WorldWideScience

Sample records for targeting myocardial reperfusion

  1. Clinical benefit of drugs targeting mitochondrial function as an adjunct to reperfusion in ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Campo, Gianluca; Pavasini, Rita; Morciano, Giampaolo

    2017-01-01

    AIMS: To perform a systematic review and meta-analysis of randomized clinical trials (RCT) comparing the effectiveness of drugs targeting mitochondrial function vs. placebo in patients with ST-segment elevation myocardial infarction (STEMI) undergoing mechanical coronary reperfusion. METHODS...

  2. The extracellular matrix metalloproteinase inducer EMMPRIN is a target of nitric oxide in myocardial ischemia/reperfusion.

    Science.gov (United States)

    Tarin, Carlos; Lavin, Begoña; Gomez, Monica; Saura, Marta; Diez-Juan, Antonio; Zaragoza, Carlos

    2011-07-15

    Nitric oxide (NO) is an important defense against myocardial ischemia/reperfusion (I/R) injury. Although matrix metalloproteinase (MMP)-mediated necrosis of cardiac myocytes is well characterized, the role of inducible NO synthase (iNOS)-derived NO in this process is poorly understood. I/R injury was increased in iNOS-deficient mice and in mice treated with 1400 W (a pharmacological iNOS inhibitor) and was associated with significantly increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and EMMPRIN-associated MMPs. Transcriptional activity of an EMMPRIN luciferase promoter reporter expressed in cardiac myocytes was inhibited by NO in a cGMP-dependent manner, and this transcriptional inhibition was abolished by mutation of a putative E2F site. Consistent with these findings, EMMPRIN null mice, in which iNOS is normally induced, are partially protected against I/R injury. Pharmacological inhibition of iNOS in EMMPRIN null mice had no additional protective effect, suggesting that EMMPRIN is a downstream target of NO. Administration of anti-EMMPRIN neutralizing antibodies partly reduced the excess heart damage and MMP-9 expression induced by I/R in iNOS null mice, indicating that regulation of EMMPRIN is an important mechanism of NO-mediated cardioprotection. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer {sup 18}F-AlF-NOTA-PRGD2

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haokao [The Fourth Military Medical University, Department of Cardiology, Xijing Hospital, Xi' an (China); National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), Bethesda, MD (United States); Lang, Lixin; Guo, Ning; Quan, Qimeng; Hu, Shuo; Kiesewetter, Dale O.; Niu, Gang; Chen, Xiaoyuan [National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Laboratory of Molecular Imaging and Nanomedicine (LOMIN), Bethesda, MD (United States); Cao, Feng [The Fourth Military Medical University, Department of Cardiology, Xijing Hospital, Xi' an (China)

    2012-04-15

    The {alpha}{sub v}{beta}{sub 3} integrin represents a potential target for noninvasive imaging of angiogenesis. The purpose of this study was to evaluate a novel one-step labeled integrin {alpha}{sub v}{beta}{sub 3}-targeting positron emission tomography (PET) probe, {sup 18}F-AlF-NOTA-PRGD2, for angiogenesis imaging in a myocardial infarction/reperfusion (MI/R) animal model. Male Sprague-Dawley rats underwent 45-min transient left coronary artery occlusion followed by reperfusion. The myocardial infarction was confirmed by ECG, {sup 18}F-fluorodeoxyglucose (FDG) imaging, and cardiac ultrasound. In vivo PET imaging was used to determine myocardial uptake of {sup 18}F-AlF-NOTA-PRGD2 at different time points following reperfusion. The control peptide RAD was labeled with a similar procedure and used to confirm the specificity. Ex vivo autoradiographic analysis and CD31/CD61 double immunofluorescence staining were performed to validate the PET results. Myocardial origin of the {sup 18}F-AlF-NOTA-PRGD2 accumulation was confirmed by {sup 18}F-FDG and autoradiography. PET imaging demonstrated increased focal accumulation of {sup 18}F-AlF-NOTA-PRGD2 in the infarcted area which started at day 3 (0.28 {+-} 0.03%ID/g, p < 0.05) and peaked between 1 and 3 weeks (0.59 {+-} 0.16 and 0.55 {+-} 0.13%ID/g, respectively). The focal accumulation decreased but still kept at a higher level than the sham group after 4 months of reperfusion (0.31 {+-} 0.01%ID/g, p < 0.05). Pretreatment with unlabeled arginine-glycine-aspartic acid (RGD) peptide significantly decreased tracer uptake, indicating integrin specificity of this tracer. At 1 week after MI/R, uptake of the control tracer {sup 18}F-AlF-NOTA-RAD that does not bind to integrin, in the infarcted area, was only 0.21 {+-} 0.01%ID/g. Autoradiographic imaging showed the same trend of uptake in the myocardial infarction area. The time course of focal tracer uptake was consistent with the pattern of vascular density and integrin {beta

  4. Early spontaneous intermittent myocardial reperfusion during acute myocardial infarction is associated with augmented thrombogenic activity and less myocardial damage

    NARCIS (Netherlands)

    Haider, A.W.; Andreotti, F.; Hackett, D.R.; Tousoulis, D.; Kluft, C.; Maseri, A.; Davies, G.J.

    1995-01-01

    Objectives. This study investigated the influence of early spontaneous intermittent reperfusion on the extent of myocardial damage and its relation to endogenous hemostatic activity, Background. In the early phase of acute myocardial infarction coronary occlusion is often intermittent, even before

  5. CURRENT REPERFUSION THERAPY POSSIBILITIES IN MYOCARDIAL INFARCTION AND ISCHEMIC STROKE

    Directory of Open Access Journals (Sweden)

    E. V. Konstantinova

    2015-01-01

    Full Text Available Myocardial infarction and ischemic stroke remain to be of the greatest medical and social importance because of their high prevalence, disability, and mortality rates. Intractable thrombotic occlusion of the respective artery leads to the formation of an ischemic lesion focus in the tissue of the heart or brain. Emergency reperfusion serves to decrease a necrotic focus, makes its formation reversible, and reduces patient death rates. The paper considers main reperfusion therapy lines: medical (with thrombolytic drugs and mechanical (with primary interventions one and their combination in treating patients with acute myocardial and cerebral ischemia. Each reperfusion procedure is discussed in view of its advantages, disadvantages, available guidelines, and possibilities of real clinical practice. Tenecteplase is assessed in terms of its efficacy, safety, and capacities for bolus administration, which allows its use at any hospital and at the pre-hospital stage. Prehospital thrombolysis permits reperfusion therapy to bring much closer to the patient and therefore aids in reducing time to reperfusion and in salvaging as much the myocardial volume as possible. The rapidest recovery of myocardial and cerebral perfusion results in a decreased necrotic area and both improved immediate and late prognosis. The results of randomized clinical trials studying the possibilities of the medical and mechanical methods to restore blood flow are analyzed in the context of evidence-based medicine. The reason why despite the available contraindications, limited efficiency, and the risk of hemorrhagic complications, thrombolytic therapy remains the method of choice for prehospital reperfusion, an alternative to primary percutaneous coronary intervention (PCI if it cannot be carried out in patients with myocardial infarction at the stated time, and the only treatment ischemic stroke treatment that has proven its efficiency and safety in clinical trials is under

  6. Discharge Policy and Reperfusion Therapy in Acute Myocardial Infarction

    OpenAIRE

    Vlugt, Maureen

    2007-01-01

    textabstractTreatment of patients with acute myocardial infarction (MI) has improved over time and the duration of hospital stay has considerably decreased. Early hospital discharge after MI has been promoted for over 25 years. However, the meaning of “early” evolved over time. In the early eighties, before the widespread introduction of reperfusion therapy, patients were hospitalised for approximately 3 weeks and early discharge implemented a reduction to 7 days. Nowadays, the average hospit...

  7. Assessment of myocardial viability using multidetector computed tomography in patients with reperfused acute myocardial infarction

    International Nuclear Information System (INIS)

    Kim, T.; Choi, B.J.; Kang, D.K.; Sun, J.S.

    2012-01-01

    Aim: To assess the prognostic value of 64-section multidetector computed tomography (MDCT) to predict follow-up myocardial dysfunction and functional recovery after reperfusion therapy in patients with acute myocardial infarction (MI) as defined by echocardiography. Materials and methods: After reperfusion therapy for acute MI, 71 patients underwent two-phase contrast-enhanced MDCT and follow-up echocardiography. MDCT findings were compared with echocardiographic findings using kappa statistics. The areas under the receiver operating characteristic curves (AUCs) and the odds ratios (ORs) of early perfusion defects (EPD), delayed enhancement (DE), and residual perfusion defects (RPD) for predicting follow-up myocardial dysfunction and functional recovery were calculated on a segmental basis. Results: The presence of transmural EPD (EPD TM ) or RPD showed good agreement (k = 0.611 and 0.658, respectively) with follow-up myocardial dysfunction, while subendocardial EPD (EPD sub ) or subendocardial DE (DE sub ) showed fair agreement with follow-up myocardial dysfunction (k = 0.235 and 0.234, respectively). The AUC of RPD (0.796) was superior (p TM (0.761) and DE TM (0.771). The presence of EPD TM , DE TM , and RPD were significant, independent positive predictors of follow-up myocardial dysfunction (OR = 6.4, 1.9, and 9.8, respectively). EPD TM was a significant, independent negative predictor of myocardial functional recovery (OR = 0.13). Conclusion: Abnormal myocardial attenuation on two-phase MDCT after reperfusion therapy may provide promising information regarding myocardial viability in patients with acute MI.

  8. The relationship between myocardial blood flow and myocardial viability after reperfusion. Myocardial viability assessed by 15O-water-PET

    International Nuclear Information System (INIS)

    Tsukagoshi, Joichi

    1994-01-01

    The purpose of this study was to examine the relationship between myocardial blood flow and myocardial viability in the ischemic canine myocardium after reperfusion. Transient ischemia was induced by 60-, 90-, and 180-minute occlusion of the left anterior descending coronary artery. Myocardial blood flow (MBF) was measured in the areas in which regional contractility was severely impaired (ehocardiographically akinetic or dyskinetic) in the early reperfusion period by 15 O-water positron emission tomography (PET) 12 hours and 4 weeks after reperfusion. An MBF ratio of ischemic to nonischemic regions 12 hours after reperfusion was inversely correlated with the amount of histologically determined tissue necrosis (r=-0.74). The regional contractility recovered 4 weeks later in the areas where an MBF ratio was 0.48 or greater, but did not recover in the areas with a lower MBF ratio. Thus, myocardial viability can be appropriately predicted in the early phase of myocardial perfusion by PET with 15 O-water even in the absence of metabolic imaging. (author)

  9. Effect of 5-aminosalicylic acid on myocardial capillary permeability following ischaemia and reperfusion

    DEFF Research Database (Denmark)

    Hansen, P R; Svendsen, Jesper Hastrup; Høst, N B

    1992-01-01

    The aim was to evaluate the effect of 5-aminosalicylic acid on myocardial capillary permeability for small hydrophilic molecules after ischaemia and reperfusion.......The aim was to evaluate the effect of 5-aminosalicylic acid on myocardial capillary permeability for small hydrophilic molecules after ischaemia and reperfusion....

  10. Myocardial Hemorrhage After Acute Reperfused ST-Segment–Elevation Myocardial Infarction

    Science.gov (United States)

    Carrick, David; Haig, Caroline; Ahmed, Nadeem; McEntegart, Margaret; Petrie, Mark C.; Eteiba, Hany; Hood, Stuart; Watkins, Stuart; Lindsay, M. Mitchell; Davie, Andrew; Mahrous, Ahmed; Mordi, Ify; Rauhalammi, Samuli; Sattar, Naveed; Welsh, Paul; Radjenovic, Aleksandra; Ford, Ian; Oldroyd, Keith G.

    2016-01-01

    Background— The success of coronary reperfusion therapy in ST-segment–elevation myocardial infarction (MI) is commonly limited by failure to restore microvascular perfusion. Methods and Results— We performed a prospective cohort study in patients with reperfused ST-segment–elevation MI who underwent cardiac magnetic resonance 2 days (n=286) and 6 months (n=228) post MI. A serial imaging time-course study was also performed (n=30 participants; 4 cardiac magnetic resonance scans): 4 to 12 hours, 2 days, 10 days, and 7 months post reperfusion. Myocardial hemorrhage was taken to represent a hypointense infarct core with a T2* value of hemorrhage 2 days post MI was associated with clinical characteristics indicative of MI severity and inflammation. Myocardial hemorrhage was a multivariable associate of adverse remodeling (odds ratio [95% confidence interval]: 2.64 [1.07–6.49]; P=0.035). Ten (4%) patients had a cardiovascular cause of death or experienced a heart failure event post discharge, and myocardial hemorrhage, but not microvascular obstruction, was associated with this composite adverse outcome (hazard ratio, 5.89; 95% confidence interval, 1.25–27.74; P=0.025), including after adjustment for baseline left ventricular end-diastolic volume. In the serial imaging time-course study, myocardial hemorrhage occurred in 7 (23%), 13 (43%), 11 (33%), and 4 (13%) patients 4 to 12 hours, 2 days, 10 days, and 7 months post reperfusion. The amount of hemorrhage (median [interquartile range], 7.0 [4.9–7.5]; % left ventricular mass) peaked on day 2 (Phemorrhage and microvascular obstruction follow distinct time courses post ST-segment–elevation MI. Myocardial hemorrhage was more closely associated with adverse outcomes than microvascular obstruction. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT02072850. PMID:26763281

  11. Passive targeting of lipid-based nanoparticles to mouse cardiac ischemia-reperfusion injury

    NARCIS (Netherlands)

    Geelen, T.; Paulis, L.E.M.; Coolen, B.F.; Nicolay, K.; Strijkers, G.J.

    2013-01-01

    Reperfusion therapy is commonly applied after a myocardial infarction. Reperfusion, however, causes secondary damage. An emerging approach for treatment of ischemia-reperfusion (IR) injury involves the delivery of therapeutic nanoparticles to the myocardium to promote cell survival and

  12. Milrinone and levosimendan administered after reperfusion improve myocardial stunning in swine.

    Science.gov (United States)

    Shibata, Itsuko; Cho, Sungsam; Yoshitomi, Osamu; Ureshino, Hiroyuki; Maekawa, Takuji; Hara, Tetsuya; Sumikawa, Koji

    2013-02-01

    We assessed the effect of milrinone application timing after reperfusion against myocardial stunning as compared with levosimendan in swine. Furthermore, we examined the role of p38 mitogen-activated protein kinase (p38 MAPK) in the milrinone-induced cardioprotection. All swine were subjected to 12-minutes ischemia followed by 90-minutes reperfusion to generate stunned myocardium. Milrinone or levosimendan was administered intravenously either for 20 minutes starting just after reperfusion or for 70 minutes starting 20 minutes after reperfusion. In another group, SB203580, a selective p38 MAPK inhibitor, was administered with and without milrinone. Regional myocardial contractility was assessed by percent segment shortening (%SS). Milrinone starting just after reperfusion, but not starting 20 minutes after reperfusion, improved %SS at 30, 60, and 90 minutes after reperfusion compared with that in the control group. SB203580 abolished the beneficial effect of milrinone. On the other hand, levosimendan starting 20 minutes after reperfusion, but not for 20 minutes starting just after reperfusion, improved %SS at 60 and 90 minutes after reperfusion. Milrinone should be administered just after reperfusion to protect myocardial stunning through p38 MAPK, whereas levosimendan improvement of contractile function could be mainly dependent on its positive inotropic effect.

  13. Determinants of myocardial hemorrhage after coronary reperfusion in the anesthetized dog

    International Nuclear Information System (INIS)

    Higginson, L.A.J.; White, F.; Heggtveit, H.A.; Sanders, T.M.; Bloor, C.M.; Covell, J.W.

    1982-01-01

    Intramyocardial hemorrhage often occurs with reperfusion in experimental acute myocardial infarction and is thought to be associated with extension of necrosis. To determine if hemorrhage was associated with extension of necrosis, 10 anesthetized dogs were reperfused after 6 hours of circumflex coronary artery occlusion and 10 others had control occlusion with no reperfusion. Fifteen of the 20 reperfused dogs had gross hemorrhage and none of the control dogs did. In 12 reperfused and 10 control dogs, radioactive microspheres were injected after coronary occlusion to quantitate collateral flow and in the reperfusion group microspheres were injected to quantitate reflow. Complete flow data were available in eight reperfused and 10 analyzed for hemorrhage, collateral flow and creatine kinase activity. Serial microscopic examination was performed in eight additional dogs reperfused after 6 hours to determine if hemorrhage occurs into otherwise microscopically normal myocardium. Pathologic examination indicatd that hemorrhage did not occur into otherwise microscopically normal myocardium. These studies indicate that hemorrhage or reperfusion is associated with severe myocardial necrosis and markedly depressed flow before reperfusion and this occurs only into myocardium already markedly compromised at the time of reperfusion

  14. Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis.

    Science.gov (United States)

    Wu, Nan; Zhang, Xiaowen; Jia, Pengyu; Jia, Dalin

    2015-12-01

    The effect of hypercholesterolemia on myocardial ischemia reperfusion injury (MIRI) is in controversy and the underlying mechanism is still not well understood. In the present study, we firstly detected the effects of hypercholesterolemia on MIRI and the role of endoplasmic reticulum (ER) stress-mediated apoptosis pathway in this process. The infarct size was determined by TTC staining, and apoptosis was measured by the TUNEL method. The marker proteins of ER stress response and ER stress-mediated apoptosis pathway were detected by Western blot. The results showed that high cholesterol diet-induced hypercholesterolemia significantly increased the myocardial infarct size, the release of myocardium enzyme and the ratio of apoptosis, but did not affect the recovery of cardiac function. Moreover, hypercholesterolemia also remarkably up-regulated the expressions of ER stress markers (glucose-regulated protein 78 and calreticulin) and critical molecules in ER stress-mediated apoptosis pathway (CHOP, caspase 12, phospho-JNK). In conclusion, our study demonstrated that hypercholesterolemia enhanced myocardial vulnerability/sensitivity to ischemia reperfusion injury involved in aggravation the ER stress and activation of ER stress-mediated apoptosis pathway and it gave us a new insight into the underlying mechanisms associated with hypercholesterolemia-induced exaggerated MIRI and also provided a novel target for preventing MIRI in the presence of hypercholesterolemia. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Myocardial hypoperfusion/reperfusion tolerance with exercise training in hypertension.

    Science.gov (United States)

    Reger, Patricia O; Barbe, Mary F; Amin, Mamta; Renna, Brian F; Hewston, Leigh Ann; MacDonnell, Scott M; Houser, Steven R; Libonati, Joseph R

    2006-02-01

    The purpose of this study was to examine whether exercise training, superimposed on compensated-concentric hypertrophy, could increase myocardial hypoperfusion-reperfusion (H/R) tolerance. Female Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) (age: 4 mo; N = 40) were placed into a sedentary (SED) or exercise training (TRD) group (treadmill running; 25 m/min, 1 h/day, 5 days/wk for 16 wk). Four groups were studied: WKY-SED (n = 10), WKY-TRD (n = 10), SHR-SED (n = 10), and SHR-TRD (n = 10). Blood pressure and heart rate were determined, and in vitro isolated heart performance was measured with a retrogradely perfused, Langendorff isovolumic preparation. The H/R protocol consisted of a 75% reduction in coronary flow for 17 min followed by 30 min of reperfusion. Although the rate-pressure product was significantly elevated in SHR relative to WKY, training-induced bradycardia reduced the rate-pressure product in SHR-TRD (P Endurance training superimposed on hypertension-induced compensated hypertrophy conferred no further cardioprotection to H/R. Postreperfusion 72-kDa heat shock protein abundance was enhanced in WKY-TRD and both groups of SHR relative to WKY-SED (P hypertension and endurance training individually improved H/R and that increased postreperfusion 72-kDa heat shock protein abundance was, in part, associated with the cardioprotective phenotype observed in this study.

  16. Reperfusion therapy for ST elevation acute myocardial infarction 2010/2011

    DEFF Research Database (Denmark)

    Kristensen, Steen D; Laut, Kristina G; Fajadet, Jean

    2014-01-01

    AIMS: Primary percutaneous coronary intervention (PPCI) is the preferred reperfusion therapy in ST-elevation myocardial infarction (STEMI). We conducted this study to evaluate the contemporary status on the use and type of reperfusion therapy in patients admitted with STEMI in the European Society...

  17. Myocardial imaging with sup 99m Tc-2-methoxyisobutilisonitrile in the assessment of reperfusion after intravenous thrombolytic treatment for acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Vattimo, A.; Favilli, R.; Bertelli, P.; Burroni, L.; Gaddi, R.; Ferretti, A.; Baldi, L. (Siena Univ. (Italy). Nuclear Medicine Unit)

    1989-08-01

    The effect of reperfusion with intravenous streptokinase for acute myocardial infarction (AMI) was assessed by myocardial scintigraphy in 6 patients using {sup 99m}Tc-MIBI injected before and 48 hours after the thrombolysis. All patients showed 3 to 4 segmental defects consistent for AMI in the baseline study. The post-thrombolytic study showed an intense reperfusion in 3 patients, a moderate reperfusion in 2 patients and absence of reperfusion in one patient. These findings indicate that the dual imaging strategy with {sup 99m}Tc-MIBI is an effective non-invasive technique to assess the effectiveness of reperfusion in acute myocardial infarcted areas. (orig.).

  18. Myocardial imaging with 99mTc-2-methoxyisobutilisonitrile in the assessment of reperfusion after intravenous thrombolytic treatment for acute myocardial infarction

    International Nuclear Information System (INIS)

    Vattimo, A.; Favilli, R.; Bertelli, P.; Burroni, L.; Gaddi, R.; Ferretti, A.; Baldi, L.

    1989-01-01

    The effect of reperfusion with intravenous streptokinase for acute myocardial infarction (AMI) was assessed by myocardial scintigraphy in 6 patients using 99m Tc-MIBI injected before and 48 hours after the thrombolysis. All patients showed 3 to 4 segmental defects consistent for AMI in the baseline study. The post-thrombolytic study showed an intense reperfusion in 3 patients, a moderate reperfusion in 2 patients and absence of reperfusion in one patient. These findings indicate that the dual imaging strategy with 99m Tc-MIBI is an effective non-invasive technique to assess the effectiveness of reperfusion in acute myocardial infarcted areas. (orig.) [de

  19. Pharmacological prevention of reperfusion injury in acute myocardial infarction. A potential role for adenosine as a therapeutic agent.

    Science.gov (United States)

    Quintana, Miguel; Kahan, Thomas; Hjemdahl, Paul

    2004-01-01

    The concept of reperfusion injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur either spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. Although the pathophysiology of reperfusion injury is complex, the major role that neutrophils play in this process is well known. Neutrophils generate free radicals, degranulation products, arachidonic acid metabolites and platelet-activating factors that interact with endothelial cells, inducing endothelial injury and neutralization of nitrous oxide vasodilator capacity. Adenosine, through its multi-targeted pharmacological actions, is able to inhibit some of the above-mentioned detrimental effects. The net protective of adenosine in in vivo models of reperfusion injury is the reduction of the infarct size, the improvement of the regional myocardial blood flow and of the regional function of the ischemic area. Additionally, adenosine preserves the post-ischemic coronary flow reserve, coronary blood flow and the post-ischemic regional contractility. In small-scale studies in patients with acute MI, treatment with adenosine has been associated with smaller infarcts, less no-reflow phenomenon and improved LV function. During elective PCI adenosine reduced ST segment shifts, lactate production and ischemic symptoms. During the

  20. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis.

    Science.gov (United States)

    Zhai, Mengen; Li, Buying; Duan, Weixun; Jing, Lin; Zhang, Bin; Zhang, Meng; Yu, Liming; Liu, Zhenhua; Yu, Bo; Ren, Kai; Gao, Erhe; Yang, Yang; Liang, Hongliang; Jin, Zhenxiao; Yu, Shiqiang

    2017-09-01

    Sirtuins are a family of highly evolutionarily conserved nicotinamide adenine nucleotide-dependent histone deacetylases. Sirtuin-3 (SIRT3) is a member of the sirtuin family that is localized primarily to the mitochondria and protects against oxidative stress-related diseases, including myocardial ischemia/reperfusion (MI/R) injury. Melatonin has a favorable effect in ameliorating MI/R injury. We hypothesized that melatonin protects against MI/R injury by activating the SIRT3 signaling pathway. In this study, mice were pretreated with or without a selective SIRT3 inhibitor and then subjected to MI/R operation. Melatonin was administered intraperitoneally (20 mg/kg) 10 minutes before reperfusion. Melatonin treatment improved postischemic cardiac contractile function, decreased infarct size, diminished lactate dehydrogenase release, reduced the apoptotic index, and ameliorated oxidative damage. Notably, MI/R induced a significant decrease in myocardial SIRT3 expression and activity, whereas the melatonin treatment upregulated SIRT3 expression and activity, and thus decreased the acetylation of superoxide dismutase 2 (SOD2). In addition, melatonin increased Bcl-2 expression and decreased Bax, Caspase-3, and cleaved Caspase-3 levels in response to MI/R. However, the cardioprotective effects of melatonin were largely abolished by the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP), suggesting that SIRT3 plays an essential role in mediating the cardioprotective effects of melatonin. In vitro studies confirmed that melatonin also protected H9c2 cells against simulated ischemia/reperfusion injury (SIR) by attenuating oxidative stress and apoptosis, while SIRT3-targeted siRNA diminished these effects. Taken together, our results demonstrate for the first time that melatonin treatment ameliorates MI/R injury by reducing oxidative stress and apoptosis via activating the SIRT3 signaling pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons

  1. Effects of Chronic and Acute Zinc Supplementation on Myocardial Ischemia-Reperfusion Injury in Rats.

    Science.gov (United States)

    Ozyıldırım, Serhan; Baltaci, Abdulkerim Kasim; Sahna, Engin; Mogulkoc, Rasim

    2017-07-01

    The present study aims to explore the effects of chronic and acute zinc sulfate supplementation on myocardial ischemia-reperfusion injury in rats. The study registered 50 adult male rats which were divided into five groups in equal numbers as follows: group 1, normal control; group 2, sham; group 3, myocardial ischemia reperfusion (My/IR): the group which was fed on a normal diet and in which myocardial I/R was induced; group 4, myocardial ischemia reperfusion + chronic zinc: (5 mg/kg i.p. zinc sulfate for 15 days); and group 5, myocardial ischemia reperfusion + acute zinc: the group which was administered 15 mg/kg i.p. zinc sulfate an hour before the operation and in which myocardial I/R was induced. The collected blood and cardiac tissue samples were analyzed using spectrophotometric method to determine levels of MDA, as an indicator of tissue injury, and GSH, as an indicator of antioxidant activity. The highest plasma and heart tissue MDA levels were measured in group 3 (p zinc administration and markedly by chronic zinc supplementation.

  2. Effects of intracoronary melatonin on ischemia-reperfusion injury in ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Ekeløf, Sarah V; Halladin, Natalie L; Jensen, Svend E

    2016-01-01

    Acute coronary occlusion is effectively treated by primary percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury is at the moment an unavoidable consequence of the procedure. Oxidative stress is central in the development of ischemia-reperfusion injury. Melatonin......, an endogenous hormone, acts through antioxidant mechanisms and could potentially minimize the myocardial injury. The aim of the experimental study was to examine the cardioprotective effects of melatonin in a porcine closed-chest reperfused infarction model. A total of 20 landrace pigs were randomized...... to a dosage of 200 mg (0.4 mg/mL) melatonin or placebo (saline). The intervention was administered intracoronary and intravenous. Infarct size, area at risk and microvascular obstruction were determined ex vivo by cardiovascular magnetic resonance imaging. Myocardial salvage index was calculated. The plasma...

  3. Reperfusion therapy of myocardial infarction in Mexico: A challenge for modern cardiology.

    Science.gov (United States)

    Martínez-Sánchez, Carlos; Arias-Mendoza, Alexandra; González-Pacheco, Héctor; Araiza-Garaygordobil, Diego; Marroquín-Donday, Luis Alfonso; Padilla-Ibarra, Jorge; Sierra-Fernández, Carlos; Altamirano-Castillo, Alfredo; Álvarez-Sangabriel, Amada; Azar-Manzur, Francisco Javier; Briseño-de la Cruz, José Luis; Mendoza-García, Salvador; Piña-Reyna, Yigal; Martínez-Ríos, Marco Antonio

    Mexico has been positioned as the country with the highest mortality attributed to myocardial infarction among the members of the Organization for Economic Cooperation and Development. This rate responds to multiple factors, including a low rate of reperfusion therapy and the absence of a coordinated system of care. Primary angioplasty is the reperfusion method recommended by the guidelines, but requires multiple conditions that are not reached at all times. Early pharmacological reperfusion of the culprit coronary artery and early coronary angiography (pharmacoinvasive strategy) can be the solution to the logistical problem that primary angioplasty rises. Several studies have demonstrated pharmacoinvasive strategy as effective and safe as primary angioplasty ST-elevation myocardial infarction, which is postulated as the choice to follow in communities where access to PPCI is limited. The Mexico City Government together with the National Institute of Cardiology have developed a pharmaco-invasive reperfusion treatment program to ensure effective and timely reperfusion in STEMI. The model comprises a network of care at all three levels of health, including a system for early pharmacological reperfusion in primary care centers, a digital telemedicine system, an inter-hospital transport network to ensure primary angioplasty or early percutaneous coronary intervention after fibrinolysis and a training program with certification of the health care personal. This program intends to reduce morbidity and mortality associated with myocardial infarction. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  4. Novel monohydroxamate drugs attenuate myocardial reperfusion-induced arrhythmias

    DEFF Research Database (Denmark)

    Collis, C S; Rice-Evans, C; Davies, Michael Jonathan

    1996-01-01

    the first 5 min of reperfusion were quantified. Drugs (all at 150 microM) were introduced during the last 2 min of ischaemia and remained throughout reperfusion. Although the monohydroxamate- and desferrioxamine-treated hearts showed a reduction in the incidence of ventricular tachycardia and fibrillation...

  5. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury.

    Science.gov (United States)

    McDonough, Kathleen H; Virag, Jitka Ismail

    2006-01-01

    Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart by multiple brief ischemia/reperfusion episodes and by numerous pharmacological agents as well as heat stress and modified forms of lipopolysaccharide. The myocardium develops protection after an initial stress such that during a second stress, the myocardium does not exhibit as much damage as does a non-protected heart. Many agents can induce this protection which has been termed preconditioning. Both early preconditioning (protection that is measurable min to hours after the initial stimulus) and late preconditioning (protection that is measurable hours to days after the initial

  6. Novel aspects of acute coronary syndromes, reperfusion injury and post-infarction myocardial fibrosis

    OpenAIRE

    Chan, William

    2017-01-01

    This thesis comprises 4 clinical studies aiming to explore the mechanisms related to coronary plaque destabilization, clinical outcomes of the no-reflow phenomenon, a novel treatment of ischaemia-reperfusion injury, and the pattern and temporal evolution of left ventricular myocardial fibrosis following myocardial infarction. Current risk prediction models for future cardiovascular events are derived from large scale population-based studies (such as that from the Framingham Heart Study),...

  7. [Protective effects of endogenous carbon monoxide against myocardial ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Zhou, Zhen; Ma, Shuang; Liu, Jie; Ji, Qiao-Rong; Cao, Cheng-Zhu; Li, Xiao-Na; Tang, Feng; Zhang, Wei

    2018-04-25

    The present study is aimed to explore the effects of endogenous carbon monoxide on the ischemia-reperfusion in rats. Wistar rats were intraperitoneally injected with protoporphyrin cobalt chloride (CoPP, an endogenous carbon monoxide agonist, 5 mg/kg), zinc protoporphyrin (ZnPP, an endogenous carbon monoxide inhibitor, 5 mg/kg) or saline. Twenty-four hours after injection, the myocardial ischemia-reperfusion model was made by Langendorff isolated cardiac perfusion system, and cardiac function parameters were collected. Myocardial cGMP content was measured by ELISA, and the endogenous carbon monoxide in plasma and myocardial enzymes in perfusate at 10 min after reperfusion were measured by colorimetry. The results showed that before ischemia the cardiac functions of CoPP, ZnPP and control groups were stable, and there were no significant differences. After reperfusion, cardiac functions had significant differences among the three groups (P endogenous carbon monoxide can maintain cardiac function, shorten the time of cardiac function recovery, and play a protective role in cardiac ischemia-reperfusion.

  8. Reduction of myocardial ischemia-reperfusion injury by mechanical tissue resuscitation using sub-atmospheric pressure.

    Science.gov (United States)

    Argenta, Louis C; Morykwas, Michael J; Mays, Jennifer J; Thompson, Edreca A; Hammon, John W; Jordan, James E

    2010-03-01

    Reperfusion-induced injury after myocardial infarction is associated with a well-defined sequence of early and late cardiomyocyte death. Most present attempts to ameliorate this sequence focus on a single facet of the complex process in an attempt to salvage cardiomyocytes. We examined, as proof of concept, the effects of mechanical tissue resuscitation (MTR) with controlled negative pressure on myocardial injury following acute myocardial infarction. Anesthetized swine were subjected to 75 minutes of left coronary artery occlusion and three hours of reperfusion. Animals were assigned to one of three groups: (A) untreated control; treatment of involved myocardium for 180 minutes of MTR with (B) -50 mmHg, or (C) -125 mmHg. All three groups were subjected to equivalent ischemic stress. Treatment of the ischemic area with MTR for 180 minutes significantly (p control: 9.3 +/- 1.8% (-50 mmHg) and 11.9 +/- 1.2% (-125 mmHg) versus 26.4 +/- 2.1% (control). Total area of cell death was reduced by 65% with -50 mmHg treatment and 55% in the -125 mmHg group. Treatment of ischemic myocardium with MTR, for a controlled period of time during reperfusion, successfully reduced the extent of myocardial death after acute myocardial infarction. These data provide evidence that MTR using subatmospheric pressure may be a simple, efficacious, nonpharmacological, mechanical strategy for decreasing cardiomyocyte death following myocardial infarction, which can be delivered in the operating room.

  9. The relationship between myocardial blood flow and myocardial viability after reperfusion. Myocardial viability assessed by [sup 15]O-water-PET

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Joichi (Gunma Univ., Maebashi (Japan). School of Medicine)

    1994-09-01

    The purpose of this study was to examine the relationship between myocardial blood flow and myocardial viability in the ischemic canine myocardium after reperfusion. Transient ischemia was induced by 60-, 90-, and 180-minute occlusion of the left anterior descending coronary artery. Myocardial blood flow (MBF) was measured in the areas in which regional contractility was severely impaired (ehocardiographically akinetic or dyskinetic) in the early reperfusion period by [sup 15]O-water positron emission tomography (PET) 12 hours and 4 weeks after reperfusion. An MBF ratio of ischemic to nonischemic regions 12 hours after reperfusion was inversely correlated with the amount of histologically determined tissue necrosis (r=-0.74). The regional contractility recovered 4 weeks later in the areas where an MBF ratio was 0.48 or greater, but did not recover in the areas with a lower MBF ratio. Thus, myocardial viability can be appropriately predicted in the early phase of myocardial perfusion by PET with [sup 15]O-water even in the absence of metabolic imaging. (author).

  10. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    Science.gov (United States)

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  11. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1.

    Science.gov (United States)

    Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong

    2016-01-01

    Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (C c O), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 ( P <0.05). The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression.

  12. Cardioprotective Effect of the Aqueous Extract of Lavender Flower against Myocardial Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-01-01

    Full Text Available This study was conducted to evaluate the cardioprotective property of the aqueous extract of lavender flower (LFAE. The myocardial ischemia/reperfusion (I/R injury of rat was prepared by Langendorff retrograde perfusion technology. The heart was preperfused with K-H solution containing LFAE for 10 min before 20 minutes global ischemia, and then the reperfusion with K-H solution was conducted for 45 min. The left ventricular developed pressure (LVDP and the maximum up/downrate of left ventricular pressure (±dp/dtmax were recorded by physiological recorder as the myocardial function and the myocardial infarct size was detected by TTC staining. Lactate dehydrogenase (LDH and creatine kinase (CK activities in the effluent were measured to determine the myocardial injury degree. The superoxide anion dismutase (SOD and malondialdehyde (MDA in myocardial tissue were detected to determine the oxidative stress degree. The results showed that the pretreatment with LFAE significantly decreased the myocardial infarct size and also decreased the LDH, CK activities, and MDA level, while it increased the LVDP, ±dp/dtmax, SOD activities, and the coronary artery flow. Our findings indicated that LFAE could provide protection for heart against the I/R injury which may be related to the improvement of myocardial oxidative stress states.

  13. Usefulness of BMIPP SPECT to evaluate myocardial viability, contractile reserve and coronary stenotic progression after reperfusion in acute myocardial infarction

    International Nuclear Information System (INIS)

    Katsunuma, Eita; Kurokawa, Shingo; Takahashi, Motoi; Fukuda, Naoto; Kurosawa, Toshiro; Izumi, Tohru

    2001-01-01

    Using combined 123 I-BMIPP (BMIPP), 201 Tl (Tl) and 99m Tc-PYP (PYP) myocardial SPECT imaging, risk areas of acute myocardial infarction were documented in the acute stage, and then these images were evaluated for how well they reflected muscle viability, contractile reserve and coronary stenotic progression subsequent to reperfusion therapy. Patients who only experienced a first attack of myocardial infarction were enrolled. In total, 36 cases who had had the occluded artery successfully reperfused were examined during the past year. They had no significant vessel disease except for the culprit single artery. The patients were comprised of 32 men and 4 women. The mean age was 59.5 years. All patients underwent coronary angiography and left ventricular (LV) angiography in the emergency room. BMIPP/Tl and PYP myocardial SPECT were conducted in the acute stage and chronic stage. In the chronic stage LV angiography was repeated to assess the improvement of LV wall motion. The response to postextrasystolic potentiation (PESP) testing was performed to estimate myocardial contractile reserve. The risk area of acute myocardial infarction (AMI) was documented by reduced BMIPP accumulation. The size of reduced BMIPP accumulation was larger than that of PYP accumulation. A BMIPP/Tl discrepancy and PYP accumulation were documented to assess myocardial viability. Both improvement in LV wall motion and augmentation of PESP response were more closely related to a BMIPP/Tl discrepancy in the presence or absence of PYP accumulation. Therefore, it would be possible to evaluate myocardial viability and contractile reserve by the BMIPP/Tl discrepancy. In patients with good viability, it is important to predict whether there is coronary stenotic progression or not. In this study, we demonstrated that most patients with improved BMIPP images had no significant progression at the site of intervention. Serial observation of BMIPP images from the acute stage to the chronic stage might

  14. Dexrazoxane Shows No Protective Effect in the Acute Phase of Reperfusion during Myocardial Infarction in Pigs.

    Science.gov (United States)

    Kamat, Pranitha; Vandenberghe, Stijn; Christen, Stephan; Bongoni, Anjan K; Meier, Bernhard; Rieben, Robert; Khattab, Ahmed A

    2016-01-01

    Calcium and iron overload participate in the mechanisms of ischemia/reperfusion (I/R) injury during myocardial infarction (MI). Calcium overload induces cardiomyocyte death by hypercontraction, while iron catalyses generation of reactive oxygen species (ROS). We therefore hypothesized that dexrazoxane, an intracellular metal chelator, would attenuate I/R injury. MI was induced in pigs by occlusion of the left anterior descending artery for 1 hour followed by 2 hours reperfusion. Thirty minutes before reperfusion either 5 mg/ml dexrazoxane (n = 5) or saline (n = 5) was infused intravenously. Myocardial necrosis as percentage of the area at ischemic risk was found to be similar in both groups (77.2 ± 18% for dexrazoxane and 76.4 ± 14% for saline group) as determined by triphenyl tetrazolium chloride staining of the ischemic myocardium. Also, serum levels of troponin-I were similar in both groups. A conductance catheter was used to measure left ventricular pressure and volume at all times. Markers for tissue damage due to ROS (HNE), endothelial cell activation (CD31) and inflammation (IgG, C3b/c, C5b9, MCP-1) were assessed on tissue and/or in serum. No significant differences were observed between the groups for the parameters analyzed. To conclude, in this clinically relevant model of early reperfusion after acute myocardial ischemia, dexrazoxane lacked attenuating effects on I/R injury as shown by the measured parameters.

  15. Dexrazoxane Shows No Protective Effect in the Acute Phase of Reperfusion during Myocardial Infarction in Pigs.

    Directory of Open Access Journals (Sweden)

    Pranitha Kamat

    Full Text Available Calcium and iron overload participate in the mechanisms of ischemia/reperfusion (I/R injury during myocardial infarction (MI. Calcium overload induces cardiomyocyte death by hypercontraction, while iron catalyses generation of reactive oxygen species (ROS. We therefore hypothesized that dexrazoxane, an intracellular metal chelator, would attenuate I/R injury. MI was induced in pigs by occlusion of the left anterior descending artery for 1 hour followed by 2 hours reperfusion. Thirty minutes before reperfusion either 5 mg/ml dexrazoxane (n = 5 or saline (n = 5 was infused intravenously. Myocardial necrosis as percentage of the area at ischemic risk was found to be similar in both groups (77.2 ± 18% for dexrazoxane and 76.4 ± 14% for saline group as determined by triphenyl tetrazolium chloride staining of the ischemic myocardium. Also, serum levels of troponin-I were similar in both groups. A conductance catheter was used to measure left ventricular pressure and volume at all times. Markers for tissue damage due to ROS (HNE, endothelial cell activation (CD31 and inflammation (IgG, C3b/c, C5b9, MCP-1 were assessed on tissue and/or in serum. No significant differences were observed between the groups for the parameters analyzed. To conclude, in this clinically relevant model of early reperfusion after acute myocardial ischemia, dexrazoxane lacked attenuating effects on I/R injury as shown by the measured parameters.

  16. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  17. Leucocyte depletion attenuates the early increase in myocardial capillary permeability to small hydrophilic solutes following ischaemia and reperfusion

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Hansen, P R; Ali, S

    1993-01-01

    The aim was to assess the significance of polymorphonuclear leucocytes on the myocardial capillary permeability to a small hydrophilic indicator, on the vascular tone of the resistance vessels, and on contractile function following ischaemia and reperfusion.......The aim was to assess the significance of polymorphonuclear leucocytes on the myocardial capillary permeability to a small hydrophilic indicator, on the vascular tone of the resistance vessels, and on contractile function following ischaemia and reperfusion....

  18. Sodium 4-Phenylbutyrate Attenuates Myocardial Reperfusion Injury by Reducing the Unfolded Protein Response.

    Science.gov (United States)

    Takatori, Osamu; Usui, Soichiro; Okajima, Masaki; Kaneko, Shuichi; Ootsuji, Hiroshi; Takashima, Shin-Ichiro; Kobayashi, Daisuke; Murai, Hisayoshi; Furusho, Hiroshi; Takamura, Masayuki

    2017-05-01

    The unfolded protein response (UPR) plays a pivotal role in ischemia-reperfusion (I/R) injury in various organs such as heart, brain, and liver. Sodium 4-phenylbutyrate (PBA) reportedly acts as a chemical chaperone that reduces UPR. In the present study, we evaluated the effect of PBA on reducing the UPR and protecting against myocardial I/R injury in mice. Male C57BL/6 mice were subjected to 30-minute myocardial I/R, and were treated with phosphate-buffered saline (as a vehicle) or PBA. At 4 hours after reperfusion, mice treated with PBA had reduced serum cardiac troponin I levels and numbers of apoptotic cells in left ventricles (LVs) in myocardial I/R. Infarct size had also reduced in mice treated with PBA at 48 hours after reperfusion. At 2 hours after reperfusion, UPR markers, including eukaryotic initiation of the factor 2α-subunit, activating transcription factor-6, inositol-requiring enzyme-1, glucose-regulated protein 78, CCAAT/enhancer-binding protein (C/EBP) homologous protein, and caspase-12, were significantly increased in mice treated with vehicle compared to sham-operated mice. Administration of PBA significantly reduced the I/R-induced increases of these markers. Cardiac function and dimensions were assessed at 21 days after I/R. Sodium 4-phenylbutyrate dedicated to the improvement of cardiac parameters deterioration including LV end-diastolic diameter and LV fractional shortening. Consistently, PBA reduced messenger RNA expression levels of cardiac remodeling markers such as collagen type 1α1, brain natriuretic peptide, and α skeletal muscle actin in LV at 21 days after I/R. Unfolded protein response mediates myocardial I/R injury. Administration of PBA reduces the UPR, apoptosis, infarct size, and preserved cardiac function. Hence, PBA may be a therapeutic option to attenuate myocardial I/R injury in clinical practice.

  19. NMR studies of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion

    International Nuclear Information System (INIS)

    Kirkels, J.H.

    1989-01-01

    In this study several aspects of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion were investigated in isolated perfused rat hearts, regionally ischemic rabbit hearts, and ex vivo human donor hearts during long term hypothermic cardioplegia. Phosphorus-31 nuclear magnetic resonance ( 31 P NMR) spectroscopy was used as a powerful tool to non-destructively follow the time course in changes in intracellular high-energy phosphates, (creatine phosphate and ATP), inorganic phosphate, and pH. In addition, changes in intracellular free magnesium were followed during ischemia and reperfusion. Sodium-23 ( 23 Na) NMR spectroscopy was used to study intracellular sodium during ischemia and reperfusion and during calcium-free perfusion. (author). 495 refs.; 33 figs.; 11 tabs

  20. Dexmedetomidine protects from post-myocardial ischaemia reperfusion lung damage in diabetic rats

    Science.gov (United States)

    Kip, Gülay; Çelik, Ali; Bilge, Mustafa; Alkan, Metin; Kiraz, Hasan Ali; Özer, Abdullah; Şıvgın, Volkan; Erdem, Özlem; Arslan, Mustafa; Kavutçu, Mustafa

    2015-01-01

    Objective Diabetic complications and lipid peroxidation are known to have a close association. Lipid peroxidation commonly occurs at sites exposed to ischaemia, but distant organs and tissues also get damaged during ischaemia/reperfusion (I/R). Some of these targets are vital organs, such as the lung, liver, and kidney; the lung is the most frequently affected. The aim of our study was to investigate the effects of dexmedetomidine on I/R damage in lung tissue and on the oxidant/anti-oxidant system in diabetic rats. Material and methods Diabetes was induced with streptozotocin (55 mg/kg) in 18 Wistar Albino rats, which were then randomly divided into three groups (diabetes control (DC), diabetes plus ischaemia-reperfusion (DIR), and diabetes plus dexmedetomidine-ischaemia/reperfusion (DIRD)) after the effects of diabetes were clearly evident. The rats underwent a left thoracotomy and then ischaemia was produced in the myocardium muscle by a left anterior descending artery ligation for 30 min in the DIR and DIRD groups. I/R was performed for 120 min. The DIRD group received a single intraperitoneal dose of dexmedetomidine (100 µg/kg); the DIR group received no dexmedetomidine. Group DC was evaluated as the diabetic control group and also included six rats (C group) in which diabetes was not induced. These mice underwent only left thoracotomy and were closed without undergoing myocardial ischaemia. Histopathological changes, activities of catalase (CAT) and glutathione-S-transferase anti-oxidant enzymes, and malondialdehyde (MDA) levels were evaluated in the lung tissues of all rats. Results Neutrophil infiltration/aggregation was higher in the DIR group than in the C, DC, and DIRD groups (p=0.001, p=0.013, and p=0.042, respectively). The lung injury score was significantly higher in the DIR group than in the C and DC groups (p<0.0001 and p=0.024, respectively). The levels of MDA were significantly higher in the DIR group than in the C and DIRD groups. CAT activity

  1. Dexmedetomidine protects from post-myocardial ischaemia reperfusion lung damage in diabetic rats

    Directory of Open Access Journals (Sweden)

    Gülay Kip

    2015-09-01

    Full Text Available Objective: Diabetic complications and lipid peroxidation are known to have a close association. Lipid peroxidation commonly occurs at sites exposed to ischaemia, but distant organs and tissues also get damaged during ischaemia/reperfusion (I/R. Some of these targets are vital organs, such as the lung, liver, and kidney; the lung is the most frequently affected. The aim of our study was to investigate the effects of dexmedetomidine on I/R damage in lung tissue and on the oxidant/anti-oxidant system in diabetic rats. Material and methods: Diabetes was induced with streptozotocin (55 mg/kg in 18 Wistar Albino rats, which were then randomly divided into three groups (diabetes control (DC, diabetes plus ischaemia-reperfusion (DIR, and diabetes plus dexmedetomidine-ischaemia/reperfusion (DIRD after the effects of diabetes were clearly evident. The rats underwent a left thoracotomy and then ischaemia was produced in the myocardium muscle by a left anterior descending artery ligation for 30 min in the DIR and DIRD groups. I/R was performed for 120 min. The DIRD group received a single intraperitoneal dose of dexmedetomidine (100 µg/kg; the DIR group received no dexmedetomidine. Group DC was evaluated as the diabetic control group and also included six rats (C group in which diabetes was not induced. These mice underwent only left thoracotomy and were closed without undergoing myocardial ischaemia. Histopathological changes, activities of catalase (CAT and glutathione-S-transferase anti-oxidant enzymes, and malondialdehyde (MDA levels were evaluated in the lung tissues of all rats. Results: Neutrophil infiltration/aggregation was higher in the DIR group than in the C, DC, and DIRD groups (p=0.001, p=0.013, and p=0.042, respectively. The lung injury score was significantly higher in the DIR group than in the C and DC groups (p<0.0001 and p=0.024, respectively. The levels of MDA were significantly higher in the DIR group than in the C and DIRD groups. CAT

  2. Effect of limb ischemic preconditioning on myocardial apoptosis-related proteins in ischemia-reperfusion injury

    OpenAIRE

    GAO, JIANZHI; ZHAO, LINJING; WANG, YONGLING; TENG, QINGLEI; LIANG, LIDONG; ZHANG, JINYING

    2013-01-01

    The aim of this study was to investigate the effect of limb ischemic preconditioning (LIPC) on myocardial apoptosis in myocardial ischemia-reperfusion injury (MIRI), as well as the regulation of caspase-3 and the B cell lymphoma 2 (Bcl-2) gene in LIPC. A total of 50 rats were divided randomly into 5 groups (n=10). Four rats in each group were drawn out for detection of apoptosis. The sham, MIRI and LIPC groups underwent surgery without additional treatment. In the LY294002 group, LY294002 pre...

  3. August rats are more resistant to arrhythmogenic effect of myocardial ischemia and reperfusion than Wistar rats.

    Science.gov (United States)

    Belkina, L M; Kirillina, T N; Pshennikova, M G; Arkhipenko, Yu V

    2002-06-01

    As differentiated from Wistar rats, myocardial ischemia and reperfusion produce no ventricular fibrillation in August rats. Pretreatment with nitric oxide synthase inhibitor Nw-nitro-L-arginine increased mortality rate in August rats with acute myocardial infarction from 20 to 40%. Under these conditions mortality rate in Wistar rats increased from 50 to 71%. Interstrain differences in the resistance of these animals to the arrhythmogenic effect of ischemia are probably associated with higher activity of the nitric oxide system in August rats compared to Wistar rats.

  4. [Vasoprotective effect of adaptation to hypoxia in myocardial ischemia and reperfusion injury].

    Science.gov (United States)

    Manukhina, E B; Terekhina, O L; Belkina, L M; Abramochkin, D V; Budanova, O P; Mashina, S Yu; Smirin, B V; Yakunina, E B; Downey, H F

    2013-01-01

    Adaptation to hypoxia is known to be cardioprotective in ischemic and reperfusion (IR) injury of the myocardium. This study was focused on investigating a possibility for prevention of endothelial dysfunction in IR injury of the rat heart using adaptation to intermittent hypoxia, which was performed in a cyclic mode (5-10 min of hypoxia interspersed with 4 min of normoxia, 5-8 cycles daily) for 21 days. Endothelial function of coronary blood vessels was evaluated after the in vitro IR of isolated heart (15 min of ischemia and 10 min of reperfusion) by the increment of coronary flow rate in response to acetylcholine. Endothelium-dependent relaxation of isolated rat aorta was evaluated after the IR myocardial injury in situ (30 min of ischemia and 60 min of reperfusion) by a relaxation response of noradrenaline-precontracted vessel rings to acetylcholine. The following major results were obtained in this study: 1) IR myocardial injury induced endothelial dysfunction of coronary blood vessels and the aorta, a non-coronary blood vessel, remote from the IR injury area; and 2) adaptation to hypoxia prevented the endothelial dysfunction of both coronary and non-coronary blood vessels associated with the IR injury. Therefore, adaptation to hypoxia is not only cardioprotective but also vasoprotective in myocardial IR injury.

  5. Tramadol Alleviates Myocardial Injury Induced by Acute Hindlimb Ischemia Reperfusion in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Takhtfooladi, Hamed Ashrafzadeh; Asl, Adel Haghighi Khiabanian [Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shahzamani, Mehran [Department of Cardiovascular Surgery, Isfahan University of Medical Sciences, Tehran (Iran, Islamic Republic of); Takhtfooladi, Mohammad Ashrafzadeh, E-mail: dr-ashrafzadeh@yahoo.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Allahverdi, Amin [Department of Surgery, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khansari, Mohammadreza [Department of Physiology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries. This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR. Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination. The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II. From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.

  6. Effect of limb ischemic preconditioning on myocardial apoptosis-related proteins in ischemia-reperfusion injury

    Science.gov (United States)

    GAO, JIANZHI; ZHAO, LINJING; WANG, YONGLING; TENG, QINGLEI; LIANG, LIDONG; ZHANG, JINYING

    2013-01-01

    The aim of this study was to investigate the effect of limb ischemic preconditioning (LIPC) on myocardial apoptosis in myocardial ischemia-reperfusion injury (MIRI), as well as the regulation of caspase-3 and the B cell lymphoma 2 (Bcl-2) gene in LIPC. A total of 50 rats were divided randomly into 5 groups (n=10). Four rats in each group were drawn out for detection of apoptosis. The sham, MIRI and LIPC groups underwent surgery without additional treatment. In the LY294002 group, LY294002 preconditioning was administered 15 min before reperfusion. In the LY294002+LIPC group, following LIPC, LY294002 was administered 15 min before reperfusion. The relative expression of myocardial Bcl-2 and caspase-3 mRNA and the apoptotic index for each group were determined by reverse transcription-polymerase chain reaction (RT-PCR) and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), respectively. The ultrastructure of the cardiac muscle tissues was observed by election microscopy. Compared with the sham group, the expression of caspase-3 mRNA in the MIRI group significantly increased (P<0.05) and the expression of Bcl-2 mRNA clearly decreased. Compared with the MIRI group, LIPC reduced the expression of caspase-3 and increased the expression of Bcl-2 mRNA (P<0.05). There were no significant differences between the LY294002+LIPC group and the MIRI group. Compared with the sham group, the apoptotic index of myocardial cells in the MIRI group significantly increased (P<0.05). Compared with the MIRI group, LIPC significantly decreased the apoptotic index of myocardial cells (P<0.05) and LY294002 increased the apoptotic index of myocardial cells. Compared with the LIPC group, LY294002+LIPC significantly increased the apoptotic index of myocardial cells (P<0.05). There were no significant differences between the LY294002+LIPC and MIRI groups. In conclusion, LIPC increased the expression of Bcl-2 and decreased caspase-3 mRNA and

  7. The effect of levosimendan on myocardial ischemia–reperfusion injury in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Hasan Ali Kiraz

    2015-12-01

    Full Text Available Objective: Ischemia/reperfusion (I/R injury is an important cause of myocardial damage by means of oxidative, inflammatory, and apoptotic mechanisms. The aim of the present study was to examine the potential cardio protective effects of levosimendan in a diabetic rat model of myocardial I/R injury. Methods: A total of 18 streptozotocin-induced diabetic Wistar Albino rats (55 mg/kg were randomly divided into three equal groups as follows: the diabetic I/R group (DIR in which myocardial I/R was induced following left thoracotomy, by ligating the left anterior descending coronary artery for 60 min, followed by 2 h of reperfusion; the diabetic I/R levosimendan group (DIRL, which underwent I/R by the same method while taking levosimendan intraperitoneal 12 µg kg−1; and the diabetic control group (DC which underwent sham operations without tightening of the coronary sutures. As a control group (C, six healthy age-matched Wistar Albino rats underwent sham operations similar to the DC group. Two hours after the operation, the rats were sacrificed and the myocardial tissue samples were examined by light microscopy for evidence of myonecrosis and inflammatory cell infiltration. Results: Myonecrosis findings were significantly different among groups (p=0.008. Myonecrosis was more pronounced in the DIR group compared with the C, DC, and DIRL groups (p=0.001, p=0.007 and p=0.037, respectively. Similarly, the degree of inflammatory cell infiltration showed significant difference among groups (p<0.0001. Compared with C, DC, and DIRL groups, the inflammatory cell infiltration was significantly higher among the DIR group (p<0.0001, p<0.0001, and p=0.020, respectively. Also, myocardial tissue edema was significantly different among groups (p=0.006. The light microscopic myocardial tissue edema levels were significantly higher in the DIR group than the C, DC, and DIRL groups (p=0.001, p=0.037, and p=0.014, respectively. Conclusion: Taken together, our data

  8. The effect of levosimendan on myocardial ischemia–reperfusion injury in streptozotocin-induced diabetic rats

    Science.gov (United States)

    Kiraz, Hasan Ali; Poyraz, Fatih; Kip, Gülay; Erdem, Özlem; Alkan, Metin; Arslan, Mustafa; Özer, Abdullah; Şivgin, Volkan; Çomu, Faruk Metin

    2015-01-01

    Objective Ischemia/reperfusion (I/R) injury is an important cause of myocardial damage by means of oxidative, inflammatory, and apoptotic mechanisms. The aim of the present study was to examine the potential cardio protective effects of levosimendan in a diabetic rat model of myocardial I/R injury. Methods A total of 18 streptozotocin-induced diabetic Wistar Albino rats (55 mg/kg) were randomly divided into three equal groups as follows: the diabetic I/R group (DIR) in which myocardial I/R was induced following left thoracotomy, by ligating the left anterior descending coronary artery for 60 min, followed by 2 h of reperfusion; the diabetic I/R levosimendan group (DIRL), which underwent I/R by the same method while taking levosimendan intraperitoneal 12 µg kg−1; and the diabetic control group (DC) which underwent sham operations without tightening of the coronary sutures. As a control group (C), six healthy age-matched Wistar Albino rats underwent sham operations similar to the DC group. Two hours after the operation, the rats were sacrificed and the myocardial tissue samples were examined by light microscopy for evidence of myonecrosis and inflammatory cell infiltration. Results Myonecrosis findings were significantly different among groups (p=0.008). Myonecrosis was more pronounced in the DIR group compared with the C, DC, and DIRL groups (p=0.001, p=0.007 and p=0.037, respectively). Similarly, the degree of inflammatory cell infiltration showed significant difference among groups (p<0.0001). Compared with C, DC, and DIRL groups, the inflammatory cell infiltration was significantly higher among the DIR group (p<0.0001, p<0.0001, and p=0.020, respectively). Also, myocardial tissue edema was significantly different among groups (p=0.006). The light microscopic myocardial tissue edema levels were significantly higher in the DIR group than the C, DC, and DIRL groups (p=0.001, p=0.037, and p=0.014, respectively). Conclusion Taken together, our data indicate that

  9. Discharge Policy and Reperfusion Therapy in Acute Myocardial Infarction

    NARCIS (Netherlands)

    M.J. van der Vlugt (Maureen)

    2007-01-01

    textabstractTreatment of patients with acute myocardial infarction (MI) has improved over time and the duration of hospital stay has considerably decreased. Early hospital discharge after MI has been promoted for over 25 years. However, the meaning of “early” evolved over time. In the early

  10. The Strategic Reperfusion Early After Myocardial Infarction (STREAM) study

    NARCIS (Netherlands)

    Armstrong, Paul W.; Gershlick, Anthony; Goldstein, Patrick; Wilcox, Robert; Danays, Thierry; Bluhmki, Erich; van de Werf, Frans; van de Werf, Frans Van de; Armstrong, Paul; Aaberge, Lars; Adgey, Jennifer; Arntz, Hans-Richard; Aviles, Fransisco; Fresco, Claudio; Grajek, Stefan; Halvorsen, Sigrun; Huber, Kurt; Kendall, Jason; Lambert, Yves; Meert, Philippe; Nanas, John; Ostojic, Miodrag; Pesenti, Antonio; Piegas, Leopoldo; Quinn, Tom J.; Rosell, Fernando; Schreiber, Wolfgang; Sinnaeve, Peter; Steen-Hansen, Jon-Erik; Steg, P. Gabriel; Sulimov, Victor; Timerman, Sergio; Travers, Andrew; Welsh, Robert; Zeymer, Uwe; Fox, Keith A. A.; Montalescot, Gilles; Pollack, Charles; Tijssen, Jan; Weaver, Doug; Brower, Ron

    2010-01-01

    BACKGROUND: Primary percutaneous coronary intervention (PCI) has emerged as the preferred therapy for acute ST-elevation myocardial infarction (STEMI) provided it is performed in a timely fashion at an expert 24/7 facility. Fibrinolysis is a well-accepted alternative, especially in patients

  11. Effect of a critical coronary stenosis on myocardial neutrophil accumulation during ischemia and early reperfusion in dogs

    International Nuclear Information System (INIS)

    Richard, V.J.; Brooks, S.E.; Jennings, R.B.; Reimer, K.A.

    1989-01-01

    In many experimental models of ischemia and reperfusion, reperfusion is performed abruptly, allowing full reactive hyperemia to occur. In the clinical setting, however, reperfusion after thrombolysis is often limited by residual stenosis. Some experimental models attempt to mimic this situation with a critical stenosis. The purpose of this study was to determine whether preventing reactive hyperemia during the initial phase of reperfusion would modify the transmural distribution of myocardial blood flow or the myocardial accumulation of polymorphonuclear leukocytes (PMNs). The left circumflex artery was occluded for 90 minutes and then reperfused for 60 minutes in anesthetized, open-chest dogs. Autologous PMNs were isolated, labeled with 111In, and reinjected 1 hour before coronary occlusion. 125I-labeled albumin was injected simultaneously to correct for 111In associated with plasma proteins and to permit calculation of the number of PMNs in the inner, middle, and outer thirds of nonischemic and ischemic-reperfused tissue. The presence of a critical stenosis abolished reactive hyperemia during the first 5 minutes of reperfusion, but did not substantially affect blood flow measured after 55 minutes of reperfusion. In both groups, there was a significant accumulation of PMNs in all layers of the ischemic-reperfused bed compared with the nonischemic bed, and the magnitude of this PMN accumulation was not altered by the presence of a critical stenosis. Moreover, infarct size, estimated by triphenyl tetrazolium chloride (TTC) loss after 60 minutes of reperfusion, was not affected by the presence of a critical stenosis. Thus, the presence of a critical stenosis abolished the hyperemic blood flow after reperfusion but did not influence the early PMN response to ischemia and reperfusion or the early loss of TTC staining

  12. Gαi2- and Gαi3-Deficient Mice Display Opposite Severity of Myocardial Ischemia Reperfusion Injury

    Science.gov (United States)

    Köhler, David; Devanathan, Vasudharani; Bernardo de Oliveira Franz, Claudia; Eldh, Therese; Novakovic, Ana; Roth, Judith M.; Granja, Tiago; Birnbaumer, Lutz; Rosenberger, Peter; Beer-Hammer, Sandra; Nürnberg, Bernd

    2014-01-01

    G-protein-coupled receptors (GPCRs) are the most abundant receptors in the heart and therefore are common targets for cardiovascular therapeutics. The activated GPCRs transduce their signals via heterotrimeric G-proteins. The four major families of G-proteins identified so far are specified through their α-subunit: Gαi, Gαs, Gαq and G12/13. Gαi-proteins have been reported to protect hearts from ischemia reperfusion injury. However, determining the individual impact of Gαi2 or Gαi3 on myocardial ischemia injury has not been clarified yet. Here, we first investigated expression of Gαi2 and Gαi3 on transcriptional level by quantitative PCR and on protein level by immunoblot analysis as well as by immunofluorescence in cardiac tissues of wild-type, Gαi2-, and Gαi3-deficient mice. Gαi2 was expressed at higher levels than Gαi3 in murine hearts, and irrespective of the isoform being knocked out we observed an up regulation of the remaining Gαi-protein. Myocardial ischemia promptly regulated cardiac mRNA and with a slight delay protein levels of both Gαi2 and Gαi3, indicating important roles for both Gαi isoforms. Furthermore, ischemia reperfusion injury in Gαi2- and Gαi3-deficient mice exhibited opposite outcomes. Whereas the absence of Gαi2 significantly increased the infarct size in the heart, the absence of Gαi3 or the concomitant upregulation of Gαi2 dramatically reduced cardiac infarction. In conclusion, we demonstrate for the first time that the genetic ablation of Gαi proteins has protective or deleterious effects on cardiac ischemia reperfusion injury depending on the isoform being absent. PMID:24858945

  13. Gαi2- and Gαi3-deficient mice display opposite severity of myocardial ischemia reperfusion injury.

    Directory of Open Access Journals (Sweden)

    David Köhler

    Full Text Available G-protein-coupled receptors (GPCRs are the most abundant receptors in the heart and therefore are common targets for cardiovascular therapeutics. The activated GPCRs transduce their signals via heterotrimeric G-proteins. The four major families of G-proteins identified so far are specified through their α-subunit: Gαi, Gαs, Gαq and G12/13. Gαi-proteins have been reported to protect hearts from ischemia reperfusion injury. However, determining the individual impact of Gαi2 or Gαi3 on myocardial ischemia injury has not been clarified yet. Here, we first investigated expression of Gαi2 and Gαi3 on transcriptional level by quantitative PCR and on protein level by immunoblot analysis as well as by immunofluorescence in cardiac tissues of wild-type, Gαi2-, and Gαi3-deficient mice. Gαi2 was expressed at higher levels than Gαi3 in murine hearts, and irrespective of the isoform being knocked out we observed an up regulation of the remaining Gαi-protein. Myocardial ischemia promptly regulated cardiac mRNA and with a slight delay protein levels of both Gαi2 and Gαi3, indicating important roles for both Gαi isoforms. Furthermore, ischemia reperfusion injury in Gαi2- and Gαi3-deficient mice exhibited opposite outcomes. Whereas the absence of Gαi2 significantly increased the infarct size in the heart, the absence of Gαi3 or the concomitant upregulation of Gαi2 dramatically reduced cardiac infarction. In conclusion, we demonstrate for the first time that the genetic ablation of Gαi proteins has protective or deleterious effects on cardiac ischemia reperfusion injury depending on the isoform being absent.

  14. Defibrotide reduces infarct size in a rabbit model of experimental myocardial ischaemia and reperfusion.

    Science.gov (United States)

    Thiemermann, C.; Thomas, G. R.; Vane, J. R.

    1989-01-01

    1. Defibrotide, a single-stranded polydeoxyribonucleotide obtained from bovine lungs, has significant anti-thrombotic, pro-fibrinolytic and prostacyclin-stimulating properties. 2. The present study was designed to evaluate the effects of defibrotide on infarct size and regional myocardial blood flow in a rabbit model of myocardial ischaemia and reperfusion. 3. Defibrotide (32 mg kg-1 bolus + 32 mg kg-1 h-1, i.v.) either with or without co-administration of indomethacin (5 mg kg-1 x 2, i.v.) was administered 5 min after occlusion of the left anterior-lateral coronary artery and continued during the 60 min occlusion and subsequent 3 h reperfusion periods. 4. Defibrotide significantly attenuated the ischaemia-induced ST-segment elevation and abolished the reperfusion-related changes (R-wave reduction and Q-wave development) in the electrocardiogram. In addition, defibrotide significantly improved myocardial blood flow in normal and in ischaemic, but not in infarcted sections of the heart. The improvement in blood flow in normal perfused myocardium, but not in the ischaemic area was prevented by indomethacin. 5. Although the area at risk was similar in all animal groups studied, defibrotide treatment resulted in a 51% reduction of infarct size. Indomethacin treatment abolished the reduction of infarct size seen with defibrotide alone. 6. The data demonstrate a considerable cardioprotective effect of defibrotide in the reperfused ischaemic rabbit myocardium. This effect may be related, at least in part, to a stimulation of endogenous prostaglandin formation. Other possible mechanisms are discussed. PMID:2758223

  15. Effects and Mechanisms of Chinese Herbal Medicine in Ameliorating Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Qing Liu

    2013-01-01

    Full Text Available Myocardial ischemia-reperfusion (MIR injury is a major contributor to the morbidity and mortality associated with coronary artery disease, which accounts for approximately 450,000 deaths a year in the United States alone. Chinese herbal medicine, especially combined herbal formulations, has been widely used in traditional Chinese medicine for the treatment of myocardial infarction for hundreds of years. While the efficacy of Chinese herbal medicine is well documented, the underlying molecular mechanisms remain elusive. In this review, we highlight recent studies which are focused on elucidating the cellular and molecular mechanisms using extracted compounds, single herbs, or herbal formulations in experimental settings. These studies represent recent efforts to bridge the gap between the enigma of ancient Chinese herbal medicine and the concepts of modern cell and molecular biology in the treatment of myocardial infarction.

  16. Myocardial capillary permeability for small hydrophilic indicators during normal physiological conditions and after ischemia and reperfusion

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup

    1991-01-01

    Myocardial capillary permeability for small hydrophilic solutes (51Cr-EDTA or 99mTc-DTPA) has been measured using intracoronary indicator bolus injection and external radioactivity registration (the single injection, residue detection method). The method is based on kinetic separation of the inje......Myocardial capillary permeability for small hydrophilic solutes (51Cr-EDTA or 99mTc-DTPA) has been measured using intracoronary indicator bolus injection and external radioactivity registration (the single injection, residue detection method). The method is based on kinetic separation...... including microvascular alterations. In open chest dogs transitory increases in capillary extraction fraction and PdS for small hydrophilic solutes were seen following 20 minutes of regional myocardial ischemia and reperfusion. This response could be inhibited by treatment directed against superoxide...

  17. Circulating NOS3 modulates left ventricular remodeling following reperfused myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Simone Gorressen

    Full Text Available Nitric oxide (NO is constitutively produced and released from the endothelium and several blood cell types by the isoform 3 of the NO synthase (NOS3. We have shown that NO protects against myocardial ischemia/reperfusion (I/R injury and that depletion of circulating NOS3 increases within 24 h of ischemia/reperfusion the size of myocardial infarction (MI in chimeric mice devoid of circulating NOS3. In the current study we hypothesized that circulating NOS3 also affects remodeling of the left ventricle following reperfused MI.To analyze the role of circulating NOS3 we transplanted bone marrow of NOS3-/- and wild type (WT mice into WT mice, producing chimerae expressing NOS3 only in vascular endothelium (BC-/EC+ or in both, blood cells and vascular endothelium (BC+/EC+. Both groups underwent 60 min of coronary occlusion in a closed-chest model of reperfused MI. During the 3 weeks post MI, structural and functional LV remodeling was serially assessed (24 h, 4 d, 1 w, 2 w and 3 w by echocardiography. At 72 hours post MI, gene expression of several extracellular matrix (ECM modifying molecules was determined by quantitative RT-PCR analysis. At 3 weeks post MI, hemodynamics were obtained by pressure catheter, scar size and collagen content were quantified post mortem by Gomori's One-step trichrome staining.Three weeks post MI, LV end-systolic (53.2±5.9 μl; ***p≤0.001; n = 5 and end-diastolic volumes (82.7±5.6 μl; *p<0.05; n = 5 were significantly increased in BC-/EC+, along with decreased LV developed pressure (67.5±1.8 mm Hg; n = 18; ***p≤0.001 and increased scar size/left ventricle (19.5±1.5%; n = 13; **p≤0.01 compared to BC+/EC+ (ESV: 35.6±2.2 μl; EDV: 69.1±2.6 μl n = 8; LVDP: 83.2±3.2 mm Hg; n = 24; scar size/LV13.8±0.7%; n = 16. Myocardial scar of BC-/EC+ was characterized by increased total collagen content (20.2±0.8%; n = 13; ***p≤0.001 compared to BC+/EC+ (15.9±0.5; n = 16, and increased collagen type I and III subtypes

  18. Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression

    Directory of Open Access Journals (Sweden)

    Vesentini Nicoletta

    2012-02-01

    Full Text Available Abstract Background Changes in cardiac gene expression due to myocardial injury are usually assessed in whole heart tissue. However, as the heart is a heterogeneous system, spatial and temporal heterogeneity is expected in gene expression. Results In an ischemia/reperfusion (I/R rat model we evaluated gene expression of mitochondrial and cytoplasmatic superoxide dismutase (MnSod, Cu-ZnSod and thioredoxin reductase (trxr1 upon short (4 h and long (72 h reperfusion times in the right ventricle (RV, and in the ischemic/reperfused (IRR and the remote region (RR of the left ventricle. Gene expression was assessed by Real-time reverse-transcription quantitative PCR (RT-qPCR. In order to select most stable reference genes suitable for normalization purposes, in each myocardial region we tested nine putative reference genes by geNorm analysis. The genes investigated were: Actin beta (actb, Glyceraldehyde-3-P-dehydrogenase (gapdh, Ribosomal protein L13A (rpl13a, Tyrosine 3-monooxygenase (ywhaz, Beta-glucuronidase (gusb, Hypoxanthine guanine Phosphoribosyltransferase 1 (hprt, TATA binding box protein (tbp, Hydroxymethylbilane synthase (hmbs, Polyadenylate-binding protein 1 (papbn1. According to our findings, most stable reference genes in the RV and RR were hmbs/hprt and hmbs/tbp/hprt respectively. In the IRR, six reference genes were recommended for normalization purposes; however, in view of experimental feasibility limitations, target gene expression could be normalized against the three most stable reference genes (ywhaz/pabp/hmbs without loss of sensitivity. In all cases MnSod and Cu-ZnSod expression decreased upon long reperfusion, the former in all myocardial regions and the latter in IRR alone. trxr1 expression did not vary. Conclusions This study provides a validation of reference genes in the RV and in the anterior and posterior wall of the LV of cardiac ischemia/reperfusion model and shows that gene expression should be assessed separately in

  19. Time course evaluation of myocardial perfusion after reperfusion therapy by 99mTc-tetrofosmin SPECT in patients with acute myocardial infarction.

    Science.gov (United States)

    Tanaka, R; Nakamura, T

    2001-09-01

    Myocardial perfusion imaging with 99mTc-labeled agents immediately after reperfusion therapy can underestimate myocardial salvage. It is also conceivable that delayed imaging is useful for assessing the risk area. However, to our knowledge, very few studies have sequentially evaluated these image changes. We conducted 99mTc-tetrofosmin (TF) and 123I-beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) SPECT before and after reperfusion to treat acute myocardial infarction and quantified changes in TF myocardial accumulation and reverse redistribution. Seventeen patients with a first myocardial infarction underwent successful reperfusion. We examined SPECT images obtained at the onset (preimage), those acquired 30 min (early image) and 6 h (delayed image) after TF injection, and images acquired 1, 4, 7, and 20 d after reperfusion (post-1-d, post-4-d, post-7-d, and post-20-d image, respectively). We also examined BMIPP SPECT images after 7 +/- 1.8 d (BMIPP image). Polar maps were divided into 48 segments to calculate percentage uptake, and time course changes in segment numbers below 60% were observed as abnormal area. Moreover, cardiac function was analyzed by gated TF SPECT on 1 and 20 d after reperfusion. In reference to the abnormal area on the early images, the post-1-d image was significantly improved compared with the preimage (P < 0.01) as was the post-7-d image compared with the post-1-d and post-4-d images (P < 0.05, respectively). However, post-20-d and post-7-d images did not significantly differ. Therefore, the improvement in myocardial accumulation reached a plateau 7 d after reperfusion. On the other hand, the abnormal area on the delayed images was significantly greater (P < 0.01) compared with that on the early images from 4 to 20 d after reperfusion, as the value was essentially constant. The correlations of the abnormal area between the preimage and the post-7-d delayed image, the preimage and the BMIPP image, and the post-7-d delayed image and the

  20. Importance of tissue perfusion in ST segment elevation myocardial infarction patients undergoing reperfusion strategies: role of adenosine.

    Science.gov (United States)

    Forman, Mervyn B; Jackson, Edwin K

    2007-11-01

    High risk ST segment elevation myocardial infarction (STEMI) patients undergoing reperfusion therapy continue to exhibit significant morbidity and mortality due in part to myocardial reperfusion injury. Importantly, preclinical studies demonstrate that progressive microcirculatory failure (the "no-reflow" phenomenon) contributes significantly to myocardial reperfusion injury. Diagnostic techniques to measure tissue perfusion have validated this concept in humans, and it is now clear that abnormal tissue perfusion occurs frequently in STEMI patients undergoing reperfusion therapy. Moreover, because tissue perfusion correlates poorly with epicardial blood flow (TIMI flow grade), clinical studies show that tissue perfusion is an independent predictor of early and late mortality in STEMI patients and is associated with infarct size, ventricular function, CHF and ventricular arrhythmias. The mechanisms responsible for abnormal tissue perfusion are multifactorial and include both mechanical obstruction and vasoconstrictor humoral factors. Adenosine, an endogenous nucleoside, maintains microcirculatory flow following reperfusion by activating four well-characterized extracellular receptors. Because activation of adenosine receptors attenuates the mechanical and functional mechanisms leading to the "no reflow" phenomenon and activates other cardioprotective pathways as well, it is not surprising that both experimental and clinical studies show striking myocardial salvage with intravenous infusions of adenosine administered in the peri-reperfusion period. For example, a post hoc analysis of the AMISTAD II trial indicates a significant reduction in 1 and 6-month mortality in STEMI patients undergoing reperfusion therapy who are treated with adenosine within 3 hours of symptoms. In conclusion, adenosine's numerous cardioprotective effects, including attenuation of the "no-reflow" phenomenon, support its use in high risk STEMI undergoing reperfusion.

  1. Sex Differences in Timeliness of Reperfusion in Young Patients With ST-Segment-Elevation Myocardial Infarction by Initial Electrocardiographic Characteristics.

    Science.gov (United States)

    Gupta, Aakriti; Barrabes, Jose A; Strait, Kelly; Bueno, Hector; Porta-Sánchez, Andreu; Acosta-Vélez, J Gabriel; Lidón, Rosa-Maria; Spatz, Erica; Geda, Mary; Dreyer, Rachel P; Lorenze, Nancy; Lichtman, Judith; D'Onofrio, Gail; Krumholz, Harlan M

    2018-03-07

    Young women with ST-segment-elevation myocardial infarction experience reperfusion delays more frequently than men. Our aim was to determine the electrocardiographic correlates of delay in reperfusion in young patients with ST-segment-elevation myocardial infarction. We examined sex differences in initial electrocardiographic characteristics among 1359 patients with ST-segment-elevation myocardial infarction in a prospective, observational, cohort study (2008-2012) of 3501 patients with acute myocardial infarction, 18 to 55 years of age, as part of the VIRGO (Variation in Recovery: Role of Gender on Outcomes of Young AMI Patients) study at 103 US and 24 Spanish hospitals enrolling in a 2:1 ratio for women/men. We created a multivariable logistic regression model to assess the relationship between reperfusion delay (door-to-balloon time >90 or >120 minutes for transfer or door-to-needle time >30 minutes) and electrocardiographic characteristics, adjusting for sex, sociodemographic characteristics, and clinical characteristics at presentation. In our study (834 women and 525 men), women were more likely to exceed reperfusion time guidelines than men (42.4% versus 31.5%; P ST elevation in lateral leads was an inverse predictor of reperfusion delay. Sex disparities in timeliness to reperfusion in young patients with ST-segment-elevation myocardial infarction persisted, despite adjusting for initial electrocardiographic characteristics. Left ventricular hypertrophy by voltage criteria and absence of prehospital ECG are strongly positively correlated and ST elevation in lateral leads is negatively correlated with reperfusion delay. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. Vitamin E deficiency fails to affect myocardial performance during in vivo ischemia-reperfusion.

    Science.gov (United States)

    Coombes, J S; Powers, S K; Demirel, H A; Hamilton, K L; Jessup, J; Vincent, H K; Shanely, R A

    2000-12-01

    Vitamin E content of cardiac tissue has been proposed to play a major role in the damage caused by myocardial ischemia-reperfusion (I-R). Previous studies using in vitro models have examined vitamin E deficiency and I-R-induced myocardial damage with equivocal results. The purpose of this study was to use an in vivo model of myocardial I-R to determine the effects of vitamin E deficiency on myocardial I-R-induced damage. Female Sprague-Dawley rats (4-mo old) were assigned to either: 1) control diet (CON), or 2) vitamin E deficient diet (VE-DEF). The CON diet was prepared to meet AIN-93M standards, which contains 75 IU vitamin E/kg diet. The VE-DEF diet was the AIN-93M diet prepared with tocopherol stripped corn oil and no vitamin E. Following a 14-week feeding period, significant differences (p CON = 48.2 +/- 3.5; VE-DEF = 12.4 +/- 1.4 micrograms VE/g wet weight). Animals from both experimental groups were subjected to an in vivo I-R protocol consisting of 25 minutes of left coronary artery occlusion followed by 10 minutes of reperfusion. No group differences (p > 0.05) existed in cardiac performance (peak arterial pressure or ventricular work) or the incidence of ventricular arrhythmias during the I-R protocol. VE-DEF animals had significantly higher (p CON animals. These data suggest that although vitamin E deficiency increases oxidative damage resulting from myocardial I-R, it does not affect cardiac performance during the insult.

  3. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.

    Directory of Open Access Journals (Sweden)

    Takanobu Nagata

    Full Text Available Myocardial ischemia reperfusion injury (IRI adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS-3, an intrinsic negative feedback regulator of the Janus kinase (JAK-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO. The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1 was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.

  4. CD4+ Foxp3+ T-cells contribute to myocardial ischemia-reperfusion injury.

    Science.gov (United States)

    Mathes, Denise; Weirather, Johannes; Nordbeck, Peter; Arias-Loza, Anahi-Paula; Burkard, Matthias; Pachel, Christina; Kerkau, Thomas; Beyersdorf, Niklas; Frantz, Stefan; Hofmann, Ulrich

    2016-12-01

    The present study analyzed the effect of CD4 + Forkhead box protein 3 negative (Foxp3 - ) T-cells and Foxp3 + CD4 + T-cells on infarct size in a mouse myocardial ischemia-reperfusion model. We examined the infarct size as a fraction of the area-at-risk as primary study endpoint in mice after 30minutes of coronary ligation followed by 24hours of reperfusion. CD4 + T-cell deficient MHC-II KO mice showed smaller histologically determined infarct size (34.5±4.7% in MHCII KO versus 59.4±4.9% in wildtype (WT)) and better preserved ejection fraction determined by magnetic resonance tomography (56.9±2.8% in MHC II KO versus 39.0±4.2% in WT). MHC-II KO mice also displayed better microvascular perfusion than WT mice after 24hours of reperfusion. Also CD4 + T-cell sufficient OT-II mice, which express an in this context irrelevant T-cell receptor, revealed smaller infarct sizes compared to WT mice. However, MHC-II blocking anti-I-A/I-E antibody treatment was not able to reduce infarct size indicating that autoantigen recognition is not required for the activation of CD4 + T-cells during reperfusion. Flow-cytometric analysis also did not detect CD4 + T-cell activation in heart draining lymph nodes in response to 24hours of ischemia-reperfusion. Adoptive transfer of CD4 + T-cells in CD4 KO mice increased the infarct size only when including the Foxp3 + CD25 + subset. Depletion of CD4 + Foxp3 + T-cells in DEREG mice enabling specific conditional ablation of this subset by treatment with diphtheria toxin attenuated infarct size as compared to diphtheria toxin treated WT mice. CD4 + Foxp3 + T-cells enhance myocardial ischemia-reperfusion injury. CD4 + T-cells exert injurious effects without the need for prior activation by MHC-II restricted autoantigen recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Suv39h1 Protects from Myocardial Ischemia-Reperfusion Injury in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2014-04-01

    Full Text Available Background: Patients with diabetes are at increased risk of ischemic events. Suv39h1 is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9, which is associated with the suppression of inflammatory genes in diabetes. However, the role of Suv39h1 in myocardial ischemia/reperfusion (I/R injury under diabetic condition has not been evaluated. Methods: To generate diabetic model, male SD rats were fed with 60% fat diet followed by intraperitoneal injection with 40mg/kg streptozotocin. Adenovirus encoding Suv39h1 gene was used for Suv39h1 overexpression. Each rat received injections of adenovirus at five myocardial sites. Three days after gene transfection, each rat was subjected to left main coronary artery occlusion and reperfusion. After 30 min ischemia and reperfusion for 4 h, the rats were euthanized for real-time PCR, Western blot, immunohistochemical staining, and morphometric analysis. Results: Delivery of Ad-Suv39h1 into the hearts of diabetic rats could markedly increase Suv39h1 expression. Up-regulation of Suv39h1 significantly reduced infarct size and tissue damage after I/R injury, which was associated with protection from apoptosis of cardiac myocytes and reduction of inflammatory response. In addition, compared with injury group, Ad-Suv39h1 led to a decreased activity of mitogen-activated protein kinase family and its down-steam transcriptional factor NF-κB. Conclusion: Overexpression of Suv39h1 results in the de-activation of proinflammatory pathways and reduced apoptosis and myocardial injury. Therefore, Suv39h1 might represent a novel therapeutic strategy to reduce I/R injury under diabetic condition.

  6. Myocardial capillary permeability after regional ischemia and reperfusion in the in vivo canine heart. Effect of superoxide dismutase

    DEFF Research Database (Denmark)

    Svendsen, J H; Bjerrum, P J; Haunsø, S

    1991-01-01

    This study assesses the effect of the superoxide anion scavenger superoxide dismutase on myocardial capillary permeability-surface area (PS) products for small hydrophilic molecules after ischemia and reperfusion. Open-chest dogs underwent a 20-minute occlusion of the left anterior descending...... the start of reperfusion. In 13 dogs, no scavenger treatment was given (nonprotected control group), whereas eight dogs were treated systemically with 15,000 units/kg superoxide dismutase during 1 hour, starting 20 minutes before ischemia. In the control group, three dogs developed reperfusion ventricular...

  7. Reperfusion therapy in ST-segment elevation myocardial infarction in the Veteran Administration Caribbean Healthcare System; search for improvement.

    Science.gov (United States)

    Escabí-Mendoza, José

    2008-01-01

    Patients that present with acute STEMI have proven morbidity and mortality benefit from early reperfusion therapy. The American College of Cardiology/American Heart Association (ACC/AHA) guidelines recommend either fibrinolytic therapy within 30 minutes or a primary percutaneous coronary intervention (PPCI) within 90 minutes of patients arrival to the Emergency Department. Despite these recommendations, some patients do not receive reperfusion therapy and less than half receive it on time. Describe and analyze our reperfusion therapy performance in patients presenting with acute ST segment elevation myocardial infarct (STEMI) in the Veteran Administration Caribbean Healthcare System (VACHS), and determine potential causes for reperfusion therapy delays and develop strategies and a tailored algorithm according to our clinical findings and available institutional resources. Retrospective analysis of patients admitted to the VACHS with a discharge diagnosis of STEMI, from 01/01/2007 until 04/10/2008. A total of 55 patients met inclusion criteria for STEMI diagnosis. Of these, only 30 patients had active indication for reperfusion therapy. Reperfusion therapy was given in 97% of the cases, 69% with PPCI and 31% with fibrinolytic therapy (tenecteplase). In general the selection of reperfusion therapy seemed adherent to ACC/AHA STEMI guidelines. The reperfusion time goal was superior with thrombolytic therapy compared to PPCI, with 43% and 15% respectively. PPCI performed off regular tour of duty was significantly delayed compared to regular day shift, with a mean time of 221 and 113 minutes respectively (p=0.027). Most of the patients presenting with STEMI to the VACHS undergo reperfusion therapy. PPCI was the most frequent selected reperfusion approach. The PPCI time goal was infrequently met. The most significant cause for PPCI delay was related to performance off regular tour of duty. These finding support the implementation of a tailored STEMI reperfusion algorithm

  8. Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Tong, Chao; Peng, Chuan; Wang, Lianlian; Zhang, Li; Yang, Xiaotao; Xu, Ping; Li, Jinjin; Delplancke, Thibaut; Zhang, Hua; Qi, Hongbo

    2016-03-03

    Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice.

  9. Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury

    Science.gov (United States)

    Mohanty, Ipseeta; Arya, Dharamvir Singh; Gupta, Suresh Kumar

    2006-01-01

    Background In the present investigation, the effect of Curcuma longa (Cl) and Ocimum sanctum (Os) on myocardial apoptosis and cardiac function was studied in an ischemia and reperfusion (I-R) model of myocardial injury. Methods Wistar albino rats were divided into four groups and orally fed saline once daily (sham, control IR) or Cl (100 mg/kg; Cl-IR) or Os (75 mg/kg; Os-IR) respectively for 1 month. On the 31st day, in the rats of the control IR, Cl-IR and Os-IR groups LAD occlusion was undertaken for 45 min, and reperfusion was allowed for 1 h. The hemodynamic parameters{mean arterial pressure (MAP), heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak positive (+) LVdP/dt (rate of pressure development) and negative (-) LVdP/dt (rate of pressure decline)} were monitored at pre-set points throughout the experimental duration and subsequently, the animals were sacrificed for immunohistopathological (Bax, Bcl-2 protein expression & TUNEL positivity) and histopathological studies. Results Chronic treatment with Cl significantly reduced TUNEL positivity (p < 0.05), Bax protein (p < 0.001) and upregulated Bcl-2 (p < 0.001) expression in comparison to control IR group. In addition, Cl demonstrated mitigating effects on several myocardial injury induced hemodynamic {(+)LVdP/dt, (-) LVdP/dt & LVEDP} and histopathological perturbations. Chronic Os treatment resulted in modest modulation of the hemodynamic alterations (MAP, LVEDP) but failed to demonstrate any significant antiapoptotic effects and prevent the histopathological alterations as compared to control IR group. Conclusion In the present study, significant cardioprotection and functional recovery demonstrated by Cl may be attributed to its anti-apoptotic property. In contrast to Os, Cl may attenuate cell death due to apoptosis and prevent the impairment of cardiac performance. PMID:16504000

  10. [Clinical aspects of reperfusion arrhythmia following intravenous thrombolysis in acute myocardial infarct].

    Science.gov (United States)

    Kettner, W; Klein, E; Schulz, W; Götze, C

    1987-05-15

    In accordance with the majority of the reports in the literature reperfusion arrhythmias were observed in more than 30% of the patients with acute myocardial infarction (n = 25) under or immediately after a highly dosed short-term infusion with streptokinase. With reference to indirect signs the recanalisation rate was assumed with 75%. Only one third of the reperfusion arrhythmias had haemodynamically significant characteristics and required an influence. Though in literature from animal experimental findings directive conclusions for the therapy are to be derived, the procedure in practice is still vastly empirical. In the ventricular tachycardia lidocaine, procainamide and ajmalin may be recommended. In ineffectiveness or particularly threatening situations the electrotherapy (cardioversion, DC-shock) is to be preferred. The concept inaugurated by Corr and Witkowski apply alpha-adrenoreceptor blockers has not yet entered the clinical practice. Possible problems in the treatment of reperfusion arrhythmias in the prehospital phase should at present still be a reason not to antedate the thrombolytic therapy into this phase.

  11. Time-course of myocardial perfusion and fatty acid metabolism after coronary reperfusion

    International Nuclear Information System (INIS)

    Sochor, H.; Pachinger, O.; Ogris, E.; Probst, P.; Kaindl, F.

    1985-01-01

    To investigate the relationship and time-course of myocardial perfusion and behaviour of fatty acid uptake and clearance following reperfusion, the authors studied 19 patients after successful intracoronary thrombolysis with Tl-201 and I-123 hepta-decanoic acid (HDA) and planar imaging. Pts were studied acute (A: 48 hours), early (E:6-8 days) and late (L:6-12 months). %-defect size and relative tracer uptake were determined for both markers as well as t1/2 of the early clearance phase for HDA. Late Tl was done as stress test study after dipyridamole infusion. As in a previous report acute HDA uptake-defects were larger than Tl (38 +- 10% vs 24 +- 9%, p<0.05) suggesting a larger area of metabolic impairment than outlined by perfusion. HDA and Tl uptake at A correlated significantly (p<0.01, r=0.86) but HDA uptake was 19% lower than Tl and not different at E and L. Tl stress studies exhibited in 74% reversible ischemia in the area of ''metabolic recovery''. The authors conclude that early after reperfusion uptake of HDA is frequently impaired despite improved perfusion suggesting metabolic derangement showing a slow recovery over time. A multiple tracer approach including metabolic markers may improve the characterization of reperfused myocardium

  12. Clinic Predictive Factors for Insufficient Myocardial Reperfusion in ST-Segment Elevation Myocardial Infarction Patients Treated with Selective Aspiration Thrombectomy during Primary Percutaneous Coronary Intervention

    Directory of Open Access Journals (Sweden)

    Jinfan Tian

    2016-01-01

    Full Text Available Background. Insufficient data are available on the potential benefit of selective aspiration and clinical predictors for no-reflow in STEMI patients undergoing primary percutaneous coronary intervention (PPCI adjunct with aspiration thrombectomy. Objective. The aim of our study was to investigate clinical predictors for insufficient reperfusion in patients with high thrombus burden treated with PPCI and manual aspiration thrombectomy. Methods. From January 2011 till December 2015, 277 STEMI patients undergoing manual aspiration thrombectomy and PPCI were selected and 202 patients with a Thrombolysis in Myocardial Infarction (TIMI thrombus grade 4~5 were eventually involved in our study. According to a cTFC value, patients were divided into Group I (cTFC > 40, namely, insufficient reperfusion group; Group II (cTFC ≤ 40, namely, sufficient reperfusion group. Results. Univariate analysis showed that hypertension, multivessel disease, time from symptom to PCI (≧4.8 hours, and postaspiration cTFC > 40 were negative predictors for insufficient reperfusion. After multivariate adjustment, age ≧ 60 years, hypertension, time from symptom to PCI (≧4.8 hours, and postaspiration cTFC > 40 were independently associated with insufficient reperfusion in STEMI patients treated with manual aspiration thrombectomy. Upfront intracoronary GP IIb/IIIa inhibitor (Tirofiban was positively associated with improved myocardial reperfusion. Conclusion. Fully identifying risk factors will help to improve the effectiveness of selective thrombus aspiration.

  13. Ginsenoside Rb1 for Myocardial Ischemia/Reperfusion Injury: Preclinical Evidence and Possible Mechanisms

    Directory of Open Access Journals (Sweden)

    Qun Zheng

    2017-01-01

    Full Text Available Ginseng is an important herbal drug that has been used worldwide for many years. Ginsenoside Rb1 (G-Rb1, the major pharmacological extract from ginseng, possesses a variety of biological activities in the cardiovascular systems. Here, we conducted a preclinical systematic review to investigate the efficacy of G-Rb1 for animal models of myocardial ischemia/reperfusion injury and its possible mechanisms. Ten studies involving 211 animals were identified by searching 6 databases from inception to May 2017. The methodological quality was assessed by using the CAMARADES 10-item checklist. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 7 points. Meta-analyses showed that G-Rb1 can significantly decrease the myocardial infarct size and cardiac enzymes (including lactate dehydrogenase, creatine kinase, and creatine kinase-MB when compared with control group (P<0.01. Significant decrease in cardiac troponin T and improvement in the degree of ST-segment depression were reported in one study (P<0.05. Additionally, the possible mechanisms of G-Rb1 for myocardial infarction are antioxidant, anti-inflammatory, antiapoptosis, promoting angiogenesis and improving the circulation. Thus, G-Rb1 is a potential cardioprotective candidate for further clinical trials of myocardial infarction.

  14. Mechanism of the Protective Effect of Yulangsan Flavonoid on Myocardial Ischemia/Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2014-09-01

    Full Text Available Aims: Effect and mechanism of Yulangsan flavonoid (YLSF on rat myocardial ischemia/reperfusion injury (MI/RI has been investigated. Methods: Sprague-Dawley (SD rats were randomly divided into seven groups (sham group, model group and NS group: 2 mL of normal saline/kg body weight was administered; diltiazem group: 5 mg of diltiazem hydrochloride/kg body weight was administered; YLSFL, YLSFM and YLSFH groups: 20, 40 and 80 mg of YLSF/kg body weight was administered and the MI/RI model was established. Myocardial infarct area, levels of myocardial enzymes and nitric oxide synthase (NOS were measured. Caspase-3 and adenine nucleotide translocator-1 (ANT1 mRNA expression were evaluated by reverse transcription polymerase chain reaction (RT-PCR. Pathological structure and cardiocyte ultrastructure were also analysed. Results: Compared with the MI/RI group, pretreatment with YLSF or diltiazem hydrochloride decreased the infarct area, levels of inducible nitric oxide synthase (iNOS, caspase-3 as well as the leakage of myocardial enzyme and increased activities of total nitric oxide synthase (tNOS as well as constitutive nitric oxide synthase (cNOS. Cellular edema and the infiltration of inflammatory cells were alleviated. Conclusions: The experiment showed that YLSF protected the heart against MI/RI, possibly by reducing lipid peroxidation damage, regulating NOS activity and modulating the apoptosis genes expression.

  15. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Science.gov (United States)

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N.; Chaudhary, Uma; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2016-01-01

    Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway. PMID:27087891

  16. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  17. The Effect of Lidocaine Enriched Cardioplegia on Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Emin Ata

    2016-07-01

    Full Text Available Aim: Most of the complications after open heart surgery is usually associated with ischemia reperfusion injury that develops during cardiopulmoner bypass. In ischemia and reperfusion periods lidocaine blocks intracelluler sodium and calcium channels and protect cell membrane against reactive oxygen metabolites. In this study, lidocaine added to cardioplegia solution and its effects on myocardial ischemia-reperfusion injury was examined. Material and Method: 36 patients who underwent elective coronary artery bypass surgery in our clinic between September 2005 and April 2006 was studied. Patients included into two groups. In study group patients (groupe I 2 mg/kg lidocaine was added into cardioplegia solution that is used during aortic cross clamp period; standart cardioplegia solution was used in control group patients (group II. Postoperative 6. and 24. hours cardiac enzyme levels, inotropic support requirement and atrial fibrilation incidence were compared in both groups. Results: In this study, 36 patients (13 women, 23 man whose average age was 63(±5,5, age range 50-70 years and ventriculer functions were not deformed (EF>40% were involved. There were no significantly differences in demographic datas between towo groups. There were no significantly differences in postoperative 6. and 24. hours troponin-I and CK-MB levels, inotropic support or defibrilation requirement and postoperative atrial fibrilation incidence between two groups. Discussion: Addition of 2 mg/kg dosage lidocaine into cardioplegia solution dont effect cardiac enzyme levels, inotropic support requirement and postoperative atrial fibrilation insidence and it doesnt prevent ischemia-reperfusion injury.

  18. Evaluating coronary reperfusion during acute myocardial infarction in a canine model by gadolinium-DTPA-enhanced magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Kazuaki; Ishibashi, Yutaka; Shimada, Toshio (Shimane Medical Univ., Izumo (Japan)) (and others)

    1993-05-01

    In previous studies, magnetic resonance imaging (MRI) using contrast agents was found to be useful in distinguishing reperfused infarcts from nonreperfused infarcts. However, there have been only a few detailed studies using consecutive MR images for the assessment of myocardial reperfusion during an acute infarction and also no studies have been performed using a percutaneous transluminal coronary occlusion model (closed chest model). We induced acute myocardial infarction in dogs by occluding and then reperfusing the coronary artery with a balloon catheter. ECG-gated MR images were taken using the spin-echo technique before and after Gd-DTPA injection during both coronary artery occlusion and after reperfusion. We defined the intensity ratio (IR) as the signal intensity at the ischemic area divided by that at the nonischemic area on MR images and compared each image by the IR. Without Gd-DTPA, there was no difference between infarcted and normally perfused myocardium. Infarcted myocardium had a low signal intensity (IR=0.68[+-]0.14) soon after Gd-DTPA injection. This difference diminished with time. After reperfusion the infarcted myocardium had a high signal intensity (IR: 1.76[+-]0.34). We conclude that Gd-DTPA-enhanced MRI can distinguish reperfused from nonreperfused infarcts soon after Gd-DTPA administration. (author).

  19. Evaluating coronary reperfusion during acute myocardial infarction in a canine model by gadolinium-DTPA-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tanabe, Kazuaki; Ishibashi, Yutaka; Shimada, Toshio

    1993-01-01

    In previous studies, magnetic resonance imaging (MRI) using contrast agents was found to be useful in distinguishing reperfused infarcts from nonreperfused infarcts. However, there have been only a few detailed studies using consecutive MR images for the assessment of myocardial reperfusion during an acute infarction and also no studies have been performed using a percutaneous transluminal coronary occlusion model (closed chest model). We induced acute myocardial infarction in dogs by occluding and then reperfusing the coronary artery with a balloon catheter. ECG-gated MR images were taken using the spin-echo technique before and after Gd-DTPA injection during both coronary artery occlusion and after reperfusion. We defined the intensity ratio (IR) as the signal intensity at the ischemic area divided by that at the nonischemic area on MR images and compared each image by the IR. Without Gd-DTPA, there was no difference between infarcted and normally perfused myocardium. Infarcted myocardium had a low signal intensity (IR=0.68±0.14) soon after Gd-DTPA injection. This difference diminished with time. After reperfusion the infarcted myocardium had a high signal intensity (IR: 1.76±0.34). We conclude that Gd-DTPA-enhanced MRI can distinguish reperfused from nonreperfused infarcts soon after Gd-DTPA administration. (author)

  20. EFFECTS OF EARLY ANGIOTENSIN-CONVERTING ENZYME-INHIBITION IN A PIG MODEL OF MYOCARDIAL-ISCHEMIA AND REPERFUSION

    NARCIS (Netherlands)

    VANWIJNGAARDEN, J; TOBE, TJM; WEERSINK, EGL; BEL, KJ; DEGRAEFF, PA; DELANGEN, CDJ; VANGILST, WH; WESSELING, H

    In a blind, randomized study, the effects of perindopril, a nonsulfhydryl-containing angiotensin-converting enzyme (ACE) inhibitor, were compared with those of placebo in a closed-chest pig model of myocardial infraction. In anesthetized pigs, my ocardinal ischemia and reperfusion were induced by

  1. Primary Percutaneous Coronary Intervention as a National Reperfusion Strategy in Patients With ST-Segment Elevation Myocardial Infarction

    DEFF Research Database (Denmark)

    Terkelsen, Christian J; Jensen, Lisette O; Hansen, Hans-Henrik Tilsted

    2011-01-01

    In Denmark, primary percutaneous coronary intervention (PPCI) was chosen as a national reperfusion strategy for patients with ST-segment elevation myocardial infarction in 2003. This study describes the temporal implementation of PPCI in Western Denmark, the gradual introduction of field triage...

  2. Data on administration of cyclosporine, nicorandil, metoprolol on reperfusion related outcomes in ST-segment Elevation Myocardial Infarction treated with percutaneous coronary intervention

    Directory of Open Access Journals (Sweden)

    Gianluca Campo

    2017-10-01

    Full Text Available Mortality and morbidity in patients with ST elevation myocardial infarction (STEMI treated with primary percutaneous coronary intervention (PCI are still high [1]. A huge amount of the myocardial damage is related to the mitochondrial events happening during reperfusion [2]. Several drugs directly and indirectly targeting mitochondria have been administered at the time of the PCI and their effect on fatal (all-cause mortality, cardiovascular (CV death and non fatal (hospital readmission for heart failure (HF outcomes have been tested showing conflicting results [3–16]. Data from 15 trials have been pooled with the aim to analyze the effect of drug administration versus placebo on outcome [17]. Subgroup analysis are here analyzed: considering only randomized clinical trial (RCT on cyclosporine or nicorandil [3–5,9–11], excluding a trial on metoprolol [12] and comparing trial with follow-up length <12 months versus those with longer follow-up [3–16]. This article describes data related article titled “Clinical Benefit of Drugs Targeting Mitochondrial Function as an Adjunct to Reperfusion in ST-segment Elevation Myocardial Infarction: a Meta-Analysis of Randomized Clinical Trials” [17].

  3. MCT1 and MCT4 Expression During Myocardial Ischemic-Reperfusion Injury in the Isolated Rat Heart

    Directory of Open Access Journals (Sweden)

    Yi Zhu

    2013-09-01

    Full Text Available Background/Aims: Myocardium ischemia-reperfusion (I/R injury can be caused by imbalances in cellular metabolism. Lactate, transported by monocarboxylate transporters (MCTs, has been implicated as a mechanism in this process. The present study was designed to investigate the expression and functional role of MCTs in rat hearts during ischemia and reperfusion. Methods: Langendorff-perfused rat hearts were subjected to 20 minutes stabilization, 30 minutes of global ischemia and 60 minutes reperfusion. Hearts were collected serially for detecting expression changes in MCT1, MCT4 during myocardial I/R injury and lactate concentration was measured. Post-ischemic left ventricular function and infract size were determined at end-point, followed by the pretreatment of D-lactate, a competitive inhibitor of MCTs. Results: MCT4 was significantly increased following global ischemia and MCT1 expression was increased during the early stages of reperfusion in isolated rat hearts, while the expression of the ancillary protein CD147 was increased during I/R injury. We determined increases in AMPK phosphorylation status, which was significantly elevated following ischemia and early reperfusion. Blocking monocarboxylate transport by competitive inhibition with D-lactate caused decreased left ventricular performance and increased infarct size. Conclusion: Increased MCT4 expression facilitates lactate extrusion during the ischemic period, while increased MCT1 may facilitate lactate transport into and out of cells simultaneously during early reperfusion, with increases in AMPK phosphorylation status during the myocardial I/R period. Lactate transport by MCTs has a profound protective effect during myocardial ischemia reperfusion injury.

  4. Total flavonoid extract from Coreopsis tinctoria Nutt. protects rats against myocardial ischemia/reperfusion injury.

    Science.gov (United States)

    Zhang, Ya; Yuan, Changsheng; Fang, He; Li, Jia; Su, Shanshan; Chen, Wen

    2016-09-01

    This study aimed to evaluate the protective effects of total flavonoid extract from Coreopsis tinctoria Nutt. (CTF) against myocardial ischemia/reperfusion injury (MIRI) using an isolated Langendorff rat heart model. Left ventricular developed pressure (LVDP) and the maximum rate of rise and fall of LV pressure (±dp/dtmax) were recorded. Cardiac injury was assessed by analyzing lactate dehydrogenase (LDH) and creatine kinase (CK) released in the coronary effluent. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Myocardial inflammation was assessed by monitoring tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), interleukin-8 (IL-8), and interleukin-6 (IL-6) levels. Myocardial infarct size was estimated. Cell morphology was assessed by 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin (HE) staining. Cardiomyocyte apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Pretreatment with CTF significantly increased the heart rate and increased LVDP, as well as SOD and GSH-Px levels. In addition, CTF pretreatment decreased the TUNEL-positive cell ratio, infarct size, and levels of CK, LDH, MDA, TNF-α, CRP, IL-6, and IL-8. These results suggest that CTF exerts cardio-protective effects against MIRI via anti-oxidant, anti-inflammatory, and anti-apoptotic activities.

  5. Inhibition of Fas-associated death domain-containing protein (FADD protects against myocardial ischemia/reperfusion injury in a heart failure mouse model.

    Directory of Open Access Journals (Sweden)

    Qian Fan

    Full Text Available As technological interventions treating acute myocardial infarction (MI improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure.Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed.FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion, attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3.Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.

  6. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism.

    Directory of Open Access Journals (Sweden)

    Pauline M Snijder

    Full Text Available BACKGROUND: Ischemia-reperfusion injury (IRI is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. METHODS: Male C57BL/6 mice received a 0, 10, or 100 ppm H2S-N2 mixture starting 30 minutes prior to ischemia until 5 minutes pre-reperfusion. IRI was inflicted by temporary ligation of the left coronary artery for 30 minutes. High-resolution respirometry equipment was used to assess CO2-production and blood pressure was measured using internal transmitters. The effects of H2S were assessed by histological and molecular analysis. RESULTS: Treatment with 100 ppm H2S decreased CO2-production by 72%, blood pressure by 14% and heart rate by 25%, while treatment with 10 ppm H2S had no effects. At day 1 of reperfusion 10 ppm H2S showed no effect on necrosis, while treatment with 100 ppm H2S reduced necrosis by 62% (p<0.05. Seven days post-reperfusion, both 10 ppm (p<0.01 and 100 ppm (p<0.05 H2S showed a reduction in fibrosis compared to IRI animals. Both 10 ppm and 100 ppm H2S reduced granulocyte-influx by 43% (p<0.05 and 60% (p<0.001, respectively. At 7 days post-reperfusion both 10 and 100 ppm H2S reduced expression of fibronectin by 63% (p<0.05 and 67% (p<0.01 and ANP by 84% and 63% (p<0.05, respectively. CONCLUSIONS: Gaseous administration of H2S is protective when administered during a cardiac ischemic insult. Although hypometabolism is restricted to small animals, we now showed that low non-hypometabolic concentrations of H2S also have protective properties in IRI. Since IRI is a frequent cause of myocardial damage during percutaneous coronary intervention and cardiac

  7. Multidetector row computed tomography noninvasively assesses coronary reperfusion after thrombolytic therapy in patients with ST elevation myocardial infarction

    International Nuclear Information System (INIS)

    Shin, Dong-Il; Won, Yoo-Dong; Chang, Kiyuk

    2006-01-01

    The study objective was to assess the efficacy of 16-slice multidetector row computed tomography (MDCT) in estimating residual stenosis and successful reperfusion after thrombolysis in patients with ST-elevation myocardial infarction (STEMI). A total of 31 patients with STEMI underwent MDCT scanning within 6 h (mean 4.6±1.1) after thrombolysis and the results for detection of significant residual stenosis and distal flow of the infarct-related artery were compared with those from conventional coronary angiography (CCAG) performed within 24 h (mean 12.1±5.6) after the MDCT scan. Successful reperfusion was defined as Thrombolysis In Myocardial Infarction flow 2 or 3 on CCAG and full contrast enhancement of the distal artery landmarks on MDCT. A final analysis was performed using 24 patients (312 segments). MDCT had a positive predictive value of 73.3% and a negative predictive value of 95.1% for detecting significant residual stenosis. It accurately estimated 17 of 18 patients (94.4%) with successful reperfusion and 5 of 6 (83.3%) with failed reperfusion on the basis of comparison with CCAG. MDCT demonstrated high accuracy not only for the detecting residual stenosis, but also for assessing successful reperfusion after thrombolytic therapy in patients with STEMI. (author)

  8. Hemorrhagic myocardial infarction after reperfusion detected by X-ray CT

    International Nuclear Information System (INIS)

    Tamura, Tsutomu; Toyoki, Takaaki; Ishikawa, Tomoko

    1992-01-01

    The purpose of this study was to determine whether computed tomography (CT) can detect hemorrhagic infarction occurring after intracoronary thrombolytic therapy (ICT) for acute myocardial infarction (AMI). In an experimental study, 12 dogs underwent 2-4 h of left anterior descending artery (LAD) occlusion, followed by reperfusion, and infusion of contrast material into the LAD. After CT examination, the heart was cut into transverse sections. A good correlation was obtained between the CT-enhanced area and the hemorrhagic area in the sliced heart section (r=0.895, p 0.1). The SPECT defect areas were consistently smaller than the CT enhancement areas. These results indicate that CT can detect hemorrhage into the myocardium after ICT, and that after ICT half the AMI patients showed hemorrhagic infarction. However, hemorrhage did not cause complete deterioration of the myocardium. (author)

  9. Elevated serum uric acid affects myocardial reperfusion and infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention.

    Science.gov (United States)

    Mandurino-Mirizzi, Alessandro; Crimi, Gabriele; Raineri, Claudia; Pica, Silvia; Ruffinazzi, Marta; Gianni, Umberto; Repetto, Alessandra; Ferlini, Marco; Marinoni, Barbara; Leonardi, Sergio; De Servi, Stefano; Oltrona Visconti, Luigi; De Ferrari, Gaetano M; Ferrario, Maurizio

    2018-05-01

    Elevated serum uric acid (eSUA) was associated with unfavorable outcome in patients with ST-segment elevation myocardial infarction (STEMI). However, the effect of eSUA on myocardial reperfusion injury and infarct size has been poorly investigated. Our aim was to correlate eSUA with infarct size, infarct size shrinkage, myocardial reperfusion grade and long-term mortality in STEMI patients undergoing primary percutaneous coronary intervention. We performed a post-hoc patients-level analysis of two randomized controlled trials, testing strategies for myocardial ischemia/reperfusion injury protection. Each patient underwent acute (3-5 days) and follow-up (4-6 months) cardiac magnetic resonance. Infarct size and infarct size shrinkage were outcomes of interest. We assessed T2-weighted edema, myocardial blush grade (MBG), corrected Thrombolysis in myocardial infarction Frame Count, ST-segment resolution and long-term all-cause mortality. A total of 101 (86.1% anterior) STEMI patients were included; eSUA was found in 16 (15.8%) patients. Infarct size was larger in eSUA compared with non-eSUA patients (42.3 ± 22 vs. 29.1 ± 15 ml, P = 0.008). After adjusting for covariates, infarct size was 10.3 ml (95% confidence interval 1.2-19.3 ml, P = 0.001) larger in eSUA. Among patients with anterior myocardial infarction the difference in delayed enhancement between groups was maintained (respectively, 42.3 ± 22.4 vs. 29.9 ± 15.4 ml, P = 0.015). Infarct size shrinkage was similar between the groups. Compared with non-eSUA, eSUA patients had larger T2-weighted edema (53.8 vs. 41.2 ml, P = 0.031) and less favorable MBG (MBG < 2: 44.4 vs. 13.6%, P = 0.045). Corrected Thrombolysis in myocardial infarction Frame Count and ST-segment resolution did not significantly differ between the groups. At a median follow-up of 7.3 years, all-cause mortality was higher in the eSUA group (18.8 vs. 2.4%, P = 0.028). eSUA may affect myocardial

  10. The Cardioprotective Effects of Citric Acid and L-Malic Acid on Myocardial Ischemia/Reperfusion Injury

    Science.gov (United States)

    Tang, Xilan; Liu, Jianxun; Dong, Wei; Li, Peng; Li, Lei; Lin, Chengren; Zheng, Yongqiu; Hou, Jincai; Li, Dan

    2013-01-01

    Organic acids in Chinese herbs, the long-neglected components, have been reported to possess antioxidant, anti-inflammatory, and antiplatelet aggregation activities; thus they may have potentially protective effect on ischemic heart disease. Therefore, this study aims to investigate the protective effects of two organic acids, that is, citric acid and L-malic acid, which are the main components of Fructus Choerospondiatis, on myocardial ischemia/reperfusion injury and the underlying mechanisms. In in vivo rat model of myocardial ischemia/reperfusion injury, we found that treatments with citric acid and L-malic acid significantly reduced myocardial infarct size, serum levels of TNF-α, and platelet aggregation. In vitro experiments revealed that both citric acid and L-malic acid significantly reduced LDH release, decreased apoptotic rate, downregulated the expression of cleaved caspase-3, and upregulated the expression of phosphorylated Akt in primary neonatal rat cardiomyocytes subjected to hypoxia/reoxygenation injury. These results suggest that both citric acid and L-malic acid have protective effects on myocardial ischemia/reperfusion injury; the underlying mechanism may be related to their anti-inflammatory, antiplatelet aggregation and direct cardiomyocyte protective effects. These results also demonstrate that organic acids, besides flavonoids, may also be the major active ingredient of Fructus Choerospondiatis responsible for its cardioprotective effects and should be attached great importance in the therapy of ischemic heart disease. PMID:23737849

  11. Cardioprotective Effect of Aloe vera Biomacromolecules Conjugated with Selenium Trace Element on Myocardial Ischemia-Reperfusion Injury in Rats.

    Science.gov (United States)

    Yang, Yang; Yang, Ming; Ai, Fen; Huang, Congxin

    2017-06-01

    The present study was undertaken to evaluate the cardioprotection potential and underlying molecular mechanism afforded by a selenium (Se) polysaccharide (Se-AVP) from Aloe vera in the ischemia-reperfusion (I/R) model of rats in vivo. Myocardial I/R injury was induced by occluding the left anterior descending coronary artery (LAD) for 30 min followed by 2-h continuous reperfusion. Pretreatment with Se-AVP (100, 200, and 400 mg/kg) attenuated myocardial damage, as evidenced by reduction of the infarct sizes, increase in serum and myocardial endogenous antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GSH), and catalase (CAT)), and decrease in the malondialdehyde (MDA) level in the rats suffering I/R injury. This cardioprotective activity afforded by Se-AVP is further supported by the decreased levels of cardiac marker enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as the rise of myocardial Na + -K + -ATPase and Ca 2+ -Mg 2+ -ATPase activities in I/R rats. Additionally, cardiomyocytic apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining and the result showed that the percent of TUNEL-positive cells in myocardium of Se-AVP-treated groups was lower than I/R rats. In conclusion, we clearly demonstrated that Se-AVP had a protective effect against myocardial I/R injury in rats by augmenting endogenous antioxidants and protecting rat hearts from oxidative stress-induced myocardial apoptosis.

  12. Lipoxin A4 Preconditioning and Postconditioning Protect Myocardial Ischemia/Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Qifeng Zhao

    2013-01-01

    Full Text Available This study aims to investigate the pre- and postconditioning effects of lipoxin A4 (LXA4 on myocardial damage caused by ischemia/reperfusion (I/R injury. Seventy-two rats were divided into 6 groups: sham groups (C1 and C2, I/R groups (I/R1 and I/R2, and I/R plus LXA4 preconditioning and postconditioning groups (LX1 and LX2. The serum levels of IL-1β, IL-6, IL-8, IL-10, TNF-α, and cardiac troponin I (cTnI were measured. The content and the activity of Na+-K+-ATPase as well as the superoxide dismutase (SOD, and malondialdehyde (MDA levels were determined. Along with the examination of myocardium ultrastructure and ventricular arrhythmia scores (VAS, connexin 43 (Cx43 expression were also detected. Lower levels of IL-1β, IL-6, IL-8, TNF-α, cTnI, MDA content, and VAS and higher levels of IL-10, SOD activity, Na+-K+-ATPase content and activity, and Cx43 expression appeared in LX groups than I/R groups. Besides, H&E staining, TEM examination as well as analysis of gene, and protein confirmed that LXA4 preconditioning was more effective than postconditioning in preventing arrhythmogenesis via the upregulation of Cx43. That is, LXA4 postconditioning had better protective effect on Na+-K+-ATPase and myocardial ultrastructure.

  13. Oxidative stress in ischemia and reperfusion

    DEFF Research Database (Denmark)

    Sinning, Christoph; Westermann, Dirk; Clemmensen, Peter

    2017-01-01

    Oxidative stress remains a major contributor to myocardial injury after ischemia followed by reperfusion (I/R) as the reperfusion of the myocardial infarction (MI) area inevitably leads to a cascade of I/R injury. This review focused on concepts of the antioxidative defense system and elucidates......, the different mechanisms through which myocardial protection can be addressed, like ischemic postconditioning in myocardial infarction or adjunctive measures like targeted temperature management as well as new theories, including the role of iron in I/R injury, will be discussed....

  14. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2010-09-01

    Full Text Available Abstract Background Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. Methods In anesthetized pigs (42-53 kg, a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8 or saline (9 mg/ml, n = 8. Area at risk (AAR was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. Results ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007. Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23. The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. Conclusions ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.

  15. Myocardial capillary permeability after regional ischemia and reperfusion in the in vivo canine heart. Effect of superoxide dismutase

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Bjerrum, P J; Haunsø, S

    1991-01-01

    coronary artery followed by 1 hour of reperfusion. Myocardial plasma flow rate and capillary extraction of chromium 51-labeled EDTA or technetium 99m-labeled diethylenetriaminepentaacetic acid were measured by the single-injection, residue-detection method before ischemia and 5 and 60 minutes after...... fibrillation in contrast to none in the superoxide dismutase group. Before ischemia, plasma flow rate, myocardial capillary extraction fraction, and PS values were similar in the two groups. Five minutes after the start of reperfusion, plasma flow rate increased significantly (p less than 0.01) in both groups....... In the control group, capillary extraction fraction increased by 12% (p = NS) in spite of the higher plasma flow; these increases in capillary extraction fraction and plasma flow induced a 69% increase in PS (p less than 0.01). In the superoxide dismutase-treated group, capillary extraction fraction decreased...

  16. Cardioprotective effect of the Hibiscus rosa sinensis flowers in an oxidative stress model of myocardial ischemic reperfusion injury in rat

    Science.gov (United States)

    Gauthaman, Karunakaran K; Saleem, Mohamed TS; Thanislas, Peter T; Prabhu, Vinoth V; Krishnamoorthy, Karthikeyan K; Devaraj, Niranjali S; Somasundaram, Jayaprakash S

    2006-01-01

    Background The present study investigates the cardioprotective effects of Hibiscus rosa sinensis in myocardial ischemic reperfusion injury, particularly in terms of its antioxidant effects. Methods The medicinal values of the flowers of Hibiscus rosa sinensis (Chinese rose) have been mentioned in ancient literature as useful in disorders of the heart. Dried pulverized flower of Hibiscus rosa sinensis was administered orally to Wistar albino rats (150–200 gms) in three different doses [125, 250 and 500 mg/kg in 2% carboxy methyl cellulose (CMC)], 6 days per week for 4 weeks. Thereafter, rats were sacrificed; either for the determination of baseline changes in cardiac endogenous antioxidants [superoxide dismutase, reduced glutathione and catalase] or the hearts were subjected to isoproterenol induced myocardial necrosis. Results There was significant increase in the baseline contents of thiobarbituric acid reactive substances (TBARS) [a measure of lipid per oxidation] with both doses of Hibiscus Rosa sinensis. In the 250 mg/kg treated group, there was significant increase in superoxide dismutase, reduced glutathione, and catalase levels but not in the 125 and 500 mg/kg treated groups. Significant rise in myocardial thiobarbituric acid reactive substances and loss of superoxide dismutase, catalase and reduced glutathione (suggestive of increased oxidative stress) occurred in the vehicle treated hearts subjected to in vivo myocardial ischemic reperfusion injury. Conclusion It may be concluded that flower of Hibiscus rosa sinensis (250 mg/kg) augments endogenous antioxidant compounds of rat heart and also prevents the myocardium from isoproterenol induced myocardial injury. PMID:16987414

  17. Short-term fasting reduces the extent of myocardial infarction and incidence of reperfusion arrhythmias in rats

    Czech Academy of Sciences Publication Activity Database

    Šnorek, M.; Hodyc, D.; Šedivý, V.; Ďurišová, J.; Skoumalová, A.; Wilhelm, J.; Neckář, Jan; Kolář, František; Herget, J.

    2012-01-01

    Roč. 61, č. 6 (2012), s. 567-574 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/08/0108 Institutional research plan: CEZ:AV0Z5011922 Keywords : myocardial ischemia/reperfusion * arrhythmias * infarction * fasting * ketone bodies Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.531, year: 2012

  18. Luteolin Inhibits Ischemia/Reperfusion-Induced Myocardial Injury in Rats via Downregulation of microRNA-208b-3p.

    Directory of Open Access Journals (Sweden)

    Chen Bian

    Full Text Available Luteolin (LUT, a kind of flavonoid which is extracted from a variety of diets, has been reported to convey protective effects of various diseases. Recent researches have suggested that LUT can carry out cardioprotective effects during ischemia/reperfusion (I/R. However, there have no reports on whether LUT can exert protective effects against myocardial I/R injury through the actions of specific microRNAs (miRs. The purpose of this study was to determine which miRs and target genes LUT exerted such function through.Expression of various miRs in perfused rat hearts was detected using a gene chip. Target genes were predicted with TargetScan, MiRDB and MiRanda. Anoxia/reoxygenation was used to simulate I/R. Cells were transfected by miR-208b-3p mimic, inhibitor and small interfering RNA of Ets1 (avian erythroblastosis virus E26 (v ets oncogene homolog 1. MiR-208b-3p and Ets1 mRNA were quantified by real-time quantitative polymerase chain reaction. The percentage of apoptotic cells was detected by annexin V-fluorescein isothiocyanate/propidium iodide dyeing and flow cytometry. The protein expression levels of cleaved caspase-3, Bcl-2, Bax, and Ets1 were examined by western blot analysis. A luciferase reporter assay was used to verify the combination between miR-208b-3p and the 3'-untranslated region of Ets1.LUT pretreatment reduced miR-208b-3p expression in myocardial tissue, as compared to the I/R group. And LUT decreased miR-208b-3p expression and apoptosis caused by I/R. However, overexpression of miR-208b-3p further aggravated the changes caused by I/R and blocked all the effects of LUT. Knockdown of miR-208b-3p expression also attenuated apoptosis, while knockdown of Ets1 promoted apoptosis. Further, the luciferase reporter assay showed that miR-208b-3p could inhibit Ets1 expression.LUT pretreatment conveys anti-apoptotic effects after myocardial I/R injury by decreasing miR-208b-3p and increasing Ets1 expression levels.

  19. Myocardial energy metabolism during global ischemia and reperfusion in SHR hypertrophic rat heart assessed by 31P-NMR

    International Nuclear Information System (INIS)

    Shirotani, Hitoshi; Oka, Hiroshi; Katayama, Osamu; Nishioka, Takazumi; Oku, Hidetaka

    1983-01-01

    An experiment regarding myocardial ischemia and reperfusion was performed under various conditions in SHR hypertrophic and WKY non-hypertrophic rat hearts. An effect of cardioplegia was evaluated in the following 4 conditions, that is, Group 1: hypothermia only, Group 2: hypothermia with intermittent infusion of GIK solution, Group 3: hypothermia with intermittent infusion of cold blood cardioplegia, Group 4: hypothermia with intermittent infusion of cold blood cardioplegia and administration of coenzyme Q 10 prior to isolation of the heart. 1) In WKY heart, ATP contents after 90 minutes myocardial ischemia at 15 0 C decreased to 25% in Group 1,42% in Group 2,52% in Group 3 and 62% in Group 4, and the contents after 30 minutes reperfusion increased to 42, 50, 60 and 75%, respectively. On the other hand, in SHR heart, ATP contents decreased to 22, 38, 40 and 41% but no trend of recovery was present. 2) Creatine phosphate content in SHR heart was 50% of that in WKY heart during isolated perfusion. Creatine phosphate decreased to zero after 30 minutes myocardial ischemia. In WKY heart, the content was recovered to over 100% by 30 minutes reperfusion after 90 minutes myocardial ischemia in all groups. On the contrary, in SHR heart, the contents increased to only 10, 15, 22 and 41%, in 4 groups, respectively. 3) In WKY heart, pH fell to 6.2, 6.7, 6.8 and 6.8, in 4 groups, respectively, a fter 90 minutes myocardial ischemia, and returned to the preischemic value of 7.2 after 30 minutes reperfusion in all groups. In SHR heart, pH fell to 6.1 in group 1, 6.3 in group 2, 6.4 in group 3 and 6.7 in group 4 after 90 minutes myocardial ischemia and the values returned to 6.5, 6.6, 6.7 and 6.8, respectively, after 30 minutes reperfusion. The latter values were lower than preischemic value of 7.0. (J.P.N.)

  20. Myocardial energy metabolism during global ischemia and reperfusion in SHR hypertrophic rat heart assessed by /sup 31/P-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Shirotani, Hitoshi; Oka, Hiroshi; Katayama, Osamu; Nishioka, Takazumi; Oku, Hidetaka [Kinki Univ., Higashi-Osaka, Osaka (Japan)

    1983-12-01

    An experiment regarding myocardial ischemia and reperfusion was performed under various conditions in SHR hypertrophic and WKY non-hypertrophic rat hearts. An effect of cardioplegia was evaluated in the following 4 conditions, that is, Group 1: hypothermia only, Group 2: hypothermia with intermittent infusion of GIK solution, Group 3: hypothermia with intermittent infusion of cold blood cardioplegia, Group 4: hypothermia with intermittent infusion of cold blood cardioplegia and administration of coenzyme Q/sub 10/ prior to isolation of the heart. 1) In WKY heart, ATP contents after 90 minutes myocardial ischemia at 15/sup 0/ C decreased to 25% in Group 1,42% in Group 2,52% in Group 3 and 62% in Group 4, and the contents after 30 minutes reperfusion increased to 42, 50, 60 and 75%, respectively. On the other hand, in SHR heart, ATP contents decreased to 22, 38, 40 and 41% but no trend of recovery was present. 2) Creatine phosphate content in SHR heart was 50% of that in WKY heart during isolated perfusion. Creatine phosphate decreased to zero after 30 minutes myocardial ischemia. In WKY heart, the content was recovered to over 100% by 30 minutes reperfusion after 90 minutes myocardial ischemia in all groups. On the contrary, in SHR heart, the contents increased to only 10, 15, 22 and 41%, in 4 groups, respectively. 3) In WKY heart, pH fell to 6.2, 6.7, 6.8 and 6.8, in 4 groups, respectively, a fter 90 minutes myocardial ischemia, and returned to the preischemic value of 7.2 after 30 minutes reperfusion in all groups. In SHR heart, pH fell to 6.1 in group 1, 6.3 in group 2, 6.4 in group 3 and 6.7 in group 4 after 90 minutes myocardial ischemia and the values returned to 6.5, 6.6, 6.7 and 6.8, respectively, after 30 minutes reperfusion. The latter values were lower than preischemic value of 7.0.

  1. Correlation of QRS complex after percutaneous coronary intervention with myocardial ischemia reperfusion injury and apoptosis molecule contents

    Directory of Open Access Journals (Sweden)

    Ming-Min Jiang

    2017-11-01

    Full Text Available Objective: To study the correlation of QRS complex after percutaneous coronary intervention (PCI with myocardial ischemia reperfusion injury and apoptosis molecule contents. Methods: Patients with non-ST-segment elevation myocardial infarction who were treated in Nanchong Central Hospital between June 2014 and August 2016 were selected and divided into the PCI group who received emergency PCI surgery and the control group who accepted selective PCI or refused emergency PCI after the medical data were retrospectively analyzed. The fQRS as well as the contents of ischemia reperfusion injury indexes and apoptosis molecules was determined after 1 week of treatment. Results: The incidence of fQRS in PCI group was significantly lower than that in control group; serum MDA, cTnI, H-FABP, sTWEAK, sFas, sTRAIL and Caspase-3 contents as well as peripheral blood Nrf-2 and HO-1 expression of PCI group were greatly lower than those of control group; serum MDA, cTnI, H-FABP, sTWEAK, sFas, sTRAIL and Caspase-3 contents as well as peripheral blood Nrf-2 and HO-1 expression of PCI group of patients with fQRS complex (+ were greatly higher than those of patients with fQRS complex (-. Conclusion: The occurrence of fQRS after PCI is closely related to myocardial ischemia reperfusion injury and apoptosis.

  2. Distribution of carbon flux within fatty acid utilization during myocardial ischemia and reperfusion

    International Nuclear Information System (INIS)

    Nellis, S.H.; Liedtke, A.J.; Renstrom, B.

    1991-01-01

    Twenty-nine intact, working pig hearts were extracorporeally perfused and divided into two study groups (16 Aerobic and 13 Ischemic/Reflow hearts). Step function, equilibrium labeling with [14C]palmitate was used to develop uptake and washout curves of radioactive fatty acid products contained in coronary effluent during either aerobic perfusion or reperfusion after ischemia (60% reduction in left anterior descending coronary flow for 30 minutes). Left anterior descending control flows were slightly overperfused in Aerobic hearts (18% higher than in Ischemic/Reflow hearts); otherwise, circumflex and right coronary flows, left ventricular pressure, and serum fatty acids and blood sugar levels were comparable between groups. As expected in Ischemic/Reflow hearts, recovery of regional systolic shortening and myocardial oxygen consumption in reperfusion was only modestly impaired (-20% and -19%, respectively, not significant and p less than 0.011 compared with preischemic values, not significant from Aerobic hearts). The only significant metabolized product to be released from labeled fatty acid utilization in either group was 14CO2. A smaller fatty acid pool also was measured and accounted for by that contained in the coronary intravascular volume. The authors could determine no significant back diffusion of fatty acids from myocardium in either perfusion condition. Uptake time constants of the early phase of 14CO2 production also were virtually identical in both groups (19.9 ± 3.2 versus 16.7 ± 3.2 minutes in Aerobic and Ischemic/Reflow hearts, respectively) and strongly correlated with hemodynamics as described by heart rate. In washout studies, tissue radioactivity in the aqueous soluble and fatty acid pools declined in both study groups, and counts in complex lipids and cholesterol/cholesteryl esters remained steady, whereas those in triacylglycerols varied

  3. A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nagaoka

    Full Text Available There is an unmet need to develop an innovative cardioprotective modality for acute myocardial infarction (AMI, for which the effectiveness of interventional reperfusion therapy is hampered by myocardial ischemia-reperfusion (IR injury. Pretreatment with statins before ischemia is shown to reduce MI size in animals. However, no benefit was found in animals and patients with AMI when administered at the time of reperfusion, suggesting insufficient drug targeting into the IR myocardium. Here we tested the hypothesis that nanoparticle-mediated targeting of pitavastatin protects the heart from IR injury.In a rat IR model, poly(lactic acid/glycolic acid (PLGA nanoparticle incorporating FITC accumulated in the IR myocardium through enhanced vascular permeability, and in CD11b-positive leukocytes in the IR myocardium and peripheral blood after intravenous treatment. Intravenous treatment with PLGA nanoparticle containing pitavastatin (Pitavastatin-NP, 1 mg/kg at reperfusion reduced MI size after 24 hours and ameliorated left ventricular dysfunction 4-week after reperfusion; by contrast, pitavastatin alone (as high as 10 mg/kg showed no therapeutic effects. The therapeutic effects of Pitavastatin-NP were blunted by a PI3K inhibitor wortmannin, but not by a mitochondrial permeability transition pore inhibitor cyclosporine A. Pitavastatin-NP induced phosphorylation of Akt and GSK3β, and inhibited inflammation and cardiomyocyte apoptosis in the IR myocardium.Nanoparticle-mediated targeting of pitavastatin induced cardioprotection from IR injury by activation of PI3K/Akt pathway and inhibition of inflammation and cardiomyocyte death in this model. This strategy can be developed as an innovative cardioprotective modality that may advance currently unsatisfactory reperfusion therapy for AMI.

  4. Data on administration of cyclosporine, nicorandil, metoprolol on reperfusion related outcomes in ST-segment Elevation Myocardial Infarction treated with percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Campo, Gianluca; Pavasini, Rita; Morciano, Giampaolo

    2017-01-01

    Mortality and morbidity in patients with ST elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (PCI) are still high [1]. A huge amount of the myocardial damage is related to the mitochondrial events happening during reperfusion [2]. Several drugs direc...

  5. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weixin [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wu, Mingchai [Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzou, Zhejiang (China); Tang, Longguang; Pan, Yong; Liu, Zhiguo [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zeng, Chunlai [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Wang, Jingying [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wei, Tiemin, E-mail: lswtm@sina.com [Department of Cardiology, The 5th Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Background: Alleviating the oxidant stress associated with myocardial ischemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischemia reperfusion (I/R)-induced cardiac damage. Curcumin, a natural compound with anti-oxidative activity, exerts beneficial effect against cardiac I/R injury, but poor chemical and metabolic stability. Previously, we have designed and synthesized a series of mono-carbonyl analogues of curcumin (MACs) with high stability. This study aims to find new anti-oxidant MACs and to demonstrate their effects and mechanisms against I/R-induced heart injury. Methods: H9c2 cells challenged with H{sub 2}O{sub 2} or TBHP were used for in vitro bio-screening and mechanistic studies. The MDA, H{sub 2}O{sub 2} and SOD levels in H9C2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse models administrated with or without the compound were used for in vivo studies. Results: The in vitro cell-based screening showed that curcumin analogues 8d and 14p exhibited strong anti-oxidative effects. Pre-treatment of H9c2 cells with 14p activated Nrf2 signaling pathway, attenuated H{sub 2}O{sub 2}-increased MDA and SOD level, followed by the inhibition of TBHP-induced cell death and Bax/Bcl-2–caspase-3 pathway activation. Silencing Nrf2 significantly reversed the protective effects of 14p. In in vivo animal model of myocardial I/R, administration of low dose 14p (10 mg/kg) reduced infarct size and myocardial apoptosis to the same extent as the high dose curcumin (100 mg/kg). Conclusion: These data support the novel curcumin analogue 14p as a promising antioxidant to decrease oxidative stress and limit myocardial ischemia reperfusion injury via activating Nrf2. - Highlights: • Mono-carbonyl analogue of curcumin, 14p, exhibited better chemical stability. • Compound 14p inhibited TBHP-induced apoptosis through activating Nrf2 in vitro. • Compound 14p limited myocardial ischemia/reperfusion

  6. Intracoronary Poloxamer 188 Prevents Reperfusion Injury in a Porcine Model of ST-Segment Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Jason A. Bartos, MD, PhD

    2016-06-01

    Full Text Available Poloxamer 188 (P188 is a nonionic triblock copolymer believed to prevent cellular injury after ischemia and reperfusion. This study compared intracoronary (IC infusion of P188 immediately after reperfusion with delayed infusion through a peripheral intravenous catheter in a porcine model of ST-segment elevation myocardial infarction (STEMI. STEMI was induced in 55 pigs using 45 min of endovascular coronary artery occlusion. Pigs were then randomized to 4 groups: control, immediate IC P188, delayed peripheral P188, and polyethylene glycol infusion. Heart tissue was collected after 4 h of reperfusion. Assessment of mitochondrial function or infarct size was performed. Mitochondrial yield improved significantly with IC P188 treatment compared with control animals (0.25% vs. 0.13%, suggesting improved mitochondrial morphology and survival. Mitochondrial respiration and calcium retention were also significantly improved with immediate IC P188 compared with control animals (complex I respiratory control index: 7.4 vs. 3.7; calcium retention: 1,152 nmol vs. 386 nmol. This benefit was only observed with activation of complex I of the mitochondrial respiratory chain, suggesting a specific effect from ischemia and reperfusion on this complex. Infarct size and serum troponin I were significantly reduced by immediate IC P188 infusion (infarct size: 13.9% vs. 41.1%; troponin I: 19.2 μg/l vs. 77.4 μg/l. Delayed P188 and polyethylene glycol infusion did not provide a significant benefit. These results demonstrate that intracoronary infusion of P188 immediately upon reperfusion significantly reduces cellular and mitochondrial injury after ischemia and reperfusion in this clinically relevant porcine model of STEMI. The timing and route of delivery were critical to achieve the benefit.

  7. Role of Extracellular RNA and TLR3‐Trif Signaling in Myocardial Ischemia–Reperfusion Injury

    Science.gov (United States)

    Chen, Chan; Feng, Yan; Zou, Lin; Wang, Larry; Chen, Howard H.; Cai, Jia‐Yan; Xu, Jun‐Mei; Sosnovik, David E.; Chao, Wei

    2014-01-01

    Background Toll‐like receptor 3 (TLR3) was originally identified as the receptor for viral RNA and represents a major host antiviral defense mechanism. TLR3 may also recognize extracellular RNA (exRNA) released from injured tissues under certain stress conditions. However, a role for exRNA and TLR3 in the pathogenesis of myocardial ischemic injury has not been tested. This study examined the role of exRNA and TLR3 signaling in myocardial infarction (MI), apoptosis, inflammation, and cardiac dysfunction during ischemia‐reperfusion (I/R) injury. Methods and Results Wild‐type (WT), TLR3−/−, Trif−/−, and interferon (IFN) α/β receptor‐1 deficient (IFNAR1−/−) mice were subjected to 45 minutes of coronary artery occlusion and 24 hours of reperfusion. Compared with WT, TLR3−/− or Trif−/− mice had smaller MI and better preserved cardiac function. Surprisingly, unlike TLR(2/4)‐MyD88 signaling, lack of TLR3‐Trif signaling had no impact on myocardial cytokines or neutrophil recruitment after I/R, but myocardial apoptosis was significantly attenuated in Trif−/− mice. Deletion of the downstream IFNAR1 had no effect on infarct size. Importantly, hypoxia and I/R led to release of RNA including microRNA from injured cardiomyocytes and ischemic heart, respectively. Necrotic cardiomyocytes induced a robust and dose‐dependent cytokine response in cultured cardiomyocytes, which was markedly reduced by RNase but not DNase, and partially blocked in TLR3‐deficient cardiomyocytes. In vivo, RNase administration reduced serum RNA level, attenuated myocardial cytokine production, leukocytes infiltration and apoptosis, and conferred cardiac protection against I/R injury. Conclusion TLR3‐Trif signaling represents an injurious pathway during I/R. Extracellular RNA released during I/R may contribute to myocardial inflammation and infarction. PMID:24390148

  8. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Zhang, Z.Z.; Wu, Y.; Ke, J.J.; He, X.H.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan (China)

    2013-09-24

    Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05). Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.

  9. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2013-09-01

    Full Text Available Quercetin (Que, a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group: sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05. Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05. Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.

  10. Hydroxytyrosol Protects against Myocardial Ischemia/Reperfusion Injury through a PI3K/Akt-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Ying-hao Pei

    2016-01-01

    Full Text Available Objective. To investigate the effects and mechanisms of hydroxytyrosol (HT during the pathogenesis of myocardial ischemia reperfusion (I/R in rat hearts. Methods. The rats were randomized into five groups: sham group, I/R group, HT+I/R group, HT+LY294002+I/R group, and LY+I/R group. Myocardial infarct size, markers of oxidative stress, extent of myocardial apoptosis, echocardiographically assessed cardiac function, and expression of Akt and GSK 3β were measured in each group. Results. Prereperfusion administration of HT was associated with a significantly smaller area of myocardial infarction and remarkably decreased level of myocardial apoptosis and necrosis, as evidenced by a lower apoptotic index, reduced cleaved caspase-3, and the serum activities of lactate dehydrogenase and creatinine kinase MB. Moreover, HT also attenuated the impairment of cardiac systolic function. However, cotreatment with LY294002 and HT completely abolished the above cardioprotective effects of HT. A subsequent mechanistic study revealed that the cardioprotective effects of HT during the process of I/R of the myocardium were dependent on the activation of the Akt/GSK3β pathway. Conclusion. Pretreatment with HT may have antiapoptotic and cardioprotective effects against myocardial I/R injury, and these effects seem to be related to the activation of the Akt/GSK3β pathway in the myocardium.

  11. Earlier reperfusion in patients with ST-elevation Myocardial infarction by use of helicopter

    Science.gov (United States)

    2012-01-01

    Background In patients with ST-elevation myocardial infarction (STEMI) reperfusion therapy should be initiated as soon as possible. This study evaluated whether use of a helicopter for transportation of patients is associated with earlier initiation of reperfusion therapy. Material and methods A prospective study was conducted, including patients with STEMI and symptom duration less than 12 hours, who had primary percutaneous coronary intervention (PPCI) performed at Aarhus University Hospital in Skejby. Patients with a health care system delay (time from emergency call to first coronary intervention) of more than 360 minutes were excluded. The study period ran from 1.1.2011 until 31.12.2011. A Western Denmark Helicopter Emergency Medical Service (HEMS) project was initiated 1.6.2011 for transportation of patients with time-critical illnesses, including STEMI. Results The study population comprised 398 patients, of whom 376 were transported by ambulance Emergency Medical Service (EMS) and 22 by HEMS. Field-triage directly to the PCI-center was used in 338 of patients. The median system delay was 94 minutes among those field-triaged, and 168 minutes among those initially admitted to a local hospital. Patients transported by EMS and field-triaged were stratified into four groups according to transport distance from the scene of event to the PCI-center: ≤25 km., 26–50 km., 51–75 km. and > 75 km. For these groups, the median system delay was 78, 89, 99, and 141 minutes. Among patients transported by HEMS and field-triaged the estimated median transport distance by ground transportation was 115 km, and the observed system delay was 107 minutes. Based on second order polynomial regression, it was estimated that patients with a transport distance of >60 km to the PCI-center may benefit from helicopter transportation, and that transportation by helicopter is associated with a system delay of less than 120 minutes even at a transport distance up to 150 km

  12. The effects of escitalopram on myocardial apoptosis and the expression of Bax and Bcl-2 during myocardial ischemia/reperfusion in a model of rats with depression.

    Science.gov (United States)

    Wang, Yiming; Zhang, Hongming; Chai, Fangxian; Liu, Xingde; Berk, Michael

    2014-12-04

    Major depressive disorder (MDD) is an independent risk factor for coronary heart disease (CHD), and influences the occurrence and prognosis of cardiovascular events. Although there is evidence that antidepressants may be cardioprotective after acute myocardial infarction (AMI) comorbid with MDD, the operative pathophysiological mechanisms remain unclear. Our aim was therefore to explore the molecular mechanisms of escitalopram on myocardial apoptosis and the expression of Bax and Bcl-2 in a rat model of depression during myocardial ischemia/reperfusion (I/R). Rats were divided randomly into 3 groups (n = 8): D group (depression), DI/R group (depression with myocardial I/R) and escitalopram + DI/R group. The rats in all three groups underwent the same chronic mild stress and separation for 21 days, at the same time, in the escitalopram + DI/R group, rats were administered escitalopram by gavage (10 mg/kg/day). Ligation of the rat's left anterior descending branch was done in the myocardial I/R model. Following which behavioral tests were done. The size of the myocardial infarction was detected using 1.5% TTC dye. The Tunel method was used to detect apoptotic myocardial cells, and both the Rt-PCR method and immunohistochemical techniques were used to detect the expression of Bcl-2 and Bax. Compared with the D and DI/R groups, rats in Escitalopram + DI/R group showed significantly increased movements and sucrose consumption (P escitalopram + DI/R group was significantly decreased (P escitalopram + DI/R groups (P escitalopram + DI/R group were significantly decreased (P escitalopram + DI/R group (P escitalopram. This suggests that clinically escitalopram may have a direct cardioprotective after acute myocardial infarction.

  13. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction

    Science.gov (United States)

    Lygate, Craig A.; Bohl, Steffen; ten Hove, Michiel; Faller, Kiterie M.E.; Ostrowski, Philip J.; Zervou, Sevasti; Medway, Debra J.; Aksentijevic, Dunja; Sebag-Montefiore, Liam; Wallis, Julie; Clarke, Kieran; Watkins, Hugh; Schneider, Jürgen E.; Neubauer, Stefan

    2012-01-01

    Aims Increasing energy storage capacity by elevating creatine and phosphocreatine (PCr) levels to increase ATP availability is an attractive concept for protecting against ischaemia and heart failure. However, testing this hypothesis has not been possible since oral creatine supplementation is ineffectual at elevating myocardial creatine levels. We therefore used mice overexpressing creatine transporter in the heart (CrT-OE) to test for the first time whether elevated creatine is beneficial in clinically relevant disease models of heart failure and ischaemia/reperfusion (I/R) injury. Methods and results CrT-OE mice were selected for left ventricular (LV) creatine 20–100% above wild-type values and subjected to acute and chronic coronary artery ligation. Increasing myocardial creatine up to 100% was not detrimental even in ageing CrT-OE. In chronic heart failure, creatine elevation was neither beneficial nor detrimental, with no effect on survival, LV remodelling or dysfunction. However, CrT-OE hearts were protected against I/R injury in vivo in a dose-dependent manner (average 27% less myocardial necrosis) and exhibited greatly improved functional recovery following ex vivo I/R (59% of baseline vs. 29%). Mechanisms contributing to ischaemic protection in CrT-OE hearts include elevated PCr and glycogen levels and improved energy reserve. Furthermore, creatine loading in HL-1 cells did not alter antioxidant defences, but delayed mitochondrial permeability transition pore opening in response to oxidative stress, suggesting an additional mechanism to prevent reperfusion injury. Conclusion Elevation of myocardial creatine by 20–100% reduced myocardial stunning and I/R injury via pleiotropic mechanisms, suggesting CrT activation as a novel, potentially translatable target for cardiac protection from ischaemia. PMID:22915766

  14. The Comparison of the Outcomes between Primary PCI, Fibrinolysis, and No Reperfusion in Patients ≥ 75 Years Old with ST-Segment Elevation Myocardial Infarction: Results from the Chinese Acute Myocardial Infarction (CAMI Registry.

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    Full Text Available Only a few randomized trials have analyzed the clinical outcomes of elderly ST-segment elevation myocardial infarction (STEMI patients (≥ 75 years old. Therefore, the best reperfusion strategy has not been well established. An observational study focused on clinical outcomes was performed in this population.Based on the national registry on STEMI patients, the in-hospital outcomes of elderly patients with different reperfusion strategies were compared. The primary endpoint was defined as death. Secondary endpoints included recurrent myocardial infarction, ischemia driven revascularization, myocardial infarction related complications, and major bleeding. Multivariable regression analysis was performed to adjust for the baseline disparities between the groups.Patients who had primary percutaneous coronary intervention (PCI or fibrinolysis were relatively younger. They came to hospital earlier, and had lower risk of death compared with patients who had no reperfusion. The guideline recommended medications were more frequently used in patients with primary PCI during the hospitalization and at discharge. The rates of death were 7.7%, 15.0%, and 19.9% respectively, with primary PCI, fibrinolysis, and no reperfusion (P 0.05. In the multivariable regression analysis, primary PCI outweighs no reperfusion in predicting the in-hospital death in patients ≥ 75 years old. However, fibrinolysis does not.Early reperfusion, especially primary PCI was safe and effective with absolute reduction of mortality compared with no reperfusion. However, certain randomized trials were encouraged to support the conclusion.

  15. ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion.

    Science.gov (United States)

    Schriewer, Jacqueline M; Peek, Clara Bien; Bass, Joseph; Schumacker, Paul T

    2013-04-18

    Ischemia-reperfusion (I/R) studies have implicated oxidant stress, the mitochondrial permeability transition pore (mPTP), and poly(ADP-ribose) polymerase (PARP) as contributing factors in myocardial cell death. However, the interdependence of these factors in the intact, blood-perfused heart is not known. We therefore wanted to determine whether oxidant stress, mPTP opening, and PARP activity contribute to the same death pathway after myocardial I/R. A murine left anterior descending coronary artery (LAD) occlusion (30 minutes) and release (1 to 4 hours) model was employed. Experimental groups included controls and antioxidant-treated, mPTP-inhibited, or PARP-inhibited hearts. Antioxidant treatment prevented oxidative damage, mPTP opening, ATP depletion, and PARP activity, placing oxidant stress as the proximal death trigger. Genetic deletion of cyclophilin D (CypD(-/-)) prevented loss of total NAD(+) and PARP activity, and mPTP-mediated loss of mitochondrial function. Control hearts showed progressive mitochondrial depolarization and loss of ATP from 1.5 to 4 hours of reperfusion, but not outer mitochondrial membrane rupture. Neither genetic deletion of PARP-1 nor its pharmacological inhibition prevented the initial mPTP-mediated depolarization or loss of ATP, but PARP ablation did allow mitochondrial recovery by 4 hours of reperfusion. These results indicate that oxidant stress, the mPTP, and PARP activity contribute to a single death pathway after I/R in the heart. PARP activation undermines cell survival by preventing mitochondrial recovery after mPTP opening early in reperfusion. This suggests that PARP-mediated prolongation of mitochondrial depolarization contributes significantly to cell death via an energetic crisis rather than by mitochondrial outer membrane rupture.

  16. Evaluation by contrast-enhanced MR imaging of the lateral border zone in reperfused myocardial infarction in a cat model

    International Nuclear Information System (INIS)

    Jeong, Ae Kyung; Choi, Sang Il; Kim, Dong Hun; Park, Sung Bin; Lee, Seoung Soo; Choi, Seong Hoon; Lim, Tae Hwan

    2000-01-01

    To identify and evaluate the lateral border zone by comparing the size and distribution of the abnormal signal area demonstrated by MR imaging with the infarct area revealed by pathological examination in a reperfused myocardial infarction cat model. In eight cats, the left anterior descending coronary artery was occluded for 90 minutes, and this was followed by 90 minutes of reperfusion. ECG-triggered breath-hold turbo spin-echo T2-weighted MR images were initially obtained along the short axis of the heart before the administration of contrast media. After the injection of Gadomer-17 and Gadophrin-2, contrastenhanced T1-weighted MR images were obtained for three hours. The size of the abnormal signal area seen on each image was compared with that of the infarct area after TTC staining. To assess ultrastructural changes in the myocardium at the infarct area, lateral border zone and normal myocardium, electron microscopic examination was performed. The high signal area seen on T2-weighted images and the enhanced area seen on Gadomer-17-enhanced T1WI were larger than the enhanced area on Gadophrin-2-enhanced T1WI and the infarct area revealed by TTC staining; the difference was expressed as a percentage of the size of the total left ventricle mass (T2= 39.2 %; Gadomer-17 =37.25 % vs Gadophrin-2 = 29.6 %; TTC staining = 28.2 %; p < 0.05). The ultrastructural changes seen at the lateral border zone were compatible with reversible myocardial damage. In a reperfused myocardial infarction cat model, the presence and size of the lateral border zone can be determined by means of Gadomer-17- and Gadophrin-2-enhanced MR imaging

  17. Early estimation of acute myocardial infarct size soon after coronary reperfusion using emission computed tomography with technetium-99m pyrophosphate

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kambara, H.; Fudo, T.; Tamaki, S.; Nohara, R.; Takatsu, Y.; Hattori, R.; Tokunaga, S.; Kawai, C.

    1987-01-01

    Early appearance of positive findings on a technetium-99m pyrophosphate scan has been shown to be associated with the presence of a reperfused acute myocardial infarction (AMI). Early technetium-99m pyrophosphate imaging was performed by emission computed tomography to evaluate reperfusion and to test the feasibility of estimating infarct size soon after coronary reperfusion based on acute positive tomographic findings. Twenty-seven patients with transmural AMI who were treated with intracoronary urokinase infusion followed by percutaneous transluminal coronary angioplasty underwent pyrophosphate imaging 8.7 +/- 2.1 hours after the onset of AMI. None of the 8 patients in whom reperfusion was unsuccessful had acute positive findings. Of 19 patients in whom reperfusion was successful, 17 had acute positive findings (p less than 0.001). In these 17, tomographic infarct volumes were determined from reconstructed transaxial images. The threshold for areas of increased pyrophosphate uptake within the infarct was set at 60% of peak activity by the computerized edge-detection algorithm. The total number of pixels in all transaxial sections showing increased tracer uptake were added and multiplied by a size factor and 1.05 g/cm3 muscle to determine infarct volume. The correlations of tomographic infarct volumes with peak serum creatine kinase (CK) levels (r = 0.82) and with cumulative release of CK-MB isoenzyme (r = 0.89) were good. Moreover, the time to positive imaging was significantly shorter than that to peak CK level (8.5 +/- 2.3 vs 10.4 +/- 2.2 hours, p less than 0.005)

  18. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Chen, Xing-miao; Chen, Han-sen; Xu, Ming-jing; Shen, Jian-gang

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.

  19. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity

    Directory of Open Access Journals (Sweden)

    Karthi Shanmugam

    2018-01-01

    Full Text Available Acute myocardial infarction (AMI is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R injury (IRI using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3β (GSK3β, which was confirmed by a biochemical assay and molecular docking studies.

  20. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity.

    Science.gov (United States)

    Shanmugam, Karthi; Ravindran, Sriram; Kurian, Gino A; Rajesh, Mohanraj

    2018-01-01

    Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R) injury (IRI) using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3 β (GSK3 β ), which was confirmed by a biochemical assay and molecular docking studies.

  1. The Comparison of the Outcomes between Primary PCI, Fibrinolysis, and No Reperfusion in Patients ≥ 75 Years Old with ST-Segment Elevation Myocardial Infarction: Results from the Chinese Acute Myocardial Infarction (CAMI) Registry.

    Science.gov (United States)

    Peiyuan, He; Jingang, Yang; Haiyan, Xu; Xiaojin, Gao; Ying, Xian; Yuan, Wu; Wei, Li; Yang, Wang; Xinran, Tang; Ruohua, Yan; Chen, Jin; Lei, Song; Xuan, Zhang; Rui, Fu; Yunqing, Ye; Qiuting, Dong; Hui, Sun; Xinxin, Yan; Runlin, Gao; Yuejin, Yang

    2016-01-01

    Only a few randomized trials have analyzed the clinical outcomes of elderly ST-segment elevation myocardial infarction (STEMI) patients (≥ 75 years old). Therefore, the best reperfusion strategy has not been well established. An observational study focused on clinical outcomes was performed in this population. Based on the national registry on STEMI patients, the in-hospital outcomes of elderly patients with different reperfusion strategies were compared. The primary endpoint was defined as death. Secondary endpoints included recurrent myocardial infarction, ischemia driven revascularization, myocardial infarction related complications, and major bleeding. Multivariable regression analysis was performed to adjust for the baseline disparities between the groups. Patients who had primary percutaneous coronary intervention (PCI) or fibrinolysis were relatively younger. They came to hospital earlier, and had lower risk of death compared with patients who had no reperfusion. The guideline recommended medications were more frequently used in patients with primary PCI during the hospitalization and at discharge. The rates of death were 7.7%, 15.0%, and 19.9% respectively, with primary PCI, fibrinolysis, and no reperfusion (P PCI also had lower rates of heart failure, mechanical complications, and cardiac arrest compared with fibrinolysis and no reperfusion (P PCI, fibrinolysis, and no reperfusion group (P > 0.05). In the multivariable regression analysis, primary PCI outweighs no reperfusion in predicting the in-hospital death in patients ≥ 75 years old. However, fibrinolysis does not. Early reperfusion, especially primary PCI was safe and effective with absolute reduction of mortality compared with no reperfusion. However, certain randomized trials were encouraged to support the conclusion.

  2. Myocardial thallium-201 kinetics and regional flow alterations with 3 hours of coronary occlusion and either rapid reperfusion through a totally patent vessel or slow reperfusion through a critical stenosis

    International Nuclear Information System (INIS)

    Granato, J.E.; Watson, D.D.; Flanagan, T.L.; Beller, G.A.

    1987-01-01

    Myocardial thallium-201 kinetics and regional blood flow alterations were examined in a canine model using 3 hours of coronary occlusion and different methods of reperfusion. Group I comprised 10 dogs undergoing a 3 hour left anterior descending artery occlusion and no reperfusion. Group II comprised seven dogs undergoing 3 hours of left anterior descending artery occlusion and rapid reperfusion through a totally patent vessel. Group III comprised 10 dogs undergoing 3 hours of left anterior descending artery occlusion and slow reperfusion through a residual stenosis. All dogs received 1.5 mCi of thallium-201 after 40 minutes of coronary occlusion. During occlusion and 2 hours of reperfusion, serial hemodynamic, blood flow and myocardial thallium-201 activity measurements were made. The relative thallium-201 gradient (normal zone minus ischemic zone activity when initial normal activity is expressed as 100%) during left anterior descending coronary occlusion was similar in all groups. Group I, 87 +/- 3%; Group II, 78 +/- 6%; Group III, 83 +/- 6% (p = NS). After 2 hours of either method of reperfusion, the final relative gradient had decreased to a similar level (Group II, 51 +/- 9%; Group III, 42 +/- 6%). These values were not significantly different from the final relative thallium-201 gradient seen in dogs undergoing a sustained 3 hour occlusion (Group I, 55 +/- 5%). After 2 hours of reperfusion, both methods of reflow were associated with similar degrees of ''no reflow.'' Transmural flows in the central ischemic zone were 89 +/- 10% of normal in Group II and 71 +/- 6% of normal in Group III after reperfusion, with both flows substantially higher than the relative thallium-201 activities in these dogs

  3. Utility of Cardiac Magnetic Resonance to assess association between admission hyperglycemia and myocardial damage in patients with reperfused ST-Segment Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Wolf Jean-Eric

    2008-01-01

    Full Text Available Abstract Aims to investigate the association between admission hyperglycemia and myocardial damage in patients with ST-segment elevation myocardial infarction (STEMI using Cardiac Magnetic Resonance (CMR. Methods We analyzed 113 patients with STEMI treated with successful primary percutaneous coronary intervention. Admission hyperglycemia was defined as a glucose level ≥ 7.8 mmol/l. Contrast-enhanced CMR was performed between 3 and 7 days after reperfusion to evaluate left ventricular function and perfusion data after injection of gadolinium-DTPA. First-pass images (FP, providing assessment of microvascular obstruction and Late Gadolinium Enhanced images (DE, reflecting the extent of infarction, were investigated and the extent of transmural tissue damage was determined by visual scores. Results Patients with a supramedian FP and DE scores more frequently had left anterior descending culprit artery (p = 0.02 and 1c (p = 0.01 and 0.04, peak plasma Creatine Kinase (p In a multivariate model, admission hyperglycemia remains independently associated with increased FP and DE scores. Conclusion Our results show the existence of a strong relationship between glucose metabolism impairment and myocardial damage in patients with STEMI. Further studies are needed to show if aggressive glucose control improves myocardial perfusion, which could be assessed using CMR.

  4. Thrombus aspiration combined with intra-coronary injection of Tirofiban for acute ST-segment elevation myocardial infarction: its influence on myocardial reperfusion

    International Nuclear Information System (INIS)

    Yin Da; Zhu Hao; Zhou Xuchen; Huang Rongchong; Zhang Bo; Wang Shaopeng; Zhang Yousheng; Jia Yuqing; Sun Menghan; Cui Hashen

    2011-01-01

    Objective: To explore the influence of thrombus aspiration combined with intra-coronary administration of the glycoprotein Ⅱ b/Ⅲ a inhibitor, Tirofiban, on myocardial microcirculation when percutaneous coronary intervention (PCI) is employed for the treatment of acute ST-segment elevation myocardial infarction. Methods: During the period from April 2008 to June 2010, percutaneous coronary interventional was performed in 184 consecutive patients with acute ST-segment elevation myocardial infarction. The patients were randomly divided into study group (n=78) and control group (n=106). Thrombus aspiration combined with intra-coronary administration of Tirofiban was used in patients of study group, while routine PCI together with intravenous administration of Tirofiban was adopted in patients of control group. Clinical features, TIMI grade, myocardial blush grade, ratio of ST falling >70% at 24 hours after treatment, incidence of massive haemorrhage, hospitalization, days, major adverse cardiac event within 30 days were observed, and the results were compared between two groups. Results: The incidence of no reflow phenomenon in study group was markedly lower than that in control group (5.67% vs. 21.14%, P=0.011), while the myocardial blush grade was much higher in study group than that in control group (2.03±0.32 vs. 1.12±0.47, P=0.021). The ratio of ST falling > 70% at 24 hours after treatment in study group was increased (94% vs. 85%, P=0.003), and the occurrence of perioperative massive haemorrhage was lower (9% vs. 4%, P=0.03). The incidence of major adverse cardiac event within 30 days was distinctly decreased although it was quite similar in both groups (5.5% vs. 6.1%, P=0.786). Conclusion: Thrombus aspiration combined with intra-coronary administration of Tirofiban is superior to conventional PCI in effectively improving the reperfusion of myocardial microcirculation and in reliably reducing perioperative risk. (authors)

  5. Intratracheal Administration of Small Interfering RNA Targeting Fas Reduces Lung Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Del Sorbo, Lorenzo; Costamagna, Andrea; Muraca, Giuseppe; Rotondo, Giuseppe; Civiletti, Federica; Vizio, Barbara; Bosco, Ornella; Martin Conte, Erica L; Frati, Giacomo; Delsedime, Luisa; Lupia, Enrico; Fanelli, Vito; Ranieri, V Marco

    2016-08-01

    Lung ischemia-reperfusion injury is the main cause of primary graft dysfunction after lung transplantation and results in increased morbidity and mortality. Fas-mediated apoptosis is one of the pathologic mechanisms involved in the development of ischemia-reperfusion injury. We hypothesized that the inhibition of Fas gene expression in lungs by intratracheal administration of small interfering RNA could reduce lung ischemia-reperfusion injury in an ex vivo model reproducing the procedural sequence of lung transplantation. Prospective, randomized, controlled experimental study. University research laboratory. C57/BL6 mice weighing 28-30 g. Ischemia-reperfusion injury was induced in lungs isolated from mice, 48 hours after treatment with intratracheal small interfering RNA targeting Fas, control small interfering RNA, or vehicle. Isolated lungs were exposed to 6 hours of cold ischemia (4°C), followed by 2 hours of warm (37°C) reperfusion with a solution containing 10% of fresh whole blood and mechanical ventilation with constant low driving pressure. Fas gene expression was significantly silenced at the level of messenger RNA and protein after ischemia-reperfusion in lungs treated with small interfering RNA targeting Fas compared with lungs treated with control small interfering RNA or vehicle. Silencing of Fas gene expression resulted in reduced edema formation (bronchoalveolar lavage protein concentration and lung histology) and improvement in lung compliance. These effects were associated with a significant reduction of pulmonary cell apoptosis of lungs treated with small interfering RNA targeting Fas, which did not affect cytokine release and neutrophil infiltration. Fas expression silencing in the lung by small interfering RNA is effective against ischemia-reperfusion injury. This approach represents a potential innovative strategy of organ preservation before lung transplantation.

  6. Effects of Antihypertensive, Hypolipidemic and Reperfusion Therapy on In-Hospital Mortality in Predominantly Hypertensive Patients with the First Myocardial Infarction (Fmi)

    Czech Academy of Sciences Publication Activity Database

    Peleška, Jan; Grünfeldová, H.; Reissigová, Jindra; Tomečková, Marie; Monhart, Z.; Ryšavá, D.; Velimský, T.; Ballek, L.; Hubač, J.

    2010-01-01

    Roč. 28, e-Supplement A (2010), e548 ISSN 0263-6352. [European Meeting on Hypertension /20./. 18.06.2010-21.06.2010, Oslo ] R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : in-hospital mortality for the first myocardial infarction * piloty registry of myocardial infarction * effects of pharmacotherapy and reperfusion therapy Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  7. Effect of intravenous FX06 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction results of the F.I.R.E. (Efficacy of FX06 in the Prevention of Myocardial Reperfusion Injury) trial

    DEFF Research Database (Denmark)

    Atar, Dan; Petzelbauer, Peter; Schwitter, Jürg

    2009-01-01

    by mitigating reperfusion injury. METHODS: In all, 234 patients presenting with acute ST-segment elevation myocardial infarction were randomized in 26 centers. FX06 or matching placebo was given as intravenous bolus at reperfusion. Infarct size was assessed 5 days after myocardial infarction by late gadolinium...

  8. [Effect of Electroacupuncture at "Neiguan"(PC 6) on Serum and Myocardial Metabolites in Rats with Myocardial Ischemia Reperfusion Injury Based on Nuclear Magnetic Resonance Spectroscopy].

    Science.gov (United States)

    Tang, Ya-Ni; Tan, Cheng-Fu; Liu, Wei-Wei; Yan, Jie; Wang, Chao; Liu, Mi; Lin, Dong-Hai; Huang, Cai-Hua; Du, Lin; Chen, Mei-Lin; Li, Jiao-Lan; Zhu, Ding-Ming

    2018-03-25

    We have repeatedly demonstrated that electroacupuncture (EA) of "Neiguan"(PC 6) can improve myocardial ischemia in rats. The present study was designed to investigate the metabolomic profile of peripheral blood se-rum and myocardium involving EA-induced improvement of myocardial ischemia-reperfusion injury (MIRI) in rats by using nuclear magnetic resonance spectroscopy. Thirty male SD rats were equally randomized into blank control, model and EA groups. Rats of the control group were only banded for 20 min, once a day for 7 days. The MIRI model was established by occlusion of the anterior descending branch of the left coronary artery for 40 min, followed by reperfusion for 60 min, and rats of the model group were banded as those in the control group. EA (10 Hz/50 Hz, 1 mA) was applied to bilateral PC 6 for 20 min, once daily for 7 days. The blood samples and left ventricular myocardial tissues were collected for assaying the profiles of differential metabolites using 1 H nuclear magnetic resonance ( 1 H NMR) spectroscopy and multivariate statistical analysis such as the principal components analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal PLS-DA (O-PLS-DA) with SIMCA-P software 12.0. A total of 19 differential metabolites (17 down-regulated, 2 up-regulated) in the serum and 14 differential metabolites (13 down-regulated and 1 up-regulated) in the ischemic left myocardium were identified after MIRI. Of the 19 serum differential metabolites, amino acids (leucine, isoleucine, valine,alanine, lysine, glycine, glutamine), 3-hydroxy butyric acid (3-HB), lactic acid, acetate, N-acetyl glycoprotein (NAc), acetone, acetoacetate, succinate, polyunsaturated fatty acids (PUFA), creatine, glycerophosphocholine (GPC) were down-regulated; while low density lipoprotein (LDL), LDL/very low density lipoprotein(LDL/VLDL)and glucose obviously up-regulated. Of the 14 myocardial differential metabolites, amino acids (alanine, lysine, glutamate

  9. Effects of single-dose atorvastatin on interleukin-6, interferon gamma, and myocardial no-reflow in a rabbit model of acute myocardial infarction and reperfusion

    International Nuclear Information System (INIS)

    Zhao, X.J.; Liu, X.L.; He, G.X.; Xu, H.P.

    2014-01-01

    The mechanisms of statins relieving the no-reflow phenomenon and the effects of single-dose statins on it are not well known. This study sought to investigate the effects of inflammation on the no-reflow phenomenon in a rabbit model of acute myocardial infarction and reperfusion (AMI/R) and to evaluate the effects of single-dose atorvastatin on inflammation and myocardial no-reflow. Twenty-four New Zealand white male rabbits (5-6 months old) were randomized to three groups of eight: a sham-operated group, an AMI/R group, and an atorvastatin-treated group (10 mg/kg). Animals in the latter two groups were subjected to 4 h of coronary occlusion followed by 2 h of reperfusion. Serum levels of interleukin (IL)-6 were measured by enzyme-linked immunosorbent assay. The expression of interferon gamma (IFN-γ) in normal and infarcted (reflow and no-reflow) myocardial tissue was determined by immunohistochemical methods. The area of no-reflow and necrosis was evaluated pathologically. Levels of serum IL-6 were significantly lower in the atorvastatin group than in the AMI/R group (P<0.01). Expression of IFN-γ in infarcted reflow and no-reflow myocardial tissue was also significantly lower in the atorvastatin group than in the AMI/R group. The mean area of no-reflow [47.01% of ligation area (LA)] was significantly smaller in the atorvastatin group than in the AMI/R group (85.67% of LA; P<0.01). The necrosis area was also significantly smaller in the atorvastatin group (85.94% of LA) than in the AMI/R group (96.56% of LA; P<0.01). In a secondary analysis, rabbits in the atorvastatin and AMI/R groups were divided into two groups based on necrosis area (90% of LA): a small group (<90% of LA) and a large group (>90% of LA). There was no significant difference in the area of no-reflow between the small (61.40% of LA) and large groups (69.87% of LA; P>0.05). Single-dose atorvastatin protected against inflammation and myocardial no-reflow and reduced infarct size during AMI/R in

  10. Effects of single-dose atorvastatin on interleukin-6, interferon gamma, and myocardial no-reflow in a rabbit model of acute myocardial infarction and reperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. J. [Affiliated Hospital of Binzhou Medical University, Department of Cardiology, Binzhou, China, Department of Cardiology, Affiliated Hospital of Binzhou Medical University, Binzhou (China); Liu, X. L. [Qilu Hospital, Shandong University, Department of Cardiology, Jinan, China, Department of Cardiology, Qilu Hospital, Shandong University, Jinan (China); He, G. X. [Third Military Medical University, Southwest Hospital, Department of Cardiology, Chongqing, China, Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing (China); Xu, H. P. [Affiliated Hospital of Binzhou Medical University, Department of Cardiology, Binzhou, China, Department of Cardiology, Affiliated Hospital of Binzhou Medical University, Binzhou (China)

    2014-03-03

    The mechanisms of statins relieving the no-reflow phenomenon and the effects of single-dose statins on it are not well known. This study sought to investigate the effects of inflammation on the no-reflow phenomenon in a rabbit model of acute myocardial infarction and reperfusion (AMI/R) and to evaluate the effects of single-dose atorvastatin on inflammation and myocardial no-reflow. Twenty-four New Zealand white male rabbits (5-6 months old) were randomized to three groups of eight: a sham-operated group, an AMI/R group, and an atorvastatin-treated group (10 mg/kg). Animals in the latter two groups were subjected to 4 h of coronary occlusion followed by 2 h of reperfusion. Serum levels of interleukin (IL)-6 were measured by enzyme-linked immunosorbent assay. The expression of interferon gamma (IFN-γ) in normal and infarcted (reflow and no-reflow) myocardial tissue was determined by immunohistochemical methods. The area of no-reflow and necrosis was evaluated pathologically. Levels of serum IL-6 were significantly lower in the atorvastatin group than in the AMI/R group (P<0.01). Expression of IFN-γ in infarcted reflow and no-reflow myocardial tissue was also significantly lower in the atorvastatin group than in the AMI/R group. The mean area of no-reflow [47.01% of ligation area (LA)] was significantly smaller in the atorvastatin group than in the AMI/R group (85.67% of LA; P<0.01). The necrosis area was also significantly smaller in the atorvastatin group (85.94% of LA) than in the AMI/R group (96.56% of LA; P<0.01). In a secondary analysis, rabbits in the atorvastatin and AMI/R groups were divided into two groups based on necrosis area (90% of LA): a small group (<90% of LA) and a large group (>90% of LA). There was no significant difference in the area of no-reflow between the small (61.40% of LA) and large groups (69.87% of LA; P>0.05). Single-dose atorvastatin protected against inflammation and myocardial no-reflow and reduced infarct size during AMI/R in

  11. Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial.

    Science.gov (United States)

    Kloner, Robert A; Forman, Mervyn B; Gibbons, Raymond J; Ross, Allan M; Alexander, R Wayne; Stone, Gregg W

    2006-10-01

    The purpose of this analysis was to determine whether the efficacy of adenosine vs. placebo was dependent on the timing of reperfusion therapy in the second Acute Myocardial Infarction Study of Adenosine (AMISTAD-II). Patients presenting with ST-segment elevation anterior AMI were randomized to receive placebo vs. adenosine (50 or 70 microg/kg/min) for 3 h starting within 15 min of reperfusion therapy. In the present post hoc hypothesis generating study, the results were stratified according to the timing of reperfusion, i.e. > or = or < the median 3.17 h, and by reperfusion modality. In patients receiving reperfusion < 3.17 h, adenosine compared with placebo significantly reduced 1-month mortality (5.2 vs. 9.2%, respectively, P = 0.014), 6-month mortality (7.3 vs. 11.2%, P = 0.033), and the occurrence of the primary 6-month composite clinical endpoint of death, in-hospital CHF, or rehospitalization for CHF at 6 months (12.0 vs. 17.2%, P = 0.022). Patients reperfused beyond 3 h did not benefit from adenosine. In this post hoc analysis, 3 h adenosine infusion administered as an adjunct to reperfusion therapy within the first 3.17 h onset of evolving anterior ST-segment elevation AMI enhanced early and late survival, and reduced the composite clinical endpoint of death or CHF at 6 months.

  12. RP105 Protects Against Apoptosis in Ischemia/Reperfusion-Induced Myocardial Damage in Rats by Suppressing TLR4-Mediated Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-07-01

    Full Text Available Background: Myocardial apoptosis is heavily implicated in the myocardial damage caused by ischemia-reperfusion (I/R. Toll-like receptor 4 (TLR4 is a potent inducer of these apoptotic cascades. In contrast, the radioprotective 105 kDa protein (RP105 is a specific negative regulator of TLR4 signaling pathways. However, the precise mechanisms by which RP105 inhibits myocardium apoptosis via TLR4-associated pathways during I/R is not fully understood. Methods: We utilized a rat model of myocardial ischemic reperfusion injury (MIRI. Animals were pre-treated with Ad-EGFP adenovirus, Ad-EGFP-RP105 adenovirus, saline, or nothing (sham. After three days, rats underwent a 30min left anterior descending coronary artery occlusion and a 4h reperfusion. Mycardial tissue was assessed by immunohistochemistry, TUNEL-staining, Western blot, quantitative RT-PCR, and a morphometric assay. Results: RP105 overexpression resulted in a reduction in infarct size, fewer TUNEL-positive cardiomyocytes, and a reduction in mitochondrial-associated apoptosis cascade activity. Further, RP105 overexpression repressed I/R-induced myocardial injury by attenuating myocardial apoptosis. This was mediated by inhibiting TLR4 activation and the phosphorylation of P38MAPK and the downstream transcription factor AP-1. Conclusion: RP105 overexpression leads to the de-activation of TLR4, P38MAPK, and AP-1 signaling pathways, and subsequently represses apoptotic cascades and ensuing damage of myocardial ischemic reperfusion. These findings may become the basis of a novel therapeutic approach for reducing of cardiac damage caused by MIRI.

  13. Evaluation of myocardial preconditioning and adenosine effects in cardioprotection in rat hearts with ischemia-reperfusion injury using 99MTc-glucarate imaging

    International Nuclear Information System (INIS)

    Liu Zhonglin; Barrett, H.H.; Koon Yan Pak

    2004-01-01

    Significant tolerance to myocardial ischemia-reperfusion injury, as assessed by biochemical assay and noninvasive infarct-avid imaging, was induced with an IPC protocol in the rat model. The cardioprotection of IPC could be simulated by adenosine receptor A1 agonist CCPA, or blocked by antagonist SPT. Thus, adenosine mediates protection by ischemic preconditioning in this specific rat heart model. 99mTc-glucarate imaging is not only useful in detecting early ischemia-reperfusion injury, but also invaluable in evaluating the effects of cardioprotective treatments. uantitative anal ses on dynamic images with 99m Tc-glucarate would make it possible to identify myocardial ischemia-reperfusion injury more accurate, and provide a unique tool for evaluation of cardioprotection. The FASTSPECT imaging with the ischenuc-reperfused rat heart model provides a solution-specific approach with high-resolution and fast dynamic acquisition for kinetic studies of new myocardial imaging agents as the evidence of its major role in the present study. (authors)

  14. Quantitative N-linked Glycoproteomics of Myocardial Ischemia and Reperfusion Injury Reveals Early Remodeling in the Extracellular Environment

    DEFF Research Database (Denmark)

    Parker, Benjamin L; Palmisano, Giuseppe; Edwards, Alistair V G

    2011-01-01

    , while dimethyl labeling confirmed 46 of these and revealed an additional 62 significant changes. These were mainly from predicted extracellular matrix and basement membrane proteins that are implicated in cardiac remodeling. Analysis of N-glycans released from myocardial proteins suggest...... that the observed changes were not due to significant alterations in N-glycan structures. Altered proteins included the collagen-laminin-integrin complexes and collagen assembly enzymes, cadherins, mast cell proteases, proliferation-associated secreted protein acidic and rich in cysteine, and microfibril......Extracellular and cell surface proteins are generally modified with N-linked glycans and glycopeptide enrichment is an attractive tool to analyze these proteins. The role of N-linked glycoproteins in cardiovascular disease, particularly ischemia and reperfusion injury, is poorly understood...

  15. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    Directory of Open Access Journals (Sweden)

    Khayat Andre

    2011-01-01

    Full Text Available Abstract We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies.

  16. Comparison of gadolinium polylysine and gadopentetate in contrast enhanced MR imaging of myocardial ischemia-reperfusion in cats

    International Nuclear Information System (INIS)

    Lim, Tae Hwan; Lee, Jung Hee; Lee, Tae Keun; Mun, Chi Woong

    1995-01-01

    To assess the signal enhancement by gadolinium-DTPA-polylysine (Gd-polylysine) as compared to gadopentetate (Gd-DTPA) in MR imaging of heart that have undergone ischemia-reperfusion, and to estimate the extent of myocardial damage covered by the MR signal enhancement. A series of contrast enhanced cardiac MR images were obtained from 17 cats subjected to a 90 minutes of occlusion of the left anterior descending coronary artery (LAD) followed by a 90 minutes of reperfusion. Time courses of changes in the signal intensity (SI) of the ischemic area were measured in Gd-polylysine group (8 cats) and Gd-DTPA group (9 cats). The size of MR signal enhanced area was then compared to the sizes of infarction and the area at risk revealed by TTC histochemical staining. Maximum SIs were obtained at 60 minutes and 30 minutes after injection of the contrast material, respectively for Gd-polylysine group and Gd-DTPA group. Signal enhancement was stronger and persistent for a longer period in Gd-polylysine group than in GD-DTPA group. Sizes of the enhanced are, the infarction, and the area at risk were about 30%, 15%, and 50% of the total left ventricle (LV) area; the difference between the groups was statistically insignificant. Gd-polylysine can be used better for a blood pool marker than Gd-DTPA in MR imaging of myocardial ischemia, due to its strong and persistent signal enhancement. The MR signal enhanced area includes both the infarcted area and a portion of the area at risk

  17. Low-Level Tragus Stimulation for the Treatment of Ischemia and Reperfusion Injury in Patients With ST-Segment Elevation Myocardial Infarction: A Proof-of-Concept Study.

    Science.gov (United States)

    Yu, Lilei; Huang, Bing; Po, Sunny S; Tan, Tuantuan; Wang, Menglong; Zhou, Liping; Meng, Guannan; Yuan, Shenxu; Zhou, Xiaoya; Li, Xuefei; Wang, Zhuo; Wang, Songyun; Jiang, Hong

    2017-08-14

    The aim of this study was to investigate whether low-level tragus stimulation (LL-TS) treatment could reduce myocardial ischemia-reperfusion injury in patients with ST-segment elevation myocardial infarction (STEMI). The authors' previous studies suggested that LL-TS could reduce the size of myocardial injury induced by ischemia. Patients who presented with STEMI within 12 h of symptom onset, treated with primary percutaneous coronary intervention, were randomized to the LL-TS group (n = 47) or the control group (with sham stimulation [n = 48]). LL-TS, 50% lower than the electric current that slowed the sinus rate, was delivered to the right tragus once the patients arrived in the catheterization room and lasted for 2 h after balloon dilatation (reperfusion). All patients were followed for 7 days. The occurrence of reperfusion-related arrhythmia, blood levels of creatine kinase-MB, myoglobin, N-terminal pro-B-type natriuretic peptide and inflammatory markers, and echocardiographic characteristics were evaluated. The incidence of reperfusion-related ventricular arrhythmia during the first 24 h was significantly attenuated by LL-TS. In addition, the area under the curve for creatine kinase-MB and myoglobin over 72 h was smaller in the LL-TS group than the control group. Furthermore, blood levels of inflammatory markers were decreased by LL-TS. Cardiac function, as demonstrated by the level of N-terminal pro-B-type natriuretic peptide, the left ventricular ejection fraction, and the wall motion index, was markedly improved by LL-TS. LL-TS reduces myocardial ischemia-reperfusion injury in patients with STEMI. This proof-of-concept study raises the possibility that this noninvasive strategy may be used to treat patients with STEMI undergoing primary percutaneous coronary intervention. Copyright © 2017. Published by Elsevier Inc.

  18. Dietary broccoli sprouts protect against myocardial oxidative damage and cell death during ischemia-reperfusion.

    Science.gov (United States)

    Akhlaghi, Masoumeh; Bandy, Brian

    2010-09-01

    Cruciferous vegetables are known for antioxidant and anti-carcinogenic effects. In the current study we asked whether dietary broccoli sprouts can protect the heart from ischemia-reperfusion. Rats were fed either control diet (sham and control groups) or a diet mixed with 2% dried broccoli sprouts for 10 days. After 10 days the isolated hearts were subjected to ischemia for 20 min and reperfusion for 2 h, and evaluated for cell death, oxidative damage, and Nrf2-regulated phase 2 enzyme activities. Broccoli sprouts feeding inhibited markers of necrosis (lactate dehydrogenase release) and apoptosis (caspase-3 activity) by 78-86%, and decreased indices of oxidative stress (thiobarbituric acid reactive substances and aconitase inactivation) by 82-116%. While broccoli sprouts increased total glutathione and activities of the phase 2 enzymes glutamate cysteine ligase and quinone reductase in liver, they did not affect these in ischemic-reperfused heart. While the mechanism is not clear, the results show that a relatively short dietary treatment with broccoli sprouts can strongly protect the heart against oxidative stress and cell death caused by ischemia-reperfusion.

  19. The evaluation of usefulness of quantitative analysis method with {sup 99m}Tc-tetrofosmin on effective dicision of reperfusion therapy to acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hitoshi; Sone, Takahito [Ogaki Municipal Hospital, Gifu (Japan)

    1998-01-01

    SPECT on acute and chronic period of {sup 99m}Tc-tetrofosmin on 46 patients with acute myocardial infarction were analyzed to evaluate about usefulness of quantitative analysis method used by unfolding image that was gotten by Bull`s eye analysis on reperfusion therapy in acute myocardial infarction, and we could get undermentioned results. 60% black out area in resional of interested was best on the obstacle myocardium using analysis of unfolding image. Significantly betterment from acute to chronic phase on the obstacle area of myocardium and the mean uptake ratio of the obstacle area was confirmed by this method. The relation between myocardial salvage and factors of myocardial damage, for example reperfusion time TIMI grade, rentrop grade and reperfusion phenomenon could be analyzed by this method. This method was suspected to underestimate the areas of obstacle myocardium on the cases of defect of apex. Error of analysis was suspected on the case of accumulation of TF to other than myocardium. The problems were minimised by some techniques mention in this paper. (author)

  20. EMMPRIN-Targeted Magnetic Nanoparticles for In Vivo Visualization and Regression of Acute Myocardial Infarction.

    Science.gov (United States)

    Cuadrado, Irene; Piedras, Maria Jose Garcia Miguel; Herruzo, Irene; Turpin, Maria Del Carmen; Castejón, Borja; Reventun, Paula; Martin, Ana; Saura, Marta; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of extracellular matrix (ECM) degradation may represent a mechanism for cardiac protection against ischemia. Extracellular matrix metalloproteinase inducer (EMMPRIN) is highly expressed in response to acute myocardial infarction (AMI), and induces activation of several matrix metalloproteinases (MMPs), including gelatinases MMP-2 and MMP-9. We targeted EMMPRIN with paramagnetic/fluorescent micellar nanoparticles conjugated with the EMMPRIN binding peptide AP-9 (NAP9), or an AP-9 scrambled peptide as a negative control (NAPSC). We found that NAP9 binds to endogenous EMMPRIN in cultured HL1 myocytes and in mouse hearts subjected to ischemia/reperfusion (IR). Injection of NAP9 at the time of or one day after IR, was enough to reduce progression of myocardial cell death when compared to CONTROL and NAPSC injected mice (infarct size in NAP9 injected mice: 32%±6.59 vs 46%±9.04 or NAPSC injected mice: 48%±7.64). In the same way, cardiac parameters were recovered to almost healthy levels (LVEF NAP9 63% ± 7.24 vs CONTROL 42% ± 4.74 or NAPSC 39% ± 6.44), whereas ECM degradation was also reduced as shown by inhibition of MMP-2 and MMP-9 activation. Cardiac magnetic resonance (CMR) scans have shown a signal enhancement in the left ventricle of NAP9 injected mice with respect to non-injected, and to mice injected with NAPSC. A positive correlation between CMR enhancement and Evans-Blue/TTC staining of infarct size was calculated (R:0.65). Taken together, these results point to EMMPRIN targeted nanoparticles as a new approach to the mitigation of ischemic/reperfusion injury.

  1. Natriuretic peptide infusion reduces myocardial injury during acute ischemia/reperfusion

    DEFF Research Database (Denmark)

    Kousholt, Birgitte S.; Larsen, Jens Kjærgaard Rolighed; Bisgaard, Line Stattau

    2012-01-01

    Aim: The aim of this study was to determine whether a natriuretic peptide infusion during reperfusion can reduce cardiomyocyte ischemia–reperfusion damage. Materials and methods: The effect of B-type natriuretic peptide (BNP) activity was assessed in vitro and in vivo: the cellular effect...... in apoptotic changes in the BNP-stimulated cells. Pigs tolerated the BNP and CD-NP (a CNP analogue) infusion well, with a decrease in systemic blood pressure (~15 mmHg) and increased diuresis compared with the controls. Left ventricular pressure decreased in the pigs that received BNP infusion compared...... with controls (P=0.02). A similar trend was observed in the pigs that received CD-NP infusion, although this was not significant (P=0.3). BNP and CD-NP infusion in pigs reduced total cardiac troponin T release by 46 and 40%, respectively (P=0.0015 and 0.0019), and were associated with improved RNA integrity...

  2. Natriuretic peptide infusion reduces myocardial injury during acute ischemia/reperfusion

    DEFF Research Database (Denmark)

    Kousholt, Birgitte S.; Larsen, Jens Kjærgaard Rolighed; Bisgaard, Line Stattau

    2012-01-01

    Aim: The aim of this study was to determine whether a natriuretic peptide infusion during reperfusion can reduce cardiomyocyte ischemia–reperfusion damage. Materials and methods: The effect of B-type natriuretic peptide (BNP) activity was assessed in vitro and in vivo: the cellular effect...... in apoptotic changes in the BNP-stimulated cells. Pigs tolerated the BNP and CD-NP (a CNP analogue) infusion well, with a decrease in systemic blood pressure (∼15 mmHg) and increased diuresis compared with the controls. Left ventricular pressure decreased in the pigs that received BNP infusion compared...... with controls (P=0.02). A similar trend was observed in the pigs that received CD-NP infusion, although this was not significant (P=0.3). BNP and CD-NP infusion in pigs reduced total cardiac troponin T release by 46 and 40%, respectively (P=0.0015 and 0.0019), and were associated with improved RNA integrity...

  3. Protective effect of sauchinone against regional myocardial ischemia/reperfusion injury: inhibition of p38 MAPK and JNK death signaling pathways.

    Science.gov (United States)

    Kim, Seok Jai; Jeong, Cheol Won; Bae, Hong Beom; Kwak, Sang Hyun; Son, Jong-Keun; Seo, Chang-Seob; Lee, Hyun-Jung; Lee, JongUn; Yoo, Kyung Yeon

    2012-05-01

    Sauchinone has been known to have anti-inflammatory and antioxidant effects. We determined whether sauchinone is beneficial in regional myocardial ischemia/reperfusion (I/R) injury. Rats were subjected to 20 min occlusion of the left anterior descending coronary artery, followed by 2 hr reperfusion. Sauchinone (10 mg/kg) was administered intraperitoneally 30 min before the onset of ischemia. The infarct size was measured 2 hr after resuming the perfusion. The expression of cell death kinases (p38 and JNK) and reperfusion injury salvage kinases (phosphatidylinositol-3-OH kinases-Akt, extra-cellular signal-regulated kinases [ERK1/2])/glycogen synthase kinase (GSK)-3β was determined 5 min after resuming the perfusion. Sauchinone significantly reduced the infarct size (29.0% ± 5.3% in the sauchinone group vs 44.4% ± 6.1% in the control, P death signaling pathways.

  4. Treatment of reperfusion injury with recombinant ADAMTS13 in a porcine model of acute myocardial infarction

    NARCIS (Netherlands)

    Eerenberg, E.S.; Teunissen, P.F.A.; Van Den Born, B.J.; Meijers, J.C.; Hollander, M.; Aly, M.; Niessen, H.W.M.; Kamphuisen, P.W.; Levi, M.; Van Royen, N.

    Background: No reflow and decreased microvascular perfusion after percutaneous coronary intervention increase morbidity and mortality in ST-elevation myocardial infarction (STEMI) patients. No reflow may be mediated by platelet vessel wall interaction that is governed by von Willebrand factor.

  5. Hospital process intervals, not EMS time intervals, are the most important predictors of rapid reperfusion in EMS Patients with ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Clark, Carol Lynn; Berman, Aaron D; McHugh, Ann; Roe, Edward Jedd; Boura, Judith; Swor, Robert A

    2012-01-01

    To assess the relationship of emergency medical services (EMS) intervals and internal hospital intervals to the rapid reperfusion of patients with ST-segment elevation myocardial infarction (STEMI). We performed a secondary analysis of a prospectively collected database of STEMI patients transported to a large academic community hospital between January 1, 2004, and December 31, 2009. EMS and hospital data intervals included EMS scene time, transport time, hospital arrival to myocardial infarction (MI) team activation (D2Page), page to catheterization laboratory arrival (P2Lab), and catheterization laboratory arrival to reperfusion (L2B). We used two outcomes: EMS scene arrival to reperfusion (S2B) ≤90 minutes and hospital arrival to reperfusion (D2B) ≤90 minutes. Means and proportions are reported. Pearson chi-square and multivariate regression were used for analysis. During the study period, we included 313 EMS-transported STEMI patients with 298 (95.2%) MI team activations. Of these STEMI patients, 295 (94.2%) were taken to the cardiac catheterization laboratory and 244 (78.0%) underwent percutaneous coronary intervention (PCI). For the patients who underwent PCI, 127 (52.5%) had prehospital EMS activation, 202 (82.8%) had D2B ≤90 minutes, and 72 (39%) had S2B ≤90 minutes. In a multivariate analysis, hospital processes EMS activation (OR 7.1, 95% CI 2.7, 18.4], Page to Lab [6.7, 95% CI 2.3, 19.2] and Lab arrival to Reperfusion [18.5, 95% CI 6.1, 55.6]) were the most important predictors of Scene to Balloon ≤ 90 minutes. EMS scene and transport intervals also had a modest association with rapid reperfusion (OR 0.85, 95% CI 0.78, 0.93 and OR 0.89, 95% CI 0.83, 0.95, respectively). In a secondary analysis, Hospital processes (Door to Page [OR 44.8, 95% CI 8.6, 234.4], Page 2 Lab [OR 5.4, 95% CI 1.9, 15.3], and Lab arrival to Reperfusion [OR 14.6 95% CI 2.5, 84.3]), but not EMS scene and transport intervals were the most important predictors D2B ≤90

  6. Pharmacologic Effects of Cannabidiol on Acute Reperfused Myocardial Infarction in Rabbits: Evaluated With 3.0T Cardiac Magnetic Resonance Imaging and Histopathology.

    Science.gov (United States)

    Feng, Yuanbo; Chen, Feng; Yin, Ting; Xia, Qian; Liu, Yewei; Huang, Gang; Zhang, Jian; Oyen, Raymond; Ni, Yicheng

    2015-10-01

    Cannabidiol (CBD) has anti-inflammatory effects. We explored its therapeutic effects on cardiac ischemia-reperfusion injury with an experimental imaging platform. Reperfused acute myocardial infarction (AMI) was induced in rabbits with a 90-minute coronary artery occlusion followed by 24-hour reperfusion. Before reperfusion, rabbits received 2 intravenous doses of 100 μg/kg CBD (n = 10) or vehicle (control, n = 10). Evans blue was intravenously injected for later detection of the AMI core. Cardiac magnetic resonance imaging was performed to evaluate cardiac morphology and function. After euthanasia, blood troponin I (cTnI) was assessed, and the heart was excised and infused with multifunctional red iodized oil dye. The heart was sliced for digital radiography to quantify the perfusion density rate, area at risk (AAR), and myocardial salvage index, followed by histomorphologic staining. Compared with controls, CBD treatment improved systolic wall thickening (P CBD therapy reduced AMI size and facilitated restoration of left ventricular function. We demonstrated that this experimental platform has potential theragnostic utility.

  7. Assessment of the effects of levosimendan and thymoquinone on lung injury after myocardial ischemia reperfusion in rats

    Directory of Open Access Journals (Sweden)

    Sezen SC

    2018-05-01

    Full Text Available Şaban Cem Sezen,1 Aysegul Kucuk,2 Abdullah Özer,3 Yiğit Kılıç,4 Barış Mardin,3 Metin Alkan,5 Fatmanur Duruk Erkent,5 Mustafa Arslan,5 Yusuf Ünal,5 Gürsel Levent Oktar,3 Murat Tosun6 1Department of Histology and Embryology, Kirikkale University Medical Faculty, Kirikkale, Turkey; 2Department of Physiology, Dumlupinar University Medical Faculty, Kutahya, Turkey; 3Department of Cardiovascular Surgery, Gazi University Medical Faculty, Ankara, Turkey; 4Pediatric Cardiovascular Surgery Clinic, Dr Siyami Ersek Cardiovascular and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey; 5Department of Anaesthesiology and Reanimation, Gazi University Medical Faculty, Ankara, Turkey; 6Department of Histology and Embryology, Afyon Kocatepe University Medical Faculty, Afyonkarahisar, Turkey Aim: The aim of this study was to investigate the effects of levosimendan and thymoquinone (TQ on lung injury after myocardial ischemia/reperfusion (I/R. Materials and methods: Twenty-four Wistar albino rats were included in the study. The animals were randomly assigned to 1 of 4 experimental groups. In Group C (control group, left anterior descending artery was not occluded or reperfused. Myocardial I/R was induced by ligation of the left anterior descending artery for 30 min, followed by 2 h of reperfusion in the I/R, I/R-levosimendan (24 μg/kg (IRL group, and I/R-thymoquinone (0.2 mL/kg (IRTQ group. Tissue samples taken from the lungs of rats were histochemically stained with H&E and immunohistochemically stained with p53, Bcl 2, Bax, and caspase 3 primer antibodies. Results: Increased expression of p53 and Bax was observed (4+, especially in the I/R group. In IRTQ and IRL groups, expression was also observed at various locations (2+, 3+. H&E staining revealed that that the lungs were severely damaged and the walls of the alveoli were too thick, the number of areas examined was increased during the evaluation. Caspase 3 expression was observed to

  8. An Observational study of prehospital and hospital delay in reperfusion for acute myocardial infarction at a University Hospital in India

    Directory of Open Access Journals (Sweden)

    Rahul Choudhary

    2016-01-01

    Full Text Available Objective: Cardiovascular disease is the leading cause of death among Indian adults, and approximately 50% of deaths usually occur during the 1st hour after symptom onset before arriving at the hospital. A study was planned to evaluate the prehospital and hospital delay in patients with acute myocardial infarction (AMI. Methods: This was a prospective observational study of 390 patients with AMI admitted to the Department of Cardiology between March 2014 and August 2015. Detailed patient demographics, socioeconomic status, and prehospital and hospital delay were reviewed. Results: The mean age of presentation for male and female was 57 ± 12.91 and 61.5 ± 12.83 years, respectively. The mean prehospital delay, time to act after chest pain, and travel time were 9.08 ± 6.3, 7.16 ± 6.1, and 1.84 ± 0.8 h, respectively, and only three (9.7% patients reached the hospital within 2 h after symptom onset. Out of 300 patients who received reperfusion therapy, thrombolysis was done in 276 (92% patients while primary percutaneous coronary intervention was performed in only 24 (8% patients. Mean door-to-needle (D-N time and door-to-device time for those who received reperfusion therapy were 27.8 ± 4.3 and 78.95 ± 9.5 min, respectively. A multivariate logistic regression analysis revealed that the prehospital delay was significantly associated with older age, female sex, rural background, diabetes, having atypical pain, and lack of knowledge regarding the seriousness of chest pain. Conclusion: Approximately 79% of total prehospital delay was due to patient-related factors; old age, female sex, rural background, diabetes, atypical angina, and lack of knowledge being the significant attributes. D-N time and door-to-device time were within the limits of those recommended by current guidelines.

  9. Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment.

    Science.gov (United States)

    Zhong, Yucheng; Yu, Kunwu; Wang, Xiang; Wang, Xiaoya; Ji, Qingwei; Zeng, Qiutang

    2015-01-01

    Recent studies suggest that IL-38 is associated with autoimmune diseases. Furthermore, IL-38 is expressed in human atheromatous plaque. However, the plasma levels of IL-38 in patients with ST-segment elevation myocardial infarction (STEMI) have not yet to be investigated. On admission, at 24 h, at 48 h, and at 7 days, plasma IL-38, C-reactive protein (CRP), cardiac troponin I (cTNI), and N-terminal of the prohormone brain natriuretic peptide (NT-proBNP) levels were measured and IL-38 gene in peripheral blood mononuclear cells (PBMCs) was detected in STEMI patients. The results showed that plasma IL-38 levels and IL-38 gene expression in PBMCs were significantly increased in STEMI patients compared with control group and were time dependent, peaked at 24 h. In addition, plasma IL-38 levels were dramatically reduced in patients with reperfusion treatment compared with control group. Similar results were also demonstrated with CRP, cTNI, and NT-proBNP levels. Furthermore, IL-38 levels were found to be positively correlated with CRP, cTNI, and NT-proBNP and be weakly negatively correlated with left ventricular ejection fraction (LVEF) in STEMI patients. The results indicate that circulating IL-38 is a potentially novel biomarker for patients with STEMI and IL-38 might be a new target for MI study.

  10. Predictive values of early rest/24 hour delay Tl-201 perfusion SPECT for wall motion improvement in patients with acute myocardial infarction after reperfusion

    International Nuclear Information System (INIS)

    Hyun, In Young; Kwan, June

    1998-01-01

    We studied early rest/24 hour delay Tl-201 perfusion SPECT for prediction of wall motion improvement after reperfusion in patients with acute myocardial infarction. Among 17 patients (male/female=11/6, age: 59±13) with acute myocardial infarction, 15 patients were treated with percutaneous transcoronary angioplasty (direct:2, delay:11) and intravenous urokinase (2). Spontaneous resolution occurred in infarct related arteries of 2 patients. We confirmed TIMI 3 flow of infarct-related artery after reperfusion in all patients with coronary angiography. We performed rest Tl-201 perfusion SPECT less then 6 hours after reperfusion and delay Tl-201 perfusion SPECT next day. Tl-201 uptake was visually graded as 4 point score from normal (0) to severe defect (3). Rest Tl-201 uptake ≤2 or combination of rest Tl-201 uptake ≤2 or late reversibility were considered to be viable. Myocardial wall motion was graded as 5 point score from normal (1) to dyskinesia (5). Myocardial wall motion was considered to be improved when a segment showed an improvement ≥1 grade in follow up echo compared with the baseline values. Among 98 segments with wall motion abnormality, the severity of myocardial wall motion decrease was as follow: mild hypokinesia: 18/98 (18%), severe hypokinesia: 28/98 (29%), akinesia: 51/98 (52%), dyskinesia: 1/98 (1%). The wall motion improved in 85%. Redistribution (13%), and reverse redistribution (4%) were observed in 24 hour delay SPECT. Positive predictive value (PPV) and negative predictive value (NPV) of combination of late reversibility and rest Tl-201uptake were 99%, and 54%.PPV and NPV of rest Tl-201 uptake were 100% and 52% respectively. Predictive values of comibination of rest Tl-201 uptake and late reversibility were not significantly different compared with predictive values of rest Tl-201 uptake only. We conclude that early Tl-201 perfusion SPECT predict myocardial wall motion improvement with excellent positive but relatively low negative

  11. Protective effect of hydroalcoholic extract of Andrographis paniculata on ischaemia-reperfusion induced myocardial injury in rats.

    Science.gov (United States)

    Ojha, Shreesh Kumar; Bharti, Saurabh; Joshi, Sujata; Kumari, Santosh; Arya, Dharamvir Singh

    2012-03-01

    Protecting myocardium from ischaemia-reperfusion (I-R) injury is important to reduce the complication of myocardial infarction (MI) and interventional revascularization procedures. In the present study, the cardioprotective potential of hydroalcoholic extract of Andrographis paniculata was evaluated against left anterior descending coronary artery (LADCA) ligation-induced I-R injury of myocardium in rats. MI was induced in rats by LADCA ligation for 45 min followed by reperfusion for 60 min. The rats were divided into five experimental groups viz., sham (saline treated, but LADCA was not ligated), I-R control (saline treated + I-R), benazepril (30 mg/kg + I-R), A. paniculata (200 mg/kg per se) and A. paniculata (200 mg/kg + I-R). A. paniculata was administered orally for 31 days. On day 31, rats were subjected to the I-R and cardiac function parameters were recorded. Further, rats were sacrificed and heart was excised for biochemical and histopathological studies. In I-R control group, LADCA ligation resulted in significant cardiac dysfunction evidenced by reduced haemodynamic parameters; mean arterial pressure (MAP) and heart rate (HR). The left ventricular contractile function was also altered. In I-R control group, I-R caused decline in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) as well as leakage of myocytes injury marker enzymes, creatine phosphokinase-MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH), and enhanced lipid peroxidation product, malonaldialdehyde (MDA). However, rats pretreated with A. paniculata 200 mg/kg showed favourable modulation of haemodynamic and left ventricular contractile function parameters, restoration of the myocardial antioxidants and prevention of depletion of myocytes injury marker enzymes along with inhibition of lipid peroxidation. Histopathological observations confirmed the protective effects of A. paniculata. The cardioprotective effects of A. paniculata were

  12. Myocardial capillary permeability for small hydrophilic indicators during normal physiological conditions and after ischemia and reperfusion

    DEFF Research Database (Denmark)

    Svendsen, J H

    1991-01-01

    Myocardial capillary permeability for small hydrophilic solutes (51Cr-EDTA or 99mTc-DTPA) has been measured using intracoronary indicator bolus injection and external radioactivity registration (the single injection, residue detection method). The method is based on kinetic separation...

  13. The effect of intermittent fasting and water restriction on myocardial ischemia/reperfusion-induced arrhythmia in rats

    OpenAIRE

    KAYA, Salih Tunç; BOZDOĞAN, Ömer

    2011-01-01

    To investigate the effect of intermittent fasting and water restriction on ischemia/reperfusion-induced arrhythmias. Materials and methods: Six minutes of ischemia followed by 6 min of reperfusion was produced by the ligation and then releasing of the left coronary artery. Intermittent fasting and water restriction were applied during 1 month for 12 h/day. The duration, type, and incidence of arrhythmias during reperfusion and the survival rate at the end of reperfusion were determined and c...

  14. Detection of viable myocardium in canine model with myocardial ischemia and ischemia-reperfusion by 125I-BMIPP: relation to regional blood flow

    International Nuclear Information System (INIS)

    Huang Gang; Zhao Huiyang; Shen Xuedong; Li Qing; Yuan Jimin; Zhu Cuiying

    1999-01-01

    Objective: The effects of BMIPP (β-methyl-iodophenyl pentadecanoic acid) on detecting viable myocardium and the relation between regional blood flow and the uptake of BMIPP were evaluated in canine model of myocardial ischemia and ischemia-reperfusion. Methods: 12 open-chest dogs under anesthesia were divided into two groups. Group I (ischemia group) had left circumflex coronary arterial occlusion for 2 h and group II (ischemia-reperfusion group) was occluded for 1 h and followed by 2 h reperfusion. Myocardial blood flow was measured with 99 Tc m -microspheres. 30 min after intravenous injection of 125 I-BMIPP and 99 Tc m -microspheres, the heart was excised rapidly and stained with Evans blue and NBT. Tissue samples (divided into approximately 1 g) of left ventricle were obtained, weighed and counted for 125 I and 99 Tc m . Regional blood flow and the uptake of BMIPP were expressed as percentages of average values in non-ischemic myocardium (two to three tissue samples) from the normal myocardium. Results: In ischemic myocardium (NBT positive samples), the uptake of BMIPP was relatively higher compared with regional blood flow [(67 +- 23)% vs (42 +- 19)%, P 0.05]. In ischemia-reperfusion group, regional blood flow was increased in ischemic and necrotic tissues, but the uptake of BMIPP was not enhanced with the increasing blood flow. Conclusions: BMIPP uptake seems to provide metabolic information independent of regional blood flow. The mismatching between regional blood flow and BMIPP uptake may indicate myocardial viability in the regions of hypoperfusion and the uptake of BMIPP in ischemic myocardium was related to existence of cellular metabolism

  15. Association Between Early Q Waves and Reperfusion Success in Patients With ST-Segment-Elevation Myocardial Infarction Treated With Primary Percutaneous Coronary Intervention

    DEFF Research Database (Denmark)

    Topal, Divan Gabriel; Lønborg, Jacob; Ahtarovski, Kiril Aleksov

    2017-01-01

    BACKGROUND: Pathological early Q waves (QW) are associated with adverse outcomes in patients with ST-segment-elevation myocardial infarction (STEMI). Primary percutaneous coronary intervention (PCI) may therefore be less beneficial in patients with QW than in patients without QW. Myocardial salvage......: The ECG was assessed before primary PCI for the presence of QW (early) in 515 STEMI patients. The patients underwent a cardiac magnetic resonance imaging scan at day 1 (interquartile range [IQR], 1-1) and again at day 92 (IQR, 89-96). Early QW was observed in 108 (21%) patients and was related to smaller...... index and microvascular obstruction (MVO) are markers for reperfusion success. Thus, to clarify the benefit from primary PCI in STEMI patients with QW, we examined the association between baseline QW and myocardial salvage index and MVO in STEMI patients treated with primary PCI. METHODS AND RESULTS...

  16. Clinical usefulness of the technetium-99m/thallium-201 overlap on simultaneous dual SPECT in reperfusion after thrombolytic therapy for acute myocardial infarction

    International Nuclear Information System (INIS)

    Suzuki, Kazuo

    2002-01-01

    In this study, the clinical usefulness of the technetium-99m/thallium-201 ( 99m Tc-PYP/ 201 Tl-Cl) overlap on simultaneous dual SPECT in reperfusion after thrombolytic therapy for acute myocardial infarction was evaluated. The subjects were 14 patients with acute myocardial infarction who had not had myocardial infarction. All patients had chest pain that persisted more than 1 hour and showed electrocardiographic ST elevation. Myocardial scintigraphy was performed on the 4th day of the attack, at 81±35 hours after reperfusion on average. Three hours 50 min after intravenous injection of 740 Mbq 99m Tc-PYP, 111 Mbq 201 Tl-Cl was intravenously injected, and simultaneous dual SPECT was performed after 10 min. In all short axis SPECT image which showed 99m Tc-PYP accumulation, the area of 99m Tc-PYP accumulation (Tc hot), the overlap area of 99m Tc-PYP and 201 Tl-Cl accumulation (overlap), and the total area of 99m Tc-PYP and 201 Tl-Cl accumulation in the short axis SPECT images were calculated. The relationships between these parameters and the peak creatinine kinase (CK), changes in wall motion abnormalities observed by M-mode echocardiography, and the 4-hour delayed image by 201 Tl-Cl exercise scintigraphy performed about one month after the attack were evaluated. The results were both parameters of overlap/Tc hot and overlap/total were negatively correlated with the peak CK, overlap/Tc hot and overlap/total were positively correlated with wall motion scores ratio (WMSR), and overlap/Tc hot was positively correlated with Tl uptake (d)/Tc hot, and the acute overlap region was evaluated to be viable cardiac muscles one month after the attack. These results demonstrated that the 99m Tc-PYP/ 201 Tl-Cl overlap on simultaneous dual SPECT in reperfusion after thrombolytic therapy for acute myocardial infarction indicates the presence of viable cardiac muscles, showing that this method is useful for judgment of the effects of reperfusion. (author)

  17. Achieving timely percutaneous reperfusion for rural ST-elevation myocardial infarction patients by direct transport to an urban PCI-hospital.

    Science.gov (United States)

    Bennin, Charles-Lwanga K; Ibrahim, Saif; Al-Saffar, Farah; Box, Lyndon C; Strom, Joel A

    2016-10-01

    ST-elevation myocardial infarction (STEMI) guidelines recommend reperfusion by primary percutaneous coronary intervention (PCI) ≤ 90 min from time of first medical contact (FMC). This strategy is challenging in rural areas lacking a nearby PCI-capable hospital. Recommended reperfusion times can be achieved for STEMI patients presenting in rural areas without a nearby PCI-capable hospital by ground transportation to a central PCI-capable hospital by use of protocol-driven emergency medical service (EMS) STEMI field triage protocol. Sixty STEMI patients directly transported by EMS from three rural counties (Nassau, Camden and Charlton Counties) within a 50-mile radius of University of Florida Health-Jacksonville (UFHJ) from 01/01/2009 to 12/31/2013 were identified from its PCI registry. The STEMI field triage protocol incorporated three elements: (1) a cooperative agreement between each of the rural emergency medical service (EMS) agency and UFHJ; (2) performance of a pre-hospital ECG to facilitate STEMI identification and laboratory activation; and (3) direct transfer by ground transportation to the UFHJ cardiac catheterization laboratory. FMC-to-device (FMC2D), door-to-device (D2D), and transit times, the day of week, time of day, and EMS shift times were recorded, and odds ratio (OR) of achieving FMC2D times was calculated. FMC2D times were shorter for in-state STEMIs (81 ± 17 vs . 87 ± 19 min), but D2D times were similar (37 ± 18 vs . 39 ± 21 min). FMC2D ≤ 90 min were achieved in 82.7% in-state STEMIs compared to 52.2% for out-of-state STEMIs (OR = 4.4, 95% CI: 1.24-15.57; P = 0.018). FMC2D times were homogenous after adjusting for weekday vs . weekend, EMS shift times. Nine patients did not meet FMC2D ≤ 90 min. Six were within 10 min of target; all patient achieved FMC2D ≤ 120 min. Guideline-compliant FMC2D ≤ 90 min is achievable for rural STEMI patients within a 50 mile radius of a PCI-capable hospital by use of protocol-driven EMS ground

  18. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury

    DEFF Research Database (Denmark)

    Cordwell, Stuart; Edwards, Alistair; Liddy, Kiersten

    2012-01-01

    -rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile...... reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC–MS) and gel-free (LC–MS/MS) methods. A total of 192 tissue-specific proteins were identified...... release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans....

  19. Acute myocardial infarction: susceptibility-weighted cardiac MRI for the detection of reperfusion haemorrhage at 1.5 T

    International Nuclear Information System (INIS)

    Durighel, G.; Tokarczuk, P.F.; Karsa, A.; Gordon, F.; Cook, S.A.; O'Regan, D.P.

    2016-01-01

    Aim: To assess whether susceptibility-weighted imaging (SWI) provides better image contrast for the detection of haemorrhagic ischaemia–reperfusion injury in the heart. Materials and methods: Thirty patients (all men; mean age 53 years) underwent cardiac magnetic resonance imaging (MRI) within 7 days of primary percutaneous intervention for acute ST elevation myocardial infarction (STEMI). Multiple gradient-echo T2* sequences with magnitude and phase reconstructions were acquired. A high-pass filtered phase map was used to create a mask for the SWI reconstructions. The difference in image contrast was assessed in those patients with microvascular obstruction. A mixed effects regression model was used to test the effect of echo time and reconstruction method on phase and contrast-to-noise ratio (CNR). Medians and interquartile ranges (IQR) are reported. Results: T2* in haemorrhagic infarcts was shorter than in non-haemorrhagic infarcts (33.5 ms [24.9–43] versus 49.9 ms [44.6–67.6]; p=0.0007). The effect of echo time on phase was significant (p<0.0001), as was the effect of haemorrhage on phase (p=0.0016). SWI reconstruction had a significant effect on the CNR at all echo times (echoes 1–5, p<0.0001; echo 6, p=0.01; echo 7, p=0.02). The median echo number at which haemorrhage was first visible was less for SWI compared to source images (echo 2 versus echo 5, p=0.0002). Conclusion: Cardiac SWI improves the contrast between myocardial haemorrhage and the surrounding tissue following STEMI and has potential as a new tool for identifying patients with ischaemia–reperfusion injury. - Highlights: • Cardiac susceptibility-weighted imaging (SWI) is feasible at 1.5T. • Combining phase and modulus data allows blood products to be seen at shorter echo times. • This sequence improves visualisation of reperfusion myocardial haemorrhage.

  20. Comparative assessment of 18F-fluorodeoxyglucose PET and 99mTc-tetrofosmin SPECT for the prediction of functional recovery in patients with reperfused acute myocardial infarction

    International Nuclear Information System (INIS)

    Shirasaki, Haruhisa; Nakano, Akira; Uzui, Hiroyasu; Ueda, Takanori; Lee, Jong-Dae; Yonekura, Yoshiharu; Okazawa, Hidehiko

    2006-01-01

    Purpose: Although preserved glucose metabolism is considered to be a marker of myocardial viability in the chronic stage, it has not been fully elucidated whether this is also true with regard to reperfused acute myocardial infarction (AMI). The aim of this study was to compare the diagnostic performance of 99m Tc-tetrofosmin SPECT and 18 F-fluorodeoxyglucose (FDG) PET for the prediction of functional recovery in reperfused AMI.Methods: The study population comprised 28 patients. Both tetrofosmin SPECT and FDG PET were performed in all 28 patients at ca. 2 weeks and in 23 at 6 months. The tetrofosmin and FDG findings in infarct-related segments were compared with the regional wall motion score assessed by left ventriculography over 6 months to determine the predictive value for functional recovery. Of 120 infarct-related segments, 83 had preserved flow (tetrofosmin uptake ≥50%) and 81 had preserved glucose metabolism (FDG uptake ≥40%). The sensitivity and specificity of tetrofosmin SPECT for the prediction of functional recovery tended to be superior to those of FDG PET (90.0% and 72.5% vs 85.0% and 67.5%, respectively). Thirteen segments with preserved flow and decreased glucose metabolism demonstrated marked recovery of contractile function from 2.5±1.0 to 1.4±1.4 (p<0.01), with restoration of glucose metabolism at 6 months. In contrast, 11 segments with decreased flow and preserved glucose metabolism demonstrated incomplete functional improvement from 3.0±0.8 to 2.2±1.2. In the subacute phase, preserved myocardial blood flow is more reliable than glucose metabolism in predicting functional recovery in reperfused myocardium. (orig.)

  1. Comparison of early myocardial technetium-99m pyrophosphate uptake to early peaking of creatine kinase and creatine kinase-MB as indicators of early reperfusion in acute myocardial infarction

    International Nuclear Information System (INIS)

    Kondo, M.; Yuzuki, Y.; Arai, H.; Shimizu, K.; Morikawa, M.; Shimono, Y.

    1987-01-01

    The value of technetium-99m pyrophosphate (Tc-99m-PYP) scintigraphy as an indicator of reperfusion 2.8 to 8 hours after the onset of symptoms of acute myocardial infarction was compared with the value of early peak creatine kinase (CK) and CK-MB release within 16 hours after the onset of symptoms. In 29 patients who received thrombolytic therapy, recanalization was seen (group 1) and in 7 it was not (group 2). In 23 patients (79%) in group 1 scintigraphic findings were positive and in all 7 in group 2 they were negative. In 15 patients (52%) in group 1 and 1 patient (14%) in group 2, CK reached its peak level within 16 hours. In 20 patients (69%) in group 1 and 3 (43%) in group 2 the CK-MB level reached a peak within 16 hours. The sensitivity, specificity and predictive accuracy of positive results of early Tc-99m-PYP scintigraphy in predicting the reperfusion were 79%, 100% and 83%. These values are significantly higher than or similar to those of early peaking of CK and CK-MB release. In contrast to measurements of enzyme release, reperfusion data for Tc-99m-PYP scintigraphy are available immediately after thrombolytic therapy. Therefore, early Tc-99m-PYP scintigraphy (3 to 8 hours after onset of symptoms) is valuable as a noninvasive technique for early diagnosis of reperfusion

  2. Novel Targets for Treating Ischemia-Reperfusion Injury in the Liver

    Directory of Open Access Journals (Sweden)

    Weili Yang

    2018-04-01

    Full Text Available Liver ischemia-reperfusion injury (IRI is a major complication of hemorrhagic shock, liver transplantation, and other liver surgeries. It is one of the leading causes for post-surgery hepatic dysfunction, always leading to morbidity and mortality. Several strategies, such as low-temperature reperfusion and ischemic preconditioning, are useful for ameliorating liver IRI in animal models. However, these methods are difficult to perform in clinical surgeries. It has been reported that the activation of peroxisome proliferator activated receptor gamma (PPARγ protects the liver against IRI, but with unidentified direct target gene(s and unclear mechanism(s. Recently, FAM3A, a direct target gene of PPARγ, had been shown to mediate PPARγ’s protective effects in liver IRI. Moreover, noncoding RNAs, including LncRNAs and miRNAs, had also been reported to play important roles in the process of hepatic IRI. This review briefly discussed the roles and mechanisms of several classes of important molecules, including PPARγ, FAM3A, miRNAs, and LncRNAs, in liver IRI. In particular, oral administration of PPARγ agonists before liver surgery or liver transplantation to activate hepatic FAM3A pathways holds great promise for attenuating human liver IRI.

  3. The protective effect of Na+/Ca2+ exchange blocker kb-r7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rat.

    Science.gov (United States)

    Ren, Yongkui; Deng, Liju; Cai, Yunfei; Lv, Yan; Jia, Dalin

    2014-11-01

    KB-R7943 reduces lethal reperfusion injury under normal conditions, but its effectiveness under certain pathological states is in dispute. In the present study, we sought to determine the effect of KB-R7943 in hyperlipidemic animals and assess if the K ATP (+) are involved in the protective mechanisms. In group 1 (G1), isolated rat hearts underwent 25 min global ischemia (GI) and 120 min reperfusion (R). In group 2 (G2), G1 was repeated but the animals were subjected to a 1.5 % cholesterol-enriched diet during 6 weeks (hypercholesterolemic animals). In group 3 (G3), G2 was repeated but 1 μM KB-R7943 was added to the perfusate for 10 min from the start of reperfusion. In group 4 (G4), G3 was repeated, and glibenclamide (K ATP (+) , blocker, 0.3 μM) was administered. The infarct size was measured by triphenyltetrazolium. The infarct size was 35 ± 5.0 % in G1 and 46 ± 8.7 % in G2 (P KB-R7943 reduced the infarct size (28.6 ± 3.3 % in G3 vs. G2, P KB-R7943 attenuated apoptotic cell (G3 vs. G2, P KB-R7943. Thus, diet-induced hypercholesterolemia enhances myocardial injury; KB-R7943 reduces infarct size and apoptosis in hyperlipidemic animals through the activation of K(+)ATP channels.

  4. Hot shot induction and reperfusion with a specific blocker of the es-ENT1 nucleoside transporter before and after hypothermic cardioplegia abolishes myocardial stunning in acutely ischemic hearts despite metabolic derangement: Hot shot drug delivery before hypothermic cardioplegia

    Science.gov (United States)

    Abd-Elfattah, Anwar Saad; Tuchy, Gert E.; Jessen, Michael E.; Salter, David R.; Goldstein, Jacques P.; Brunsting, Louis A.; Wechsler, Andrew S.

    2013-01-01

    Objective Simultaneous inhibition of the cardiac equilibrative-p-nitrobenzylthioinosine (NBMPR)–sensitive (es) type of the equilibrative nucleoside transport 1 (ENT1) nucleoside transporter, with NBMPR, and adenosine deaminase, with erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA), prevents release of myocardial purines and attenuates myocardial stunning and fibrillation in canine models of warm ischemia and reperfusion. It is not known whether prolonged administration of hypothermic cardioplegia influences purine release and EHNA/NBMPR-mediated cardioprotection in acutely ischemic hearts. Methods Anesthetized dogs (n = 46), which underwent normothermic aortic crossclamping for 20 minutes on-pump, were divided to determine (1) purine release with induction of intermittent antegrade or continuous retrograde hypothermic cardioplegia and reperfusion, (2) the effects of postischemic treatment with 100 µM EHNA and 25 µM NBMPR on purine release and global functional recovery, and (3) whether a hot shot and reperfusion with EHNA/NBMPR inhibits purine release and attenuates ventricular dysfunction of ischemic hearts. Myocardial biopsies and coronary sinus effluents were obtained and analyzed using high-performance liquid chromatography. Results Warm ischemia depleted myocardial adenosine triphosphate and elevated purines (ie, inosine > adenosine) as markers of ischemia. Induction of intermittent antegrade or continuous retrograde hypothermic (4°C) cardioplegia releases purines until the heart becomes cold (90% of purines in coronary sinus effluent. Reperfusion with EHNA/NBMPR abolished ventricular dysfunction in acutely ischemic hearts with and without a hot shot and hypothermic cardioplegic arrest. Conclusions Induction of hypothermic cardioplegia releases purines from ischemic hearts until they become cold, whereas reperfusion induces massive purine release and myocardial stunning. Inhibition of cardiac es-ENT1 nucleoside transporter abolishes postischemic reperfusion

  5. THROMBOLYSIS OR PRIMARY PCI FOR MYOCARDIAL INFARCTION WITH ST-SEGMENT ELEVATION? THE STREAM TRIAL (STRATEGIC REPERFUSION EARLY AFTER MYOCARDIAL INFARCTION

    Directory of Open Access Journals (Sweden)

    V. A. Sulimov

    2013-01-01

    Full Text Available Ambiguous data about comparability regarding clinical outcomes for prehospital thrombolysis, coupled with timely coronary angiography, and primary percutaneous coronary intervention (PCI in the early after acute ST-segment elevation myocardial infarction (STEMI, there are now.In the STREAM trial 1892 patients with STEMI diagnosed within 3 hours after onset of symptoms, and whom it was impossible to perform primary PCI within 1 h after the first medical contact, were randomly assigned into two treatment groups: a primary PCI b prehospital thrombolytic therapy with bolus tenecteplase (dose decreased by half in patients aged ≥75 years in combination with clopidogrel and enoxaparin followed by admission to the hospital, where it was possible to perform PCI. Emergency coronary angiography performed if thrombolysis failed. Coronary angiography and PCI of the infarct-related artery were performed in the period from 6 to 24 hours after randomization and thrombolytic therapy in the case of an effective thrombolysis. Primary endpoints include a composite of death, shock, congestive heart failure, or reinfarction up to 30 days.The primary endpoint occurred in 116 of 939 patients (12.4 % of the thrombolysis group and in 135 of 943 patients (14.3% of the primary PCI group (relative risk in the group thrombolysis 0.86, 95% confidence interval 0.68-1.09, p=0.21. Emergency angiography was required in 36.3% of patients in the thrombolysis, and the remaining patients, coronary angiography and PCI were performed at a mean of 17 hours after randomization and thrombolytic therapy. Thrombolysis group had more intracranial hemorrhages than primary PCI group (1.0% vs 0.2%, p=0.04; after correction protocol and dose reduction by half of tenecteplase in patients ≥75 years: 0.5% vs. 0.3%, p=0.45. The rate of non- intracranial bleeding in two treatment groups did not differ.Prehospital thrombolysis followed by coronary angiography and timely PCI provide effective

  6. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia-reperfusion injury in rats.

    Science.gov (United States)

    Tan, Mei-E; He, Cheng-Hui; Jiang, Wen; Zeng, Cheng; Yu, Ning; Huang, Wei; Gao, Zhong-Gao; Xing, Jian-Guo

    2017-01-01

    Total flavonoid extract from Dracocephalum moldavica L. (TFDM) contains effective components of D. moldavica L. that have myocardial protective function. However, the cardioprotection function of TFDM is undesirable due to its poor solubility. In order to improve the solubility and efficacy of TFDM, we developed TFDM-loaded solid lipid nanoparticles (TFDM-SLNs) and optimized the formulation of TFDM-SLNs using central composite design and response surface methodology. The physicochemical properties of TFDM-SLNs were characterized, and the pharmacodynamics was investigated using the myocardial ischemia-reperfusion injury model in rats. The nanoparticles of optimal formulation for TFDM-SLNs were spherical in shape with the average particle size of 104.83 nm and had a uniform size distribution with the polydispersity index value of 0.201. TFDM-SLNs also had a negative zeta potential of -28.7 mV to ensure the stability of the TFDM-SLNs emulsion system. The results of pharmacodynamics demonstrated that both TFDM and TFDM-SLN groups afforded myocardial protection, and the protective effect of TFDM-SLNs was significantly superior to that of TFDM alone, based on the infarct area, histopathological examination, cardiac enzyme levels and inflammatory factors in serum. Due to the optimal quality and the better myocardial protective effect, TFDM-SLNs are expected to become a safe and effective nanocarrier for the oral delivery of TFDM.

  7. Rat Experimental Model of Myocardial Ischemia/Reperfusion Injury: An Ethical Approach to Set up the Analgesic Management of Acute Post-Surgical Pain

    Science.gov (United States)

    Ciuffreda, Maria Chiara; Tolva, Valerio; Casana, Renato; Gnecchi, Massimiliano; Vanoli, Emilio; Spazzolini, Carla; Roughan, John; Calvillo, Laura

    2014-01-01

    Rationale During the past 30 years, myocardial ischemia/reperfusion injury in rodents became one of the most commonly used model in cardiovascular research. Appropriate pain-prevention appears critical since it may influence the outcome and the results obtained with this model. However, there are no proper guidelines for pain management in rats undergoing thoracic surgery. Accordingly, we evaluated three analgesic regimens in cardiac ischemia/reperfusion injury. This study was strongly focused on 3R’s ethic principles, in particular the principle of Reduction. Methods Rats undergoing surgery were treated with pre-surgical tramadol (45 mg/kg intra-peritoneal), or carprofen (5 mg/kg sub-cutaneous), or with pre-surgical administration of carprofen followed by 2 post-surgery tramadol injections (multi-modal group). We assessed behavioral signs of pain and made a subjective evaluation of stress and suffering one and two hours after surgery. Results Multi-modal treatment significantly reduced the number of signs of pain compared to carprofen alone at both the first hour (61±42 vs 123±47; pCarprofen alone was more effective at the second hour post-surgery when signs of pain reduced to 74±24 from 113±40 in the first hour (pcarprofen and tramadol groups, respectively (pcarprofen and tramadol was more effective in preventing pain during the second hour after surgery compared with both tramadol or carprofen. Our results suggest that the combination of carprofen and tramadol represent the best therapy to prevent animal pain after myocardial ischemia/reperfusion. We obtained our results accordingly with the ethical principle of Reduction. PMID:24756074

  8. CPU0213, a novel endothelin type A and type B receptor antagonist, protects against myocardial ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Z.Y. Wang

    2011-11-01

    Full Text Available The efficacy of endothelin receptor antagonists in protecting against myocardial ischemia/reperfusion (I/R injury is controversial, and the mechanisms remain unclear. The aim of this study was to investigate the effects of CPU0123, a novel endothelin type A and type B receptor antagonist, on myocardial I/R injury and to explore the mechanisms involved. Male Sprague-Dawley rats weighing 200-250 g were randomized to three groups (6-7 per group: group 1, Sham; group 2, I/R + vehicle. Rats were subjected to in vivo myocardial I/R injury by ligation of the left anterior descending coronary artery and 0.5% sodium carboxymethyl cellulose (1 mL/kg was injected intraperitoneally immediately prior to coronary occlusion. Group 3, I/R + CPU0213. Rats were subjected to identical surgical procedures and CPU0213 (30 mg/kg was injected intraperitoneally immediately prior to coronary occlusion. Infarct size, cardiac function and biochemical changes were measured. CPU0213 pretreatment reduced infarct size as a percentage of the ischemic area by 44.5% (I/R + vehicle: 61.3 ± 3.2 vs I/R + CPU0213: 34.0 ± 5.5%, P < 0.05 and improved ejection fraction by 17.2% (I/R + vehicle: 58.4 ± 2.8 vs I/R + CPU0213: 68.5 ± 2.2%, P < 0.05 compared to vehicle-treated animals. This protection was associated with inhibition of myocardial inflammation and oxidative stress. Moreover, reduction in Akt (protein kinase B and endothelial nitric oxide synthase (eNOS phosphorylation induced by myocardial I/R injury was limited by CPU0213 (P < 0.05. These data suggest that CPU0123, a non-selective antagonist, has protective effects against myocardial I/R injury in rats, which may be related to the Akt/eNOS pathway.

  9. Chronic Co-Administration of Sepiapterin and L-Citrulline Ameliorates Diabetic Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury in Obese Type 2 Diabetic Mice.

    Science.gov (United States)

    Baumgardt, Shelley L; Paterson, Mark; Leucker, Thorsten M; Fang, Juan; Zhang, David X; Bosnjak, Zeljko J; Warltier, David C; Kersten, Judy R; Ge, Zhi-Dong

    2016-01-01

    Diabetic heart disease is associated with tetrahydrobiopterin oxidation and high arginase activity, leading to endothelial nitric oxide synthase dysfunction. Sepiapterin (SEP) is a tetrahydrobiopterin precursor, and L-citrulline (L-Cit) is converted to endothelial nitric oxide synthase substrate, L-arginine. Whether SEP and L-Cit are effective at reducing diabetic heart disease is not known. The present study examined the effects of SEP and L-Cit on diabetic cardiomyopathy and ischemia/reperfusion injury in obese type 2 diabetic mice. Db/db and C57BLKS/J mice at 6 to 8 weeks of age received vehicle, SEP, or L-Cit orally alone or in combination for 8 weeks. Cardiac function was evaluated with echocardiography. Db/db mice displayed hyperglycemia, obesity, and normal blood pressure and cardiac function compared with C57BLKS/J mice at 6 to 8 weeks of age. After vehicle treatment for 8 weeks, db/db mice had reduced ejection fraction, mitral E/A ratio, endothelium-dependent relaxation of coronary arteries, tetrahydrobiopterin concentrations, ratio of endothelial nitric oxide synthase dimers/monomers, and nitric oxide levels compared with vehicle-treated C57BLKS/J mice. These detrimental effects of diabetes mellitus were abrogated by co-administration of SEP and L-Cit. Myocardial infarct size was increased, and coronary flow rate and ± dP/dt were decreased during reperfusion in vehicle-treated db/db mice subjected to ischemia/reperfusion injury compared with control mice. Co-administration of SEP and L-Cit decreased infarct size and improved coronary flow rate and cardiac function in both C57BLKS/J and db/db mice. Co-administration of SEP and L-Cit limits diabetic cardiomyopathy and ischemia/reperfusion injury in db/db mice through a tetrahydrobiopterin/endothelial nitric oxide synthase/nitric oxide pathway. © 2016 American Heart Association, Inc.

  10. The Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities of the Bauhinia Championii Flavone are Connected with Protection Against Myocardial Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Jian, Jie; Xuan, Feifei; Qin, Feizhang; Huang, Renbin

    2016-01-01

    Previous studies have demonstrated that Bauhinia championii flavone (BCF) exhibits anti-oxidative, anti-hypoxic and anti-stress properties. This study was designed to investigate whether BCF has a cardioprotective effect against myocardial ischemia/reperfusion (I/R) injuries in rats and to shed light on its possible mechanism. The model of I/R was established by ligating the left anterior descending coronary artery for 30 min, then reperfusing for 180 min. Hemodynamic changes were continuously monitored. The content of malondialdehyde (MDA) as well as the lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were assessed. The release of interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). Apoptosis of cardiomyocytes was determined by caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expression of TLR4, NF-x03BA;Bp65, Bcl-2 and Bax were detected by western blotting. Pretreatment with BCF significantly reduced the serum levels of LDH, MDA and IL-6, but increased the activities of SOD and GSH-Px. It also attenuated myocardial infarct size, reduced the apoptosis rate and preserved cardiac function. Furthermore, BCF inhibited caspase-3 activity and the expression of TLR4, phosphorylated NF-x03BA;Bp65 and Bax, but enhanced the expression of Bcl-2. These results provide substantial evidence that BCF exerts a protective effect on myocardial I/R injury, which may be attributed to attenuating lipid peroxidation, the inflammatory response and apoptosis. © 2016 The Author(s) Published by S. Karger AG, Basel.

  11. The effect of collateral flow and myocardial viability on the distribution of technetium-99m sestamibi in a closed-chest model of coronary occlusion and reperfusion

    International Nuclear Information System (INIS)

    Chareonthaitawee, P.; O'Connor, M.K.; Gibbons, R.J.; Christian, T.F.; Ritman, E.L.

    2000-01-01

    The objective of this study was to determine the effect of myocardial viability and the degree of collateral blood flow on the uptake and retention of 99m Tc-sestamibi by examining three animal models of coronary occlusion and reperfusion, each reflecting a different state of viability and collateral blood flow. Three closed-chest animal models were studied: canine (high collateral flow, preserved viability), porcine (low collateral flow, absent viability) and porcine with slowly occlusive coronary stents producing infarction and enhanced collateral blood flow (high collateral flow, absent viability). There were seven dogs, seven pigs and six pigs, respectively, in each animal model. Animals from all three models were subjected to a 40-min total left anterior descending artery (LAD) occlusion followed by 2 h of reperfusion. 99m Tc-sestamibi and radiolabelled microspheres were injected during LAD occlusion 10 min prior to reperfusion. Animals were sacrificed after 2 h of reperfusion flow. Ex situ heart slice imaging to determine risk area was followed by viability staining to determine infarct size. Slices were subsequently sectioned into equally sized radial segments and placed in a gamma well counter. Risk area as determined by ex situ 99m Tc-sestamibi imaging was not significantly different by model. Pathological infarct size differed significantly by model [canine = 1%±1% of the left ventricle (LV); porcine = 13%±8% LV; porcine with stent = 14%±7% LV; P=0.002]. Collateral blood flow by microspheres during occlusion tended to differ among models (overall P=0.08), with the canine and porcine with stent models having relatively high flow rates compared with the acute porcine model. 99m Tc-sestamibi activity correlated with microsphere blood flow in all three models, with r values for individual animals (n=20) ranging from 0.86 to 0.96 (all P 99m Tc-sestamibi uptake with myocardial blood flow. 99m Tc-sestamibi uptake overestimated blood flow to a greater extent

  12. Myocardial thallium-201 kinetics during coronary occlusion and reperfusion: influence of method of reflow and timing of thallium-201 administration

    International Nuclear Information System (INIS)

    Granato, J.E.; Watson, D.D.; Flanagan, T.L.; Gascho, J.A.; Beller, G.A.

    1986-01-01

    Thallium-201 (201Tl) uptake and redistribution kinetics were examined in an open-chest canine preparation of occlusion and reperfusion. Seven dogs (group I) underwent 3 hr of sustained occlusion and received 1.5 mCi of 201Tl after 40 min of occlusion of the left anterior descending coronary artery (LAD). Group II (n = 18) underwent 60 min of LAD occlusion followed by sudden and total release of the ligature. Group IIa (n = 8) received intravenous 201Tl during occlusion of the LAD, whereas group IIb (n = 10) received intravenous 201Tl at the time of peak reflow. Group III dogs (n = 26) also underwent 60 min of LAD occlusion that was followed by gradual reflow through a residual critical stenosis. Animals in this group also received 201Tl either before (IIIa; n = 16) or after reflow was established (IIIb; n = 10). In group I, the relative 201Tl gradient (nonischemic minus ischemic activity) decreased from 88 +/- 8% (mean +/- SEM) to 59 +/- 6% during 3 hr of coronary occlusion (p = .034). After rapid and total reperfusion (group IIa), this gradient decreased from 71 +/- 6% during occlusion to 26 +/- 5% after reflow (p less than .001). After slow reperfusion through a residual stenosis (group IIIa), the gradient decreased from 81 +/- 5% to 31 +/- 5% (p less than .001) (p = .56 compared with group IIa). In rapidly reperfused dogs receiving intravenous thallium during peak reflow (IIb), initial 201Tl activity in the ischemic zone was 155 +/- 20% of initial normal activity and fell to 93 +/- 13% of normal after 2 hr of reperfusion. In dogs reperfused slowly through a critical stenosis (IIIb), which received 201Tl during reflow, 201Tl activity soon after reflow was 94 +/- 4% of initial normal and decreased to 80 +/- 6% at 2 hr of reperfusion (p = .10). There was histochemical evidence of necrosis in the biopsy region in 80% of the 20 dogs subjected to triphenyl tetrazolium chloride staining

  13. Assessment of myocardial viability using 123I-labeled iodophenylpentadecanoic acid at sustained low flow or after acute infarction and reperfusion.

    Science.gov (United States)

    Yang, J Y; Ruiz, M; Calnon, D A; Watson, D D; Beller, G A; Glover, D K

    1999-05-01

    123I-labeled iodophenylpentadecanoic acid (IPPA) is a synthetic fatty acid that may be useful for determination of myocardial viability. We investigated the uptake and clearance kinetics of this tracer in canine models of ischemia and infarction. In protocol 1, 185 MBq (5 mCi) 123I-IPPA were injected intravenously in 19 dogs with 50% left anterior descending artery (LAD) flow reduction. In 9 dogs, 201TI was coinjected. In protocol 2, 5 dogs underwent LAD occlusion for 3 h, and 123I-IPPA was injected 60 min after reperfusion. All dogs had flow measured by microspheres, regional systolic thickening by ultrasonic crystals and measurements of postmortem risk area and infarct size. Tracer activities were quantified by gamma well counting and by serial imaging. In protocol 1 dogs with sustained low flow (50% +/- 4%) and absence of systolic thickening (-3.2% +/- 1%), 123I-IPPA defect magnitude (LAD/left circumflex artery [LCX] count ratios) decreased from 0.65 +/- 0.02 to 0.74 +/- 0.02 at 30 min and to 0.84 +/- 0.03 at 2 h (P < 0.01), indicative of rest redistribution. Final transmural 123I-IPPA LAD/LCX activity ratio (0.99 +/- 0.05) was significantly greater than the flow ratio (0.53 +/- 0.04) at injection, confirming complete rest redistribution. The final 123I-IPPA activity ratio was significantly greater than the 201TI ratio over the 2-h period (P < 0.01). In protocol 2 dogs that underwent 3 h of total LAD occlusion and reflow (infarct size = 51% +/- 13% of risk area), viability was overestimated with 123I-IPPA, because uptake averaged 64% of normal in the central necrotic region, where flow averaged < 10% of normal. These findings suggest that serial 123I-IPPA imaging may be useful for assessing myocardial viability under conditions of sustained low flow and myocardial asynergy, such as appears to exist in patients with chronic coronary artery disease and depressed left ventricular function. In contrast, 123I-IPPA given early after reperfusion following prolonged

  14. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia–reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Tan ME

    2017-04-01

    Full Text Available Mei-e Tan,1–3,* Cheng-hui He,3,* Wen Jiang,4 Cheng Zeng,2–4 Ning Yu,3 Wei Huang,2 Zhong-gao Gao,2 Jian-guo Xing3 1Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 2State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 3Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, 4Xinjiang Medical University, Urumqi, People’s Republic of China *These authors contributed equally to this work Abstract: Total flavonoid extract from Dracocephalum moldavica L. (TFDM contains effective components of D. moldavica L. that have myocardial protective function. However, the cardioprotection function of TFDM is undesirable due to its poor solubility. In order to improve the solubility and efficacy of TFDM, we developed TFDM-loaded solid lipid nanoparticles (TFDM-SLNs and optimized the formulation of TFDM-SLNs using central composite design and response surface methodology. The physicochemical properties of TFDM-SLNs were characterized, and the pharmacodynamics was investigated using the myocardial ischemia–reperfusion injury model in rats. The nanoparticles of optimal formulation for TFDM-SLNs were spherical in shape with the average particle size of 104.83 nm and had a uniform size distribution with the polydispersity index value of 0.201. TFDM-SLNs also had a negative zeta potential of -28.7 mV to ensure the stability of the TFDM-SLNs emulsion system. The results of pharmacodynamics demonstrated that both TFDM and TFDM-SLN groups afforded myocardial protection, and the protective effect of TFDM-SLNs was significantly superior to that of TFDM alone, based on the infarct area, histopathological examination, cardiac enzyme levels and inflammatory factors in serum. Due to the optimal

  15. Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β

    Science.gov (United States)

    Zhou, Mingjie; Ren, Huanhuan; Wang, Wenjuan; Zheng, Qiusheng; Wang, Dong

    2015-01-01

    Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R) injury in rats. Method. Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dt max) were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL). The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined using enzyme linked immunosorbent assay (ELISA). Moreover, total glycogen synthase kinase-3β (GSK-3β), phospho-GSK-3β (P-GSK-3β), precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis. Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and ±dp/dt max, as well as increased the levels of SOD and P-GSK-3β and GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α. Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3β activity in rats with I/R. PMID:26265983

  16. Time course of infarct healing and left ventricular remodelling in patients with reperfused ST segment elevation myocardial infarction using comprehensive magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ganame, Javier; Messalli, Giancarlo; Dymarkowski, Steven; Abbasi, Kayvan; Bogaert, Jan; Masci, Pier Giorgio; Werf, Frans van de; Janssens, Stefan

    2011-01-01

    To describe the time course of myocardial infarct (MI) healing and left ventricular (LV) remodelling and to assess factors predicting LV remodelling using cardiac MRI. In 58 successfully reperfused MI patients, MRI was performed at baseline, 4 months (4M), and 1 year (1Y) post MI Infarct size decreased between baseline and 4M (p < 0.001), but not at 1Y; i.e. 18 ± 11%, 12 ± 8%, 11 ± 6% of LV mass respectively; this was associated with LV mass reduction. Infarct and adjacent wall thinning was found at 4M, whereas significant remote wall thinning was measured at 1Y. LV end-diastolic and end-systolic volumes significantly increased at 1Y, p < 0.05 at 1Y vs. baseline and vs. 4M; this was associated with increased LV sphericity index. No regional or global LV functional improvement was found at follow-up. Baseline infarct size was the strongest predictor of adverse LV remodelling. Infarct healing, with shrinkage of infarcted myocardium and wall thinning, occurs early post-MI as reflected by loss in LV mass and adjacent myocardial remodelling. Longer follow-up demonstrates ongoing remote myocardial and ventricular remodelling. Infarct size at baseline predicts long-term LV remodelling and represents an important parameter for tailoring future post-MI pharmacological therapies designed to prevent heart failure. (orig.)

  17. Intracoronary administration of nicorandil during primary percutaneous coronary intervention: Impact on restoration of regional myocardial perfusion in reperfused myocardium during the subacute phase of myocardial infarction

    Directory of Open Access Journals (Sweden)

    Wataru Takabatake

    2015-09-01

    Conclusions: 15O-labeled water PET was feasible for segmental analysis of MBF during the subacute phase of STEMI. It revealed that intracoronary administration of nicorandil to STEMI patients who underwent PCI prevented MVR elevation and thus restored MBF in the reperfused segments to a level similar to that in the normal segments.

  18. Cardiovascular MR T2-STIR imaging does not discriminate between intramyocardial haemorrhage and microvascular obstruction during the subacute phase of a reperfused myocardial infarction

    DEFF Research Database (Denmark)

    Hansen, Esben Søvsø Szocska; Pedersen, Steen Fjord; Pedersen, Steen Bønløkke

    2016-01-01

    ) and T2 weighted short tau inversion recovery (T2-STIR) imaging have been used to detect IMH and to explore its clinical importance. IMH is typically identified within the area-at-risk as a hypointense signal core on T2-STIR images. Because MVO will also appear as a hypointense signal core, T2-STIR...... imaging may not be an optimal method for assessing IMH. In this study, we sought to investigate the ability of T2-STIR to discriminate between MVO with IMH in a porcine myocardial ischaemia-reperfusion model that expressed MVO with and without IMH. METHOD: MVO with and without IMH (defined from both...... MVO in all hearts. CMR and pathology showed that IMH was present in 6 of 13 (46%) infarcts. The sensitivity and specificity of T2-STIR hypointense signal core for identification of IMH was 100% and 29%, respectively. T2-values between hypointense signal core in the pigs with and without IMH were...

  19. Combined thallium-201 and dynamic iodine-123 iodophenylpentadecanoic acid single-photon emission computed tomography in patients after acute myocardial infarction with effective reperfusion.

    Science.gov (United States)

    Richter, W S; Beckmann, S; Cordes, M; Schuppenhauer, T; Schartl, M; Munz, D L

    2000-12-01

    Considerable derangements of energy metabolism are to be expected during ischemia and reperfusion. In ischemic myocardium, the oxidative degradation of carbohydrates is shifted toward the anaerobic production of lactate and the oxidation of fatty acids is suppressed. The aim of this study was to examine the uptake and metabolism of iodine-123 (123I) iodophenylpentadecanoic acid (IPPA) in stunned myocardium. In 15 patients, SPECT with 201Tl and 123I IPPA as well as echocardiography with low-dose dobutamine stimulation were performed 12 +/- 5 days after myocardial infarction with reperfusion. Follow-up echocardiography was carried out 24 +/- 8 days later for documentation of functional improvement. Uptake of 201Tl and 123I IPPA were obtained in five left ventricular segments, and dynamic SPECT imaging was used for calculation of the fast and the slow components of the biexponential myocardial 123I IPPA clearance. Wall motion improved in 14 of 26 dysfunctional segments (54%). Stunned segments were characterized by a reduced 123I IPPA extraction, a shorter half-life of the fast, and a longer half-life of the slow clearance component. All parameters of the combined 201Tl/123I IPPA study predicted functional recovery with similar accuracies (area under the receiver operator characteristic curves between 0.68 and 0.76; p = NS). Analysis of 201Tl uptake alone could not predict functional recovery in this study. Stunned myocardium is characterized by a disturbance of fatty acid metabolism. For prediction of functional improvement, 123I IPPA imaging added significant diagnostic information.

  20. Diagnostic significance of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: its potential in assessing reperfusion.

    Science.gov (United States)

    van der Wall, E E; van Dijkman, P R; de Roos, A; Doornbos, J; van der Laarse, A; Manger Cats, V; van Voorthuisen, A E; Matheijssen, N A; Bruschke, A V

    1990-01-01

    The diagnostic value of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in patients treated by thrombolysis for acute myocardial infarction was assessed in 27 consecutive patients who had a first acute myocardial infarction (14 anterior, 13 inferior) and who underwent thrombolytic treatment and coronary arteriography within 4 hours of the onset of symptoms. Magnetic resonance imaging was performed 93 hours (range 15-241) after the onset of symptoms. A Philips Gyroscan (0.5 T) was used, and spin echo measurements (echo time 30 ms) were made before and 20 minutes after intravenous injection of 0.1 mmol/kg gadolinium-DTPA. In all patients contrast enhancement of the infarcted areas was seen after Gd-DTPA. The signal intensities of the infarcted and normal values were used to calculate the intensity ratios. Mean (SD) intensity ratios after Gd-DTPA were significantly increased (1.15 (0.17) v 1.52 (0.29). Intensity ratios were higher in the 17 patients who underwent magnetic resonance imaging more than 72 hours after the onset of symptoms than in the 10 who underwent magnetic resonance imaging earlier, the difference being significantly greater after administration of Gd-DTPA (1.38 (0.12) v 1.61 (0.34). When patients were classified according to the site and size of the infarcted areas, or to reperfusion (n = 19) versus non-reperfusion (n = 8), the intensity ratios both before and after Gd-DTPA did not show significant differences. Magnetic resonance imaging with Gd-DTPA improved the identification of acutely infarcted areas, but with current techniques did not identify patients in whom thrombolytic treatment was successful. Images PMID:2310640

  1. Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion

    DEFF Research Database (Denmark)

    Schmidt, Thomas A; Svendsen, J H; Haunsø, S

    1990-01-01

    ,K-ATPase may be less than 1% due to loss during purification. A higher Na,K-ATPase concentration is found in small animals than in large animals. A relationship between higher concentration of Na,K-ATPase and larger pressure work in ventricles compared to atria is suggested. Myocardial 3H-ouabain binding sites...... were found to be stable for 20 min of ischemia, followed by 1 h of reperfusion, supporting the concept that myocyte injury induced by short term ischemia may be reversible and that reperfusion may result in normalization....

  2. Quantification of the total Na,K-ATPase concentration in atria and ventricles from mammalian species by measuring 3H-ouabain binding to intact myocardial samples. Stability to short term ischemia reperfusion

    DEFF Research Database (Denmark)

    Schmidt, T A; Svendsen, Jesper Hastrup; Haunsø, S

    2011-01-01

    ,K-ATPase may be less than 1% due to loss during purification. A higher Na,K-ATPase concentration is found in small animals than in large animals. A relationship between higher concentration of Na,K-ATPase and larger pressure work in ventricles compared to atria is suggested. Myocardial 3H-ouabain binding sites...... were found to be stable for 20 min of ischemia, followed by 1 h of reperfusion, supporting the concept that myocyte injury induced by short term ischemia may be reversible and that reperfusion may result in normalization....

  3. Rat experimental model of myocardial ischemia/reperfusion injury: an ethical approach to set up the analgesic management of acute post-surgical pain.

    Directory of Open Access Journals (Sweden)

    Maria Chiara Ciuffreda

    Full Text Available RATIONALE: During the past 30 years, myocardial ischemia/reperfusion injury in rodents became one of the most commonly used model in cardiovascular research. Appropriate pain-prevention appears critical since it may influence the outcome and the results obtained with this model. However, there are no proper guidelines for pain management in rats undergoing thoracic surgery. Accordingly, we evaluated three analgesic regimens in cardiac ischemia/reperfusion injury. This study was strongly focused on 3R's ethic principles, in particular the principle of Reduction. METHODS: Rats undergoing surgery were treated with pre-surgical tramadol (45 mg/kg intra-peritoneal, or carprofen (5 mg/kg sub-cutaneous, or with pre-surgical administration of carprofen followed by 2 post-surgery tramadol injections (multi-modal group. We assessed behavioral signs of pain and made a subjective evaluation of stress and suffering one and two hours after surgery. RESULTS: Multi-modal treatment significantly reduced the number of signs of pain compared to carprofen alone at both the first hour (61±42 vs 123±47; p<0.05 and the second hour (43±21 vs 74±24; p<0.05 post-surgery. Tramadol alone appeared as effective as multi-modal treatment during the first hour, but signs of pain significantly increased one hour later (from 66±72 to 151±86, p<0.05. Carprofen alone was more effective at the second hour post-surgery when signs of pain reduced to 74±24 from 113±40 in the first hour (p<0.05. Stress behaviors during the second hour were observed in only 20% of rats in the multimodal group compared to 75% and 86% in the carprofen and tramadol groups, respectively (p<0.05. CONCLUSIONS: Multi-modal treatment with carprofen and tramadol was more effective in preventing pain during the second hour after surgery compared with both tramadol or carprofen. Our results suggest that the combination of carprofen and tramadol represent the best therapy to prevent animal pain after

  4. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System

    Science.gov (United States)

    Wang, Guoxing; Zhang, Qian; Yuan, Wei; Wu, Junyuan; Li, Chunsheng

    2015-01-01

    Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R) injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR) model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg) group. Thirty min after drug infusion, ventricular fibrillation (8 min) and cardiopulmonary resuscitation (up to 30 min) was conducted in these animals. We found that sildenafil ameliorated the reduced cardiac function and improved the 24-h survival rate in this model. Sildenafil partly attenuated the increases of plasma angiotensin II (Ang II) and Ang (1–7) levels after CAR. Sildenafil also decreased apoptosis and Ang II expression in myocardium. The increases of expression of angiotensin-converting-enzyme (ACE), ACE2, Ang II type 1 receptor (AT1R), and the Ang (1–7) receptor Mas in myocardial tissue were enhanced after CAR. Sildenafil suppressed AT1R up-regulation, but had no effect on ACE, ACE2, and Mas expression. Sildenafilfurther boosted the upregulation of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) and inducible nitric oxide synthase(iNOS). Collectively, our results suggest that cardioprotection of sildenafil in CAR model is accompanied by an inhibition of Ang II-AT1R axis activation. PMID:26569234

  5. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System

    Directory of Open Access Journals (Sweden)

    Guoxing Wang

    2015-11-01

    Full Text Available Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg group. Thirty min after drug infusion, ventricular fibrillation (8 min and cardiopulmonary resuscitation (up to 30 min was conducted in these animals. We found that sildenafil ameliorated the reduced cardiac function and improved the 24-h survival rate in this model. Sildenafil partly attenuated the increases of plasma angiotensin II (Ang II and Ang (1–7 levels after CAR. Sildenafil also decreased apoptosis and Ang II expression in myocardium. The increases of expression of angiotensin-converting-enzyme (ACE, ACE2, Ang II type 1 receptor (AT1R, and the Ang (1–7 receptor Mas in myocardial tissue were enhanced after CAR. Sildenafil suppressed AT1R up-regulation, but had no effect on ACE, ACE2, and Mas expression. Sildenafilfurther boosted the upregulation of endothelial nitric oxide synthase (eNOS, cyclic guanosine monophosphate (cGMP and inducible nitric oxide synthase(iNOS. Collectively, our results suggest that cardioprotection of sildenafil in CAR model is accompanied by an inhibition of Ang II-AT1R axis activation.

  6. Five-year evolution of reperfusion strategies and early mortality in patients with ST-segment elevation myocardial infarction in France.

    Science.gov (United States)

    El Khoury, Carlos; Bochaton, Thomas; Flocard, Elodie; Serre, Patrice; Tomasevic, Danka; Mewton, Nathan; Bonnefoy-Cudraz, Eric

    2017-10-01

    To assess 5-year evolutions in reperfusion strategies and early mortality in patients with ST-segment elevation myocardial infarction. Using data from the French RESCUe network, we studied patients with ST-segment elevation myocardial infarction treated in mobile intensive care units between 2009 and 2013. Among 2418 patients (median age 62 years; 78.5% male), 2119 (87.6%) underwent primary percutaneous coronary intervention and 299 (12.4%) pre-hospital thrombolysis (94.0% of whom went on to undergo percutaneous coronary intervention). Use of primary percutaneous coronary intervention increased from 78.4% in 2009 to 95.9% in 2013 ( P trend 90 minutes delay group (83.0% in 2009 to 97.7% in 2013; P trend <0.001 versus 34.1% in 2009 to 79.2% in 2013; P trend <0.001). In-hospital (4-6%) and 30-day (6-8%) mortalities remained stable from 2009 to 2013. In the RESCUe network, the use of primary percutaneous coronary intervention increased from 2009 to 2013, in line with guidelines, but there was no evolution in early mortality.

  7. Myocardial Ablation of G Protein-Coupled Receptor Kinase 2 (GRK2 Decreases Ischemia/Reperfusion Injury through an Anti-Intrinsic Apoptotic Pathway.

    Directory of Open Access Journals (Sweden)

    Qian Fan

    Full Text Available Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2 activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R injury. To do this we utilized two independent lines of GRK2 knockout (KO mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.

  8. Comparison of the efficacy of pharmacoinvasive management for ST-segment elevation myocardial infarction in smokers versus non-smokers (from the Trial of Routine Angioplasty and Stenting After Fibrinolysis to Enhance Reperfusion in Acute Myocardial Infarction).

    Science.gov (United States)

    Tan, Nigel S; Goodman, Shaun G; Cantor, Warren J; Tan, Mary K; Yan, Raymond T; Bagnall, Alan J; Mehta, Shamir R; Fitchett, David; Strauss, Bradley H; Yan, Andrew T

    2014-10-01

    Compared with non-smokers, cigarette smokers with ST-segment elevation myocardial infarctions derive greater benefit from fibrinolytic therapy. However, it is not known whether the optimal treatment strategy after fibrinolysis differs on the basis of smoking status. The Trial of Routine Angioplasty and Stenting After Fibrinolysis to Enhance Reperfusion in Acute Myocardial Infarction (TRANSFER-AMI) randomized patients with ST-segment elevation myocardial infarctions to a routine early invasive (pharmacoinvasive) versus a standard (early transfer only for rescue percutaneous coronary intervention or delayed angiography) strategy after fibrinolysis. The efficacy of these strategies was compared in 1,051 patients on the basis of their smoking status. Treatment heterogeneity was assessed between smokers and non-smokers, and multivariable analysis was performed to evaluate for an interaction between smoking status and treatment strategy after adjusting for baseline Global Registry of Acute Coronary Events (GRACE) risk score. Smokers (n=448) were younger, had fewer cardiovascular risk factors, and had lower GRACE risk scores. They had a lower rate of the primary composite end point of 30-day mortality, reinfarction, recurrent ischemia, heart failure, or cardiogenic shock and fewer deaths or reinfarctions at 6 months and 1 year. Smoking status was not a significant predictor of either primary or secondary end points in multivariable analysis. Pharmacoinvasive management reduced the primary end point compared with standard therapy in smokers (7.7% vs 13.6%, p=0.04) and non-smokers (13.1% vs 19.7%, p=0.03). Smoking status did not modify treatment effect on any measured outcomes (p>0.10 for all). In conclusion, compared with non-smokers, current smokers receiving either standard or early invasive management of ST-segment elevation myocardial infarction after fibrinolysis have more favorable outcomes, which is likely attributable to their better baseline risk profile. The

  9. Blood rheology of angina pectoris patients with myocardial injury after ischemia reperfusion and its effect on thromboxane B2 levels.

    Science.gov (United States)

    Wang, Wenlong; Huang, Xiaohui; Sun, Yiyong; Zhang, Jinying

    2018-01-01

    This study investigated the changes in the blood rheology of patients with angina pectoris and ischemia reperfusion injury and their effect on thromboxane B 2 (TXB 2 ) levels to examine their relationship. Forty patients with unstable angina pectoris who underwent elective percutaneous coronary intervention (PCI) were selected for the unstable angina group (UA group) and forty patients deemed free of coronary heart disease by coronary angiography were selected for the control group. Venous blood samples were drawn from all participants; patients in the UA group had blood drawn 1 day before and 1 day after the PCI procedure. Blood samples were used to analyze blood rheology and examine hemodynamic parameters, at the same time radioimmunoassay was applied to measure the concentrations of serum endothelin-1 (ET-1) and TXB 2 , and an automatic biochemical analyzer was used to detect the content of superoxide dismutase (SOD) and malondialdehyde (MDA). Our results showed the patients in the UA group all presented hyperviscosity; however the levels were higher for the patients in the UA group (after surgery) than for those in the UA group (before surgery). Patients in the control group exhibited normal levels, and the differences among groups were significant in pairwise comparisons (Pangina pectoris and ischemia reperfusion injury. The higher than normal TXB 2 levels can be used as a marker of platelet activation and a reference for clinical risk stratification, thus having great significance for the prevention and treatment of ischemia reperfusion injury and assessment of disease progression.

  10. Low dose prospective ECG-gated delayed enhanced dual-source computed tomography in reperfused acute myocardial infarction comparison with cardiac magnetic resonance

    International Nuclear Information System (INIS)

    Wang Rui; Zhang Zhaoqi; Xu Lei; Ma Qin; He Yi; Lu Dongxu; Yu Wei; Fan Zhanming

    2011-01-01

    Purpose: To determine whether prospective electrocardiogram (ECG)-gated delayed contrast-enhanced dual-source computed tomography (DCE-DSCT) can accurately delineate the extension of myocardial infarction (MI) compared with delayed enhanced cardiac MR (DE-MR). Material and methods: Eleven patients were examined using dual-source CT and cardiac MR in 2 weeks after a first reperfused MI. DCE-DSCT scan protocol was performed with prospective ECG-gating sequential scan model 7 min after contrast administration. In a 17-model, infarcted myocardium detected by DE-MR was categorized as transmural and subendocardial extension. Segment of infarcted location and graded transmurality were compared between DCE-MDCT and DE-MR. Results: In all eleven patients, diagnostic quality was obtained for depicting delayed enhanced myocardium. Agreement between DCE-DSCT and MR was good on myocardial segment based comparison (kappa = 0.85, p < 0.001), and on transmural and subendocardial infarction type comparison (kappa = 0.82, p < 0.001, kappa = 0.52, p < 0.001, respectively). CT value was higher on infarcted region than that of normal region (100.02 ± 9.57 HU vs. 72.63 ± 7.32 HU, p < 0.001). Radiation dose of prospectively ECG-gating protocol were 0.99 ± 0.08 mSv (0.82-1.19 mSv). Conclusions: Prospective ECG-gated DCE-DSCT can accurately assess the extension and the patterns of myocardial infarction with low radiation dose.

  11. Low dose prospective ECG-gated delayed enhanced dual-source computed tomography in reperfused acute myocardial infarction comparison with cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang Rui, E-mail: rui_wang1979@yahoo.cn [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Zhang Zhaoqi, E-mail: zhaoqi5000@vip.sohu.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Xu Lei, E-mail: leixu2001@hotmail.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Ma Qin, E-mail: tel1367@gmail.com [Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); He Yi, E-mail: heyi139@sina.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Lu Dongxu, E-mail: larry.hi@163.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Yu Wei, E-mail: yuwei02@gmail.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China); Fan Zhanming, E-mail: fanzm120@tom.com [Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing (China)

    2011-11-15

    Purpose: To determine whether prospective electrocardiogram (ECG)-gated delayed contrast-enhanced dual-source computed tomography (DCE-DSCT) can accurately delineate the extension of myocardial infarction (MI) compared with delayed enhanced cardiac MR (DE-MR). Material and methods: Eleven patients were examined using dual-source CT and cardiac MR in 2 weeks after a first reperfused MI. DCE-DSCT scan protocol was performed with prospective ECG-gating sequential scan model 7 min after contrast administration. In a 17-model, infarcted myocardium detected by DE-MR was categorized as transmural and subendocardial extension. Segment of infarcted location and graded transmurality were compared between DCE-MDCT and DE-MR. Results: In all eleven patients, diagnostic quality was obtained for depicting delayed enhanced myocardium. Agreement between DCE-DSCT and MR was good on myocardial segment based comparison (kappa = 0.85, p < 0.001), and on transmural and subendocardial infarction type comparison (kappa = 0.82, p < 0.001, kappa = 0.52, p < 0.001, respectively). CT value was higher on infarcted region than that of normal region (100.02 {+-} 9.57 HU vs. 72.63 {+-} 7.32 HU, p < 0.001). Radiation dose of prospectively ECG-gating protocol were 0.99 {+-} 0.08 mSv (0.82-1.19 mSv). Conclusions: Prospective ECG-gated DCE-DSCT can accurately assess the extension and the patterns of myocardial infarction with low radiation dose.

  12. Impact of ECG findings and process-of-care characteristics on the likelihood of not receiving reperfusion therapy in patients with ST-elevation myocardial infarction: results of a field evaluation.

    Directory of Open Access Journals (Sweden)

    Kevin A Brown

    Full Text Available BACKGROUND: Many patients with ST-elevation myocardial infarction (STEMI do not receive reperfusion therapy and are known to have poorer outcomes. We aimed to perform the first population-level, integrated analysis of clinical, ECG and hospital characteristics associated with non-receipt of reperfusion therapy in patients with STEMI. METHODS AND RESULTS: This systematic evaluation of STEMI care in 82 hospitals in Quebec included all patients with a discharge diagnosis of myocardial infarction, presenting with characteristic symptoms and an ECG showing STEMI as attested by at least one of two study cardiologists or left bundle branch block (LBBB. Excluding LBBB, an ECG was considered a definite STEMI diagnosis if both cardiologists scored 'certain STEMI' and ambiguous if one scored 'uncertain' or 'not STEMI'. Centers were classified according to accessibility to primary percutaneous coronary intervention (PPCI: 1 on-site PPCI; 2 routine transfer for PPCI; 3 varying mix of PPCI transfer and on-site fibrinolysis; and 4 routine on-site fibrinolysis. Of 3730 STEMI/LBBB patients, 812 (21.8% did not receive reperfusion therapy. In multivariate analysis, likelihood of no reperfusion therapy was a function of PPCI accessibility (odds ratio [OR] for fibrinolysis versus PPCI centers = 3.1; 95% CI: 2.2-4.4, presence of LBBB (OR = 24.1; 95% CI: 17.8-32.9 and an ECG ambiguous for STEMI (OR = 4.1; 95% CI: 3.3-5.1. When the ECG was ambiguous, likelihood of no reperfusion therapy was highest in hospitals most distant from PPCI centers. CONCLUSIONS: ECG diagnostic ambiguity, LBBB and PPCI accessibility are important predictors of not receiving reperfusion therapy, suggesting opportunities for improving outcomes.

  13. Emerging molecular therapies targeting myocardial infarction-related arrhythmias

    NARCIS (Netherlands)

    Driessen, Helen E.; van Veen, Toon A. B.; Boink, Gerard J. J.

    2017-01-01

    Cardiac disease is the leading cause of death in the developed world. Ventricular arrhythmias associated with myocardial ischaemia and/or infarction are a major contributor to cardiovascular mortality, and require improved prevention and treatment. Drugs, devices, and radiofrequency catheter

  14. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion.

    Directory of Open Access Journals (Sweden)

    Bochra Tourki

    Full Text Available Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2 is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP. Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR. We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial

  15. Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Jian, Jie; Xuan, Feifei; Qin, Feizhang; Huang, Renbin

    2015-01-01

    This study aimed to determine the effects of Bauhinia championii flavone (BCF) on myocardial ischemia/reperfusion injury (MI/RI) in rats and to explore potential mechanisms. The MI/RI model in rats was established by ligating the left anterior descending coronary artery for 30 minutes, then reperfusing for 3 hours. BCF at 20 mg/kg was given 20 minutes prior to ischemia via sublingual intravenous injection, with 24 μg/kg phosphoinositide 3-kinase inhibitor (PI3K; wortmannin) as a control. The creatine kinase-MB and nitric oxide content were assessed by colorimetry. The levels of mitochondrial permeability transition pores and tumor necrosis factor alpha were determined by an enzyme-linked immunosorbent assay. Cardiomyocyte apoptosis was detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Additionally, the expression of PI3K, endothelial nitric oxide synthase, caspase-3, and Beclin1 was analyzed by fluorescence quantitative polymerase chain reaction and Western blotting, respectively. Akt and microtubule-associated protein 1 light chain 3-II protein levels were also evaluated. Pretreatment with BCF significantly decreased the levels of creatine kinase-MB, tumor necrosis factor alpha, and mitochondrial permeability transition pores, but increased the nitric oxide content. Furthermore, BCF inhibited apoptosis, downregulated caspase-3, Beclin1, and microtubule-associated protein 1 light chain 3-II, upregulated PI3K, and increased the protein levels of phosphorylated Akt and endothelial nitric oxide synthase. However, all of the previously mentioned effects of BCF were blocked when BCF was coadministered with wortmannin. In conclusion, these observations indicated that BCF has cardioprotective effects against MI/RI by reducing cell apoptosis and excessive autophagy, which might be related to the activation of the PI3K/Akt signaling pathway.

  16. Predictors of ventricular remodelling in patients with reperfused acute myocardial infarction and left ventricular dysfunction candidates for bone marrow cell therapy: insights from the BONAMI trial

    International Nuclear Information System (INIS)

    Manrique, Alain; Lemarchand, Patricia; Delasalle, Beatrice; Lamirault, Guillaume; Trochu, Jean-Noel; Le Tourneau, Thierry; Lairez, Olivier; Roncalli, Jerome; Sportouch-Duckan, Catherine; Piot, Christophe; Le Corvoisier, Philippe; Neuder, Yannick; Richardson, Marjorie; Lebon, Alain; Teiger, Emmanuel; Hossein-Foucher, Claude

    2016-01-01

    Few data are available regarding the relation of left ventricular (LV) mechanical dyssynchrony to remodelling after acute myocardial infarction (MI) and stem cell therapy. We evaluated the 1-year time course of both LV mechanical dyssynchrony and remodelling in patients enrolled in the BONAMI trial, a randomized, multicenter controlled trial assessing cell therapy in patients with reperfused MI. Patients with acute MI and ejection fraction (EF) ≤ 45 % were randomized to cell therapy or to control and underwent thallium single-photon emission computed tomography (SPECT), radionuclide angiography, and echocardiography at baseline, 3 months, and 1 year. Eighty-three patients with a comprehensive 1-year follow-up were included. LV dyssynchrony was assessed by the standard deviation (SD) of the LV phase histogram using radionuclide angiography. Remodelling was defined as a 20 % increase in LV end-systolic volume index (LVESVI) at 1 year. At baseline, LVEF, wall motion score index, and perfusion defect size were significantly impaired in the 43 patients (52 %) with LV remodelling (all p < 0.001), without significant increase in LV mechanical dyssynchrony. During follow-up, there was a progressive increase in LV SD (p = 0.01). Baseline independent predictors of LV remodelling were perfusion SPECT defect size (p = 0.001), LVEF (p = 0.01) and a history of hypertension (p = 0.043). Bone marrow cell therapy did not affect the time-course of LV remodelling and dyssynchrony. LV remodelling 1 year after reperfused MI is associated with progressive LV dyssynchrony and is related to baseline infarct size and ejection fraction, without impact of cell therapy on this process. (orig.)

  17. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II).

    Science.gov (United States)

    Ross, Allan M; Gibbons, Raymond J; Stone, Gregg W; Kloner, Robert A; Alexander, R Wayne

    2005-06-07

    The purpose of this research was to determine the effect of intravenous adenosine on clinical outcomes and infarct size in ST-segment elevation myocardial infarction (STEMI) patients undergoing reperfusion therapy. Previous small studies suggest that adenosine may reduce the size of an evolving infarction. Patients (n = 2,118) with evolving anterior STEMI receiving thrombolysis or primary angioplasty were randomized to a 3-h infusion of either adenosine 50 or 70 microg/kg/min or of placebo. The primary end point was new congestive heart failure (CHF) beginning >24 h after randomization, or the first re-hospitalization for CHF, or death from any cause within six months. Infarct size was measured in a subset of 243 patients by technetium-99m sestamibi tomography. There was no difference in the primary end point between placebo (17.9%) and either the pooled adenosine dose groups (16.3%) or, separately, the 50-microg/kg/min dose and 70-microg/kg/min groups (16.5% vs. 16.1%, respectively, p = 0.43). The pooled adenosine group trended toward a smaller median infarct size compared with the placebo group, 17% versus 27% (p = 0.074). A dose-response relationship with final median infarct size was seen: 11% at the high dose (p = 0.023 vs. placebo) and 23% at the low dose (p = NS vs. placebo). Infarct size and occurrence of a primary end point were significantly related (p < 0.001). Clinical outcomes in patients with STEMI undergoing reperfusion therapy were not significantly improved with adenosine, although infarct size was reduced with the 70-microg/kg/min adenosine infusion, a finding that correlated with fewer adverse clinical events. A larger study limited to the 70-microg/kg/min dose is, therefore, warranted.

  18. Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction

    International Nuclear Information System (INIS)

    Cochet, Alexandre A.; Lalande, Alain; Walker, Paul M.; Touzery, Claude; Brunotte, Francois; Lorgis, Luc; Beer, Jean-Claude; Cottin, Yves; Zeller, Marianne; Wolf, Jean-Eric

    2009-01-01

    The aim of this study was to compare the prognostic significance of microvascular obstruction (MO) and persistent microvascular obstruction (PMO) as assessed by cardiac magnetic resonance (CMR) in patients with acute myocardial infarction (AMI). CMR was performed in 184 patients within the week following successfully reperfused first AMI. First-pass images were performed to evaluate extent of MO and late gadolinium-enhanced images to assess PMO and infarct size (IS). Major adverse cardiac events (MACE) were collected at 1-year follow-up. MO and PMO were found in 127 (69%) and 87 (47%) patients, respectively. By using univariate logistic regression analysis, high Global Registry of Acute Coronary Events (GRACE) risk score (odds ratio [OR] 95% confidence interval [CI]: 3.6 [1.8-7.4], p < 0.001), IS greater than 10% (OR [95% CI]: 2.7 [1.1-6.9], p = 0.036), left ventricular ejection fraction less than 40% (OR [95% CI]: 2.4 [1.1-5.2], p = 0.027), presence of MO (OR [95% CI]: 3.1 [1.3-7.3], p = 0.004) and presence of PMO (OR [95% CI]:10 [4.1-23.9], p < 0.001) were shown to be significantly associated with the outcome. By using multivariate analysis, presence of MO (OR [95% CI]: 2.5 [1.0-6.2], p = 0.045) or of PMO (OR [95% CI]: 8.7 [3.6-21.1], p < 0.001), associated with GRACE score, were predictors of MACE. Presence of microvascular obstruction and persistent microvascular obstruction is very common in AMI patients even after successful reperfusion and is associated with a dramatically higher risk of subsequent cardiovascular events, beyond established prognostic markers. Moreover, our data suggest that the prognostic impact of PMO might be superior to MO. (orig.)

  19. Predictors of ventricular remodelling in patients with reperfused acute myocardial infarction and left ventricular dysfunction candidates for bone marrow cell therapy: insights from the BONAMI trial

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, Alain [Nuclear Medicine, CHU de Caen, Caen (France); Universite de Caen Normandie, EA 4650, Caen (France); CHU de Caen et GIP Cyceron, Caen cedex 6 (France); Lemarchand, Patricia; Delasalle, Beatrice; Lamirault, Guillaume; Trochu, Jean-Noel; Le Tourneau, Thierry [L' Institut du thorax, INSERM, UMR1087, Nantes (France); CNRS, UMR 6291, Nantes (France); Universite de Nantes, Nantes (France); CHU de Nantes, Nantes (France); Lairez, Olivier; Roncalli, Jerome [Institut CARDIOMET-Toulouse, Cardiac Imaging Center, CIC Biotherapies, CHU de Toulouse, Toulouse (France); Sportouch-Duckan, Catherine; Piot, Christophe [Universite Montpellier, Institut de Genomique Fonctionnelle, INSERM U661, CNRS UMR 5203, Montpellier (France); Clinique du Millenaire, Montpellier (France); Le Corvoisier, Philippe [Hopital Henri Mondor, INSERM, Centre d' Investigation Clinique 1430 et U955 equipe 3, Creteil (France); Neuder, Yannick [CHU de Grenoble, Pole Thorax et Vaisseaux, Grenoble (France); Richardson, Marjorie [CHRU Lille, Service d' Explorations Fonctionnelles Cardiovasculaires, Hopital Cardiologique, Lille (France); Lebon, Alain [CHU de Caen, Service de Cardiologie, Caen (France); Teiger, Emmanuel [Hopital Henri Mondor, AP-HP, Unite de Cardiologie Interventionnelle et Federation de Cardiologie, Creteil (France); Hossein-Foucher, Claude [Hopital Salengro CHRU de Lille, Service de Medecine Nucleaire, Lille (France); Universite de Lille 2, UFR de Medecine, Lille (France)

    2016-04-15

    Few data are available regarding the relation of left ventricular (LV) mechanical dyssynchrony to remodelling after acute myocardial infarction (MI) and stem cell therapy. We evaluated the 1-year time course of both LV mechanical dyssynchrony and remodelling in patients enrolled in the BONAMI trial, a randomized, multicenter controlled trial assessing cell therapy in patients with reperfused MI. Patients with acute MI and ejection fraction (EF) ≤ 45 % were randomized to cell therapy or to control and underwent thallium single-photon emission computed tomography (SPECT), radionuclide angiography, and echocardiography at baseline, 3 months, and 1 year. Eighty-three patients with a comprehensive 1-year follow-up were included. LV dyssynchrony was assessed by the standard deviation (SD) of the LV phase histogram using radionuclide angiography. Remodelling was defined as a 20 % increase in LV end-systolic volume index (LVESVI) at 1 year. At baseline, LVEF, wall motion score index, and perfusion defect size were significantly impaired in the 43 patients (52 %) with LV remodelling (all p < 0.001), without significant increase in LV mechanical dyssynchrony. During follow-up, there was a progressive increase in LV SD (p = 0.01). Baseline independent predictors of LV remodelling were perfusion SPECT defect size (p = 0.001), LVEF (p = 0.01) and a history of hypertension (p = 0.043). Bone marrow cell therapy did not affect the time-course of LV remodelling and dyssynchrony. LV remodelling 1 year after reperfused MI is associated with progressive LV dyssynchrony and is related to baseline infarct size and ejection fraction, without impact of cell therapy on this process. (orig.)

  20. Treating myocardial stunning randomly, with either propofol or isoflurane following transient coronary occlusion and reperfusion in pigs

    Directory of Open Access Journals (Sweden)

    Urdaneta Felipe

    2009-01-01

    Full Text Available Propofol and isoflurane may be used during fast track anesthesia for off-pump bypass, where transient ischemia is common. The purpose of this study was to compare the effects of propofol vs isoflurane in a porcine model of acute coronary occlusion. Twenty five pigs were randomized to receive general anesthesia with either isoflurane, 1 MAC (n = 13, or propofol, 3 mg/kg bolus followed by 200 μg/ kg/min infusion (n = 12. Pressure-tipped catheters were placed in the left ventricle (LV and carotid artery; cardiac output was measured by ultrasound; two pairs of ultrasonic dimension catheters were placed in the subendocardium of LV. The slope of LV end-systolic pressure-volume relationship (E max was calculated. Reversible ischemia for 15 mins was accomplished with an occluder around the left anterior descending artery followed by reperfusion period. Measurements were done at baseline, end ischemia, early (5 min and late (30 min reperfusion. The data collected included systemic hemodynamics, LV end-diastolic pressure (LVEDP, dP/dt, E max , and the presence of ventricular arrhythmias. The number of animals studied to completion was 19 (n = 11 in the isoflurane group; n = 8 in propofol group. There was a significant difference in E max between isoflurane and propofol during early and late reperfusion [3.4 (0.5 and 4.0 (0.3 vs 2.6 (0.4 and 3.2 (0.5 mmHg/sec, respectively; P < 0.05]. Postreperfusion ventricular fibrillation occurred in 54% animals in the propofol group vs none in the isoflurane group ( P < 0.05. Isoflurane administration was found to be cardioprotective against ventricular depression and arrhythmias compared to propofol.

  1. Erythrocyte-rich thrombus aspirated from patients with ST-elevation myocardial infarction: association with oxidative stress and its impact on myocardial reperfusion

    NARCIS (Netherlands)

    Yunoki, Kei; Naruko, Takahiko; Sugioka, Kenichi; Inaba, Mayumi; Iwasa, Yoko; Komatsu, Ryushi; Itoh, Akira; Haze, Kazuo; Inoue, Takeshi; Yoshiyama, Minoru; Becker, Anton E.; Ueda, Makiko

    2012-01-01

    Recent studies have demonstrated that erythrocytes are a potential component in atheromatous lesions and thrombus formation in patients with ST-elevation myocardial infarction (STEMI). The purpose of this study was to determine the associations of red blood cell (RBC) component of coronary thrombi

  2. Myocardial Protective Effects of L-Carnitine on Ischemia-Reperfusion Injury in Patients With Rheumatic Valvular Heart Disease Undergoing Cardiac Surgery.

    Science.gov (United States)

    Li, Ming; Xue, Li; Sun, Haifeng; Xu, Suochun

    2016-12-01

    The authors used L-carnitine as an ingredient in cardioplegic solution during valve replacement surgery to investigate the protective effect of L-carnitine on myocardial ischemia-reperfusion injury (MIRI) and its possible mechanism. Prospective, randomized study. A tertiary-care hospital. The study comprised 90 patients undergoing valve replacement under cardiopulmonary bypass. Patients were divided randomly into 3 groups. L-carnitine was added to the crystalloid cardioplegic solution for experimental group 1 (3 g/L) and experimental group 2 (6 g/L), whereas no L-carnitine was used in the control group. The remainder of the treatment was identical for all 3 groups. Serum was collected from each patient 1 hour before the surgery and at 2, 6, 24, and 72 hours after unclamping the aorta, and tissue samples were obtained before cardiac arrest and after unclamping the aorta. The postoperative levels of serum aspartate aminotransferase, creatine kinase, creatine kinase-MB isozyme, and lactic acid dehydrogenase and the apoptotic index were all lower in the 2 experimental groups than those in the control group. In addition, each of the aforementioned serum enzyme levels and the apoptotic index in all 3 groups significantly increased after unclamping the aorta compared with baseline levels taken before surgery. Bcl-2 expression was higher and Bax was lower in the 2 experimental groups compared with those of the control group after unclamping the aorta. However, there was no significant difference in all the postoperative indices between the 2 experimental groups. L-carnitine may reduce cardiopulmonary bypass-induced myocardial apoptosis through modulating the expressions of Bcl-2 and Bax, resulting in a protective effect from MIRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Detection and characteristics of microvascular obstruction in reperfused acute myocardial infarction using an optimized protocol for contrast-enhanced cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bekkers, Sebastiaan C.A.M.; Gorgels, Anton P.M.; Passos, Valeria Lima; Waltenberger, Johannes; Crijns, Harry J.G.M.; Schalla, Simon [Maastricht University Medical Center, Department of Cardiology, P. Debyelaan 25, PO Box 5800, Maastricht (Netherlands); Backes, Walter H.; Snoep, Gabriel [Maastricht University Medical Center, Department of Radiology, P. Debyelaan 25, PO Box 5800, Maastricht (Netherlands); Kim, Raymond J. [Duke University Medical Center, Duke Cardiovascular Magnetic Resonance Center, PO Box 3934, Durham, NC (United States)

    2009-12-15

    Several cardiovascular magnetic resonance imaging (CMR) techniques are used to detect microvascular obstruction (MVO) after acute myocardial infarction (AMI). To determine the prevalence of MVO and gain more insight into the dynamic changes in appearance of MVO, we studied 84 consecutive patients with a reperfused AMI on average 5 and 104 days after admission, using an optimised single breath-hold 3D inversion recovery gradient echo pulse sequence (IR-GRE) protocol. Early MVO (2 min post-contrast) was detected in 53 patients (63%) and late MVO (10 min post-contrast) in 45 patients (54%; p = 0.008). The extent of MVO decreased from early to late imaging (4.3 {+-} 3.2% vs. 1.8 {+-} 1.8%, p < 0.001) and showed a heterogeneous pattern. At baseline, patients without MVO (early and late) had a higher left ventricular ejection fraction (LVEF) than patients with persistent late MVO (56 {+-} 7% vs. 48 {+-} 7%, p < 0.001) and LVEF was intermediate in patients with early MVO but late MVO disappearance (54 {+-} 6%). During follow-up, LVEF improved in all three subgroups but remained intermediate in patients with late MVO disappearance. This optimised single breath-hold 3D IR-GRE technique for imaging MVO early and late after contrast administration is fast, accurate and allows detection of patients with intermediate remodelling at follow-up. (orig.)

  4. The predictive value of 201Tl rest-redistribution and 18F-fluorodeoxyglucose SPECT for wall motion recovery after recent reperfused myocardial infarction.

    Science.gov (United States)

    González, Patricio; Massardo, Teresa; Coll, Claudia; Humeres, Pamela; Sierralta, Paulina; Jofré, M Josefina; Yovanovich, Jorge; Aramburu, Ivonne; Brugère, Solange; Chamorro, Hernán

    2004-04-01

    201Tl and 18F-FDG are useful for acute myocardial infarction (MI) assessment. The goal of this study was to compare their predictive value for wall motion recovery in the culprit area after a recent reperfused MI using SPECT technique. Forty-one patients (mean age: 56 +/- 12 years) were included, 81% of them male; all were studied within 1-24 days post MI. They underwent angioplasty in 27 cases (12 primary); bypass grafting in 10 cases and successful thrombolysis in 4. SPECT 201Tl injected at rest and redistribution (R-R) and also 18F-FDG, were performed on different days. Processed tomograms were interpreted blinded to clinical or angiographic data. Segmental wall motion assessed with echocardiography at baseline was compared with the 3 month follow up. Sensitivity [Confidence Interval] for 201Tl R-R was 74.6% [60.5-84.5], for FDG it was 82.1% [70.8-90.4]; specificities were 73% [64.3-80.5] and 54.8% [45.6-63.7], respectively. 18F-FDG tended to be more sensitive than 201Tl R-R, but the latter was more specific (p < 0.0004). Both 201Tl RR and 18F-FDG presented high negative predictive value (p: ns). In recent MI, SPECT 201Tl R-R is a valuable and widely available technique for viability detection, with similar sensitivity and significant better specificity than SPECT 18F-FDG.

  5. Histidine-tryptophan-ketoglutarate solution with added ebselen augments myocardial protection in neonatal porcine hearts undergoing ischemia/reperfusion.

    Science.gov (United States)

    Chen, Yan; Liu, Jinping; Li, Shoujun; Yan, Fuxia; Xue, Qinghua; Wang, Huiying; Sun, Peng; Long, Cun

    2015-02-01

    Whether modified histidine-tryptophan-ketoglutarate (HTK) solution offers myocardial protection to newborn heart has not been documented. The purpose of this study was to compare myocardial protection using HTK added by ebselen with HTK in a piglet model of cardiopulmonary bypass (CPB). Fifteen piglets were randomly assigned to three groups: the control group (C group, n = 5), HTK solution group (HTK group, n = 5), and HTK added by 10 nM ebselen group (HTK+E group, n = 5). Animals in the two experimental groups were placed on hypothermic CPB, after which the ascending aorta had been clamped for 2 h. The control animals underwent normothermic CPB without cardiac arrest. Myocardial antioxidant activities, myocytes apoptosis and mitochondrial structures, as well as the release of cytochrome c and the expression of Bax, Bcl-2, and HSP72 protein in myocardium were measured. Increased myocardial superoxide dismutase (SOD) and Mn-SOD activities, decreased TUNEL-positive cells, and reduced release of cytochrome c were noted in the HTK+E group compared with those in the HTK group (P = 0.021, P = 0.020, P = 0.045, and P = 0.010, respectively). The Bax/Bcl-2 ratio in the HTK group was significantly higher than that in the C group (P = 0.024). The expression of HSP72 protein and mRNA in the HTK+E group was higher than that in the HTK group (P = 0.039 and P = 0.035, respectively). Mitochondrial score under electron microscope in the HTK+E group was lower than that in the HTK group (P = 0.047). Improved antioxidant defense, reduced myocytes apoptosis, and better preserved mitochondrial structure were observed in the HTK+E group. Ebselen added to HTK provides better myocardioprotection to HTK solution for the neonatal heart. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. PHARMACOEPIDEMIOLOGIC ANALYSIS OF ST-ELEVATION MYOCARDIAL INFARCTION REPERFUSION THERAPY AT SARATOV REGION HOSPITALS OF DIFFERENT TYPES

    Directory of Open Access Journals (Sweden)

    O. V. Reshetko

    2016-01-01

    Full Text Available Aim. To evaluate the real practice of thrombolytic therapy of patients with ST-elevation myocardial infarction (STEMI at cardiological departments of Saratov and Saratov region hospitals.Material and methods. Retrospective pharmacoepidemiologic study was carried out. Case histories of STEMI patients discharged from cardiologic departments of several central district hospitals (CDH of Saratov region, cardiologic department of one of Saratov general municipal hospitals (MH and urgent cardiology department of Saratov clinical hospital (CH in 2006 were analyzed.Results. In CH all patients received thrombolytic therapy given they did not have contraindications and were admitted to the hospital timely. Few patients received thrombolytic therapy in MH and CDH in 2006.Conclusion. Correlation between hospital type and quality of STEMI management has been revealed.

  7. Electrocardiogram score for the selection of reperfusion strategy in early latecomers with ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Zhang, Yu-Jiao; Zheng, Wen; Sun, Jian; Li, Guo-Li; Chi, Bao-Rong

    2015-01-01

    The clinical benefit of percutaneous coronary intervention (PCI) is controversial in ST-segment elevation myocardial infarction (STEMI) patients presenting 12-72 hours after symptom onset. Several studies suggested this conflicting result was associated with myocardial area at risk (MaR) of enrolled patients. MaR could be estimated by the electrocardiogram (ECG) score. Our objective was to evaluate the benefits of PCI in STEMI latecomers with different MaR. We constructed a prospective cohort involving 436 patients presenting 12-72 hours after STEMI onset and who met an inclusion criteria. 218 underwent PCI and 218 received the optimal medical therapy (OMT) alone. Individual MaR was quantified by the combined Aldrich ST and Selvester QRS score. The primary endpoint was a composite of cardiovascular death, reinfarction or revascularization within two years. The 2-year cumulative primary endpoint rate was respectively 9.2% in PCI group and 5.3% in OMT group when MaR<35% (adjusted hazard ratio for PCI vs. OMT, 1.855; 95% confidence interval [CI], 0.617-5.575; P=0.271), and was 12.8% in PCI group and 23.1% in OMT group when MaR ≥35% (adjusted hazard ratio for PCI vs. OMT, 0.448; 95% CI, 0.228-0.884; P=0.021). The benefit of PCI for the STEMI latecomers was associated with the MaR. PCI, compared with OMT, could significantly reduce the 2-year primary outcomes in patients with MaR≥35%, but not in ones with MaR<35%. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Chronic type-I diabetes could not impede the anti-inflammatory and anti-apoptotic effects of combined postconditioning with ischemia and cyclosporine A in myocardial reperfusion injury.

    Science.gov (United States)

    Badalzadeh, Reza; Azimi, Ako; Alihemmati, Alireza; Yousefi, Bahman

    2017-02-01

    It has been shown that diabetes modifies the myocardial responses to ischemia/reperfusion (I/R) and to cardioprotective agents. In this study, we aimed to investigate the effects of combined treatment with ischemic postconditioning (IPostC) and cyclosporine A (CsA) on inflammation and apoptosis of the diabetic myocardium injured by I/R. Eight weeks after induction of diabetes in Wistar rats, hearts were mounted on a Langendorff apparatus and were subsequently subjected to a 30-min regional ischemia followed by 45-min reperfusion. IPostC was induced at the onset of reperfusion, by 3 cycles of 30-s reperfusion/ischemia (R/I). The concentration of creatine kinase (CK), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were determined; the levels of total and phosphorylated glycogen synthase kinase 3 beta (p-GSK3β) and B-cell lymphoma 2 (Bcl-2) were quantified by western blotting, and the rate of apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. Administration of either IPostC or CsA alone in nondiabetic animals significantly reduced CK, TNF-α, IL-1β, and IL-6 concentrations, increased the p-GSK3β and Bcl-2, and decreased the level of apoptosis (P GSK3β and Bcl-2 and decreasing apoptosis and inflammation were restored in comparison with nonpostconditioned diabetic hearts. IPostC or CsA failed to affect apoptosis and inflammation and failed to protect the diabetic myocardium against I/R injury. However, combined administration of IPostC and CsA at reperfusion can protect the diabetic myocardium by decreasing the inflammatory response and apoptosis.

  9. Can cardiac rehabilitation programs improve functional capacity and left ventricular diastolic function in patients with mechanical reperfusion after ST elevation myocardial infarction?: A double-blind clinical trial

    Directory of Open Access Journals (Sweden)

    Allahyar Golabchi

    2012-10-01

    Full Text Available BACKGROUND: Current guidelines recommend cardiac rehabilitation programs (CRP as a means to improve functional status of patients after coronary revascularization. However, research supporting this recommendation has been limited and positive effects of CRP on diastolic function are controversial. The aim of this study was to examine the effects of an 8-week CRP on left ventricular diastolic function.    METHODS: This randomized, clinical trial included 29 men with ST elevation myocardial infarction (MI who had received reperfusion therapy, i.e. coronary artery bypass grafting (CABG or percutaneous coronary intervention (PCI. They were randomized to a training group (n = 15; mean age: 54.2 ± 9.04 years old and a control group (n = 14; mean age: 51.71 ± 6.98 years old. Patients in the training group performed an 8-week CRP with an intensity of 60-85% of maximum heart rate. Exercise sessions lasted 60-90 minutes and were held three times a week. At the start and end of the study, all patients performed symptom-limited exercise test based on Naughton treadmill protocol. Pulsed-wave Doppler echocardiography was also used to determine peak velocity of early (E and late (A waves, E/A ratios, and the deceleration time of E (DT.    RESULTS: Left ventricular diastolic indices (E, A, E/A ratio, DT did not change significantly after the CRP. Compared to baseline, patients in the training group had significant improvements in functional capacity (8.30 ± 1.30 vs. 9.7 ± 1.7 and maximum heart rate (118.50 ± 24.48 vs. 126.85 ± 22.75. Moreover, resting heart rate of the training group was significantly better than the control group at the end of the study (75.36 ± 7.94 vs. 79.80 ± 7.67; P < 0.001.    CONCLUSION: An 8-week CRP in post-MI patients revascularized with PCI or CABG led to improved exercise capacity. However, the CRP failed to enhance diastolic function.      Keywords: Cardiac Rehabilitation, Diastolic Function, Functional Capacity

  10. Incidence and Significance of Spontaneous ST Segment Re-elevation After Reperfused Anterior Acute Myocardial Infarction - Relationship With Infarct Size, Adverse Remodeling, and Events at 1 Year.

    Science.gov (United States)

    Cuenin, Léo; Lamoureux, Sophie; Schaaf, Mathieu; Bochaton, Thomas; Monassier, Jean-Pierre; Claeys, Marc J; Rioufol, Gilles; Finet, Gérard; Garcia-Dorado, David; Angoulvant, Denis; Elbaz, Meyer; Delarche, Nicolas; Coste, Pierre; Metge, Marc; Perret, Thibault; Motreff, Pascal; Bonnefoy-Cudraz, Eric; Vanzetto, Gérald; Morel, Olivier; Boussaha, Inesse; Ovize, Michel; Mewton, Nathan

    2018-04-25

    Up to 25% of patients with ST elevation myocardial infarction (STEMI) have ST segment re-elevation after initial regression post-reperfusion and there are few data regarding its prognostic significance.Methods and Results:A standard 12-lead electrocardiogram (ECG) was recorded in 662 patients with anterior STEMI referred for primary percutaneous coronary intervention (PPCI). ECGs were recorded 60-90 min after PPCI and at discharge. ST segment re-elevation was defined as a ≥0.1-mV increase in STMax between the post-PPCI and discharge ECGs. Infarct size (assessed as creatine kinase [CK] peak), echocardiography at baseline and follow-up, and all-cause death and heart failure events at 1 year were assessed. In all, 128 patients (19%) had ST segment re-elevation. There was no difference between patients with and without re-elevation in infarct size (CK peak [mean±SD] 4,231±2,656 vs. 3,993±2,819 IU/L; P=0.402), left ventricular (LV) ejection fraction (50.7±11.6% vs. 52.2±10.8%; P=0.186), LV adverse remodeling (20.1±38.9% vs. 18.3±30.9%; P=0.631), or all-cause mortality and heart failure events (22 [19.8%] vs. 106 [19.2%]; P=0.887) at 1 year. Among anterior STEMI patients treated by PPCI, ST segment re-elevation was present in 19% and was not associated with increased infarct size or major adverse events at 1 year.

  11. Remote Ischemic Postconditioning (RIPC) of the Upper Arm Results in Protection from Cardiac Ischemia-Reperfusion Injury Following Primary Percutaneous Coronary Intervention (PCI) for Acute ST-Segment Elevation Myocardial Infarction (STEMI).

    Science.gov (United States)

    Cao, Bangming; Wang, Haipeng; Zhang, Chi; Xia, Ming; Yang, Xiangjun

    2018-02-19

    BACKGROUND The aim of this study was to evaluate the role of remote ischemic postconditioning (RIPC) of the upper arm on protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI). MATERIAL AND METHODS Eighty patients with STEMI were randomized into two groups: primary PCI (N=44) and primary PCI+RIPC (N=36). RIPC consisted of four cycles of 5 minutes of occlusion and five minutes of reperfusion by cuff inflation and deflation of the upper arm, commencing within one minute of the first PCI balloon dilatation. Peripheral venous blood samples were collected before PCI and at 0.5, 8, 24, 48, and 72 hours after PCI. Levels of creatine kinase-MB (CK-MB), serum creatinine (Cr), nitric oxide (NO), and stromal cell-derived factor-1α (SDF-1α) were measured. The rates of acute kidney injury (AKI) and the estimated glomerular filtration rate (eGFR) were calculated. RESULTS Patients in the primary PCI+RIPC group, compared with the primary PCI group, had significantly lower peak CK-MB concentrations (PPCI in patients with acute STEMI might provide cardiac and renal protection from ischemia-reperfusion injury via the actions of SDF-1α, and NO.

  12. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway.

    Science.gov (United States)

    Wang, Qin; Lin, Ping; Li, Peng; Feng, Li; Ren, Qian; Xie, Xiaofeng; Xu, Jing

    2017-10-01

    The aim of this study was to investigate the cardioprotective effects of ghrelin against myocardial ischemia/reperfusion (I/R) injury and the underlying mechanism. Sprague-Dawley rats were randomized into Sham, I/R and I/R+ghrelin groups. After 30 minutes ischemia, ghrelin (8nmol/kg) was injected intraperitoneally at the time of reperfusion in the I/R+ghrelin group. Then hemodynamic parameters were observed at 24h after reperfusion. Ghrelin exhibited dramatic improvement in cardiac functions, as manifested by increased LVSP and ±dP/dt max and decreased LVDP. At 24h after reperfusion, ghrelin significantly attenuated the myocardial infarction area and apoptosis, accompanied with a decrease in the levels of the myocyte injury marker enzymes. Oxidative stress injury and inflammatory response were also relieved by ghrelin. Western blot showed that the expression of TLR4, NLRP3, and caspase-1 were obviously increased in I/R group, while ghrelin significantly inhibited the I/R-induced TLR4, NLRP3, and caspase-1 expression. Ghrelin could inhibit the increased protein levels of NLRP3, caspase-1, and IL-1β induced by lipopolysacharide in primary cultured cardiomyocytes of neonatal rats. Ghrelin protected the heart against I/R injury by inhibiting oxidative stress and inflammation via TLR4/NLRP3 signaling pathway. Our results might provide new strategy and target for treatment of myocardial ischemia/reperfusion injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Diallyl trisulfide ameliorates myocardial ischemia-reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: role of SIRT1 activation.

    Science.gov (United States)

    Yu, Liming; Li, Shu; Tang, Xinlong; Li, Zhi; Zhang, Jian; Xue, Xiaodong; Han, Jinsong; Liu, Yu; Zhang, Yuji; Zhang, Yong; Xu, Yinli; Yang, Yang; Wang, Huishan

    2017-07-01

    Diallyl trisulfide (DATS) protects against apoptosis during myocardial ischemia-reperfusion (MI/R) injury in diabetic state, although the underlying mechanisms remain poorly defined. Previously, we and others demonstrated that silent information regulator 1 (SIRT1) activation inhibited oxidative stress and endoplasmic reticulum (ER) stress during MI/R injury. We hypothesize that DATS reduces diabetic MI/R injury by activating SIRT1 signaling. Streptozotocin (STZ)-induced type 1 diabetic rats were subjected to MI/R surgery with or without perioperative administration of DATS (40 mg/kg). We found that DATS treatment markedly improved left ventricular systolic pressure and the first derivative of left ventricular pressure, reduced myocardial infarct size as well as serum creatine kinase and lactate dehydrogenase activities. Furthermore, the myocardial apoptosis was also suppressed by DATS as evidenced by reduced apoptotic index and cleaved caspase-3 expression. However, these effects were abolished by EX527 (the inhibitor of SIRT1 signaling, 5 mg/kg). We further found that DATS effectively upregulated SIRT1 expression and its nuclear distribution. Additionally, PERK/eIF2α/ATF4/CHOP-mediated ER stress-induced apoptosis was suppressed by DATS treatment. Moreover, DATS significantly activated Nrf-2/HO-1 antioxidant signaling pathway, thus reducing Nox-2/4 expressions. However, the ameliorative effects of DATS on oxidative stress and ER stress-mediated myocardial apoptosis were inhibited by EX527 administration. Taken together, these data suggest that perioperative DATS treatment effectively ameliorates MI/R injury in type 1 diabetic setting by enhancing cardiac SIRT1 signaling. SIRT1 activation not only upregulated Nrf-2/HO-1-mediated antioxidant signaling pathway but also suppressed PERK/eIF2α/ATF4/CHOP-mediated ER stress level, thus reducing myocardial apoptosis and eventually preserving cardiac function.

  14. Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism

    NARCIS (Netherlands)

    Palmen, Meindert; Daemen, Mat J. A. P.; de Windt, Leon J.; Willems, Jodil; Dassen, Willem R. M.; Heeneman, Sylvia; Zimmermann, Rene; van Bilsen, Marc; Doevendans, Pieter A.

    2004-01-01

    We sought to investigate the role of fibroblast growth factor (FGF)-1 during acute myocardial ischemia and reperfusion. The FGFs display cardioprotective effects during ischemia and reperfusion. We investigated FGF-1-induced cardioprotection during ischemia and reperfusion and the intracellular

  15. Predictive value of CHA2DS2-VASc and CHA2DS2-VASc-HS scores for failed reperfusion after thrombolytic therapy in patients with ST-elevation myocardial ınfarction.

    Science.gov (United States)

    Kilic, Salih; Kocabas, Umut; Can, Levent Hurkan; Yavuzgil, Oğuz; Çetin, Mustafa; Zoghi, Mehdi

    2018-03-07

    Thrombolytic therapy is recommended for patients with acute ST-segment elevation myocardial infarction (STEMI) who cannot undergo primary percutaneous coronary intervention within the first 120 min. The aim of this study wasz to demonstrate the value of CHA₂DS₂-VASc and CHA₂DS₂-VASc-HS scores in predicting failed reperfusion in STEMI patients treated with thrombolytic therapy. A total of 537 consecutive patients were enrolled in the study; 139 had failed thrombolysis while the remaining 398 fulfilled the criteria for successful thrombolysis. Thrombolysis failure was defined with the lack of symptom relief, < 50% ST resolution-related electrocardiography within 90 min from initiation of the thrombolytic therapy, presence of hemodynamic or electrical instability or in-hospital mortality. CHA₂DS₂-VASc and CHA₂DS₂-VASc-HS scores, which incorporate hyperlipidemia, smoking, switches between female and male gender, were previously shown to be markers of the severity of coronary artery disease (CAD). History of hypertension, diabetes mellitus, hyperlipidemia, heart failure, smoking, and CAD were significantly common in failed reperfusion patients (for all; p < 0.05). For prediction of failed reperfusion, the cut-off value of CHA₂DS₂-VASc score was ≥ 2 with a sensitivity of 80.90% and a specificity of 41.01% (area under curve [AUC] 0.660; 95% confidence interval [CI] 0.618-0.700; p < 0.001) and the cut-off value of CHA₂DS₂-VASc-HS score was ≥ 3 with a sensitivity of 76.13% and a specificity of 67.63% (AUC 0.764; 95% CI 0.725-0.799; p < 0.001). The CHA₂DS₂-VASc-HS score was found to be statistically and significantly better than CHA₂DS₂-VASc score to predict failed reperfusion (p < 0.001). The findings suggest that the CHA₂DS₂-VASc and especially CHA₂DS₂-VASc-HS scores could be considered as predictors of risk of failed reperfusion in STEMI patients.

  16. Intracoronary and systemic melatonin to patients with acute myocardial infarction

    DEFF Research Database (Denmark)

    Halladin, Natalie L; Busch, Sarah Ekeløf; Jensen, Svend Eggert

    2014-01-01

    INTRODUCTION: Ischaemia-reperfusion injury following acute myocardial infarctions (AMI) is an unavoidable consequence of the primary percutaneous coronary intervention (pPCI) procedure. A pivotal mechanism in ischaemia-reperfusion injury is the production of reactive oxygen species following...

  17. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuyuan [Baylor Research Institute, Baylor University Medical Center, 3812 Elm Street, Dallas, TX (United States); Chen, Jiaxi [The University of Texas Southwestern Medical Center at Dallas, Medical School, 5235 Harry Hine Blvd., Dallas, TX (United States); Huang, Pintong [Department of Ultrasonography, The 2nd Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province (China); Meng, Xing-Li; Clayton, Sandra; Shen, Jin-Song [Baylor Research Institute, Baylor University Medical Center, 3812 Elm Street, Dallas, TX (United States); Grayburn, Paul A., E-mail: paulgr@baylorhealth.edu [Baylor Research Institute, Baylor University Medical Center, 3812 Elm Street, Dallas, TX (United States); Department of Internal Medicine, Division of Cardiology, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX (United States)

    2015-03-20

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocation of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation.

  18. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    International Nuclear Information System (INIS)

    Chen, Shuyuan; Chen, Jiaxi; Huang, Pintong; Meng, Xing-Li; Clayton, Sandra; Shen, Jin-Song; Grayburn, Paul A.

    2015-01-01

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocation of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation

  19. [Establishment of myocardial targeted nanoparticles and preliminary evaluation of its effects on prevention and treatment of myocardial injury].

    Science.gov (United States)

    Liu, Y Y; Wang, C; Luo, P F; Xia, Z F

    2017-11-20

    Objective: To establish 3-{4-[2-hydroxyl-(1-methylethylamino) propoxy] phenyl} propionic acid cetylesters (PAC) modified nanoparticles, and preliminarily explore its cardiomyocyte-targeting function and protection effects on myocardium. Methods: (1) HL-1 myocardial cells were divided into cyanidin-3 (Cy3) marked non-targeted small interference RNA (Cy3-siNC) group and Cy3 marked small interference RNA designed for the nuclear factor kappa B (NF-κB)-p65 gene (Cy3-si435) group according to the random number table, with 3 wells in each group. Cells in Cy3-siNC group were transfected with Cy3-siNC, while cells in Cy3-si435 group were transfected with Cy3-si435. At transfection hour 24, the mRNA expression of NF-κB-p65 of cells was determined by real-time fluorescent quantitative polymerase chain reaction. (2) Multiple emulsificating solvent evaporating method was adopted to prepare PAC modified nanoparticles carried with Cy3-siNC (Cy3-siNC-PAC) and PAC modified nanoparticles carried with Cy3-si435 (Cy3-si435-PAC). The morphology of Cy3-si435-PAC nanoparticles was observed with scanning electron microscope, and the size and potential of Cy3-si435-PAC nanoparticles were detected by nanometer particle size and zeta potential analyzer. The entrapment efficiency and drug loadings of Cy3-si435-PAC nanoparticle were determined with ultraviolet spectrophotometer. The release of Cy3-si435 of Cy3-si435-PAC nanoparticles was determined by dialysis method. (3) Another batch of HL-1 cells were divided into 4 groups according to the random number table, with 9 wells in each group. Cells in negative control group were added with 5 μL phosphate buffer. Cells in 25, 50, and 100 mg/mL Cy3-si435-PAC nanoparticles groups were added with 5 μL 25, 50, and 100 mg/mL Cy3-si435-PAC nanoparticles, respectively. At transfection hour 6, 12, and 24, proliferation activity of cells in 3 wells of each group was detected by methyl thiazolyl tetrazolium method, respectively. (4) Another batch of

  20. Association of time to reperfusion with left ventricular function and heart failure in patients with acute myocardial infarction treated with primary percutaneous coronary intervention: a systematic review.

    Science.gov (United States)

    Goel, Kashish; Pinto, Duane S; Gibson, C Michael

    2013-04-01

    Shorter time to reperfusion is associated with a significant reduction in mortality; however, its association with heart failure (HF) is not clearly documented. We conducted a systematic review to examine the association between time to reperfusion and incident HF and/or left ventricular dysfunction. MEDLINE/OVID, EMBASE, Cochrane Library, and Web of Science databases were searched from January 1974 to May 2012 for studies that reported the association between time to reperfusion and incident HF or left ventricular ejection fraction (LVEF) in patients undergoing primary percutaneous coronary intervention. Of 362 nonduplicate abstracts, 71 studies were selected for full-text review. Thirty-three studies were included in the final review, of which 16 were single-center studies, 7 were population-based studies, 7 were subanalyses from randomized controlled trials, and 3 were based on national samples. The pooled data demonstrate that every 1-hour delay in time to reperfusion is associated with a 4% to 12% increased risk of new-onset HF and a 4% relative increase in the risk of incident HF during follow-up. Early reperfusion was associated with a 2% to 8% greater LVEF before discharge and a 3% to 12% larger improvement in absolute LVEF at follow-up compared with the index admission. This systematic review presents evidence that longer time to reperfusion is not only associated with worsened left ventricular systolic function and new-onset HF at the time of index admission, but also with increased risk of HF and reduced improvement in left ventricular systolic function during follow-up. Copyright © 2013 Mosby, Inc. All rights reserved.

  1. Involvement of adenosine and standardization of aqueous extract of garlic (Allium sativum Linn.) on cardioprotective and cardiodepressant properties in ischemic preconditioning and myocardial ischemia-reperfusion induced cardiac injury

    Science.gov (United States)

    Sharma, Ashish Kumar; Munajjam, Arshee; Vaishnav, Bhawna; Sharma, Richa; Sharma, Ashok; Kishore, Kunal; Sharma, Akash; Sharma, Divya; Kumari, Rita; Tiwari, Ashish; Singh, Santosh Kumar; Gaur, Samir; Jatav, Vijay Singh; Srinivasan, Barthu Parthi; Agarwal, Shyam Sunder

    2012-01-01

    The present study investigated the effect of garlic (Allium sativum Linn.) aqueous extracts on ischemic preconditioning and ischemia-reperfusion induced cardiac injury, as well as adenosine involvement in ischemic preconditioning and garlic extract induced cardioprotection. A model of ischemia-reperfusion injury was established using Langendorff apparatus. Aqueous extract of garlic dose was standardized (0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.07%, 0.05%, 0.03%, 0.01%), and the 0.05% dose was found to be the most effective. Higher doses (more than 0.05%) were highly toxic, causing arrhythmia and cardiodepression, whereas the lower doses were ineffective. Garlic exaggerated the cardioprotective effect of ischemic preconditioning. The cardioprotective effect of ischemic preconditioning and garlic cardioprotection was significantly attenuated by theophylline (1,000 µmol/L) and 8-SPT (10 mg/kg, i.p.) and expressed by increased myocardial infarct size, increased LDH level, and reduced nitrite and adenosine levels. These findings suggest that adenosine is involved in the pharmacological and molecular mechanism of garlic induced cardioprotection and mediated by the modulation of nitric oxide. PMID:23554727

  2. The washout rate of (123)I-BMIPP and the evolution of left ventricular function in patients with successfully reperfused ST-segment elevation myocardial infarction: comparisons with the echocardiography.

    Science.gov (United States)

    Biswas, Shankar K; Sarai, Masayoshi; Yamada, Akira; Toyama, Hiroshi; Motoyama, Sadako; Harigaya, Hiroto; Hara, Tomonori; Naruse, Hiroyuki; Hishida, Hitoshi; Ozaki, Yukio

    2010-02-01

    The evolution of the oxidative metabolism of (11)C acetate parallels the recovery of left ventricular(LV) contraction following acute myocardial infarction(AMI). This study was designed to unravel, for the first time, the impact of the global washout rate(WR) of (123)I-beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) on the recovery of LV function followingAMI, as evidenced from conventional echocardiography.Twenty consecutive patients (age: 58 +/- 13 years; 16 males and 4 females) with ST-segment elevation myocardial infarction (STEMI) were enrolled and all of them underwent successful percutaneous coronary intervention (PCI). (123)I-BMIPP cardiac scintigraphy was performed at 7 +/- 3 days after admission. The WR was calculated from the polar map and the regional BMIPP defect score was calculated using a 17 segment model. Echocardiography was performed within 24 h of admission and at 3 months to record the ejection fraction (EF), the wall motion score index (WMSI), the ratio of the mitralinflow velocity to the early diastolic velocity (E/E0)and the myocardial performance index (MPI). The mean global WR of the BMIPP was 22.12 +/- 7.22%, and it was significantly correlated with the improvement of the WMSI (r = 0.61, P\\0.004). However,the relative changes of the EF, E/E0 and MPI were not correlated with the WR. The BMIPP defect score (18 +/- 10) was significantly correlated with the WMSI on admission (r = 0.74, P = 0.0002), but the defect score was not correlated with the relative changes of any of the echocardiographic parameters. We proved that the WR of the BMIPP is a promising indicator of improvement of the LV wall motion (WMSI) following ST-segment elevation myocardial infarction and successful reperfusion.

  3. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass

    Science.gov (United States)

    Olson, Aaron K.; Bouchard, Bertrand; Ning, Xue-Han; Isern, Nancy; Rosiers, Christine Des

    2012-01-01

    Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-13Carbon(13C)]pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 μg/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-13C]pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (∼4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, 13C-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion. PMID:22180654

  4. Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart

    NARCIS (Netherlands)

    Nederlof, Rianne; Eerbeek, Otto; Hollmann, Markus W.; Southworth, Richard; Zuurbier, Coert J.

    2014-01-01

    Mitochondrially bound hexokinase II (mtHKII) has long been known to confer cancer cells with their resilience against cell death. More recently, mtHKII has emerged as a powerful protector against cardiac cell death. mtHKII protects against ischaemia-reperfusion (IR) injury in skeletal muscle and

  5. Low-Density Lipoprotein Receptor–Related Protein-1 Is a Therapeutic Target in Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Stefano Toldo, PhD

    2017-10-01

    Full Text Available Low-density lipoprotein receptor–related protein-1 (LRP1 is a ubiquitous membrane receptor functioning as a scavenger and regulatory receptor, inducing anti-inflammatory and prosurvival signals. Based on the known structure–activity of the LRP1 receptor binding site, the authors synthesized a small peptide (SP16. SP16 induced a >50% reduction in infarct size (p < 0.001 and preservation of left ventricular systolic function (p < 0.001, and treatment with an LRP1 blocking antibody eliminated the protective effects of SP16. In conclusion, LRP1 activation with SP16 given within 30 min of reperfusion during experimental acute myocardial infarction leads to a cardioprotective signal reducing infarct size and preservation of cardiac systolic function.

  6. Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult

    Czech Academy of Sciences Publication Activity Database

    Kolář, D.; Grešíková, M.; Wasková-Arnoštová, P.; Elsnicová, B.; Kohutová, J.; Horníková, D.; Vebr, P.; Neckář, Jan; Blahová, T.; Kašparová, D.; Novotný, J.; Kolář, František; Nováková, O.; Žurmanová, J.M.

    2017-01-01

    Roč. 432, 1-2 (2017), s. 99-108 ISSN 0300-8177 R&D Projects: GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : heart * hypoxia * ischemia/reperfusion * hexokinase * protein kinase B/Akt * mitochondria Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Biochemistry and molecular biology Impact factor: 2.669, year: 2016

  7. Protective effect of Na(+)/Ca (2+) exchange blocker KB-R7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rats.

    Science.gov (United States)

    Lv, Yan; Ren, Yongkui; Sun, Lufan; Wang, Shaojun; Wei, Minjie; Jia, Dalin

    2013-06-01

    Reverse-mode activation of the Na(+)/Ca(2+) exchanger (NCX) during reperfusion following ischemia contributes to Ca(2+) overload and cardiomyocyte injury. KB-R7943, a selective reverse-mode NCX inhibitor, reduces lethal reperfusion injury under non-ischemic conditions. However, the effectiveness of this compound under ischemic conditions is unclear. In the present study, we studied the effects of KB-R7943 in an animal model of hyperlipidemia. We further assessed whether the K ATP (+) channels are involved in potential protective mechanisms of KB-R7943. Twelve rats were fed normal chow, while 48 animals were fed a high cholesterol diet. The hearts from the control and hypercholesterolemic rats were subjected to 25 min of global ischemia followed by a 120-min reperfusion. Before this, hearts from hypercholesterolemic rats either received no intervention (cholesterol control group) or were pre-treated with 1 μM KB-R7943 and 0.3 μM of K ATP (+) blocker glibenclamide or glibenclamide alone. The infarction sizes (triphenyltetrazolium assay) were 35 ± 5.0 % in the control group, 46 ± 8.7 % in the cholesterol control group (p KB-R7943 group (p KB-R7943 and glibenclamide group, and 47 ± 8.5 % in the glibenclamide group (p KB-R7943 attenuated the magnitude of cell apoptosis (p KB-R7943 reduces the infarction size and apoptosis in hyperlipidemic animals through the activation of K ATP (+) channels.

  8. Rationale and design of the 'F.I.R.E.' study. A multicenter, double-blind, randomized, placebo-controlled study to measure the effect of FX06 (a fibrin-derived peptide Bbeta(15-42)) on ischemia-reperfusion injury in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention.

    Science.gov (United States)

    Atar, Dan; Huber, Kurt; Rupprecht, Hans-Jürgen; Kopecky, Stephen L; Schwitter, Jürg; Theek, Carmen; Brandl, Katherine; Henning, Rainer; Geudelin, Bernard

    2007-01-01

    Immediate reopening of acutely occluded coronary arteries via primary percutaneous coronary intervention (PCI) is the treatment of choice to salvage the ischemic myocardium in the setting of ST-segment elevation myocardial infarction (STEMI). However, the sudden re-initiation of blood flow achieved with PCI can lead to a local acute inflammatory response with further endothelial and myocardial damage. This phenomenon, described as 'reperfusion injury', has been recognized for several decades, yet no pharmacologic intervention has so far succeeded in reducing myocardial damage linked to reperfusion. FX06 is a naturally occurring peptide derived from the neo-N-terminus of fibrin (Bbeta(15-42)). It prevents leukocyte migration through the gap junctions of endothelial cells. Experimental studies have shown that FX06 inhibits the binding of the proinflammatory fibrin E1 fragment to VE-cadherin expressed in the adherence junction. It represents a novel approach to reducing local and systemic inflammation, including myocardial reperfusion injury, in the adherens junction. The present multicenter, double-blind, randomized, placebo-controlled study is designed to test the hypothesis that FX06 injection during and immediately after primary PCI can reduce infarct size in patients with STEMI. The primary outcome measure of efficacy in this study is the degree of myocardial salvage calculated as the difference between the perfusion defect before and after PCI, determined by myocardial perfusion scintigraphy during rest. Further, infarct size at the end of the index hospitalization, as well as at 4 months, will be measured by cardiac magnetic resonance imaging. The present position paper describes the rationale, design and the methods utilized in this trial. 2007 S. Karger AG, Basel

  9. Magnetic Nanoparticles for Targeting and Imaging of Stem Cells in Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Michelle R. Santoso

    2016-01-01

    Full Text Available Stem cell therapy has broad applications in regenerative medicine and increasingly within cardiovascular disease. Stem cells have emerged as a leading therapeutic option for many diseases and have broad applications in regenerative medicine. Injuries to the heart are often permanent due to the limited proliferation and self-healing capability of cardiomyocytes; as such, stem cell therapy has become increasingly important in the treatment of cardiovascular diseases. Despite extensive efforts to optimize cardiac stem cell therapy, challenges remain in the delivery and monitoring of cells injected into the myocardium. Other fields have successively used nanoscience and nanotechnology for a multitude of biomedical applications, including drug delivery, targeted imaging, hyperthermia, and tissue repair. In particular, superparamagnetic iron oxide nanoparticles (SPIONs have been widely employed for molecular and cellular imaging. In this mini-review, we focus on the application of superparamagnetic iron oxide nanoparticles in targeting and monitoring of stem cells for the treatment of myocardial infarctions.

  10. Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (from the Contrast Media and Nephrotoxicity Following Primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] Trial).

    Science.gov (United States)

    Bolognese, Leonardo; Falsini, Giovanni; Schwenke, Carsten; Grotti, Simone; Limbruno, Ugo; Liistro, Francesco; Carrera, Arcangelo; Angioli, Paolo; Picchi, Andrea; Ducci, Kenneth; Pierli, Carlo

    2012-01-01

    Conflicting data have been reported on the effects of low-osmolar and iso-osmolar contrast media on contrast-induced acute kidney injury (CI-AKI). In particular, no clinical trial has yet focused on the effect of contemporary contrast media on CI-AKI, epicardial flow, and microcirculatory function in patients with ST-segment elevation acute myocardial infarction who undergo primary percutaneous coronary intervention. The Contrast Media and Nephrotoxicity Following Coronary Revascularization by Angioplasty for Acute Myocardial Infarction (CONTRAST-AMI) trial is a prospective, randomized, single-blind, parallel-group, noninferiority study aiming to evaluate the effects of the low-osmolar contrast medium iopromide compared to the iso-osmolar agent iodixanol on CI-AKI and tissue-level perfusion in patients with ST-segment elevation acute myocardial infarction. Four hundred seventy-five consecutive, unselected patients who underwent primary percutaneous coronary intervention were randomized to iopromide (n = 239) or iodixanol (n = 236). All patients received high-dose N-acetylcysteine and hydration. The primary end point was the proportion of patients with serum creatinine (sCr) increases ≥25% from baseline to 72 hours. Secondary end points were Thrombolysis In Myocardial Infarction (TIMI) myocardial perfusion grade, increase in sCr ≥50%, increase in sCr ≥0.5 or ≥1 mg/dl, and 1-month major adverse cardiac events. The primary end point occurred in 10% of the iopromide group and in 13% of the iodixanol group (95% confidence interval -9% to 3%, p for noninferiority = 0.0002). A TIMI myocardial perfusion grade of 0 or 1 was present in 14% of patients in the 2 groups. No differences between the 2 groups were found in any of the secondary analyses of sCr increase. No significant difference in 1-month major adverse cardiac events was found (8% vs 6%, p = 0.37). In conclusion, in a population of unselected patients with ST-segment elevation acute myocardial infarction

  11. Heart Protection by Combination Therapy with Esmolol and Milrinone at Late-Ischemia and Early Reperfusion

    OpenAIRE

    Huang, Ming-He; Wu, Yewen; Nguyen, Vincent; Rastogi, Saurabh; McConnell, Bradley K.; Wijaya, Cori; Uretsky, Barry F.; Poh, Kian-Keong; Tan, Huay-Cheem; Fujise, Kenichi

    2011-01-01

    Introduction The present study determined whether late-ischemia/early reperfusion therapy with the β1-adrenergic receptor (AR) blocker esmolol and phosphodiesterase III inhibitor milrinone reduced left ventricular (LV) myocardial infarct size (IS). Methods and Results In an ischemia/reperfusion rat model (30-min ischemia/4-hr reperfusion), esmolol, milrinone or esmolol + milrinone were intravenous (IV) infused over 10 min (from the last 5min of ischemia to the first 5min of reperfusion). LV-I...

  12. Cardioprotection of CAPE-oNO2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-κB pathway in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Dejuan Li

    2018-05-01

    Full Text Available Caffeic acid phenethyl ester (CAPE could ameliorate myocardial ischemia/reperfusion injury (MIRI by various mechanisms, but there hadn’t been any reports on that CAPE could regulate silent information regulator 1 (SIRT1 and endothelial nitric oxide synthase (eNOS to exert cardioprotective effect. The present study aimed to investigate the cardioprotective potential of caffeic acid o-nitro phenethyl ester (CAPE-oNO2 on MIRI and the possible mechanism based on the positive control of CAPE. The SD rats were subjected to left coronary artery ischemia /reperfusion (IR and the H9c2 cell cultured in hypoxia/reoxygenation (HR to induce the MIRI model. Prior to the procedure, vehicle, CAPE or CAPE-oNO2 were treated in the absence or presence of a SIRT1 inhibitor nicotinamide (NAM and an eNOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME. In vivo, CAPE and CAPE-oNO2 conferred a cardioprotective effect as shown by reduced myocardial infarct size, cardiac marker enzymes and structural abnormalities. From immunohistochemical and sirius red staining, above two compounds ameliorated the TNF-α release and collagen deposition of IR rat hearts. They could agitate SIRT1 and eNOS expression, and consequently enhance NO release and suppress NF-κB signaling, to reduce the malondialdehyde content and cell necrosis. In vitro, they could inhibit HR-induced H9c2 cell apoptosis and ROS generation by activating SIRT1/eNOS pathway and inhabiting NF-κB expression. Emphatically, CAPE-oNO2 presented the stronger cardioprotection than CAPE both in vivo and in vitro. However, NAM and L-NAME eliminated the CAPE-oNO2-mediated cardioprotection by restraining SIRT1 and eNOS expression, respectively. It suggested that CAPE-oNO2 ameliorated MIRI by suppressing the oxidative stress, inflammatory response, fibrosis and necrocytosis via the SIRT1/eNOS/NF-κB pathway.

  13. Cardioprotective effects of benazepril, an angiotensin-converting enzyme inhibitor, in an ischaemia-reperfusion model of myocardial infarction in rats.

    Science.gov (United States)

    Charan Sahoo, Kanhei; Arora, Sachin; Goyal, Sameer; Kishore, Kamal; Ray, Ruma; Chandra Nag, Tapas; Singh Arya, Dharamvir

    2009-12-01

    The present study evaluated the effects of benazepril, an angiotensin-converting enzyme inhibitor on haemodynamic, biochemical, and immunohistochemical (Bax and Bcl-2 protein) indices in ischaemia and reperfusion (IR) injury. Male Wistar albino rats were divided into three groups and were orally administered saline once daily (IR-sham and IR-control) or benazepril (30 mg/kg/day; IR-benazepril) for 14 days. On the 15(th) day, in the IR-control and IR-benazepril groups, rats were subjected to left anterior descending coronary artery occlusion for 45 minutes followed by a one-hour reperfusion. Haemodynamic parameters were recorded and rats were sacrificed; hearts were isolated for biochemical estimation and immunohistochemistry. In the IR-control group, significant ventricular dysfunctions (pBenazepril pretreatment significantly improved mean arterial pressure (pbenazepril treatment significantly decreased the level of thiobarbituric acid reactive substances and restored the activity of lactate dehydrogenase towards normal value (pbenazepril upregulated Bcl-2 protein and decreased Bax protein expression, thus exhibiting anti-apoptotic effects. These beneficial effects of benazepril will have an important implication in the therapeutic use of benazepril in ischaemic heart disease.

  14. Comparison of infarct size changes with delayed contrast-enhanced magnetic resonance imaging and electrocardiogram QRS scoring during the 6 months after acutely reperfused myocardial infarction

    DEFF Research Database (Denmark)

    Bang, L.E.; Ripa, R.S.; Grande, P.

    2008-01-01

    INTRODUCTION: Magnetic resonance imaging using the delayed contrast-enhanced (DE-MRI) method can be used for characterizing and quantifying myocardial infarction (MI). Electrocardiogram (ECG) score after the acute phase of MI can be used to estimate the portion of left ventricular myocardium...

  15. The Extent of Myocardial Injury During Prolonged Targeted Temperature Management After Out-of-Hospital Cardiac Arrest

    DEFF Research Database (Denmark)

    Grejs, Anders Morten; Gjedsted, Jakob; Thygesen, Kristian

    2017-01-01

    AIM: The aim of this study is to evaluate the extent of myocardial injury by cardiac biomarkers during prolonged targeted temperature management of 24 hours vs 48 hours after out-of-hospital cardiac arrest. METHODS: This randomized Scandinavian multicenter study compares the extent of myocardial...... injury estimated by hs-cTnTAUC of prolonged targeted temperature management of 48 hours vs 24 hours, although the CK-MBAUC was significantly higher during 48 hours vs 24 hours. Hence, it seems unlikely that the duration of targeted temperature management has a beneficial effect on the extent...... injury quantified by area under the curve (AUC) of cardiac biomarkers during prolonged targeted temperature management at 33°C ± 1°C of 24 hours and 48 hours, respectively. Through a period of 2.5 years, 161 comatose out-of-hospital cardiac arrest patients were randomized to targeted temperature...

  16. The metabolic disturbances of isoproterenol induced myocardial infarction in rats based on a tissue targeted metabonomics.

    Science.gov (United States)

    Liu, Yue-tao; Jia, Hong-mei; Chang, Xing; Ding, Gang; Zhang, Hong-wu; Zou, Zhong-Mei

    2013-11-01

    Myocardial infarction (MI) is a leading cause of morbidity and mortality but the precise mechanism of its pathogenesis remains obscure. To achieve the most comprehensive screening of the entire metabolome related to isoproterenol (ISO) induced-MI, we present a tissue targeted metabonomic study using an integrated approach of ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS) and proton nuclear magnetic resonance (1H NMR). Twenty-two metabolites were detected as potential biomarkers related to the formation of MI, and the levels of pantothenic acid (), lysoPC(18:0) (), PC(18:4(6Z,9Z,12Z,15Z)/18:0) (), taurine (), lysoPC(20:3(8Z,11Z,14Z)) (), threonine (), alanine (), creatine (), phosphocreatine (), glucose 1-phosphate (), glycine (), xanthosine (), creatinine () and glucose () were decreased significantly, while the concentrations of histamine (), L-palmitoylcarnitine (), GSSG (), inosine (), arachidonic acid (), linoelaidic acid (), 3-methylhistamine () and glycylproline () were increased significantly in the MI rats compared with the control group. The identified potential biomarkers were involved in twelve metabolic pathways and achieved the most entire metabolome contributing to the injury of the myocardial tissue. Five pathways, including taurine and hypotaurine metabolism, glycolysis, arachidonic acid metabolism, glycine, serine and threonine metabolism and histidine metabolism, were significantly influenced by ISO-treatment according to MetPA analysis and suggested that the most prominent changes included inflammation, interference of calcium dynamics, as well as alterations of energy metabolism in the pathophysiologic process of MI. These findings provided a unique perspective on localized metabolic information of ISO induced-MI, which gave us new insights into the pathogenesis of MI, discovery of targets for clinical diagnosis and treatment.

  17. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    Science.gov (United States)

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic PreconditioningCraig...

  18. Predicting ischemic mitral regurgitation in patients with acute ST-elevation myocardial infarction: Does time to reperfusion really matter and what is the role of collateral circulation?

    Science.gov (United States)

    Valuckiene, Zivile; Budrys, Povilas; Jurkevicius, Renaldas

    2016-01-15

    Ischemic mitral regurgitation (MR) is an adverse prognostic factor. We aimed to assess the role of time delay from symptom onset to reperfusion, and the impact of collateral circulation to incidence of MR in relation to established echocardiographic and clinical risk factors. Patients with STEMI presenting within 12 h from symptom onset and treated with primary percutaneous coronary intervention (PPCI) at Hospital of Lithuanian University of Health Sciences were enrolled. Echocardiography was performed after PPCI. Based on MR grade, patients were divided into no significant MR (NMR, grade 0-I MR, N = 102) and ischemic MR (IMR, grade ≥ 2 MR, N = 71) groups. Well-developed collaterals were defined as grade ≥ 2 by Rentrop classification. Continuous variables were compared by independent samples Student's T-test. Multivariate logistic regression analysis was used to identify independent predictors of ischemic MR. Time to reperfusion, MI localization, TIMI flow before/after PCI was similar between the groups. IMR group patients were elder, more often females and non-smokers, had lower body mass index, higher prevalence of multi-vessel coronary artery disease (CAD), better-developed collateral supply, greater left ventricular end-diastolic diameter index, left atrial index, pulmonary artery systolic pressure and lower ejection fraction. Multivariate logistic regression analysis revealed that ischemic MR is predicted by female gender, well-developed collateral supply, presence of multi-vessel CAD, and lower EF. In acute STEMI significant MR is unrelated to ischemic time and is predicted by female gender, lower EF, multi-vessel CAD and well-developed collateral supply to the infarct region.

  19. Timing of ischemic onset estimated from the electrocardiogram is better than historical timing for predicting outcome after reperfusion therapy for acute anterior myocardial infarction: a DANish trial in Acute Myocardial Infarction 2 (DANAMI-2) substudy

    DEFF Research Database (Denmark)

    Sejersten, Maria; Ripa, Rasmus S; Grande, Peer

    2007-01-01

    BACKGROUND: Acute treatment strategy and subsequently prognosis are influenced by the duration of ischemia in patients with ST-elevation acute myocardial infarction (AMI). However, timing of ischemia may be difficult to access by patient history (historical timing) alone. We hypothesized that an ......BACKGROUND: Acute treatment strategy and subsequently prognosis are influenced by the duration of ischemia in patients with ST-elevation acute myocardial infarction (AMI). However, timing of ischemia may be difficult to access by patient history (historical timing) alone. We hypothesized...

  20. Relationship between arterial access and outcomes in ST-elevation myocardial infarction with a pharmacoinvasive versus primary percutaneous coronary intervention strategy : Insights from the STrategic reperfusion early after myocardial infarction (STREAM) study

    NARCIS (Netherlands)

    Shavadia, Jay; Welsh, Robert; Gershlick, Anthony; Zheng, Yinggan; Huber, Kurt; Halvorsen, Sigrun; Steg, Phillipe G.; Van de Werf, Frans; Armstrong, Paul W.; Kaff, A.; Malzer, R.; Sebald, D.; Glogar, D.; Gyöngyösi, M.; Weidinger, F.; Weber, H.; Gaul, G.; Chmelizek, F.; Seidl, S.; Pichler, M.; Pretsch, I.; Vergion, M.; Herssens, M.; Van Haesendonck, C.; Saraiva, J. F K; Sparenberg, A. L F; Souza, J. A.; Moraes, J. B M; Sant'anna, F. M.; Tarkieltaub, E.; Hansen, J. R.; Oliveira, E. M.; Leonhard, O.; Cantor, W.; Senaratne, M.; Aptecar, E.; Asseman, P.; Belle, L.; Belliard, O.; Berland, J.; Berthier, A.; Besnard, C.; Bonneau, A.; Bonnefoy, E.; Brami, M.; Canu, G.; Capellier, G.; Cattan, S.; Champagnac, D.; Chapon, P.; Cheval, B.; Claudel, J.; Cohen Tenoudji, P.; Coste, P.; Debierre, V.; Domergue, R.; Echahed, K.; El Khoury, C.; Ferrari, E.; Garrot, P.; Henry, P.; Jardel, B.; Jilwan, R.; Julie, V.; Ketelers, R.; Lapostolle, F.; Le Tarnec, J.; Livarek, B.; Mann, Y.; Marchand, X.; Pajot, F.; Perret, T.; Petit, P.; Probst, V.; Ricard Hibon, A.; Robin, C.; Salama, A.; Salengro, E.; Savary, D.; Schiele, F.; Soulat, L.; Tabone, X.; Taboulet, P.; Thicoïpe, M.; Torres, J.; Tron, C.; Vanzetto, G.; Villain-Coquet, L.; Piper, S.; Mochmann, H. C.; Nibbe, L.; Schniedermeier, U.; Heuer, H.; Marx, F.; Schöls, W.; Lepper, W.; Grahl, R.; Muth, G.; Lappas, G.; Mantas, I.; Skoumbourdis, E.; Dilanas, C.; Kaprinis, I.; Vogiatzis, I.; Zarifis, I.; Spyromitros, G.; Konstantinides, S.; Symeonides, D.; Rossi, G. P.; Bermano, F.; Ferlito, S.; Paolini, P.; Valagussa, L.; Della Rovere, F.; Miccoli, F.; Chiti, M.; Vergoni, W.; Comeglio, M.; Percoco, G.; Valgimigli, M.; Berget, K.; Skjetne, O.; Schartum-Hansen, H.; Andersen, K.; Rolstad, O. J.; Aguirre Zurita, O. N.; Castillo León, R. P.; Villar Quiroz, A. C.; Glowka, A.; Kulus, P.; Kalinina, S.; Bushuev, A.; Barbarash, O.; Tarasov, N.; Fomin, I.; Makarov, E.; Markov, V.; Danilenko, A.; Volkova, E.; Frolenkov, A.; Burova, N.; Yakovlev, A.; Elchinskaya, L.; Boldueva, S.; Klein, G.; Kolosova, I.; Ovcharenko, E.; Fairushin, R.; Andjelic, S.; Vukcevic, V.; Neskovic, A.; Krotin, M.; Rajkovic, T.; Pavlovic, M.; Perunicic, J.; Kovacevic, S.; Petrovic, V.; Mitov, V.; Ruiz, A.; García-Alcántara, A.; Martínez, M.; Díaz, J.; Paz, M. A.; Manzano, F. L.; Martín, C.; Macaya, C.; Corral, E.; Fernández, J. J.; Martín, F.; García, R.; Siriwardena, N.; Rawstorne, O.; Baumbach, A.; Manoharan, G.; Menown, I.; McHechan, S.; Morgan, D.

    2016-01-01

    Background-The effectiveness of radial access (RA) in ST-elevation myocardial infarction (STEMI) has been predominantly established in primary percutaneous coronary intervention (pPCI) with limited exploration of this issue in the early postfibrinolytic patient. The purpose of this study was to

  1. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

    Directory of Open Access Journals (Sweden)

    Xiaojing Wan

    Full Text Available Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI, a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets. As an example, in the present study, 28 target crosstalk networks (TCNs of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

  2. Visualization of network target crosstalk optimizes drug synergism in myocardial ischemia.

    Science.gov (United States)

    Wan, Xiaojing; Meng, Jia; Dai, Yingnan; Zhang, Yina; Yan, Shuang

    2014-01-01

    Numerous drugs and compounds have been validated as protecting against myocardial ischemia (MI), a leading cause of heart failure; however, synergistic possibilities among them have not been systematically explored. Thus, there appears to be significant room for optimization in the field of drug combination therapy for MI. Here, we propose an easy approach for the identification and optimization of MI-related synergistic drug combinations via visualization of the crosstalk between networks of drug targets corresponding to different drugs (each drug has a unique network of targets). As an example, in the present study, 28 target crosstalk networks (TCNs) of random pairwise combinations of 8 MI-related drugs (curcumin, capsaicin, celecoxib, raloxifene, silibinin, sulforaphane, tacrolimus, and tamoxifen) were established to illustrate the proposed method. The TCNs revealed a high likelihood of synergy between curcumin and the other drugs, which was confirmed by in vitro experiments. Further drug combination optimization showed a synergistic protective effect of curcumin, celecoxib, and sililinin in combination against H₂O₂-induced ischemic injury of cardiomyocytes at a relatively low concentration of 500 nM. This result is in agreement with the earlier finding of a denser and modular functional crosstalk between their networks of targets in the regulation of cell apoptosis. Our study offers a simple approach to rapidly search for and optimize potent synergistic drug combinations, which can be used for identifying better MI therapeutic strategies. Some new light was also shed on the characteristic features of drug synergy, suggesting that it is possible to apply this method to other complex human diseases.

  3. Topics in this issue: cancer testes antigens, immune checkpoints, inflammation associated with ischemia-reperfusion and integrin targeting.

    Science.gov (United States)

    Bot, Adrian; Chiriva-Internati, Maurizio

    2012-10-01

    This issue of the International Reviews of Immunology is dedicated to several topics: cancer immunotherapy, and basic and translational aspects of immunity. Two reviews, one focused on breast and the other on lung cancer, highlight the need to redefine the cancer testes antigens (CTAs) as novel information regarding their expression profile and biological role emerges. Two other reviews showcase pivotal molecules that keep in check immunity at two different levels: the transcription factor autoimmune regulator (AIRE) important to negative selection of the T-cell repertoire, and CD22 that limits the antigen-initiated B-cell response. Two other articles focus on the debated role of Toll-like receptors (TLRs) and inflammation in general, in ischemia-reperfusion lesions that follow cardiovascular disorders and stroke. Last but not the least, this issue hosts a review that discusses the role and translational potential of the α4 integrin for the treatment of inflammatory bowel disease (IBD).

  4. Safety and feasibility of local myocardial hypothermia

    NARCIS (Netherlands)

    Otterspoor, L.C.; van 't Veer, M.; van Nunen, L.X.; Wijnbergen, I.F.; Tonino, W.A.L.; Pijls, N.H.J.

    2016-01-01

    Background In ST-elevation myocardial infarction (STEMI), reduction in time to reperfusion of the occluded coronary artery reduces infarct size. In animal models, an additional reduction of infarct size was observed when hypothermia was induced before reperfusion, despite a longer ischemic time.

  5. Adenosine A1 receptor activation increases myocardial protein S-nitrosothiols and elicits protection from ischemia-reperfusion injury in male and female hearts.

    Directory of Open Access Journals (Sweden)

    Qin Shao

    Full Text Available Nitric oxide (NO plays an important role in cardioprotection, and recent work from our group and others has implicated protein S-nitrosylation (SNO as a critical component of NO-mediated protection in different models, including ischemic pre- and post-conditioning and sex-dependent cardioprotection. However, studies have yet to examine whether protein SNO levels are similarly increased with pharmacologic preconditioning in male and female hearts, and whether an increase in protein SNO levels, which is protective in male hearts, is sufficient to increase baseline protection in female hearts. Therefore, we pharmacologically preconditioned male and female hearts with the adenosine A1 receptor agonist N6-cyclohexyl adenosine (CHA. CHA administration prior to ischemia significantly improved functional recovery in both male and female hearts compared to baseline in a Langendorff-perfused heart model of ischemia-reperfusion injury (% of preischemic function ± SE: male baseline: 37.5±3.4% vs. male CHA: 55.3±3.2%; female baseline: 61.4±5.7% vs. female CHA: 76.0±6.2%. In a separate set of hearts, we found that CHA increased p-Akt and p-eNOS levels. We also used SNO-resin-assisted capture with LC-MS/MS to identify SNO proteins in male and female hearts, and determined that CHA perfusion induced a modest increase in protein SNO levels in both male (11.4% and female (12.3% hearts compared to baseline. These findings support a potential role for protein SNO in a model of pharmacologic preconditioning, and provide evidence to suggest that a modest increase in protein SNO levels is sufficient to protect both male and female hearts from ischemic injury. In addition, a number of the SNO proteins identified with CHA treatment were also observed with other forms of cardioprotective stimuli in prior studies, further supporting a role for protein SNO in cardioprotection.

  6. Hypercholesterolemic myocardium is vulnerable to ischemia-reperfusion injury and refractory to sevoflurane-induced protection.

    Directory of Open Access Journals (Sweden)

    Yong Xu

    Full Text Available Recent studies have demonstrated that volatile anesthetic postconditioning confers myocardial protection against ischemia-reperfusion (IR injury through activation of the reperfusion injury salvage kinase (RISK pathway. As RISK has been shown to be impaired in hypercholesterolemia. Therefore, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. In the present study, normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane for 5 min or 3 cycles of 10-s ischemia/10-s reperfusion. The hemodynamic parameters, including left ventricular developed pressure, left ventricular end-diastolic pressure and heart rate, were continuously monitored. The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3β were determined. We found that both sevoflurane and ischemic postconditioning significantly improved heart pump function, reduced infarct size and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3β in the healthy rats. In the hypercholesterolemic rats, neither sevoflurane nor ischemic postconditioning improved left ventricular hemodynamics, reduced infarct size and increased the phosphorylated Akt, ERK1/2 and GSK3β. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. In conclusions, hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3β and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.

  7. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou (China); Institute of Neuroscience, Soochow University, Suzhou (China); Hu, S.M. [Institute of Neuroscience, Soochow University, Suzhou (China); Xie, H.; Qiao, S.G. [Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou (China); Liu, H. [Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Davis, CA (United States); Liu, C.F. [Institute of Neuroscience, Soochow University, Suzhou (China)

    2015-03-27

    This study aimed to determine the role of mitochondrial adenosine triphosphate-sensitive potassium (mitoK{sub ATP}) channels and protein kinase C (PKC)-ε in the delayed protective effects of sevoflurane preconditioning using Langendorff isolated heart perfusion models. Fifty-four isolated perfused rat hearts were randomly divided into 6 groups (n=9). The rats were exposed for 60 min to 2.5% sevoflurane (the second window of protection group, SWOP group) or 33% oxygen inhalation (I/R group) 24 h before coronary occlusion. The control group (CON) and the sevoflurane group (SEVO) group were exposed to 33% oxygen and 2.5% sevoflurane for 60 min, respectively, without coronary occlusion. The mitoK{sub ATP} channel inhibitor 5-hydroxydecanoate (5-HD) was given 30 min before sevoflurane preconditioning (5-HD+SWOP group). Cardiac function indices, infarct sizes, serum cardiac troponin I (cTnI) concentrations, and the expression levels of phosphorylated PKC-ε (p-PKC-ε) and caspase-8 were measured. Cardiac function was unchanged, p-PKC-ε expression was upregulated, caspase-8 expression was downregulated, cTnI concentrations were decreased, and the infarcts were significantly smaller (P<0.05) in the SWOP group compared with the I/R group. Cardiac function was worse, p-PKC-ε expression was downregulated, caspase-8 expression was upregulated, cTnI concentration was increased and infarcts were larger in the 5-HD+SWOP group (P<0.05) compared with the SWOP group. The results suggest that mitoK{sub ATP} channels are involved in the myocardial protective effects of sevoflurane in preconditioning against I/R injury, by regulating PKC-ε phosphorylation before ischemia, and by downregulating caspase-8 during reperfusion.

  8. delta-Opioid-induced pharmacologic myocardial hibernation during cardiopulmonary resuscitation.

    Science.gov (United States)

    Fang, Xiangshao; Tang, Wanchun; Sun, Shijie; Weil, Max Harry

    2006-12-01

    Cardiac arrest and cardiopulmonary resuscitation is an event of global myocardial ischemia and reperfusion, which is associated with severe postresuscitation myocardial dysfunction and fatal outcome. Evidence has demonstrated that mammalian hibernation is triggered by cyclic variation of a delta-opiate-like compound in endogenous serum, during which the myocardial metabolism is dramatically reduced and the myocardium tolerates the stress of ischemia and reperfusion without overt ischemic and reperfusion injury. Previous investigations also proved that the delta-opioid agonist elicited the cardioprotection in a model of regional ischemic intact heart or myocyte. Accordingly, we were prompted to search for an alternative intervention of pharmacologically induced myocardial hibernation that would result in rapid reductions of myocardial metabolism and therefore minimize the myocardial ischemic and reperfusion injury during cardiac arrest and cardiopulmonary resuscitation. Prospective, controlled laboratory study. University-affiliated research laboratory. In the series of studies performed in the established rat and pig model of cardiac arrest and cardiopulmonary resuscitation, the delta-opioid receptor agonist, pentazocine, was administered during ventricular fibrillation. : The myocardial metabolism reflected by the concentration of lactate, or myocardial tissue PCO2 and PO2, is dramatically reduced during cardiac arrest and cardiopulmonary resuscitation. These are associated with less severe postresuscitation myocardial dysfunction and longer duration of postresuscitation survival. delta-Opioid-induced pharmacologic myocardial hibernation is an option to minimize the myocardial ischemia and reperfusion injury during cardiac arrest and cardiopulmonary resuscitation.

  9. Parkinson's disease proteins: Novel mitochondrial targets for cardioprotection

    OpenAIRE

    Mukherjee, Uma A.; Ong, Sang-Bing; Ong, Sang-Ging; Hausenloy, Derek J.

    2015-01-01

    Ischemic heart disease (IHD) is the leading cause of death and disability worldwide. Therefore, novel therapeutic targets for protecting the heart against acute ischemia/reperfusion injury (IRI) are required to attenuate cardiomyocyte death, preserve myocardial function, and prevent the onset of heart failure. In this regard, a specific group of mitochondrial proteins, which have been linked to familial forms of Parkinson's disease (PD), may provide novel therapeutic targets for cardioprotect...

  10. The adenosine A2A receptor — Myocardial protectant and coronary target in endotoxemia

    Science.gov (United States)

    Reichelt, Melissa E.; Ashton, Kevin J.; Tan, Xing Lin; Mustafa, S. Jamal; Ledent, Catherine; Delbridge, Lea M.D.; Hofmann, Polly A.; Headrick, John P.; Morrison, R. Ray

    2013-01-01

    Background Cardiac injury and dysfunction are contributors to disease progression and mortality in sepsis. This study evaluated the cardiovascular role of intrinsic A2A adenosine receptor (A2AAR) activity during lipopolysaccharide (LPS)-induced inflammation. Methods We assessed the impact of 24 h of LPS challenge (20 mg/kg, IP) on cardiac injury, coronary function and inflammatory mediator levels in Wild-Type (WT) mice and mice lacking functional A2AARs (A2AAR KO). Results Cardiac injury was evident in LPS-treated WTs, with ∼7-fold elevation in serum cardiac troponin I (cTnI), and significant ventricular and coronary dysfunction. Absence of A2AARs increased LPS-provoked cTnI release at 24 h by 3-fold without additional demise of contraction function. Importantly, A2AAR deletion per se emulated detrimental effects of LPS on coronary function, and LPS was without effect in coronary vessels lacking A2AARs. Effects of A2AAR KO were independent of major shifts in circulating C-reactive protein (CRP) and haptoglobin. Cytokine responses were largely insensitive to A2AAR deletion; substantial LPS-induced elevations (up to 100-fold) in IFN-γ and IL-10 were unaltered in A2AAR KO mice, as were levels of IL-4 and TNF-α. However, late elevations in IL-2 and IL-5 were differentially modulated by A2AAR KO (IL-2 reduced, IL-5 increased). Data demonstrate that in the context of LPS-triggered cardiac and coronary injury, A2AAR activity protects myocardial viability without modifying contractile dysfunction, and selectively modulates cytokine (IL-2, IL-5) release. A2AARs also appear to be targeted by LPS in the coronary vasculature. Conclusions These experimental data suggest that preservation of A2AAR functionality might provide therapeutic benefit in human sepsis. PMID:22192288

  11. Uptake and distribution of a labeled fatty acid in a canine model of ischemia with and without reperfusion

    International Nuclear Information System (INIS)

    Devous, M.D. Sr.

    1985-01-01

    The relationship between regional myocardial blood flow (RMBF) and the regional distribution of 15-(4-iodophenyl)-9-methyl pentadecanoic acid (9-MPDA) was studied in a canine model of myocardial ischemia with and without reperfusion. Group 1 dogs received 135 min of left anterior descending coronary artery (LAD) occlusion; Group 2 dogs received 90 min of LAD occlusion and 45 min of reflow; and Group 3 dogs received 90 min of LAD occlusion and 3.5 hr of reperfusion. All animals received 9-MPDA 15 min prior to sacrifice, and tracer microspheres prior to occlusion, 5 and 80 min after occlusion, 15 min after reperfusion, and 15 min before the end of reperfusion. In Group 1 (permanent ischemia), 9-MPDA distribution was closely correlated with RMBF both 5 and 80 min after occlusion. In Group 2, 9-MPDA uptake was most closely correlated with reperfusion RMBF rather than ischemic RMBF. However, in 1 animal with good reperfusion, 9-MPDA uptake was reduced and was correlated with ischemic blood flow measured 5 min after occlusion. In Group 3, 9-MPDA uptake was correlated with RMBF measured during the ischemic period and not with reperfusion RMBF. It appears that 9-MPDA uptake is determined by RMBF when flow is limited, or early in reperfusion. With prolonged reperfusion, 9-MPDA uptake is significantly reduced in the ischemic zone in the presence of normal flow. This finding implies that the uptake of this fatty acid during reperfusion is related to myocardial damage (myocardial metabolism?) and not to RMBF

  12. Epigenomic and transcriptomic approaches in the post-genomic era : Path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart

    NARCIS (Netherlands)

    Perrino, Cinzia; Barabási, Albert Laszló; Condorelli, Gianluigi; Davidson, Sean Michael; De Windt, Leon J.; Dimmeler, Stefanie; Engel, Felix Benedikt; Hausenloy, Derek John; Hill, Joseph Addison; Van Laake, Linda Wilhelmina; Lecour, Sandrine; Leor, Jonathan; Madonna, Rosalinda; Mayr, Manuel; Prunier, Fabrice; Sluijter, Joost Petrus Geradus; Schulz, Rainer; Thum, Thomas; Ytrehus, Kirsti; Ferdinandy, Péter

    2017-01-01

    Despite advances in myocardial reperfusion therapies, acute myocardial ischaemia/reperfusion injury and consequent ischaemic heart failure represent the number one cause of morbidity and mortality in industrialized societies. Although different therapeutic interventions have been shown beneficial in

  13. Mitochondrial Membrane Permeability Inhibitors in Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Cory Trankle, MD

    2016-10-01

    Full Text Available Despite therapeutic advances, acute myocardial infarction (AMI remains a leading cause of morbidity and mortality worldwide. One potential limitation of the current treatment paradigm is the lack of effective therapies to optimize reperfusion after ischemia and prevent reperfusion-mediated injury. Experimental studies indicate that this process accounts for up to 50% of the final infarct size, lending it importance as a potential target for cardioprotection. However, multiple therapeutic approaches have shown potential in pre-clinical and early phase trials but a paucity of clear clinical benefit when expanded to larger studies. Here we explore this history of trials and errors of the studies of cyclosporine A and other mitochondrial membrane permeability inhibitors, agents that appeared to have a promising pre-clinical record yet provided disappointing results in phase III clinical trials.

  14.   Adenosine-diphosphate (ADP) reduces infarct size and improves porcine heart function after myocardial infarction

    DEFF Research Database (Denmark)

    Bune, Laurids Touborg; Larsen, Jens Kjærgaard Rolighed; Thaning, Pia

    2013-01-01

    Acute myocardial infarction continues to be a major cause of morbidity and mortality. Timely reperfusion can substantially improve outcomes and the administration of cardioprotective substances during reperfusion is therefore highly attractive. Adenosine diphosphate (ADP) and uridine-5-triphoshat...... infusion during reperfusion reduces IS by ~20% independently from systemic release of t-PA. ADP-induced reduction in both preload and afterload could account for the beneficial myocardial effect....

  15. miR-494 up-regulates the PI3K/Akt pathway via targetting PTEN and attenuates hepatic ischemia/reperfusion injury in a rat model.

    Science.gov (United States)

    Su, Song; Luo, De; Liu, Xiangdong; Liu, Jiang; Peng, Fangyi; Fang, Cheng; Li, Bo

    2017-10-31

    A rat HIRI model was constructed and treated with an intraperitoneal injection of agomir- miR-494 or agomir-NC (negative control) for 7 days after the surgery. The pathophysiological changes in sham-operated rats, HIRI, HIRI + agomir- miR-494 , and HIRI + agomir-NC were compared. The effect of miR-494 was also assessed in an H 2 O 2 -induced apoptosis model. Hepatic AML12 cells were transfected with mimics NC or miR-494 mimics, followed by 6-h H 2 O 2 treatment. Cell proliferation and apoptosis were detected by CCK8 assay and flow cytometry, respectively. Further, the miR-494 target gene was identified by luciferase reporter assay, and verified both in vitro and in vivo experiments. The activity of AKT pathway was further analyzed in vivo by Western blot. HIRI + agomir- miR-494 rats exhibited significantly higher miR-494 expression, lower serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and glutamate dehydrogenase (GLDH) level, lower hepatic MDA, TOA, and OSI, alleviated hepatic necrosis, reduced hepatocyte apoptosis, and decreased expression of apoptosis-related proteins, when compared with HIRI + agomir-NC rats ( P <0.05 or 0.01). After H 2 O 2 treatment, AML-12 cells transfected with miR-494 mimics had significantly higher proliferation and lower apoptosis rate compared with mimics NC group ( P <0.01). PTEN was identified as an miR-494 target gene. PTEN expression was significantly down-regulated in AML12 cells transfected with miR-494 mimics, and was up-regulated by treatment of miR-494 inhibitor ( P <0.01). Moreover, HIRI + agomir- miR-494 rats exhibited significantly lower PTEN expression, and higher p-AKT, p-mTOR, and p-p70S6K levels compared with HIRI + agomir-NC rats. Therefore, miR-494 protected rats against hepatic ischemia/reperfusion (I/R) injury through down-regulating its downstream target gene PTEN , leading to the activation of PI3K/AKT signaling pathway. © 2017 The Author(s).

  16. By Targeting Stat3 microRNA-17-5p Promotes Cardiomyocyte Apoptosis in Response to Ischemia Followed by Reperfusion

    Directory of Open Access Journals (Sweden)

    Weijie Du

    2014-08-01

    Full Text Available Background: Several studies have confirmed the role of microRNAs in regulating ischemia/reperfusion-induced cardiac injury (I/R-I. MiR-17-5p has been regarded as an oncomiR in the development of cancer. However, its potential role in cardiomyocytes has not been exploited. The aim of this study is to investigate the role of miR-17-5p in I/R-I and the underlying mechanism through targeting Stat3, a key surviving factor in cardiomyocytes. Methods: MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide assay was used to detect the cell viability. ELISA and TUNEL were performed to measure apoptosis of neonatal rat ventricular cardiomyocytes (NRVCs. Infarct area was estimated by TTC (triphenyltetrazolium chloride and Evans blue staining. Western blot analysis was employed to detect the Stat3 and p-Stat3 levels and real-time RT-PCR was used to quantify miR-17-5p level. Results: The miR-17-5p level was significantly up-regulated in I/R-I mice and in NRVCs under oxidative stress. Overexpression of miR-17-5p aggravated cardiomyocyte injury with reduced cell viability and enhanced apoptotic cell death induced by H2O2, whereas inhibition of miR-17-5p by its antisense AMO-17-5p abrogated the deleterious changes. Moreover, the locked nucleic acid-modified antisense (LNA-anti-miR-17-5p markedly decreased the infarct area and apoptosis induced by I/R-I in mice. Furthermore, overexpression of miR-17-5p diminished the p-Stat3 level in response to H2O2. The results from Western blot analysis and luciferase reporter gene assay confirmed Stat3 as a target gene for miR-17-5p. Conclusion: Upregulation of miR-17-5p promotes apoptosis induced by oxidative stress via targeting Stat3, accounting partially for I/R-I.

  17. Delayed ventricular septal rupture complicating acute inferior wall myocardial infarction

    OpenAIRE

    Cho, Jae Hyung; Sattiraju, Srinivasan; Mehta, Sanjay; Missov, Emil

    2013-01-01

    Background Ventricular septal rupture is a potentially fatal complication of acute myocardial infarction. Its incidence has declined with modern reperfusion therapy. In the era of percutaneous coronary interventions, it occurs a median of 18?24?hours after myocardial infarction and is most commonly associated with anterior myocardial infarction. We present a case of delayed ventricular septal rupture complicating acute inferior wall myocardial infarction. Case presentation A 53-year-old Cauca...

  18. Role of myocardial perfusion imaging in evaluating thrombolytic therapy for acute myocardial infarction

    International Nuclear Information System (INIS)

    Beller, G.A.

    1987-01-01

    Myocardial thallium-201 scintigraphy is being increasingly employed as a method for assessing the efficacy of coronary reperfusion in acute myocardial infarction. New thallium uptake after intracoronary tracer administration after successful recanalization indicates that nutrient blood flow has been successfully restored. One may also presume that some myocardial salvage occurred if thallium administered in this manner is transported intracellularly by myocytes with intact sarcolemmal membranes. However, if one injects thallium by way of the intracoronary route immediately after reperfusion, the initial uptake of thallium in reperfused myocardium may predominantly represent hyperemic flow and regional thallium counts measured may not be proportional to the mass of viable myocytes. When thallium is injected intravenously during the occlusion phase the degree of redistribution after thrombolysis is proportional to the degree of flow restoration and myocardial viability. When thallium is injected for the first time intravenously immediately after reperfusion, an overestimation of myocardial salvage may occur because of excess thallium uptake in the infarct zone consequent to significant hyperemia. Another approach to myocardial thallium scintigraphy in patients undergoing thrombolytic therapy is to administer two separate intravenous injections before and 24 hours or later after treatment. Finally, patients with acute myocardial infarction who receive intravenous thrombolytic therapy are candidates for predischarge exercise thallium-201 scintigraphy for risk stratification and detection of residual ischemia

  19. Adenoviral short hairpin RNA therapy targeting phosphodiesterase 5a relieves cardiac remodeling and dysfunction following myocardial infarction

    Science.gov (United States)

    Li, Longhu; Haider, Husnain Kh.; Wang, Linlin; Lu, Gang

    2012-01-01

    We previously showed that treatment with tadalafil, a long-acting phosphodiesterase-5a (PDE5a) inhibitor, effectively prevented adverse left ventricular (LV) remodeling of the infarcted heart. We hypothesized that short-hairpin RNA (shRNA) therapy targeting PDE5a would simulate the effects of pharmacological intervention for treatment of postinfarction LV remodeling and dysfunction. Experimental model of myocardial infarction was developed in female mice by permanent ligation of left coronary artery. Immediately after that, an adenoviral vector encoding for shRNA sequence targeting PDE5a (Ad-shPDE5a) was injected intramyocardially, which specifically inhibited PDE5a in the heart. Four weeks later, Ad-shPDE5a treated mice showed significant mitigation of the left ventricle (LV) dilatation and dysfunction as indicated by smaller LV cavity and more preserved ejection fraction and fractional shortening. Infarction size and fibrosis were significantly reduced in Ad-shPDE5a-treated mice. Additionally, more salvaged cardiomyocytes, significantly reduced collagen contents, and higher blood vessel density were observed in Ad-shPDE5a-treated mice. The cytoprotective effects of Ad-shPDE5a were demonstrated in vitro in Ad-shPDE5a transfected cardiomyocytes cultured under oxygen glucose deprivation. Among downstream mediators of PDE5a signaling, cyclic GMP (cGMP) and cGMP-dependent protein kinase G (PKG) were activated with concomitant reduction in caspase-3 activity. However, no significant change in PKA and cAMP activities were observed in Ad-shPDE5a-treated hearts. Inhibition with shRNA improved cardiac remodeling and dysfunction by reducing infarction size and cardiac fibrosis and increased cGMP and PKG activity. These findings suggest that PDE5 inhibition with Ad-shPDE5a is a novel approach for treatment of myocardial infarction. PMID:22447941

  20. Therapeutic Hypothermia for the Treatment of Acute Myocardial Infarction-Combined Analysis of the RAPID MI-ICE and the CHILL-MI Trials

    DEFF Research Database (Denmark)

    Erlinge, David; Götberg, Matthias; Noc, Marko

    2015-01-01

    infarction CHILL-MI studies, hypothermia was rapidly induced in conscious patients with ST-elevation myocardial infarction (STEMI) by a combination of cold saline and endovascular cooling. Twenty patients in RAPID MI-ICE and 120 in CHILL-MI with large STEMIs, scheduled for primary percutaneous coronary...... intervention (PCI) within hypothermia induced by rapid infusion of 600-2000 mL cold saline combined with endovascular cooling or standard of care. Hypothermia was initiated before PCI and continued for 1-3 hours after reperfusion aiming at a target temperature...... of 33°C. The primary endpoint was myocardial infarct size (IS) as a percentage of myocardium at risk (IS/MaR) assessed by cardiac magnetic resonance imaging at 4±2 days. Patients randomized to hypothermia treatment achieved a mean core body temperature of 34.7°C before reperfusion. Although significance...

  1. Myocardial Bridge

    Science.gov (United States)

    ... Center > Myocardial Bridge Menu Topics Topics FAQs Myocardial Bridge En español Your heart is made of muscle, ... surface of the heart. What is a myocardial bridge? A myocardial bridge is a band of heart ...

  2. Intracoronary and systemic melatonin to patients with acute myocardial infarction

    DEFF Research Database (Denmark)

    Halladin, Natalie L; Busch, Sarah Ekeløf; Jensen, Svend Eggert

    2014-01-01

    -point is the Myocardial Salvage Index assessed by cardiovascular magnetic resonance imaging on day 4 (± 1) after pPCI. The secondary end-points are high-sensitivity troponin, creatinekinase myocardial band and clinical events. CONCLUSION: The aim of the IMPACT trial is to evaluate the effect of melatonin on reperfusion...

  3. Fast T2 gradient-spin-echo (T2-GraSE) mapping for myocardial edema quantification: first in vivo validation in a porcine model of ischemia/reperfusion

    OpenAIRE

    Fern?ndez-Jim?nez, Rodrigo; S?nchez-Gonz?lez, Javier; Aguero, Jaume; del Trigo, Mar?a; Gal?n-Arriola, Carlos; Fuster, Valentin; Ib??ez, Borja

    2015-01-01

    Background Several T2-mapping sequences have been recently proposed to quantify myocardial edema by providing T2 relaxation time values. However, no T2-mapping sequence has ever been validated against actual myocardial water content for edema detection. In addition, these T2-mapping sequences are either time-consuming or require specialized software for data acquisition and/or post-processing, factors impeding their routine clinical use. Our objective was to obtain in vivo validation of a seq...

  4. Local arginase inhibition during early reperfusion mediates cardioprotection via increased nitric oxide production.

    Directory of Open Access Journals (Sweden)

    Adrian T Gonon

    Full Text Available Consumption of L-arginine contributes to reduced bioavailability of nitric oxide (NO that is critical for the development of ischemia-reperfusion injury. The aim of the study was to determine myocardial arginase expression and activity in ischemic-reperfusion myocardium and whether local inhibition of arginase within the ischemic myocardium results in increased NO production and protection against myocardial ischemia-reperfusion. Anesthetized pigs were subjected to coronary artery occlusion for 40 min followed by 4 h reperfusion. The pigs were randomized to intracoronary infusion of vehicle (n = 7, the arginase inhibitor N-hydroxy-nor-L-arginine (nor-NOHA, 2 mg/min, n = 7, the combination of nor-NOHA and the NO synthase inhibitor N(G-monomethyl-L-arginine (L-NMMA, 0.35 mg/min, n = 6 into the jeopardized myocardial area or systemic intravenous infusion of nor-NOHA (2 mg/min, n = 5 at the end of ischemia and start of reperfusion. The infarct size of the vehicle group was 80 ± 4% of the area at risk. Intracoronary nor-NOHA reduced infarct size to 46 ± 5% (P<0.01. Co-administration of L-NMMA abrogated the cardioprotective effect mediated by nor-NOHA (infarct size 72 ± 6%. Intravenous nor-NOHA did not reduce infarct size. Arginase I and II were expressed in cardiomyocytes, endothelial, smooth muscle and poylmorphonuclear cells. There was no difference in cytosolic arginase I or mitochondrial arginase II expression between ischemic-reperfused and non-ischemic myocardium. Arginase activity increased 2-fold in the ischemic-reperfused myocardium in comparison with non-ischemic myocardium. In conclusion, ischemia-reperfusion increases arginase activity without affecting cytosolic arginase I or mitochondrial arginase II expression. Local arginase inhibition during early reperfusion reduces infarct size via a mechanism that is dependent on increased bioavailability of NO.

  5. Protective Effect of Ischemic Postconditioning against Ischemia Reperfusion-Induced Myocardium Oxidative Injury in IR Rats

    Directory of Open Access Journals (Sweden)

    Jiangwei Ma

    2012-03-01

    Full Text Available Brief episodes of myocardial ischemia-reperfusion (IR employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK, lactate dehydrogenase (LDH and aspartate transaminase (AST activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px and glutathione reductase (GR activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  6. Mitochondria as key targets of cardioprotection in cardiac ischemic disease: role of thyroid hormone triiodothyronine.

    Science.gov (United States)

    Forini, Francesca; Nicolini, Giuseppina; Iervasi, Giorgio

    2015-03-19

    Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/ reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48-72 h after the insult), the subacute phase (from 72 h to 7-10 days) and chronic stage (from 10-14 days to one month after the insult). As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3).

  7. Role of adenosine as adjunctive therapy in acute myocardial infarction.

    Science.gov (United States)

    Forman, Mervyn B; Stone, Gregg W; Jackson, Edwin K

    2006-01-01

    Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy.

  8. Cardioprotection by minocycline in a rabbit model of ischemia/reperfusion injury : Detection of cell death by in vivo (111)In-GSAO SPECT

    NARCIS (Netherlands)

    Yamaki, Takayoshi; de Haas, Hans J; Tahara, Nobuhiro; Petrov, Artiom; Mohar, Dilbahar; Haider, Nezam; Zhou, Jun; Tahara, Atsuko; Takeishi, Yasuchika; Boersma, Hendrikus H; Scarabelli, Tiziano; Kini, Annapoorna; Strauss, H William; Narula, Jagat

    BACKGROUND: Preclinical studies indicate that minocycline protects against myocardial ischemia/reperfusion injury. In these studies, minocycline was administered before ischemia, which can rarely occur in clinical practice. The current study aimed to evaluate cardioprotection by minocycline

  9. Assessment of myocardial infarction by magnetic resonance imaging with the aid of contrast agents

    International Nuclear Information System (INIS)

    Roos, A. de; Doornbos, J.

    1991-01-01

    The potential of MR imaging in myocardial ischemia with low-temporal-resolution spin-echo techniques both with and without MR contrast agents has been explored. There are indications that early MR imaging after administration of Gd-DTPA is capable to differentiate reperfused from non-reperfused infarcts. Furthermore, MR infarct sizing using Gd-DTPA is feasible to demonstrate infarct size reduction in patients with successful reperfusion. (H.W.). 50 refs.; 9 figs

  10. Perfusion scintigraphy in acute myocardial infarction

    International Nuclear Information System (INIS)

    Schricke, U.; Schwaiger, M.; Kastrati, A.; Schoemig, A.

    1999-01-01

    The Tc-99m sestamibi perfusion SPECT scintigraphy in acute myocardial infarction is a feasible method to assess the size of area at risk and the residual blood flow to this area as the most important determinants of final infarct size without any delay in treatment. In combination with a follow-up study final infarct size as well as myocardial salvage can be quantified. Clinical indications for the use of Tc-99m sestamibi scintigraphy are the noninvasive identification of arterial occlusion in patients suspected to acute myocardial infarction without electrocardiographic ST-elevation and the assessment of reperfusion success. In clinical trials Tc-99m sestamibi scintigraphy has proven to be a useful method to assess the impact of varying reperfusion therapies. The present review article discusses the indication, the study protocol, the interpretation of results and the clinical and scientifically importance of this method. (orig.) [de

  11. Phenylephrine postconditioning increases myocardial injury: Are alpha-1 sympathomimetic agonist cardioprotective?

    Directory of Open Access Journals (Sweden)

    Iordanis Mourouzis

    2014-01-01

    Full Text Available Objective: We studied effects of phenylephrine (PHE on postischemic functional recovery and myocardial injury in an ischemia-reperfusion (I-R experimental model. Materials and Methods: Rat hearts were Langendorff-perfused and subjected to 30 min zero-flow ischemia (I and 60 min reperfusion (R. During R PHE was added at doses of 1 μM (n = 10 and 50 μM (n = 12. Hearts (n = 14 subjected to 30 and 60 min of I-R served as controls. Contractile function was assessed by left ventricular developed pressure (LVDP and the rate of increase and decrease of LVDP; apoptosis by fluorescent imaging targeting activated caspase-3, while myocardial injury by lactate dehydrogenase (LDH released during R. Activation of kinases was measured at 5, 15, and 60 min of R using western blotting. Results: PHE did not improve postischemic contractile function. PHE increased LDH release (IU/g; 102 ± 10.4 (Mean ± standard error of mean control versus 148 ± 14.8 PHE (1, and 145.3 ± 11 PHE (50 hearts, (P < 0.05. PHE markedly increased apoptosis. Molecular analysis showed no effect of PHE on the activation of proapoptotic c-Jun N-terminal kinase signaling; a differential pattern of p38 mitogen activated protein kinase (MAPK activation was found depending on the PHE dose used. With 1 μM PHE, p-p38/total-p38 MAPK levels at R were markedly increased, indicating its detrimental effect. With PHE 50 μM, no further changes in p38 MAPK were seen. Activation of Akt kinase was decreased implying involvement of different mechanisms in this response. Conclusions: PHE administration during reperfusion does not improve postischemic recovery due to exacerbation of myocardial necrosis and apoptosis. This finding may be of clinical and therapeutic relevance.

  12. Ultra Low Dose Delta 9-Tetrahydrocannabinol Protects Mouse Liver from Ischemia Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Edith Hochhauser

    2015-07-01

    Full Text Available Background/Aims: Ischemia/reperfusion (I/R injury is the main cause of both primary graft dysfunction and primary non-function of liver allografts. Cannabinoids has been reported to attenuate myocardial, cerebral and hepatic I/R oxidative injury. Delta-9-tetrahydrocannabinol (THC, a cannabinoid agonist, is the active components of marijuana. In this study we examined the role of ultralow dose THC (0.002mg/kg in the protection of livers from I/R injury. This extremely low dose of THC was previously found by us to protect the mice brain and heart from a variety of insults. Methods: C57Bl Mice were studied in in vivo model of hepatic segmental (70% ischemia for 60min followed by reperfusion for 6 hours. Results: THC administration 2h prior to the induction of hepatic I/R was associated with significant attenuated elevations of: serum liver transaminases ALT and AST, the hepatic oxidative stress (activation of the intracellular signaling CREB pathway, the acute proinflammatory response (TNF-α, IL-1α, IL-10 and c-FOS hepatic mRNA levels, and ERK signaling pathway activation. This was followed by cell death (the cleavage of the pro-apoptotic caspase 3, DNA fragmentation and TUNEL after 6 hours of reperfusion. Significantly less hepatic injury was detected in the THC treated I/R mice and fewer apoptotic hepatocytes cells were identified by morphological criteria compared with untreated mice. Conclusion: A single ultralow dose THC can reduce the apoptotic, oxidative and inflammatory injury induced by hepatic I/R injury. THC may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation, liver resection and trauma.

  13. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    Science.gov (United States)

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction. PMID:27882354

  14. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Tsutsumi, Yasuo M; Patel, Hemal H; Lai, N Chin; Takahashi, Toshiyuki; Head, Brian P; Roth, David M

    2006-03-01

    Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis. Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion. Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group. Cardiac protection induced by isoflurane against necrotic and apoptotic cell death is associated with an acute memory period that is sustained and functionally relevant 2 weeks after

  15. Conditioning techniques and ischemic reperfusion injury in relation to on-pump cardiac surgery

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Ottas, Konstantin Alex; Andreasen, Charlotte

    2014-01-01

    OBJECTIVES: The objective was to investigate the potential protective effects of two conditioning methods, on myocardial ischemic and reperfusion injury in relation to cardiac surgery. DESIGN: Totally 68 patients were randomly assigned to either a control group (n = 23), a remote ischemic...

  16. Acute myocardial infarcts

    International Nuclear Information System (INIS)

    Just, H.

    1988-01-01

    Acute myocardial infarction is a major complication of stenosing coronary artery disease and constitutes the most frequent single cause of death. It is caused by thrombotic occlusion of one of the major epicardial coronary arterial branches in most cases. Sudden death due to ventricular fibrillation is responsible for the majority of early fatalities. In 60% of all fatal infarcts, death occurs within 1 h of the onset of pain. The final extension of myocardial necrosis is reached within 2-4 h. An integrated programme has therefore been developed for the supervision and treatment of patients suffering acute coronary attack; it has been shown that it can markedly lower infarct mortality. It includes mobile prehospital care, intensive care treatment in the hospital, and rehabilitative procedures for application during reconvalescence. Early antiarrhythmic treatment and myocardial reperfusion via fibrinolysis are the main therapeutic procedures in the earliest stage. In hospital an operating room and an operating team must be available round the clock for the performance of coronary angiography followed by percutaneous transluminal coronary angioplasty or bypass surgery, which can be safely carried out in the acute stage provided the indications are strictly observed. Mortality and morbidity can be significantly lowered and both life expectancy and quality of life can be remarkably improved. (orig.) [de

  17. Acute reperfusion without recanalization

    DEFF Research Database (Denmark)

    Makris, Nikolaos; Chamard, Leila; Mikkelsen, Irene K

    2017-01-01

    Acute reperfusion despite persistent arterial occlusion may occur in up to 30% of ischemic stroke patients. Recruitment of leptomeningeal collaterals may explain this phenomenon. Using dynamic susceptibility-contrast perfusion imaging (DSC-PI), we assessed acute changes in collateral flow among...... patients without recanalization. From a multicenter prospective database (I-KNOW), 46 patients with magnetic resonance angiography visible occlusion in whom both reperfusion and recanalization were assessed within 6 h of onset were identified. Maps of collateral flow at arterial, capillary and late venous...... phases were generated from DSC-PI through inter-frame registration, baseline signal subtraction and temporal summation, and graded blind to all other relevant clinical and radiological data using the Higashida scale. Flow direction and the acute evolution of collaterals were evaluated against...

  18. Pre-ischemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischemia-reperfusion

    DEFF Research Database (Denmark)

    Jespersen, Nichlas Riise; Yokota, Takashi; Støttrup, Nicolaj Brejnholt

    2017-01-01

    KEY POINTS: Pre-ischaemic administration of aminooxiacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against ischaemia-reperfusion injury. The underlying mechanism remains unknown. We examined whether transient inhibition of the MAS during ischaemia......, but not IPC, reduced the myocardial interstitial concentration of tricarboxylic acid cycle intermediates at the onset of reperfusion. The results obtained in the present study demonstrate that metabolic regulation by inhibition of the MAS at the onset of reperfusion may be beneficial for the preservation...... of mitochondrial function during late reperfusion in an IR-injured heart. ABSTRACT: Mitochondrial dysfunction plays a central role in ischaemia-reperfusion (IR) injury. Pre-ischaemic administration of aminooxyacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against IR...

  19. Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats.

    Science.gov (United States)

    Shiotani, Satoko; Shimada, Mitsuo; Suehiro, Taketoshi; Soejima, Yuji; Yosizumi, Tomoharu; Shimokawa, Hiroaki; Maehara, Yoshihiko

    2004-08-15

    Reperfusion of ischemic tissues is known to cause the generation of reactive oxygen species (ROS) with resultant tissue damage. However, the sources of ROS in reperfused tissues are not fully characterized. We hypothesized that the small GTPase Rho and its target effector Rho-kinase/ROK/ROCK are involved in the oxidative burst in reperfused tissue with resultant reperfusion injury. In an in vivo rat model of liver transplantation using cold ischemia for 12 hr followed by reperfusion, a specific Rho-kinase inhibitor, fasudil (30 mg/kg), was administered orally 1 hr before the transplantation. Fasudil suppressed the ischemia-reperfusion (I/R)-induced generation of ROS after reperfusion (P<0.01) and also suppressed the release of inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta) 3 hr after reperfusion, resulting in a significant reduction of I/R-induced hepatocellular injury (P<0.05), necrosis, apoptosis (P<0.01), and neutrophil infiltration (P<0.0001) 12 hr after reperfusion. All animals receiving a graft without fasudil died within 3 days, whereas 40% of those receiving fasudil survived (P<0.001). The present study demonstrates that Rho-kinase-mediated production of ROS and inflammatory cytokines are substantially involved in the pathogenesis of hepatocellular necrosis and apoptosis induced by cold I/R in vivo and that Rho-kinase may be regarded as a novel therapeutic target for the disorder.

  20. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H₂O₂-induced apoptosis through targeting the mitochondria apoptotic pathway.

    Directory of Open Access Journals (Sweden)

    Ruotian Li

    Full Text Available MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide H₂O₂-induced apoptosis through targeting the mitochondrial pathway. Quantitative real-time PCR (qPCR demonstrated that the expression of miR-145 in either ischemia/reperfused mice myocardial tissues or H₂O₂-treated neonatal rat ventricle myocytes (NRVMs was markedly down-regulated. Over-expression of miR-145 significantly inhibited the H₂O₂-induced cellular apoptosis, ROS production, mitochondrial structure disruption as well as the activation of key signaling proteins in mitochondrial apoptotic pathway. These protective effects of miR-145 were abrogated by over-expression of Bnip3, an initiation factor of the mitochondrial apoptotic pathway in cardiomyocytes. Finally, we utilized both luciferase reporter assay and western blot analysis to identify Bnip3 as a direct target of miR-145. Our results suggest miR-145 plays an important role in regulating mitochondrial apoptotic pathway in heart challenged with oxidative stress. MiR-145 may represent a potential therapeutic target for treatment of oxidative stress-associated cardiovascular diseases, such as myocardial ischemia/reperfusion injury.

  1. Fatty acid myocardial imaging using 123I-β-methyl-iophenyl pentadecanoic acid (BMIPP): Comparison of myocardial perfusion and fatty acid utilization in canine myocardial infarction

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Sago, Masayoshi; Kihara, Koichi; Oka, Hisashi; Shimonagata, Tsuyoshi; Katabuchi, Tetsuro; Hayashi, Makoto; Uehara, Toshiisa; Hayashida, Kohei; Noda, Hiroyuki; Takano, Hisateru

    1989-01-01

    To evaluate the relationship between myocardial perfusion and fatty acid metabolism in canine myocardial infarction, 16 dogs were studied using thallium and 123 I-β-methyl-iodophenyl pentadecanoic acid (BMIPP). Eight dogs (group A) had left anterior coronary arterial occlusion (6 h ligation), 6 dogs (group B) had reperfusion (3 h ligation and 1 h reperfusion) and 2 dogs served as the normal control. Myocardial imaging with BMIPP was excellent, owing to its higher uptake and longer retention in myocardium and rapid blood disappearance in addition to diminished liver and lung uptake. The mean half time value which was generated from the BMIPP myocardial washout curve, was significantly larger in the reperfused myocardium. The gamma camera imaging showed uncoupling of BMIPP and thallium (BMIPP uptake greater than thallium uptake) in five dogs in group B. On the other hand, all dogs in group A had a persistent defect in BMIPP and thallium uptake. Our findings indicate that the combination of BMIPP and thallium for myocardial imaging supply different information about the zone of infarction and ischemia, which may be useful for the assessment of myocardial viability. (orig.)

  2. Myocardial protection in heart surgery.

    Science.gov (United States)

    Mentzer, Robert M

    2011-01-01

    One of the unmet clinical needs in heart surgery is the prevention of myocardial stunning and necrosis that occurs as a result of ischemia-reperfusion. Myocardial stunning, a frequent consequence after heart surgery, is characterized by a requirement for postoperative inotropic support despite a technically satisfactory heart operation. In high-risk patients with marginal cardiac reserve, stunning is a major cause of prolonged critical care and may be associated with as much as a 5-fold increase in mortality. In contrast, the frequency of myocardial necrosis (myocardial infarction [MI]) after cardiac surgery is less appreciated and its consequences are much more subtle. The consequences may not be apparent for months to years. While we now have a much better understanding of the molecular mechanisms underlying myocardial stunning and MI, we still have no effective way to prevent these complications, nor a consistently effective means to engage the well-studied endogenous mechanisms of cardioprotection. The failure to develop clinically effective interventions is multifactorial and can be attributed to reliance on findings obtained from subcellular and cellular studies, to drawing conclusions from preclinical large animal studies that have been conducted in a disease-free state, and to accepting less than robust surrogate markers of injury in phase II clinical trials. These factors also explain the disappointing failure to identify effective adjuvant therapy in the setting of percutaneous coronary revascularization for acute MI (AMI) and reperfusion injury. These issues have contributed to the disappointing outcomes of large and costly phase III trials, resulting in a lack of enthusiasm on the part of the pharmaceutical industry to engage in further drug development for this indication. The purpose of this review is to (1) define the scope of the clinical problem; (2) summarize the outcomes of selected phases II and III clinical trials; and (3) identify the gap that

  3. Assessment for prognosis during and after myocardial infarction. A plea for a stratified approach

    NARCIS (Netherlands)

    P.G. Hugenholtz (Paul); P.M. Fioretti (Paolo); M.L. Simoons (Maarten); P.W.J.C. Serruys (Patrick); J.R.T.C. Roelandt (Jos)

    1986-01-01

    textabstractRight after the first signs and symptoms of acute myocardial infarctions the prognosis is determined by the interventions which are carried out at that time. Preservation of as much myocardial tissue is the key element. Early deobstruction and reperfusion of the myocardium at jeopardy

  4. Early assessment of tissue viability with radioiodinated heptadecanoic acid in reperfused canine myocardium: Comparison with thallium-201

    International Nuclear Information System (INIS)

    Chappuis, F.; Meier, B.; Belenger, J.; Blaeuenstein, P.L.; Lerch, R.

    1990-01-01

    Myocardial scintigraphy with heptadecanoic acid labeled with iodine-123 (123I-HDA) may allow early noninvasive delineation of viable myocardium after reperfusion. In this study myocardial uptake of 123I-HDA was compared with that of thallium-201 in six closed-chest dogs after 5 hours of occlusion followed by 1 hour of reperfusion of the left anterior descending coronary artery. Myocardial blood flow was measured with microspheres, and myocardial viability was assessed by means of triphenyltetrazolium chloride staining. In viable areas of the reperfused region, 123I-HDA uptake, thallium-201 uptake, and myocardial blood flow were similar to those measured in the control circumflex region. However, in infarcted areas they were reduced to 48 +/- 2% (mean +/- SEM; p less than 0.001), 59 +/- 3% (p less than 0.001), and 74 +/- 5% (p less than 0.001) of control values, respectively. Results of multiple regression analysis showed that thallium-201 uptake primarily reflected the level of flow during reperfusion, whereas 123I-HDA uptake was dependent on both myocardial blood flow and viability. At each level of flow, 123I-HDA uptake was significantly lower in infarcted than in viable myocardium. By means of discriminant analysis, 123I-HDA uptake was found to be the single most important predictor of viability, whereas thallium-201 was only of limited importance. Myocardial 123I-HDA uptake greater than or equal to 71% or myocardial thallium-201 uptake greater than or equal to 73% best differentiated viable from infarcted myocardium. According to these criteria, 123I-HDA predicted myocardial viability with a sensitivity of 77%, a specificity of 84% and a predictive accuracy of 81%

  5. Vagal modulation of high mobility group box-1 protein mediates electroacupuncture-induced cardioprotection in ischemia-reperfusion injury.

    Science.gov (United States)

    Zhang, Juan; Yong, Yue; Li, Xing; Hu, Yu; Wang, Jian; Wang, Yong-qiang; Song, Wei; Chen, Wen-ting; Xie, Jian; Chen, Xue-mei; Lv, Xin; Hou, Li-li; Wang, Ke; Zhou, Jia; Wang, Xiang-rui; Song, Jian-gang

    2015-10-26

    Excessive release of high mobility group box-1 (HMGB1) protein from ischemic cardiomyocytes activates inflammatory cascades and enhances myocardial injury after reperfusion. Here we report evidence that electroacupuncture of mice at Neiguan acupoints can inhibit the up-regulation of cardiac HMGB1 following myocardial ischemia and attenuate the associated inflammatory responses and myocardial injury during reperfusion. These benefits of electroacupuncture were partially reversed by administering recombinant HMGB1 to the mice, and further potentiated by administering anti-HMGB1 antibody. Electroacupuncture-induced inhibition of HMGB1 release was markedly reduced by unilateral vagotomy or administration of nicotinic receptor antagonist, but not by chemical sympathectomy. The cholinesterase inhibitor neostigmine mimicked the effects of electroacupuncture on HMGB1 release and myocardial ischemia reperfusion injury. Culture experiments with isolated neonatal cardiomyocytes showed that acetylcholine, but not noradrenaline, inhibited hypoxia-induced release of HMGB1 via a α7nAchR-dependent pathway. These results suggest that electroacupuncture acts via the vagal nerve and its nicotinic receptor-mediated signaling to inhibit HMGB1 release from ischemic cardiomyocytes. This helps attenuate pro-inflammatory responses and myocardial injury during reperfusion.

  6. Dynamic mechanisms of cardiac oxygenation during brief ischemia and reperfusion

    International Nuclear Information System (INIS)

    Parsons, W.J.; Rembert, J.C.; Bauman, R.P.; Greenfield, J.C. Jr.; Piantadosi, C.A.

    1990-01-01

    Myocardial oxygenation may be altered markedly by changes in tissue blood flow. During brief ischemia and reperfusion produced by transient occlusion of the left anterior descending artery in 10 open-chest dogs, changes in the oxygenation of tissue hemoglobin (Hb) plus myoglobin (Mb) and the oxidation-reduction (redox) state of mitochondrial cytochrome aa3 were monitored continuously using near-infrared spectroscopy. The nondestructive optical technique indicated that coronary occlusion produced an abrupt drop in tissue oxygen stores (tHb02 + Mb02), tissue blood volume (tBV), and the oxidation level of cytochrome aa3. Changes in the cytochrome oxidation state were related inversely to transmural collateral blood flow within the ischemic region (r = 0.77) measured with radiolabeled microspheres. Furthermore, there was a direct relationship (r = 0.91) between collateral blood flow and the tissue level of desaturated Hb and Mb (tHb + Mb). Reperfusion after 2 min of ischemia led to a synchronous overshoot of baseline in coronary flow and tBV followed by supranormal increases in tHb + Mb02 and the oxidation level of cytochrome aa3. The tHb + Mb level increased transiently during reperfusion. This response correlated inversely with collateral flow during ischemia (r = 0.91). Accordingly, the time required to reach peak tHb + Mb levels was shortest in dogs with high collateral flows (r = 0.75). Thus collateral blood flow partially sustains myocardial oxygenation during coronary artery occlusion and influences tissue reoxygenation early during reperfusion

  7. Altering CO2 during reperfusion of ischemic cardiomyocytes modifies mitochondrial oxidant injury.

    Science.gov (United States)

    Lavani, Romeen; Chang, Wei-Tien; Anderson, Travis; Shao, Zuo-Hui; Wojcik, Kimberly R; Li, Chang-Qing; Pietrowski, Robert; Beiser, David G; Idris, Ahamed H; Hamann, Kimm J; Becker, Lance B; Vanden Hoek, Terry L

    2007-07-01

    species. Altering CO2 content during reperfusion can significantly affect myocardial postresuscitation injury, in part by modifying mitochondrial oxidants and NO synthase-induced NO production.

  8. Myocardial injury and protection related to cardiopulmonary bypass

    NARCIS (Netherlands)

    de Hert, Stefan; Moerman, Anneliese

    2015-01-01

    During cardiac surgery with cardiopulmonary bypass, the heart is isolated from the circulation. This inevitably induces myocardial ischemia. In addition to this ischemic insult, an additional hit will occur upon reperfusion, which may worsen the extent of tissue damage and organ dysfunction. Over

  9. Heart dysfunction and fibrosis in rat treated with myocardial ...

    African Journals Online (AJOL)

    Because cardiovascular disease remains a serious problem in modern human society, the aim of this study was to establish the rat model animal and to compare the heart dysfunction and fibrosis with SD and LE rats when treated with myocardial ischemia and reperfusion operation. A 20-minute thoracotomy was performed ...

  10. Retention and clearance of C-11 palmitic acid in ischemic and reperfused canine myocardium

    International Nuclear Information System (INIS)

    Schwaiger, M.; Schelbert, H.R.; Keen, R.; Vinten-Johansen, J.; Hansen, H.; Selin, C.; Barrio, J.; Huang, S.C.; Phelps, M.E.

    1985-01-01

    Free fatty acids are the major energy source for cardiac muscle. Oxidation of fatty acid decreases or even ceases during ischemia. Its recovery after transient ischemia remains largely unexplored. Using intracoronary carbon-11 palmitic acid as a tracer of myocardial fatty acid metabolism in an open chest dog model, retention and clearance of tracer in myocardium were evaluated at control, during ischemia and after reperfusion following a 20 minute occlusion of the left anterior descending coronary artery. Myocardial C-11 time-activity curves were analyzed with biexponential curve-fitting routines yielding fractional distribution and clearance half-times of C-11 palmitic acid in myocardial tissue. In animals with permanent occlusion and intracoronary injection of C-11 palmitic acid distal to the occlusion site, the relative size and half-time of the early clearance curve component differed markedly from control values and did not change with ongoing ischemia. Conversely, in animals with only 20 minutes of coronary occlusion, the relative size of the early C-11 clearance phase was still significantly depressed at 20 and 90 minutes of reperfusion but returned to control level at 180 minutes. Tissue C-11 clearance half-times remained significantly prolonged throughout the reperfusion period. Regional function in reperfused myocardium monitored with ultrasonic crystals recovered slowly and was still less than control after 3 hours of reperfusion. The data indicate that after transient ischemia, myocardial fatty acid metabolism fails to recover immediately. Because the metabolic recovery occurs in parallel with recovery of regional function, C-11 palmitic acid in conjunction with positron tomography may be useful for studying regional fatty acid metabolism noninvasively after an ischemic injury, and may be helpful in identifying reversible tissue injury

  11. Metabolic variations of fatty acid in isolated rat heart reperfused after a transient global ischemia

    International Nuclear Information System (INIS)

    Huang Gang; Michel Comet; Zhao Huiyang; Zhu Cuiying; Yuan Jimin

    1998-01-01

    Purpose: The fatty acid metabolism and the effect of glucose on it were studied in isolated and reperfused rat heat. Methods: 32 isolated working rat hearts were perfused in Langengdorff device with modified Krebs and were divided into normal and ischemia-reperfused group. Each group was also classified into two subgroups, modified krebs with or without glucose subgroup. 131 I-HA was injected into aorta of isolated working rat heart and then the radio-residue curves were acquired. Results: When the isolated rat hearts were perfused with krebs plus glucose, the catabolism of fatty acid was significantly decreased in normal group, but a remarkable increase of fatty acid catabolism was found in ischemia-reperfused group. While the isolated rat hearts were perfused with krebs without glucose, the catabolism of fatty acid in ischemia-reperfused isolated rat hearts were perfused with krebs without glucose, the catabolism of fatty acid in ischemia-reperfused isolated rat heart was less than that in normal group. Conclusions: Transient ischemia damages the catabolism of myocardial fatty acid in mitochondria in some degree. In normal isolated working rat heart, the principal energy source is glucose. However, the major energy source is switched to catabolism of fatty acid in ischemia-reperfused isolated rat heart. This phenomenon may be related to compensative increase of fatty acid catabolism for replenishing the loss of energy during ischemia

  12. Fatty acid myocardial imaging using 123I-β-methyl iodophenyl pentadecanoic acid (BMIPP)

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Sago, Masayoshi; Kihara, Koichi

    1988-01-01

    To evaluate myocardial perfusion and fatty acid metabolism in canine myocardial infarction (occlusion and reperfusion model), 16 dogs were studied using thallium and 123 I-β-methyliodophenyl pentadecanoic acid (BMIPP). There were 2 dogs with normal control, 8 dogs with left anterior coronary arterial occlusion (6 hr ligation) and 6 dogs with reperfusion (3 hr ligation and 1 hr reperfusion). BMIPP was considered as an excellent myocardial imaging agent, because of its higher uptake and longer retention in myocardium. Reperfused myocardium demonstrated marked prolongation of mean half-time value which was generated from BMIPP myocardial clearance curve. The gammacamera imaging of the excised heart showed the uncoupling of BMIPP and thallium (BMIPP uptake greater than thallium) in 5 of 6 dogs. On the other hand, BMIPP and thallium had persistent defect at occluded myocardium. These uncoupling at reperfused myocardium may be caused by the increase of triglyceride content. Our data suggests that the combination of BMIPP and thallium may supply different information about zone of infarction and ischemia and should be performed in clinical study for the assessment of myocardial viability. (author)

  13. Myocardial Bridging

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2016-02-01

    Full Text Available Abstract Myocardial bridging is rare. Myocardial bridges are most commonly localized in the middle segment of the left anterior descending coronary artery. The anatomic features of the bridges vary significantly. Alterations of the endothelial morphology and the vasoactive agents impact on the progression of atherosclerosis of myocardial bridging. Patients may present with chest pain, myocardial infarction, arrhythmia and even sudden death. Patients who respond poorly to the medical treatment with β-blockers warrant a surgical intervention. Myotomy is a preferred surgical procedure for the symptomatic patients. Coronary stent deployment has been in limited use due to the unsatisfactory long-term results.

  14. The Role of Tetrahydrobiopterin and Dihydrobiopterin in Ischemia/Reperfusion Injury When Given at Reperfusion

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2010-01-01

    Full Text Available Reduced nitric oxide (NO bioavailability and increased oxidative stress are major factors mediating ischemia/reperfusion (I/R injury. Tetrahydrobiopterin (BH4 is an essential cofactor of endothelial NO synthase (eNOS to produce NO, whereas dihydrobiopterin (BH2 can shift the eNOS product profile from NO to superoxide, which is further converted to hydrogen peroxide (H2O2 and cause I/R injury. The effects of BH4 and BH2 on oxidative stress and postreperfused cardiac functions were examined in ex vivo myocardial and in vivo femoral I (20 min/R (45 min models. In femoral I/R, BH4 increased NO and decreased H2O2 releases relative to saline control, and these effects correlated with improved postreperfused cardiac function. By contrast, BH2 decreased NO release relative to the saline control, but increased H2O2 release similar to the saline control, and these effects correlated with compromised postreperfused cardiac function. In conclusion, these results suggest that promoting eNOS coupling to produce NO and decrease H2O2 may be a key mechanism to restore postreperfused organ function during early reperfusion.

  15. Referral of patients with ST-segment elevation acute myocardial infarction directly to the catheterization suite based on prehospital teletransmission of 12-lead electrocardiogram

    DEFF Research Database (Denmark)

    Sillesen, Martin; Sejersten, Maria; Strange, Søren

    2008-01-01

    BACKGROUND: Time from symptom onset to reperfusion is essential in patients with ST-segment elevation acute myocardial infarction. Prior studies have indicated that prehospital 12-lead electrocardiogram (ECG) transmission can reduce time to reperfusion. PURPOSE: Determine 12-lead ECG transmission...

  16. CMR of microvascular obstruction and hemorrhage in myocardial infarction

    Directory of Open Access Journals (Sweden)

    Wu Katherine C

    2012-09-01

    Full Text Available Abstract Microvascular obstruction (MO or no-reflow phenomenon is an established complication of coronary reperfusion therapy for acute myocardial infarction. It is increasingly recognized as a poor prognostic indicator and marker of subsequent adverse LV remodeling. Although MO can be assessed using various imaging modalities including electrocardiography, myocardial contrast echocardiography, nuclear scintigraphy, and coronary angiography, evaluation by cardiovascular magnetic resonance (CMR is particularly useful in enhancing its detection, diagnosis, and quantification, as well as following its subsequent effects on infarct evolution and healing. MO assessment has become a routine component of the CMR evaluation of acute myocardial infarction and will increasingly play a role in clinical trials of adjunctive reperfusion agents and strategies. This review will summarize the pathophysiology of MO, current CMR approaches to diagnosis, clinical implications, and future directions needed for improving our understanding of this common clinical problem.

  17. Ventricular arrhythmia burst is an independent indicator of larger infarct size even in optimal reperfusion in STEMI

    NARCIS (Netherlands)

    van der Weg, Kirian; Majidi, Mohamed; Haeck, Joost D. E.; Tijssen, Jan G. P.; Green, Cynthia L.; Koch, Karel T.; Kuijt, Wichert J.; Krucoff, Mitchell W.; Gorgels, Anton P. M.; de Winter, Robbert J.

    2016-01-01

    We hypothesized that ventricular arrhythmia (VA) bursts during reperfusion phase are a marker of larger infarct size despite optimal epicardial and microvascular perfusion. 126 STEMI patients were studied with 24h continuous, 12-lead Holter monitoring. Myocardial blush grade (MBG) was determined and

  18. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    International Nuclear Information System (INIS)

    Cao Canxiang; Yang Qingwu; Lv Fenglin; Cui Jie; Fu Huabin; Wang Jingzhou

    2007-01-01

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-α and IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity

  19. Gadolinium-enhanced magnetic resonance imaging in acute myocardial infarction

    International Nuclear Information System (INIS)

    Dijkman, P.R.M. van; Wall, E.E. van der; Roos, A. de; Doornbos, J.; Laarse, A. van der; Voorthuisen, A.E. van; Bruschke, A.V.G.; Rossum, A.C. van

    1990-01-01

    To evaluate he usefulness of the paramagnetic contrast agent Gadolinium-DTPA (diethylenetriaminepentaacetic acid) in Magnetic Resonance. Imaging of acute myocardial infarction, we studied a total of 45 patients with a first acute myocardial infarction by ECG-gated magnetic resonance imaging before and after intravenous administration of 0.1 mmol/kg Gadolinium-DTPA. All patients received thrombolytic treatment by intravenous streptokinase. The magnetic resonance imaging studies were preformed after a meam of 88 h (range 15-241) after the acute onset of acute myocardial infarction. Five patients without evidence of cardiac disease served as controls. Spin-echo measurements (TE 30 ms) were made using a Philips Gyroscan (0.5 Tesla) or a Teslacon II (0.6 Tesla). The 45 patients were divided into four groups of patients. In Group I( patients) Gadolinium-DTPA improved the detection of myocardial infarction by Gadolinium-DTPA. In Group II (20 patients) the magnetic resonance imaging procedure was repeated every 10 min for up to 40 min following administration of Gadolinium-DTPA. Optimal contrast enhancement was obtained 20-25 min after Gadolinium-DTPA. In Group III (27 patients) signal intensities were significantly higher in the patients who underwent the magnetic resonance imaging study more than 72 h (mean 120) after the acute event, suggesting increased acculumation of Gadolinium-DTPA in a more advanced stage of the infarction process. In Group IV (45 patients) Gadolinium-DTPA was administered in an attempt to distinguish between reperfused and nonreperfused myocardial areas after thrombolytic treatment for acute myocardial infarction. The signal intensities did not differ, but reperfused areas showed a more homogeneous aspect whereas nonreperfused areas were visualized as a more heterogeneous contrast enhancement. It is concluded that magnetic resonance imaging using the contrast agent Gadolinium-DTPA significantly improves the detection of infarcted myocardial areas

  20. Protective Effects of Flavonoid Pomiferin on Heart Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    J. Nečas

    2007-01-01

    Full Text Available The objective of the present 15-day study was to evaluate the cardioprotective potential of flavonoid pomiferin isolated from the infructences of Maclura pomifera, Moraceae, against ischemia-reperfusion induced injury in rat hearts as a model of antioxidant-based composite therapy. Studies were performed with isolated, modifi ed Langendorff-perfused rat hearts and ischemia of heart was initiated by stopping the coronary flow for 30 min, followed by 60 min of reperfusion (14 ml min-1. Wistar rats were divided into three groups. The treated group received pomiferin (5 mg/kg/day in 0.5% Avicel; the placebo group received only 0.5% Avicel; the intact group was left without any applications. Biochemical indicators of oxidative damage, lipid peroxidation product malondialdehyde, antioxidant enzymes (superoxide dismutase, glutathione peroxidase, total antioxidant activity in serum and myocardium has been evaluated. We also examined the effect of pomiferin on cardiac function (left ventricular end-diastolic pressure, left ventricular pressure, peak positive +dP/dt (rate of pressure development after ischemia and reperfusion. Our results demonstrate that pomiferin attenuates the myocardial dysfunction provoked by ischemiareperfusion. This was confirmed by the increase in both the antioxidant enzyme values and the total antioxidant activity. The cardio-protection provided by pomiferin treatment results from the suppression of oxidative stress and correlates with the improved ventricular function.

  1. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability

    International Nuclear Information System (INIS)

    Kiat, H.; Berman, D.S.; Maddahi, J.; De Yang, L.; Van Train, K.; Rozanski, A.; Friedman, J.

    1988-01-01

    Twenty-one patients were studied who underwent thallium-201 stress-redistribution single photon emission computed tomography (SPECT) both before and after coronary artery bypass grafting (n = 15) or transluminal coronary angioplasty (n = 6). All patients underwent thallium imaging 15 min, 4 h and late (18 to 72 h) after stress as part of the preintervention thallium-201 scintigram. In a total of 201 tomographic myocardial segments with definite post-stress thallium-201 perfusion defects in which the relevant coronary arteries were subsequently successfully reperfused, the 4 h redistribution images did not predict the postintervention scintigraphic improvement: 67 (85%) of the 79 4 h reversible as well as 88 (72%) of the 122 4 h nonreversible segments improved (p = NS). The 18 to 72 h late redistribution images effectively subcategorized the 4 h nonreversible segments with respect to postintervention scintigraphic improvement: 70 (95%) of the 74 late reversible segments improved after intervention, whereas only 18 (37%) of the 48 late nonreversible segments improved (p less than 0.0001). The frequency of late reversible defects and the frequency of postrevascularization improvement of late nonreversible defects are probably overestimated by this study because of referral biases. The cardiac counts and target to background ratios from late redistribution studies resulted in satisfactory cardiac images for visual interpretation. For optimal assessment of the extent of viable myocardium by thallium-201 scintigraphic studies, late redistribution imaging should be performed when nonreversible defects are observed on 4 h redistribution images

  2. ECG and enzymatic indicators of therapeutic success after intravenous streptokinase for acute myocardial infarction

    DEFF Research Database (Denmark)

    Clemmensen, P; Grande, P; Pedersen, F

    1990-01-01

    Thrombolytic therapy has been documented to result in reperfusion of jeopardized myocardium and reduction in the size of the acute myocardial infarction (AMI). The effect of intravenous streptokinase on a creatine kinase-MB (CK-MB) reperfusion index and an ECG estimate of myocardial salvage...... was therefore studied in 65 patients with a first AMI, randomized to treatment with streptokinase (n = 33) or placebo (control group, n = 32). Reperfusion was defined as a CK-MB appearance rate constant (k1) greater than 0.185. The final AMI size was first predicted from the admission standard ECG by previously...... developed formulas based on ST segment elevation. The final AMI size was estimated from the QRS score on the predischarge ECG. Myocardial salvage was defined as a greater than or equal to 20% decrease from predicted to final AMI size. The k1 value in the control group was significantly lower than...

  3. Time course of regional myocardial glucose metabolism after transient ischemia assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshizaki, Hiroshi (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-11-01

    The purpose of this study was to examine the significance of glucose metabolism in ischemic canine myocardium after reperfusion. Transient ischemia was induced by 90 or 180 minutes occlusion of the left anterior descending coronary artery. Twelve hours and 4 weeks after reperfusion, myocardial blood flow (MBF) and glucose metabolism were assessed (with H[sub 2][sup 15]O and [sup 18]F-FDG, respectively) by positron emission tomography (PET) under the fasting state, and the metabolic findings were compared with the histologic examination. Glucose metabolism in ischemic regions was inversely related to the amount of tissue necrosis 12 hours and 4 weeks after reperfusion (r=-0.89 and r=-0.82, respectively). The perfusion-metabolism mismatch pattern was seen in the area with less than 10 percent necrosis 12 hours after reperfusion, but this pattern disappeared after 4 weeks. The area with 10 to 50 percent necrosis showed the mismatch pattern until 4 weeks after reperfusion, and in the area with more than 50 percent necrosis, perfusion-metabolism concordantly decreased. Thus, metabolic index assessed early after reperfusion by PET identified myocardial viability, and the perfusion-metabolism mismatch pattern sustained in relation to the degree of ischemic injury. Since some regions estimated to be irreversible by PET were viable by the histologic examination, PET study might underestimate the myocardial viability. (author).

  4. Targeting Pioglitazone Hydrochloride Therapy After Stroke or Transient Ischemic Attack According to Pretreatment Risk for Stroke or Myocardial Infarction.

    Science.gov (United States)

    Kernan, Walter N; Viscoli, Catherine M; Dearborn, Jennifer L; Kent, David M; Conwit, Robin; Fayad, Pierre; Furie, Karen L; Gorman, Mark; Guarino, Peter D; Inzucchi, Silvio E; Stuart, Amber; Young, Lawrence H

    2017-11-01

    There is growing recognition that patients may respond differently to therapy and that the average treatment effect from a clinical trial may not apply equally to all candidates for a therapy. To determine whether, among patients with an ischemic stroke or transient ischemic attack and insulin resistance, those at higher risk for future stroke or myocardial infarction (MI) derive more benefit from the insulin-sensitizing drug pioglitazone hydrochloride compared with patients at lower risk. A secondary analysis was conducted of the Insulin Resistance Intervention After Stroke trial, a double-blind, placebo-controlled trial of pioglitazone for secondary prevention. Patients were enrolled from 179 research sites in 7 countries from February 7, 2005, to January 15, 2013, and were followed up for a mean of 4.1 years through the study's end on July 28, 2015. Eligible participants had a qualifying ischemic stroke or transient ischemic attack within 180 days of entry and insulin resistance without type 1 or type 2 diabetes. Pioglitazone or matching placebo. A Cox proportional hazards regression model was created using baseline features to stratify patients above or below the median risk for stroke or MI within 5 years. Within each stratum, the efficacy of pioglitazone for preventing stroke or MI was calculated. Safety outcomes were death, heart failure, weight gain, and bone fracture. Among 3876 participants (1338 women and 2538 men; mean [SD] age, 63 [11] years), the 5-year risk for stroke or MI was 6.0% in the pioglitazone group among patients at lower baseline risk compared with 7.9% in the placebo group (absolute risk difference, -1.9% [95% CI, -4.4% to 0.6%]). Among patients at higher risk, the risk was 14.7% in the pioglitazone group vs 19.6% for placebo (absolute risk difference, -4.9% [95% CI, -8.6% to 1.2%]). Hazard ratios were similar for patients below or above the median risk (0.77 vs 0.75; P = .92). Pioglitazone increased weight less among patients at

  5. Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts.

    Science.gov (United States)

    Floegel, Anna; Kühn, Tilman; Sookthai, Disorn; Johnson, Theron; Prehn, Cornelia; Rolle-Kampczyk, Ulrike; Otto, Wolfgang; Weikert, Cornelia; Illig, Thomas; von Bergen, Martin; Adamski, Jerzy; Boeing, Heiner; Kaaks, Rudolf; Pischon, Tobias

    2018-01-01

    Metabolomic approaches in prospective cohorts may offer a unique snapshot into early metabolic perturbations that are associated with a higher risk of cardiovascular diseases (CVD) in healthy people. We investigated the association of 105 serum metabolites, including acylcarnitines, amino acids, phospholipids and hexose, with risk of myocardial infarction (MI) and ischemic stroke in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) and Heidelberg (25,540 adults) cohorts. Using case-cohort designs, we measured metabolites among individuals who were free of CVD and diabetes at blood draw but developed MI (n = 204 and n = 228) or stroke (n = 147 and n = 121) during follow-up (mean, 7.8 and 7.3 years) and among randomly drawn subcohorts (n = 2214 and n = 770). We used Cox regression analysis and combined results using meta-analysis. Independent of classical CVD risk factors, ten metabolites were associated with risk of MI in both cohorts, including sphingomyelins, diacyl-phosphatidylcholines and acyl-alkyl-phosphatidylcholines with pooled relative risks in the range of 1.21-1.40 per one standard deviation increase in metabolite concentrations. The metabolites showed positive correlations with total- and LDL-cholesterol (r ranged from 0.13 to 0.57). When additionally adjusting for total-, LDL- and HDL-cholesterol, triglycerides and C-reactive protein, acyl-alkyl-phosphatidylcholine C36:3 and diacyl-phosphatidylcholines C38:3 and C40:4 remained associated with risk of MI. When added to classical CVD risk models these metabolites further improved CVD prediction (c-statistics increased from 0.8365 to 0.8384 in EPIC-Potsdam and from 0.8344 to 0.8378 in EPIC-Heidelberg). None of the metabolites was consistently associated with stroke risk. Alterations in sphingomyelin and phosphatidylcholine metabolism, and particularly metabolites of the arachidonic acid pathway are independently associated with risk of MI in

  6. Targeted NGF siRNA delivery attenuates sympathetic nerve sprouting and deteriorates cardiac dysfunction in rats with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Hesheng Hu

    Full Text Available Nerve growth factor (NGF is involved in nerve sprouting, hyper-innervation, angiogenesis, anti-apoptosis, and preservation of cardiac function after myocardial infarction (MI. Positively modulating NGF expression may represent a novel pharmacological strategy to improve post-infarction prognosis. In this study, lentivirus encoding NGF short interfering RNA (siRNA was prepared, and MI was modeled in the rat using left anterior descending coronary artery ligation. Rats were randomly grouped to receive intramyocardial injection of lentiviral solution containing NGF-siRNA (n = 19, MI-SiNGF group, lentiviral solution containing empty vector (n = 18, MI-GFP group or 0.9% NaCl solution (n = 18, MI-control group, or to receive thoracotomy and pericardiotomy (n = 17, sham-operated group. At 1, 2, 4, and 8 wk after transduction, rats in the MI-control group had higher levels of NGF mRNA and protein than those in the sham-operated group, rats in the MI-GFP group showed similar levels as the MI-control group, and rats in the MI-SiNGF group had lower levels compared to the MI-GFP group, indicating that MI model was successfully established and NGF siRNA effectively inhibited the expression of NGF. At 8 wk, echocardiographic and hemodynamic studies revealed a more severe cardiac dysfunction in the MI-siRNA group compared to the MI-GFP group. Moreover, rats in the MI-siRNA group had lower mRNA and protein expression levels of tyrosine hydroxylase (TH and growth-associated protein 43-positive nerve fibers (GAP-43 at both the infarcted border and within the non-infarcted left ventricles (LV. NGF silencing also reduced the vascular endothelial growth factor (VEGF expression and decreased the arteriolar and capillary densities at the infarcted border compared to the MI-GFP group. Histological analysis indicated a large infarcted size in the MI-SiNGF group. These findings suggested that endogenous NGF silencing attenuated sympathetic nerve sprouting

  7. Molecular Basis of Cardioprotective Effect of Antioxidant Vitamins in Myocardial Infarction

    Science.gov (United States)

    Rodrigo, Ramón; Feliú, Felipe; Hasson, Daniel

    2013-01-01

    Acute myocardial infarction (AMI) is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA) have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress). These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage. PMID:23936799

  8. Molecular Basis of Cardioprotective Effect of Antioxidant Vitamins in Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Ramón Rodrigo

    2013-01-01

    Full Text Available Acute myocardial infarction (AMI is the leading cause of mortality worldwide. Major advances in the treatment of acute coronary syndromes and myocardial infarction, using cardiologic interventions, such as thrombolysis or percutaneous coronary angioplasty (PCA have improved the clinical outcome of patients. Nevertheless, as a consequence of these procedures, the ischemic zone is reperfused, giving rise to a lethal reperfusion event accompanied by increased production of reactive oxygen species (oxidative stress. These reactive species attack biomolecules such as lipids, DNA, and proteins enhancing the previously established tissue damage, as well as triggering cell death pathways. Studies on animal models of AMI suggest that lethal reperfusion accounts for up to 50% of the final size of a myocardial infarct, a part of the damage likely to be prevented. Although a number of strategies have been aimed at to ameliorate lethal reperfusion injury, up to date the beneficial effects in clinical settings have been disappointing. The use of antioxidant vitamins could be a suitable strategy with this purpose. In this review, we propose a systematic approach to the molecular basis of the cardioprotective effect of antioxidant vitamins in myocardial ischemia-reperfusion injury that could offer a novel therapeutic opportunity against this oxidative tissue damage.

  9. The cardioprotective efficacy of TVP1022 in a rat model of ischaemia/reperfusion.

    Science.gov (United States)

    Ertracht, Offir; Liani, Esti; Bachner-Hinenzon, Noa; Bar-Am, Orit; Frolov, Luba; Ovcharenko, Elena; Awad, Huda; Blum, Shany; Barac, Yaron; Amit, Tamar; Adam, Dan; Youdim, Moussa; Binah, Ofer

    2011-06-01

    Because myocardial infarction is a major cause of morbidity and mortality worldwide, protecting the heart from the ischaemia and reperfusion (I/R) damage is the focus of intense research. Based on our in vitro findings showing that TVP1022 (the S-enantiomer of rasagiline, an anti-Parkinsonian drug) possesses cardioprotective effects, in the present study we investigated the hypothesis that TVP1022 can attenuate myocardial damage in an I/R model in rats. The model consisted of 30-min occlusion of the left anterior descending artery followed by 4 or 24 h reperfusion. In addition, we investigated the possible mechanisms of cardioprotection in H9c2 cells and neonatal rat ventricular myocytes (NRVM) exposed to oxidative stress induced by H(2) O(2) . TVP1022 (20 and 40 mg·kg(-1) ) administered 5 min before reperfusion followed by an additional dose 4 h after reperfusion reduced the infarct size and attenuated the decline in ventricular function. TVP1022 also attenuated I/R-induced deterioration in cardiac mitochondrial integrity evaluated by mitochondrial swelling capacity. In vitro, using H9c2 cells and NRVM, TVP1022 attenuated both serum free- and H(2) O(2) -induced damage, preserved mitochondrial membrane potential and Bcl-2 levels, inhibited mitochondrial cytochrome c release and the increase in cleaved caspase 9 and 3 levels, and enhanced the phosphorylation of protein kinase C and glycogen synthase kinase-3β. TVP1022 provided cardioprotection in a model of myocardial infarction, and therefore should be considered as a novel adjunctive therapy for attenuating myocardial damage resulting from I/R injuries. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  10. Myocardial infarction

    International Nuclear Information System (INIS)

    Ando, Jyoji; Yasuda, Hisakazu; Miyamoto, Atsushi; Kobayashi, Tsuyoshi

    1980-01-01

    sup(99m)Tc-pyrophosphate (PYP) scintigraphy and 201 Tl myocardial scintigraphy were utilized for the diagnoses of the presence, the region, and the extent of myocardial infarction. Exercise 201 Tl myocardial scintigrams and exercise radionuclide ventriculography were utilized for diagnosis of coronary artery lesions in angina pectoris. Radionuclide ventriculography was used to investigate effects of coronary artery lesions on cardiac function and hemodynamics. In order to select adequate treatments for myocardial infarction and estimate the prognosis, it was necessary to detect the presence, the region, and the extent of acute myocardial infarction and to investigate effects of partial infarction on hemodynamics by using radionuclide imaging. Exercise myocardial scintigraphy could be carried out noninvasively and repeatedly for diagnosis of coronal artery disease. Therefore, this method could be applied widely. It was possible to use this method as a screening test of coronary artery diseases for the diagnoses of asymptomatic patients who showed ST changes in ECG, the patients with cardiac neurosis and the patency after a reconstructive surgery of coronary artery. (Tsunoda, M.)

  11. Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lu Li

    2015-01-01

    Full Text Available Mesenchymal stem cell (MSC therapy shows considerable promise for the treatment of myocardial infarction (MI. However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism remains unclear. We hypothesize that UTMD promotes MSC homing by upregulating SDF-1/CXCR4, and this study was aimed at exploring this potential mechanism. We analyzed SDF-1/CXCR4 expression after UTMD treatment in vitro and in vivo and counted the number of homing MSCs in MI areas. The in vitro results demonstrated that UTMD not only led to elevated secretion of SDF-1 but also resulted in an increased proportion of MSCs that expressed surface CXCR4. The in vivo findings show an increase in the number of homing MSCs and higher expression of SDF-1/CXCR4 in the UTMD combined with MSCs infusion group compared to other groups. In conclusion, UTMD can increase SDF-1 expression in the ischemic myocardium and upregulate the expression of surface CXCR4 on MSCs, which provides a molecular mechanism for the homing of MSCs assisted by UTMD via SDF-1/CXCR4 axis.

  12. Global brain ischemia and reperfusion.

    Science.gov (United States)

    White, B C; Grossman, L I; O'Neil, B J; DeGracia, D J; Neumar, R W; Rafols, J A; Krause, G S

    1996-05-01

    Brain damage accompanying cardiac arrest and resuscitation is frequent and devastating. Neurons in the hippocampus CA1 and CA4 zones and cortical layers III and V are selectively vulnerable to death after injury by ischemia and reperfusion. Ultrastructural evidence indicates that most of the structural damage is associated with reperfusion, during which the vulnerable neurons develop disaggregation of polyribosomes, peroxidative damage to unsaturated fatty acids in the plasma membrane, and prominent alterations in the structure of the Golgi apparatus that is responsible for membrane assembly. Reperfusion is also associated with vulnerable neurons with prominent production of messenger RNAs for stress proteins and for the proteins of the activator protein-1 complex, but these vulnerable neurons fail to efficiently translate these messages into the proteins. The inhibition of protein synthesis during reperfusion involves alteration of translation initiation factors, specifically serine phosphorylation of the alpha-subunit of eukaryotic initiation factor-2 (elF-2 alpha). Growth factors--in particular, insulin--have the potential to reverse phosphorylation of elF-2 alpha, promote effective translation of the mRNA transcripts generated in response to ischemia and reperfusion, enhance neuronal defenses against radicals, and stimulate lipid synthesis and membrane repair. There is now substantial evidence that the insulin-class growth factors have neuron-sparing effects against damage by radicals and ischemia and reperfusion. This new knowledge may provide a fundamental basis for a rational approach to "cerebral resuscitation" that will allow substantial amelioration of the often dismal neurologic outcome now associated with resuscitation from cardiac arrest.

  13. The Effect of PM 10 on Ischemia- Reperfusion Induced Arrhythmias in Rats

    Directory of Open Access Journals (Sweden)

    Esmat Radmanesh

    Full Text Available ABSTRACT Epidemiological studies show that particulate matter (PM is the principal instigator of some adverse clinical symptoms involving cardiovascular diseases. PM exposure can increase experimental infarct size and potentiate myocardial ischemia and arrhythmias in experimental MI models such as ischemia-reperfusion (I/R injury.The present study was aimed to evaluate the effects of particulate matter (PM10 on ischemia- reperfusion induced arrhythmias with emphasis on the protective role of VA as an antioxidant on them. Male Wistar rats were divided into 8 groups (n=10: Control, VAc, Sham, VA, PM1 (0.5 mg/kg, PM2 (2.5 mg/kg, PM3 group (5 mg/kg, PM3 + VA group. Within 48 hours, PM10 was instilled into trachea in two stages. Then the hearts were isolated, transferred to a Langendorff apparatus, and subjected to global ischemia (30 minutes followed by reperfusion (60 minutes. The ischemia- reperfusion induced ventricular arrhythmias were assessed according to the Lambeth conventions.In the present study,the number, incidence and duration of arrhythmiasduring30 minutes ischemia were demonstrated to be more than those in the reperfusion stage. PM exposure increased significantly the number, incidence and duration of arrhythmias in the ischemia and reperfusion duration. Vanillic acid reduced significantly the number, incidence and duration of arrhythmias during the ischemia and reperfusion period.In summary, the results of this study demonstrated that the protective and dysrhythmic effects of VA in the PM exposure rats in I/R model are probably related to its antioxidant properties.

  14. Sustained nonoxidative glucose utilization and depletion of glycogen in reperfused canine myocardium

    International Nuclear Information System (INIS)

    Schwaiger, M.; Neese, R.A.; Araujo, L.

    1989-01-01

    Ischemically injured reperfused myocardium is characterized by increased 18F-fluorodeoxyglucose uptake as demonstrated by positron emission tomography. To elucidate the metabolic fate of exogenous glucose entering reperfused myocardium, D-[6-14C] glucose and L-[U-13C] lactate were used to determine glucose uptake, glucose oxidation and the contribution of exogenous glucose to lactate production. The pathologic model under investigation consisted of a 3 h balloon occlusion of the left anterior descending coronary artery followed by 24 h of reperfusion in canine myocardium. The extent and severity of myocardial injury after the ischemia and reperfusion were assessed by histochemical evaluation (triphenyltetrazolium chloride and periodic acid-Schiff stains). Thirteen intervention and four control dogs were studied. The glucose uptake in the occluded/reperfused area was significantly enhanced compared with that in control dogs (0.40 +/- 0.14 versus 0.15 +/- 0.10 mumol/ml, respectively). In addition, a significantly greater portion of the glucose extracted immediately entered glycolysis in the intervention group (75%) than in the control dogs (33%). The activity of the nonoxidative glycolytic pathway was markedly increased in the ischemically injured reperfused area, as evidenced by the four times greater lactate release in this area compared with the control value. The dual carbon-labeled isotopes showed that 57% of the exogenous glucose entering glycolysis was being converted to lactate. Exogenous glucose contributed to greater than 90% of the observed lactate production. This finding was confirmed by the histochemical finding of sustained glycogen depletion in the occlusion/reperfusion area. The average area of glycogen depletion (37%) significantly exceeded the average area of necrosis

  15. Liraglutide-induced reduction of myocardial ischemia- reperfusion ...

    African Journals Online (AJOL)

    However, the parameters were significantly lower (p ˂ 0.05) in liraglutide group than in I/R ... injection of chloral hydrate and placed on the ... PD group received the same dose of liraglutide ..... inhibitor PD98059 was combined with liraglutide.

  16. Inhibition of delta-protein kinase C by delcasertib as an adjunct to primary percutaneous coronary intervention for acute anterior ST-segment elevation myocardial infarction: results of the PROTECTION AMI Randomized Controlled Trial

    NARCIS (Netherlands)

    Lincoff, A.M.; Roe, M.; Aylward, P.; Galla, J.; Rynkiewicz, A.; Guetta, V.; Zelizko, M.; Kleiman, N.; White, H.; McErlean, E.; Erlinge, D.; Laine, M.; Ferreira, J.M. Dos Santos; Goodman, S.; Mehta, S.; Atar, D.; Suryapranata, H.; Jensen, S.E.; Forster, T.; Fernandez-Ortiz, A.; Schoors, D.; Radke, P.; Belli, G.; Brennan, D.; Bell, G.; Krucoff, M.; et al.,

    2014-01-01

    AIMS: Delcasertib is a selective inhibitor of delta-protein kinase C (delta-PKC), which reduced infarct size during ischaemia/reperfusion in animal models and diminished myocardial necrosis and improved reperfusion in a pilot study during primary percutaneous coronary intervention (PCI) for ST

  17. Myocardial scintigraphy

    International Nuclear Information System (INIS)

    Bunko, Hisashi; Hisada, Kinichi

    1982-01-01

    Among the various methods of image diagnosis of the cardiovascular disorder, nuclear cardiology provides noninvasive means for evaluation of myocardial perfusion as well as morphological and functional informations. In this article, clinical application and image diagnosis of myocardial scintigraphy including Tl-201 myocardial perfusion scintigraphy, single photon emission computed tomography with Tl-201, acute myocardial infarction scintigraphy with Tc-99m-pyrophosphate and Ga-67 imaging of the heart, were discussed. Multiplanar imaging of the heart with Tl-201 after stress and at redistribution was the accepted method for detection and evaluation of the ischemic heart disease. Although it achieved high sensitivity and specificity for ischemic heart disease, detection of the small ischemia and quantation of the regional Tl-201 accumulation were difficult with conventional multiplanar imaging. Application of emission computed tomography improved detectability and quantitativity of the ischemia. However, 7-pinhole tomography did not increase the diagnostic accuracy significantly. It had limited clinical applicability due to poor quantitativity in spite of improved image contrast and its tomographic nature. Advantage and limitation of these tomographic imaging and multiplanar imaging were discussed. Problems and prognostic significance of pyrophosphate imaging of the acute myocardial infarction were also discussed. Visualization of the heart with Ga-67 was helpful for identification of the tumor or inflammation of the heart as well as evaluation of the effect of the therapy. (author)

  18. Impact of system delay on infarct size, myocardial salvage index, and left ventricular function in patients with ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Lønborg, Jacob Thomsen; Schoos, Mikkel Malby; Kelbæk, Henning Skov

    2012-01-01

    The association between reperfusion delay and myocardial damage has previously been assessed by evaluation of the duration from symptom onset to invasive treatment, but results have been conflicting. System delay defined as the duration from first medical contact to first balloon dilatation is less...

  19. Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion.

    Science.gov (United States)

    Whittington, Hannah J; Ostrowski, Philip J; McAndrew, Debra J; Cao, Fang; Shaw, Andrew; Eykyn, Thomas R; Lake, Hannah; Tyler, Jack; Schneider, Jurgen E; Neubauer, Stefan; Zervou, Sevasti; Lygate, Craig A

    2018-03-02

    Mitochondrial creatine kinase (MtCK) couples ATP production via oxidative phosphorylation to phosphocreatine in the cytosol, which acts as a mobile energy store available for regeneration of ATP at times of high demand. We hypothesised that elevating MtCK would be beneficial in ischaemia-reperfusion (I/R) injury. Mice were created overexpressing the sarcomeric MtCK gene with αMHC promoter at the Rosa26 locus (MtCK-OE) and compared with wild-type (WT) littermates. MtCK activity was 27% higher than WT, with no change in other CK isoenzymes or creatine levels. Electron microscopy confirmed normal mitochondrial cell density and mitochondrial localisation of transgenic protein. Respiration in isolated mitochondria was unaltered and metabolomic analysis by 1H-NMR suggests that cellular metabolism was not grossly affected by transgene expression. There were no significant differences in cardiac structure or function under baseline conditions by cine-MRI or LV haemodynamics. In Langendorff-perfused hearts subjected to 20min ischaemia and 30 min reperfusion, MtCK-OE exhibited less ischaemic contracture and improved functional recovery (Rate pressure product 58% above WT; P < 0.001). These hearts had reduced myocardial infarct size, which was confirmed in vivo: 55±4% in WT vs 29±4% in MtCK-OE; P < 0.0001). Isolated cardiomyocytes from MtCK-OE hearts exhibited delayed opening of the mitochondrial permeability transition pore (mPTP) compared to WT, which was confirmed by reduced mitochondrial swelling in response to calcium. There was no detectable change in the structural integrity of the mitochondrial membrane. Modest elevation of MtCK activity in the heart does not adversely affect cellular metabolism, mitochondrial or in vivo cardiac function, but modifies mPTP opening to protect against I/R injury and improve functional recovery. Our findings support MtCK as a prime therapeutic target in myocardial ischaemia.

  20. Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia

    OpenAIRE

    Messadi, Erij; Vincent, Marie-Pascale; Griol-Charhbili, Violaine; Mandet, Chantal; Colucci, Juliana; Krege, John H.; Bruneval, Patrick; Bouby, Nadine; Smithies, Oliver; Alhenc-Gelas, François; Richer, Christine

    2010-01-01

    Angiotensin I-converting enzyme (ACE; kininase II) levels in humans are genetically determined. ACE levels have been linked to risk of myocardial infarction, but the association has been inconsistent, and the causality underlying it remains undocumented. We tested the hypothesis that genetic variation in ACE levels influences myocardial tolerance to ischemia. We studied ischemia-reperfusion injury in mice bearing 1 (ACE1c), 2 (ACE2c, wild type), or 3 (ACE3c) functional copies of the ACE gene ...

  1. Prolonged Helium Postconditioning Protocols during Early Reperfusion Do Not Induce Cardioprotection in the Rat Heart In Vivo: Role of Inflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Gezina Tanya Mei Ling Oei

    2015-01-01

    Full Text Available Postconditioning of myocardial tissue employs short cycles of ischemia or pharmacologic agents during early reperfusion. Effects of helium postconditioning protocols on infarct size and the ischemia/reperfusion-induced immune response were investigated by measurement of protein and mRNA levels of proinflammatory cytokines. Rats were anesthetized with S-ketamine (150 mg/kg and diazepam (1.5 mg/kg. Regional myocardial ischemia/reperfusion was induced; additional groups inhaled 15, 30, or 60 min of 70% helium during reperfusion. Fifteen minutes of helium reduced infarct size from 43% in control to 21%, whereas 30 and 60 minutes of helium inhalation led to an infarct size of 47% and 39%, respectively. Increased protein levels of cytokine-induced neutrophil chemoattractant (CINC-3 and interleukin-1 beta (IL-1β were found after 30 or 60 min of helium inhalation, in comparison to control. 30 min of helium increased mRNA levels of CINC-3, IL-1β, interleukin 6 (IL-6, and tumor necrosis factor alpha (TNF-α in myocardial tissue not directly subjected to ischemia/reperfusion. These results suggest that the effectiveness of the helium postconditioning protocol is very sensitive to duration of noble gas application. Additionally, helium was associated with higher levels of inflammatory cytokines; however, it is not clear whether this is causative of nature or part of an epiphenomenon.

  2. The cardioprotective efficacy of TVP1022 against ischemia/reperfusion injury and cardiac remodeling in rats.

    Science.gov (United States)

    Malka, Assaf; Ertracht, Offir; Bachner-Hinenzon, Noa; Reiter, Irina; Binah, Ofer

    2016-12-01

    Following acute myocardial infarction (MI), early and successful reperfusion is the most effective strategy for reducing infarct size and improving the clinical outcome. However, immediate restoration of blood flow to the ischemic zone results in myocardial damage, defined as "reperfusion-injury". Whereas we previously reported that TVP1022 (the S-isomer of rasagiline, FDA-approved anti-Parkinson drug) decreased infarct size 24 h post ischemia reperfusion (I/R) in rats, in this study we investigated the chronic cardioprotective efficacy of TVP1022 14 days post-I/R. To simulate the clinical settings of acute MI followed by reperfusion therapy, we employed a rat model of left anterior descending artery occlusion for 30 min followed by reperfusion and a follow-up for 14 days. TVP1022 was initially administered postocclusion-prereperfusion, followed by chronic daily administrations. Cardiac performance and remodeling were evaluated using customary and advanced echocardiographic methods, hemodynamic measurements by Millar Mikro-Tip ® catheter, and histopathological techniques. TVP1022 administration markedly decreased the remodeling process as illustrated by attenuation of left ventricular enlargement and cardiac hypertrophy (both at the whole heart and the cellular level). Furthermore, TVP1022 inhibited cardiac fibrosis and reduced ventricular BNP levels. Functionally, TVP1022 treatment preserved cardiac wall motion. Specifically, the echocardiographic and most of the direct hemodynamic measures were pronouncedly improved by TVP1022. Collectively, these findings indicate that TVP1022 provides prominent cardioprotection against I/R injury and post-MI remodeling in this I/R model.

  3. Heart protection by combination therapy with esmolol and milrinone at late-ischemia and early reperfusion.

    Science.gov (United States)

    Huang, Ming-He; Wu, Yewen; Nguyen, Vincent; Rastogi, Saurabh; McConnell, Bradley K; Wijaya, Cori; Uretsky, Barry F; Poh, Kian-Keong; Tan, Huay-Cheem; Fujise, Kenichi

    2011-06-01

    The present study determined whether late-ischemia/early reperfusion therapy with the β(1)-adrenergic receptor (AR) blocker esmolol and phosphodiesterase III inhibitor milrinone reduced left ventricular (LV) myocardial infarct size (IS). In an ischemia/reperfusion rat model (30-min ischemia/4-hr reperfusion), esmolol, milrinone or esmolol + milrinone were intravenous (IV) infused over 10 min (from the last 5 min of ischemia to the first 5 min of reperfusion). LV-IS were 48.9 ± 8.9%, 41.5 ± 5.4%, 25.8 ± 7.7% and 16.8 ± 7.3% for saline, esmolol, milrinone, and esmolol + milrinone, respectively (n = 12/group). Esmolol + milrinone further reduced LV-IS compared with esmolol or milrinone alone (p milrinone was eliminated in the presence of protein kinase A-(PKA)-inhibitor (Rp-cAMPS) or Akt-inhibitor (AKT 1/2 kinase inhibitor). In mixed rat ventricular cardiomyocyte cultures, intra-ischemic application of esmolol, milrinone or esmolol + milrinone reduced myocyte death rates by 5.5%, 13.3%, and 16.8%, respectively, compared with saline (p milrinone was abrogated in the presence of PKA-inhibitor or Akt-inhibitor. Esmolol, milrinone or esmolol + milrinone increased myocardial PKA activity by 22%, 28% and 59%, respectively, compared with saline (n = 6, p milrinone or esmolol + milrinone, there were 1.7-, 2.7-, and 6-fold increase in tissue pAkt levels, respectively. This esmolol + milrinone induced pAkt activation was abolished in the presence of PKA inhibitor. Esmolol, milrinone and esmolol + milrinone reduced myocyte apoptosis rates by 22%, 37% and 60%, respectively, compared with saline (p milrinone additively reduces LV-IS associated with robust activation of myocardial PKA and subsequent Akt-antiapoptotic pathway.

  4. Do indices of coronary conductance after reperfusion reflect the extent of salvaged myocardium?

    Science.gov (United States)

    Shibata, Takahiro; Watanabe, Hisashi; Tsurusaki, Tetsushi; Minai, Kousuke; Ogawa, Takayuki; Iwano, Keiji; Tamura, Tetsutarou; Yoshida, Satoshi; Mutou, Makoto; Imai, Kamon; Horie, Toshinobu; Mochizuki, Seibu

    2004-05-01

    Existing indices of coronary conductance (hyperemic flow-versus-pressure slope index, FPSI, and zero flow pressure, Pzf) have been developed as measures of microcoronary resistance. These indices, however, refer to cases of normal hearts, and there are no reports studying these indices following acute myocardial infarction. In this study, we investigated whether FPSI and Pzf truly measure the extent of myocardial salvage after successful reperfusion therapy. We also developed a new index of zero pressure flow, Fzp. Nineteen patients who underwent successful reperfusion therapy to the proximal portion of the left anterior descending artery (LAD) were studied. After successful reperfusion therapy, a Doppler wire was placed into the LAD. Aortic pressure was recorded in real time. Results from the aortic pressure and flow meter were combined to produce FPSI, Pzf, and Fzp. All cases underwent a resting thallium (Tl) and BMIPP scintigram within five days of successful reperfusion therapy. Infarcted myocardium was estimated using a severity score calculated from the Tl scintigraphy (TlSS), and the BMIPP (BMIPPSS) was estimated using a severity score. Patients with a TlSS/BMIPPSS ratio of less than 0.4 were assigned to the successful salvage group (group S), while the others were assigned to the failed salvage group (group F). FPSI of group F was 1.91 +/- 0.26 m/sec and of group S was 0.92 +/- 0.43 m/sec (P < 0.01). Pzf of group F was 51 +/- 3 mmHg and of group S was 51 +/- 5 mmHg (NS). Fzp of group F was -98 +/- 16 cm/sec and of group S was -46 +/- 4 cm/sec (P < 0.05). FPSI and the new index of Fzp were useful in estimating the extent of myocardial salvage. Our results suggest that the Pzf index could not differentiate between the two groups.

  5. [Acute myocardial infarction in Morocco: FES-AMI registry data].

    Science.gov (United States)

    Akoudad, H; El Khorb, N; Sekkali, N; Mechrafi, A; Zakari, N; Ouaha, L; Lahlou, I

    2015-12-01

    Acute myocardial infarction is the most dangerous complication of coronary atherothrombosis. There are several disparities in regard to its management around the world. The aim of this study is to analyze the specificities of management of acute myocardial infarction in Morocco. FES-AMI (Fès Acute Myocardial Infarction) is a prospective monocentric registry conducted in cardiology department of Hassan II university hospital in Fès. In this registry, we enrolled patients with acute myocardial infarction who presented within 5 days after symptom onset. From January 2005 to August 2015, we enrolled 1835 patients. Seventy-five percent of patients were males and mean age was 60 years old. Fifty-one percent of patients were smokers, 27% were hypertensives and 14% were diabetics. Sixty-six percent of patients had more than 2 risk factors. Time from symptom onset to hospital admission was less than six hours for 40% of the patients. Thirty-six percent of patients were admitted more than twelve hours after the onset of chest pain. Only 37% of patients received reperfusion therapy, 31% with in-hospital thrombolysis and 6% with primary angioplasty. In-hospital mortality was 7.6%. The patients enrolled in our registry have late presentation of acute myocardial infarction and less rate of reperfusion therapy. Furthermore, the majority of our patients have multiple risk factors and this result underlines the failure of preventive interventions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Level of complement activity predicts cardiac dysfunction after acute myocardial infarction treated with primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Haahr-Pedersen, Sune; Bjerre, Mette; Flyvbjerg, Allan

    2009-01-01

    BACKGROUND: The positive effect of reperfusion after ST-elevation myocardial infarction (STEMI) can be reduced by ischemic/reperfusion (I/R) injury.Mannose-binding-lectin (MBL) and soluble C5b-9 (membrane-attack-complex) are involved in complement-driven cell lysis and may play a role in human...... with increased risk of cardiac dysfunction in STEMI patients treated with pPCI, probably due to increased complement activity during the ischemic and reperfusion process. The predictive value of low peripheral plasma sC5b-9 may be explained by an accumulation and activation of sC5b-9 in the infarcted myocardium....

  7. Differentiating ST elevation myocardial infarction and nonischemic causes of ST elevation by analyzing the presenting electrocardiogram

    DEFF Research Database (Denmark)

    Jayroe, Jason B; Spodick, David H; Nikus, Kjell

    2008-01-01

    Guidelines recommend that patients with suggestive symptoms of myocardial ischemia and ST-segment elevation (STE) in > or =2 adjacent electrocardiographic leads should receive immediate reperfusion therapy. Novel strategies aimed to reduce door-to-balloon time, such as prehospital wireless...

  8. Reperfusion delay in patients treated with primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Schoos, Mikkel M; Sejersten, Maria; Hvelplund, Anders

    2012-01-01

    identification number to emergency medical services (EMS) and National Board of Health databases in the period of 2005-2008. Patients were stratified according to transfer distances to PPCI into zone 1 (0-25 km), zone 2 (65-100 km) and zone 3 (101-185 km) and according to referral by pre-hospital triage. System...... the local hospital (219 (171-250)). System delay was an independent predictor of mortality (ppatients. PCI-related delay exceeded European Society of Cardiology (ESC) guidelines for patients living >100 km away and for non-directly referred......BACKGROUND: Reperfusion delay in ST-segment elevation myocardial infarction (STEMI) predicts adverse outcome. We evaluated time from alarm call (system delay) and time from first medical contact (PCI-related delay), where fibrinolysis could be initiated, to balloon inflation in a pre...

  9. REPERFUSION THERAPY IN ACUTE CORONARY SYNDROME WITH ST SEGMENT ELEVATION

    Directory of Open Access Journals (Sweden)

    A. L. Alyavi

    2016-01-01

    Full Text Available Aim. To compare effect of percutaneous balloon angioplasty (PCA and a systemic thrombolysis (STL on the central and intracardiac hemodynamics in patients with acute coronary syndrome (ACS with ST segment elevation.Material and methods. 80 patients with ACS with ST segment elevation were included in the study. Patients were split into 2 groups depending on reperfusion strategy. PCA was performed in 55 patients (first group. 25 patients of the second group had STL with Streptokinase, i/v, 1 500 000 units per hour. Echocardiography was performed in all patients at admission and after 3 and 7 days of treatment to evaluate intracardiac hemodynamics.Results. Both reperfusion methods significantly increase of ejection fraction (EF and maximal output speed of left ventricle (LV. Increase of LV EF in patients after PCA was higher than this in patients after STL. PCA improved LV diastolic function; STL did not change this characteristic. After PCA working diagnosis of ACS was transformed to the following final diagnosis: acute myocardial infarction (AMI with Q, AMI without Q and unstable angina in 37,5, 30,4 and 32,1% of patients, respectively. After STL diagnosis of AMI with Q was defined in all patients.Conclusion. PCA in patients with ACS with ST segment elevation results in fast improvement of global systolic and diastolic LV function. Besides, PCA prevents AMI with Q in a half of these patients.

  10. Understanding prehospital delay behavior in acute myocardial infarction in women.

    Science.gov (United States)

    Waller, Cynthia G

    2006-12-01

    Studies demonstrate that acute myocardial infarction (AMI) mortality can be reduced if reperfusion therapy is initiated within 1 hour of AMI symptom onset. However, a considerable number of men and women arrive at the emergency department outside of the time frame for thrombolytic and angioplasty effectiveness. This is especially true for women who have been shown to delay longer than men due to their prehospital decision-making process utilized. With a mean total delay time greater than 4 hours, the time interval from symptom onset to transport activation to the hospital consumes the majority of the prehospital phase of emergency cardiac care. The health belief model, self-regulation model, theory of reasoned action, and theory of planned behavior have all been used to describe the prehospital decision-making process of both men and women with an AMI and the variables that impact that process. These models have identified the importance of symptom attribution to cardiac-related causes as a target variable for research and interventions related to care-seeking behavior.

  11. Acute myocardial infarction

    International Nuclear Information System (INIS)

    RISCHPLER, Christoph

    2016-01-01

    Inflammatory processes after myocardial infarction have gained major interest in recent cardiovascular research. It is believed that not only the degree of cell recruitment to the heart plays a pivotal role in the quality of wound healing after myocardial infarction, but also the balance between different types or even subtypes of cells. It is also this balance which is thought to control key processes in tissue repair, such as apoptosis and neoangiogenesis. In this paper, we aim to review imaging strategies (with a special focus on nuclear molecular imaging strategies) that target cells and processes involved in postischemic inflammation and that have a high potential to be translated into clinic or that are already being used and evaluated in humans.

  12. [Contractile function of the heart and myocardium antioxidant system in rats of August and Wistar strains during ischemia and reperfusion].

    Science.gov (United States)

    Sazontova, T G; Belkina, L M; Zhukova, A G; Kirillina, T N; Arkhipenko, Iu V

    2004-01-01

    In August rats, local myocardial ischemia caused by 30-min occlusion of the coronary artery induced a slight depression of the contractile function of the heart; the latter was restored after 15-min reperfusion more rapidly than in Wistar rats. In August rats, the activities of antioxidant protection enzymes were lower than in Wistar rats. In comparison with Wistar rats, these enzyme activities were decreased in a lesser degree under ischemia and were restored in a greater degree under reperfusion. It may thus be concluded that the higher stability of antiradical protection parameters in August rats is one of the mechanisms responsible for the enhanced resistance of the heart to ischemia- and reperfusion-induced injuries.

  13. No evidence for activated autophagy in left ventricular myocardium at early reperfusion with protection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting.

    Directory of Open Access Journals (Sweden)

    Nilgün Gedik

    Full Text Available Remote ischemic preconditioning (RIPC by repeated brief limb ischemia/reperfusion reduces myocardial injury in patients undergoing coronary artery bypass grafting (CABG. Activation of signal transducer and activator of transcription 5 (STAT5 in left ventricular (LV myocardium at early reperfusion is associated with such protection. Autophagy, i.e., removal of dysfunctional cellular components through lysosomes, has been proposed as one mechanism of cardioprotection. Therefore, we analyzed whether or not the protection by RIPC is associated with activated autophagy.CABG patients were randomized to undergo RIPC (3×5 min blood pressure cuff inflation/5 min deflation or placebo (cuff deflated before skin incision (n = 10/10. Transmural myocardial biopsies were taken from the LV before cardioplegia (baseline and at early (5-10 min reperfusion. RIPC-induced protection was reflected by decreased serum troponin I concentration area under the curve (194±17 versus 709±129 ng/ml × 72 h, p = 0.002. Western blotting for beclin-1-phosphorylation and protein expression of autophagy-related gene 5-12 (ATG5-12 complex, light chain 3 (LC3, parkin, and p62 was performed. STAT3-, STAT5- and extracellular signal-regulated protein kinase 1/2 (ERK1/2-phosphorylation was used as positive control to confirm signal activation by ischemia/reperfusion.Signals of all analyzed autophagy proteins did not differ between baseline and early reperfusion and not between RIPC and placebo. STAT5-phosphorylation was greater at early reperfusion only with RIPC (2.2-fold, p = 0.02. STAT3- and ERK1/2-phosphorylation were greater at early reperfusion with placebo and RIPC (≥2.7-fold versus baseline, p≤0.05.Protection through RIPC in patients undergoing CABG surgery does not appear to be associated with enhanced autophagy in LV myocardium at early reperfusion.

  14. 99mTc-Annexin-V uptake in a rat model of variable ischemic severity and reperfusion time

    International Nuclear Information System (INIS)

    Taki, Junichi; Higuchi, Takahiro; Kawashima, Atsuhiro; Muramori, Akira; Nakajima, Kenichi; Tait, J.F.; Matsunari, Ichiro; Vanderheyden, J.L.; Strauss, H.W.

    2007-01-01

    The background of this study was to determine whether mild to moderate ischemia that is not severe enough to induce myocardial infarction will cause myocardial cell damage or apoptosis, the 99m Tc-Annexin-V (Tc-A) uptake was studied in groups of rats with various intervals of coronary occlusion and reperfusion times. After left coronary artery occlusion for 15 min (n=23), 10 min (n=23), or 5 min (n=12), Tc-A (80-150 MBq) was injected at 0.5, 1.5, 6, or 24 h after reperfusion. One hour later, to verify the area at risk, 201 Tl (0.74 MBq) was injected just after left coronary artery re-occlusion and the rats were killed 1 min later. Dual tracer autoradiography was performed to assess Tc-A uptake and area at risk. In all 5-min occlusion and reperfusion models, no significant Tc-A uptake was observed in the area at risk. Tc-A uptake ratios in the 15-min and 10-min ischemia models were 4.46±3.16 and 2.02±0.47 (p=0.078) at 0.5 h after reperfusion, 3.49±1.78 and 1.47±0.11 (p<0.05) at 1.5 h after reperfusion, 1.60±0.43 and 1.34±0.23 (p=0.24) at 6 h after reperfusion, 1.50±0.33 and 1.28±0.33 (p=0.099) at 24 h after reperfusion, respectively. With 15-min ischemia, in 3 of the 5 rats there were a few micro-foci of myocardial cell degeneration and cell infiltration in less than 1% of the ischemic area at 24 h after reperfusion. No significant histological change was observed in rats with 10-min or 5-min ischemia. The data indicate that Tc-A binding depends on the severity of ischemia even without a significant amount of histological change or infarction. (author)

  15. Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals.

    Science.gov (United States)

    Chen, Yanmei; Zhang, Chuanxi; Shen, Shuxin; Guo, Shengcun; Zhong, Lintao; Li, Xinzhong; Chen, Guojun; Chen, Gangbin; He, Xiang; Huang, Chixiong; He, Nvqin; Liao, Wangjun; Liao, Yulin; Bin, Jianping

    2016-12-01

    Delayed administration of bone marrow cells (BMCs) at 2-4 weeks after successful reperfusion in patients with acute myocardial infarction (MI) does not improve cardiac function. The reduction in engraftment signals observed following this time interval might impair the effects of delayed BMC treatment. In the present study, we aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) treatment could increase engraftment signals, enhance the delivery of delayed BMCs and subsequently attenuate post-infarction cardiac remodelling. A myocardial ischaemia/reperfusion (I/R) model was induced in Wistar rats via left coronary ligation for 45 min followed by reperfusion. Western blotting revealed that engraftment signals peaked at 7 days post-I/R and were dramatically lower at 14 days post-I/R. The lower engraftment signals at 14 days post-I/R could be triggered by UTMD treatment at a mechanical index of 1.0-1.9. The troponin I levels in the 1.9 mechanical index group were higher than in the other groups. Simultaneous haematoxylin and eosin staining and fluorescence revealed that the number of engrafted BMCs in the ischaemic zone was greater in the group treated with both UTMD and delayed BMC transplantation than in the control groups (PBMC transplantation improved cardiac function and decreased cardiac fibrosis at 4 weeks after treatment, as compared with control groups (both PBMC transplantation increased capillary density, myocardial cell proliferation and c-kit + cell proliferation. These findings indicated that UTMD treatment could induce engraftment signals and enhance homing of delayed BMCs to ischaemic myocardium, attenuating post-infarction cardiac remodelling by promoting neovascularization, cardiomyogenesis and expansion of cardiac c-kit + cells. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    International Nuclear Information System (INIS)

    Tavares, J.G.P.; Vasques, E.R.; Arida, R.M.; Cavalheiro, E.A.; Cabral, F.R.; Torres, L.B.; Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A.; Godoy, C.M.G.; Gomes da Silva, S.

    2015-01-01

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode

  17. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, J.G.P. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Universidade Iguaçu, Campos V, Itaperuna, RJ (Brazil); Faculdade de Minas, Muriaé, MG (Brazil); Vasques, E.R. [Departamento de Gastroenterologia, LIM 37, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Arida, R.M. [Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cavalheiro, E.A. [Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cabral, F.R.; Torres, L.B. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Godoy, C.M.G. [Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP (Brazil); Gomes da Silva, S. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Núcleo de Pesquisas Tecnológicas, Programa Integrado em Engenharia Biomédica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP (Brazil)

    2015-01-13

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  18. O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase

    International Nuclear Information System (INIS)

    Kim, M.S.; Akera, T.

    1987-01-01

    The role of O2 free radicals in the reduction of sarcolemmal Na+-K+-ATPase, which occurs during reperfusion of ischemic heart, was examined in isolated guinea pig heart using exogenous scavengers of O2 radicals and an inhibitor of xanthine oxidase. Ischemia and reperfusion reduced Na+-K+-ATPase activity and specific [3H]ouabain binding to the enzyme in ventricular muscle homogenates and also markedly lowered sodium pump activity estimated from ouabain-sensitive 86Rb+ uptake by ventricular muscle slices. These effects of ischemia and reperfusion were prevented to various degrees by O2-radical scavengers, such as superoxide dismutase, catalase, dimethyl-sulfoxide, histidine, or vitamin E or by the xanthine oxidase inhibitor, allopurinol. The degree of protection afforded by these agents paralleled that of reduction in enhanced lipid peroxidation of myocardial tissue as estimated from malondialdehyde production. These results strongly suggest that O2 radicals play a crucial role in the injury to sarcolemmal Na+-K+-ATPase during reperfusion of ischemic heart

  19. O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.S.; Akera, T.

    1987-02-01

    The role of O2 free radicals in the reduction of sarcolemmal Na+-K+-ATPase, which occurs during reperfusion of ischemic heart, was examined in isolated guinea pig heart using exogenous scavengers of O2 radicals and an inhibitor of xanthine oxidase. Ischemia and reperfusion reduced Na+-K+-ATPase activity and specific (3H)ouabain binding to the enzyme in ventricular muscle homogenates and also markedly lowered sodium pump activity estimated from ouabain-sensitive 86Rb+ uptake by ventricular muscle slices. These effects of ischemia and reperfusion were prevented to various degrees by O2-radical scavengers, such as superoxide dismutase, catalase, dimethyl-sulfoxide, histidine, or vitamin E or by the xanthine oxidase inhibitor, allopurinol. The degree of protection afforded by these agents paralleled that of reduction in enhanced lipid peroxidation of myocardial tissue as estimated from malondialdehyde production. These results strongly suggest that O2 radicals play a crucial role in the injury to sarcolemmal Na+-K+-ATPase during reperfusion of ischemic heart.

  20. Effects of calcium antagonist and free radical scavengers on ischemic and reperfused myocardium due to acute occlusion of coronary arteries

    International Nuclear Information System (INIS)

    Ohsuzu, Fumitaka; Sakata, Nobuhiro; Yanagida, Shigeki

    1988-01-01

    The Langendorff perfused rat heart was used to investigate whether ischemic and reperfused injury could be protected by anti-free radical intervention alone or combined treatment with calcium antagonist. Hearts were subjected to 10 min. of aerobic perfusion with Krebs-Henseleit solution (K-H) and then randomized into three groups (GP): Control group received only K-H, FRS group K-H with superoxide dismutase (24 IU/ml) and catalase (22 IU/ml) and Combined group the same solution of FRS group with verapamil (10'-'7M) for 10 min; and three groups were subjected to 20 min. of global ischemia; and each group was reperfused by the prior perfusate for 20 min. LV developed pressure (DP) and heart rate (HR) were measured by an intraventricular baloon. Phosphorus-31 NMR spectroscopy allowed continuous monitoring of myocardial phosphocreatine (PCr), inorganic phosphate (Pi) and β-ATP content. Each group consisted of 5 experiments. PCr in Combined group was significantly higher than that of Control group with significantly higher values of DP and DPxHR compared to Combined group in the early phase of ischemia. By the middle phase of reperfusion, significant reduction in Pi was found only in Combined group with the reduction of HR. However, no significant difference of β-ATP was found between Control group and Combined group through ischemia and reperfusion. These results suggest that free radical scavengers alone could not protect ischemic and reperfused myocardium from injury, but that the reduction of oxygen consumption by verapamil might be predominantly effective in preventing myocardial damage partially from ischemia and reperfusion. (author)

  1. TOWARD THE QUESTION OF ISCHEMIC MYOCARDIAL DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    V. V. Kalyuzhin

    2014-01-01

    Full Text Available The authors of the review have analyzed papers published on the problem of ischemic myocardial dysfunction. They begin with a definition of the term “ischemia” (derived from two Greek words: ischō, meaning to hold back, and haima, meaning blood - a condition at which the arterial blood flow is insufficient to provide enough oxygen to prevent intracellular respiration from shifting from the aerobic to the anaerobic form. The poor rate of ATP generation from this process causes a decrease in cellular ATP, a concomitant rise in ADP, and ultimately, to depression inotropic (systolic and lusitropic (diastolic function of the affected segments of the myocardium. But with such simplicity of basic concepts, the consequences of ischemia so diverse. Influence of an ischemia on myocardial function so unequally at different patients, which is almost impossible to find two identical cases (as in the case of fingerprints. It depends on the infinite variety of lesions of coronary arteries, reperfusion (time and completeness of restoration of blood flow and reactions of a myocardium which, apparently, has considerable flexibility in its response. Ischemic myocardial dysfunction includes a number of discrete states, such as acute left ventricular failure in angina, acute myocardial infarction, ischemic cardiomyopathy, stunning, hibernation, pre- and postconditioning. There are widely differing underlying pathophysiologic states. The possibility exists that several of these states can coexist.

  2. Mitochondria as Key Targets of Cardioprotection in Cardiac Ischemic Disease: Role of Thyroid Hormone Triiodothyronine

    Directory of Open Access Journals (Sweden)

    Francesca Forini

    2015-03-01

    Full Text Available Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/ reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48–72 h after the insult, the subacute phase (from 72 h to 7–10 days and chronic stage (from 10–14 days to one month after the insult. As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3.

  3. Acute stress decreases but chronic stress increases myocardial sensitivity to ischemic injury in rodents

    Directory of Open Access Journals (Sweden)

    Eric D Eisenmann

    2016-04-01

    Full Text Available Cardiovascular disease is the largest cause of mortality worldwide, and stress is a significant contributor to the development of cardiovascular disease. The relationship between acute and chronic stress and cardiovascular disease is well-evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury. Conversely, chronic stress is arrythmogenic and increases sensitivity to myocardial ischemia-reperfusion injury. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  4. Differential uptake of FDG and DG during post-ischaemic reperfusion in the isolated, perfused rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Garlick, P.B.; Medina, R.A.; Southworth, R.; Marsden, P.K. [Department of Radiological Sciences, Guy' s, King' s and St. Thomas' School of Medicine, London (United Kingdom)

    1999-10-01

    Fluorine-18 2-fluoro-2-deoxyglucose (FDG) and 2-deoxyglucose (DG) are widely used as tracers of glucose uptake in the myocardium. Although there is agreement that the two analogues behave similarly to glucose under control conditions, there is growing evidence that some interventions (e.g. insulin stimulation or ischaemia/reperfusion) cause differential changes in their behaviour. The addition of a two-surface coil nuclear magnetic resonance (NMR) probe and a dual-perfusion cannula to our recently developed PET and NMR dual-acquisition (PANDA) system allows us to collect PET (FDG) images and phosphorus-31 NMR (2-deoxyglucose-6-phosphate) spectra simultaneously from each independently perfused coronary bed of the heart. We have used this technique to study the effect of regional ischaemia/reperfusion on FDG and DG uptake in the isolated, perfused rat heart. During control perfusion, FDG uptake was almost identical in both coronary beds. When one coronary bed was made ischaemic, FDG uptake ceased on that side but continued on the control side. Reperfusion failed to restore FDG uptake. In contrast, NMR spectra showed that, during reperfusion, the uptake and phosphorylation of DG did not differ between the two coronary beds. The results thus demonstrate that regional myocardial ischaemia/reperfusion has different effects on the uptake of FDG and DG in the isolated, perfused rat heart. (orig.)

  5. Differential uptake of FDG and DG during post-ischaemic reperfusion in the isolated, perfused rat heart

    International Nuclear Information System (INIS)

    Garlick, P.B.; Medina, R.A.; Southworth, R.; Marsden, P.K.

    1999-01-01

    Fluorine-18 2-fluoro-2-deoxyglucose (FDG) and 2-deoxyglucose (DG) are widely used as tracers of glucose uptake in the myocardium. Although there is agreement that the two analogues behave similarly to glucose under control conditions, there is growing evidence that some interventions (e.g. insulin stimulation or ischaemia/reperfusion) cause differential changes in their behaviour. The addition of a two-surface coil nuclear magnetic resonance (NMR) probe and a dual-perfusion cannula to our recently developed PET and NMR dual-acquisition (PANDA) system allows us to collect PET (FDG) images and phosphorus-31 NMR (2-deoxyglucose-6-phosphate) spectra simultaneously from each independently perfused coronary bed of the heart. We have used this technique to study the effect of regional ischaemia/reperfusion on FDG and DG uptake in the isolated, perfused rat heart. During control perfusion, FDG uptake was almost identical in both coronary beds. When one coronary bed was made ischaemic, FDG uptake ceased on that side but continued on the control side. Reperfusion failed to restore FDG uptake. In contrast, NMR spectra showed that, during reperfusion, the uptake and phosphorylation of DG did not differ between the two coronary beds. The results thus demonstrate that regional myocardial ischaemia/reperfusion has different effects on the uptake of FDG and DG in the isolated, perfused rat heart. (orig.)

  6. Mortality in patients with TIMI 3 flow after PCI in relation to time delay to reperfusion.

    Science.gov (United States)

    Vichova, Teodora; Maly, Marek; Ulman, Jaroslav; Motovska, Zuzana

    2016-03-01

    Percutaneous coronary intervention (PCI) performed within 12 h from symptom onset enables complete blood flow restoration in infarct-related artery in 90% of patients. Nevertheless, even with complete restoration of epicardial blood flow in culprit vessel (postprocedural Thrombolysis in Myocardial Infarction (TIMI) flow grade 3), myocardial perfusion at tissue level may be insufficient. We hypothesized that the outcome of patients with STEMI/bundle branch block (BBB)-myocardial infarction and post-PCI TIMI 3 flow is related to the time to reperfusion. Observational study based on a retrospective analysis of population of 635 consecutive patients with STEMI/BBB-MI and post-PCI TIMI 3 flow from January 2009 to December 2011 (mean age 63 years, 69.6% males). Mortality of patients was evaluated in relation to the time from symptom onset to reperfusion. A total of 83 patients (13.07%) with postprocedural TIMI 3 flow after PCI had died at 1-year follow-up. Median TD in patients who survived was 3.92 h (iqr 5.43), in patients who died 6.0 h (iqr 11.42), P = 0.004. Multiple logistic regression analysis identified time delay ≥ 9 h as significantly related to 1-year mortality of patients with STEMI/BBB-MI and post-PCI TIMI 3 flow (OR 1.958, P = 0.026). Other significant variables associated with mortality in multivariate regression analysis were: left ventricle ejection fraction 65 years (P 2 (P PCI.

  7. Insulin Preconditioning Elevates p-Akt and Cardiac Contractility after Reperfusion in the Isolated Ischemic Rat Heart

    Directory of Open Access Journals (Sweden)

    Tamaki Sato

    2014-01-01

    Full Text Available Insulin induces cardioprotection partly via an antiapoptotic effect. However, the optimal timing of insulin administration for the best quality cardioprotection remains unclear. We tested the hypothesis that insulin administered prior to ischemia provides better cardioprotection than insulin administration after ischemia. Isolated rat hearts were prepared using Langendorff method and divided into three groups. The Pre-Ins group (Pre-Ins received 0.5 U/L insulin prior to 15 min no-flow ischemia for 20 min followed by 20 min of reperfusion. The Post-Ins group (Post-Ins received 0.5 U/L insulin during the reperfusion period only. The control group (Control was perfused with KH buffer throughout. The maximum of left ventricular derivative of pressure development (dP/dt(max was recorded continuously. Measurements of TNF-α and p-Akt in each time point were assayed by ELISA. After reperfusion, dP/dt(max in Pre-Ins was elevated, compared with Post-Ins at 10 minutes after reperfusion and Control at all-time points. TNF-α levels at 5 minutes after reperfusion in the Pre-Ins were lower than the others. After 5 minutes of reperfusion, p-Akt was elevated in Pre-Ins compared with the other groups. Insulin administration prior to ischemia provides better cardioprotection than insulin administration only at reperfusion. TNF-α suppression is possibly mediated via p-Akt leading to a reduction in contractile myocardial dysfunction.

  8. Effect of sodium nitrite on ischaemia and reperfusion-induced arrhythmias in anaesthetized dogs: is protein S-nitrosylation involved?

    Directory of Open Access Journals (Sweden)

    Mária Kovács

    Full Text Available To provide evidence for the protective role of inorganic nitrite against acute ischaemia and reperfusion-induced ventricular arrhythmias in a large animal model.Dogs, anaesthetized with chloralose and urethane, were administered intravenously with sodium nitrite (0.2 µmol kg(-1 min(-1 in two protocols. In protocol 1 nitrite was infused 10 min prior to and during a 25 min occlusion of the left anterior descending (LAD coronary artery (NaNO2-PO; n = 14, whereas in protocol 2 the infusion was started 10 min prior to reperfusion of the occluded vessel (NaNO2-PR; n = 12. Control dogs (n = 15 were infused with saline and subjected to the same period of ischaemia and reperfusion. Severities of ischaemia and ventricular arrhythmias, as well as changes in plasma nitrate/nitrite (NOx levels in the coronary sinus blood, were assessed throughout the experiment. Myocardial superoxide and nitrotyrosine (NT levels were determined during reperfusion. Changes in protein S-nitrosylation (SNO and S-glutathionylation were also examined.Compared with controls, sodium nitrite administered either pre-occlusion or pre-reperfusion markedly suppressed the number and severity of ventricular arrhythmias during occlusion and increased survival (0% vs. 50 and 92% upon reperfusion. There were also significant decreases in superoxide and NT levels in the nitrite treated dogs. Compared with controls, increased SNO was found only in NaNO2-PR dogs, whereas S-glutathionylation occurred primarily in NaNO2-PO dogs.Intravenous infusion of nitrite profoundly reduced the severity of ventricular arrhythmias resulting from acute ischaemia and reperfusion in anaesthetized dogs. This effect, among several others, may result from an NO-mediated reduction in oxidative stress, perhaps through protein SNO and/or S-glutathionylation.

  9. The stability of myocardial area at risk estimated electrocardiographically in patients with ST elevation myocardial infarction

    DEFF Research Database (Denmark)

    Carlsen, Esben A; Hassell, Mariëlla E C J; van Hellemond, Irene E G

    2014-01-01

    In patients with ST-elevation myocardial infarction (STEMI) the amount of myocardial area at risk (MaR) indicates the maximal potential loss of myocardium if the coronary artery remains occluded. During the time course of infarct evolution ischemic MaR is replaced by necrosis, which results...... in a decrease in ST segment elevation and QRS complex distortion. Recently it has been shown that combining the electrocardiographic (ECG) Aldrich ST and Selvester QRS scores result in a more accurate estimate of MaR than using either method alone. Therefore, we hypothesized that the combined Aldrich...... reperfusion (ECG2). The combined Aldrich and Selvester score was considered stable if the difference between ECG1 and ECG2 was ST elevation in 4...

  10. The effects of epidural bupivacaine on ischemia/reperfusion-induced liver injury.

    Science.gov (United States)

    Sarikus, Z; Bedirli, N; Yilmaz, G; Bagriacik, U; Bozkirli, F

    2016-01-01

    Several animal studies showed beneficial effects of thoracic epidural anesthesia (TEA) in hippocampal, mesenteric and myocardial IR injury (2-4). In this study, we investigated the effects of epidural bupivacaine on hepatic ischemia reperfusion injury in a rat model. Eighteen rats were randomly divided into three groups each containing 6 animals. The rats in Group C had sham laparotomy. The rats in the Group S were subjected to liver IR through laparotomy and 20 mcg/kg/h 0.9% NaCl was administered to these rats via an epidural catheter. The rats in the Group B were subjected to liver IR and were given 20 mcg/kg/h bupivacaine via an epidural catheter. Liver tissue was harvested for MDA analysis, apoptosis and histopathological examination after 60 minutes of ischemia followed by 360 minutes of reperfusion. Blood samples were also collected for TNF-α, IL-1β, AST and ALT analysis. The AST and ALT levels were higher in ischemia and reperfusion group, which received only normal saline via the thoracic epidural catheter, compared to the sham group. In the ischemia reperfusion group, which received bupivacaine via the epidural catheter, IL-1 levels were significantly higher than in the other groups. TNF-α levels were higher in the Groups S and B compared to the sham group. Bupivacaine administration induced apoptosis in all animals. These results showed that thoracic epidural bupivacaine was not a suitable agent for preventing inflammatory response and lipid peroxidation in experimental hepatic IR injury in rats. Moreover, epidural bupivacaine triggered apoptosis in hepatocytes. Further research is needed as there are no studies in literature investigate the effects of epidural bupivacaine on hepatic ischemia reperfusion injury (Tab. 3, Fig. 3, Ref. 34).

  11. MR tomography in myocardial ischaemia: present state of the art

    International Nuclear Information System (INIS)

    Szolar, D.H.; Saeed, M.; Higgins, C.B.

    1996-01-01

    Recent developments in MR imaging have opened up new avenues in the investigation of ischaemic heart disease. Conventional unenhanced spin-echo sequences have been used to detect and quantify myocardial infarction. Along with the technical advances aimed at reducing motion artifacts and imaging time, the advent of contrast media for MR imaging has further strengthened its diagnostic capacities. The applications of MR contrast media are increasing, and they are becoming more specific, to enable differentiation of occlusive and reperfused myocardial infarctions and to discriminate between reversible and irreversible myocardial injury. Previous studies have also indicated that dual administration of both relaxivity-based and susceptibility-based contrast media can be used to determine whether viable myocardium is present in the reperfused ischaemic area. Magnetic susceptibility MR contrast media have the potential to demonstrate a region of the ischaemically injured myocardium in which myocardial necrosis is present. A cornestone in the MR assessment of ischaemic heart disease has been achieved with the advent of fast MR imaging techniques. Ultrafast gradient-recalled-echo sequences or echoplanar imaging allow to monitor the first passage of the contrast medium through the heart. With the aid of MR contrast media, these techniques may be useful in estimating regional myocardial perfusion and blood volume. Experimental and clinical perfusion studies indicate that perfusion-sensitive MR imaging, particularly in concert with coronary vasodilators, can detect compromised myocardium. Combining myocardial perfusion imaging with the anatomic and functional information provided by other MR imaging techniques such as cine and velocity-encoded sequences could make MR imaging a comprehensive noninvasive diagnostic tool for the assessment of ischaemic heart disease. (orig.) [de

  12. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation.

    Science.gov (United States)

    Yan, Lu-Lu; Zhang, Wei-Yang; Wei, Xiao-Hong; Yan, Li; Pan, Chun-Shui; Yu, Yang; Fan, Jing-Yu; Liu, Yu-Ying; Zhou, Hua; Han, Jing-Yan; Yao, Xin-Sheng

    2018-01-01

    Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.

  13. Changing paradigms in thrombolysis in acute myocardial infarction.

    Science.gov (United States)

    Gotsman, M S; Rozenman, Y; Admon, D; Mosseri, M; Lotan, C; Zahger, D; Weiss, A T

    1997-05-23

    Acute myocardial infarction occurs when a ruptured coronary artery plaque causes sudden thrombotic occlusion of a coronary artery and cessation of coronary artery blood flow. This paper reviews the underlying coronary pathology in progressive coronary atherosclerosis, mechanisms of plaque rupture and arterial occlusion and the time relationship between coronary occlusion and myocardial necrosis. Reperfusion can be achieved by chemical thrombolysis with different thrombolytic agents. Early lysis is achieved best by prehospital administration, a transtelephonic monitor, a mobile intensive care unit, active general practitioner treatment or by warning the emergency room of impending arrival of a patient. Thrombolytic therapy may be unsuccessful and not achieve Grade III TIMI flow in less than 4 h (or even 2 h) due to inadequate or intermittent perfusion or reocclusion. Adjuvant therapy includes aspirin and platelet receptor antagonists. Bleeding is a constant danger. Direct percutaneous transluminal coronary angioplasty (PTCA) may be as effective or better than chemical thrombolysis. Reperfusion protects the myocardium and salvages viable tissue. It also improves mechanical remodelling of the ventricle. Long-term follow-up has shown that quantum leaps of fresh coronary occlusion causes step-wise progression in patient disability and that further early, prompt reperfusion can salvage myocardium and prevent this inexorable progress of the disease.

  14. Evaluation of Pulmonary Reperfusion Injury in Rats Undergoing Mesenteric Ischemia and Reperfusion and Protective Effect of Postconditioning on this Process

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Marques dos Santos

    2015-10-01

    Full Text Available ABSTRACT INTRODUCTION: Some publications have demonstrated the presence of lung reperfusion injury in mesenteric ischemia and reperfusion (I/R, but under to diverse methods. Postconditioning has been recognized as effective in preventing reperfusion injury in various organs and tissues. However, its effectiveness has not been evaluated in the prevention of lung reperfusion injury after mesenteric ischemia and reperfusion. OBJECTIVE: To evaluate the presence of pulmonary reperfusion injury and the protective effect of ischemic postconditioning on lung parenchyma in rats submitted to mesenteric ischemia and reperfusion. METHODS: Thirty Wistar rats were distributed into three groups: group A (10 rats, which was held mesenteric ischemia (30 minutes and reperfusion (60 minutes; group B (10 rats, ischemia and reperfusion, interspersed by postconditioning with two alternating cycles of reperfusion and reocclusion, for two minutes each; and group C (10 rats, ischemia and reperfusion interleaved by postconditioning with four alternating cycles of reperfusion and reocclusion of 30 seconds each. Finally, it was resected the upper lung lobe for histological analysis. RESULTS: There were mild lung lesions (grade 1 in all samples. There was no statistical difference between groups 1 and 2 (P >0.05. CONCLUSION: The mesenteric ischemia and reperfusion in rats for thirty and sixty minutes, respectively, caused mild reperfusion injury in lung. Postconditioning was not able to minimize the remote reperfusion injury and there was no difference comparing two cycles of two minutes with four cycles of 30 seconds.

  15. Hydrogen Sulfide Targets the Cys320/Cys529 Motif in Kv4.2 to Inhibit the Ito Potassium Channels in Cardiomyocytes and Regularizes Fatal Arrhythmia in Myocardial Infarction

    Science.gov (United States)

    Ma, Shan-Feng; Luo, Yan; Ding, Ying-Jiong; Chen, Ying; Pu, Shi-Xin; Wu, Hang-Jing; Wang, Zhong-Feng; Tao, Bei-Bei; Wang, Wen-Wei

    2015-01-01

    Abstract Aims: The mechanisms underlying numerous biological roles of hydrogen sulfide (H2S) remain largely unknown. We have previously reported an inhibitory role of H2S in the L-type calcium channels in cardiomyocytes. This prompts us to examine the mechanisms underlying the potential regulation of H2S on the ion channels. Results: H2S showed a novel inhibitory effect on Ito potassium channels, and this effect was blocked by mutation at the Cys320 and/or Cys529 residues of the Kv4.2 subunit. H2S broke the disulfide bridge between a pair of oxidized cysteine residues; however, it did not modify single cysteine residues. H2S extended action potential duration in epicardial myocytes and regularized fatal arrhythmia in a rat model of myocardial infarction. H2S treatment significantly increased survival by ∼1.4-fold in the critical 2-h time window after myocardial infarction with a protection against ventricular premature beats and fatal arrhythmia. However, H2S did not change the function of other ion channels, including IK1 and INa. Innovation and Conclusion: H2S targets the Cys320/Cys529 motif in Kv4.2 to regulate the Ito potassium channels. H2S also shows a potent regularizing effect against fatal arrhythmia in a rat model of myocardial infarction. The study provides the first piece of evidence for the role of H2S in regulating Ito potassium channels and also the specific motif in an ion channel labile for H2S regulation. Antioxid. Redox Signal. 23, 129–147. PMID:25756524

  16. Comparison of Selvester QRS score with magnetic resonance imaging measured infarct size in patients with ST elevation myocardial infarction

    DEFF Research Database (Denmark)

    Carlsen, Esben A; Bang, Lia E; Ahtarovski, Kiril A

    2012-01-01

    Recent studies have shown that the Selvester QRS score is significantly correlated with delayed enhancement-magnetic resonance imaging (DE-MRI) measured myocardial infarct (MI) size in reperfused ST elevation MI (STEMI). This study further tests the hypothesis that Selvester QRS score correlates...

  17. Cardioprotection against experimental myocardial ischemic injury using cornin

    Directory of Open Access Journals (Sweden)

    Y. Xu

    2016-01-01

    Full Text Available Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt.

  18. Outcomes of Patients Presenting With Clinical Indices of Spontaneous Reperfusion in ST-Elevation Acute Coronary Syndrome Undergoing Deferred Angiography.

    Science.gov (United States)

    Fefer, Paul; Beigel, Roy; Atar, Shaul; Aronson, Doron; Pollak, Arthur; Zahger, Doron; Asher, Elad; Iakobishvili, Zaza; Shlomo, Nir; Alcalai, Ronny; Einhorn-Cohen, Michal; Segev, Amit; Goldenberg, Ilan; Matetzky, Shlomi

    2017-07-25

    Few data are available regarding the optimal management of ST-elevation myocardial infarction patients with clinically defined spontaneous reperfusion (SR). We report on the characteristics and outcomes of patients with SR in the primary percutaneous coronary intervention era, and assess whether immediate reperfusion can be deferred. Data were drawn from a prospective nationwide survey, ACSIS (Acute Coronary Syndrome Israeli Survey). Definition of SR was predefined as both (1) ≥70% reduction in ST-segment elevation on consecutive ECGs and (2) ≥70% resolution of pain. Of 2361 consecutive ST-elevation-acute coronary syndrome patients in Killip class 1, 405 (17%) were not treated with primary reperfusion therapy because of SR. Intervention in SR patients was performed a median of 26 hours after admission. These patients were compared with the 1956 ST-elevation myocardial infarction patients who underwent primary reperfusion with a median door-to-balloon of 66 minutes (interquartile range 38-106). Baseline characteristics were similar except for slightly higher incidence of renal dysfunction and prior angina pectoris in SR patients. Time from symptom onset to medical contact was significantly greater in SR patients. Patients with SR had significantly less in-hospital heart failure (4% versus 11%) and cardiogenic shock (0% versus 2%) ( P <0.01 for all). No significant differences were found in in-hospital mortality (1% versus 2%), 30-day major cardiac events (4% versus 4%), and mortality at 30 days (1% versus 2%) and 1 year (4% versus 4%). Patients with clinically defined SR have a favorable prognosis. Deferring immediate intervention seems to be safe in patients with clinical indices of spontaneous reperfusion. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.

  20. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury

    Science.gov (United States)

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury. PMID:26103523

  1. Cardioprotection against ischemia/reperfusion injury by QiShenYiQi Pill® via ameliorate of multiple mitochondrial dysfunctions

    Directory of Open Access Journals (Sweden)

    Chen JR

    2015-06-01

    Full Text Available Jing Rui Chen,1–3 Jing Wei,1–3 Ling Yan Wang,1–3 Yan Zhu,1–3 Lan Li,1–3 Mary Akinyi Olunga,1–3 Xiu Mei Gao,1–3 Guan Wei Fan1–31Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China; 2Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, 3Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of ChinaAim: To investigate the potential cardioprotective effects of QiShenYiQi Pill® (QSYQ on myocardial ischemia/reperfusion (I/R injury through antioxidative stress and mitochondrial protection.Methods and results: Sprague Dawley rats were pretreated with QSYQ or saline for 7 days and subjected to ischemia (30 minutes occlusion of the left anterior descending coronary artery and reperfusion (120 minutes. Cardiac functions were evaluated by echocardiogram and hemodynamics. Myocardial mitochondria were obtained to evaluate changes in mitochondrial structure and function, immediately after 120 minutes reperfusion. Pretreatment with QSYQ protected against I/R-induced myocardial structural injury and improved cardiac hemodynamics, as demonstrated by normalized serum creatine kinase and suppressed oxidative stress. Moreover, the impaired myocardial mitochondrial structure and function decreased level of ATP (accompanied by reduction of ATP5D and increase in the expression of cytochrome C. Myocardial fiber rupture, interstitial edema, and infiltrated leukocytes were all significantly ameliorated by pretreatment with QSYQ.Conclusion: Pretreatment of QSYQ in Sprague Dawley rats improves ventricular function and energy metabolism and reduces oxidative stress via ameliorating multiple mitochondrial dysfunctions during I/R injury.Keywords: QSYQ, ischemia/reperfusion injury, energy metabolism, mitochondria

  2. Quantitative Assessment of Myocardial Infarction by In-111 Antimyosin Antibody

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Chul; Lee, Kyung Han; Choi, Yoon Ho; Chung, June Key; Park, Young Bae; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of); Moon, Dae Hyuk [Asan Medical Center, Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1991-03-15

    Infarct size is a major determinant of prognosis after acute myocardial infarction. Up to date, however, clinically available tests to estimate this size have not been sufficiently accurate. Twelve lead electrocardiogram and wall motion abnormality measurement are not quantitative, and creatine phosphokinase (CPK) measurement is inaccurate in the presence of reperfusion or right ventricular infarction. Methods have been developed to localize and size acute myocardial infarcts with agents that are selectively sequestered in areas of myocardial damage, but previously used agents have lacked sufficient specificity. Antibodies that bind specifically only to damaged myocardial cells may resolve this problem and provide an accurate method for noninvasively measuring infarct size. We determined the accuracy with which infarcted myocardial mass can be measured using single photon emission computed tomography (SPECT) and radiolabeled antimyosin antibodies. Seven patients with acute myocardial infarction and one stable angina patient were injected with 2 mCi of Indium-111 labeled antimyosin antibodies. Planar image and SPECT was performed 24 hours later. None of the patients had history of prior infarcts, and none had undergone reperfusion techniques prior to the study, which was done within 4 days of the attack. Planar image showed all infarct patients to have positive uptakes in the cardiac region. The location of this uptake correlated to the infarct site as indicated by electrocardiography in most of the cases. The angina patient, however, showed no such abnormal uptake. Infarct size was determined from transverse slices of the SPECT image using a 45% threshold value obtained from a phantom study. Measured infarct size ranged from 40 to 192 gr. There was significant correlation between the infarct size measured by SPECT and that estimated from serial measurements of CPK (r=0.73, p<0,05). These date suggest that acute myocardial infarct size can be accurately measured

  3. Therapeutic hypothermia reduces intestinal ischemia/reperfusion ...

    African Journals Online (AJOL)

    The detached intestinal epithelial cells in hypothermia group showed ... of apoptosis than those in normothermia group at 4 h (17.30 ± 2.56 vs. ... intestinal ischemia/reperfusion (IR) injury, which could be attenuated by therapeutic hypothermia.

  4. Radiographic manifestations of reperfusion edema after transplantation

    International Nuclear Information System (INIS)

    Park, Se Young; Kim, Tae Hoon; Ryu, Young Hoon; Moon, Sung Wook; Kim, Hyung Joong; Ahn, Chul Min; Paik, Hyo Chae; Lee, Doo Yun; Kim, Sang Jin

    2003-01-01

    To elucidate the sequential radiologic manifestations of reperfusion edema after lung transplantation. The study group comprised five consecutive lung transplant recipients (M:F=3:2;mean age; 47.5 years) who between July 1996 and April 2002 underwent lung transplantation procedures (four, unilateral; one, bilateral) at our institution. We retrospectively reviewed the serial postoperative radiographs obtained and characterized the lung infiltrates. Lung infiltrates compatible with reperfusion edema were present in all patients (5/5). Reperfusion edema appeared on day 1 in four, and by day 2 in the other. In all transplanted lungs, infiltrates were found in the perihilar and basilar regions, and were scored as maximal on day 1 in one, day 3 in two, day 4 in one and day 5 in the other. The recognition of sequential radiological manifestations helps identify recognition of reperfusion edema after lung transplantation

  5. Validation of Contrast Enhanced Cine Steady-State Free Precession and T2-Weigthed CMR for Assessment of Ischemic Myocardial Area- At-Risk

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Pedersen, Steen Fjord; Pedersen, Steen Bønløkke

    2017-01-01

    -CINE) has recently been used to quantify AAR and validated against myocardial perfusion SPECT. In this study we sought to determine how well T2-STIR and CE-CINE depicts AAR in an experimental porcine model of myocardial ischemia-reperfusion injury using histopathology as the reference for infarct size......Measuring myocardial salvage is important to evaluate the possible cardioprotective effects of adjunctive cardioprotective intervention in patients with myocardial infarction undergoing primary percutaneous intervention. Contrast-enhanced steady-state free precession magnetic resonance imaging (CE...

  6. Double hazards of ischemia and reperfusion arrhythmias in a patient with variant angina pectoris.

    Science.gov (United States)

    Xu, Mingzhu; Yang, Xiangjun

    2015-01-01

    Variant angina pectoris, also called Prinzmetal's angina, is a syndrome caused by vasospasms of the coronary arteries. It can lead to myocardial infarction, ventricular arrhythmias, atrioventricular block and even sudden cardiac death. We report the case of a 53 year-old male patient with recurrent episodes of chest pain and arrhythmias in the course of related variant angina pectoris. It is likely that the reperfusion following myocardial ischemia was responsible for the ventricular fibrillation while the ST-segment returned to the baseline. This case showed that potential lethal arrhythmias could arise due to variant angina pectoris. It also indicated that ventricular fibrillation could be self-terminated. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Reperfusion hemorrhage following superior mesenteric artery stenting.

    LENUS (Irish Health Repository)

    Moore, Michael

    2012-02-03

    Percutaneous transluminal angioplasty and stent placement is now an established treatment option for chronic mesenteric ischemia and is associated with low mortality and morbidity rates. We present a case of reperfusion hemorrhage complicating endovascular repair of superior mesenteric artery stenosis. Although a recognized complication following repair of carotid stenosis, hemorrhage has not previously been reported following mesenteric endovascular reperfusion. We describe both spontaneous cessation of bleeding and treatment with coil embolization.

  8. Acute myocardial infarcts. A changing clinical picture

    Energy Technology Data Exchange (ETDEWEB)

    Just, H.

    1988-09-01

    Acute myocardial infarction is a major complication of stenosing coronary artery disease and constitutes the most frequent single cause of death. It is caused by thrombotic occlusion of one of the major epicardial coronary arterial branches in most cases. Sudden death due to ventricular fibrillation is responsible for the majority of early fatalities. In 60% of all fatal infarcts, death occurs within 1 h of the onset of pain. The final extension of myocardial necrosis is reached within 2-4 h. An integrated programme has therefore been developed for the supervision and treatment of patients suffering acute coronary attack; it has been shown that it can markedly lower infarct mortality. It includes mobile prehospital care, intensive care treatment in the hospital, and rehabilitative procedures for application during reconvalescence. Early antiarrhythmic treatment and myocardial reperfusion via fibrinolysis are the main therapeutic procedures in the earliest stage. In hospital an operating room and an operating team must be available round the clock for the performance of coronary angiography followed by percutaneous transluminal coronary angioplasty or bypass surgery, which can be safely carried out in the acute stage provided the indications are strictly observed. Mortality and morbidity can be significantly lowered and both life expectancy and quality of life can be remarkably improved.

  9. [Interventional therapy of acute myocardial infarction].

    Science.gov (United States)

    Zahn, R; Zeymer, U

    2008-09-01

    Currently an acute myocardial infarction has to be differentiated into ST-elevation myocardial infarction (STEMI) or non ST-elevation myocardial infarction (NSTEMI). However, there exists another definition of acute coronary syndromes (ACS), which is more important in clinical practice, for all recommendations from the guidelines of the cardiac societies concerning the invasive strategies rely on this one. Here one has to differentiate an ACS with ST-elevation (STE-ACS = STEMI) from an ACS without ST-elevation (NSTE-ACS). The last one is further divided into an NSTE-ACS with or without high risk. In patients with an NSTE-ACS with high risk an early invasive strategy is recommended within 72 h after the diagnosis. In patients with an NSTE-ACS without high risk a more conservative approach can be pursued. In STE-ACS patients primary angioplasty is the reperfusion therapy of choice, if it can be performed in a timely fashion within 2 h after diagnosis at an interventional centre with experienced interventionalists and short "door-to-balloon" times. In Germany this goal is achievable almost everywhere. Therefore it is currently the most important task to establish local networks to reach this goal.

  10. A vigilant, hypoxia-regulated heme oxygenase-1 gene vector in the heart limits cardiac injury after ischemia-reperfusion in vivo.

    Science.gov (United States)

    Tang, Yao Liang; Qian, Keping; Zhang, Y Clare; Shen, Leping; Phillips, M Ian

    2005-12-01

    The effect of a cardiac specific, hypoxia-regulated, human heme oxygenase-1 (hHO-1) vector to provide cardioprotection from ischemia-reperfusion injury was assessed. When myocardial ischemia and reperfusion is asymptomatic, the damaging effects are cumulative and patients miss timely treatment. A gene therapy approach that expresses therapeutic genes only when ischemia is experienced is a desirable strategy. We have developed a cardiac-specific, hypoxia-regulated gene therapy "vigilant vector'' system that amplifies cardioprotective gene expression. Vigilant hHO-1 plasmids, LacZ plasmids, or saline (n = 40 per group) were injected into mouse heart 2 days in advance of ischemia-reperfusion injury. Animals were exposed to 60 minutes of ischemia followed by 24 hours of reperfusion. For that term (24 hours) effects, the protein levels of HO-1, inflammatory responses, apoptosis, and infarct size were determined. For long-term (3 week) effects, the left ventricular remodeling and recovery of cardiac function were assessed. Ischemia-reperfusion resulted in a timely overexpression of HO-1 protein. Infarct size at 24 hours after ischemia-reperfusion was significantly reduced in the HO-1-treated animals compared with the LacZ-treated group or saline-treated group (P < .001). The reduction of infarct size was accompanied by a decrease in lipid peroxidant activity, inflammatory cell infiltration, and proapoptotic protein level in ischemia-reperfusion-injured myocardium. The long-term study demonstrated that timely, hypoxia-induced HO-1 overexpression is beneficial in conserving cardiac function and attenuating left ventricle remodelling. The vigilant HO-1 vector provides a protective therapy in the heart for reducing cellular damage during ischemia-reperfusion injury and preserving heart function.

  11. Myocardial imaging with cesium-130

    International Nuclear Information System (INIS)

    Harper, P.V.; Resnekov, L.; Stark, V.; Odeh, N.

    1984-01-01

    Recently comparative studies using nitrogen-13 ammonia and cesium-130 have shown strikingly different myocardial localization patterns in the same subjects with ischemic heart disease. Initial localization of ammonia, an avidly extracted agent, reflects the perfusion pattern in viable myocardial tissue. The myocardial localization of cesium ion, taking place more slowly over 15 to 20 minutes, is apparently much less flow dependent, causing uptake defects shown with ammonia to be largely filled in. Cesium thus appears to provide information on the extent of the viable myocardial mass, apart from perfusion. Cesium-130 (t1/2 30 m) decays by positron emission and electron capture. The whole body radiation absorbed dose, assuming uniform distribution, is 24 mrad/mCi. While abundant production of Cs-130 results from proton bombardment of natural xenon [Xe-130(rho,n)Cs-130] at 15 MeV, small amounts of Cs-129, -131, and -132 are also produced, and enriched Xe-130 is not available. Alternatively almost completely uncontaminated Cs-130 is available by alpha bombardment of natural I-127. Anhydrous sodium iodide is dissolved in acetone and a thin layer (≅20 mg per centimeter squared) is evaporated onto the gold plated tip of the internal target backing which is oscillated vertically to spread out the area upon which the beam is incident. The target surface is inclined 2.5 degrees to the beam giving a power density of about 400 watts per centimeter squared at 100μA which is adequately handled by water cooling. A 30-minute bombardment yields 4 to 5 mCi of Cs-130 which is dissolved directly from the target. This approach appears to offer a new and helpful method for evaluating ischemic heart disease by permitting evaluation of viable myocardial mass

  12. Myocardial perfusion in silent myocardial ischemia

    International Nuclear Information System (INIS)

    Narita, Michihiro; Kurihara, Tadashi; Murano, Kenichi; Usami, Masahisa

    1989-01-01

    To investigate myocardial perfusion in silent myocardial ischemia, we performed exercise stress myocardial tomography with thallium-201 (Tl) in 85 patients with coronary artery disease (CAD). Exercise stress myocardial tomography was obtained both immediately after exercise and three hours later. Patients were classified into two groups according to the presence (Symptomatic Group, n=36) or absence (Silent Group, n=49) of chest pain during exercise stress. Clinical features (age, gender and history of myocardial infarction) and arteriographically determined severity of CAD were the same in both groups. The extent of myocardial ischemia (% Ischemia) estimated by exercise stress myocardial tomography was the same in each group (30±10 % in Silent Group, 28±12 % in Symptomatic Group, NS). The severity of exercise-induced myocardial ischemia was expressed as a minimal value of myocardial Tl washout rate (minimal WOR) of each patient. Although exercise heart rate was identical in both groups, minimal WOR in Silent Group was significantly higher than that of Symptomatic Group (4±10% vs -16±14%, p<0.001). The study in patients who exhibited both silent and symptomatic ischemia showed the same results. These findings suggest that the severity of ischemia is a fundamental factor in determining the presence or absence of pain during exercise induced ischemia. (author)

  13. Acute myocardial infarction: 'telomerasing' for cardioprotection

    OpenAIRE

    Sanchís-Gomar, Fabián; Lucía Mulas, Alejandro

    2015-01-01

    Reactivating the telomerase gene through gene therapy after acute myocardial infarction (AMI) has been recently reported to improve survival in mice. Given that regular physical exercise also activates this gene, therapeutic and lifestyle interventions targeting telomerase need to be explored as possible additions to the current armamentarium for myocardial regeneration. 9.292 JCR (2015) Q1, 17/289 Biochemistry & mollecular biology, 17/187 Cell biology, 8/124 Medicine, research & experimen...

  14. Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration.

    Science.gov (United States)

    Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun

    2018-05-01

    Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Roles of Endoplasmic Reticulum Stress in NECA-Induced Cardioprotection against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Fengmei Xing

    2017-01-01

    Full Text Available Objective. This study aimed to investigate whether the nonselective A2 adenosine receptor agonist NECA induces cardioprotection against myocardial ischemia/reperfusion (I/R injury via glycogen synthase kinase 3β (GSK-3β and the mitochondrial permeability transition pore (mPTP through inhibition of endoplasmic reticulum stress (ERS. Methods and Results. H9c2 cells were exposed to H2O2 for 20 minutes. NECA significantly prevented H2O2-induced TMRE fluorescence reduction, indicating that NECA inhibited the mPTP opening. NECA blocked H2O2-induced GSK-3β phosphorylation and GRP94 expression. NECA increased GSK-3β phosphorylation and decreased GRP94 expression, which were prevented by both ERS inductor 2-DG and PKG inhibitor KT5823, suggesting that NECA may induce cardioprotection through GSK-3β and cGMP/PKG via ERS. In isolated rat hearts, both NECA and the ERS inhibitor TUDCA decreased myocardial infarction, increased GSK-3β phosphorylation, and reversed GRP94 expression at reperfusion, suggesting that NECA protected the heart by inhibiting GSK-3β and ERS. Transmission electron microscopy showed that NECA and TUDCA reduced mitochondrial swelling and endoplasmic reticulum expansion, further supporting that NECA protected the heart by preventing the mPTP opening and ERS. Conclusion. These data suggest that NECA prevents the mPTP opening through inactivation of GSK-3β via ERS inhibition. The cGMP/PKG signaling pathway is responsible for GSK-3β inactivation by NECA.

  16. Prehospital administration of P2Y12 inhibitors and early coronary reperfusion in primary PCI

    DEFF Research Database (Denmark)

    De Backer, Ole; Ratcovich, Hanna; Biasco, Luigi

    2015-01-01

    The newer oral P2Y12 inhibitors prasugrel and ticagrelor have been reported to be more potent and faster-acting antiplatelet agents than clopidogrel. This study aimed to investigate whether prehospital loading with prasugrel or ticagrelor improves early coronary reperfusion as compared to prehosp......The newer oral P2Y12 inhibitors prasugrel and ticagrelor have been reported to be more potent and faster-acting antiplatelet agents than clopidogrel. This study aimed to investigate whether prehospital loading with prasugrel or ticagrelor improves early coronary reperfusion as compared...... to prehospital loading with clopidogrel in a real-world ST-elevation myocardial infarction (STEMI) setting. Over a 70-month period, 3497 patients with on-going STEMI of less than 6 hours and without cardiac arrest or cardiogenic shock underwent primary percutaneous coronary intervention (PPCI) at our centre....... The primary endpoint of this study was the proportion of patients who did not meet the criteria for TIMI (Thrombolysis In Myocardial Infarction) flow grade 3 in the infarct-related artery at initial angiography before PPCI. Prehospital loading with prasugrel (n = 883) or ticagrelor (n = 491) did...

  17. Prediction of infarct volume in patients undergoing reperfusion therapy by Tc-99m antimyosin SPECT

    International Nuclear Information System (INIS)

    Yasuda, T.; Leinbach, R.C.; Khaw, B.A.; Gold, H.K.; Strauss, H.W.

    1984-01-01

    The predictability of infarct volume by Tc-99m antimyosin SPECT was evaluated within 24 hours of chest pain and this was compared to the length of akinesis (AK) from the pre-discharge left ventriculogram (LVgram). Ten patients (pts) with acute myocardial infarction who underwent streptokinase thrombolytic therapy (success 8, failure 2) were subjects of this investigation. None had previous infarction. Average reperfusion time was within 4.5 hours and 20mCi of Tc-99m antimyosin was given intravenously within 8 hours after chest pain; SPECT imaging was performed within 18 hours after injection. Infarct volume was calculated from SPECT and expressed as grams of myocardial infarction (GMI). Ten days later, a 30 0 RAO contrast LVgram was recorded and the length of AK (corrected for magnification) was measured along the LV border at the end-diastolic phase and expressed as cm of AK. GMI and AK were measured independently without knowledge of each other. Results are given. The data demonstrate a good correlation of GMI and AK. Infarct volume can be measured by antimyosin SPECT within 24 hours of chest pain and predict residual LV dysfunction in pts undergoing reperfusion therapy

  18. Targeting Extracellular DNA to Deliver IGF-1 to the Injured Heart

    Science.gov (United States)

    Khan, Raffay S.; Martinez, Mario D.; Sy, Jay C.; Pendergrass, Karl D.; Che, Pao-Lin; Brown, Milton E.; Cabigas, E. Bernadette; Dasari, Madhuri; Murthy, Niren; Davis, Michael E.

    2014-03-01

    There is a great need for the development of therapeutic strategies that can target biomolecules to damaged myocardium. Necrosis of myocardium during a myocardial infarction (MI) is characterized by extracellular release of DNA, which can serve as a potential target for ischemic tissue. Hoechst, a histological stain that binds to double-stranded DNA can be conjugated to a variety of molecules. Insulin-like growth factor-1 (IGF-1), a small protein/polypeptide with a short circulating-half life is cardioprotective following MI but its clinical use is limited by poor delivery, as intra-myocardial injections have poor retention and chronic systemic presence has adverse side effects. Here, we present a novel delivery vehicle for IGF-1, via its conjugation to Hoechst for targeting infarcted tissue. Using a mouse model of ischemia-reperfusion, we demonstrate that intravenous delivery of Hoechst-IGF-1 results in activation of Akt, a downstream target of IGF-1 and protects from cardiac fibrosis and dysfunction following MI.

  19. Classification of myocardial infarction

    DEFF Research Database (Denmark)

    Saaby, Lotte; Poulsen, Tina Svenstrup; Hosbond, Susanne Elisabeth

    2013-01-01

    The classification of myocardial infarction into 5 types was introduced in 2007 as an important component of the universal definition. In contrast to the plaque rupture-related type 1 myocardial infarction, type 2 myocardial infarction is considered to be caused by an imbalance between demand...

  20. MR imaging of acute myocardial infarction

    International Nuclear Information System (INIS)

    Revel, D.; Dandis, G.; Pichard, J.B.; Ovize, M.; DeLorgeril, M.; Amiel, M.

    1990-01-01

    This paper reports on superparamagnetic iron oxide particles (AMI-25) evaluated in comparison with paramagnetic Gd-DOTA for the MR evaluation of acute myocardial infarct size. Twelve openchest dogs underwent 2 hours of LAD occlusion followed by 6 hours of reperfusion. AMI-25 and Gd-DOTA were intravenously injected 1 hour and 10 minutes before euthanasia, respectively, in two groups of six dogs. Gradient-echo and T1- and T2-weighted spin-echo images were obtained in six AMI-25-injected excised hearts, and T1- and T2-weighted images in six Gd-DOTA injected excised hearts. Infarct size was evaluated by planimetry of each 8-mm-thick transverse slice after ex vivo double staining and correlated with the planimetry of each 8-mm-thick transverse MR section

  1. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion.

    Science.gov (United States)

    Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen; Ananthakrishnan, Radha; Wang, Lingjie; Rosario, Rosa; Zhu, Zhengbin; Deckelbaum, Richard J; Ramasamy, Ravichandran

    2015-01-01

    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5 g/kg body weight), immediately after ischemia and 1 h later during reperfusion, significantly reduced infarct size and maintained cardiac function (plevels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (plevel and reduced an autophagy marker, Beclin-1 (pGSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.

  2. Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose.

    Science.gov (United States)

    Frantz, Stefan; Calvillo, Laura; Tillmanns, Jochen; Elbing, Inka; Dienesch, Charlotte; Bischoff, Hilmar; Ertl, Georg; Bauersachs, Johann

    2005-04-01

    Protective effects of the alpha-glucosidase inhibitor acarbose have been reported for various diabetic complications. In the STOP-NIDDM study, even patients without overt diabetes, but with impaired glucose tolerance, had a reduction in cardiovascular events when treated with acarbose. Therefore, we investigated the effect of repetitive postprandial hyperglycemia on the cardiac ischemia/reperfusion injury in vivo. Mice were treated daily by single applications of placebo, sucrose (4 g/kg body weight), or sucrose + acarbose (10 mg/kg body weight) by gavage for 7 days. Acarbose treatment significantly reduced the sucrose-induced increase in plasma glucose concentration. Subsequently, animals underwent 30 min of ischemia by coronary artery ligation and 24 h of reperfusion in vivo. In the sucrose group, ischemia/reperfusion damage was significantly increased (infarct/area at risk, placebo vs. sucrose, 38.8+/-7.5% vs. 62.2+/-4.8%, P<0.05). This was prevented by acarbose treatment (infarct/area at risk 30.7+/-7.2%). While myocardial inflammation was similar in all groups, oxidative stress as indicated by a significant increase in lipid peroxides was enhanced in the sucrose, but not in the sucrose + acarbose group. In summary, repetitive postprandial hyperglycemia increases ischemia/reperfusion damage. This effect can be prevented by treatment with the alpha-glucosidase inhibitor acarbose.

  3. Dosimetry in myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Janine M.; Trindade, Bruno; Ribeiro, Tarcisio P.C. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2011-07-01

    This paper conducts a dosimetric investigation on the myocardial perfusion image protocol, together with a literature reviewing, motivated by the significant statistic increasing on mortality, morbidity and disability associated with cardiovascular disease, surpassing infectious diseases. Nuclear Cardiology plays a role n the diagnostic functional evaluation of the heart and in the prognostic of patients with suspected or known cardiac ischemia. In the context of unstable myocardial ischemic syndrome, myocardial perfusion scintigraphy is a non-invasive procedure performed by administering a radiopharmaceutical targeted to the heart. As tool for this study are that the images obtained by thoracic angiotomography and abdominal aorta as a anatomic and functional information for model reproduction in SISCODES - System of Codes for Absorbed Dose Calculations based on Stochastic Methods. Data were manipulated in order to create a voxel computational model of the heart to be running in MCNP - Monte Carlo Neutron Particle Code. . It was assumed a homogeneous distribution of Tl-201 in cardiac muscle. Simulations of the transport of particles through the voxel and the interaction with the heart tissue were performed. As a result, the isodose curves in the heart model are displayed as well as the dose versus volume histogram of the heart muscle. We conclude that the present computational tools can generate doses distributed in myocardial perfusion. (author)

  4. Dosimetry in myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Toledo, Janine M.; Trindade, Bruno; Ribeiro, Tarcisio P.C.

    2011-01-01

    This paper conducts a dosimetric investigation on the myocardial perfusion image protocol, together with a literature reviewing, motivated by the significant statistic increasing on mortality, morbidity and disability associated with cardiovascular disease, surpassing infectious diseases. Nuclear Cardiology plays a role n the diagnostic functional evaluation of the heart and in the prognostic of patients with suspected or known cardiac ischemia. In the context of unstable myocardial ischemic syndrome, myocardial perfusion scintigraphy is a non-invasive procedure performed by administering a radiopharmaceutical targeted to the heart. As tool for this study are that the images obtained by thoracic angiotomography and abdominal aorta as a anatomic and functional information for model reproduction in SISCODES - System of Codes for Absorbed Dose Calculations based on Stochastic Methods. Data were manipulated in order to create a voxel computational model of the heart to be running in MCNP - Monte Carlo Neutron Particle Code. . It was assumed a homogeneous distribution of Tl-201 in cardiac muscle. Simulations of the transport of particles through the voxel and the interaction with the heart tissue were performed. As a result, the isodose curves in the heart model are displayed as well as the dose versus volume histogram of the heart muscle. We conclude that the present computational tools can generate doses distributed in myocardial perfusion. (author)

  5. Accumulation of polymorphonuclear leukocytes in reperfused ischemic canine myocardium: relation with tissue viability assessed by fluorine-18-2-deoxyglucose uptake

    International Nuclear Information System (INIS)

    Wijns, W.; Melin, J.A.; Leners, N.

    1988-01-01

    Polymorphonuclear leukocytes may participate in reperfusion injury. Whether leukocytes affect viable or only irreversibly injured tissue is not known. Therefore, we assessed the accumulation of 111In-labeled leukocytes in tissue samples characterized as either ischemic but viable or necrotic by metabolic, histochemical, and ultrastructural criteria. Six open-chest dogs received left anterior descending coronary occlusion for 2 hr followed by 4 hr reperfusion. Myocardial blood flow was determined by microspheres and autologous 111In-labeled leukocytes were injected intravenously. Fluorine-18-2-deoxyglucose, a tracer of exogenous glucose utilization, was injected 3 hr after reperfusion. The dogs were killed 4 hr after reperfusion. The risk and the necrotic regions were assessed following in vivo dye injection and postmortem tetrazolium staining. Myocardial samples were obtained in the ischemic but viable, necrotic and normal zones, and counted for 111In and 18F activity. Compared to normal, leukocytes were entrapped in necrotic regions (111In activity: 207 +/- 73%) where glucose uptake was decreased (26 +/- 15%). A persistent glucose uptake, marker of viability, was mainly seen in risk region (135 +/- 85%) where leukocytes accumulation was moderate in comparison to normal zone (146 +/- 44%). Thus, the glucose uptake observed in viable tissue is mainly related to myocytes metabolism and not to leukocytes metabolism

  6. Sequential Multiple Assignment Randomized Trials: An Opportunity for Improved Design of Stroke Reperfusion Trials.

    Science.gov (United States)

    Meurer, William J; Seewald, Nicholas J; Kidwell, Kelley

    2017-04-01

    Modern clinical trials in stroke reperfusion fall into 2 categories: alternative systemic pharmacological regimens to alteplase and "rescue" endovascular approaches using targeted thrombectomy devices and/or medications delivered directly for persistently occluded vessels. Clinical trials in stroke have not evaluated how initial pharmacological thrombolytic management might influence subsequent rescue strategy. A sequential multiple assignment randomized trial (SMART) is a novel trial design that can test these dynamic treatment regimens and lead to treatment guidelines that more closely mimic practice. To characterize a SMART design in comparison to traditional approaches for stroke reperfusion trials. We conducted a numerical simulation study that evaluated the performance of contrasting acute stroke clinical trial designs of both initial reperfusion and rescue therapy. We compare a SMART design where the same patients are followed through initial reperfusion and rescue therapy within 1 trial to a standard phase III design comparing 2 reperfusion treatments and a separate phase II futility design of rescue therapy in terms of sample size, power, and ability to address particular research questions. Traditional trial designs can be well powered and have optimal design characteristics for independent treatment effects. When treatments, such as the reperfusion and rescue therapies, may interact, commonly used designs fail to detect this. A SMART design, with similar sample size to standard designs, can detect treatment interactions. The use of SMART designs to investigate effective and realistic dynamic treatment regimens is a promising way to accelerate the discovery of new, effective treatments for stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    International Nuclear Information System (INIS)

    He, Haiyan; Huh, Jin; Wang, Huihua; Kang, Yi; Lou, Jianshi; Xu, Zhelong

    2016-01-01

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphine reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced

  8. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    He, Haiyan [Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin 300070 (China); Department of Pharmacology, Tianjin Medical University, Tianjin 300070 (China); Huh, Jin [Department of Anesthesia and Pain Medicine, Medical College, Kangwon National University, Chuncheon City (Korea, Republic of); Wang, Huihua [Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province (China); Kang, Yi; Lou, Jianshi [Department of Pharmacology, Tianjin Medical University, Tianjin 300070 (China); Xu, Zhelong, E-mail: zxu@tmu.edu.cn [Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin 300070 (China)

    2016-01-01

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphine reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine

  9. Isoprostanes--markers of ischaemia reperfusion injury.

    LENUS (Irish Health Repository)

    Sakamoto, H

    2012-02-03

    Ischaemia reperfusion injury is a common and important phenomenon that occurs predictably in patients undergoing such procedures as cardiopulmonary bypass, thrombolysis, surgery under tourniquet, organ transplantation or embolectomy. Oxidative stress and the resulting lipid peroxidation play a major role in reperfusion injury. Membrane and cellular dysfunction result and, subsequently, organ injury or failure may ensue. Traditional methods of quantifying ischaemia reperfusion injury, including measurement of malondialdehyde, lack specificity and sensitivity. It was reported in 1990 that isoprostanes, a series of prostaglandin-like compounds, are produced by the free radical-catalyzed peroxidation of arachidonic acid. Measurement of the isoprostane concentration in urine or plasma provides the most reliable, non-invasive method currently available to assess oxidative stress in vivo. Serial measurement of isoprostanes in biological fluids has enhanced our understanding of the mechanisms underlying ischaemia reperfusion injury itself and its role in certain diseases. Furthermore, measurement of the isoprostane concentration provides a means to assess the effects of prophylactic and therapeutic interventions. In the future, the development of rapid, simple assays for isoprostanes offers the potential to assess prognosis during and after ischaemia reperfusion events.

  10. Canine study on myocardial ischemic memory with 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Xie Boqia; Yang Minfu; Dou Kefei; Han Chunlei; Tian Yi; Zhang Ping; Yang Zihe; Yin Jiye; Wang Hao

    2012-01-01

    Objective: To explore whether the existence and duration of ischemia measured by dynamic 18 F-FDG PET/CT imaging correlated with the extent of myocardial ischemia in a canine model of myocardial ischemia-reperfusion. Methods: Canine coronary artery occlusion was carried out for 20 min (n=4) and for 40 min (n=4) followed by 24 h of open-artery reperfusion. All dogs underwent dynamic 18 F-FDG PET/CT and 99 Tc m -MIBI SPECT imaging at baseline and 1 h and 24 h after reperfusion.Quantitative analysis of myocardial 18 F-FDG uptake was performed using Carimas Core software,and the extraction ratio of 18 F-FDG (K) was calculated by the ratio of 18 F-FDG uptake rate in the ischemic area (k ischemia ) and normoperfused region (k normoperfused ). Echocardiographic data were also acquired between each PET/CT imaging study to detect the wall motion in the ischemic and normoperfused myocardium. Paired t test and non-parametric statistical tests, measured by SPSS 19.0, were used to analyze the data. Results: Coronary occlusion produced sustained, abnormal wall motion in the ischemic region for more than 1 h. Similar K values were demonstrated between the 20 min and 40 min groups at baseline (1.02 ±0.06 and 1.03 ±0.05, Z=-0.29, P>0.05). At 1 h after reperfusion, the reperfusion regions showed normal perfusion but with increased 18 F-FDG uptake, which was higher in the 40 min ischemic group than in the 20 min ischemic group (2.31 ±0.13 and 1.87 ±0.09, Z=-2.31, P<0.05). At 24 h after reperfusion, however, only the 40 min ischemic group showed slightly higher 18 F-FDG uptake than baseline (1.15 ± 0.02 and 1.03 ±0.05, t=4.32, P<0.05), whereas no significant difference was found in the 20 min ischemic group (1.05 ± 0.04 and 1.02 ± 0.06, t=0.87, P>0.05). Histological examination of the ischemic myocardium from both groups revealed neatly arranged cells without interstitial edema, hemorrhage nor inflammatory response. Conclusions: Myocardial 'ischemic memory' was

  11. Monitoring of myocardial edema following acute myocardial infarction

    International Nuclear Information System (INIS)

    Tahir, E.; Sinn, M.; Avanesov, M.; Wien, J.; Saering, D.; Stehning, C.; Radunski, U. K.; Muellerleile, K.; Adam, G.; Lund, G. K.

    2015-01-01

    Full text: Currently, myocardial edema monitoring after acute myocardial infarction (AMI) is based on visualization of the region with increased signal-intensity on T2-weighted images. Native T1 and T2 mapping are promising novel MRI techniques to quantitatively assess myocardial edema. The purpose of the study was to quantitatively evaluate resorption of myocardial edema following AMI by native T1 and T2 -mapping cardiac magnetic resonance imaging (CMR). CMR (1.5 Tesla Philips Achieva) was performed in 30 patients four times after reperfused AMI at baseline (BL) at 9±6 days after infarction and at 7±1 weeks (follow-up 1, FU1), 3.6±0.5 months (FU2) and 6.5±0.7 months (FU3), respectively. Edema sensitive black-blood T2-weighted (T2w) STIR CMR was performed on end-diastolic LV short-axes. A free-breathing, navigatorgated multi-echo sequence was used for short-axis T2 mapping. T1 mapping was performed using the modified look-locker inversion recovery (MOLLI) sequence. T2 maps were calculated from nine and T1 maps from eight echoes using a dedicated plug-in written for OsiriX software. Two experienced observers independently evaluated T2w-CMR as well as T1 and T2 mapping using the HeAT-Software applying a threshold method. Size of edema and prolongation of the native T1- or T2-time was measured using a cutoff >2SD of remote normal myocardium. Edema size continuously decreased from BL with 32.8 %LV to 24.6 %LV at FU1, to 19.1 %LV at FU2 and to 16.4 %LV at FU3 using T2w-CMR. An almost identical decrease of edema size was observed using native T1 and T2 - mapping. T2 times only decreased between BL from 79±5 ms to 73±2 ms at FU1 (P<0.05), but no further change was observed at later time points with 70±5 ms at FU2 and 70±6 ms at FU3. At all time points the T2 times of remote normal myocardium were about 50±2 ms and significantly lower compared to the edema zone. Also native T1 time within the edema was with 1253 ±103 ms significantly increased compared to remote

  12. Chameleons: Electrocardiogram Imitators of ST-Segment Elevation Myocardial Infarction.

    Science.gov (United States)

    Nable, Jose V; Lawner, Benjamin J

    2015-08-01

    The imperative for timely reperfusion therapy for patients presenting with ST-segment elevation myocardial infarction (STEMI) underscores the need for clinicians to have an understanding of how to distinguish patterns of STEMI from its imitators. These imitating diagnoses may confound an evaluation, potentially delaying necessary therapy. Although numerous diagnoses may mimic STEMI, several morphologic clues may allow the physician to determine if the pattern is concerning for either STEMI or a mimicking diagnosis. Furthermore, obtaining a satisfactory history, comparing previous electrocardiograms, and assessing serial tests may provide valuable clues. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Myocardial imaging. Coxsackie myocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-09-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1.

  14. Myocardial imaging. Coxsackie myocarditis

    International Nuclear Information System (INIS)

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-01-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1

  15. PDE5 Inhibitor Tadalafil and Hydroxychloroquine Cotreatment Provides Synergistic Protection against Type 2 Diabetes and Myocardial Infarction in Mice

    Science.gov (United States)

    Wang, Rui; Xi, Lei

    2017-01-01

    Diabetes is associated with a high risk for ischemic heart disease. We have previously shown that phosphodiesterase 5 inhibitor tadalafil (TAD) induces cardioprotection against ischemia/ reperfusion (I/R) injury in diabetic mice. Hydroxychloroquine (HCQ) is a widely used antimalarial and anti-inflammatory drug that has been reported to reduce hyperglycemia in diabetic patients. Therefore, we hypothesized that a combination of TAD and HCQ may induce synergistic cardioprotection in diabetes. We also investigated the role of insulin-Akt-mammalian target of rapamycin (mTOR) signaling, which regulates protein synthesis and cell survival. Adult male db/db mice were randomized to receive vehicle, TAD (6 mg/kg), HCQ (50 mg/kg), or TAD + HCQ daily by gastric gavage for 7 days. Hearts were isolated and subjected to 30-minute global ischemia, followed by 1-hour reperfusion in Langendorff mode. Cardiac function and myocardial infarct size were determined. Plasma glucose, insulin and lipid levels, and relevant pancreatic and cardiac protein markers were measured. Treatment with TAD + HCQ reduced myocardial infarct size (17.4% ± 4.3% vs. 37.8% ± 4.9% in control group, P < 0.05) and enhanced the production of ATP. The TAD + HCQ combination treatment also reduced fasting blood glucose, plasma free fatty acids, and triglyceride levels. Furthermore, TAD + HCQ increased plasma insulin levels (513 ± 73 vs. 232 ± 30 mU/liter, P < 0.05) with improved insulin sensitivity, larger pancreatic β-cell area, and pancreas mass. Insulin-like growth factor-1 (IGF-1) levels were also elevated by TAD + HCQ (343 ± 14 vs. 262 ± 22 ng/ml, P < 0.05). The increased insulin/IGF-1 resulted in activation of downstream Akt/mTOR cellular survival pathway. These results suggest that combination treatment with TAD and HCQ could be a novel and readily translational pharmacotherapy for reducing cardiovascular risk factors and protecting against myocardial I/R injury in type 2 diabetes. PMID:28123046

  16. IL-23 Promotes Myocardial I/R Injury by Increasing the Inflammatory Responses and Oxidative Stress Reactions

    Directory of Open Access Journals (Sweden)

    Xiaorong Hu

    2016-05-01

    Full Text Available Background/Aims: Inflammation and oxidative stress play an important role in myocardial ischemia and reperfusion (I/R injury. We hypothesized that IL-23, a pro-inflammatory cytokine, could promote myocardial I/R injury by increasing the inflammatory response and oxidative stress. Methods: Male Sprague-Dawley rats were randomly assigned into sham operated control (SO group, ischemia and reperfusion (I/R group, (IL-23 + I/R group and (anti-IL-23 + I/R group. At 4 h after reperfusion, the serum concentration of lactate dehydrogenase (LDH, creatine kinase (CK and the tissue MDA concentration and SOD activity were measured. The infarcte size was measured by TTC staining. Apoptosis in heart sections were measured by TUNEL staining. The expression of HMGB1 and IL-17A were detected by Western Blotting and the expression of TNF-α and IL-6 were detected by Elisa. Results: After 4 h reperfusion, compared with the I/R group, IL-23 significantly increased the infarct size, the apoptosis of cardiomyocytes and the levels of LDH and CK (all P 0.05. All these effects were abolished by anti-IL-23 administration. Conclusion: The present study suggested that IL-23 may promote myocardial I/R injury by increasing the inflammatory responses and oxidative stress reaction.

  17. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    OpenAIRE

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease is the largest cause of mortality worldwide, and stress is a significant contributor to the development of cardiovascular disease. The relationship between acute and chronic stress and cardiovascular disease is well-evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury. Conversely, chronic stress is arrythmogenic and incr...

  18. Protective Effect of Peroxisome Proliferator-Activated Receptor α Activation against Cardiac Ischemia-Reperfusion Injury Is Related to Upregulation of Uncoupling Protein-3

    Directory of Open Access Journals (Sweden)

    Jong Wook Song

    2016-01-01

    Full Text Available Activation of peroxisome proliferator-activated receptor α (PPARα confers cardioprotection, while its mechanism remains elusive. We investigated the protective effect of PPARα activation against cardiac ischemia-reperfusion injury in terms of the expression of uncoupling protein (UCP. Myocardial infarct size and UCP expression were measured in rats treated with WY-14643 20 mg/kg, a PPARα ligand, or vehicle. WY-14643 increased UCP3 expression in vivo. Myocardial infarct size was decreased in the WY-14643 group (76 ± 8% versus 42 ± 12%, P<0.05. During reperfusion, the incidence of arrhythmia was higher in the control group compared with the WY-14643 group (9/10 versus 3/10, P<0.05. H9c2 cells were incubated for 24 h with WY-14643 or vehicle. WY-14643 increased UCP3 expression in H9c2 cells. WY-14643 decreased hypoxia-stimulated ROS production. Cells treated with WY-14643 were more resistant to hypoxia-reoxygenation than the untreated cells. Knocking-down UCP3 by siRNA prevented WY-14643 from attenuating the production of ROS. UCP3 siRNA abolished the effect of WY-14643 on cell viability against hypoxia-reoxygenation. In summary, administration of PPARα agonist WY-14643 mitigated the extent of myocardial infarction and incidence of reperfusion-induced arrhythmia. PPARα activation conferred cytoprotective effect against hypoxia-reoxygenation. Associated mechanisms involved increased UCP3 expression and resultant attenuation of ROS production.

  19. Continuous monitoring of myocardial acid-base status during intermittent warm blood cardioplegia.

    Science.gov (United States)

    Graffigna, A C L; Nollo, G; Pederzolli, C; Ferrari, P; Widesott, L; Antolini, R

    2002-06-01

    Intermittent warm blood cardioplegia (IWBC) is a well-established technique for myocardial protection during cardiac operations. According to standardized protocols, IWBC administration is currently performed every 15-20 min regardless of any individual variable and in the absence of any instrumental monitoring. We devised a new system for continuous measurement of the acid-base status of coronary sinus blood for on-line evaluation of myocardial oxygenation during IWBC. In 19 patients undergoing cardiac surgery for coronary artery bypass graft and/or valve surgery and receiving IWBC (34-37 degrees C) by antegrade induction (3 min) and retrograde or antegrade maintenance (2 min) every 15 min, continuous monitoring of myocardial oxygenation and acid/base status was performed by means of a multiparameter PO(2), PCO(2), pH, and temperature sensor (Paratrend7 (R), Philips Medical System) inserted into the coronary sinus. Mean cross-clamping time was 76+/-26 min; ischemic time was 13+/-0.2 min. pH decline was not linear, showing an initial fast decline, a point of flexus, and a progressive slow decline. After every ischemic period, the pH adaptation curve showed a complex pattern reaching step-by-step lower minimum levels (7.28+/-0.14 during the first ischemic period, to 7.16+/-0.19 during the third ischemic period - P=0.003). PO(2) decreased rapidly at 90% in 5.0+/-1.2 min after every reperfusion. During ischemia, PCO(2) increased steadily at 1.6+/-0.1 mmHg per minute, with progressively incomplete removal after successive reperfusion, and progressive increase of maximal level (42+/-12 mmHg during the first ischemic period, to 53+/-23 mmHg during the third ischemic period - P=0.05). Myocardial oxygen, carbon dioxide, and pH show marked changes after repeated IWBC. Myocardial ischemia is not completely reversed by standardized reperfusions, as reflected by steady deterioration of PCO(2) and pH after each reperfusion. Progressive increase of reperfusion durations or

  20. Effect of loading-dose ticagrelor on coronary blood flow, left ventricular remodeling and myocardial enzyme spectrum in patients with acute myocardial infarction after interventional therapy

    Directory of Open Access Journals (Sweden)

    Xiao-Rui Xie

    2016-12-01

    Full Text Available Objective: To study the effect of loading-dose ticagrelor on coronary blood flow, left ventricular remodeling and myocardial enzyme spectrum in patients with acute myocardial infarction after interventional therapy. Methods: A total of 86 patients with acute myocardial infarction who received emergency PCI in our hospital between May 2013 and May 2016 were selected and randomly divided into two groups, ticagrelor group received perioperative ticagrelor therapy and clopidogrel group received perioperative clopidogrel therapy. After PCI, coronary blood flow reperfusion was evaluated, serum myocardial remodeling indexes and myocardial enzymes were determined, and cardiac color Doppler ultrasonography was conducted to determine the cardiac function indexes. Results: TIMI grading and TMPG grading of ticagrelor group after PCI were significantly higher than those of clopidogrel group; serum MMP9, BNP, CITP, PICP, PIIINP, CK, CK-MB, cTnI and cTnT content of ticagrelor group 24h after operation were significantly lower than those of clopidogrel group; LVEDD, LVSED and LVMI of ticagrelor group 2 weeks after operation were significantly lower than those of clopidogrel group while LVEF was significantly higher than that of clopidogrel group. Conclusion: Peri-PCI loading-dose ticagrelor can improve coronary blood perfusion and reduce ventricular remodeling and myocardial injury in patients with acute myocardial infarction.

  1. Search and rescue helicopter-assisted transfer of ST-elevation myocardial infarction patients from an island in the Baltic Sea

    DEFF Research Database (Denmark)

    Schoos, Mikkel Malby; Kelbæk, Henning; Pedersen, Frants

    2014-01-01

    BACKGROUND: Since 2005, ST-elevation myocardial infarction (STEMI) patients from the island of Bornholm in the Baltic Sea have been transferred for primary percutaneous coronary intervention (pPCI) by an airborne service. We describe the result of pPCI as part of the Danish national reperfusion s...

  2. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning

    DEFF Research Database (Denmark)

    Schmidt, Michael Rahbek; Smerup, M; Konstantinov, I E

    2006-01-01

    . Intermittent limb ischemia during myocardial ischemia reduces MI, preserves global systolic and diastolic function, and protects against arrhythmia during the reperfusion phase through a K(ATP) channel-dependent mechanism. Understanding this process may have important therapeutic implications for a range...

  3. Influence of ST-segment recovery on infarct size and ejection fraction in patients with ST-segment elevation myocardial infarction receiving primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Hallén, Jonas; Ripa, Maria Sejersten; Johanson, Per

    2010-01-01

    In patients with ST-segment elevation myocardial infarction treated with fibrinolytics, electrocardiogram-derived measures of ST-segment recovery guide therapy decisions and predict infarct size. The comprehension of these relationships in patients undergoing mechanical reperfusion is limited. We...

  4. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  5. Quantification of myocardial area at risk in the absence of collateral flow: the validation of angiographic scores by myocardial perfusion single-photon emission computed tomography.

    Science.gov (United States)

    Rodríguez-Palomares, José F; Alonso, Albert; Martí, Gerard; Aguadé-Bruix, Santiago; González-Alujas, M T; Romero-Farina, Guillermo; Candell-Riera, Jaume; García del Blanco, Bruno; Evangelista, Artur; García-Dorado, David

    2013-02-01

    Our study aimed to compare the area at risk (AAR) determined by single-photon emission computed tomography (SPECT) with the Bypass Angioplasty Revascularization Investigation (BARI) and modified Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) angiographic scores in the setting of patients undergoing coronary angioplasty for either unstable angina or an STEMI. Radionuclide myocardial perfusion imaging prior to reperfusion has classically been the most widely practised technique for assessing the AAR and has been successfully used to compare the efficacy of various reperfusion strategies in patients with an ST-segment elevation myocardial infarction (STEMI). The BARI and modified APPROACH scores are angiographic methods widely used to provide a rapid estimation of the AAR; however, they have not been directly validated with myocardial perfusion single-photon emission computed tomography (SPECT). Fifty-five patients with no previous myocardial infarction who underwent coronary angioplasty for single-vessel disease (unstable angina: n = 25 or an STEMI: n = 30) with no evidence of collaterals (Rentrop Collateral Score collateral flow, BARI and APPROACH scores constitute valid methods for AAR estimation in current clinical practice, with more accurate results when used for the LAD territory; both are useful not only in STEMI patients but also in patients with unstable angina.

  6. Improved stage of infarction wall motion in AMI. Association between the presence or absence of mismatch in myocardial scintigrams of Tl and BMIPP and CK release pattern

    International Nuclear Information System (INIS)

    Kurihara, Masato; Abe, Masahiro; Abe, Toshihiro; Nagai, Yoshikazu; Ibukiyama, Chiharu

    1998-01-01

    Binuclear myocardial scintigraphy with BMIPP and 201 TlCl was conducted on 40 patients with myocardial infarction. In all of 40 patients, reperfusion therapy in the acute stage succeeded. The relationship between serum CK release pattern and timing of improvement of wall motion at infarct-related area in the chronic stage was investigated. The patients were divided into 3 groups according to the early or late appearance of peak CK, and the presence or absence of B type mismatch in dual myocardial scintigraphy with BMIPP and 201 TlCl obtained one month after acute onset of myocardial infarction. Infarct size obtained from 201 TlCl scintigraphy and wall motion related to infarction were also investigated immediately after reperfusion and one month thereafter, respectively. No differences were recognized between Group I, in which the infarct area had B type mismatch with early appearance of CK peak, and Group II, in which the infarct area also had B type mismatch with the late appearance of CK peak. Although the wall motion did not change at all in Group I, it improved in Group II one month after reperfusion. Group III did not demonstrate B type mismatch with late appearance of CK peak and smaller infarct size compared to those in Group I and Group II. The wall motion in Group III had a tendency to improve immediately after reperfusion and maintain that level one month later. The timing of improvement of wall motion after successful reperfusion in the area with B type mismatch was not uniform. This suggests that the nonuniformity of the timing of improvement of wall motion in the area with B type mismatch is partly attributable to some kinds of injury to myocardium caused by reperfusion. (author)

  7. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion.

    Directory of Open Access Journals (Sweden)

    Hylde Zirpoli

    Full Text Available Dietary n-3 fatty acids (FAs may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD, and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT. In the LAD model, mice treated with n-3 TG emulsion (1.5 g/kg body weight, immediately after ischemia and 1 h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05. In the LT model, administration of n-3 TG emulsion (300 mg TG/100 ml during reperfusion significantly improved functional recovery (p<0.05. In both models, lactate dehydrogenase (LDH levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05. Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05. Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05. Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.

  8. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart.

    Science.gov (United States)

    Mourouzis, I; Dimopoulos, A; Saranteas, T; Tsinarakis, N; Livadarou, E; Spanou, D; Kokkinos, A D; Xinaris, C; Pantos, C; Cokkinos, D V

    2009-01-01

    There is accumulating evidence showing that ischemic preconditioning (PC) may lose its cardioprotective effect in the diseased states. The present study investigated whether PC can be effective in hypothyroidism, a clinical condition which is common and often accompanies cardiac diseases such as heart failure and myocardial infarction. Hypothyroidism was induced in rats by 3-week administration of 6n-propyl-2-thiouracil in water (0.05 %). Normal and hypothyroid hearts (HYPO) were perfused in Langendorff mode and subjected to 20 min of zero-flow global ischemia and 45 min of reperfusion. A preconditioning protocol (PC) was also applied prior to ischemia. HYPO hearts had significantly improved post-ischemic recovery of left ventricular developed pressure, end-diastolic pressure and reduced lactate dehydrogenase release. Furthermore, phospho-JNK and p38 MAPK levels after ischemia and reperfusion were 4.0 and 3.0 fold lower in HYPO as compared to normal hearts (Phearts. PC improved the post-ischemic recovery of function and reduced the extent of injury in normal hearts but had no additional effect on the hypothyroid hearts. This response, in the preconditioned normal hearts, resulted in 2.5 and 1.8 fold smaller expression of the phospho-JNK and phospho-p38 MAPK levels at the end of reperfusion, as compared to non-PC hearts (Phearts, no additional reduction in the phosphorylation of these kinases was observed after PC. Hypothyroid hearts appear to be tolerant to ischemia-reperfusion injury. This response may be, at least in part, due to the down-regulation of ischemia-reperfusion induced activation of JNKs and p38 MAPK kinases. PC is not associated with further reduction in the activation of these kinases in the hypothyroid hearts and fails to confer added protection in those hearts.

  9. Protectant activity of defibrotide in cardioplegia followed by ischemia/reperfusion injury in the isolated rat heart.

    Science.gov (United States)

    Rossoni, G; Pompilio, G; Biglioli, P; Alamanni, F; Tartara, P; Rona, P; Porqueddu, M; Berti, F

    1999-01-01

    Previous studies have shown that defibrotide, a polydeoxyribonucleotide obtained by depolymerization of DNA from porcine tissues, has important protective effects on myocardial ischemia, which may be associated with a prostacyclin-related mechanism. The purpose of this study was to investigate the direct effects of defibrotide (given in cardioplegia or after ischemia) on a model of rat heart recovery after cardioplegia followed by ischemia/reperfusion injury. Isolated rat hearts, undergoing 5 minutes of warm cardioplegic arrest followed by 20 minutes of global ischemia and 30 minutes of reperfusion, were studied using the modified Langendorff model. The cardioplegia consisted of St. Thomas' Hospital solution augmented with defibrotide (50, 100, and 200 microg/mL) or without defibrotide (controls). Left ventricular mechanical function and the levels of creatine kinase, lactate dehydrogenase, and 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha; the stable metabolite of prostacyclin) were measured during preischemic and reperfusion periods. After global ischemia, hearts receiving defibrotide in the cardioplegic solution (n = 8) manifested in a concentration-dependent fashion lower left ventricular end-diastolic pressure (p defibrotide in the cardioplegic solution also had, in a dose-dependent way, lower levels of creatine-kinase (p defibrotide was given alone to the hearts at the beginning of reperfusion (n = 7), the recovery of postischemic left ventricular function was inferior (p defibrotide was given in cardioplegia. Defibrotide confers to conventional crystalloid cardioplegia a potent concentration-dependent protective effect on the recovery of isolated rat heart undergoing ischemia/reperfusion injury. The low cost and the absence of contraindications (cardiac toxicity and hemodynamic effects) make defibrotide a promising augmentation to cardioplegia.

  10. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  11. Increased rate of stent thrombosis and target lesion revascularization after filter protection in primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: 15-month follow-up of the DEDICATION (Drug Elution and Distal Protection in ST Elevation Myocardial Infarction) trial

    DEFF Research Database (Denmark)

    Kaltoft, Anne; Kelbaek, Henning; Kløvgaard, Lene

    2010-01-01

    The purpose of this study was to evaluate the long-term effects of distal protection during percutaneous coronary intervention (PCI) for ST-segment elevation myocardial infarction (STEMI).......The purpose of this study was to evaluate the long-term effects of distal protection during percutaneous coronary intervention (PCI) for ST-segment elevation myocardial infarction (STEMI)....

  12. Evaluation of effects of early intravenous thrombolytic therapy in acute myocardial infarction with 99mTc-MIBI tomography imaging

    International Nuclear Information System (INIS)

    Zhang Zhongzheng; Xue Zheng; Qin Fuzhong

    1997-01-01

    PURPOSE: To evaluate the effects of early intravenous thrombolytic therapy in acute myocardial infarction (AMI) with 99m Tc-MIBI tomography imaging. METHODS: 22 patients with AMI were observed using 99m Tc-MIBI rest myocardial tomography imaging. The semiquantitative score of myocardial 99m Tc-MIBI uptake was expressed with a four point scoring system. RESULTS: The findings showed in patients in whom reperfusion was achieved, mean scores decreased from 9.1 +- 3.3 before thrombolytic therapy to 3.7 +- 2.2 (t 4.085, P 99m Tc-MIBI perfusion defect segments correlated with that of the ECG-determined infarct site. The comparison between the first and the second myocardial imaging in the non-thrombolytic-treatment group was statistically insignificant. CONCLUSION: The potential advantages of rest myocardial imaging in AMI before and after thrombolytic therapy not only provide an information for assessing the extent of improvement of myocardial ischemia but also provide an imaging basis for determining coronary artery reperfusion

  13. Renal ischemia reperfusion causes brain hippocampus oxidative ...

    African Journals Online (AJOL)

    Background: The acute kidney injury (AKI) may do damage to remote organs. Objective of the study is to investigate effect of seaweed extract (SE) on brain oxidative damage in kidney ischemia/reperfusion rats. Material and Methods: Animals were randomly divided into five groups. SE pre-fed to rats. Results: Kidney I/R ...

  14. Morphine Reduces Myocardial Infarct Size via Heat Shock Protein 90 in Rodents

    Directory of Open Access Journals (Sweden)

    Bryce A. Small

    2015-01-01

    Full Text Available Opioids reduce injury from myocardial ischemia-reperfusion in humans. In experimental models, this mechanism involves GSK3β inhibition. HSP90 regulates mitochondrial protein import, with GSK3β inhibition increasing HSP90 mitochondrial content. Therefore, we determined whether morphine-induced cardioprotection is mediated by HSP90 and if the protective effect is downstream of GSK3β inhibition. Male Sprague-Dawley rats, aged 8–10 weeks, were subjected to an in vivo myocardial ischemia-reperfusion injury protocol involving 30 minutes of ischemia followed by 2 hours of reperfusion. Hemodynamics were continually monitored and myocardial infarct size determined. Rats received morphine (0.3 mg/kg, the GSK3β inhibitor, SB216763 (0.6 mg/kg, or saline, 10 minutes prior to ischemia. Some rats received selective HSP90 inhibitors, radicicol (0.3 mg/kg, or deoxyspergualin (DSG, 0.6 mg/kg alone or 5 minutes prior to morphine or SB216763. Morphine reduced myocardial infarct size when compared to control (42 ± 2% versus 60 ± 1%. This protection was abolished by prior treatment of radicicol or DSG (59 ± 1%, 56 ± 2%. GSK3β inhibition also reduced myocardial infarct size (41 ± 2% with HSP90 inhibition by radicicol or DSG partially inhibiting SB216763-induced infarct size reduction (54 ± 3%, 47 ± 1%, resp.. These data suggest that opioid-induced cardioprotection is mediated by HSP90. Part of this protection afforded by HSP90 is downstream of GSK3β, potentially via the HSP-TOM mitochondrial import pathway.

  15. Current Understanding of the Pathophysiology of Myocardial Fibrosis and Its Quantitative Assessment in Heart Failure

    Directory of Open Access Journals (Sweden)

    Tong Liu

    2017-04-01

    Full Text Available Myocardial fibrosis is an important part of cardiac remodeling that leads to heart failure and death. Myocardial fibrosis results from increased myofibroblast activity and excessive extracellular matrix deposition. Various cells and molecules are involved in this process, providing targets for potential drug therapies. Currently, the main detection methods of myocardial fibrosis rely on serum markers, cardiac magnetic resonance imaging, and endomyocardial biopsy. This review summarizes our current knowledge regarding the pathophysiology, quantitative assessment, and novel therapeutic strategies of myocardial fibrosis.

  16. Heart failure complicating myocardial infarction. A report of the Peruvian Registry of ST-elevation myocardial infarction (PERSTEMI).

    Science.gov (United States)

    Chacón-Diaz, Manuel; Araoz-Tarco, Ofelia; Alarco-León, Walter; Aguirre-Zurita, Oscar; Rosales-Vidal, Maritza; Rebaza-Miyasato, Patricia

    2018-05-01

    The aim of this study is to determine the incidence, associated factors, and 30-day mortality of patients with heart failure (HF) after ST elevation myocardial infarction (STEMI) in Peru. Observational, cohort, multicentre study was conducted at the national level on patients enrolled in the Peruvian registry of STEMI, excluding patients with a history of HF. A comparison was made with the epidemiological characteristics, treatment, and 30 day-outcome of patients with (Group 1) and without (Group 2) heart failure after infarction. Of the 388 patients studied, 48.7% had symptoms of HF, or a left ventricular ejection fraction 75 years, anterior wall infarction, and the absence of electrocardiographic signs of reperfusion were the factors related to a higher incidence of HF. The hospital mortality in Group 1 was 20.6%, and the independent factors related to higher mortality were age>75 years, and the absence of electrocardiographic signs of reperfusion. Heart failure complicates almost 50% of patients with STEMI, and is associated with higher hospital and 30-day mortality. Age greater than 75 years and the absence of negative T waves in the post-reperfusion ECG are independent factors for a higher incidence of HF and 30-day mortality. Copyright © 2018 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  17. Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death

    Directory of Open Access Journals (Sweden)

    Stefano Toldo

    2016-06-01

    Full Text Available Heart transplantation (HTx is the ultimate treatment for end-stage heart failure. The number of patients on waiting lists for heart transplants, however, is much higher than the number of available organs. The shortage of donor hearts is a serious concern since the population affected by heart failure is constantly increasing. Furthermore, the long-term success of HTx poses some challenges despite the improvement in the management of the short-term complications and in the methods to limit graft rejection. Myocardial injury occurs during transplantation. Injury initiated in the donor as result of brain or cardiac death is exacerbated by organ procurement and storage, and is ultimately amplified by reperfusion injury at the time of transplantation. The innate immune system is a mechanism of first-line defense against pathogens and cell injury. Innate immunity is activated during myocardial injury and produces deleterious effects on the heart structure and function. Here, we briefly discuss the role of the innate immunity in the initiation of myocardial injury, with particular focus on the Toll-like receptors and inflammasome, and how to potentially expand the donor population by targeting the innate immune response.

  18. [Anaesthetic-induced myocardial preconditioning: fundamental basis and clinical implications].

    Science.gov (United States)

    Chiari, P; Bouvet, F; Piriou, V

    2005-04-01

    Volatile halogenated anaesthetics offer a myocardial protection when they are administrated before a myocardial ischaemia. Cellular mechanisms involved in anaesthetic preconditioning are now better understood. The objectives of this review are to understand the anaesthetic-induced preconditioning underlying mechanisms and to know the clinical implications. References were obtained from PubMed data bank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) using the following keywords: volatile anaesthetic, isoflurane, halothane, sevoflurane, desflurane, preconditioning, protection, myocardium. Ischaemic preconditioning (PC) is a myocardial endogenous protection against ischaemia. It has been described as one or several short ischaemia before a sustained ischemia. These short ischaemia trigger a protective signal against this longer ischaemia. An ischemic organ is able to precondition a remote organ. It is possible to replace the short ischaemia by a preadministration of halogenated volatile anaesthetic with the same protective effect, this is called anaesthetic PC (APC). APC and ischaemic PC share similar underlying biochemical mechanisms including protein kinase C, tyrosine kinase activation and mitochondrial and sarcolemnal K(ATP) channels opening. All halogenated anaesthetics can produce an anaesthetic PC effect. Myocardial protection during reperfusion, after the long ischaemia, has been shown by successive short ischaemia or volatile anaesthetic administration, this is called postconditioning. Ischaemic PC has been described in humans in 1993. Clinical studies in human cardiac surgery have shown the possibility of anaesthetic PC with volatile anaesthetics. These studies have shown a decrease of postoperative troponin in patient receiving halogenated anaesthetics.

  19. Detecting culprit vessel of coronary artery disease with SPECT 99Tcm-MIBI myocardial imaging

    International Nuclear Information System (INIS)

    Luan Zhaosheng; Zhou Wen; Peng Yong; Su Yuwen; Tian Jianhe; Gai lue; Sun Zhijun

    2002-01-01

    Objective: To assess the value of detecting culprit vessel of coronary artery disease (CAD) with SPECT 99 Tc m -MIBI myocardial imaging. Methods: Forty-six patients with CAD were studied. Every patients had multiple-vessel lesion showed by coronary arteriography and was treated by revascularization as percutaneous transluminal angioplasty (PTCA), coronary artery bypass graft (CABG) or laser holing. Exercise (EX), rest (RE) and intravenous infusion of nitroglycerine (NTG) SPECT 99 Tc m -MIBI myocardial imagings were performed before revascularization. Exercise and rest images revealed the myocardial ischemia. NTG images revealed myocardial viability. Culprit vessels were detected according to the defects showed by above mentioned images. The veracity of detected culprit vessels was tested with the outcome of the reperfusion therapy. Results: In this group, the coronary arteriography revealed 107 lesioned coronary arteries. Myocardial imaging detected 46 culprit vessels including 23 left anterior descending (LAD), 19 left circumflex coronary artery (LCX) and 4 right coronary artery (RCA). All 46 culprit vessels underwent revascularization and had nice outcome. The veracity of 99 Tc m -MIBI myocardial imaging detected culprit vessels was high according to patients' outcome. Conclusion: Exercise, rest and NTG 99 Tc m -MIBI myocardial imaging is a great method for detecting culprit vessels in multivessel coronary disease

  20. Intracoronary thallium-201 scintigraphy after thrombolytic therapy for acute myocardial infarction compared with 10 and 100 day intravenous thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Heller, G.V.; Parker, J.A.; Silverman, K.J.; Royal, H.D.; Kolodny, G.M.; Paulin, S.; Braunwald, E.; Markis, J.E.

    1987-01-01

    Thallium-201 imaging has been utilized to estimate myocardial salvage after thrombolytic therapy for acute myocardial infarction. However, results from recent animal studies have suggested that as a result of reactive hyperemia and delayed necrosis, thallium-201 imaging may overestimate myocardial salvage. To determine whether early overestimation of salvage occurs in humans, intracoronary thallium-201 scans 1 hour after thrombolytic therapy were compared with intravenous thallium-201 scans obtained approximately 10 and 100 days after myocardial infarction in 29 patients. In 10 patients with angiographic evidence of coronary reperfusion, immediate improvement in thallium defects and no interim clinical events, there was no change in imaging in the follow-up studies. Of nine patients with coronary reperfusion but no initial improvement of perfusion defects, none showed worsening of defects in the follow-up images. Six of these patients demonstrated subsequent improvement at either 10 or 100 days after infarction. Seven of 10 patients with neither early evidence of reperfusion nor improvement in perfusion defects had improvement of infarct-related perfusion defects, and none showed worsening. In conclusion, serial scanning at 10 and 100 days after infarction in patients with no subsequent clinical events showed no worsening of the perfusion image compared with images obtained in acute studies. Therefore, there is no evidence that thallium-201 imaging performed early in patients with acute myocardial infarction overestimates improvement

  1. Melatonin and mitochondrial function during ischemia/reperfusion injury.

    Science.gov (United States)

    Ma, Zhiqiang; Xin, Zhenlong; Di, Wencheng; Yan, Xiaolong; Li, Xiaofei; Reiter, Russel J; Yang, Yang

    2017-11-01

    Ischemia/reperfusion (IR) injury occurs in many organs and tissues, and contributes to morbidity and mortality worldwide. Melatonin, an endogenously produced indolamine, provides a strong defense against IR injury. Mitochondrion, an organelle for ATP production and a decider for cell fate, has been validated to be a crucial target for melatonin to exert its protection against IR injury. In this review, we first clarify the mechanisms underlying mitochondrial dysfunction during IR and melatonin's protection of mitochondria under this condition. Thereafter, special focus is placed on the protective actions of melatonin against IR injury in brain, heart, liver, and others. Finally, we explore several potential future directions of research in this area. Collectively, the information compiled here will serve as a comprehensive reference for the actions of melatonin in IR injury identified to date and will hopefully aid in the design of future research and increase the potential of melatonin as a therapeutic agent.

  2. Pre-hospital electrocardiogram triage with tele-cardiology support is associated with shorter time-to-balloon and higher rates of timely reperfusion even in rural areas: data from the Bari- Barletta/Andria/Trani public emergency medical service 118 registry on primary angioplasty in ST-elevation myocardial infarction.

    Science.gov (United States)

    Brunetti, Natale Daniele; Di Pietro, Gaetano; Aquilino, Ambrogio; Bruno, Angela I; Dellegrottaglie, Giulia; Di Giuseppe, Giuseppe; Lopriore, Claudio; De Gennaro, Luisa; Lanzone, Saverio; Caldarola, Pasquale; Antonelli, Gianfranco; Di Biase, Matteo

    2014-09-01

    We report the preliminary data from a regional registry on ST-elevation myocardial infarction (STEMI) patients treated with primary angioplasty in Apulia, Italy; the region is covered by a single public health-care service, a single public emergency medical service (EMS), and a single tele-medicine service provider. Two hundred and ninety-seven consecutive patients with STEMI transferred by regional free public EMS 1-1-8 for primary-PCI were enrolled in the study; 123 underwent pre-hospital electrocardiograms (ECGs) triage by tele-cardiology support and directly referred for primary-PCI, those remaining were just transferred by 1-1-8 ambulances for primary percutaneous coronary intervention (PCI) (diagnosis not based on tele-medicine ECG; already hospitalised patients, emergency-room without tele-medicine support). Time from first ECG diagnostic for STEMI to balloon was recorded; a time-to-balloon primary-PCI). Pre-hospital triage with tele-cardiology ECG in an EMS registry from an area with more than one and a half million inhabitants was associated with shorter time-to-balloon and higher rates of timely treated patients, even in 'rural' areas. © The European Society of Cardiology 2014.

  3. Influence of metformin and insulin on myocardial substrate oxidation under conditions encountered during cardiac surgery.

    Science.gov (United States)

    Holmes, Cyonna; Powell, LaShondra; Clarke, Nicholas S; Jessen, Michael E; Peltz, Matthias

    2018-02-01

    The influence of diabetic therapies on myocardial substrate selection during cardiac surgery is unknown but may be important to ensure optimal surgical outcomes. We hypothesized that metformin and insulin alter myocardial substrate selection during cardiac surgery and may affect reperfusion cardiac function. Rat hearts (n = 8 per group) were evaluated under 3 metabolic conditions: normokalemia, cardioplegia, or bypass. Groups were perfused with Krebs-Henseleit buffer in the presence of no additives, metformin, insulin, or both insulin and metformin. Perfusion buffer containing physiologic concentrations of energetic substrates with different carbon-13 ( 13 C) labeling patterns were used to determine substrate oxidation preferences using 13 C magnetic resonance spectroscopy and glutamate isotopomer analysis. Rate pressure product and oxygen consumption were measured. Myocardial function was not different between groups. For normokalemia, ketone oxidation was reduced in the presence of insulin and the combination of metformin and insulin reduced fatty acid oxidation. Metformin reduced fatty acid and ketone oxidation during cardioplegia. Fatty acid oxidation was increased in the bypass group compared with all other conditions. Metformin and insulin affect substrate utilization and reduce fatty acid oxidation before reperfusion. These alterations in substrate oxidation did not affect myocardial function in otherwise normal hearts. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Myocardial infarct size vs duration of coronary artery occlusion in patients with acute anterior myocardial infarction. Assessment by thallium-201 emission tomography, gated cardiac pool study and CK-MB release

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, Shunichi; Kambara, Hirofumi; Kadota, Kazunori; Murakami, Tomoyuki; Suzuki, Yukisono [Kyoto Univ. (Japan). Faculty of Medicine

    1984-03-01

    Relationship between the duration of coronary artery occlusion and myocardial infarct size was investigated in 24 patients with acute anterior myocardial infarction associated with occlusion of the left anterior descending artery. The duration of coronary artery occlusion was divided into (A) 4 hours or less, (B) 4-10 hours, and (C) 10 hours or more. Defect score obtained by thallium-201 emission computed tomography was significantly greater, and left ventricular ejection fraction was significantly lower as the duration of coronary artery occlusion increased. Creatine kinase-MB (..sigma..CK-MB) was higher in cases of longer duration of occlusion. However, this was not significant between the groups A and B, suggesting the influence of reperfusion on the ..sigma..CK-MB release. The duration of coronary artery occlusion was considered to be an important factor to determine the infarct size, and significance of early reperfusion was suggested.

  5. The mechanism of Intralipid®-mediated cardioprotection complex IV inhibition by the active metabolite, palmitoylcarnitine, generates reactive oxygen species and activates reperfusion injury salvage kinases.

    Directory of Open Access Journals (Sweden)

    Phing-How Lou

    Full Text Available Intralipid® administration at reperfusion elicits protection against myocardial ischemia-reperfusion injury. However, the underlying mechanisms are not fully understood.Sprague-Dawley rat hearts were exposed to 15 min of ischemia and 30 min of reperfusion in the absence or presence of Intralipid® 1% administered at the onset of reperfusion. In separate experiments, the reactive oxygen species (ROS scavenger N-(2-mercaptopropionyl-glycine was added either alone or with Intralipid®. Left ventricular work and activation of Akt, STAT3, and ERK1/2 were used to evaluate cardioprotection. ROS production was assessed by measuring the loss of aconitase activity and the release of hydrogen peroxide using Amplex Red. Electron transport chain complex activities and proton leak were measured by high-resolution respirometry in permeabilized cardiac fibers. Titration experiments using the fatty acid intermediates of Intralipid® palmitoyl-, oleoyl- and linoleoylcarnitine served to determine concentration-dependent inhibition of complex IV activity and mitochondrial ROS release.Intralipid® enhanced postischemic recovery and activated Akt and Erk1/2, effects that were abolished by the ROS scavenger N-(2-mercaptopropionylglycine. Palmitoylcarnitine and linoleoylcarnitine, but not oleoylcarnitine concentration-dependently inhibited complex IV. Only palmitoylcarnitine reached high tissue concentrations during early reperfusion and generated significant ROS by complex IV inhibition. Palmitoylcarnitine (1 µM, administered at reperfusion, also fully mimicked Intralipid®-mediated protection in an N-(2-mercaptopropionyl-glycine -dependent manner.Our data describe a new mechanism of postconditioning cardioprotection by the clinically available fat emulsion, Intralipid®. Protection is elicited by the fatty acid intermediate palmitoylcarnitine, and involves inhibition of complex IV, an increase in ROS production and activation of the RISK pathway.

  6. [Prehospital thrombolysis: A national perspective. Pharmaco-invasive strategy for early reperfusion of STEMI in Mexico].

    Science.gov (United States)

    Arriaga-Nava, Roberto; Valencia-Sánchez, Jesús-Salvador; Rosas-Peralta, Martin; Garrido-Garduño, Martin; Calderón-Abbo, Moisés

    2015-01-01

    To review the existing evidence on the role of prehospital thrombolysis in patients with ST-segment elevation acute myocardial infarction (STEMI) as part of a strategy of cutting edge to reduce the time of coronary reperfusion and as a consequence improves both the survival and function. We used the technique of exploration-reduction-evaluation-analysis and synthesis of related studies, with an overview of current recommendations, data from controlled clinical trials and from the national and international registries about the different strategies for STEMI reperfusion. In total, we examined 186 references on prehospital thrombolysis, 130 references in times door-treatment, 139 references in STEMI management and national and international registries as well as 135 references on rescue and primary percutaneous coronary intervention for STEMI. Finally the 48 references that were more relevant and informative were retained. The «time» factor is crucial in the success of early reperfusion in STEMI especially if thrombolysis is applied correctly during the prehospital time. The primary percutaneous coronary intervention is contingent upon its feasibility before 120 min from the onset of symptoms. In our midst to internationally, thrombolysis continues to be a strategy with great impact on their expectations of life and function of patients. Telecommunication systems should be incorporate in real time to the priority needs of catastrophic diseases such as STEMI where life is depending on time. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  7. Effects of Hydroalcoholic Extract of Cynodon Dactylon (L. Pers. on ISchemia/Reperfusion-Induced Arrhythmias

    Directory of Open Access Journals (Sweden)

    A Garjani

    2008-09-01

    Full Text Available Background and purpose of the study: Probable antiarrhythmic effects of Cynodon dactylon (L. pers. (family Poaceae against ischemia/reperfusion (I/R-induced arrhythmias were investigated in isolated rat heart. Methods: The hearts were subjected to 30min regional ischemia followed by 30min reperfusion and perfused with hydroalcoholic extract of rhizome of C. dactylon (25, 50, 100 and 200µg/ml. Results: During ischemia, the extract produced marked reduction in the number, duration and incidences of ventricular tachycardia (VT at 25 and 50µg/ml (p<0.001 and p<0.01, respectively. Total number of ischemic ventricular ectopic beats (VEBs were lowered by 25-100µg/ml (p<0.001, p<0.001 and p<0.05, respectively. At the reperfusion phase, C. dactylon (25 and 50µg/ml decreased incidence of VT from 100% (control to 13 and 33% (p<0.001 and p<0.05 respectively. Duration and number of VT and total VF incidence were also reduced at the same concentration (p<0.05 for all. Perfusion of the extract (25-100µg/ml was markedly lowered reversible VF duration from 218±99sec to 0 sec, 0 sec and 10±5sec (p<0.01, p<0.01 and p<0.05 respectively. Moreover, C. dactylon (25 and 50µg/ml decreased number of total VEBs from 349±73 to 35±17 (p<0.001 and 66±26 (p<0.01. In this study, it was also shown that perfusion of the extract produced a marked and concentration-dependent positive inotropic effect. Conclusion: The findings of this study indicate that C. dactylon produce protective effects against I/R-induced arrhythmias in isolated rat hearts probably by increase in the myocardial contractility and as a result by improvement of hemodynamic factors.

  8. Reducing Microvascular Dysfunction in Revascularized Patients with ST-Elevation Myocardial Infarction by Off-Target Properties of Ticagrelor versus Prasugrel. Rationale and Design of the REDUCE-MVI Study

    NARCIS (Netherlands)

    G.N. Janssens (Gladys N.); M.A.H. van Leeuwen (Maarten); N.W. van der Hoeven (Nina W.); G.A. de Waard (Guus); R. Nijveldt (Robin); R. Diletti (Roberto); F. Zijlstra (Felix); C. Von Birgelen (Clemens); J. Escaned (Javier); M. Valgimigli (Marco); N. van Royen (Niels)

    2016-01-01

    textabstractMicrovascular injury is present in a large proportion of patients with ST-elevation myocardial infarction (STEMI) despite successful revascularization. Ticagrelor potentially mitigates this process by exerting additional adenosine-mediated effects. This study aims to determine whether

  9. The effect of adhesion molecule blockade on pulmonary reperfusion injury.

    Science.gov (United States)

    Levine, Adrian J; Parkes, Karen; Rooney, Stephen J; Bonser, Robert S

    2002-04-01

    Selectins are the molecules involved in the initial adhesion of the activated neutrophil on pulmonary endothelium. We investigated the efficacy of selectin blockade in a selective (monoclonal antibody RMP-1) and nonselective (Fucoidin) manner in pulmonary reperfusion injury. Groups of six rat lungs were flushed with University of Wisconsin solution then stored at 4 degrees C for 4 hours. They then underwent sanguinous reperfusion for 30 minutes during which functional measures (gas exchange, pulmonary artery pressure, and airway pressure) of lung performance were made. After reperfusion we estimated their capillary filtration coefficient (Kfc units g/cm water/minute/g wet lung tissue) using a gravimetric technique. Four groups were studied: group I had no reperfusion, group II had 30 minutes of reperfusion, group III had infusion of 20 mg/kg Fucoidin before reperfusion, and group IV had infusion of 20 microg/mL RMP-1 before reperfusion. Reperfusion injury was found between groups I and II by an increase in capillary filtration coefficient (1.048 +/- 0.316 to 3.063 +/- 0.466, p Kfc than group II (0.967 +/- 0.134 and 1.205 +/- 0.164, respectively, p < 0.01). There was no significant functional difference between groups II, III, and IV. Reperfusion-induced hyperpermeability was ameliorated by selective (RMP-1) and nonselective (Fucoidin) selectin blockade.

  10. Coronary Catheterization Laboratory Role for Post-Resuscitation Care Without ST Elevation Myocardial Infarction.

    Science.gov (United States)

    Kumar, Kris; Lotun, Kapildeo

    2018-05-07

    Out of hospital cardiac arrest management of patients with non-ST myocardial infarction per current American Heart Association and European Resuscitation Council guidelines leave the decision in regard to early angiography up to the physician operators. Guidelines are clear on the positive impact of early intervention on survival and improvement on left ventricular function in patients presenting with cardiac arrest and ST elevation myocardial infarction on electrocardiogram. This review aims to analyze the data that current guidelines are based upon in regards to out of hospital cardiac arrest with electrocardiogram findings of non-ST elevation myocardial infarction as well as other clinical trials that support early angiography and reperfusion strategies as well as future studies that are in trial to study the role of the coronary catheterization laboratory in cardiac arrest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    Science.gov (United States)

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

  12. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    Science.gov (United States)

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  13. Periodontitis and myocardial hypertrophy.

    Science.gov (United States)

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  14. Dietary red palm oil supplementation reduces myocardial infarct size in an isolated perfused rat heart model

    Directory of Open Access Journals (Sweden)

    Esterhuyse Adriaan J

    2010-06-01

    Full Text Available Abstract Background and Aims Recent studies have shown that dietary red palm oil (RPO supplementation improves functional recovery following ischaemia/reperfusion in isolated hearts. The main aim of this study was to investigate the effects of dietary RPO supplementation on myocardial infarct size after ischaemia/reperfusion injury. The effects of dietary RPO supplementation on matrix metalloproteinase-2 (MMP2 activation and PKB/Akt phosphorylation were also investigated. Materials and methods Male Wistar rats were divided into three groups and fed a standard rat chow diet (SRC, a SRC supplemented with RPO, or a SRC supplemented with sunflower oil (SFO, for a five week period, respectively. After the feeding period, hearts were excised and perfused on a Langendorff perfusion apparatus. Hearts were subjected to thirty minutes of normothermic global ischaemia and two hours of reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining. Coronary effluent was collected for the first ten minutes of reperfusion in order to measure MMP2 activity by gelatin zymography. Results Dietary RPO-supplementation decreased myocardial infarct size significantly when compared to the SRC-group and the SFO-supplemented group (9.1 ± 1.0% versus 30.2 ± 3.9% and 27.1 ± 2.4% respectively. Both dietary RPO- and SFO-supplementation were able to decrease MMP2 activity when compared to the SRC fed group. PKB/Akt phosphorylation (Thr 308 was found to be significantly higher in the dietary RPO supplemented group when compared to the SFO supplemented group at 10 minutes into reperfusion. There was, however, no significant changes observed in ERK phosphorylation. Conclusions Dietary RPO-supplementation was found to be more effective than SFO-supplementation in reducing myocardial infarct size after ischaemia/reperfusion injury. Both dietary RPO and SFO were able to reduce MMP2 activity, which suggests that MMP2 activity does not play a major role in

  15. Prognostic Significance of Remote Myocardium Alterations Assessed by Quantitative Noncontrast T1 Mapping in ST-Segment Elevation Myocardial Infarction.

    Science.gov (United States)

    Reinstadler, Sebastian J; Stiermaier, Thomas; Liebetrau, Johanna; Fuernau, Georg; Eitel, Charlotte; de Waha, Suzanne; Desch, Steffen; Reil, Jan-Christian; Pöss, Janine; Metzler, Bernhard; Lücke, Christian; Gutberlet, Matthias; Schuler, Gerhard; Thiele, Holger; Eitel, Ingo

    2018-03-01

    This study assessed the prognostic significance of remote zone native T1 alterations for the prediction of clinical events in a population with ST-segment elevation myocardial infarction (STEMI) who were treated by primary percutaneous coronary intervention (PPCI) and compared it with conventional markers of infarct severity. The exact role and incremental prognostic relevance of remote myocardium native T1 mapping alterations assessed by cardiac magnetic resonance (CMR) after STEMI remains unclear. We included 255 consecutive patients with STEMI who were reperfused within 12 h after symptom onset. CMR core laboratory analysis was performed to assess left ventricular (LV) function, standard infarct characteristics, and native T1 values of the remote, noninfarcted myocardium. The primary endpoint was a composite of death, reinfarction, and new congestive heart failure within 6 months (major adverse cardiac events [MACE]). Patients with increased remote zone native T1 values (>1,129 ms) had significantly larger infarcts (p = 0.012), less myocardial salvage (p = 0.002), and more pronounced LV dysfunction (p = 0.011). In multivariable analysis, remote zone native T1 was independently associated with MACE after adjusting for clinical risk factors (p = 0.001) or other CMR variables (p = 0.007). In C-statistics, native T1 of remote myocardium provided incremental prognostic information beyond clinical risk factors, LV ejection fraction, and other markers of infarct severity (all p remote zone native T1 to a model of prognostic CMR parameters (ejection fraction, infarct size, and myocardial salvage index) led to net reclassification improvement of 0.82 (95% confidence interval: 0.46 to 1.17; p remote zone alterations by quantitative noncontrast T1 mapping provided independent and incremental prognostic information in addition to clinical risk factors and traditional CMR outcome markers. Remote zone alterations may thus represent a novel therapeutic target and a

  16. Smokers with ST-segment elevation myocardial infarction and short time to treatment have equal effects of PCI and fibrinolysis

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Kelbæk, Henning Skov; Madsen, Jan Kyst

    2012-01-01

    The purpose of this study was to examine the effect of primary percutaneous coronary intervention (PCI) compared to fibrinolysis in smokers and non-smokers with ST-segment elevation myocardial infarction (STEMI). Smokers seem to have less atherosclerosis but are more prone to thrombotic disease....... Compared to non-smokers, they have higher rates of early, complete reperfusion when treated with fibrinolysis for MI....

  17. Value of adenosine infusion for infarct size determination using real-time myocardial contrast echocardiography

    Directory of Open Access Journals (Sweden)

    da Luz Protásio

    2006-02-01

    Full Text Available Abstract Background Myocardial contrast echocardiography has been used for determination of infarct size (IS in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE. Methods Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC staining. Results IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004, with good correlation between measurements (r = 0.91; p 2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p Conclusion RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.

  18. Hydroxychloroquine Protects against Cardiac Ischaemia/Reperfusion Injury In Vivo via Enhancement of ERK1/2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Lauren Bourke

    Full Text Available An increasing number of investigations including human studies demonstrate that pharmacological ischaemic preconditioning is a viable way to protect the heart from myocardial ischaemia/reperfusion (I/R injury. This study investigated the role of hydroxychloroquine (HCQ in the heart during I/R injury. In vitro and in vivo models of myocardial I/R injury were used to assess the effects of HCQ. It was found that HCQ was protective in neonatal rat cardiomyocytes through inhibition of apoptosis, measured by TUNEL and cleaved caspase-3. This protection in vitro was mediated through enhancement of ERK1/2 phosphorylation mediated by HCQ in a dose-dependent fashion. A decrease in infarct size was observed in an in vivo model of myocardial I/R injury in HCQ treated animals and furthermore this protection was blocked in the presence of the ERK1/2 inhibitor U0126. For the first time, we have shown that HCQ promotes a preconditioning like protection in an in vivo simulated rat myocardial I/R injury model. Moreover, it was shown that HCQ is protective via enhanced phosphorylation of the pro-survival kinase ERK1/2.

  19. Edaravone prevents lung injury induced by hepatic ischemia-reperfusion.

    Science.gov (United States)

    Uchiyama, Munehito; Tojo, Kentaro; Yazawa, Takuya; Ota, Shuhei; Goto, Takahisa; Kurahashi, Kiyoyasu

    2015-04-01

    Lung injury is a major clinical concern after hepatic ischemia-reperfusion (I/R), due to the production of reactive oxygen species in the reperfused liver. We investigated the efficacy of edaravone, a potent free-radical scavenger, for attenuating lung injury after hepatic I/R. Adult male Sprague-Dawley rats were assigned to sham + normal saline (NS), I/R + NS, or I/R + edaravone group. Rats in the I/R groups were subjected to 90 min of partial hepatic I/R. Five minutes before reperfusion, 3 mg/kg edaravone was administered to the I/R + edaravone group. After 6 h of reperfusion, we evaluated lung histopathology and wet-to-dry ratio. We also measured malondialdehyde (MDA), an indicator of oxidative stress, in the liver and the lung, as well as cytokine messenger RNA expressions in the reperfused liver and plasma cytokine concentrations. Histopathology revealed lung damages after 6 h reperfusion of partial ischemic liver. Moreover, a significant increase in lung wet-to-dry ratio was observed. MDA concentration increased in the reperfused liver, but not in the lungs. Edaravone administration attenuated the lung injury and the increase of MDA in the reperfused liver. Edaravone also suppressed the reperfusion-induced increase of interleukin-6 messenger RNA expressions in the liver and plasma interleukin-6 concentrations. Edaravone administration before reperfusion of the ischemic liver attenuates oxidative stress in the reperfused liver and the subsequent lung injury. Edaravone may be beneficial for preventing lung injury induced by hepatic I/R. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Myocardial Po2 does not limit aerobic metabolism in the postischemic heart.

    Science.gov (United States)

    Chung, Youngran

    2016-01-15

    Reperfused hypertrophic hearts are prone to develop reflow abnormalities, which are likely to impair O2 return to the myocardium. Yet, reflow deficit may not be the only factor determining postischemic oxygenation in the hypertrophic heart. Altered O2 demand may also contribute to hypoxia. In addition, the extent to which myocardial Po2 dictates energy and functional recovery in the reperfused heart remains uncertain. In the present study, moderately hypertrophied hearts from spontaneously hypertensive rats were subjected to ischemia-reperfusion, and the recovery time courses of pH and high-energy phosphates were followed by (31)P NMR. (1)H NMR measurement of intracellular myoglobin assessed tissue O2 levels. The present study found that the exacerbation of hypoxia in the postischemic spontaneously hypertensive rat heart arises mostly from impaired microvascular supply of O2. However, postischemic myocardial Po2, at least when it exceeds ∼18% of the preischemic level, does not limit mitochondrial respiration and high-energy phosphate resynthesis. It only passively reflects changes in the O2 supply-demand balance. Copyright © 2016 the American Physiological Society.

  1. ST-segment resolution with bivalirudin versus heparin and routine glycoprotein IIb/IIIa inhibitors started in the ambulance in ST-segment elevation myocardial infarction patients transported for primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Van't Hof, Arnoud; Giannini, Francesco; Ten Berg, Jurrien

    2017-01-01

    BACKGROUND: Myocardial reperfusion after primary percutaneous coronary intervention (PCI) can be assessed by the extent of post-procedural ST-segment resolution. The European Ambulance Acute Coronary Syndrome Angiography (EUROMAX) trial compared pre-hospital bivalirudin and pre-hospital heparin o...

  2. Health care system delay and heart failure in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention: follow-up of population-based medical registry data