demonstrated the great potential provided by the group for the understanding of basic genetic mechanisms and chromosome evolution in mammals. Genetic studies in American marsupials are relatively scarce and cytogenetic data of most species are restricted to karyotype descriptions, usually without banding patterns. Nevertheless, the first marsupial genome sequenced was that of Monodelphis domestica, a South American species. The knowledge about mammalian genome evolution and function that resulted from studies on M. domestica is in sharp contrast with the lack of genetic data on most American marsupial species. Here, we present an overview of the chromosome studies performed in marsupials with emphasis on the South American species.

  9. Chromosome-based genomics in cereals

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Kubaláková, Marie; Paux, E.; Bartoš, Jan; Feuillet, C.

    2007-01-01

    Roč. 15, č. 1 (2007), s. 51-66 ISSN 0967-3849 R&D Projects: GA ČR GP521/06/P412; GA ČR(CZ) GA521/05/0257; GA ČR GA521/06/1723; GA MŠk ME 884; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : Chromosome sorting * chromosome-specific BAC libraries * flow cytometry Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 3.469, year: 2007

  10. Chromosome heteromorphisms in the Japanese, 1

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Tanabe, Kazumi; Awa, A.A.

    1979-02-01

    Thirty-four cases with Dp+ and Gp+, known to be chromosome heteromorphisms in man, were examined using Q- and C-staining methods. Of 18 cases with Dp+, 14 involved No. 15 chromosome and 2 each were No. 13 and No. 14 respectively. Of 16 cases with Gp+, 13 were concerned with No. 22 and the remaining 3 were No. 21. Short arm regions of eight cases with 15p+ and one with 14p+ were stained very darkly by the C-method, but did not fluoresce brilliantly by the Q-method. On the other hand, brightly fluorescing short arm regions observed in three cases with 15p+ and two with 22p+, were not very darkly stained by the C-method. In the remaining 20 cases, short arm regions were not stained positively by either method, but showed negatively or intermediately variable staining intensities. (author)

  11. Y-chromosome STR haplotypes in Somalis

    DEFF Research Database (Denmark)

    Hallenberg, Charlotte; Simonsen, Bo; Sanchez Sanchez, Juan Jose

    2005-01-01

    A total of 201 males from Somalia were typed for the Y-chromosome STRs DYS19, DYS385a/b, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439 with the PowerPlex Y kit (Promega). A total of 96 different haplotypes were observed and the haplotype diversity was 0.9715. The ......A total of 201 males from Somalia were typed for the Y-chromosome STRs DYS19, DYS385a/b, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439 with the PowerPlex Y kit (Promega). A total of 96 different haplotypes were observed and the haplotype diversity was 0...

  12. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Directory of Open Access Journals (Sweden)

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  13. Chromosome analyses of nurses handling cytostatic agents

    International Nuclear Information System (INIS)

    Waksvik, H.; Klepp, O.; Brogger, A.

    1981-01-01

    A cytogenetic study of ten nurses handling cytostatic agents (average exposure, 2150 hours) and ten female hospital clerks revealed an increased frequency of chromosome gaps and a slight increase in sister chromatid exchange frequency among the nurses. The increase may be due to exposure to cytostatic drugs and points to these agents as a possible occupational health hazard. A second group of 11 nurses handling cytostatic agents for a shorter period of time (average exposure, 1078 hours), and three other groups (eight nurses engaged in therapeutic and diagnostic radiology, nine nurses engaged in anesthesiology, and seven nurses in postoperative ward) did not differ from the office personnel, except for an increased frequency of chromosome gaps in the radiology group

  14. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. I. Construction of single chromosomal DNA libraries.

    Science.gov (United States)

    Huang, D; Wu, W; Zhou, Y; Hu, Z; Lu, L

    2004-05-01

    Construction of single chromosomal DNA libraries by means of chromosome microdissection and microcloning will be useful for genomic research, especially for those species that have not been extensively studied genetically. Application of the technology of microdissection and microcloning to woody fruit plants has not been reported hitherto, largely due to the generally small sizes of metaphase chromosomes and the difficulty of chromosome preparation. The present study was performed to establish a method for single chromosome microdissection and microcloning in woody fruit species using pomelo as a model. The standard karyotype of a pomelo cultivar ( Citrus grandis cv. Guanxi) was established based on 20 prometaphase photomicrographs. According to the standard karyotype, chromosome 1 was identified and isolated with fine glass microneedles controlled by a micromanipulator. DNA fragments ranging from 0.3 kb to 2 kb were acquired from the isolated single chromosome 1 via two rounds of PCR mediated by Sau3A linker adaptors and then cloned into T-easy vectors to generate a DNA library of chromosome 1. Approximately 30,000 recombinant clones were obtained. Evaluation based on 108 randomly selected clones showed that the sizes of the cloned inserts varied from 0.5 kb to 1.5 kb with an average of 860 bp. Our research suggests that microdissection and microcloning of single small chromosomes in woody plants is feasible.

  15. Genome-wide mapping of Painting of fourth on Drosophila melanogaster salivary gland polytene chromosomes.

    Science.gov (United States)

    Johansson, Anna-Mia; Larsson, Jan

    2014-12-01

    The protein Painting of fourth (POF) in Drosophila melanogaster specifically targets and stimulates expression output from the heterochromatic 4th chromosome, thereby representing an autosome specific protein [1,2]. Despite the high specificity for chromosome 4 genes, POF is occasionally observed binding to the cytological region 2L:31 in males and females [3] and two loci on the X-chromosome, PoX1 and PoX2 only in females [4]. Here we provide a detailed description of the experimental design and analysis of the tiling array data presented by Lundberg and colleagues in G3: Genes, Genomes, Genetics 2013 [4], where the female specific POF binding to PoX1 and PoX2 loci on the X chromosome was reported. We show the genome-wide high resolution binding profile of the POF protein where these different POF binding sites are detected. The complete data set is available at http://www.ncbi.nlm.nih.gov/geo/ (accession: GSE45402).

  16. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  17. Chromosomal variation in the house mouse

    Czech Academy of Sciences Publication Activity Database

    Piálek, Jaroslav; Hauffe, H. C.; Searle, J. B.

    2005-01-01

    Roč. 84, č. 3 (2005), s. 535-563 ISSN 0024-4066. [The genus Mus as a model for evolutionary studies - a symposium in honour of Louis Thaler. Brno, 28.07.2003-30.07.2003] R&D Projects: GA AV ČR IAA6045601 Institutional research plan: CEZ:AV0Z6093917 Keywords : chromosomal evolution * hybrid zone * Robertsonian fusions Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.261, year: 2005

  18. Y-chromosome STR haplotypes in Danes

    DEFF Research Database (Denmark)

    Hallenberg, Charlotte; Nielsen, Karsten; Simonsen, Bo Thisted

    2005-01-01

    A total of 185 unrelated Danish males were typed for the Y-chromosome STRs DYS19, DYS385a/b, DYS389-I, DYS389-II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438 and DYS439 using the kits PowerPlex Y (Promega), ReliaGene Y-Plex 6 and ReliaGene Y-Plex 5 (Reliagene Technologies). A total of 163...

  19. Difficult cases for chromosomal dosimetry: Statistical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, Volodymyr A., E-mail: vlad.vinnikov@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine, Pushkinskaya Street 82, Kharkiv 61024 (Ukraine); Ainsbury, Elizabeth A., E-mail: liz.ainsbury@hpa.org.uk [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Lloyd, David C., E-mail: david.lloyd@hpa.org.uk [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom); Maznyk, Nataliya A., E-mail: maznik.cytogen@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine, Pushkinskaya Street 82, Kharkiv 61024 (Ukraine); Rothkamm, Kai, E-mail: kai.rothkamm@hpa.org.uk [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2011-09-15

    Several examples are selected from the literature in order to illustrate combinations of complicating factors, which may occur in real-life radiation exposure scenarios that affect the accuracy of cytogenetic dose estimates. An analysis of limitations in the current statistical methods used in biodosimetry was carried out. Possible directions for further improvement of the statistical basis of chromosomal dosimetry by specific mathematical procedures are outlined.

  20. Chromosome duplication in Lolium multiflorum Lam.

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    2014-11-01

    Full Text Available Artificial chromosome duplication of diploid genotypes of Lolium multiflorum (2n=2x=14 is worthy to breeding, and aims to increase the expression of traits with agronomic interest. The purpose of this study was to obtain polyploid plants of L. multiflorum from local diploid populations in order to exploit adaptation and future verification of the effects of polyploidy in agronomic traits. Seedlings were immersed in different colchicine solutions for an exposure time of 3h and 24h. Ploidy determination was made by the DNA content and certified by chromosomes counts. The plants confirmed as tetraploids were placed in a greenhouse, and, at flowering, pollen viability was evaluated, and seeds were harvested to assess the stability of the progenies. The percentage of polyploids obtained was 20%. Pollen viability of the tetraploids generated ranged from 58% to 69%. The tetraploid plants obtained in the experiment generated 164 progenies, of which 109 presented DNA content compatible with the tetraploid level, showing stability of chromosome duplication in the filial generation.

  1. The variability is in the sex chromosomes.

    Science.gov (United States)

    Reinhold, Klaus; Engqvist, Leif

    2013-12-01

    Sex differences in the mean trait expression are well documented, not only for traits that are directly associated with reproduction. Less is known about how the variability of traits differs between males and females. In species with sex chromosomes and dosage compensation, the heterogametic sex is expected to show larger trait variability ("sex-chromosome hypothesis"), yet this central prediction, based on fundamental genetic principles, has never been evaluated in detail. Here we show that in species with heterogametic males, male variability in body size is significantly larger than in females, whereas the opposite can be shown for species with heterogametic females. These results support the prediction of the sex-chromosome hypothesis that individuals of the heterogametic sex should be more variable. We argue that the pattern demonstrated here for sex-specific body size variability is likely to apply to any trait and needs to be considered when testing predictions about sex-specific variability and sexual selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  2. Chromosome length scaling in haploid, asexual reproduction

    International Nuclear Information System (INIS)

    Oliveira, P M C de

    2007-01-01

    We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with a few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individual's chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilized after sufficiently many generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulation results: the question also involves the population size

  3. Meiotic transmission of Drosophila pseudoobscura chromosomal arrangements.

    Directory of Open Access Journals (Sweden)

    Richard P Meisel

    Full Text Available Drosophila pseudoobscura harbors a rich gene arrangement polymorphism on the third chromosome generated by a series of overlapping paracentric inversions. The arrangements suppress recombination in heterokaryotypic individuals, which allows for the selective maintenance of coadapted gene complexes. Previous mapping experiments used to determine the degree to which recombination is suppressed in gene arrangement heterozygotes produced non-recombinant progeny in non-Mendelian ratios. The deviations from Mendelian expectations could be the result of viability differences between wild and mutant chromosomes, meiotic drive because of achiasmate pairing of homologues in heterokaryotypic females during meiosis, or a combination of both mechanisms. The possibility that the frequencies of the chromosomal arrangements in natural populations are affected by mechanisms other than adaptive selection led us to consider these hypotheses. We performed reciprocal crosses involving both heterozygous males and females to determine if the frequency of the non-recombinant progeny deviates significantly from Mendelian expectations and if the frequencies deviate between reciprocal crosses. We failed to observe non-Mendelian ratios in multiple crosses, and the frequency of the non-recombinant classes differed in only one of five pairs of reciprocal crosses despite sufficient power to detect these differences in all crosses. Our results indicate that deviations from Mendelian expectations in recombination experiments involving the D. pseudoobscura inversion system are most likely due to fitness differences of gene arrangement karyotypes in different environments.

  4. Using 3-color chromosome painting to decide between chromosome aberration models

    International Nuclear Information System (INIS)

    Lucas, J.N.; Sachs, R.K.

    1993-01-01

    Ionizing radiation produces chromosome aberrations when DNA double strand breaks (DSB) interact pairwise. For more than 30 years there have been two main, competing theories of such binary DSB interactions. The classical theory asserts that an unrepaired DSB makes two ends which separate, with each end subsequently able to join any similar (non-telomeric) end. The exchange theory asserts that the two DSB ends remain associated until repair or a reciprocal chromosome exchange involving a second DSB occurs. The authors conducted an experiment to test these models, using 3-color chromosome painting. After in vitro irradiation of resting human lymphocytes, they observed cells with three-color triplets at first metaphase: three derivative chromosomes having permuted colors, as if three broken chromosomes had played musical chairs. On the exchange model in its standard form such 3-color triplets cannot occur. On the classical model the expected frequency can be calculated. They report data and computer calculations which exclude the exchange model and favor the classical model

  5. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division

    Science.gov (United States)

    Storlazzi, Aurora; Tessé, Sophie; Gargano, Silvana; James, Françoise; Kleckner, Nancy; Zickler, Denise

    2003-01-01

    Chromosomal processes related to formation and function of meiotic chiasmata have been analyzed in Sordaria macrospora. Double-strand breaks (DSBs), programmed or γ-rays-induced, are found to promote four major events beyond recombination and accompanying synaptonemal complex formation: (1) juxtaposition of homologs from long-distance interactions to close presynaptic coalignment at midleptotene; (2) structural destabilization of chromosomes at leptotene/zygotene, including sister axis separation and fracturing, as revealed in a mutant altered in the conserved, axis-associated cohesin-related protein Spo76/Pds5p; (3) exit from the bouquet stage, with accompanying global chromosome movements, at zygotene/pachytene (bouquet stage exit is further found to be a cell-wide regulatory transition and DSB transesterase Spo11p is suggested to have a new noncatalytic role in this transition); (4) normal occurrence of both meiotic divisions, including normal sister separation. Functional interactions between DSBs and the spo76-1 mutation suggest that Spo76/Pds5p opposes local destabilization of axes at developing chiasma sites and raise the possibility of a regulatory mechanism that directly monitors the presence of chiasmata at metaphase I. Local chromosome remodeling at DSB sites appears to trigger an entire cascade of chromosome movements, morphogenetic changes, and regulatory effects that are superimposed upon a foundation of DSB-independent processes. PMID:14563680

  6. Distribution of X-ray induced chromosome rearrangement breaks along the polytene chromosomes of Anopheles messeae

    International Nuclear Information System (INIS)

    Pleshkova, G.N.

    1983-01-01

    Distribution of chromosomal aberrations localization along polytene chromosomes (aoutosomes) of salivary glands of malarial mosquito. Anopheles messeae is presented. Induced aberrations in F 1 posterity from X-ray irradiated fecundated females are studied. Poipts of breaks of inversions and trapslocations are localized separately. There are no considerable dif-- ferences in the distribution character of two types of aberrations. Over the length of autosomes the breaks are more frequent in distal halves, their frequency in proximal parts anally in near centromeric regions of chromosomes is reduced. Concentration of breaks in certain ''hot points'' of the chromosomes is pointed out. Comparison of distribution of actual and expected frequencies of break points according to chi 2 criterion revealed highly fiducial discrepancies, testifying to uneven participation of different regions of chromosomes in aberration formation. Similarities and differences of the data obtained from analogous ones, demonstrated in Drosophila, as well as possible reasons for the distribution unevennes are discussed. On the basis of analysis of intrinsic and literature data a supposition is made that the ''hot points'' (break concentrations) can be considered as localizaion markers of intercalary heterochromatin

  7. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N.; Freedman, Neal D.; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B.; Abnet, Christian C.; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Arslan, Alan A.; Beane-Freeman, Laura E.; Berndt, Sonja I.; Black, Amanda; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Brinton, Louise A.; Bueno-de-Mesquita, H Bas; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Canzian, Federico; Carreón, Tania; Chaffee, Kari G.; Chang, I-Shou; Chatterjee, Nilanjan; Chen, Chu; Chen, Constance; Chen, Kexin; Chung, Charles C.; Cook, Linda S.; Crous Bou, Marta; Cullen, Michael; Davis, Faith G.; De Vivo, Immaculata; Ding, Ti; Doherty, Jennifer; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Friedenreich, Christine M.; Fuchs, Charles S.; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Gaudet, Mia M.; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hsiung, Chao A.; Hu, Nan; Hu, Wei; Hunter, David J.; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Alison P.; Klein, Robert; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Lan, Qing; Landi, Maria Teresa; Marchand, Loic Le; Li, Donghui; Liang, Xiaolin; Liao, Linda M.; Lin, Dongxin; Liu, Jianjun; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Malats, Nuria; Matsuo, Keitaro; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Moore, Lee; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Patiño-Garcia, Ana; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Pooler, Loreall; Prescott, Jennifer; Prokunina-Olsson, Ludmila; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Risch, Harvey A.; Rodriguez-Santiago, Benjamin; Ruder, Avima M.; Savage, Sharon A.; Schumacher, Fredrick; Schwartz, Ann G.; Schwartz, Kendra L.; Seow, Adeline; Wendy Setiawan, Veronica; Severi, Gianluca; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Van Den Berg, David; Visvanathan, Kala; Wacholder, Sholom; Wang, Jiu-Cun; Wang, Zhaoming; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Ziegler, Regina G.; Perez-Jurado, Luis A.; Caporaso, Neil E.; Rothman, Nathaniel; Tucker, Margaret; Dean, Michael C.; Yeager, Meredith; Chanock, Stephen J.

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases. PMID:27291797

  8. Genes and chromosomes: control of development

    Directory of Open Access Journals (Sweden)

    Oleg Serov

    2004-09-01

    Full Text Available The past decade has witnessed immense progress in research into the molecular basis behind the developmental regulation of genes. Sets of genes functioning under hierarchical control have been identified, evolutionary conserved systems of genes effecting the cell-to-cell transmission of transmembrane signals and assigned a central role in morphogenesis have been intensively studied; the concept of genomic regulatory networks coordinating expression of many genes has been introduced, to mention some of the major breakthroughs. It should be noted that the temporal and tissue-specific parameters of gene expression are correctly regulated in development only in the context of the chromosome and that they are to a great extent dependent on the position of the gene on the chromosome or the interphase nucleus. Moreover epigenetic inheritance of the gene states through successive cell generations has been conducted exclusively at the chromosome level by virtue of cell or chromosome memory. The ontogenetic memory is an inherent property of the chromosome and cis-regulation has a crucial role in its maintenance.Durante a última década houve imenso progresso na pesquisa sobre as bases moleculares da regulação gênica durante o desenvolvimento. Foram identificados grupos de genes funcionando sob controle hierárquico, sistemas de genes conservados ao longo da evolução atuando na transmissão célula a célula de sinais transmembrana e com uma função central na morfogênese foram intensamente estudados e o conceito de redes genômicas regulatórias coordenando a expressão de diversos genes foi introduzido, para citar apenas alguns dos principais avanços. Deve-se notar que os parâmetros tempo e tecido-específicos da expressão gênica são corretamente regulados durante o desenvolvimento apenas no contexto do cromossomo e que são amplamente dependentes da posição do gene no cromossomo ou no núcleo em interfase. Além do mais, a herança epigen

  9. Anti-topoisomerase drugs as potent inducers of chromosomal aberrations

    Directory of Open Access Journals (Sweden)

    Loredana Bassi

    2000-12-01

    Full Text Available DNA topoisomerases catalyze topological changes in DNA that are essential for normal cell cycle progression and therefore they are a preferential target for the development of anticancer drugs. Anti-topoisomerase drugs can be divided into two main classes: "cleavable complex" poisons and catalytic inhibitors. The "cleavable complex" poisons are very effective as anticancer drugs but are also potent inducers of chromosome aberrations so they can cause secondary malignancies. Catalytic inhibitors are cytotoxic but they do not induce chromosome aberrations. Knowledge about the mechanism of action of topoisomerase inhibitors is important to determine the best anti-topoisomerase combinations, with a reduced risk of induction of secondary malignancies.As topoisomerases de DNA catalisam alterações topológicas no DNA que são essenciais para a progressão do ciclo celular normal e, portanto, são um alvo preferencial para o desenvolvimento de drogas anticâncer. Drogas anti-topoisomerases podem ser divididas em duas classes principais: drogas anti-"complexos cliváveis" e inibidores catalíticos. As drogas anti-"complexos cliváveis" são muito eficazes como drogas anticancerígenas, mas são também potentes indutores de aberrações cromossômicas, podendo causar neoplasias malignas secundárias. Inibidores catalíticos são citotóxicos mas não induzem aberrações cromossômicas. Conhecimento a respeito do mecanismo de ação de inibidores de topoisomerases é importante para determinar as melhores combinações anti-topoisomerases, com um reduzido risco de indução de neoplasias malignas secundárias.

  10. Directional genomic hybridization for chromosomal inversion discovery and detection.

    Science.gov (United States)

    Ray, F Andrew; Zimmerman, Erin; Robinson, Bruce; Cornforth, Michael N; Bedford, Joel S; Goodwin, Edwin H; Bailey, Susan M

    2013-04-01

    Chromosomal rearrangements are a source of structural variation within the genome that figure prominently in human disease, where the importance of translocations and deletions is well recognized. In principle, inversions-reversals in the orientation of DNA sequences within a chromosome-should have similar detrimental potential. However, the study of inversions has been hampered by traditional approaches used for their detection, which are not particularly robust. Even with significant advances in whole genome approaches, changes in the absolute orientation of DNA remain difficult to detect routinely. Consequently, our understanding of inversions is still surprisingly limited, as is our appreciation for their frequency and involvement in human disease. Here, we introduce the directional genomic hybridization methodology of chromatid painting-a whole new way of looking at structural features of the genome-that can be employed with high resolution on a cell-by-cell basis, and demonstrate its basic capabilities for genome-wide discovery and targeted detection of inversions. Bioinformatics enabled development of sequence- and strand-specific directional probe sets, which when coupled with single-stranded hybridization, greatly improved the resolution and ease of inversion detection. We highlight examples of the far-ranging applicability of this cytogenomics-based approach, which include confirmation of the alignment of the human genome database and evidence that individuals themselves share similar sequence directionality, as well as use in comparative and evolutionary studies for any species whose genome has been sequenced. In addition to applications related to basic mechanistic studies, the information obtainable with strand-specific hybridization strategies may ultimately enable novel gene discovery, thereby benefitting the diagnosis and treatment of a variety of human disease states and disorders including cancer, autism, and idiopathic infertility.

  11. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia

    International Nuclear Information System (INIS)

    Matsunaga, S.; Kawano, S.; Michimoto, T.; Higashiyama, T.; Nakao, S.; Sakai, A.; Kuroiwa, T.

    1999-01-01

    Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but-hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes

  12. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  13. High degree of sex chromosome differentiation in stickleback fishes

    Directory of Open Access Journals (Sweden)

    Shimada Yukinori

    2011-09-01

    Full Text Available Abstract Background Studies of closely related species with different sex chromosome systems can provide insights into the processes of sex chromosome differentiation and evolution. To investigate the potential utility of molecular markers in studying sex chromosome differentiation at early stages of their divergence, we examined the levels and patterns of genetic differentiation between sex chromosomes in nine-spined (Pungitius pungitius and three-spined sticklebacks (Gasterosteus aculeatus using microsatellite markers. Results A set of novel microsatellite markers spanning the entire length of the sex chromosomes were developed for nine-spined sticklebacks using the sequenced genomes of other fish species. Sex-specific patterns of genetic variability and male-specific alleles were identified at most of these loci, indicating a high degree of differentiation between the X and Y chromosomes in nine-spined sticklebacks. In three-spined sticklebacks, male-specific alleles were detected at some loci confined to two chromosomal regions. In addition, male-specific null alleles were identified at several other loci, implying the absence of Y chromosomal alleles at these loci. Overall, male-specific alleles and null alleles were found over a region spanning 81% of the sex chromosomes in three-spined sticklebacks. Conclusions High levels but distinct patterns of sex chromosome differentiation were uncovered in the stickleback species that diverged 13 million years ago. Our results suggest that the Y chromosome is highly degenerate in three-spined sticklebacks, but not in nine-spined sticklebacks. In general, the results demonstrate that microsatellites can be useful in identifying the degree and patterns of sex chromosome differentiation in species at initial stages of sex chromosome evolution.

  14. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  15. Entropic effects in formation of chromosome territories: towards understanding of radiation-induced gene translocation frequency

    Science.gov (United States)

    Gudowska-Nowak, Ewa; Ritter, Sylvia; Durante, Marco; Deperas-Standylo, Joanna; Ciesla, Michal

    2012-07-01

    A detailed understanding of structural organization of biological target, such as geometry of an inter-phase chromosome, is an essential prerequisite for gaining deeper insight into relationship between radiation track structure and radiation-induced biological damage [1]. In particular, coupling of biophysical models aimed to describe architecture of chromosomes and their positioning in a cell nucleus [2-4] with models of local distribution of ionizations caused by passing projectiles, are expected to result in more accurate estimates of aberration induction caused by radiation. There is abundant experimental evidence indicating that arrangements of chromosomes in eukaryotic cell nucleus is non-random and has been evolutionary conserved in specific cell types. Moreover, the radial position of a given chromosome territory (CT) within the cell nucleus has been shown to correlate with its size and gene density. Usually it is assumed that chromosomal geometry and positioning result from the action of specific forces acting locally, such as hydrogen bonds, electrostatic, Van der Waals or hydrophobic interactions operating between nucleosomes and within their interiors. However, it is both desirable and instructive to learn to what extend organization of inter-phase chromosomes is affected by nonspecific entropic forces. In this study we report results of a coarse-grained analysis of a chromatin structure modeled by two distinct approaches. In the first method, we adhere to purely statistical analysis of chromatin packing within a chromosome territory. On the basis of the polymer theory, the chromatin fiber of diameter 30nm is approximated by a chain of spheres, each corresponding to about 30 kbp. Random positioning of the center of the domain is repeated for 1000 spherical nuclei. Configuration of the domain is determined by a random packing of a polymer (a string of identical beads) in estimated fraction of space occupied by a chromosome of a given length and mass

  16. Balanced Chromosomal Translocation of Chromosomes 6 and 7: A Rare Male Factor of Spontaneous Abortions

    Directory of Open Access Journals (Sweden)

    Sefa Resim

    2013-06-01

    Full Text Available Background: Carriers of structural chromosomal rearrangements such as Robertsonian or reciprocal translocations have an increased risk of spontaneous abortion and producing offspring with genetic abnormalities. Case Report: We report a man with balanced chromosomal translocations located at 6p22, and 7q22. His wife has a history of four spontaneous abortions. Conclusion: Couples with a history of abortions should be investigated cytogenetically, after other causes of miscarriages are excluded. The possibility of spontaneous abortions can be reduced with preimplantation genetic diagnosis (PGD before embryo transfer.

  17. Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus

    Science.gov (United States)

    Hada, Megumi; Chappell, Lori J.; Wang, Minli; George, Kerry A.; Cucinotta, Francis A.

    2014-01-01

    The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses.

  18. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Science.gov (United States)

    Tóth, Anna; Fodor, Katalin; Praznovszky, Tünde; Tubak, Vilmos; Udvardy, Andor; Hadlaczky, Gyula; Katona, Robert L

    2014-01-01

    Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  19. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Directory of Open Access Journals (Sweden)

    Anna Tóth

    Full Text Available Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  20. Antiproton Target

    CERN Multimedia

    1980-01-01

    Antiproton target used for the AA (antiproton accumulator). The first type of antiproton production target used from 1980 to 1982 comprised a rod of copper 3mm diameter and 120mm long embedded in a graphite cylinder that was itself pressed into a finned aluminium container. This assembly was air-cooled and it was used in conjunction with the Van der Meer magnetic horn. In 1983 Fermilab provided us with lithium lenses to replace the horn with a view to increasing the antiproton yield by about 30%. These lenses needed a much shorter target made of heavy metal - iridium was chosen for this purpose. The 50 mm iridium rod was housed in an extension to the original finned target container so that it could be brought very close to the entrance to the lithium lens. Picture 1 shows this target assembly and Picture 2 shows it mounted together with the lithium lens. These target containers had a short lifetime due to a combination of beam heating and radiation damage. This led to the design of the water-cooled target in...

  1. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    DEFF Research Database (Denmark)

    Ågren, Joakim; Hamidjaja, Raditijo A.; Hansen, Trine

    2013-01-01

    Bacillus anthracis, the causative agent of anthrax, is a zoonotic pathogen that is relatively common throughout the world and may cause life threatening diseases in animals and humans. There are many PCR-based assays in use for the detection of B. anthracis. While most of the developed assays rely...... on unique markers present on virulence plasmids pXO1 and pXO2, relatively few assays incorporate chromosomal DNA markers due to the close relatedness of B. anthracis to the B. cereus group strains. For the detection of chromosomal DNA, different genes have been used, such as BA813, rpoB, gyrA, plcR, S...... targets evaluated are claimed to be specific to B. anthracis, cross-reactions with closely related B. cereus and B. thuringiensis strains were often observed. Of the 35 investigated PCR assays, only 4 were 100% specific for the B. anthracis chromosome. An interlaboratory ring trial among five European...

  2. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Science.gov (United States)

    Gleeson, Dianne; Georges, Arthur

    2018-01-01

    Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways. PMID:29751579

  3. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    Science.gov (United States)

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. © 2015 S. Karger AG, Basel.

  4. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  5. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution?

    Directory of Open Access Journals (Sweden)

    Shayer Mahmood Ibney Alam

    2018-05-01

    Full Text Available Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD and temperature-dependent sex determination (TSD within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways.

  6. Chromosomal characterization of the bonytongue Arapaima gigas (Osteoglossiformes: Arapaimidae

    Directory of Open Access Journals (Sweden)

    Debora Karla Marques

    Full Text Available The mitotic chromosomes of the pirarucu Arapaima gigas inhabiting the middle Araguaia River and collected in the municipality of Araguaiana (MT, Brazil were studied. The chromosomes were analyzed through Giemsa staining, C-banding, Ag-NOR staining and in situ hybridization using an 18S rRNA gene probe. The karyotype had 2n=56 comprising 14 biarmed and 14 uniarmed chromosome pairs in both sexes. No cytologically distinguishable sex chromosome was identified. A single NOR-bearing chromosome pair was detected by Ag-NOR staining and confirmed by 18S rDNA- FISH. Faint constitutive heterochromatin was C-banded in the centromeric region of some chromosomes.

  7. Evolution of heteromorphic sex chromosomes in the order Aulopiformes.

    Science.gov (United States)

    Ota, K; Kobayashi, T; Ueno, K; Gojobori, T

    2000-12-23

    The fish order Aulopiformes contains both synchronously hermaphroditic and gonochoristic species. From the cytogenetic viewpoint, few reports show that gonochoristic Aulopiformes have heteromorphic sex chromosomes. Because fish in this order give us a unique opportunity to elucidate the evolution of sex chromosomes, it is important to examine a phylogenetic relationship in Aulopiformes by both molecular evolutionary and cytogenetic methods. Thus, we conducted molecular phylogenetic and cytogenetic studies of six Aulopiform species. Our results suggested that hermaphroditic species were evolutionarily derived from gonochoristic species. It follows that the hermaphroditic species might have lost the heteromorphic sex chromosomes during evolution. Here, we suggest a possibility that heteromorphic sex chromosomes can disappear from the genome, even if they have appeared once in evolution. Taking into account Ohno's hypothesis that heteromorphic sex chromosomes might have emerged from autosomes, we propose the hypothesis that heteromorphic sex chromosomes may have undergone repeated events of appearance and disappearance during the course of fish evolution.

  8. The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis.

    Science.gov (United States)

    Phillips, J L; Hayward, S W; Wang, Y; Vasselli, J; Pavlovich, C; Padilla-Nash, H; Pezullo, J R; Ghadimi, B M; Grossfeld, G D; Rivera, A; Linehan, W M; Cunha, G R; Ried, T

    2001-11-15

    Here we report the genetic characterization of immortalized prostate epithelial cells before and after conversion to tumorigenicity using molecular cytogenetics and microarray technology. We were particularly interested to analyze the consequences of acquired chromosomal aneuploidies with respect to modifications of gene expression profiles. Compared with nontumorigenic but immortalized prostate epithelium, prostate tumor cell lines showed high levels of chromosomal rearrangements that led to gains of 1p, 5, 11q, 12p, 16q, and 20q and losses of 1pter, 11p, 17, 20p, 21, 22, and Y. Of 5700 unique targets on a 6.5K cDNA microarray, approximately 3% were subject to modification in expression levels; these included GRO-1, -2, IAP-1,- 2, MMP-9, and cyclin D1, which showed increased expression, and TRAIL, BRCA1, and CTNNA, which showed decreased expression. Thirty % of expression changes occurred in regions the genomic copy number of which remained balanced. Of the remainder, 42% of down-regulated and 51% of up-regulated genes mapped to regions present in decreased or increased genomic copy numbers, respectively. A relative gain or loss of a chromosome or chromosomal arm usually resulted in a statistically significant increase or decrease, respectively, in the average expression level of all of the genes on the chromosome. However, of these genes, very few (e.g., 5 of 101 genes on chromosome 11q), and in some instances only two genes (MMP-9 and PROCR on chromosome 20q), were overexpressed by > or =1.7-fold when scored individually. Cluster analysis by gene function suggests that prostate tumorigenesis in these cell line models involves alterations in gene expression that may favor invasion, prevent apoptosis, and promote growth.

  9. Mapping of four distinct BCR-related loci to chromosome region 22q11: order of BCR loci relative to chronic myelogenous leukemia and acute lymphoblastic leukemia breakpoints

    International Nuclear Information System (INIS)

    Croce, C.M.; Huebner, K.; Isobe, M.; Fainstain, E.; Lifshitz, B.; Shtivelman, E.; Canaani, E.

    1987-01-01

    A probe derived from the 3' region of the BCR gene (breakpoint cluster region gene) detects four distinct loci in the human genome. One of the loci corresponds to the complete BCR gene, whereas the other contain a 3' segment of the gene. After HindIII cleavage of human DNA, these four loci are detected as 23-, 19-, 13-, and 9-kikobase-pair fragments, designated BCR4, BCR3, BCR2, and BCR1, respectively, with BCR1 deriving from the original complete BCR gene. All four BCR loci segregate 100% concordantly with human chromosome 22 in a rodent-human somatic cell hybrid panel and are located at chromosome region 22q11.2 by chromosomal in situ hybridization. The BCR2 and BCR4 loci are amplified in leukemia cell line K562 cells, indicating that they fall within the amplification unit that includes immunoglobulin λ light chain locus (IGL) and ABL locus on the K562 Philadelphia chromosome (Ph 1 ). Similarly, in mouse-human hybrids retaining a Ph 1 chromosome derived from an acute lymphoblastic leukemia-in the absence of the 9q + and 22, only BCR2 and BCR4 loci are retained. Thus, the order of loci on chromosome 22 is centromere → BCR2, BCR4, and IGL → BCR1 → BCR3 → SIS, possibly eliminating BCR2 and BCR4 loci as candidate targets for juxtaposition to the ABL gene in the acute lymphoblastic leukemia Ph 1 chromosome

  10. Meningiomas, dicentric chromosomes, gliomas, and telomerase activity.

    Science.gov (United States)

    Carroll, T; Maltby, E; Brock, I; Royds, J; Timperley, W; Jellinek, D

    1999-08-01

    Lack of telomere maintenance during cell replication leads to telomere erosion and loss of function. This can result in telomere associations which probably cause the dicentric chromosomes seen in some tumour cells. One mechanism of telomere maintenance in dividing cells is the action of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening during cell division. Over 90 per cent of extracranial malignant neoplasms have been found to have telomerase activity. This study sought to determine if there was a relationship between absence of telomerase activity and presence of dicentric chromosomes in meningiomas and to what extent the other main group of central nervous system tumours, the gliomas, expressed telomerase activity. Telomerase activity was measured on 25 meningiomas and 29 gliomas. Four of the meningiomas were atypical variants and 11 were positive for dicentric chromosomes. Twenty-five of 29 gliomas were glioblastoma multiforme tumours. Measures were taken to ensure absence of false positives due to primer-dimer interaction and false negatives due to protein degradation or the presence of Taq polymerase inhibitors. All 25 meningiomas and the four low-grade gliomas (WHO grade II) were telomerase activity-negative. Seven (28 per cent) of the 25 glioblastoma multiforme tumours showed telomerase activity. The absence of telomerase activity in meningiomas and the high frequency of telomere associations support the hypothesis that these tumours are benign, transformed but pre-crisis. The relatively low frequency of telomerase activity in the malignant glioblastoma multiforme suggests that most of these tumours may have other mechanisms of telomere maintenance and that the potentially therapeutic telomerase inhibitors will not be of great value in the future management of the majority of patients suffering from these tumours. Copyright 1999 John Wiley & Sons, Ltd.

  11. Involvement of DNA repair in telomere maintenance and chromosomal instability in human cells

    International Nuclear Information System (INIS)

    Ayouaz, Ali

    2008-01-01

    Telomeres are a major actor of cell immortalization, precursor of a carcinogenesis process. Thus, it appears that the maintenance of telomeres is crucial in the implementation of carcinogenesis process. Due to their structures and under some conditions, telomeres can be assimilated in some respects to chromosomal breakages. Within this perspective, this research thesis aims at determining under which circumstances telomeres can be taken as targets by DNA repair mechanisms. More precisely, the author addressed the respective contributions of two repair mechanisms (the Non-Homologous End-Joining or NHEJ, and Homologous Recombination or HR) in the maintenance of telomere integrity. The author first discusses knowledge related to the interaction between chromosomal extremities and repair mechanisms. Then, he defines the behaviour of these mechanisms with respect to telomeres. He shows that, in absence of recombination mechanisms, the integrity of telomeres is not affected. Finally, he reports the attempt to determine their respective contributions in telomeric homeostasis [fr

  12. Image cytometry: nuclear and chromosomal DNA quantification.

    Science.gov (United States)

    Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo; Abreu, Isabella Santiago

    2011-01-01

    Image cytometry (ICM) associates microscopy, digital image and software technologies, and has been particularly useful in spatial and densitometric cytological analyses, such as DNA ploidy and DNA content measurements. Basically, ICM integrates methodologies of optical microscopy calibration, standard density filters, digital CCD camera, and image analysis softwares for quantitative applications. Apart from all system calibration and setup, cytological protocols must provide good slide preparations for efficient and reliable ICM analysis. In this chapter, procedures for ICM applications employed in our laboratory are described. Protocols shown here for human DNA ploidy determination and quantification of nuclear and chromosomal DNA content in plants could be used as described, or adapted for other studies.

  13. Bias of purine stretches in sequenced chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren

    2002-01-01

    /pur tracts was slightly less than expected, with an average of 0.8%. One of the most surprising findings is a clear difference in the length distributions of the regions studied between prokaryotes and eukaryotes. Whereas short-range correlations can explain the length distributions in prokaryotes......, in eukaryotes there is an abundance of long stretches of purines or alternating purine/pyrimidine tracts, which cannot be explained in this way; these sequences are likely to play an important role in eukaryotic chromosome organisation....

  14. Chromosomal aberrations in children exposed to diagnostic x-rays

    International Nuclear Information System (INIS)

    Nordenson, I.; Beckman, G.; Beckman, L.; Lemperg, R.

    1980-01-01

    Among children who have received high x-ray doses congenital dislocation of the hip joint is the predominating diagnosis. In a series of 9 children who had received high x-ray doses (8 with luxation of the hip joint and one with achondroplasia) a significant increase of chromosomal aberrations was found. The increase concerned mainly chromosome type aberrations. The shorter the time since the last x-ray investigation the higher was the frequency of chromosome type aberrations. (author)

  15. Chromosome breakage in peripheral lymphocytes of thorium workers

    International Nuclear Information System (INIS)

    Hoegerman, S.F.; Cummins, H.T.

    1979-01-01

    Cytogenic analysis of 21 thorium workers and 3 controls has not shown a significant elevation in the level of chromosome breakage in the workers' peripheral lymphocytes. The observation of a single dicentric chromosome in 100-cell samples from each of two workers with relatively long periods of occupational exposure and relatively high body burdens suggests, however, that such exposure might result in increases in chromosome aberration frequency

  16. Chromosomes in the flow to simplify genome analysis

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Vrána, Jan; Šafář, Jan; Bartoš, Jan; Kubaláková, Marie; Šimková, Hana

    2012-01-01

    Roč. 12, č. 3 (2012), s. 397-416 ISSN 1438-793X R&D Projects: GA ČR GAP501/10/1740; GA ČR GAP501/10/1778 Institutional research plan: CEZ:AV0Z50380511 Keywords : Chromosome sorting * Chromosome-specific BAC libraries * Chromosome sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.292, year: 2012

  17. Study of ionizing radiation effect on human spermatozoa chromosomes

    International Nuclear Information System (INIS)

    Rousseaux, S.

    1990-02-01

    The purpose of this thesis is to study the radio-induced chromosomal aberrations in spermatozoa. After a brief recall on ionizing radiations, the author reviews the radio-induced chromosomal anomalies on somatic cells and on germinal line cells and spermatozoa. The author presents the technical aspects of human spermatozoa karyotype and finally studies the radio induced chromosomal anomalies of sperm to patients undergoing a radiotherapy. 13 tabs., 28 figs., 28 photos

  18. Analysis of EGFR, HER2, and TOP2A gene status and chromosomal polysomy in gastric adenocarcinoma from Chinese patients

    International Nuclear Information System (INIS)

    Liang, Zhiyong; Zeng, Xuan; Gao, Jie; Wu, Shafei; Wang, Peng; Shi, Xiaohua; Zhang, Jing; Liu, Tonghua

    2008-01-01

    The EGFR and HER2 genes are located on chromosomes 7 and 17, respectively. They are therapeutic targets in some tumors. The TOP2A gene, which is located near HER2 on chromosome 17, is the target of many chemotherapeutic agents, and co-amplification of HER2 and TOP2A has been described in several tumor types. Herein, we investigated the gene status of EGFR, HER2, and TOP2A in Chinese gastric carcinoma patients. We determined the rate of polysomy for chromosomes 7 and 17, and we attempted to clarify the relationship between EGFR, HER2, and TOP2A gene copy number and increased expression of their encoded proteins. Furthermore, we tried to address the relationship between alterations in EGFR, HER2, and TOP2A and chromosome polysomy. One hundred cases of formalin fixed and paraffin embedded tumor tissues from Chinese gastric carcinoma patients were investigated by immunohistochemistry and fluorescence in situ hybridization (FISH) methods. Forty-two percent of the cases showed EGFR overexpression; 16% showed EGFR FISH positive; 6% showed HER2 overexpression; and 11% showed HER2 gene amplification, including all six HER2 overexpression cases. TOP2A nuclear staining (nuclear index, NI) was determined in all 100 tumors: NI values ranged from 0.5 – 90%. Three percent of the tumors showed TOP2A gene amplification, which were all accompanied by HER2 gene amplification. Nineteen percent of the tumors showed chromosome 7 polysomy, and 16% showed chromosome 17 polysomy. Chromosome 7 polysomy correlated significantly with EGFR FISH-positivity, but was not associated with EGFR overexpression. HER2 overexpression associated significantly with HER2 gene amplification. TOP2A gene amplification was significantly associated with HER2 gene amplification. No relationship was found between alterations in the EGFR, HER2, and TOP2A genes and clinicopathologic variables of gastric carcinoma. The data from our study suggest that chromosome 7 polysomy may be responsible for increased EGFR

  19. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    DEFF Research Database (Denmark)

    Machiela, Mitchell J; Zhou, Weiyin; Karlins, Eric

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chrom...

  20. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome

    Czech Academy of Sciences Publication Activity Database

    Yu, Q.; Hou, S.; Hobza, Roman; Feltus, F.A.; Wang, X.; Jin, W.; Skelton, R.L.; Blas, A.; Lemke, C.; Saw, J.H.; Moore, P.H.; Alam, M.; Jiang, J.; Paterson, A.H.; Vyskot, Boris; Ming, R.

    2007-01-01

    Roč. 278, č. 2 (2007), s. 177-185 ISSN 1617-4615 R&D Projects: GA ČR(CZ) GA521/06/0056 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Carica papaya * repetitive sequences * sex chromosome Subject RIV: BO - Biophysics Impact factor: 2.978, year: 2007

  1. Nondisjunction in Favor of a Chromosome: The Mechanism of Rye B Chromosome Drive during Pollen Mitosis

    Czech Academy of Sciences Publication Activity Database

    Banaei-Moghaddam, A.M.; Schubert, V.; Kumke, K.; Weiβ, O.; Klemme, S.; Nagaki, K.; Macas, Jiří; González-Sánchez, M.; Heredia, V.; Gómez-Revilla, D.; González-García, M.; Vega, J.M.; Puertas, M.J.; Houben, A.

    2012-01-01

    Roč. 24, č. 10 (2012), s. 4124-4134 ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50510513 Keywords : chromosomes * centromere * repeats Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.251, year: 2012

  2. Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Martina; Giovannotti, M.; Kratochvíl, L.; Caputo, V.; Olmo, E.; Ferguson-Smith, M. A.; Rens, W.

    2012-01-01

    Roč. 121, č. 4 (2012), s. 409-418 ISSN 0009-5915 R&D Projects: GA ČR GAP506/10/0718 Institutional support: RVO:67985904 Keywords : sex-chromosomes * evolution * genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.340, year: 2012

  3. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair

    International Nuclear Information System (INIS)

    Ouyang, Yan; Kwon, Yong Tae; An, Jee Young; Eller, Danny; Tsai, S.-C.; Diaz-Perez, Silvia; Troke, Joshua J.; Teitell, Michael A.; Marahrens, York

    2006-01-01

    The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2 -/- male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2 -/- embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2 -/- fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2 -/- cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2 -/- cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2 -/- cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2 -/- cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair

  4. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Yan [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Kwon, Yong Tae [Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 (United States); An, Jee Young [Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Eller, Danny [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Tsai, S.-C. [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Diaz-Perez, Silvia [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Troke, Joshua J. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Teitell, Michael A. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Marahrens, York [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)]. E-mail: ymarahrens@mednet.ucla.edu

    2006-04-11

    The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2{sup -/-} male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2{sup -/-} embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2{sup -/-} fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2{sup -/-} cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2{sup -/-} cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2{sup -/-} cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2{sup -/-} cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair.

  5. Chromosome polymorphism in a population of ceratitis capitata

    International Nuclear Information System (INIS)

    Lifschitz, E.

    1987-08-01

    A morphological chromosomal polymorphism along with the observation of B chromosomes in a natural population of Ceratitis capitata is reported. A variability affecting the centromere size of chromosome 3 is described. The observed B chromosome is minute, heterochromatic and telocentric. The B chromosome was found in the male and female germ cells and it exhibited, in the males, intra-individual numerical variation with OB and IB cells, which suggested a mitotic instability. It was also found, in both sexes, in somatic cells (cerebral ganglia tissue). Only males transmitted the B chromosomes to the progeny. The high rate of transmission suggested a differential utilization of the sperm carrying the B chromosomes or a preferential segregation into secondary spermatocytes. Previously reported linkage relationship between a pupal esterase gene (Est-1) and a pupa colour mutant (nig) has been extended to a line carrying a Y-chromosome (Y,B) shorter than the one previously studied (Y,A). Furthermore, an elaborate crossing scheme has been devised in order to estimate the recombination distances between these two genes and a third one affecting pupal length (lp-1). It is concluded that all three genes are in the same linkage group but Est-1 is far from the other two. In turn, nig and lp-1 are separated by 14.9 map units. It is confirmed that genetic recombination does not regularly occur at high frequency in the male and this frequency is not increased by the varying length of the Y-chromosome. Refs, figs, tabs

  6. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis

    Directory of Open Access Journals (Sweden)

    Tamara Potapova

    2017-02-01

    Full Text Available Mistakes during cell division frequently generate changes in chromosome content, producing aneuploid or polyploid progeny cells. Polyploid cells may then undergo abnormal division to generate aneuploid cells. Chromosome segregation errors may also involve fragments of whole chromosomes. A major consequence of segregation defects is change in the relative dosage of products from genes located on the missegregated chromosomes. Abnormal expression of transcriptional regulators can also impact genes on the properly segregated chromosomes. The consequences of these perturbations in gene expression depend on the specific chromosomes affected and on the interplay of the aneuploid phenotype with the environment. Most often, these novel chromosome distributions are detrimental to the health and survival of the organism. However, in a changed environment, alterations in gene copy number may generate a more highly adapted phenotype. Chromosome segregation errors also have important implications in human health. They may promote drug resistance in pathogenic microorganisms. In cancer cells, they are a source for genetic and phenotypic variability that may select for populations with increased malignance and resistance to therapy. Lastly, chromosome segregation errors during gamete formation in meiosis are a primary cause of human birth defects and infertility. This review describes the consequences of mitotic and meiotic errors focusing on novel concepts and human health.

  7. Marker chromosome 21 identified by microdissection and FISH

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Palmer, C.G. [Indiana Univ. School of Medicine, Indianapolis, IN (United States); Rubinstein, J. [Univ. Affiliated Cincinnati Center for Developmental Disorders, OH (United States)] [and others

    1995-03-27

    A child without Down`s syndrome but with developmental delay, short stature, and autistic behavior was found to be mosaic 46,XX/47,XX,+mar(21) de novo. The marker was a small ring or dot-like chromosome. Microdissection of the marker was performed. The dissected fragments were biotinylated with sequence-independent PCR as a probe pool for fluorescence in situ hybridization (FISH). FISH results suggested an acrocentric origin of the marker. Subsequent FISH with {alpha}-satellite DNA probes for acrocentric chromosomes and chromosome-specific 21 and 22 painting probes confirmed its origin from chromosome 21. 14 refs., 3 figs.

  8. Constitutional chromosome anomalies in patients with cerebral gigantism (Sotos syndrome).

    Science.gov (United States)

    Haeusler, G; Guchev, Z; Köhler, I; Schober, E; Haas, O; Frisch, H

    1993-01-01

    Two boys are presented with the clinical features of cerebral gigantism and chromosomal variants which have not been described so far in this syndrome. In the first boy a de novo pericentric inversion of chromosome Y was found, the karyotypes of all other investigated family members were normal. The patient had an obstructive hypertrophic cardiomyopathy and atrial septal defect type II. The second boy had inherited pericentric inversion of the heterochromatic region of chromosome 9 from his mother. This chromosome 9 variant was also found in his sister who had a similar phenotype but without gigantism. Endocrine evaluation demonstrated normal results in both boys. The intellectual achievement in both cases was average.

  9. Radiation-induced chromosome aberrations in the rat peripheral blood

    International Nuclear Information System (INIS)

    Ziemba-Zoltowska, B.; Bocian, E.; Radwan, I.; Rosiek, O.; Sablinski, J.

    1978-01-01

    Chromosome aberrations in rat lymphocytes of peripheral blood after X (in vitro and in vivo) and 3 H tritiated water (in vivo) irradiations were studied. The yield of chromosome aberrations after in vivo and in vitro exposure to X-rays was similar. The frequency of chromosome aberrations three weeks after exposure to X-rays and soon after irradiation was practically on the same level. The yield of chromosome aberrations determined three weeks after injection with tritiated water or X-rays exposure was similar. (author)

  10. Scanning conductance microscopy investigations on fixed human chromosomes

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Lange, Jacob Moresco; Jensen, Linda Boye

    2008-01-01

    Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device...... optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value,for the dielectric constant of different human chromosomes....

  11. The Emerging Role of the Cytoskeleton in Chromosome Dynamics

    Directory of Open Access Journals (Sweden)

    Maya Spichal

    2017-05-01

    Full Text Available Chromosomes underlie a dynamic organization that fulfills functional roles in processes like transcription, DNA repair, nuclear envelope stability, and cell division. Chromosome dynamics depend on chromosome structure and cannot freely diffuse. Furthermore, chromosomes interact closely with their surrounding nuclear environment, which further constrains chromosome dynamics. Recently, several studies enlighten that cytoskeletal proteins regulate dynamic chromosome organization. Cytoskeletal polymers that include actin filaments, microtubules and intermediate filaments can connect to the nuclear envelope via Linker of the Nucleoskeleton and Cytoskeleton (LINC complexes and transfer forces onto chromosomes inside the nucleus. Monomers of these cytoplasmic polymers and related proteins can also enter the nucleus and play different roles in the interior of the nucleus than they do in the cytoplasm. Nuclear cytoskeletal proteins can act as chromatin remodelers alone or in complexes with other nuclear proteins. They can also act as transcription factors. Many of these mechanisms have been conserved during evolution, indicating that the cytoskeletal regulation of chromosome dynamics is an essential process. In this review, we discuss the different influences of cytoskeletal proteins on chromosome dynamics by focusing on the well-studied model organism budding yeast.

  12. Chromosome and cell wall segregation in Streptococcus faecium ATCC 9790

    International Nuclear Information System (INIS)

    Higgins, M.L.; Glaser, D.; Dicker, D.T.; Zito, E.T.

    1989-01-01

    Segregation was studied by measuring the positions of autoradiographic grain clusters in chains formed from single cells containing on average less than one radiolabeled chromosome strand. The degree to which chromosomal and cell wall material cosegregated was quantified by using the methods of S. Cooper and M. Weinberger, dividing the number of chains labeled at the middle. This analysis indicated that in contrast to chromosomal segregation in Escherichia coli and, in some studies, to that in gram-positive rods, chromosomal segregation in Streptococcus faecium was slightly nonrandom and did not vary with growth rate. Results were not significantly affected by strand exchange. In contrast, labeled cell wall segregated predominantly nonrandomly

  13. Chromosome aberrations: plants to human and Feulgen to FISH

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2005-01-01

    Chromosome aberrations and their impact on human health have been recognized for a long time. In the 1950s, in India, studies on induced chromosome aberrations in plants were initiated by Swaminathan and his students. I trace here the impact of these initial studies on further developments in this field. The studies which were started in plants have been extended to mammals (including human) and the simple squash and solid staining have been improved by molecular cytogenetic techniques, thus enabling accurate identification and quantification of different types of chromosome aberrations. These studies have also thrown light on the mechanisms of chromosome aberration formation, especially following exposure to ionizing radiation. (author)

  14. Chromosomal localization of the human diazepam binding inhibitor gene

    International Nuclear Information System (INIS)

    DeBernardi, M.A.; Crowe, R.R.; Mocchetti, I.; Shows, T.B.; Eddy, R.L.; Costa, E.

    1988-01-01

    The authors have used in situ chromosome hybridization and human-mouse somatic cell hybrids to map the gene(s) for human diazepam binding inhibitor (DBI), an endogenous putative modulator of the γ-aminobutyric acid receptor acting at the allosteric regulatory center of this receptor that includes the benzodiazepine recognition site. In 784 chromosome spreads hybridized with human DBI cDNA, the distribution of 1,476 labeled sites revealed a significant clustering of autoradiographic grains (11.3% of total label) on the long arm of chromosome 2 (2q). Furthermore, 63.5% of the grains found on 2q were located on 2q12-21, suggesting regional mapping of DBI gene(s) to this segment. Secondary hybridization signals were frequently observed on other chromosomes and they were statistically significant mainly for chromosomes 5, 6, 11, and 14. In addition, DNA from 32 human-mouse cell hybrids was digested with BamHI and probed with human DBI cDNA. A 3.5-kilobase band, which probably represents the human DBI gene, was assigned to chromosome 2. Four higher molecular weight bands, also detected in BamHI digests, could not be unequivocally assigned. A chromosome 2 location was excluded for the 27-, 13-, and 10-kilobase bands. These results assign a human DBI gene to chromosome 2 (2q12-21) and indicate that three of the four homologous sequences detected by the human DBI probe are located on three other chromosomes

  15. Linkage group-chromosome correlations in Sordaria macrospora: Chromosome identification by three dimensional reconstruction of their synaptonemal complex.

    Science.gov (United States)

    Zickler, D; Leblon, G; Haedens, V; Collard, A; Thuriaux, P

    1984-01-01

    Reconstruction of serially sectioned zygotene and pachytene nuclei has allowed, by measuring the lengths of synaptonemal complexes, an assignment of the 7 linkage (LG) groups to the 7 chromosomes in the fungus Sordaria macrospora. The 7 LG have been established using 19 mutants showing low second division segregation frequencies. Eight chromosomal rearrangements mapped on the 7 LG were used to identify the chromosomes involved. The following one to one assignment of the 7 LG to specific chromosomes was obtained: LG a: chromosome (chr) 1, LG b: chr5, LG c: chr6, LG d: chr7, LG e: chr4, LG f: chr3 and LG g: chr2 (the chromosome carrying the nucleolus organizer region).

  16. An algorithm for automatic detection of chromosome aberrations induced by radiation using features of gray level profile across the main axis of chromosome image

    International Nuclear Information System (INIS)

    Kawashima, Hironao; Imai, Katsuhiro; Fukuoka, Hideya; Yamamoto, Mikio; Hayata, Isamu.

    1990-01-01

    A simple algorithm for detecting chromosome aberrations induced by radiation is developed. Microscopic images of conventional Giemsa stained chromosomes of rearranged chromosomes (abnormal chromosomes) including dicentric chromosomes, ordinary acentric fragments, small acentric fragments, and acentric rings are used as samples. Variation of width along the main axis and gray level profile across the main axis of the chromosome image are used as features for classification. In 7 microscopic images which include 257 single chromosomes, 90.0% (231 chromosomes) are correctly classified into 6 categories and 23 of 26 abnormal chromosomes are correctly identified. As a result of discrimination between a normal and an abnormal chromosome, 95.3% of abnormal chromosomes are detected. (author)

  17. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    Directory of Open Access Journals (Sweden)

    Tanmoy Bhattacharyya

    2014-02-01

    Full Text Available Hybrid sterility (HS belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  18. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    Science.gov (United States)

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-02-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  19. X Chromosome Control of Meiotic Chromosome Synapsis in Mouse Inter-Subspecific Hybrids

    Science.gov (United States)

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-01-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. PMID:24516397

  20. Phenotypic consequences of a mosaic marker chromosome identified by fluorescence in situ hybridization (FISH) as being derived from chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Ray, J.H.; Zhou, X.; Pletcher, B.A. [Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    De novo marker chromosomes are detected in 1 in 2500 amniotic fluid samples and are associated with a 10-15% risk for phenotypic abnormality. FISH can be utilized as a research tool to identify the origins of marker chromosomes. The phenotypic consequences of a marker chromosome derived from the short arm of chromosome 16 are described. A 26-year-old woman underwent amniocentesis at 28 weeks gestation because of a prenatally diagnosed tetralogy of Fallot. Follow-up ultrasounds also showed ventriculomegaly and cleft lip and palate. 32 of 45 cells had the karyotype 47,XY,+mar; the remaining cells were 46,XY. The de novo marker chromosome was C-band positive and non-satellited and failed to stain with distamycin A/DAPI. At birth the ultrasound findings were confirmed and dysmorphic features and cryptorchidism were noted. Although a newborn blood sample contained only normal cells, mosaicism was confirmed in 2 skin biopsies. FISH using whole-chromosome painting and alpha-satellite DNA probes showed that the marker chromosome had originated from chromosome 16. As proximal 16q is distamycin A/DAPI positive, the marker is apparently derived from proximal 16p. At 15 months of age, this child is hypotonic, globally delayed and is gavage-fed. His physical examination is significant for microbrachycephaly, a round face, sparse scalp hair, ocular hypertelorism, exotropia, a flat, wide nasal bridge and tip, mild micrognathia, and tapered fingers with lymphedema of hands and feet. Inguinal hernias have been repaired. His features are consistent with those described for patients trisomic for most or all of the short arm of chromosome 16. Marker chromosomes derived from the short arm of chromosome 16 appear to have phenotypic consequences. As the origin of more marker chromosomes are identified using FISH, their karyotype/phenotype correlations will become more apparent, which will permit more accurate genetic counseling.

  1. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    Science.gov (United States)

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Molecular diagnostic of the philadelphia chromosome

    International Nuclear Information System (INIS)

    Campos Rudin, M.; Cuenca Berger, P.; Gutierrez Espeleta, G.; Jimenez Cruz, G.; Montero Umana, C.; Vazquez Castillo, L.; Ramon Ortiz, M.

    1998-01-01

    The importance that has to confirm the presence or absence of the chromosome Philadelphia in the diagnostic and follow up of the patient affected with chronic myeloid leukemia and other leukemia. It is considered necessary to implement the molecular diagnostic in Costa Rica. They studied 32 patient affected by Chronic Myeloid Leukemia, 7 by other Myeloproliferative Chronic Disorders and 2 by Myelodysplastic Syndrome. It utilized the sound Trans probe-1 (Oncogene Science, Inc), which was marked with radioactivity ( 32 P) or chemiluminescence (digoxigenin). Of the 32 cases affected by L mc, in 28 it was possible to carry out the molecular analysis detecting the characteristic translocation of the chromosome Philadelphia among the Mbcr/c-ABL genes in 21 (75%) of the patients, in 7 (25%) the rearrangement was not found. In seven of the nine affected by other sufferings it was possible to obtain results, 3 that turned out to be positive for the rearrangement among Mbcr/c-ABL and 4 normal. In all the cases, they obtained results marking the sound with radioactivity. However, they tested the marks with digoxigenin in seven of the patients, as an methodological alternative for the laboratories that lacks the requirements to work with radiation. The results obtained were identical. (S. Grainger) [es

  3. Epilepsy and ring chromosome 20: case report

    Directory of Open Access Journals (Sweden)

    Gomes Marleide da Mota

    2002-01-01

    Full Text Available We present the clinical, electroencephalographic, neuroimaging (brain magnetic resonance image - MRI and spectroscopy by MRI and cytogenetic findings of a young male patient with a rare cytogenetic anomaly characterised by a de novo 46,XY,r(20(p13q13.3 karyotype. He presents with mental retardation, emotional liability, and strabismus, without any other significant dysmorphies. There are brain anomalies characterised by corpus callosum, uvula, nodule and cerebellum pyramid hypoplasias, besides arachnoid cysts in the occipital region. He had seizures refractory to pharmacotherapy and long period of confusional status with or without a motor component. The authors recognised that the EEG pattern was not fixed but changed over time, specially for bursts of slow waves with great amplitude accompanied or not by sharp components, and bursts of theta waves sharply contoured. Previously, epilepsy solely has been assigned to region 20q13. However, the important structural cerebral alterations present in our case has not been reported associated to such chromosomal abnormality and may indicate possible new chromosomal sites where such atypical neurological characteristics could be mapped.

  4. Chromosome studies on Brazilian cerrado plants

    Directory of Open Access Journals (Sweden)

    Eliana Regina Forni-Martins

    2000-12-01

    Full Text Available Cerrado is the Brazilian name for the neotropical savanna, which occurs mainly in Brazilian Central Plateau, composed of herbaceous-subshrubby and shrubby-arboreal floras, both of which are heliophilous, highly diverse and regionally differentiated. Considering species distribution and chromosome numbers, some authors have proposed that the herbaceous-subshrubby flora of the neotropical savanna is quite old, while the shrubby-arboreal flora is derived from forests, a hypothesis that implies higher chromosome numbers in the savanna than in the forest. If, however, chromosome numbers are similar in the cerrado and in forests, both could be similarly old, indicating that bi-directional flow of flora occurred in the past. This paper presents data on chromosome numbers and microsporogenesis for 20 species in 13 families collected in the States of São Paulo, Goiás and Minas Gerais, providing previously unpublished data for Myrcia (Myrtaceae, Luxemburgia (Ochnaceae and Hortia (Rutaceae. Meiosis proved to be normal, indicating regularity in the sexual reproductive process. Chromosome numbers varied from 2n = 18 (Allamanda angustifolia: Apocynaceae to 2n = ca. 104 (Ouratea spectabilis: Ochnaceae, being low (20 Cerrado é a palavra que, no Brasil, designa a savana neotropical, com área nuclear no Planalto Central, constituída de uma flora herbáceo-subarbustiva e outra arbustivo-arbórea, ambas heliófilas, altamente diversificadas e regionalmente diferenciadas. Considerando a distribuição de espécies e de números cromossômicos, alguns autores propuseram que a flora herbáceo-subarbustiva da savanna neotropical seria bastante antiga, enquanto a flora arbustivo-arbórea seria derivada das florestas Atlântica e Amazônica, uma hipótese que implica na ocorrência de números cromossômicos mais altos no cerrado que nas florestas. Porém, se os números cromossômicos forem similares no cerrado e nas florestas, ambos os tipos de formação poderiam

  5. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean.

    Science.gov (United States)

    Li, Ying-hui; Reif, Jochen C; Ma, Yan-song; Hong, Hui-long; Liu, Zhang-xiong; Chang, Ru-zhen; Qiu, Li-juan

    2015-10-23

    The relative abundance of five dominant fatty acids (FAs) (palmitic, stearic, oleic, linoleic and linolenic acids) is a major factor determining seed quality in soybean. To clarify the currently poorly understood genetic architecture of FAs in soybean, targeted association analysis was conducted in 421 diverse accessions phenotyped in three environments and genotyped using 1536 pre-selected SNPs. The population of 421 soybean accessions displayed significant genetic variation for each FA. Analysis of the molecular data revealed three subpopulations, which reflected a trend depending on latitude of cultivation. A total of 37 significant (p seed quality of soybean with benefits for human health and for food processing.

  6. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass.

    Science.gov (United States)

    Harper, John; Phillips, Dylan; Thomas, Ann; Gasior, Dagmara; Evans, Caron; Powell, Wayne; King, Julie; King, Ian; Jenkins, Glyn; Armstead, Ian

    2018-04-09

    Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.

  7. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    Science.gov (United States)

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  8. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man.

    Science.gov (United States)

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms.

  9. BCR translocation to derivative chromosome 2, a new case of chronic myeloid leukemia with complex variant translocation and Philadelphia chromosome

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Wafa, A.; Al-Medani, S.

    2011-01-01

    The well-known typical fusion gene BCR/ABL can be observed in connection with a complex translocation event in only 5-8% of cases with chronic myeloid leukemia (CML). Herein we report an exceptional CML case with complex chromosomal aberrations not observed before, translocated BCR to the derivative chromosome 2 [der(2)], additional to involving a four chromosomes translocation implying chromosomal regions such as 1p32 and 2q21 besides 9q34 and 22q11.2. Which were characterized by molecular cytogenetics. (author)

  10. Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2018-01-01

    A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei. © 2018 S. Karger AG, Basel.

  11. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    Directory of Open Access Journals (Sweden)

    Colin D Meiklejohn

    2011-08-01

    Full Text Available The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  12. Novel transcripts discovered by mining genomic DNA from defined regions of bovine chromosome 6

    Directory of Open Access Journals (Sweden)

    Eberlein Annett

    2009-04-01

    Full Text Available Abstract Background Linkage analyses strongly suggest a number of QTL for production, health and conformation traits in the middle part of bovine chromosome 6 (BTA6. The identification of the molecular background underlying the genetic variation at the QTL and subsequent functional studies require a well-annotated gene sequence map of the critical QTL intervals. To complete the sequence map of the defined subchromosomal regions on BTA6 poorly covered with comparative gene information, we focused on targeted isolation of transcribed sequences from bovine bacterial artificial chromosome (BAC clones mapped to the QTL intervals. Results Using the method of exon trapping, 92 unique exon trapping sequences (ETS were discovered in a chromosomal region of poor gene coverage. Sequence identity to the current NCBI sequence assembly for BTA6 was detected for 91% of unique ETS. Comparative sequence similarity search revealed that 11% of the isolated ETS displayed high similarity to genomic sequences located on the syntenic chromosomes of the human and mouse reference genome assemblies. Nearly a third of the ETS identified similar equivalent sequences in genomic sequence scaffolds from the alternative Celera-based sequence assembly of the human genome. Screening gene, EST, and protein databases detected 17% of ETS with identity to known transcribed sequences. Expression analysis of a subset of the ETS showed that most ETS (84% displayed a distinctive expression pattern in a multi-tissue panel of a lactating cow verifying their existence in the bovine transcriptome. Conclusion The results of our study demonstrate that the exon trapping method based on region-specific BAC clones is very useful for targeted screening for novel transcripts located within a defined chromosomal region being deficiently endowed with annotated gene information. The majority of identified ETS represents unknown noncoding sequences in intergenic regions on BTA6 displaying a

  13. Targeted Learning

    CERN Document Server

    van der Laan, Mark J

    2011-01-01

    The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the targe

  14. Target preparation

    International Nuclear Information System (INIS)

    Hinn, G.M.

    1984-01-01

    A few of the more interesting of the 210 targets prepared in the Laboratory last year are listed. In addition the author continues to use powdered silver mixed with /sup 9,10/BeO to produce sources for accelerator radio dating of Alaskan and South Polar snow. Currently, he is trying to increase production by multiple sample processing. Also the author routinely makes 3 μg/cm 2 cracked slacked carbon stripper foils and is continuing research with some degree of success in making enriched 28 Si targets starting with the oxide

  15. Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes.

    Directory of Open Access Journals (Sweden)

    Duílio M Z de A Silva

    Full Text Available Supernumerary (B chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.

  16. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC1...

  17. NEUROD2 and NEUROD3 genes map to human chromosomes 17q12 and 5q23-q31 and mouse chromosomes 11 and 13, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Tamimi, R.M.; Montgomery-Dyer, K.; Tapscott, S.J. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States)] [and others

    1997-03-01

    NEUROD2 and NEUROD3 are transcription factors involved in neurogenesis that are related to the basic helix-loop-helix protein NEUROD. NEUROD2 maps to human chromosome 17q12 and mouse chromosome 11. NEUROD3 maps to human chromosome 5q23-q31 and mouse chromosome 13. 16 refs., 2 figs.

  18. New trends and techniques in chromosome aberration analysis

    International Nuclear Information System (INIS)

    Bender, M.A.

    1978-01-01

    The following topics are discussed: automation of chromosome analysis; storage of fixed cells from cultures of lymphocytes obtained routinely during periodic employee medical examinations; analysis of banded chromosomes; identification of first division metaphases; sister chromatid exchange; and patterns of aberration induction

  19. Abnormalities of chromosome No. 1: significance in malignant transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J D

    1978-01-01

    Studies of human hematologic malignancies have provided sufficient data not only for the identification of nonrandom abnormalities of whole chromosomes, but also for determination of the specific chromosome regions involved. In clonal aberrations leading to an excess of chromosome No. 1, or a partial excess of No. 1, trisomy for bands 1q25 to 1q32 was noted in the myeloid cells obtained from every one of 35 patients who had various disorders, such as acute leukemia, polycythemia vera, or myelofibrosis. Similar chromosome changes were a consistent finding in various solid tumors as well. This rearrangement was not the result of a particularly fragile site in that region of the chromosome, since the break points in reciprocal translocations that involve No. 1 occurred almost exclusively in the short arm. The nonrandom chromosome changes found in neoplastic cells can now be correlated with the gene loci on these chromosomes or chromosome segments as an attempt is made to identify specific genes that might be related to malignancy.

  20. Supernumerary ring chromosome 20 characterized by fluorescence in situ hybridization

    NARCIS (Netherlands)

    Van Langen, Irene M.; Otter, Mariëlle A.; Aronson, Daniël C.; Overweg-Plandsoen, W.C.G.; Hennekam, Raoul C.M.; Leschot, Nico J.; Hoovers, Jan M.N.

    1996-01-01

    We report on a boy with mild dysmorphic features and developmental delay, in whom karyotyping showed an additional minute ring chromosome in 60% of metaphases. Fluorescence in situ hybridization (FISH) with a centromere specific probe demonstrated that the ring chromosome contained the centromeric

  1. DNA Catenation Maintains Structure of Human Metaphase Chromosomes

    DEFF Research Database (Denmark)

    L. V. Bauer, David; Marie, Rodolphe; Rasmussen, Kristian Hagsted

    2012-01-01

    Mitotic chromosome structure is pivotal to cell division but difficult to observe in fine detail using conventional methods. DNA catenation has been implicated in both sister chromatid cohesion and chromosome condensation, but has never been observed directly. We have used a lab-on-a-chip microfl...

  2. Structural, functional, and evolutionary features of plant sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman; Kejnovský, Eduard; Žlůvová, Jitka; Janoušek, Bohuslav

    2009-01-01

    Roč. 17, č. 4 (2009), s. 547 ISSN 0967-3849. [17th International Chromosome Conference. 23.06.2009-26.06.2009, Boone] R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : sex chromosomes * Silene latifolia * epigenetic Subject RIV: BO - Biophysics

  3. Conserved sex chromosomes across adaptively radiated Anolis lizards.

    Science.gov (United States)

    Rovatsos, Michail; Altmanová, Marie; Pokorná, Martina; Kratochvíl, Lukáš

    2014-07-01

    Vertebrates possess diverse sex-determining systems, which differ in evolutionary stability among particular groups. It has been suggested that poikilotherms possess more frequent turnovers of sex chromosomes than homoiotherms, whose effective thermoregulation can prevent the emergence of the sex reversals induced by environmental temperature. Squamate reptiles used to be regarded as a group with an extensive variability in sex determination; however, we document how the rather old radiation of lizards from the genus Anolis, known for exceptional ecomorphological variability, was connected with stability in sex chromosomes. We found that 18 tested species, representing most of the phylogenetic diversity of the genus, share the gene content of their X chromosomes. Furthermore, we discovered homologous sex chromosomes in species of two genera (Sceloporus and Petrosaurus) from the family Phrynosomatidae, serving here as an outgroup to Anolis. We can conclude that the origin of sex chromosomes within iguanas largely predates the Anolis radiation and that the sex chromosomes of iguanas remained conserved for a significant part of their evolutionary history. Next to therian mammals and birds, Anolis lizards therefore represent another adaptively radiated amniote clade with conserved sex chromosomes. We argue that the evolutionary stability of sex-determining systems may reflect an advanced stage of differentiation of sex chromosomes rather than thermoregulation strategy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  4. Microscopes and computers combined for analysis of chromosomes

    Science.gov (United States)

    Butler, J. W.; Butler, M. K.; Stroud, A. N.

    1969-01-01

    Scanning machine CHLOE, developed for photographic use, is combined with a digital computer to obtain quantitative and statistically significant data on chromosome shapes, distribution, density, and pairing. CHLOE permits data acquisition about a chromosome complement to be obtained two times faster than by manual pairing.

  5. X-Chromosome short tandem repeat, advantages and typing ...

    African Journals Online (AJOL)

    Microsatellites of the X-chromosome have been increasingly studied in recent years as a useful tool in forensic analysis. This review describes some details of X-chromosomal short tandem repeat (STR) analysis. Among them are: microsatellites, amplification using polymerase chain reaction (PCR) of STRs, PCR product ...

  6. Autosomal origin of sex chromosome in a polyploid plant

    Science.gov (United States)

    While theory on sex chromosome evolution is well developed, evidence of the early stages of this process remains elusive, in part because this process unfolded in many animals so long ago. The relatively recent and repeated evolution of separate sexes (dioecy) and sex chromosomes in plants, however,...

  7. Chromosomal mosaicism in human preimplantation embryos: a systematic review.

    NARCIS (Netherlands)

    Echten-Arends, J. van; Mastenbroek, S.; Sikkema-Raddatz, B.; Korevaar, J.C.; Heineman, M.J.; Veen, F. van der; Repping, S.

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  8. Chromosomal mosaicism in human preimplantation embryos : a systematic review

    NARCIS (Netherlands)

    van Echten-Arends, Jannie; Mastenbroek, Sebastiaan; Sikkema-Raddatz, Birgit; Korevaar, Johanna C.; Heineman, Maas Jan; van der Veen, Fulco; Repping, Sjoerd

    2011-01-01

    BACKGROUND: Although chromosomal mosaicism in human preimplantation embryos has been described for almost two decades, its exact prevalence is still unknown. The prevalence of mosaicism is important in the context of preimplantation genetic screening in which the chromosomal status of an embryo is

  9. Analysis of repetitive DNA in chromosomes by flow cytometry

    NARCIS (Netherlands)

    Brind'Amour, Julie; Lansdorp, Peter M.

    We developed a flow cytometry method, chromosome flow fluorescence in situ hybridization (FISH), called CFF, to analyze repetitive DNA in chromosomes using FISH with directly labeled peptide nucleic acid (PNA) probes. We used CFF to measure the abundance of interstitial telomeric sequences in

  10. Paternal inheritance of B chromosomes in a parthenogenetic hermaphrodite

    NARCIS (Netherlands)

    Beukeboom, Leo W.; Seif, Miriam; Mettenmeyer, Thomas; Plowman, Amy B.; Michiels, Nicolaas K.

    1996-01-01

    B chromosomes are dispensable elements extra to the standard (A) chromosome complement. They have been described from many sexually reproducing species where they often exploit meiosis to accumulate from one generation to the next. Polycelis nigra is a simultaneously hermaphroditic flatworm that can

  11. Incidence of fetal chromosome abnormalities in insulin dependent diabetic women

    DEFF Research Database (Denmark)

    Henriques, C U; Damm, P; Tabor, A

    1991-01-01

    -diabetic women with little risk of contracting genetic disorders. The results suggest that maternal IDDM does not increase the risk of fetal chromosome abnormality and consequently screening by amniocentesis for chromosome abnormalities among diabetic women does not seem to be indicated....

  12. On the origin of sex chromosomes from meiotic drive

    Science.gov (United States)

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  13. Psychotic disorder and its characteristics in sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Annapia Verri

    2009-09-01

    Full Text Available Sex chromosome anomalies have been associated with psychoses. We report a patient with XYY chromosome anomaly who developed a paranoid psychosis. The second case deal with a 51-year-old woman affected by Turner Syndrome and Psychotic Disorder, with a prevalent somatic and sexual focus.

  14. Genome organization influences partner selection for chromosomal rearrangements

    NARCIS (Netherlands)

    Wijchers, P.J.; de Laat, W.

    2010-01-01

    Chromosomal rearrangements occur as a consequence of the erroneous repair of DNA double-stranded breaks, and often underlie disease. The recurrent detection of specific tumorigenic rearrangements suggests that there is a mechanism behind chromosomal partner selection involving the shape of the

  15. Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus

    Directory of Open Access Journals (Sweden)

    Andrew J. Mongue

    2017-10-01

    Full Text Available We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species, in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia. Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics.

  16. Visualizing how cancer chromosome abnormalities form in living cells

    Science.gov (United States)

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  17. ON THE TOPOGRAPHY OF THE SEX- CHROMOSOME IN

    Indian Academy of Sciences (India)

    over, we endeavoured to find the relative distribution of these genes in their chromosome, and to determine the distance between them, having in view the construction of a map of the sex-chromosome of fowls. We studied the following genes (in ...

  18. The DNA sequence of the human X chromosome

    Science.gov (United States)

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  19. Identification of Pneumocystis carinii chromosomes and mapping of five genes

    DEFF Research Database (Denmark)

    Lundgren, B; Cotton, R; Lundgren, J D

    1990-01-01

    Pulsed field gel electrophoresis was used to identify the chromosome-size DNA of Pneumocystis carinii, a major pathogen of immunocompromised patients. Thirteen chromosomes of rodent Pneumocystis carinii, ranging in size from 300 to 700 kilobases (kb), were identified. The minimum genome size for ...

  20. Radiation induced chromosome aberrations and interphase DNA geometry

    International Nuclear Information System (INIS)

    Nasazzi, N.; Di Giorgio, M.; Otero, D.

    1995-01-01

    Ionizing radiation induces DNA double strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosome aberrations. Stable chromosome aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). Assuming DSBs induction and interaction is completely random and neglecting proximity effects, the expected ratio of translocations to inversions is F=86, based on chromosome arm lengths. We analyzed the number of translocations and inversions using G-banding, in 16 lymphocyte cultures from blood samples acutely irradiated with γ-rays (dose range: 0.5Gy-3Gy). Our results give F=13.5, significantly smaller than F=86. Literature data show similar small F values but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have an extra probability of interaction. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. We assume a DSBs interaction probability function with cut-off length = 1 μ. We propose that large spread in F data could be due to temporal variation in overlapping and spatial chromosome confinement. (author). 14 refs

  1. Forensic use of Y-chromosome DNA: a general overview

    NARCIS (Netherlands)

    M.H. Kayser (Manfred)

    2017-01-01

    textabstractThe male-specific part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profiling is not informative. A Y-chromosomal gene fragment is applied for inferring the biological sex of a crime scene trace donor. Haplotypes

  2. [Chromomeric organization of interphase chromosomes in Drosophila melanogaster].

    Science.gov (United States)

    Zhuimulev, I F; Beliaeva, E S; Zykova, T Iu; Semeshin, V F; Demakov, S A; Demakova, O V; Goncharov, F P; Khoroshko, V A; Boldyreva, L V; Kokoza, E B; Pokholkiova, G V

    2013-01-01

    As a result of treatment of bioinformatic data on the genome localization of structural proteins, histone modifications, DNase-hypersensitive regions, replication origins (taken from modENCODE) and their cytological localization to polytene chromosome structures, it is shown here that two types of interphase chromosomes -polytene chromosomes from salivary glands and from mitotically dividing cells cultures - demonstrate identical pictures of interband/band, i. e. the same localization and length on physical map and the same sets of proteins. In the interbands of both chromosome types we find the proteins that control initiation of transcription (RNA-polymerase II, transcription factors), replication (ORC2) as well as proteins modifying nucleosome structure (WDS, NURF) and proteins of insulators (BEAF). The nucleosome density and H1 histone concentration in the interbands are depleted; localization of DNase-hypersensitive regions corresponds strictly to the interbands. So, we conclude that both polytene and cell line interphase chromosomes are arranged according to general principle and polytene chromosomes represent precise model of interphase chromosomes. The interbands play a critical role in the initiation of transcription and replication. The interbands of interphase chromosomes are the sites of 5' parts of genes, while the 3' gene ends are located in the adjacent bands. The constancy of interbands decondensation results in the conclusion that the "interbands" genes are constantly active, i. e. they contain "house-keeping" genes. The large late replicating bands contain genes that do not have direct contact to the adjoining interbands are usually polygenic and contain tissue-specific genes.

  3. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi; Fukuda, Nana; Ikeo, Kazuho; Gojobori, Takashi

    2013-01-01

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly

  4. Accelerated pseudogenization on the neo-X chromosome in Drosophila miranda

    KAUST Repository

    Nozawa, Masafumi; Onizuka, Kanako; Fujimi, Mai; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Y chromosomes often degenerate via the accumulation of pseudogenes and transposable elements. By contrast, little is known about X-chromosome degeneration. Here we compare the pseudogenization process between genes on the neo-sex chromosomes

  5. Chromosomal aberrations in bone marrow of continuously irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Chlebosky, O; Praslicka, M; Chlebovska, K [Univerzita P.J. Safarika, Kosice (Czechoslovakia). Prirodovedecka Fakulta

    1975-01-01

    Research on chromosomal aberrations of the bone marrow in continuously irradiated rats showed that chromosomal aberrations are a highly sensitive indicator of radiation injury. An increase in the chromosomal aberration frequency was already found on the 5th day at daily doses of 0.5 R, i.e. a 12% increase at a total dose of 25 R. In the steady-state stage at daily doses of 0.5; 1; 2.5 R, the number of chromosomal aberrations stabilized at values of about 20%; at daily doses of 5 and 10 R at values of 30.=., at daily doses of 53 R at 45%, at a daily dose of 82.5 R, the number of chromosomal aberrations increased to 55%.

  6. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    International Nuclear Information System (INIS)

    Ejima, Yosuke

    1988-01-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G 0 or G 1 phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases. (author)

  7. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ejima, Yosuke; Ikushima, Takaji (ed.)

    1988-07-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G/sub 0/ or G/sub 1/ phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases.

  8. Identification of Pneumocystis carinii chromosomes and mapping of five genes

    DEFF Research Database (Denmark)

    Lundgren, B; Cotton, R; Lundgren, J D

    1990-01-01

    Pulsed field gel electrophoresis was used to identify the chromosome-size DNA of Pneumocystis carinii, a major pathogen of immunocompromised patients. Thirteen chromosomes of rodent Pneumocystis carinii, ranging in size from 300 to 700 kilobases (kb), were identified. The minimum genome size for P....... carinii, estimated on the basis of the sizes of chromosomes, is 7,000 kb. Genetic heterogeneity among different P. carinii isolates was documented by demonstration of chromosomal size variability. By hybridization studies, the genes for topoisomerase I, dihydrofolate reductase, rRNA, actin......, and thymidylate synthase were mapped to single chromosomes of approximately 650, 590, 550, 460, and 350 kb, respectively. Hybridization studies further confirmed the genetic heterogeneity of P. carinii....

  9. An improved method for chromosome counting in maize.

    Science.gov (United States)

    Kato, A

    1997-09-01

    An improved method for counting chromosomes in maize (Zea mays L.) is presented. Application of cold treatment (5C, 24 hr), heat treatment (42 C, 5 min) and a second cold treatment (5C, 24 hr) to root tips before fixation increased the number of condensed and dispersed countable metaphase chromosome figures. Fixed root tips were prepared by the enzymatic maceration-air drying method and preparations were stained with acetic orcein. Under favorable conditions, one preparation with 50-100 countable chromosome figures could be obtained in diploid maize using this method. Conditions affecting the dispersion of the chromosomes are described. This technique is especially useful for determining the somatic chromosome number in triploid and tetraploid maize lines.

  10. Spectral Karyotyping. An new method for chromosome analysis

    International Nuclear Information System (INIS)

    Zhou Liying; Qian Jianxin; Guo Xiaokui; Dai Hong; Liu Yulong; Zhou Jianying

    2006-01-01

    Spectral Karyotyping (SKY) can reveal fine changes in Chromosome structure which could not be detected by G, R, Q banding before, has become an accurate, sensitive and reliable method for karyotyping, promoted the development of cell genetics to molecular level and has been used in medicine and radiological injury research. It also has the ability of analyzing 24 chromosomes on its once test run and, find implicated structure of chromosome changes, such as metathesis, depletion, amplification, rearrangement, dikinetochore, equiarm and maker-body, detect the abnormal change of stable Chromosome and calculate the bio-dose curve; The abnormal Chromosome detected by SKY can be adopted as early diagnosis, effective indexes of minor remaining changes for use of monitor of treatment and in the duration of follow up. This technique provides us a more advanced and effective method for relative gene cloning and the study of pathological mechanism of cancer. (authors)

  11. Chromosomal Abnormalities Associated with Neural Tube Defects (I: Full Aneuploidy

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-12-01

    Full Text Available Fetuses with neural tube defects (NTDs carry a risk of chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with other structural abnormalities, and family history of chromosome aberrations. This article provides an overview of chromosomal abnormalities associated with NTDs in embryos, fetuses, and newborn patients, and a comprehensive review of numerical chromosomal abnormalities associated with NTDs, such as trisomy 18, trisomy 13, triploidy, trisomy 9, trisomy 2, trisomy 21, trisomy 7, trisomy 8, trisomy 14, trisomy 15, trisomy 16, trisomy 5 mosaicism, trisomy 11 mosaicism, trisomy 20 mosaicism, monosomy X, and tetraploidy. NTDs may be associated with aneuploidy. Perinatal identification of NTDs should alert one to the possibility of chromosomal abnormalities and prompt a thorough cytogenetic investigation and genetic counseling.

  12. G2 chromosomal radiosensitivity in Fanconi's anemia

    International Nuclear Information System (INIS)

    Bigelow, S.B.; Rary, J.M.; Bender, M.A.

    1979-01-01

    Both the peripheral lymphocytes from 4 patients affected with the inherited disease Fanconi's anemia (FA), and tissue-culture fibroblasts from skin biopsies from 33 patients similarly affected were found to be about twice as sensitive to the induction of chromatid-type chromosomal aberrations by X-rays administered in the G 2 phase of the cell cycle as cells from normal controls. Using tritiated thymidine labelling of peripheral lymphocytes and of cultured fibroblasts, it was determined that 3 affected patients and 3 normal controls all had similar percent labeled mitoses (PLM) curves, so the increased induced aberration yields seen in the FA cells do not appear to be simply a consequence of a longer than normal G 2 phase of the cell cycle. (Auth.)

  13. Nonequilibrium Chromosome Looping via Molecular Slip Links

    Science.gov (United States)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  14. Implications for x-chromosome regulation from studies of human x-chromosome DNA

    International Nuclear Information System (INIS)

    Wolf, S.F.; Migeon, B.R.

    1983-01-01

    It is clear that there must be multiple events involved in the regulation of the mammalian X chromosome. The initial event, occurring about the time of implantation results in inactivation of all but a single X chromosome in diploid cells. A popular working hypothesis is that DNA modification, such as methylation or sequence rearrangement, might be responsible for maintenance of the inactive state. Methylation is particularly attractive, since the preference for methylating half-methylated sites might result in perpetuation of the differentiated state. In this paper we discuss several facets of our studies of X inactivation; specifically, our general strategy, studies of X DNA methylation, and studies of loci that escape inactivation. 47 references, 8 figures, 2 tables

  15. Survival and transmission of symmetrical chromosomal aberrations

    International Nuclear Information System (INIS)

    Savage, J.R.K.

    1979-01-01

    The interaction between the lesions to produce chromosomal structural changes may be either asymmetrical (A) or symmetrical (S). In A, one or more acentric fragments are always produced, and there may also be the mechanical separation problems resulting from bridges at anaphase, while S-changes never produce fragment, and pose no mechanical problem in cell division. If A and S events occur with equal frequency, it might be an indication that they are truly the alternative modes of lesion interaction. Unstimulated lymphocytes were irradiated with 2.68 Gy 250 kV X-ray, and metaphases were sampled at 50 h after the stimulation. Preparations were complete diploid cells, and any obvious second division cells were rejected. So far as dermal repair and fibroblast functions are concerned, aberration burden seems to have little consequence from the view-point of the long-term survival in vivo. Large numbers of aberrations (mainly S translocation and terminal deletion) were found in the samples taken up to 60 years after therapy. Skin biopsies were removed 1 day and 6 months after irradiation and cultured. In irradiated cells, reciprocal translocations dominated, followed by terminal deletions, then inversions, while no chromosome-type aberration was seen in the control cells. a) The relative occurrence of A : S changes, b) long-term survival in vivo, c) the possibility of in vivo repair, and d) some unusual features of translocation found in Syrian hamsters are reviewed. The relevance or importance of major S events is clearly dependent upon the cells, the tissues or the organisms in which they occur. (Yamashita, S.)

  16. Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ai Xia

    2010-05-01

    Full Text Available Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates.To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus.These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various classes of genes and repetitive DNA in each arm, rather than a single type

  17. Heterozygous effects of irradiated chromosomes on viability in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Simmons, M.J.

    1976-01-01

    Two large experiments were conducted in order to evaluate the heterozygous effects of irradiated chromosomes on viability. Mutations were accumulated on several hundred second chromosomes by delivering doses of 2,500R over either two or four generations for total x-ray exposures of 5,000R or 10,000R. Chromosomes treated with 5,000R were screened for lethals after the first treatment, and surviving nonlethals were used to generate families of fully treated chromosomes. The members of these families shared the effects of the first irradiation, but differed with respect to those of the second. The chromosomes treated with 10,000R were not grouped into families since mutations were accumulated independently on each chromosome in that experiment. Heterozygous effects on viability of the irradiated chromosomes were tested in both isogenic (homozygous) and nonisogenic (heterozygous) genetic backgrounds. In conjunction with these tests, homozygous viabilities were determined by the marked-inversion technique. This permitted a separation of the irradiated chromosomes into those which were drastic when made homozygous and those which were not. The results indicate that drastic chromosomes have deleterious effects in heterozygous condition, since viability was reduced by 2 to 4 percent in tests performed with the 10,000R chromosomes, and by 1 percent in those involving the 5,000R material. Within a series of tests, the effects were more pronounced when the genetic background was homozygous. These results suggest that the mutants induced by high doses of x-rays are principally drastic ones which show deleterious effects on viability in heterozygous condition

  18. Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups.

    Science.gov (United States)

    Marcone, C; Neimark, H; Ragozzino, A; Lauer, U; Seemüller, E

    1999-09-01

    ABSTRACT Chromosome sizes of 71 phytoplasmas belonging to 12 major phylogenetic groups including several of the aster yellows subgroups were estimated from electrophoretic mobilities of full-length chromosomes in pulsed-field gels. Considerable variation in genome size, from 660 to 1,130 kilobases (kb), was observed among aster yellows phytoplasmas. Chromosome size heterogeneity was also observed in the stolbur phytoplasma group (range 860 to 1,350 kb); in this group, isolate STOLF contains the largest chromosome found in a phytoplasma to date. A wide range of chromosome sizes, from 670 to 1,075 kb, was also identified in the X-disease group. The other phytoplasmas examined, which included members of the apple proliferation, Italian alfalfa witches' broom, faba bean phyllody, pigeon pea witches' broom, sugarcane white leaf, Bermuda grass white leaf, ash yellows, clover proliferation, and elm yellows groups, all have chromosomes smaller than 1 megabase, and the size ranges within each of these groups is narrower than in the aster yellows, stolbur, and X-disease groups. The smallest chromosome, approximately 530 kb, was found in two Bermuda grass white leaf phytoplasma isolates. This not only is the smallest mollicute chromosome found to date, but also is the smallest chromosome known for any cell. More than one large DNA band was observed in several phytoplasma preparations. Possible explanations for the occurrence of more than one band may be infection of the host plant by different phytoplasmas, the presence of more than one chromosome in the same organism, or the presence of large extrachromosomal DNA elements.

  19. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  20. Detection of chromosomal instability in α-irradiated and bystander human fibroblasts

    International Nuclear Information System (INIS)

    Ponnaiya, Brian; Jenkins-Baker, Gloria; Bigelow, Alan; Marino, Stephen; Geard, Charles R.

    2004-01-01

    There is increasing evidence biological responses to ionizing radiation are not confined to those cells that are directly hit, but may be seen in the progeny at subsequent generations (genomic instability) and in non-irradiated neighbors of irradiated cells (bystander effects). These so called non-targeted phenomena would have significant contributions to radiation-induced carcinogenesis, especially at low doses where only a limited number of cells in a population are directed hit. Here we present data using a co-culturing protocol examining chromosomal instability in α-irradiated and bystander human fibroblasts BJ1-htert. At the first cell division following exposure to 0.1 and 1 Gy α-particles, irradiated populations demonstrated a dose dependent increase in chromosome-type aberrations. At this time bystander BJ1-htert populations demonstrated elevated chromatid-type aberrations when compared to controls. Irradiated and bystander populations were also analyzed for chromosomal aberrations as a function of time post-irradiation. When considered over 25 doublings, all irradiated and bystander populations had significantly higher frequencies of chromatid aberrations when compared to controls (2-3-fold over controls) and were not dependent on dose. The results presented here support the link between the radiation-induced phenomena of genomic instability and the bystander effect